
ENABLING SCALABLE DATA ANALYSIS FOR LARGE

COMPUTATIONAL STRUCTURAL BIOLOGY DATASETS ON

LARGE DISTRIBUTED MEMORY SYSTEMS SUPPORTED BY THE

MAPREDUCE PARADIGM

by

Boyu Zhang

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Computer
Science

Spring 2015

c© 2015 Boyu Zhang
All Rights Reserved

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

ProQuest 3718389

Published by ProQuest LLC (2015). Copyright of the Dissertation is held by the Author.

ProQuest Number: 3718389

ENABLING SCALABLE DATA ANALYSIS FOR LARGE

COMPUTATIONAL STRUCTURAL BIOLOGY DATASETS ON

LARGE DISTRIBUTED MEMORY SYSTEMS SUPPORTED BY THE

MAPREDUCE PARADIGM

by

Boyu Zhang

Approved:
Errol L. Lloyd, Ph.D.
Chair of the Department of Computer and Information Sciences

Approved:
Babatunde A. Ogunnaike, Ph.D.
Dean of the College of Engineering

Approved:
James G. Richards, Ph.D.
Vice Provost for Graduate and Professional Education

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Michela Taufer, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Cathy H. Wu, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Li Liao, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Ming-Ying Leung, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Pietro Cicotti, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Trilce Estrada, Ph.D.
Member of dissertation committee

ACKNOWLEDGEMENTS

This work would have not been possible without the mentorship and support of

several intelligent and passionate colleagues. First of all, I thank my research advisor

Dr. Michela Taufer. She helped me focus on important research problems, guided me

through the challenges and obstacles along this journey, and trained me to become

more effective in communications and more independent in research. When I look

back, I can see the changes that I went through, and I am thankful that I have her as

my advisor and my mentor. I also thank my thesis committee members, Drs. Cathy

H. Wu, Li Liao, Ming-Ying Leung, Pietro Cicotti, and Trilce Estrada, who provided

valuable feedback, guidance, and directions for my thesis. I gained broader visions and

ideas from the questions and discussions that we had.

Drs. Estrada, Leung, and Cicotti have played a special part in my professional

growth. Dr. Estrada was a colleague when I first joined the group and now is a suc-

cessful faculty member. She has been a tremendous role model for me and taught me

various skills to enjoy (and survive) my Ph.D. time. Dr. Leung brought the indis-

pensable statistical knowledge into my RNA work. I learned fundamental statistical

concepts and methods in this process and was able to apply that knowledge in other

problems. Dr. Cicotti provided me with invaluable support and guidance related with

the use of the Hadoop framework and the Gordon supercomputer. I gained valuable

experience and knowledge working with Gordon.

I thank Dr. Pavan Balaji and his group at the Argonne National Laboratory for

providing guidance on using the Fusion supercomputer and performing research at a

much larger scale than I was used to during my internship; all the Docking@Home vol-

unteers for participating in the Docking@Home project, generating the ligand datasets,

and helping advance science; Dr. Vijay Pande for providing me with the datasets of

v

Folding@Home; and D. E. Shaw research group for providing me the datasets of protein

BPTI generated by the Anton supercomputer.

I feel lucky because I had the opportunity to work together with my lab col-

leagues at the Global Computing Lab. They always gave me the feedback I needed

and created an open environment for discussions.

I acknowledge various funding agencies who provided grant support to the work

in this thesis including the National Science Foundation, the Extreme Science and

Engineering Discovery Environment (XSEDE) Program, and the U.S. Department of

Energy, Office of Science.

I am deeply thankful to my family for always being supportive and believing

in me. I especially thank my husband, Zhengyu Cao, who is patient, supportive, and

helpful with his big heart and his knowledge in statistical and quantitative analysis. It

takes a great deal of support and collaboration to make this thesis happen, and I feel

deeply grateful.

vi

TABLE OF CONTENTS

LIST OF TABLES . xi
LIST OF FIGURES . xiii
ABSTRACT . xix

Chapter

1 THESIS OVERVIEW . 1

1.1 Problem, Motivation, and Proposed Solution 1
1.2 Thesis Statement . 5
1.3 Contributions . 5
1.4 Organization . 6

2 CLASSIFICATION OF RNA SECONDARY STRUCTURES . . . 7

2.1 Background . 8

2.1.1 RNA molecules . 8
2.1.2 Chunking methods based on inversions 9
2.1.3 Hadoop . 17

2.2 Limits of Current Practice . 18

2.2.1 RNA secondary structure predictions 18
2.2.2 MapReduce in bioinformatics applications 21

2.3 Methodology . 22

2.3.1 Workflow for parallel chunk-based predictions 22
2.3.2 Integrating the searching paths into the MapReduce

programming model . 28

vii

2.3.3 Tree granularity . 29

2.4 Performance . 31

2.4.1 Platform . 31
2.4.2 Datasets . 31
2.4.3 Results and discussion . 32

2.5 Accuracy . 42

2.5.1 Platform . 42
2.5.2 Datasets . 43
2.5.3 Results and discussion . 44

2.6 Summary and Future Work . 51

3 CLUSTERING OF LIGAND GEOMETRIES 56

3.1 Background . 57

3.1.1 Protein-ligand docking . 57
3.1.2 Sampling conformational spaces with Docking@Home 58
3.1.3 Semi-decentralized and fully-decentralized systems 60
3.1.4 MapReduce-MPI . 61

3.2 Limits of Current Practice . 62

3.2.1 Centralized clustering of docking conformations 62
3.2.2 Distributed clustering in MapReduce 63

3.3 Methodology . 65

3.3.1 Capturing relevant geometrical properties 66
3.3.2 Searching and counting property aggregate 69
3.3.3 Integration of the clustering algorithm into MapReduce 74

3.4 Performance . 75

3.4.1 Platforms . 75
3.4.2 Datasets . 76

viii

3.4.3 Results and discussion . 78

3.5 Accuracy . 91

3.5.1 Platform . 91
3.5.2 Datasets . 91
3.5.3 Results and discussion . 93

3.6 Summary and Future Work . 99

4 CLUSTERING OF PROTEIN FOLDING TRAJECTORIES . . . 105

4.1 Background . 106

4.1.1 Protein folding trajectories . 106
4.1.2 Intra- and inter-trajectory analysis 107
4.1.3 Parallel MATLAB . 107

4.2 Limits of Current Practice . 108

4.2.1 Traditional methods for trajectory analysis 108
4.2.2 Other big data analysis problems 109

4.3 Methodology . 110

4.3.1 Extraction of conformational features 111
4.3.2 Clustering of meta-stable and transition stages 114
4.3.3 Integration of the clustering algorithm into Parallel MATLAB 116

4.4 Performance . 117

4.4.1 Platform . 117
4.4.2 Datasets . 117
4.4.3 Results and discussion . 118

4.5 Accuracy . 121

4.5.1 Platform . 121
4.5.2 Datasets . 121
4.5.3 Results and discussion . 122

4.6 Summary and Future Work . 128

ix

5 CONCLUSION . 131

5.1 Summary . 131
5.2 Limitations and Opportunities . 134
5.3 Broader Impact . 135

BIBLIOGRAPHY . 137

Appendix

RIGHTS AND PERMISSIONS . 145

x

LIST OF TABLES

2.1 Fourteen sequences from the virus family Nodaviridae. 32

2.2 Average total times for the seven sequences in RNA2 and in RNA1
for coarse-grained mapping using centered and optimized methods. 37

2.3 Average total times for the seven sequences in RNA2 and in RNA1
for fine-grained mapping using centered and optimized methods. . . 38

2.4 Average number of chunks (i.e., number of map tasks) for the seven
sequences in RNA2 and in RNA1 for fine-grained mapping using
centered and optimized methods. 38

2.5 Mean and standard deviations of MAR for regular, centered, and
optimized chunking methods over 50 non-pseudoknotted sequences,
and the corresponding p-values of the t-test for mean MAR > 1. . . 47

2.6 Mean and standard deviations of MAR for regular, centered, and
optimized chunking methods over 23 pseudoknotted sequences, and
the corresponding p-values of the t-test for mean MAR > 1. 47

