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ABSTRACT 

A large dataset of water pipeline damage from the February and June 2011 

earthquakes in Christchurch, New Zealand is used to fit four mathematical model 

types—logit, boosted regression trees (BRT), and random forest (RF), and the repair 

rate (RR) method common in the literature. Cross validation and holdout validation 

are used with multiple metrics to fully evaluate the models’ ability to accurately 

predict the total number and approximate spatial distribution of damaged pipes; to 

correctly classify each individual pipe as damaged or not, and to describe the relative 

importance of pipe and earthquake attributes in predicting damage. Results suggest 

that while BRT offers the best overall performance, logit offers the advantages of a 

closed form solution and an ability to compare pipe materials explicitly, and the far 

simpler RR method is very good at predicting the total number of damaged pipes, 

though less capable of prediction at the individual pipe or suburb level. The analysis 

provides evidence that “modified” PVC (MPVC), UPVC, Polyethlyne 80B (PE80B), 

High Density Polyethlyne (HDPE), and Cast Iron (CI) were associated with the least 

damage, and Galvanized Iron (GI) with the most; and that the more recent the type of 

trench it is in, the less likely a pipe is to be damaged, even when controlling for the 

pipe age. The analysis highlights the need to compute and report the predictive errors 

of different types and acknowledge them in using the models for subsequent analysis. 
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Chapter 1 

INTRODUCTION 

Earthquakes can cause extensive damage to buried water pipelines, severely 

disrupting a community’s supply of water for firefighting, drinking, cleaning, 

industrial processes, and other uses. Being able to manage that risk requires an 

understanding of the likely amount and spatial distribution of damage future 

earthquakes are likely to cause, and what attributes of the pipes and/or ground motion 

are most associated with damage. Previous research has produced multiple 

mathematical models of pipe damage in earthquakes, and has identified the primary 

factors associated with increased damage (O’Rourke and Liu 2012). In this paper, we 

add to that body of knowledge by using damage data from the February 22, 2011 (Mw 

= 6.2) earthquake in Christchurch, New Zealand to fit new mathematical models of 

earthquake-caused damage to water pipelines, while data from the June 13, 2011 

Christchurch earthquake is used to assess the predictive power of the models. Since all 

models will not serve all purposes equally well, it is important to specify the intended 

uses of the models a priori. Uses of these models include describing the magnitude of 

risk to the water supply system, supporting emergency response planning (e.g., repair 

resources needed), supporting mitigation planning (e.g., pipe materials that 

should/should not be used), and providing damage maps to use as input for models of 

service disruptions and societal impact. To support these applications, we had four 

specific goals. For a specified earthquake, the models should accurately predict the (1) 

total number and (2) approximate spatial distribution of damaged pipes. They should 
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also aim to (3) correctly classify each individual pipe as damaged or not, and (4) 

describe the relative importance of various pipe and earthquake attributes in predicting 

damage, especially material type, trench type, and other characteristics that could be 

modified as part of a mitigation program.  

The study presented offers contributions related to the data, analyses, and 

evaluation methods used. First, we employ a uniquely large and complete dataset from 

an earthquake that caused extensive damage to a modern water supply system. The 

dataset includes observations on 83,746 pipes (2,311 of which experienced damage) 

with multiple relevant characteristics of each. Second, we employ and compare 

statistical and machine learning models—logistic regression (logit), boosted regression 

trees (BRT), and random forests (RF)—that promise multiple benefits and are well-

developed though new to this application. These model types allow investigation of 

multiple covariates and interactions among them. They can use each length of pipe as 

a unit of analysis rather than repair rate for a region, ensuring that the covariates refer 

more directly to a specified pipe rather than being smoothed over a region. We 

compare the model types to the simpler approach used in the literature. Third, in this 

study, for the first time, we use multiple metrics to fully evaluate and compare the 

models’ ability to predict damage in future events and achieve the four stated goals—

total count and spatial distribution of damaged pipes, classification of individual pipes, 

and relative importance of covariates. After summarizing the empirical literature on 

models of earthquake damage to water pipelines in Chapter 2, we summarize previous 

findings on influential covariates in Chapter 3. The data, model types, analyses, and 

results are described in Chapters 4, 5, 6, and 7, respectively. 
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Chapter 2  

AVAILABLE MODELS OF EARTHQUAKE DAMAGE TO WATER 

PIPELINES 

Many analyses have been conducted to examine performance of buried 

pipelines in earthquakes—Physical experiments (e.g., Abdoun et al. 2009, Tsai et al. 

2000), analytical (e.g., Davis et al. 2007), numerical (e.g., Vazouras et al. 2010), and 

empirical or statistical curve fitting (e.g., Jeon and O’Rourke 2005). The focus here is 

on empirical models, i.e., mathematical relationships fitted to damage data recorded in 

previous earthquakes (e.g., O’Rourke and Ayala 1993, O’Rourke and Jeon 1999, 

Pineda-Porras and Ordaz 2010, Kimishima et al. 2011, O’Rourke et al. 2012). 

O’Rourke and Liu (2012), Pineda-Porras and Najafi (2010), and Lanzano et al. (2014), 

respectively, provide overviews of pipeline performance in earthquakes in general and 

of statistical models specifically. 

The empirical modeling efforts have typically used the same general approach, 

which for convenience we call the repair rate method (RR). They have aimed to 

develop a curve that relates repair rate, RR (number of repairs (i.e., damage locations) 

per km. of pipe) to a measure of ground motion, ground deformation, or strain. In 

some cases, they present different curves for different groups of pipe based on their 

material, diameter, or other characteristic. Isoyama et al. (2000), for example, presents 

four different equations, one for each combination of pipe material (ductile cast iron 

and cast iron) and a ground motion measure (PGV and PGA). The approach typically 

involves first dividing the affected geographic area into regions of approximately 

equal ground motion intensity. For each ground motion contour, a single value of 

repair rate, RR, is computed (total number of repairs/length of pipe), producing a data 
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pair of RR and ground motion level. The observations of paired data are plotted, a least 

squares line is fitted to them (Table 2.1).  

In this approach, each earthquake produces a relatively small number of 

observations (typically 5 to 25). Fitting separate curves for different pipe materials or 

other subsets of pipes can further reduce the number of observations. Many papers 

report an R2 value as an indication of goodness-of-fit, and they are typically relatively 

high (e.g., 0.84 and 0.98 in Jeon and O’Rourke 2005 and Milashuk and Crane 2012, 

respectively). It is important to note, however, that these R2 values are measuring 

ecological correlation rather than individual correlation, because the observations are 

based on groups of pipes rather than individual pipes. As the seminal paper Robinson 

(1950, p339) explained, “there need be no correspondence between the individual and 

the ecological correlation.” Thus, while the high R2 values reported seem to suggest 

high quality models showing strong correlations between repairs and ground motion, 

they may be misleading. Most studies have used a comparison to previous models and 

the R2 values as forms of assessment. They have not assessed out-of-sample predictive 

power, i.e., the models’ ability to correctly predict damage for observations not in the 

sample used to fit the model. Finally, previous studies have not typically examined 

multiple pipe attributes simultaneously. Since the pipe attributes are not independent 

(e.g., most trunks are one of a few material types, and have relatively large diameters), 

it is unclear whether they are capturing the attribute specified or something related to 

it. In the one exception we found, Maruyama et al. (2015) fitted a logit model to water 

pipeline damage from the 2011 Tōhoku earthquake. The model considered four 

covariates, but ultimately underestimated actual damage because liquefaction was not 

considered.  
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Table 2.1: Statistical models developed in previous literature studies using the RR 

method 

Reference Form of modela Different modelsa Earthquake(s) 

source for data 

Num. 

obs. 

O’Rourke 

and Ayala 

1993 
𝑅𝑅 = 𝑎𝑃𝐺𝑉𝑏 

One model for each CI, 

AC, CONC, PC 

4 U.S. and 2 

Mexican, 1965-

1989 

11 

Eidinger and 

Maison 

1995/ALA 

2001 

R1000 = KaPGV 

R1000 = Kb𝑃𝐺𝐷𝑐 

The prediction is the 

maximum result of the 

two eqns. K factor 

depends on pipe 

material, joint, soil  

5 U.S. and 2 

Mexican, 1965-

1989 

20 

O’Rourke 

and Jeon 

1999 

log(𝑅𝑅) = 𝑎𝑙𝑜𝑔(𝐼𝑀) + 

𝑅𝑅 = 𝑐(𝑃𝐺𝑉 𝐷𝑑⁄ )𝑒 

For first eqn., 6 models, 

for all combinations of 

(CI, DI, and AC), (PGV 

and D). For second eqn., 

one model for CI, DI 

1994 Northridge  3 – 17 

Isoyama et 

al. 2000 
RR = CpCdCg(IM – a)b 

For first eqn., 4 models, 

for all combinations of 

(CI and DI), IM=(PGA 

and PGV) 

1995 Hyogoken-

nanbu (Kobe)  
12 – 17 

Chen et al. 