2.7 Correlation coefficients (r) between MAR and sequence lengths and
corresponding p-values (p) when testing for a negative correlation. . 50

2.8 Count (co) and rank sum (rs) of sequences attaining the highest MAR
with each chunking method for the various prediction programs. . . 54

2.9 P-values from the Friedman test to compare the accuracy retention of
the three chunking methods as well as the posthoc pairwise
comparison tests. 55

3.1 Total MapReduce times in seconds across processes broken down into
distinctive components: Map (M), Shuffle (S), Overhead (O), Reduce
(R), and Total (T). 102

xi

3.2 The four levels explored in our tree search for the five logical
distributions when representing each point with a 15-digit key. . . . 103

3.3 Comparison of the number of hits for different scoring approaches:
our clustering with density threshold equal to 500 and equal to 0.5%
of the total number of points, a probabilistic hierarchical clustering,
and an energy-based scoring method. 104

4.1 Number of trajectories with Pearson coefficient (co) in range for the
451 trajectories . 114

4.2 Weak scalability study of our method on the 203 GB villin dataset on
Gordon . 121

xii

LIST OF FIGURES

1.1 Three scientific case studies. 2

2.1 Stem loop (a) and pseudoknot (b). 9

2.2 Inversion with stem length 6 and gap size 3. 10

2.3 Binary sequence around an inversion. If a nucleotide base is included
in an inversion identified by the InversFinder program, it is given a
value of “1”; if not, it is assigned a value of “0.” 11

2.4 Excursion plot with peaks, peak bottoms, and peak lengths. Rising
stretches in the plot indicate the presence of inversions. 12

2.5 Centered chunking method where x = peak length. The centered
method takes the sequence segment between the peak bottom and the
position of the last peak in the excursion and places the sequence
segment in the center of the chunk. 13

2.6 Six chunks obtained by using the centered method for the 379-base
RNA sequence RF00209 A in the RFAM database. 15

2.7 Chunks by the optimized method with peak spanning Positions i–j.
All segments with length c between Positions j− (c−1) and i+(c−1)
are considered. The chunk with the highest inversion score is selected. 16

2.8 Five chunks obtained by the optimized method for the 379-base RNA
sequence RF00209 A in the RFAM database. The chunks cover all
but the first 18 positions of the sequence. 16

2.9 With Cmax = 100, the sequence RF00209 A is cut into four chunks
positioned at 1–100, 101–200, 201–300, and 301–379. 17

2.10 Overview of the classification of RNA secondary structures. 23

xiii

2.11 Workflow of the chunk-based RNA secondary structure prediction
framework (a) and example of searching paths (b). 24

2.12 RF00209 A sequence and its experimental secondary structure from
RFAM database. In the bracket view representation, bases that are
hydrogen bonded with other bases are represented by a “(” or a “)”; a
matching pair of “(” and “)” indicates that the bases at these
positions are paired to be part of a secondary structure. Unpaired
nucleotide bases are represented by a “:” (colon). 26

2.13 Mapping of tree granularity. Each mapper explores one branch of the
tree and generates the set of segments as the output of the chunking
program. The mapper predicts one or more segments generated based
on the number of segments each mapper is assigned. Coarse-grained
mappers explore one whole branch of the tree at a time. Fine-grained
mappers predict one chunk at a time. 30

2.14 Profile of execution time for chunk-based MapReduce (MR) method
and non-chunk-based sequential method. 34

2.15 Total time in seconds for coarse- vs. fine-grained mapping and
centered vs. optimized methods: (a) coarse-grained mapping using
centered method, (b) coarse-grained mapping using optimized
method, (c) fine-grained mapping using centered method, and (d)
fine-grained mapping using optimized method. 37

2.16 Box-and-whisker diagram of total MapReduce times for each
subgroup of sequences (RNA2 and RNA1) using centered and
optimized methods as well as max chunk length of 60, 150, and 300:
(a) coarse-grained mapping on RNA2 (short sequences), (b)
coarse-grained mapping on RNA1 (long sequences), (c) fine-grained
mapping on RNA2 (short sequences), and (d) fine-grained mapping
on RNA1 (long sequences). 39

2.17 Percentages of compute and idle time in map function for coarse- vs.
fine-grained mapping and centered vs. optimized methods: (a)
coarse-grained mapping using centered method, (b) coarse-grained
mapping using optimized method, (c) fine-grained mapping using
centered method, and (d) fine-grained mapping using optimized
method. 41

xiv

2.18 Number of chunks and chunk lengths for the Nodamura virus (NoV)
RNA2 with centered and optimized methods and maximum chunk
length of 60 bases. 43

2.19 Number of chunks and chunk lengths for the Nodamura virus (NoV)
RNA2 with centered and optimized methods and maximum chunk
length of 300 bases. 44

2.20 MAC and MAW values obtained using the prediction programs
IPknot, pknotsRG, HotKnots, NUPACK, PKNOTS, RNAfold, and
UNAFOLD for the dataset of 50 non-pseudoknotted sequences. . . 45

2.21 MAC and MAW values obtained using the prediction programs
IPknot, pknotsRG, HotKnots, NUPACK, and PKNOTS for the
dataset of 23 pseudoknotted sequences. 46

2.22 Scatter plot of MAR values versus sequence lengths for the IPknot
program. Similar scatter plots for the other prediction programs have
been examined, and no statistically significant negative correlation
has been detected in any of these plots. 49

2.23 RNA structures from the same family: (a) PDB 00307 and (b)
PDB 00421. 53

3.1 Traditional centralized comparison and clustering of large datasets
generated on a distributed memory system. 64

3.2 Overview of ligand clustering. 66

3.3 From the scientific data to extracted property: (a) a ligand
conformation in the docking pocket of a protein, (b) the 3-D point
that encodes the geometrical property using either the 3-D or 3-Dlog
mapping, and (c) six points obtained in parallel that represent six
ligand conformations clustered in three groups with three different
geometries. 67

3.4 Capturing relevant geometrical properties by using projection and
linear interpolation for the 3-D mapping variation. 69

3.5 Examples of exchange of properties in the GlobalToLocal variant and
exchange of scalar property aggregations in the LocalToGlobal
variant. 70

xv

3.6 Example of a metadata space of 3-D points generated from a dataset
of ligand conformations and its octree built to identify the densest
octant. 73

3.7 Five scenarios of logical distributions of data: 1D (a), 1S (b), UN (c),
2D (d), and 2S (e). 77

3.8 Three scenarios of physical distributions of data: Uniform (a),
Round-robin (b), and Random (c). 79

3.9 Total execution time for GlobalToLocal and LocalToGlobal on the
five logical distributions and (a) (b) the Uniform physical
distribution, (c) (d) the Round-robin physical distribution, and (e) (f)
the Random physical distribution. 80

3.10 Percentage of time for GlobalToLocal and LocalToGlobal for five
logical and (a) the Uniform physical distribution, (b) the Round-robin
physical distribution, and (c) the Random physical distribution. . . 82

3.11 Per process times normalized with respect to the longest process per
experiment for the Uniform, Round-robin and Random physical
distributions. 85

3.12 Averaged execution times in seconds and their variations cut down in
Map, Shuffle, and Reduce times on Fusion with number of nodes
ranging from 16 to 256. 87

3.13 Averaged Shuffle times and their variations for the four shuffling calls
and the five distributions on 256 nodes of Fusion. 88

3.14 Performance comparison of our distributed clustering vs. the
hierarchical clustering when the size of data increases. 90

3.15 Three proteins whose results from the Docking@Home datasets are
analyzed for this accuracy study. 92

3.16 Metadata for ligand 1c2d using 3-D mapping (a), from the (x,y)
perspective (b), the (x,z) perspective (c), and the (y,z) perspective
(d). 97

3.17 Metadata for ligand 1c2d using 3-Dlog mapping (a), from the (x,y)
perspective (b), the (x,z) perspective (c), and the (y,z) perspective
(d). 98

xvi

3.18 Crystal structure of 1c2d from different perspectives. 99

4.1 Overview of the clustering of protein folding trajectories. 111

4.2 One conformation of the villin HP-35 protein (a); part of its distance
matrix using only its backbone atoms in the conformation (b); and
three eigenvectors and the associated eigenvalues capturing and
synthesizing the conformation geometry (c). 112

4.3 3-D points in one frame sorted based on the time generation of the
associated conformation (a); the three clusters and representatives
identified by our method (b); and the mapping of the stages back to
the folding conformation RMSDs from native protein conformation
(c). 116

4.4 Comparison of our method with the traditional method proposed by
Phillips in terms of execution time (a), memory usage per core (b),
and data moved for the analysis (c). 120

4.5 Crystal structure for the protein NleNle (a) and BPTI (b). 122

4.6 Case study with single meta-stable stage: 3-D points generated by
our method and their classification (a) and RMSDs of the
conformations from the crystal structure (b). 123

4.7 Case study with two meta-stable stages and one transition stage: 3-D
points generated by our method and their classification (a) and
RMSDs of the conformations from the crystal structure (b). 124

4.8 Case study with one meta-stable stage and one transition stage: 3-D
points generated by our method and their classification (a) and
RMSDs of the conformations from the crystal structure (b). 125

4.9 Example of two trajectories exploring different conformation spaces
using our method (a) and by comparing the RMSDs of the
conformations from the crystal structure of the protein (b). 126

4.10 Example of two trajectories exploring the same conformation space
using our method (a) and by comparing the RMSDs of the
conformations from the crystal structure of the protein (b). 126

xvii

4.11 Case study with two meta-stable stages: 3-D points generated by our
method and their classification (a) and RMSDs of the conformations
from the crystal structure (b). 127

xviii

ABSTRACT

Today, petascale distributed memory systems perform large-scale simulations

and generate massive amounts of data in a distributed fashion at unprecedented rates.

This massive amount of data presents new challenges for the scientists analyzing the

data. In order to classify and cluster this data, traditional analysis methods require

the comparison of single records with each other in an iterative process and therefore

involve moving data across nodes of the system. When both the data and the number

of nodes increase, classification and clustering methods can put increasing pressure on

the system’s storage and bandwidth. Thus, the methods become inefficient and do

not scale. New methodologies are needed to analyze data when it is distributed across

nodes of large distributed memory systems.

In general, when analyzing such scientific data, we focus on specific properties

of the data records. For example, in structural biology datasets, properties include

the molecular geometry or the location of a molecule in a docking pocket. Based on

this observation, we propose a methodology that enables the scalable analysis for large

datasets, composed of millions of individual data records, in a distributed manner on

large distributed memory systems. The methodology comprises two general steps. The

first step extracts concise properties or features of each data record in isolation and

represents them as metadata in parallel. The second step performs the analysis (i.e.,

classification or clustering) on the extracted properties (i.e., metadata) using machine

learning techniques.

We apply the methodology to three different computational structural biol-

ogy datasets to (1) identify class memberships for large RNA sequences from their

secondary structures, (2) identify geometrical features that can be used to predict

class memberships for structural biology datasets containing ligand conformations from

xix

protein-ligand docking simulations, and (3) find recurrent folding patterns within and

across trajectories (i.e., intra- and inter-trajectory, respectively) in multiple trajectories

sampled from folding simulations.

Since our method naturally fits in the MapReduce paradigm, we adapt it for dif-

ferent MapReduce frameworks (i.e., Hadoop and MapReduce-MPI) and use the frame-

works on high-end clusters for the three scientific challenges listed above. Our results

show that our approach enables scalable classification and clustering analyses for large-

scale computational structural biology datasets on large distributed memory systems.

In addition, compared with traditional analysis approaches, our method achieves sim-

ilar or better accuracy.

xx

Chapter 1

THESIS OVERVIEW

1.1 Problem, Motivation, and Proposed Solution

Nowadays, massive amounts of data are generated by petascale distributed

memory systems performing large-scale simulations in a distributed fashion at un-

precedented rates. When scientists seek to analyze the scientific meaning of the data,

however, this massive amount of data presents new challenges. Specifically, traditional

analysis methods of classification and clustering require the comparison of single records

with each other in an iterative process. In the case of distributed large datasets, this

comparison then involves moving data across nodes of the system. When both the

datasets and the number of nodes increase, these methods can increase pressure on the

system storage and bandwidth. Thus, these methods become inefficient and do not

scale. New analysis methods are needed whereby the analysis moves to the distributed

data and explicit all-to-all comparisons among data records are avoided.

This thesis focuses on large multi-dimensional structural biology datasets on

large distributed memory systems. In general, when analyzing scientific data, scientists

focus on specific properties of the data. In the structural biology datasets considered

in this thesis, properties include the molecular geometry or the location of a molecule

in a docking pocket. Based on this observation, we claim that the data properties

can be captured across the dataset concurrently by analyzing each single data record

independently and representing the data properties with metadata. The extracted

properties (i.e., metadata) can be efficiently analyzed (i.e., classification or clustering)

in a distributed fashion by using machine learning techniques.

Accordingly, in this thesis, we propose a transformative data analysis method

that comprises two general steps. The first step extracts concise properties or features

1

the family model of the RNA sequence. Specifically, our method first extracts the

relevant hairpins and pseudoknots contained in the sequence’s chunks represented as

strings metadata in parallel and then rebuilds several possible secondary structures

of the whole RNA sequence using the chunks’ structures. The method then classifies

the secondary structures as more or less likely to occur in nature, using an accuracy

retention obtained by comparing them with the predicted structures using the whole

sequence and the known structure. In addition, our method offers the advantage of

easy integration into our Hadoop-based framework of training a statistical model (i.e.,

the RNA family model) for the given sequence using known structures of other RNA

sequences in the same family and classifying each of the several predicted secondary

structures of the given sequence as more or less likely to happen in nature based on

the family model.

As an example of identifying features that can be used to predict class mem-

berships, we consider structural biology datasets containing ligand conformations from

protein-ligand docking simulations. In this case, we want to cluster the sampled con-

formations of a given ligand when docked into a protein pocket based on the conforma-

tions’ geometries. Our method first concurrently extracts the geometry of each ligand

conformation as a single N-dimensional (i.e., 3-D or 6-D) point metadata. Then it se-

lects multiple potential near-native conformations (i.e., ligand conformations that well-

docked into the protein site) by using the N-dimensional clustering (i.e., octree-based

clustering for 3-D metadata or 6-D tree-based clustering for 6-D metadata) technique.

As an example of finding recurrent patterns in datasets, we consider multiple

trajectories sampled from folding simulations to identify any folding patterns within

and across trajectories (i.e., intra- and inter-trajectory, respectively). Our method first

extracts the geometric shape features of each protein conformation in a folding frame

when the time evolves (i.e., a consecutive subset of the folding protein conformations) as

a sequence of 3-D points metadata. Then the set of 3-D points in the time dimension

are interpreted in terms of recurrent patterns by using a hierarchical probabilistic

clustering technique.

3

Our method naturally fits in the MapReduce programming model. The MapRe-

duce programming model was originally proposed and written by Google to index and

annotate data on the Internet [19]. The model consists of two functions: map and

reduce. The map function divides a large chunk of work into smaller chunks and per-

forms computation on each smaller chunk. Its input comprises a paired argument: a

key that is abbreviated as k1, and a value that is abbreviated as v1. The function’s

output consists of a list of intermediate key and value pairs, i.e., list 〈k2, v2〉. The

output values (i.e., v2) associated with the same key k2 are aggregated by the runtime

system without user intervention. The values become the input to the reduce function,

which takes a paired of key and values as input (i.e., 〈k2, list(v2)〉), and outputs a list

of values (i.e., 〈list(v3)〉.
Many in-house software tools have been developed for specific problems and

datasets, but they cannot be easily adapted to other problems. Thus, the benefits of

these in-house software tools to the scientific community are limited. In contrast, we

aim to provide a general method and a framework that allows existing algorithms to

be easily integrated as software modules in a plug-and-play fashion. Instead of im-

plementing specific ad hoc MPI-based applications, one for each dataset and problem,

we adapt our method to the MapReduce programming model by structuring the ex-

traction of metadata as a map function and the classification or clustering operation

as a reduce function or as a combination of map and reduce functions. MapReduce

is ideal for this purpose because different algorithms can be easily plugged in as map

or reduce functions, and the communication between map and reduce steps is auto-

matically handled by the runtime, removing a major burden on the developers. We

integrate the map and reduce functions into different MapReduce frameworks (i.e.,

Hadoop and MapReduce-MPI), as well as the Parallel MATLAB framework; and we

use the frameworks for three scientific datasets (i.e., RNA secondary structures, ligand

conformations, and folding proteins trajectories).