2002 
𝑅𝑅 = 𝑎𝐼𝑀𝑏 

S6 models for all 

combinations of 

(small/large D), IM=(SI, 

PGA and PGV) 

1999 Ji-Ji (Chi-

Chi)  
- 

Pineda-

Porras and 

Ordaz 2003 

RR = Φ(𝑃𝐺𝑉 − 𝜇 𝜎⁄ ) 
RR = 𝑎𝑃𝐺𝑉 + 

TFirst eqn.  for lower 

PGV. Second eqn. for 

higher PGV 

1985 Michoacan  5 – 20 

O’Rourke 

and Deyoe 

2004 
𝑅𝑅 = 𝑎𝐼𝑀𝑏 

T3 models. One for each  

Var=PGVSW, PGVBW and 

ε. 

4 U.S. and 2 

Mexican, 1965-

1989 

9 – 23 

Jeon and 

O’Rourke 

2005 

ln⁡(𝑅𝑅) = 𝑎𝑙𝑛(𝐼𝑀) + 

T3 models. One for each 

Var=PGV, VM PGV and 

GMPGV. Only CI pipes. 

1994 Northridge  6 – ~80 

Pineda-

Porras and 

Ordaz 2007 

RR = 𝑎 

RR = 𝑏(𝑃𝐺𝑉2 𝑃𝐺𝐴⁄ ) + 𝑐 

The first eqn. is used for 

lower values of 

PGV2/PGA. The second 

eqn. is used for higher 

values of PGV2/PGA 

1985 Michoacan  5 – 20 

Maruyama 

et al. 2008 

𝑅𝑅 = C𝑝𝐶𝑑𝐶𝑔* 

Φ((ln(𝑃𝐺𝑉) − 𝜆) 𝜁⁄ ) 
2 models for different 

extent of damage 

2003 Northern-

Miyagi, 2003 

Tokachi-oki, and 

2004 Mid-Nigata  

12 – 14 

Maruyama 

and 

Yamakazi 

2010;  

Maruyama 

et al. 2010 

𝑅𝑅 = C𝑝𝐶𝑑𝐶𝑔* 

Φ((ln(𝑃𝐺𝑉) − 𝜆) 𝜁⁄ ) 

2 models. One used for 

(CI and V) and another 

for DI 

4-5 Japanese  12 – 17 
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Table 2.1 continued 

Reference Form of modela Different modelsa 
Earthquake(s) 

source for data 

Num. 

obs. 

Pineda-

Porras and 

Ordaz 2010 

RR = 𝑎 

RR = 𝑏
𝑃𝐺𝑉2

𝑃𝐺𝐴
+ 𝑐 

6 models. Three sets of 

the two eqns. One set for 

each of the following: 

low DGS, high DGS, 

unknown DGS. The first 

eqn. is used for lower 

values of PGV2/PGA. 

The second eqn. is used 

for higher values of 

PGV2/PGA 

1985 Michoacan  4 

Kimishima 

et al. 2011 

𝑅𝑅 = C𝑝𝐶𝑑𝐶𝑔* 

Φ((ln(𝑃𝐺𝑉) − 𝜆) 𝜁⁄ ) 

2  models. One used for 

(CI and V) and another 

for DI 

2007 Niigata-Ken 

Chuetsu-Oki Japan  
11 – 12 

Milashuk 

and Crane 

2012 
ln(𝑅𝑅) = 𝑎𝑙𝑛⁡(𝑃𝐺𝑉) + 

3 models. One each for 

CI, AC, PVC-MPVC 

2010 Darfield and 

2011 Christchurch, 

plus 4 older 

earthquakes 

5 – 14 

O’Rourke et 

al. 2012 

log(𝑅𝑅)
= 𝑎𝑙𝑜𝑔(𝐺𝑀𝑃𝐺𝑉) + 𝑏 

2 models. One each for 

AC, CI 

2010 Darfield and 

2011 Christchurch, 

plus 4 U.S. 

earthquakes 

13 

O’Rourke et 

al. 2014 

log(𝑅𝑅)
= 𝑎𝑙𝑜𝑔(𝐺𝑀𝑃𝐺𝑉) + 

2 models. One each for 

AC, CI 

2011 Christchurch, 

plus 4 U.S. 

earthquakes 

9 – 14 

Cubrinovski 

et al. 2014 
ln(𝑅𝑅) = 𝑎𝑙𝑛⁡(𝑃𝐺𝐴) + 

5 models. One for each 

LRI level (0-4). Only AC 

materials used. 

2011 Christchurch  10 – ~40 

Bouziou and 

O’Rourke 

2015 

log(𝑅𝑅)
= 𝑎𝑙𝑜𝑔(𝐺𝑀𝑃𝐺𝑉) + 

2 models. One for each 

AC, CI 

2011 Christchurch, 

plus 4 U.S. 

earthquakes 

6 – 13 

Maruyama 

et al. 2015 
𝑃(𝐷) =

exp(𝑥⃑𝑖
𝑇𝛽)

1 + exp(𝑥⃑𝑖
𝑇𝛽)

 

One model with PGV, 

pipe length, pipe 

material vulnerability, 

and ground condition 

vulnerability 

2011 Tōhoku  - 

a
 a, b, c, d, e are constants; RR=repair rate; D=Diameter; K=factor for pipe material, soil, and joint; 

IM=ground motion intensity measure; PGV=peak ground velocity; PGA=peak ground acceleration; 

CI=cast iron; DI=ductile iron; AC=asbestos cement; CONC=concrete; PC=prestressed concrete; 

PGD=peak ground displacement; Cp=correction factor for pipe material; Cd=correction factor for 

diameter; Cg=correction factor for topography; SI=spectrum intensity; R1000=repairs per 1000 ft; 

ε=ground strain; V=vinyl; VM PGV=maximum vector magnitude peak ground velocity; GMPGV= 

geometric mean peak ground velocity; DGS=differential ground subsidence; P(D)=probability of pipe 

damage 
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The study presented herein adds to the literature by using individual pipes as 

the unit of analysis, thus focusing on the individual correlation that is truly of interest; 

by investigating multiple covariates simultaneously to more precisely identify the 

characteristics most directly associated with damage; and by explicitly evaluating the 

out-of-sample predictive power of the new and repair rate models through cross 

validation and holdout validation.  
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Chapter 3 

COVARIATES 

Several factors have been investigated to determine their influence on pipe 

damage in earthquakes, including ground shaking, permanent ground deformation, 

pipe material, pipe diameter, year laid, pipe type (e.g., trunk, main), and trench 

backfill type. Previous findings on the hazard- and pipe-related covariates are 

presented in Sections 3.1 and 3.2, respectively, and Table 3.1 summarizes the resulting 

hypotheses for our analysis.  

Table 3.1: Summary of hypothesized effects of different factors on earthquake 

  damage to pipes 

Factor Hypothesized effect  Strength of 

evidence 

Ground shaking Stronger shaking  more damage Strong consensus 

Permanent ground 

deformation 
Larger displacement  more damage Strong consensus 

Pipe material 

Less ductile (AC, CI)  most damage 

PVC  middle level of performance  

More ductile (DI, S)  least damage 

Moderate 

Pipe diameter Smaller diameter  more damage Strong consensus 

Year laid Older  More damage Little 

Pipe type (e.g., 

trunk, main) 
Unclear Little 

Trench backfill 

type 
Depends on pipe material and PGD Little 

 

 



 9 

3.1 Hazard-Related Covariates 

All previous empirical models have used some measure of hazard—ground 

shaking or permanent ground displacement—as the primary covariate and found 

evidence that more intense ground motion is associated with more damage. Pineda-

Porras and Najafi (2010) identifies at least nine ground motion metrics employed 

(Modified Mercalli Intensity (MMI), peak ground acceleration (PGA), peak ground 

velocity (PGV), peak ground displacement (PGD), arias intensity (AI), spectral 

intensity (SI), maximum ground strain (εg), and the composite PGV2/PGA). MMI was 

used in the 1980s and 1990s (e.g., Eguchi 1991) because of its availability for earlier 

events, but it was then phased out in favor or instrument-based measures. PGA was 

widely used until 2000 since it was easier to compute than PGV and ground motion 

prediction equations for PGA were more available than those for PGV. Since then, 

however, PGV has become the most common measure because it has been shown to 

lead to better fitting models than PGA (e.g., Isoyama et al. 2000), and it is directly 

related to but easier to compute than ground strain, the main cause of damage (Pineda-

Porras and Najafi 2010). More recently, geometric mean peak ground velocity 

(GMPGV) has been considered as well (Bouziou and O’Rourke 2015). 

In addition to transient ground motions, pipe damage can be caused by 

permanent ground deformation due to liquefaction, landslide, fault displacement, or 

settlement. Approximately a dozen studies have investigated and all have found 

evidence that an increase in permanent ground displacement or occurrence of 

liquefaction is associated with increased damage. Many studies have measured 

liquefaction in terms of a binary or three-level categorical covariate (none, partial, or 

total liquefaction) (e.g., Isoyama 2000, Shirozu and Isoyama 1998, O’Rourke and 

Toprak 1997). Others have used permanent ground displacement (PGD) as a 
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continuous measure (e.g., Terzi et al. 2007, Hwang and Lin 1997, Heubach 1995). 

O’Rourke and Deyoe (2004) use ground strain, and more recently, Cubrinovski et al. 

(2011) developed the Liquefaction Resistance Index (LRI), a five-level interval 

covariate with 0 to 4 corresponding to most to least susceptible to liquefaction (see 

definition in Chapter 4). 

3.2 Pipe Attributes 

Material is the pipe attribute most commonly investigated. No clear consensus 

has emerged, however, on an ordering of materials by vulnerability to earthquake 

damage. Synthesizing the previous work is challenging because studies do not all 

consider the same set of materials or define them the same way, they use data 

spanning multiple countries and decades, and they often do not control for other 

factors that could be confounding conclusions about the influence of material, such as, 

pipe diameter. Despite these challenges, there does seem to be some evidence from 

empirical models that brittle pipes, including asbestos cement (AC) and cast iron (CI), 

are the most likely to be damaged; ductile pipes, such as, ductile iron (DI) and steel 

(S) are the least likely; and the performance of polyvinyl chloride (PVC) pipes is in 

the middle (e.g., Eguchi 1991, Eidinger et al. 1995, Isoyama et al. 2000, Maruyama 

and Yamakazi 2010, Tsai et al. 2011, Cubrinovski et al. 2014, O'Rourke et al. 2014). 

There is less evidence on galvanized iron (GI), concrete lined steel (CLS), 

polyethylene (PE), or more specific types of PVC and PE. Cubrinovski et al. (2014, 

p.23), based on the same data as the study herein, addresses these material types, 

finding that “modified PVC (MPVC), PVC, medium-density polyethylene (MDPE80) 

and DI had <1 repairs/km, HDPE had 1.9 repairs/km, AC and S had 2.3 and 2.7 
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repairs/km, respectively, CI and CLS both had 3.2 repairs/km, and GI had the highest 

rate of 8.9 repairs/km.” 

With the exception of Chen et al. (2002), most studies addressing the effect of 

pipe diameter have found evidence that a smaller pipe diameter is associated with 

increased damage (e.g., Katayama et al. 1975, Honegger 1995, Eidinger et al. 1995, 

Isoyama et al. 2000, Tsai et al. 2011). Considering in particular results from the Loma 

Prieta (1989), Northridge (1994), and Kobe (1995) earthquakes, ALA (2001, p.44) 

concludes that there is “not enough empirical evidence to prove a diameter effect 

exists for all pipe materials in any given water system. However, the empirical 

evidence strongly indicates that some relationship does exist, and that the largest 

pipes, those over 12 in. diameter, have lower damage rates than do common diameter 

distribution pipes of 4 in. to 12 in. diameter.” O’Rourke and Liu (2012) suggests a 

reason for a diameter effect is that as diameter increases, so does the joint embedment 

depth and therefore the ability to accommodate axial compression or extension 

without damage. Eidinger and Avila (1999) offer as additional possible reasons that 

larger diameter pipes are associated with lack of attachments, placement in better 

soils, more careful design and construction, and thicker walls. 

The year a pipe was laid may be another important indicator of pipe condition, 

especially for materials subject to corrosion, and may represent differences in 

installation practices, materials, or other pipe attributes not captured in the other 

covariates (Eidinger and Avila 1999, Tromans 2004). Pipe type (e.g., trunk, main) also 

may also be relevant since the water pressure, orientation, and burial depth can vary 

by type (Cubrinovski et al. 2014). Finally, a couple sources discuss the soil/trench 

backfill type. O’Rourke and Liu (2012) note that for iron-based materials, like CI and 
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S, corrosive soils are associated with more damage than non-corrosive soils. 

Examining repair rates for four backfill types (native soil, imported gravels, AP20, 

AP40) in the Christchurch earthquake, Cubrinovski et al. (2014) found different types 

were associated with more damage depending on the combination of pipe material and 

liquefaction susceptibility (LRI).  
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Chapter 4 

DATA 

The water supply system in Christchurch, New Zealand experienced a 

sequence of earthquakes in 2010 and 2011. The largest ones occurred on September 4, 

2010 (Mw=7.1), February 22, 2011 (Mw=6.2), June 13, 2011 (Mw=6.0), and December 

23, 2011 (Mw=5.9). The dataset used in this analysis includes damage observations 

from both the most damaging February 2011 earthquake and the subsequent June 

earthquake. We assumed damage recorded between the two was caused by the 

February event, and damage recorded from June to December was caused by the June 

event. The study area, which includes Christchurch city and the Banks Peninsula 

District within Lyttelton harbour, covers approximately 450 km2 with a population of 

350,000 (Cubrinovski et al. 2011 and 2014) (Fig. 4.1). The unit of analysis is an 

individual pipe segment with endpoints defined at nodes where there are significant 

changes in direction (e.g., street intersections) or connections with other pipes. The 

response variable, y, is binary (pipe is damaged or not), with 2.76% and 1.23% of 

pipes damaged in the February and June datasets, respectively. 
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Figure 4.1: Christchurch Location in New Zealand 

The choice of covariates was guided by a simple conceptual framework (Fig. 

4.2), findings from the literature (Chapter 3), and data availability. Pipe damage 

depends on the interaction of hazard, exposure, and vulnerability. Hazard includes 

transient and permanent ground deformations. The latter, in turn, depends on transient 

ground motions, liquefaction susceptibility of the soil, and groundwater depth. Pipe 

vulnerability is thought to depend on pipe material, diameter, year laid, pipe type (e.g., 

trunk, main), and trench backfill type.  
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Figure 4.2: Conceptual framework of water pipeline earthquake damage 

Peak ground velocity data was developed based on actual ground motion 

station recordings and the general spatial pattern of ground motion throughout the 

region (Bradley and Hughes 2012). At each pipe location, the method provides a 

probability distribution of PGV, with the uncertainty increasing with distance to the 

recording stations. In this analysis, we use the median PGV at each pipe centroid. The 

Liquefaction Resistance Index (LRI) provides a measure of a soil’s resistance to 

liquefaction (Cubrinovski et al. 2011). For each site, the demand was estimated based 

on recorded PGA, water table depth, and earthquake magnitude; the factor of safety 

was estimated from the observed severity of liquefaction; and the resistance was then 

back-calculated based on the liquefaction evaluation procedure in Youd et al. (2011). 

The resistances were discretized into five levels from 0 to 4 (smaller to greater 

liquefaction resistance). We treated LRI as a continuous covariate (Table 4.1).  
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Table 4.1: Descriptive statistics for numerical covariates  

Covariate Definition Mean C.O.V. Median Min. Max. 

xpgv 
Peak ground velocity 

(Feb.), cm/s 
49.7 0.284 50.0 21.6 80.3 

 
Peak ground velocity 

(June), cm/s 
30.7 0.372 30.3 10.6 62.5 

xLRI 
Liquefaction Resistance 

Index, LRIa 2.37 0.452 3 0 4 

xgw 
Groundwater table 

depth, ma 
2.54 0.794 2.0 -0.42 13.54 

xlength Pipe length, ma 24.5 1.535 8.8 0.10 1,046 

xdiam Diameter, mma 84.2 0.792 50 13 600 

xyr Year laid, yeara 1982 0.010 1987 1900 2011 
aData for all covariates except PGV are for the February dataset. Values are slightly 

different for the June dataset (means are within 1%, except for xLRI and xgw, which are 

2.8% higher and 8.2% lower in June, respectively).  

 

 

Data on the exposure and vulnerability covariates that describe the water 

supply system were obtained from Christchurch City Council (CCC) and the Stronger 

Christchurch Infrastructure Rebuild Team (SCIRT). There are four pipe types and four 

trench types (Tables 4.3 and 4.4). Trunks deliver water from aquifer-pumped bores to 

the mains, which follow roads. Crossovers deliver water from mains to submains, 

which are typically under footpaths and connect to individual properties. Crossovers 

typically run perpendicular to the mains and submains and often connect to mains at 

fire hydrants (Cubrinovski et al. 2014). Before 1984, trench backfill material was 

either locally excavated soil material or if the local material was inappropriate, 

imported from quarries. From 1984 on, trench construction was standardized. All 

pipes were put in a sand layer and covered with gravel mix (AP40 until 2005, AP20 

after) (Cubrinovski et al. 2014). Overlaying the data in a geographic information 

system (GIS), a dataset was compiled with an observation for each length of pipe, and 
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a value for the response variable, y, and each covariate in Figure 4.2 and Tables 4.2, 

4.3 and 4.4. 