For each of the three datasets, we evaluate the scalability of our method when the

size of the dataset and that of the distributed memory system increase. We also study

4

the accuracy of our method by statistically comparing the scientific results obtained by

our method with the results of traditional approaches for each dataset. The results show

that our method can achieve both better scalability and higher accuracy comparing to

the respective traditional approaches.

1.2 Thesis Statement

In this thesis, we claim that the relevant properties of data can be captured

across the dataset as metadata concurrently by analyzing each single data record inde-

pendently. We also claim that the class memberships or patterns of data records can be

identified by using classification or clustering techniques on the metadata. Further, we

claim that using our analysis method, we can enable scalable and accurate data analy-

ses (i.e., classification and clustering) for large-scale computational structural biology

datasets on petascale distributed memory systems.

To validate the thesis statement and prove both the scalability and accuracy of

our method, we present three representative case studies, one for each type of analysis

considered in this thesis. We show how our method can do the following:

• Classify the secondary structures as more or less likely to occur in nature based
on their chunk-based structural features and the RNA sequence’s family model.

• Cluster ligand geometries into sets with different probabilities of well-docking
into the protein pocket based on the densities of geometries.

• Cluster folding trajectories into patterns with different recurrences within and
across trajectories (i.e., intra- and inter-trajectory, respectively) based on geo-
metrical variations in time of the folding protein conformations.

1.3 Contributions

The contributions of this thesis are as follows.

• We introduce a transformative, general data analysis method together with al-
gorithms supported by a MapReduce-style parallel programming model. The
method avoids moving data to a centralized server, enables classification and
clustering on large-scale data in a distrusted fashion, and ensures both scalabil-
ity and accuracy of the analysis.

5

• We apply the method to three representative and diverse computational struc-
tural biology datasets. The different datasets are (1) large datasets of RNA
sequences, to identify sequence features of RNAs and classify the secondary
structures as more or less likely to occur; (2) large datasets of docked ligand
conformations, to identify geometrical features of the ligand conformations and
cluster the geometries in groups with high probabilities of well-docking into a
protein pocket; and (3) large datasets of folding trajectories, to identify recur-
rent patterns in protein folding trajectories and cluster the folding trajectories
into meta-stable and transition stages.

1.4 Organization

The remainder of the thesis is organized as follows. Chapter 2 presents the ap-

plication of our method to RNA sequence datasets. Chapter 3 presents the application

of our method to ligand conformation datasets. Chapter 4 presents the application of

our method to protein folding trajectory datasets. Chapter 5 summarizes the accom-

plished work in this thesis, presents future work beyond this thesis, and discusses the

broader impact of the thesis.

6

Chapter 2

CLASSIFICATION OF RNA SECONDARY STRUCTURES

Given an RNA sequence, different computational methods can predict multiple

secondary structures, where each structure has a certain probability of happening. The

first analysis problem tackled in this thesis is a classification problem in which we iden-

tify class memberships for these multiple secondary structures. Specifically, we classify

a secondary structure as more or less likely to occur based on its chunk-based secondary

structures and the RNA sequence’s family model. To extract the secondary structures

of an RNA sequence into metadata, we cut the sequence into shorter chunks using sta-

tistical information, predict the secondary structure of each chunk independently using

existing prediction programs, and reconstruct whole chunk-based secondary structures

from the chunks’ predictions. The classification of secondary structures requires our

method to learn the RNA family model from other secondary structures in the same

family and classifying the new structures using the model.

In this thesis, we design and implement a classification framework supporting

our method outlined above, and we integrate existing chunk-based prediction algo-

rithms. We evaluate the framework using three datasets. The first dataset consists of 50

non-pseudoknotted sequences from the RFAM database, and the lengths of sequences

range from 127 to 568 bases [12]. The second dataset consists of 23 pseudoknotted

sequences from the RFAM and Pseudobase++ databases, and the lengths of sequences

in this dataset range from 77 to 451 bases [12], [77]. The third dataset consists of

14 sequences from the virus family Nodaviridae, and the lengths of sequences range

from 1,305 to 3,204 bases [42], [79]. The results show that our method exhibits linear

scalability and can predict longer sequences than commonly used prediction programs

7

can. Moreover, our chunk-based method generates more accurate secondary structures

than the same prediction programs do using non-chunk-based methods.

The rest of this chapter is organized as follows. Section 2.1 gives background

information on RNA molecules and their secondary structures, existing chunking meth-

ods, the MapReduce programming model, and the Hadoop runtime system. Section 2.2

reviews the related work. Section 2.3 presents our method. Sections 2.4 and 2.5 present

the performance scalability and accuracy evaluation, respectively, of the RFAM, Pseu-

dobase++ database, and Nodaviridae virus dataset. Section 2.6 summarizes the re-

search results of the thesis and discusses future work.

2.1 Background

2.1.1 RNA molecules

Ribonucleic acid (RNA) is made up of four types of nucleotide bases: adenine

(A), cytosine (C), guanine (G), and uracil (U). A sequence of these bases is strung

together to form a single strand RNA molecule. RNA plays important roles in many

biological processes including gene expression and regulation. RNA molecules vary

greatly in size, ranging from short sequence of 19 nucleotide bases in microRNAs [32]

to long polymers of over 30,000 bases in complete viral genomes [78]. Although an

RNA molecule is a linear polymer, it tends to fold back on itself to form a three-

dimensional functional structure, mostly by pairing complementary bases. Among the

four nucleotide bases, C and G form complementary base pairs by hydrogen bonding, as

do A and U; in RNA (but not DNA), G can also base pair with U residues. The overall

stability of an RNA structure is determined by its “minimal free energy,” defined as

the amount of energy it takes to completely unpair all of the base pairs that hold it

together (e.g., by denaturing it with heat).

The three-dimensional (3-D) structure of an RNA molecule is often the key to

its function. Because of the instability of RNA molecules, experimental determina-

tion of their precise 3-D structures is a time-consuming and costly process. However,

8

useful information about the molecule can be gained from knowing its secondary struc-

ture, that is, the collection of hydrogen-bonded base pairs in the molecule [63]. RNA

secondary structures can be classified into two basic categories: stem loops and pseu-

doknots (see Figure 2.1). Both kinds of secondary structures, which are implicated in

important biological processes such as gene expression and gene regulation [10], must

contain at least one inversion, that is, a string of nucleotides followed closely by its

inverse complementary sequence. Figure 2.2 shows an example of an inversion, with

the 6-nucleotide string “ACCGCA” followed by its inverse complementary sequence

“UGCGGU” after a gap of three nucleotides.

(a) (b)

Figure 2.1: Stem loop (a) and pseudoknot (b).

2.1.2 Chunking methods based on inversions

Inversion excursion: The identification of regions in the sequence with high

concentrations of inversions is essential to rebuilding the secondary structure of a long

RNA sequence from the predictions of a shorter RNA sequence’s chunks. These regions

are likely to be generating the RNA’s stem loops and pseudoknots, and thus it is

recommended to avoid cutting them into separate chunks [88].

9

Figure 2.2: Inversion with stem length 6 and gap size 3.