Table 4.2: Descriptive statistics for Pipe Material covariate, with reference level 

  indicated  

 Pipe materiala, xmat Numberb 

AC Asbestos cement 15,511 

CI Cast iron 5,201 

DI Ductile iron 1,901 

GI Galvanized iron [Reference] 10,298 

S Steel 703 

CLS Concrete-lined steel 1,232 

UPVC Unplasticised polyvinyl chloride 6,904 

MPVC Modern polyvinyl chloride 2,251 

PE80B Polyethylene 80 13,033 

PE100 Polyethylene 100 196 

HDPE High-density polyethylene 26,348 

LDPE Low-density polyethylene 168 
aDI includes ductile iron, concrete-lined ductile iron, and M-lined ductile iron; UPVC 

includes UPVC and PVC; PE80B includes MDPE80, PE if submain after 2000; 

PE100 includes PE100, MDPE100, PE if main; HDPE includes HDPE and PE if 

submain before 2000 
bData for all covariates are for the February dataset. Values are slightly different for 

the June dataset (within 4%, except for CLS, which is 7% different).  

 

Table 4.3: Descriptive statistics for Pipe Type covariate with reference level  

  indicated  

Pipe type, xtype  Numberb 

Trunk 168 

Main [Reference] 32,283 

Submain 28,040 

Crossover 23,255 
bData for all covariates are for the February dataset. Values are slightly different for 

the June dataset (within 4%, except for CLS, which is 7% different).  
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Table 4.4: Descriptive statistics for Trench Type covariate, with reference level 

  indicated  

Trench type, xtrench Numberb 

Pre-1984, local [Reference] 10,085 

Pre-1984, import 25,130 

1984-2005, AP40 42,428 

Post-2005, AP20 6,103 
bData for all covariates are for the February dataset. Values are slightly different for 

the June dataset (within 4%, except for CLS, which is 7% different).  

 

 

In the original dataset of 111,389 observations, 27,643 (25%) did not have data 

for the LRI covariate. Those observations with missing data were not randomly 

distributed; rather, most were in the less damaged Western part of the city. In fact, 

only 0.3% of the observations without LRI data were damaged versus 2.8% of those 

with the LRI data. We considered three methods of handling the missing data—

casewise deletion, imputation, and a PGV-limited analysis. In the first method, all 

observations with missing data were deleted, leaving 83,746 observations. This is the 

simplest method, but removes 25% of the data and could introduce bias to the analysis 

since the missing data are not random. In the second method, we imputed the missing 

LRI values using spatial interpolation, which results in a complete dataset, but 

introduces error due to the imputation. Finally, we restricted the analysis to the region 

that experienced PGV≥45 cm/s, for which all observations were complete, which 

avoids potential bias due to missing data and imputation error, but results in many 

fewer observations (50,582) and a model that is only applicable for those more intense 

ground motions (Table 4.5). Figure 4.3 is the spatial location of the pipes for each 

dataset related to Christchurch. Preliminary logistic regression model (Section 5.2) 

results are similar across the three datasets in terms of goodness of fit, estimated 
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coefficients, significant levels, and prediction errors (Table 4.6). The metrics used for 

comparison are defined in Table 6.1. We proceeded with casewise deletion method, 

which had small errors and was most reliable. 

Table 4.5: Three Datasets Considered for Analysis 

Dataset Description 
Total Number 

of Pipes 

Total Number 

of Repairs 

% Pipes Need 

Repairs 

Casewise 

Deletion 
No Changes 83,756 2,312 2.76% 

LRI 

Imputation 

Estimated LRI for 

27,663 pipes 
108,668 2,592 2.39% 

PGV-

Limited 
PGV ≥ 45 cm/s 50,852 1,720 3.38% 

 

 

 

Figure 4.3: Pipe locations for (a) Casewise Deletion, (b) LRI Imputation, and (c) 

  PGV Limited datasets 
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Table 4.6: Preliminary Results of Three Datasets 

Dataset TEa TPE RMSE MAE MASE MPSE 

Casewise 

Deletion 

0 0.01% 0.157 0.049 3.2 35% 

LRI Imputation 0 0.01% 0.148 0.043 3.9 47% 

PGV-Limited 0 0.01% 0.174 0.060 4.0 25% 
aTable 6.1 provides the definition for each metric. Lower values are preferred for TE, 

TEP, RMSE, MAE, MASE, and MPSE. 
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Chapter 5 

MODEL TYPES 

The purpose of this analysis is to develop models to predict if an individual 

pipe will be damaged in a specified earthquake as a function of characteristics of the 

pipe and ground motion at the site. Three model types were considered—logistic 

regression (logit), boosted regression trees (BRT), and random forests (RF). The first 

is a nonlinear parametric statistical model; the latter two are nonparametric machine 

learning techniques. They are all appropriate for situations with a binary response 

variable, like this one, and have all been widely used in the literature, although never 

for this application. The models were fitted using R software v3.3.1 with default 

settings except where noted. Logit, BRT, and RF models were fitted using the glm 

{stats}, gbm {gbm v2.1.1}, and randomForest {randomForest v4.6-12} functions (in 

the noted package), respectively (R Core Team 2016, Ridgeway et al. 2015, Liaw and 

Wiener 2002). 

5.1 Repair Rate Method 

As described in Chapter 3, the repair rate (RR) models required first dividing 

the study area into regions of approximately equal ground motion intensity. For each 

ground motion contour, a single value of repair rate, RR, was computed (total number 

of repairs/length of pipe), producing a data pair of RR and ground motion level. In this 

analysis, we used 5 cm/s contours of PGV from 25 cm/s to 85 cm/s. Applying ln() 

transforms of the resulting 12 observations of paired data, linear regression was used 

to the model: ln(𝑅𝑅) = 2.188 + 15.627𝑙𝑛(𝑃𝐺𝑉). We approximated repair rate as the 

number of damaged pipes divided by length of pipe, assuming that each pipe had no 

more than one repair. The resulting underestimation of repair rate is negligible. Based 
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on the Poisson assumption and repair rates by pipe material, only 10% of pipe have 

more than a 1% chance of more than one repair. 

5.2 Logistic Regression (Logit) 

Logistic regression is the most commonly used model type when the response 

variable is binary. A specific case of a generalized linear model (GLM) in which the 

response variable, Y, is assumed to follow a binomial distribution and a logit link 

function is used (Agresti 2007), the model is written: 

  ln (
𝑝𝑖

1−𝑝𝑖
) = 𝑥⃑𝑖

𝑇𝛽 = 𝛽0 + ∑ 𝛽𝑗𝑥𝑗𝑖
𝑚
𝑗=1  (5.1) 

where 𝑝𝑖 is the probability 𝑌𝑖 = 1 (in this case, the probability pipe i is damaged), 𝑥⃑𝑖 is 

a vector of covariates for pipe i, and 𝛽 is a vector of regression coefficients to be 

estimated, typically using the maximum likelihood method. The left side of Eq. 5.1, 

called the logit function of 𝑝𝑖, is the log of the odds ratio and can be any real number. 

(Logistic regression models are often called logit models.) Note that unlike in linear 

regression, 𝛽𝑗 represents the change in the logit of the probability associated with a 

unit change in the jth covariate, holding all other covariates constant. Solving for 𝑝𝑖, 

we obtain: 

 𝑝𝑖 =
exp(𝑥⃑𝑖

𝑇𝛽⃑⃑⃑)

1+exp(𝑥⃑𝑖
𝑇𝛽⃑⃑⃑)

 (5.2) 

Compared to the other model types considered, logistic regression has the 

benefit of offering a closed form equation, making it easy to share, and allows 

examination of the relative effects of different levels of categorical covariates (e.g., 

relative effects of different pipe materials). However, as a parametric model, including 

interactions among the covariates or additional nonlinear relationships between the 
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logit and covariates requires specifying them a priori, and comparing the relative 

importance of numerical and categorical covariates to each other is difficult.  

5.3 Boosted Regression Trees (BRT) 

Instead of fitting a single complex model, BRT creates many simple models 

and linearly combines them. The method integrates two algorithms: classification and 

regression trees (CART), used to develop individual tree models, and boosting, which 

combines them to maximize predictive performance. The CART method works by 

partitioning the full set of observations based on their covariate values into groups that 

have similar response variable values. Choosing a splitting variable and a splitting 

value of that variable, observations that are below the splitting value are placed in one 

group; observations above are in another group. For each of the two groups, a new 

splitting variable and value are selected, and the observations are partitioned again. 

The process continues until a stopping criterion is reached. In each case, the splitting 

variable and value are chosen so as to minimize prediction errors. In each terminal 

node, for regression trees, each observation is assigned the mean response of all 

observations in the node (Elith et al. 2008).  

Boosting is a forward, stagewise approach that fits many smaller models (in 

this case, regression trees) and linearly combines them so as to minimize a specified 

loss function (Elith et al. 2008). The first tree is fitted to the original data, and each 

subsequent tree is fitted to the residuals of the model based on the previous set of 

trees, attempting to fine-tune the model by focusing on the observations that are most 

difficult to predict. Since the response variable in this case is binary, we use the 

default Bernoulli deviance as the loss function (Ridgeway 2012). Boosting can be 

thought of as a form of functional gradient descent (Elith et al. 2008). Each tree is 
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fitted using only a randomly sampled specified percentage of the available data 

(default is 50%). This speeds the procedure and adds a random component that 

improves predictive performance.  

Three parameters must be set in the BRT method. The learning rate/shrinkage, 

lr, is a value less than one that determines the contribution of each added tree. The 

smaller the lr, the less each successive tree contributes to the model and the more trees 

are required. Tree complexity, tc, also known as interaction depth, indicates the 

number of splitting nodes in each tree (typically, 𝑡𝑐 ≤ 5). The maximum number of 

trees to be fitted, nt, is usually in the thousands. Since BRT can overfit data when too 

many trees are included, however, within each run, the actual number of trees included 

in the result is less than nt. Using the 10-fold cross validation option of gbm, the 

number of trees that minimizes the cross validation prediction error is identified and 

the associated results are used as the solution (Ridgeway 2012, Elith et al. 2008). To 

set the values of the three parameters, we fitted 45 models using all combinations of lr 

= (0.01, 0.005, 0.001), tc = (1, 3, 5), and nt = (1000, 2500, 5000, 7500, 10000), and 

compared the resulting prediction errors (Elith et al. 2008). Based on this analysis, we 

used 𝑙𝑟 = 0.01, 𝑡𝑐 = 5, 𝑛𝑡 = 7,500. 

BRT has the advantages that it can have better predictive performance at least 

in some cases, nonlinearities and interactions are modeled automatically, it is 

insensitive to outliers and inclusion of extra covariates, the relative importance of 

covariates are based on reduction in out-of-sample error and can be compared across 

numerical and categorical covariates (Elith et al. 2008).  



 25 

5.4 Random Forests (RF) 

Like BRT, random forests is a method that involves the combination of many 

trees (Breiman 2001). While in boosting, the trees evolve over time and are weighted, 

in random forests, which uses a modified version of bagging, the individual trees are 

identically distributed and equally weighted (Hastie et al. 2013). The idea of bagging 

is to reduce the variance in prediction by averaging many noisy but approximately 

unbiased trees. Random forests improves on the variance reduction by adding 

randomness in the trees so as to reduce the correlation between them and thus the 

overall variance, without increasing the variance in each one too much. Each tree is 

grown using a bootstrap sample of the data drawn with replacement. To add 

randomness and thus reduce correlation among the trees, at each splitting node, only a 

randomly selected subset of covariates are considered as candidate splitting variables. 

The process is repeated until a stopping criterion is reached, either the maximum 

number of nodes in the tree or the minimum number of observations in a terminal 

node. Since we have a binary response, we use classification trees, which means that 

in each terminal node of a tree, all observations are assigned the majority class if more 

than a specified percentage of the observations in the node are in the majority class 

(default is 50%; in this analysis we use 2.76%, probability of majority class (damaged 

pipe) in the dataset); and they are assigned to the minority class otherwise (Hastie et 

al. 2013). Similarly, if more than the specified percentage of trees classify a new 

observation as majority class, it is classified as majority class; otherwise it is minority 

class. 
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Random forests requires setting three parameters. The most important is the 

number of covariates to randomly evaluate at each splitting node, mtry. A balance 

must be found between a smaller mtry, which decreases the correlation between trees 

and thereby improves prediction, and a larger mtry, which improves the strength of the 

individual trees (Breiman 2001). The number of trees, ntree, should be set to be large 

enough that the prediction error has stabilized. Since bootstrap samples are used to fit 

each tree, about a third of the data is omitted from each tree and can be used compute 

out of bag (OOB) errors along the way, as the trees are being added (Hastie et al. 

2013). Adding more trees does not typically lead to overfitting (Hastie et al. 2013). To 

ensure that trees do not get too large, a stopping criterion must be set, either the 

maximum number of nodes in each tree, maxnodes, or the minimium number of 

observations permitted in a terminal node, nodesize. We first set ntrees=1000 because 

preliminary results showed that value was large enough for the OOB error to stabilize. 

To set the other two parameters, we fitted 16 models using all combinations of mtry = 

(2, 4, 6, 8) and maxnodes = (5, 10, 15, 20). Based on a comparison of the results, we 

set mtry = 4 and maxnodes = 10. Random forests is popular because the minimal error 

can typically be reached using fewer trees than a BRT, they tend not to overfit data, 

they require little tuning, and like BRT, they automatically include interactions and 

nonlinearities (Hastie et al. 2013). 
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Chapter 6 

ANALYSIS 

6.1 Balancing Data 

The dataset is imbalanced, meaning that one class of y (damaged) is far less 

prevalent than the other (not damaged). Specifically, only 2,311 (2.76%) of 83,746 

pipes in the dataset are damaged, creating a situation of intrinsic, relative (though not 

absolute) rarity (Weiss 2004). Although logistic regression works as long as there is 

no absolute rarity, and thus the small sample bias is avoided (Allison 2012), 

imbalanced data requires special care in machine learning analyses and in the choice 

of evaluation metrics to compare models. Imbalance can compromise performance of 

learning algorithms (He and Garcia 2009, Lopez et al. 2013, and Chawla 2010). In 

trees, for example, successive partitioning of the dataset reduces the number of 

minority instances in each branch, which can result in concepts going unlearned.  

To address the imbalance for the BRT and RF models, we apply three 

commonly used sampling methods (He and Garcia 2009)—random undersampling, 

random oversampling, and the Synthetic Minority Oversampling Technique 

(SMOTE). In undersampling, we randomly remove observations from the majority 

class (no damage). In oversampling, we randomly sample from observations in the 

minority class (damage), then duplicate and add them to the dataset. In SMOTE, 

artificial minority class observations are created based on the k-nearest neighbors and 

added to the dataset. In all cases, we modified the dataset so that the number of 

observations with damage equals the number with no damage. Each method is widely 

used but has some potential drawbacks. Undersampling removes information about the 

majority class, potentially causing the algorithm to miss important concepts related to 
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the majority class. Oversampling can lead to overfitting, and SMOTE can create 

overgeneralization because it generalizes the minority class without consideration of 

the majority class leading to overlapping of the two (He and Garcia 2009). To correct 

for the bias introduced by these sampling methods (Weiss and Provost 2003), the 

damage probabilities they produce, 𝑝′, were adjusted using the following equation 

from Dal Pozzolo et al. (2015), 𝑝 = 𝛼𝑝′ (𝛼𝑝′ − ⁡𝑝′ + ⁡1)⁄ , where p is the final bias-

corrected P(𝑦 = 1) and 𝛼 is the ratio of the numbers of observations in the majority 

class to the number in the minority class in the original dataset.  

6.2 Evaluation Methods 

In evaluating and comparing the models, we are most concerned with their 

ability to predict damage for future earthquakes, so we used ten-fold cross validation 

and holdout validation to assess their out-of-sample predictive power. Cross validation 

(CV) was conducted by partitioning the dataset into ten randomly sampled folds. For 

each fold, the 90% of observations not in the fold made up a training set used to fit the 

models, which were then applied to predict the values for each of the 10% of 

observations in the fold—the validation set. Note that any sampling to address 

imbalance (Section 6.1) is done within the cross validation, that is, after a fold has 

been held out, to ensure observations in a fold are not also in the training set (Altini 

2015). To minimize the effect of the fold sampling, we repeated the cross-validation 

50 times, each with a different set of randomly generated folds and averaged the 

resulting 50 estimates of each error metric. In addition, the models were tested using 

holdout data from the June 13, 2011 earthquake.  
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The many metrics available to evaluate models of binary response variables 

can be categorized into three groups—probability, threshold, and ranking (Caruana 

and Niculescu-Mizil 2004, Fielding and Bell 1997, Hossin and Sulaiman 2015). 