The overall chunking method relies on a general excursion approach first for-

mulated in [43] for a variety of DNA sequence analysis problems, but adapted in this

thesis for RNA secondary structure predictions. In many bioinformatics applications,

sequence analysis problems go beyond DNAs and call for identifying high-concentration

regions of a certain property in the bases of biomolecular sequences. For example,

replication origins in viral genomes have been predicted by looking for regions that are

unusually rich in the nucleotides A and T in DNA sequences [17]. Leung et al. follow

the same approach for RNA sequences by focusing on whether the nucleotide base is

found inside an inversion [88]. Leung et al. refer to the excursions generated by this

property as “inversion excursions.” The excursion method requires assigning a positive

score to each nucleotide if it is part of an inversion (including the two stems and the

gap between them), and a negative score if it is not. The approach processes the entire

nucleotide sequence in order to accumulate the scores to form inversion excursions.

To facilitate their analysis, Leung et al. used a parsing program to convert an

RNA sequence into a binary sequence with the same length. If a nucleotide base is

included in an inversion identified by the InversFinder program, it is given a value of

“1”; if not, it is assigned a value of “0,” as illustrated in Figure 2.3. Each “1” in the

binary sequence is given a score of 1, and each “0” a negative score of s, which is

determined as follows. The binary sequence is considered a realization of a sequence of

independent and identically distributed (i.i.d.) random variables, X1, X2, ..., Xn, where

10

n is the length of the RNA sequence (i.e., number of bases). These random variables

take values of either 1 or s. Let p = Pr(Xi = 1) and q = 1 − p = Pr(Xi = s).

The parameter p is traditionally estimated by the percentage of bases contained in one

or more inversions in the RNA sequence, that is, the percentage of “1”s in the binary

sequence. The score per base μ = p+q∗s is expected to be negative. This requirement

prevents the tendency for long segments to have high scores. As done in [17] and other

applications, the value of s can be conveniently selected by giving μ a value of −0.5

and then determining the value of s according to Equation 2.1.

Figure 2.3: Binary sequence around an inversion. If a nucleotide base is included in
an inversion identified by the InversFinder program, it is given a value
of “1”; if not, it is assigned a value of “0.”

s =

⌊
μ− p

q

⌋
(2.1)

The excursion score Ei at Position i of the sequence is defined recursively as in

Equations 2.2 and 2.3.

E0 = 0 (2.2)

Ei = max(Ei−1 +Xi, 0) for 1 ≤ i ≤ n (2.3)

An excursion starts at a point i where Ei is zero, continues with a number of

rising and falling stretches of positive values, and ends at j > i, where j is the next

position with Ej = 0. The score then stays at zero until it becomes positive again when

the next excursion begins. Plotting the excursion scores along the nucleotide positions

of the RNA sequence offers an effective visualization of how inversion concentrations

vary along the sequence. This plot can serve as a guide for choosing the cutting points

11

for the segmentation process. Figure 2.4 shows an example of an excursion plot. Note

that rising stretches in the plot indicate the presence of inversions.

Figure 2.4: Excursion plot with peaks, peak bottoms, and peak lengths. Rising
stretches in the plot indicate the presence of inversions.

After generating the excursion plot, the approach in [88] involves identifying

the positions, called peaks, where the excursion scores are local maxima. Next the

bottom of each peak (the last position with a zero excursion score right before the

peak) is located. Then the length of the peak (the location difference between a peak

and its peak bottom) is calculated. Note that since the chunk lengths are smaller than

a prescribed maximum Cmax, peak lengths greater than Cmax have to be flagged and

analyzed separately. Figure 2.4 also shows examples of peaks, peak bottoms, and peak

lengths. Peaks are sorted in decreasing order based on their excursion scores. The

sorted peaks are then used to cut sequences in chunks by the centered and optimized

chunking methods.

Centered chunking method : The centered method cuts the sequence by identi-

fying inversions and building the chunks around them. The objective is to segment

the RNA sequence in such a way as to avoid losing structural information as much

as possible by centering the longest spanning inversion clusters in the chunks. After

peaks are identified, they are sorted in decreasing order of their excursion values. The

peak with the highest excursion value is considered first, then the second highest peak,

and so on. The algorithm stops either when all the peaks are exhausted or when all

the inversion regions of the sequence (i.e., all “1”s in the binary sequence) are included

in the chunks, whichever occurs first. Overlapping chunks are adjusted so that any

12

nucleotide base is captured by only one chunk, with priority given to the peak with a

higher excursion score.

For each of the selected peaks, the positions of the inversions or peak length

positions are centered within the maximum chunk length of Cmax bases where Cmax

is defined by the user. The method starts at the bottom of this peak, follows the

excursion until it returns to 0 the next time, and locates the position of the last peak

before the excursion returns to 0. The method takes the sequence segment between

the peak bottom and the position of the last peak and place the sequence segment in

the center of the chunk, as illustrated in Figure 2.5. Suppose this centered segment

contains x nucleotide bases. If (c− x) is even, then the resulting chunk has (c− x)/2

bases on each side of the centered segment. If (c−x) is odd, then the centered method

adjusts the lengths on each side to the integers below and above (c − x)/2, allowing

one side (chosen at random) to have one more nucleotide base than the other.

Figure 2.5: Centered chunking method where x = peak length. The centered method
takes the sequence segment between the peak bottom and the position
of the last peak in the excursion and places the sequence segment in the
center of the chunk.

As an example, Leung et al. applied the aforementioned method to an RNA se-

quence in [83], that is, the 379-base RNA sequence RF00209 A in the RFAM database [12].

As shown in Figure 2.6, the sequence is segmented into six chunks using the centered

chunking method. These six segments cover the entire sequence. Labels 1 through

6 in Figure 2.6 represent the six segments with decreasing order of peak excursion

scores. After the peak scores are sorted, the peak with the highest excursion score is

13

considered first. In this example, the centered method uses the maximum chunk length

Cmax = 100. The highest peak is found at Position 297 with peak bottom at 257. Since

there are other inversions after the highest scoring peak, the centered method follows

the entire excursion to the end at Position 356. After locating the last peak in this

excursion at 343, the centered method centers the sequence segment from 257 to 343 to

produce the chunk covering the 100 positions from 250 to 349. Then the second highest

scoring peak at Position 54 is considered, and the procedure is repeated. This time,

the peak bottom is at Position 19, and the last peak before the end of this excursion

is at Position 70. Centering the segment consisting of Positions 19–70 in a chunk of

100 requires 24 positions on each side, extending the chunk beyond the beginning of

the sequence; therefore the centered method adjusts the chunk to start at Position 1

instead. Note that during the segmentation process, the centered method might get

a chunk that overlaps with previously established chunks. In these cases, the method

has to reconcile the situation by reducing one of the chunk lengths. For example, after

establishing the first two chunks (labels 1 and 2 in Figure 2.6), the next highest peak to

be processed is at Position 114, with peak bottom at Position 89. Centering this peak

produces a chunk from Positions 52 to 151, overlapping with Chunk 2. The centered

method resolves such conflicts by giving priority to the chunk with the higher number

of bases within completely contained inversions. Using this rule, the centered method

gives priority to Chunk 2 and reduces Chunk 3 to Positions 101–151. The process

continues for the remaining Chunks 4–6.

Optimized chunking method : In the optimized method, cutting points are de-

cided by choosing a segment containing the peak in an optimal position that yields

the highest inversion score for the segment. The score is defined as the total number

of nucleotide bases contained in the inversions that are entirely within the chunk. For

example, consider a peak with peak length spanning the nucleotide bases between i

and j and then all the chunks of size Cmax covering this peak; that is, all segments

with length Cmax between Positions j − (c − 1) and i + (c − 1) are considered (see

Figure 2.7). The chunk with the maximum inversion score is then selected. Beginning

14

Figure 2.6: Six chunks obtained by using the centered method for the 379-base RNA
sequence RF00209 A in the RFAM database.

with the highest peak, the process is repeated until either all the peaks are utilized

or all the inversions of the sequence are contained in established chunks, whichever

occurs first. When chunks overlap, the cutting points are adjusted in a similar way as

described for the centered method. The optimized method ensures that peak length

positions are included within a chunk but not necessarily in the center of the chunk.