Probability metrics directly use the predictions and interpret them as probabilities of 

damage, threshold metrics compare the predictions to a threshold so as to classify each 

response as positive or negative (damage or no damage in this case), and ranking 

metrics depend only on the ordering of the predictions, not the actual values. The 

various metrics measure different aspects of the fit so that a model may perform well 

on one but not another. We use ten metrics to capture models’ ability to achieve the 

four stated goals—total count, spatial distribution of damaged pipes, classification of 

individual pipes, and relative importance of covariates (Table 6.1). Absolute and 

percentage error in the expected total number of damaged pipes for the region (𝑇𝐸 and 

𝑇𝐸𝑃, respectively) directly address the first goal. Square root of the mean squared 

error (𝑅𝑀𝑆𝐸) and mean absolute error (𝑀𝐴𝐸) are also probability-based metrics, but 

at the individual pipe level, with the former especially penalizing larger errors over 

multiple small ones. None of the first four metrics distinguishes between false positive 

and false negative errors. The percentage of damaged pipes correctly classified 

(sensitivity, 𝑆𝑁); percentage of undamaged pipes correctly classified (specificity, 𝑆𝑃) 

do. To compute them, one sets a threshold; classifies each pipe as damaged if the 

predicted probability is greater than the threshold and not damaged if it is less than the 

threshold (we use the damage prevalence in the original dataset, 2.76%); and based on 

those binary classifications, creates a confusion matrix (Table 6.2).  
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Like all threshold metrics, 𝑆𝑁 and 𝑆𝑃 are unaffected by how close a prediction 

is to a threshold, only if it is above or below it. True skill statistic (𝑇𝑆𝑆) is a newer 

threshold metric that unlike 𝑆𝑁 and 𝑆𝑃, makes full use of the information in the 

confusion matrix and corrects the overall accuracy by the accuracy expected to occur 

by chance, and unlike the similar Cohen’s kappa, does not depend on prevalence 

(Allouche et al. 2006). 𝑇𝑆𝑆, which ranges from -1 to +1 and is also known as the 

Hanssen-Kuipers discriminant, “compares the number of correct forecasts, minus 

those attributable to random guessing, to that of a hypothetical set of perfect 

forecasts,” (Allouche et al. 2006, p1226) so that +1 indicates perfect agreement and 

zero means no better than chance. Threshold-based metrics are necessary if one wants 

to be able to classify each pipe, for example to create system-wide damage maps to 

simulate service outages. However, they fail to use all the information in the 

predictions and obviously are dependent on the choice of threshold.  

The area under the receiver operating characteristic (ROC) plot (AUC) is 

threshold- and prevalence-independent. An ROC plot is a graph of SN vs. (1-SP), 

where each point corresponds to a possible threshold value (Fielding and Bell 1997). 

AUC is a ranking metric so it assesses the correctness of the ordering of the 

probabilities, but does not distinguish if they range from 0 to 1, for example, or from 

0.40 to 0.42. AUC values range from 0.5 to 1 (worthless to perfect). The AUC can 

also be interpreted as the probability that the model will rank a randomly selected 

damaged pipe as more likely to be damaged than a randomly selected undamaged 

pipe. A potential concern in interpreting the AUC is that while it treats all thresholds 

equally, they may not all be of practical significance. To assess the ability of the 

models to predict the spatial distribution of damage correctly, we include two metrics 
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applied at the suburb level. The city of Christchurch is partitioned into 105 suburbs 

(i.e., neighborhoods). We compute the absolute error and percentage error for each 

suburb, and report the median value over all suburbs (𝑆𝐸 and 𝑆𝐸𝑃). 

Table 6.1: Evaluation metrics 

Goal Metric Equationa Typeb 

Prediction of 

total damage 

count 

Absolute error in 

total count 
𝑇𝐸 = ∑ 𝑦𝑖

𝑛
𝑖 − ∑ 𝑝̂𝑖

𝑛
𝑖   

Probability  

Percentage error in 

total count 
𝑇𝐸𝑃 = 𝑇𝐸/∑ 𝑦𝑖

𝑛
𝑖   

Prediction of 

individual 

pipe state 

Root mean squared 

error 
𝑅𝑀𝑆𝐸 = √

1

𝑛
∑ (𝑦𝑖 − 𝑝̂𝑖)

2𝑛
𝑖   

Mean absolute error 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑝̂𝑖|
𝑛
𝑖   

Sensitivity 𝑆𝑁 = 𝑡𝑝/(𝑡𝑝 + 𝑓𝑛) 
Threshold Specificity 𝑆𝑃 = 𝑡𝑛/(𝑡𝑛 + 𝑓𝑝) 

True skill statistic 𝑇𝑆𝑆 = 𝑆𝑁 + 𝑆𝑃 − 1 

Area under the 

ROC plot 
𝐴𝑈𝐶=area under ROC plot Ranking 

Prediction of 

spatial 

distribution of 

damage 

Median absolute 

suburb error 

Median over all suburbs of: 

𝑆𝐸 = ∑ 𝑦𝑖𝑖∈𝑛𝑆 − ∑ 𝑝̂𝑖𝑖∈𝑛𝑆   Probability 

 Median percentage 

suburb error 

Median over all suburbs of:  

𝑆𝐸𝑃 = 𝑆𝐸 ∑ 𝑦𝑖𝑖∈𝑛𝑆
⁄   

a𝑦𝑖 = observed response for pipe i (0/1 if undamaged/damaged), 𝑝̂𝑖= estimated 

probability of damage for pipe i, n=number of pipes, tp=true positive, fp=false 

positive, tn=true negative, fn=false negative, and 𝑛𝑆=set of pipes in suburb S. 
bLower values are preferred for probability metrics; higher values are preferred for 

threshold and ranking metrics. 
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Table 6.2: Example confusion matrix 

  Predicted 

  Negative Positive 

Actual 
Negative True negative (tn) False positive (fp) 

Positive False negative (fn) True positive (tp) 
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Chapter 7 

RESULTS 

7.1 Balancing Methods 

Using the cross validation and the ten metrics defined in Table 6.1, we 

compare the three balancing methods—undersampling, oversampling, and SMOTE—

for both boosted regression trees (BRT), and random forests (RF) (Table 7.1). For the 

BRT models, the best sampling method depends on which metric is used, but overall, 

the BRT with the original data performs at least as well as the others. For the random 

forests models, although the model using the original data has the smallest predictive 

errors in terms of RMSE and MAE (0.166 and 0.028, respectively), the sensitivity and 

specificity make it clear that in that case, that model actually predicts no damage for 

every pipe and the RMSE and MAE are only small because damage is relatively 

infrequent, i.e., because of the imbalance in the data. All three balancing methods 

address this anticipated difficulty, with SMOTE performing best across all metrics. 

Based on this comparison, for the remaining analyses, we use the BRT model with the 

original data and the RF model with SMOTE. 
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Table 7.1: Comparison of predictive performance for different sampling methods 

  using cross validation 

 Total city Individual pipe  Suburb 

Modela TEb TPE RMSE MAE SN SP TSS AUC MASE MPSE 

BRT 42 1.8% 0.153 0.046 0.782 0.813 0.575 0.882 2.3 21% 

BRT 

Under. 
-116 5.0% 0.155 0.049 0.815 0.778 0.594 0.877 2.6 31% 

BRT 

Over. 
554 24.0% 0.154 0.042 0.752 0.845 0.597 0.886 2.0 29% 

BRT 

Smote 
1,568 67.8% 0.160 0.034 0.500 0.939 0.439 0.877 4.3 68% 

RF 2,301 99.5% 0.166 0.028 0.000 1.000 0.000 0.577 9.0 99% 

RF 

Under. 
-5,448 236% 0.244 0.095 0.871 0.685 0.556 0.857 22.3 210% 

RF 

Over. 
-6,891 298% 0.275 0.109 0.877 0.672 0.549 0.853 32.2 249% 

RF 

Smote 
-912 39.4% 0.182 0.056 0.697 0.814 0.511 0.831 3.6 55% 

aUnder = undersampling, Over = oversampling  
bTable 6.1 provides the definition for each metric. Lower values are preferred for TE, TPE, RMSE, MAE, 

MASE, and MPSE; higher values are preferred for SN, SP, TSS, and AUC. 

 

 

7.2 Model Results 

In this section, we compare the four model types—repair rate (RR), logit, 

boosted regression trees (BRT), and random forests with SMOTE (RF Smote)—

considering results from both the cross validation using the February earthquake data, 

and the holdout validation using the June earthquake data (Table 7.2). Both the cross 

validation (CV) and holdout validation provide estimates of out-of-sample prediction 

errors since in both cases, the observations used to fit a model is not used to test it. 

However, cross validation best estimates the expected prediction error over all training 

sets, rather than for a specific training set. That is, it is best to compare the methods 

rather than specific models with specific coefficient values. Holdout validation 

imagines we use the specific models fitted with the February training set and apply 
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them for a future earthquake (Hastie et al. 2013, Ch. 7). It can provide a better 

estimate of prediction error for those specific models, but the estimates can have high 

variance, so the results depend a lot on the particular future earthquake used as the test 

dataset. We evaluate, in turn, predictive performance based on (1) errors at the total 

city level, (2) individual pipe classification, and (3) suburb level, in turn.  

Table 7.2: Comparison of predictive performance for four model types using cross 

  validation with the February earthquake data and June earthquake  

  holdout validation  

  Total city Individual pipe  Suburb 

 Model TEa TPE RMSE MAE SN SP TSS AUC MASE MPSE 

Feb. 

CV 

RR 654 28.0% 0.162 0.045 0.603 0.782 0.385 0.777 4.0 57% 

Logit 0 0.0% 0.157 0.049 0.777 0.737 0.515 0.836 3.2 35% 

BRT 42 1.8% 0.153 0.046 0.782 0.813 0.575 0.882 2.3 21% 

RF 

Smote 
-912 39.4% 0.182 0.056 0.697 0.814 0.511 0.831 3.6 55% 

June 

hold- 

out 

RR 383 35.7% 0.109 0.020 0.304 0.928 0.231 0.796 2.5 53% 

Logit  -836 78.0% 0.112 0.032 0.787 0.616 0.402 0.780 3.7 72% 

BRT  -471 43.9% 0.112 0.028 0.689 0.777 0.466 0.812 2.0 44% 

RF 

Smote 
-1413 132% 0.129 0.039 0.613 0.800 0.413 0.785 3.8 81% 

aTable 6.1 provides the definition for each metric. Lower values are preferred for TE, TPE, RMSE, MAE, MASE, 

and MPSE; higher values are preferred for SN, SP, TSS, and AUC. 

 

 

7.2.1 Total city level prediction 

Considering the February CV results, the logit and BRT models produce 

virtually no error (TPE=0% and 2%, respectively), suggesting that they are better 

model types in general than RR and RF Smote (Table 7.2). For the June test data in 

particular, however, the RR does best (underpredicting by 36%), with the BRT 

producing similar error (overpredicting by 44%), much higher than for the CV. It is 

difficult to know how representative the June test data is of data from other future 
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earthquakes the models might be applied to. The ground motions were lower overall 

than those in the February earthquake (Table 4.1). There also may be some 

peculiarities of the June earthquake that are not captured in the covariate data, since it 

followed so closely after two other major events (September 2010 and February 2011). 

To the extent that it is representative, the June holdout results suggest the 

magnitude of prediction error in the total number of damaged pipes for the city. Both 

RR and BRT suggest on the order of 40% error, which should be acknowledge when 

applying these models for prediction in the future. RF Smote is substantially worse in 

both cases, with TPE=39% and 132%, respectively, for CV and June holdout. 

7.2.2 Individual pipe classification 

If the goal of the analysis is to correctly classify individual pipes as damaged 

or not, the sensitivity (SN), specificity (SP), and true skill statistics (TSS) suggest that 

BRT is the best of the four models and RR is the worst (Table 7.2). For the June 

holdout results, for example, only 30% of damaged pipes would be correctly identified 

as such by the RR, whereas, 79% or 69% would by the Logit and BRT, respectively. 

There is a tradeoff between false positives and false negatives. Overall, the TSS is 

much lower for RR (0.231) than Logit (0.402) or BRT (0.466). While the AUC values 

are similar (0.78 to 0.881 across all models for the holdout), that is a bit misleading 

because while the AUC treats all thresholds equally (Section 6.2), in this application, 

only the low thresholds (say, <0.03) are of practical importance. While the SN and SP 

across models and analyses are similar above thresholds of 0.2, they are quite different 

at the lower thresholds of interest. The RR method is not able to differentiate 

individual pipes as much as the other models which include multiple covariates and 

the variability of PGV within the contours. As a result, the predicted damage 
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probabilities from RR for the June dataset only have a range of 0 to 0.49; whereas, 

those for the other three methods have a range of 0 to 1. The RMSE and MAE are 

similar across models, but that is largely due to the low prevalence of damaged pipes. 

In the extreme, an obviously useless model that predicts no damage for any pipe 

would get an MAE of 0.028 for the February CV and 0.012 for the June holdout.  To 

simulate system-wide damage maps that could be used as input to simulations of 

customer outages, one needs to classify each pipe as damaged or not. For that type of 

analysis, the results suggest a model based on individual pipes would be more useful 

than the RR. In particular, the BRT performs best in terms of classifying individual 

pipes for both the CV and holdout analyses. 

7.2.3 Suburb-level prediction 

Between the scale of the entire city and the scale of individual pipes is the 

suburb-level analysis. The median absolute suburb error (MASE) and median 

percentage suburb error (MPSE) provide summary metrics of a model’s ability to 

predict the approximate spatial distribution of damage for purposes of identifying 

neighborhoods likely to experience more or less damage. Based on those metrics, the 

BRT performs best for both the February CV and June holdout validations 

(MASE=2.29 and 2.01, and MPSE=21% and 44%, respectively) (Table 7.2). In other 

words, for the BRT, half of the suburbs have an error in the predicted number of 

damaged pipes in the June earthquake of 2 or less (MASE=2.01). The number of 

damaged pipes varies across suburbs from zero to 156 for the February earthquake and 

64 for the June earthquake, so in terms of percentage error, the MASE=2.01 

corresponds to a median 44% error. 
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To examine the performance in terms of spatial distribution more carefully, 

Figures 7.1 and 7.2 show the maps and calibration plots (predicted vs. observed 

number of damaged pipes) for the February CV results. They show the ability of the 

logit and BRT in particular to capture the approximate spatial distribution of damage. 

The RF smote model overpredicts damage in some suburbs by quite a lot. The pattern 

associated with the RR model follows the PGV contours. It is unable to distinguish the 

suburbs with the highest number of damaged pipes. 

 

Figure 7.1: Number of damaged pipes in each suburb for February earthquake, (a) 

  Observed and in each model: (b) Logit, (c) BRT, (d) RF smote, and (e) 

  RR 
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Figure 7.2: Predicted vs. observed number of damaged pipes in each suburb for 

  February earthquake, for each model: (a) Logit, (b) BRT, (c) RF smote 

  (note y-axis range is different), and (d) RR 

 

 

Figures 7.3 and 7.4 show the maps and calibration plots for the June hold-out 

predictions. Logit and BRT models predict similar spatial distributions. Both 

overpredicts damage in Eastern Christchurch. RF smote overpredicts damage to a 

larger extent than Logit and BRT. RR underestimates the extent of damage. There 

does not seem to be a trend between observed and predicted damage. 
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Figure 7.3: Number of damaged pipes in each suburb for June earthquake, (a)  

  Observed and in each model: (b) Logit, (c) BRT, (d) RF smote, and (e) 

  RR 
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Figure 7.4: Predicted vs. observed number of damaged pipes in each suburb for 

  June earthquake, for each model: (a) Logit, (b) BRT, (c) RF smote  

  (note y-axis range is different), and (d) RR 

 

 

7.3 Importance of Covariates 

In examining the importance of the covariates, we seek to: (1) assess the 

potential effects of possible mitigation strategies, (2) clarify lingering ambiguity from 

past research about which pipe attributes are really influential, and (3) examine the 

tradeoff between predictive power and model simplicity (i.e., number of covariates 

included). While the RR method cannot provide insight on the relative importance of 

different covariates, each of the other methods can. This section focuses on the 

covariate results from the Logit and BRT models. Covariate results from RF smote are 
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not considered because it did not seem to have potential based on the predictive 

performance results in Section 7.2. Here we focus on the Logit model results in 

particular because unlike BRT and RF, they allow examination of the influence of 

different specific pipe materials, pipe types, and trench types (as opposed to pipe 

material as a whole). 

The coefficients of all covariates in the full Logit model are statistically 

significant, suggesting that all the attributes of the pipes and ground motion considered 

contribute to the probability of earthquake damage (Table 7.3, full model). However, 

changing the pipe material or trench type are the most obvious potential mitigation 

strategies for reducing damage. For the Logit model, the consequence of making such 

changes can be determined explicitly by examining the marginal effects. To compute 

the marginal effect for each categorical covariate, we first compute the change in 

probability of damage for pipe i resulting from a change from the reference level of 𝑥𝑘 

to the level of interest of 𝑥𝑘, keeping all other covariates at their original values (Eq. 

7.1). We then aggregating over all pipes according to the method of sample 

enumeration, weighting the marginal effect of each pipe i by the original probability of 

damage for pipe i (Eq. 7.2). As discussed in Louviere et al. (2000, p.60), this method 

is preferable to evaluating Eq. 7.1 using the sample average values of each covariate 

since the model is nonlinear. Marginal effects for the continuous covariates are 

computed similarly, but by incrementing the covariate instead of changing from the 

reference level to the covariate level of interest in Eq. 7.1 
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 𝑚𝑖𝑘 ⁡= 𝑃𝑖(𝑦 = 1|𝑥, 𝑥𝑘 = 1) − 𝑃𝑖(𝑦 = 1|𝑥, 𝑥𝑘 = 0) (1.3) 

 𝑀𝑘 ⁡= ⁡
Σ𝑝𝑖𝑚𝑖𝑘

Σ𝑝𝑖
 (1.4) 

The rightmost column of Table 7.3 presents the marginal effects for the 

statistically significant covariates in the full Logit model. It suggests, for example, that 

changing a pipe from galvanized iron, GI, the reference pipe material, to MPVC 

reduces the probability of damage by 0.1, all else being equal. Changing the trench 

type from pre-1984 local, the reference level, to post-2005, AP20 does the same.  
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Table 7.3: Logit results for full and reduced models 

  

Coefficients 

Marginal 

effectd 

Covariate R1b R2 R3 R4 Full Full 

 Intercept -5.22*c -4.70* -2.39* -2.26* 8.79†  

 PGV 0.024* 0.021* 0.014* 0.015* 0.013* 1.07(10-3) 