As an example, Leung et al. applied the optimized method to the same RF00209 A

RNA sequence file from the RFAM database in [88], as shown in Figure 2.8. The op-

timized method produced only five chunks covering all except the first 18 positions

of the sequence. As shown in Figure 2.8, this method avoids cutting into sequence

segments with rising excursion scores preceding the peaks. Also, the chunks produced

by the optimized method cover only 96.3% of the sequence, leaving out those parts of

the sequence where no inversions are found; therefore, wastage of computer resources

is minimal with the optimized method.

Regular chunking method : The regular chunking method is the simplest method

of segmentation and is used as a reference method in this thesis. This method cuts the

15

Figure 2.7: Chunks by the optimized method with peak spanning Positions i–j. All
segments with length c between Positions j − (c− 1) and i+ (c− 1) are
considered. The chunk with the highest inversion score is selected.

Figure 2.8: Five chunks obtained by the optimized method for the 379-base RNA
sequence RF00209 A in the RFAM database. The chunks cover all but
the first 18 positions of the sequence.

nucleotide sequence regularly into chunks of a specified maximum chunk length Cmax

until the sequence is exhausted.

For example, with Cmax = 100, the sequence RF00209 A from the RFAM

16

database with 379 bases is cut into four chunks made up of nucleotide Positions 1–

100, 101–200, 201–300, and 301–379 (Figure 2.9). Obviously, rising stretches in an

excursion plot, which indicate the presence of inversions and are likely to be part of

secondary structures, can often be cut by this method. As a result, important struc-

tural information can easily be lost. Intuitively, one expects that both the centered

and optimized methods, which take the inversion locations into account when placing

the chunks, perform better in retaining the secondary structure information in the

sequences.

Figure 2.9: With Cmax = 100, the sequence RF00209 A is cut into four chunks posi-
tioned at 1–100, 101–200, 201–300, and 301–379.

2.1.3 Hadoop

When implementing our method in a modularized framework we use Apache

Hadoop [35]. Hadoop is an open source runtime library written in Java supporting the

MapReduce programming model. Hadoop provides simple programming interfaces to

developers. It handles load balancing and failure recovery automatically.

17

Hadoop includes two main components: Hadoop Distributed File System (HDFS)

and Hadoop MapReduce. HDFS builds upon the local disks of the cluster nodes run-

ning Hadoop and provides a distributed file system that is accessible to all the Hadoop

nodes. It is used to store input and output files of Hadoop programs. If a file is too

large, HDFS divides the file into blocks, the size of which is determined by the pro-

grammer (64 MB by default). Hadoop MapReduce automatically runs a given Hadoop

program in parallel using mappers and reducers processes. In execution, each mapper

runs the map function on one block of the input and emits intermediate 〈key, value〉
pairs to the reducer (i.e., a map task); once finished, it runs another map task. The

runtime library automatically groups all the intermediate values associated with the

same key and sends them to a reducer. This process is the data-shuffling process. Each

reducer runs the reduce function on all the values associated with the same key (i.e.,

a reduce task) and outputs another list of values as the final results. The programmer

can control the behavior of the Hadoop program by specifying the map and reduce

functions, as well as the number of mappers and reducers.

In Hadoop, load balancing is automatically handled by assigning map tasks to

mappers in a first-in-first-out (FIFO) fashion. When the input files are large or the

input dataset contains a large number of small files, a large number of map tasks

are generated, each task processing one block of a file or one small file. Hadoop also

automatically handles fault tolerance. When a failure happens to a map or a reduce

task because of hardware or software issues on the node, Hadoop schedules the same

task on another node to guarantee that every task is successfully executed exactly once.

2.2 Limits of Current Practice

2.2.1 RNA secondary structure predictions

Secondary structures are crucial for the RNA functionality, and therefore the

prediction of the secondary structures has been widely studied. Development of math-

ematical models and computational prediction algorithms for stem-loop structures be-

gan in the early 1980s [56, 66, 90]. Pseudoknots, because of the extra base-pairings

18

involved, must be represented by more complex models and data structures that require

large amounts of memory and computing time to obtain the optimal and suboptimal

structures with minimal free energies. As a result, development of pseudoknot predic-

tion algorithms began in the 1990s [64, 21].

Most existing secondary structure prediction algorithms are based on the mini-

mization of a free energy (MFE) function and the search for the most thermodynam-

ically stable structure for the whole RNA sequence [64, 62, 63, 39]. Searching for a

structure with global minimal free energy may be memory and time intensive, especially

for long sequences with pseudoknots. In order to overcome the tremendous demand

on computing resources, various other algorithms have been proposed that restrict the

types of pseudoknots for possible prediction in order to keep computation time and

storage size under control [20]. Yet, most programs available to date for pseudoknot

structures prediction can process sequences only of limited lengths—on the order of

several hundred nucleotides). These programs therefore cannot be applied directly to

larger RNA molecules such as the genomic RNA in viruses, which may be thousands

of bases in length.

At the same time, minimal energy configurations may not be the most favor-

able structures for carrying out the biological functions of RNA, which often require

the RNA to react and bind with other molecules (e.g., RNA binding proteins). Work

of Taufer et al. suggests that local structures formed by pairing among nucleotides

in close proximity and based on local minimal free energies rather than the global

minimal free energy may better correlate with the real molecular structure of long

RNA sequences [76]. This hypothesis has yet to be supported by more detailed ex-

perimental evidence. If proven correct, it can open the door to a new generation of

programs based on segmenting long RNA sequences into shorter chunks, predicting

the secondary structure of each chunk individually and then assembling the prediction

results to give the structure of the original sequence. In previous work, Taufer et al.

proposed predicting secondary structures for long RNA sequences using three steps:

(1) cut the long sequence into shorter, fixed-size chunks; (2) predict the secondary

19

structures of the chunks individually by distributing them to different processors on

a Condor grid; and (3) assemble the prediction results to give the structure of the

original sequence. Taufer et al. used this approach on the genome sequences of the

virus family Nodaviridae, leading to the discovery of secondary structures essential for

RNA replication of the Nodamura virus [65]. However, the study also identified the

need for a more effective segmentation strategy for cutting the sequence so that the

predicted results of the chunks can be assembled to generate a reasonably accurate

structure for the original sequence. Indeed, the selection of cutting points in the orig-

inal RNA sequence is a crucial component of the segmenting step. In [83, 87], Leung

et al. proposed to approach the problem by identifying inversion excursions in the

RNA sequence and cutting around them. The authors considered two inversion-based

segmentation strategies: the centered and optimized chunking methods. Both methods

identify regions in the sequence with high concentrations of inversions and avoid cut-

ting into these regions. In the centered method the longest spanning inversion clusters

are centered in the chunks, while in the optimized method the number of bases covered

by inversions is maximized in the chunks.

The centered and optimized chunking methods described above use predefined

maximum chunk length (i.e., Cmax) and maximum gap length (i.e., Gmax) and thus

result in chunks that contain no longer than Cmax nucleotide bases. They are shown

to be effective when the stem-loop structures in the given sequence are short and fit

into single chunks. The methods have two main limitations, however. First, in long

RNA sequences, nucleotide bases that are far away can still bind with each other to

form a pseudoknot structure longer than Cmax. With the two chunking methods, the

small window for the lengths of the chunks (i.e., Cmax) does not allow chunks longer

than Cmax. In this scenario, the longer secondary structure is cut, and the methods

fail to predict the correct secondary structures.

Second, after assembling the prediction results, multiple possible secondary

structures can be generated for one given sequence based on the different parameter val-

ues used (i.e., centered or optimized chunking method, Cmax, Lmin, and Gmax). Each of

20

these secondary structures has a certain probability of occurring. In the work of Taufer

et al. and Leung et al., the classification based on the likelihood that the secondary

structure belongs to an RNA family does not take place. Instead, after obtaining the

resulting structures from the merging processes, these structures are compared with

known secondary structures. The overall approach is effective for validation purposes.

When the known structures are not available a priori, however, defining the probability

for which a sequence folds into a subset of possible secondary structures is not possible.

In this thesis, we introduce a classification framework that explores the large paramet-

ric space of the chunk-based prediction method. Moreover, our framework allows easy

integration of methods that do not rely on the known structure of the single sequence.

We briefly discuss such classification methods in Section 2.6.

2.2.2 MapReduce in bioinformatics applications

The MapReduce programming model has been widely adapted for many bioin-

formatics applications. RNA sequence analysis studies include the work of Hong et

al. [40] and Langmead et al. [45]. Hong et al. designed an RNA-Seq analysis tool for

estimating gene expression levels and genomic variant calling and implemented it in

Hadoop. Their work reduced the misalignments of short RNA-Seq reads originating

from splicing junctions by using a transcriptome-based reference. Langmead et al.

designed Myrna, a cloud-based efficient analysis software for transcriptome sequenc-

ing (RNA-Seq) data. Their work adapted the workflow of calculating differential gene

expression in large RNA-Seq datasets into MapReduce on Amazon’s Elastic Compute

Cloud. Both works estimate the gene expression levels by performing sequence align-

ment. To the best of our knowledge, the work in this thesis is the first to adapt

MapReduce into secondary structure predictions of long RNA sequences.

Work in other areas of bioinformatics includes that of Matsunaga et al. [51] and

Schatz [68]. Matsunana et al. parallelized and deployed the commonly used bioin-

formatics tool NCBI BLAST [3], which finds regions of similarity between biological

sequences including DNA and RNA, using MapReduce; this implementation is called

21

CloudBLAST. Schatz developed a new algorithm modeled after the short read-mapping

program RMAP [72] to map next-generation sequence data to the human genome and

other reference genomes; this implementation is called CloudBurst and is implemented

in Hadoop. Both works focused on extending and implementing well-established soft-

ware tools on cloud computing environments using MapReduce. In comparison, the

work in this thesis not only identifies and adapts the workflow of chunk-based RNA

secondary structure prediction but also allows easy integration of novel methods for

chunking the long sequences and classifying resulting structures using the family model.

2.3 Methodology

In this section, we discuss the methodology of chunk-based prediction and clas-

sification of RNA secondary structures as shown in Figure 2.10. We present the re-

search on exploring the large parametric space of the chunk-based prediction method

by defining the workflow, adapting it for the MapReduce programming model, and

investigating different levels of granularity for the search tree.

2.3.1 Workflow for parallel chunk-based predictions

Since the chunking process of an RNA sequence can be performed in different

ways, the search for effective ways to cut sequences can require a large search space and

generate a large number of independent prediction jobs that can potentially be per-

formed in parallel. We define the workflow for a parallel chunk-based RNA secondary

structure prediction as the combination of four steps:

1. Chunking: each RNA sequence is cut into multiple chunks (or segments) based
on various chunking algorithms and parameters;

2. Prediction: the secondary structure for each chunk is predicted independently by
using one or more well-known prediction programs;

3. Reconstruction: multiple whole chunk-based secondary structures of a sequence
are reconstructed from predicted structures, one for each chunk; and

4. Analysis: reconstructed structures are compared with known structures to assess
prediction accuracies.

22

Figure 2.11: Workflow of the chunk-based RNA secondary structure prediction
framework (a) and example of searching paths (b).

and optimized chunking algorithms of Leung et al. described in Section 2.1.2. We also

adapt a simple version of the chunking method proposed by Taufer et al. that we

call the regular chunking method and use it as a reference method in the thesis. This

method cuts the nucleotide sequence regularly into chunks of a specified maximum

chunk length Cmax until the sequence is exhausted.

As described in Section 2.1.2, for the centered and optimized chunking methods,

after generating the excursion plot, we identify the positions, called peaks, where the

excursion scores are local maxima. Then, the bottom of each peak (the last position

with a zero excursion score right before the peak) is located. After that, the length of

the peak (the location difference between a peak and its peak bottom) is calculated.

Note that since we require chunk lengths to be smaller than a prescribed maximum

24

length Cmax, peak lengths greater than Cmax have to be aggregated and analyzed

separately. Figure 2.4 also shows examples of peaks, peak bottoms, and peak lengths.

Peaks are sorted in decreasing order based on their excursion scores. The sorted peaks

are then used to cut sequences in chunks by the centered and optimized chunking

methods.

Prediction based on well-known algorithms : After the RNA sequence is cut into

chunks, the structure of each chunk is predicted independently by using well-known

algorithms and their programs. We also use the same prediction algorithms to pre-

dict the entire sequence without chunking for accuracy analysis. We employ seven

commonly used prediction programs to test the chunking methods. These prediction

programs typically involve some form of minimization of free energy, maximization

of expected accuracy, or dynamic programming models in their algorithms. The pro-

grams that predict structures only for non-pseudoknotted sequences are UNAFOLD

(2008) [50] and RNAfold (1994) [39]. The programs that predict both pseudoknotted

and non-pseudoknotted sequences are IPknot (2011) [67], pknotsRG (2007) [62], Hot-

Knots (2005) [63], NUPACK (2004) [20], and PKNOTS(1998) [64]. All the prediction

programs used in this thesis are publicly available.

Reconstruction based on concatenation: The results of the chunk predictions

are assembled to build a whole secondary structure. Currently, our framework simply

concatenates all these predicted secondary structures to give the secondary structure for

the whole sequence. This approach is possible because the cutting does not allow any

overlap between two consecutive chunks. More sophisticated reconstruction methods

that include partial chunk overlaps can be used with minor changes to our framework.

Accuracy analysis based on comparisons with known structures : Both the whole

and the assembled predicted structures are compared with the known structure in order

to obtain their respective prediction accuracies so that we can assess to what degree the

chunking method can preserve the prediction accuracy of the program when applied

without any segmentation. Figure 2.12 shows the RF00209 A nucleotide sequence along

with the bracket view of its experimentally known secondary structure. In the bracket

25

view representation, bases that are hydrogen bonded with other bases are represented

by a “(” or a “)”; a matching pair of “(” and “)” indicates that the bases at those

positions are paired to be part of a secondary structure. Unpaired nucleotide bases are

represented by a “:” (colon).

Figure 2.12: RF00209 A sequence and its experimental secondary structure from
RFAM database. In the bracket view representation, bases that are
hydrogen bonded with other bases are represented by a “(” or a “)”; a
matching pair of “(” and “)” indicates that the bases at these positions
are paired to be part of a secondary structure. Unpaired nucleotide
bases are represented by a “:” (colon).

Various statistical tests are applied to the accuracy analysis for the differ-

ent chunking methods, including t-tests, Pearson correlation analysis, and the non-

parametric Friedman tests [73, 34]. We use the statistical functions provided by MAT-

LAB [1]. Metrics of interests include: (1) accuracy chunking (AC), which is the ac-

curacy of the predicted structure assembled from the chunks when compared with the

known secondary structure; (2) accuracy whole (AW), which is the accuracy of the

26

predicted structure obtained from the whole sequence when compared with the known

secondary structure; and (3) accuracy retention (AR), which is the ratio between AC

and AW. While AC and AW reflect accuracies of the particular prediction in use with

and without chunking, AR tells us how well a particular chunking method (i.e., cen-

tered, optimized, and regular) retains the accuracy of the original prediction program.

AC and AW are given by the percentage agreement of the predicted structure with the

known real structure calculated as

100 ∗ [a+ 2 ∗ b]
n

, (2.4)

where a and b represent respectively the number of unpaired bases and the number

of base pairs in common between the two structures and where n is the length of the

RNA sequence. Large AC and AW values (close to 100%) for a predicted structure

mean that it is highly similar to the real structure.

The accuracy retention (AR) is defined as

AC

AW
. (2.5)

AR provides a comparison of the prediction accuracies with chunking versus

without chunking. Intuitively, we expect that a good chunking method causes only

a minimal loss of prediction accuracy after cutting the sequence and has AR values

somewhat less than but close to 1. In Section 2.5, however, we show that in most of the

cases the AR values turn out to be greater than 1, meaning that secondary structure

predicted using chunking is more similar to the real structure than it is to the secondary

structure predicted by using the whole sequence. Several standard statistical tests,

including t-tests, Pearson correlation analysis, and the non-parametric Friedman tests,

are applied to analyze the AR values for the different chunking methods.