 LRI   -0.677* -0.662* -0.696* 55.82(10-3) 

 GWT     -0.062‡ -4.95(10-3) 

 Pipe length 0.012* 0.013* 0.014* 0.015* 0.013* 1.05(10-3) 

 Diameter    -0.008* -0.005* -0.38(10-3) 

 Year laid     -0.005‡ -0.41(10-3) 

Pipe 

materiala 

AC  -0.669* -0.522* 0.273‡ -0.252  

CI  -0.885* -0.885* -0.123 -0.714† -0.058 

DI  -1.81* -1.74* -0.431 -0.568  

STEEL  -0.777* -0.739* 0.316 -0.313  

CLS  -0.937* -1.05* 0.263 -0.387  

UPVC  -2.24* -2.22* -1.49* -1.36* -0.091 

MPVC  -2.80* -2.66* -1.84* -1.64* -0.101 

PE80B  -2.01* -2.12* -1.91* -1.19* -0.084 

PE100  -14.1 -14.1 -13.2 -13.0  

HDPE  -1.49* -1.48* -1.40* -0.868* -0.067 

LDPE  -13.3 -12.2 -12.2 -12.0  

Pipe typea 

Trunk     -0.700  

Submain     -0.072  

Crossover     -1.34* -0.075 

Trench typea 

Pre-1984, import     -0.575* -0.052 

1984-2000, AP40     -0.955* -0.077 

Post-2005, AP 20     -1.31* -0.095 
aReference level for pipe material is galvanized iron, for pipe type is main, and for trench type is pre-1984, local. 
bModel R1 includes PGV and pipe length only. Model R2 includes PGV, pipe length, and pipe material. Model R3 

includes PGV, pipe length, pipe material, and LRI. Model R4 includes PGV, pipe length, pipe material, LRI, and 

diameter. Full model includes all covariates. 
c† Indicates significance at 0.05, ‡ Indicates significance at 0.01, * Indicates significance at 0.0001 
dMarginal effect on the change in probability of damage due to a unit change, for significant covariates only. 

 

 

The coefficient signs in the full Logit model (Table 7.3) support the hypotheses 

in Table 3.1. They suggest that more damage is associated with higher PGV, lower 

LRI (i.e., increased liquefaction susceptibility), smaller pipe diameter, and older pipes. 

They also offer new insights related to pipe material, pipe type, and trench type. The 

results provide evidence that MPVC, UPVC, PE80B, HDPE, and CI were associated 

with the least damage, and GI with the most. They indicate that crossovers and pipes 

in the more recent trench types are less likely to be damaged, all else being equal. 
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As noted in Section 3.3, while the influences of different pipe attributes on 

damage have been studied previously, in many cases the studies have not controlled 

for other attributes, making it unclear whether the influence is really due to the 

attribute of interest or a correlate of it. The statistical significance of the coefficients of 

all the covariates in the full Logit model suggests that each is important, even when 

controlling for the others. To further examine their effects, we compare the full model 

to the four reduced models, which are the same except that they include only a subset 

of the covariates. Comparing Models R3 and R4, for example, shows that when pipe 

diameter is added, the covariate for steel changes from being significant with a 

negative coefficient (𝛽𝑆= -0.739, p=0.0003) to not significant (𝛽𝑆=0.316, p=1452) 

(Table 7.3). This suggests that in the model R3, the steel covariate may actually be 

reflecting the effect of pipe diameter, since steel pipes tend to be large. The average 

diameter of steel pipes is 190 mm, compared to 83 mm for pipes of all other materials. 

A model like R2 or R3, therefore, might lead to a conclusion that steel is associated 

with reduced damage, whereas R3 suggests that when controlling for pipe diameter, 

there is no evidence that is true. Similarly, comparing Models R2 and R3 indicates that 

when liquefaction susceptibility is not controlled for, the PGV covariate captures some 

of the variability it causes. These results highlight the importance of considering what 

set of covariates are included in a model when interpreting the results for a specific 

covariate. 

Beyond the statistical significance of the covariates, it is worth considering 

their practical significance since while additional covariates improve prediction, they 

also increase the data required to apply the model. To investigate this tradeoff between 

improved prediction and increased complexity and data needs, we examined the 



 46 

predictive power of the four reduced models to the full models (Table 7.4). These 

results suggest first, that in terms of error in the total count, the PGV and pipe length 

alone provide the same level of predictive ability that the full set of covariates does 

(R1 vs. Full). In terms of prediction at the individual pipe and suburb levels, while the 

overall performance improves with additional covariates as expected, the marginal 

improvement declines after the first few most influential covariates. In particular, the 

R3 models, which include only PGV, pipe length, pipe material, and LRI achieve most 

of predictive power of the full model. For the Logits, for example, the TSS, AUC, and 

MASE are 4%, 14%, and 10% worse for the R3 model than the full model. Depending 

on the intended uses of the model and data availability, therefore, one might choose to 

use one of the reduced models instead of the full model. 

 

 

Table 7.4: Predictive performance of reduced models compared to full models 

 Total city Individual pipe  Suburb 

Modela TEb TPE RMSE MAE SN SP TSS AUC MASE MPSE 

Logit R1 0 0.0% 0.163 0.053 0.621 0.687 0.307 0.685 7.5 65% 

Logit R2 0 0.0% 0.162 0.052 0.740 0.687 0.427 0.689 6.6 52% 

Logit R3 0 0.0% 0.159 0.050 0.771 0.721 0.492 0.722 3.6 33% 

Logit R4 0 0.0% 0.159 0.050 0.765 0.729 0.494 0.730 3.7 39% 

Logit Full 0 0.0% 0.157 0.049 0.777 0.737 0.515 0.836 3.2 35% 

BRT R1 22 1.0% 0.160 0.051 0.808 0.696 0.504 0.699 5.1 53% 

BRT R2 22 0.9% 0.157 0.049 0.788 0.764 0.552 0.765 4.5 44% 

BRT R3 20 0.9% 0.155 0.047 0.786 0.789 0.576 0.789 3.0 29% 

BRT R4 24 1.0% 0.155 0.047 0.790 0.794 0.583 0.794 3.0 32% 

BRT Full 42 1.8% 0.153 0.046 0.782 0.813 0.575 0.882 2.3 21% 
aModel R1 includes PGV and pipe length only. Model R2 includes PGV, pipe length, and pipe material. 

Model R3 includes PGV, pipe length, pipe material, and LRI. Model R4 includes PGV, pipe length, pipe 

material, LRI, and diameter. Full model includes all covariates. 

bTable 6.1 provides the definition for each metric. Lower values are preferred for TE, TPE, RMSE, MAE, 

MASE, and MPSE; higher values are preferred for SN, SP, TSS, and AUC. 
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Chapter 8 

CONCLUSIONS 

This paper presents a thorough analysis of earthquake damage to water 

pipelines using a large database of damage in the February and June 2011 earthquakes 

in Christchurch, New Zealand. A comparison of four model types using the results of 

both cross validation and holdout validation suggests first, that the recommended 

model depends on the intended use and that multiple metrics of predictive power are 

required to evaluate them fully. Specifically, the results suggest that boosted 

regression trees (BRT) arguably offer the best overall predictive performance. 

However, although logit models can overfit the data a bit more than BRT, they are 

quite good as well, and offer the added benefits of an easily shared closed form model 

representation and an ability to provide insight into the relative effect of different pipe 

materials and trench types on damage probabilities. The repair rate (RR) method used 

almost exclusively in previous studies performs very well in terms of predicting the 

total number of damaged pipes in the city and is far simpler to apply, but is not as 

capable of correctly classifying individual pipes as damaged or not, or capturing the 

spatial distribution of damage. Whichever model type is used, the analysis highlights 

the need to compute and report the predictive errors of different types and 

acknowledge them in using the models for subsequent analysis. 

Previous studies had identified pipe material and other attributes as being 

important in determining damage in earthquakes. Due to the type of models, however, 

questions remained about the relative importance of related attributes. The analysis 

provides evidence that MPVC, UPVC, PE80B, HDPE, and CI were associated with 

the least damage, and GI with the most. It furthers suggests how much the damage is 



 48 

likely to be reduced if one material is replaced with another. Simulating the 

replacement of pipes of one material with another and rerunning one of the damage 

models could provide insight for planning a retrofit program or new construction 

guidelines. Similarly, the analysis provides evidence that pipes in the more recent 

trench types are less likely to be damaged, even when controlling for the pipe age. The 

results also caution against analyses that offer conclusions about the effect of a pipe 

attribute without controlling for the other attributes. Finally, while all of the pipe and 

ground attributes examined based on the conceptual framework were statistically 

significant, a comparison of reduced models suggests that a majority of the predictive 

power can be obtained by including only the pipe length, PGV, LRI, and pipe 

material, so if it is necessary to limit the data demands of applying a model for 

prediction, one might focus on those.  
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