27

2.3.2 Integrating the searching paths into the MapReduce programming

model

Given an RNA sequence, the search for the best set of chunking parameters

(i.e., maximum chunk length Cmax, centered or optimized chunking method, minimum

stem length Lmin, and maximum gap length Gmax) requires traversing or searching a

multilevel tree (i.e., the chunking tree in Figure 2.11(b)). In the chunking tree, each

path from the root (RNA sequence) to the leaves (RNA chunks) represents a set of

parameter values of the chunking method, namely, Cmax, Lmin, and Gmax. The overall

workflow (including the chunking, prediction, reconstruction, and analysis steps) nat-

urally adapts to fit into the MapReduce programming model and can be easily imple-

mented with Hadoop, for which the chunking and predictions can be solved by multiple

mappers while the reconstruction and the analysis are done by a single reducer. In our

framework, each MapReduce job is designed to partially traverse the multilevel tree.

Multiple MapReduce jobs can be executed in parallel to explore the whole tree. The

multiple searching paths combine attributes of both breadth-first search (performed

by multiple MapReduce jobs in parallel) and depth-first search (performed by a single

MapReduce job). While traversing the tree with multiple MapReduce jobs, we can

explore the impact of different chunking methods as well as different Cmax, Lmin, and

Gmax values for a given sequence. An example of a MapReduce job is shown in the

circled part of Figure 2.11(b), for which we assume the centered chunking method,

with fixed Cmax = 60 bases, and we vary Lmin and Gmax between 3 and 8 and between

3 and 8, respectively. As previously outlined in Section 2.3.1, for a sequence and a

combination of parameters, the mappers perform the chunking and predictions. The

input to each mapper is a 〈k1, v1〉 value pair, in which k1 is the ID of the sequence, and

v1 is the chunking parameters’ values (including the chunking method). Each mapper

cuts the sequence according to the chunking parameters values in the chunking step

by identifying a variable number of chunks meeting the parameter requirements. Note

that each combination of parameters (each branch of the tree) can result in a variable

number of chunks. Each mapper performs the prediction on one or more chunks using

28

a certain prediction program. Here we use five secondary structure prediction pro-

grams capable of predicting pseudoknots (IPknot [67], pknotsRG [62], HotKnots [63],

NUPACK [20], and PKNOTS [64]) and two programs that do not include this capa-

bility (i.e., UNAFOLD [50] and RNAfold [39]). Other programs can be easily used in

our framework as a plug-and-play software module. After the prediction, each mapper

outputs the list of 〈k2, v2〉 pairs as the intermediate output to reduce. The k2 is the ID

of the whole secondary structure to which the predicted chunk belongs, and v2 is the

predicted secondary structure of the chunk. After the Hadoop runtime system groups

all the values associated with the same key and passes the 〈k2, list(v2)〉 to the reducer,

the reducer reconstructs the whole secondary structure of the sequence using all the

v2 (predicted chunk structures) associated with the same k2. If required, the reducer

analyzes the results in terms of their accuracy. After the accuracy has been computed,

the reducer outputs the final results as list(v3), in which v3 is the AR for reconstructed

structures.

2.3.3 Tree granularity

In general, a mapper is the process that runs on a processor that applies the

map function to a specific key and value pair. In our framework, each mapper runs the

chunking process on an RNA sequence with a given set of parameter values and then

predicts one or multiple chunks. The granularity of the mapping can vary based on

the number of chunks each mapper is assigned to predict. Our MapReduce framework

includes both a coarse-grained mapping and a fine-grained mapping as shown in Fig-

ure 2.13, in which each box represents a mapper. With the coarse-grained mapping,

each mapper explores one branch of the chunking tree: it cuts the sequence into a set

of segments based on a combination of Lmin and Gmax values and predicts all the seg-

ments it generates locally in order. With the fine-grained mapping, multiple mappers

explore one branch of the chunking tree: each mapper cuts the same sequence into the

same set of segments, but this time it predicts only one chunk that it generates. This

means that if, for example, the sequence is cut into five segments, then five mappers are

29

exploring the same branch of the chunking tree, replicating the chunking process but

predicting only one distinguished segment of the five chunks available. The mappers

determine which segment to predict based on a hash function; thus the mappers do

not need to synchronize their work or directly agree on what chunk to predict. The

hash function uses the ASCII value of the chunk identifier as the key and the identi-

fier of each mapper as the value. The function selects the segments to mappers in a

round-robin fashion.

Figure 2.13: Mapping of tree granularity. Each mapper explores one branch of the
tree and generates the set of segments as the output of the chunking
program. The mapper predicts one or more segments generated based
on the number of segments each mapper is assigned. Coarse-grained
mappers explore one whole branch of the tree at a time. Fine-grained
mappers predict one chunk at a time.

30

2.4 Performance

2.4.1 Platform

We ran the Hadoop framework on a UD cluster called Geronimo that is com-

posed of 8 dual quad-core compute nodes (64 cores), each with two Intel Xeon 2.50

GHz quad-core processors. A front-end node is connected to the compute nodes and is

used for compilation and job submissions. A high-speed DDR InfiniBand interconnect

for application and I/O traffic and a Gigabit Ethernet interconnect for managing traffic

connects the compute and front-end nodes. Our implementation is based on Hadoop

0.20.2.

2.4.2 Datasets

For the performance scalability analysis, we use two datasets of sequences. The

first dataset contains 12 sequences from the RFAM database [12]. The lengths of the

sequences range from 79 to 451 bases. Note that this is a subset of the 23 pseudo-

knotted sequences discussed before to show the performance scalability. We use the

complete 23 sequences for the accuracy discussion later. The second dataset contains

longer sequences from the virus family Nodaviridae [42, 79]. The lengths of the se-

quences range from 1,305 to 3,204 bases. Note also that because these RNA sequences

are long and contain possible pseudoknots, none of the available well-known programs

can predict the secondary structures for the entire sequences. The use of the Hadoop

framework is vital for the exhaustive, efficient exploration of the tree branches. The

virus family Nodaviridae is divided into two genera: alphanodaviruses, which primar-

ily infect insects, and betanodaviruses, which infect only fish. These viruses share a

common genome organization, namely, a bipartite positive strand RNA genome (i.e.,

mRNA sense). The longer genome segment RNA1 (ranging in size from 3,011 to 3,204

nucleotide bases) encodes the RNA-dependent RNA polymerase that catalyzes repli-

cation of both genome segments, while the shorter RNA 2 (ranging in size from 1,305

to 1,433 nucleotide bases) encodes the precursor of the viral capsid protein that en-

capsidates the RNA genome. The 14 sequences we analyze in this thesis are listed in

31

Table 2.4.2. These sequences are sorted based on their increasing lengths, and this

order is preserved in all the figures and tables presented below.

Name Geno. Segment Length Geno. Segment Length
Boolarra virus (BoV) RNA2 1,305 RNA1 3,096
Pariacoto virus (PaV) RNA2 1,311 RNA1 3,011
Nodamura virus (NoV) RNA2 1,336 RNA1 3,204
Black beetle virus (BBV) RNA2 1,393 RNA1 3,099
Flock house virus (FHV) RNA2 1,400 RNA1 3,107
Striped jack nervous
necrosis virus (SJNNV)

RNA2 1,421 RNA1 3,107

Epinephelus tauvina nervous
necrosis virus (ETNNV)

RNA2 1,433 RNA1 3,103

Table 2.1: Fourteen sequences from the virus family Nodaviridae.

2.4.3 Results and discussion

In this section, we show the scalability of our method by comparing the execu-

tion time of our chunk-based method with the well-known non-chunk-based prediction

programs using the whole sequences of the RFAM dataset. Then we discuss the perfor-

mance aspects of our method when running with long sequences from the virus family

Nodaviridae, which the well-known prediction programs cannot handle. The perfor-

mance aspects include the impact of using coarse- or fine-grained mapping, using the

centered or optimized chunking method, and the efficiency of searching the chunking

tree.

Chunk-based vs. non-chunk-based sequential prediction programs on RFAM se-

quence benchmarks : Our objective in measuring whole sequences is to understand how

the execution time changes when the length of the sequence increases for our method

and for the well-known prediction programs. When considering the chunk-based pre-

dictions, for each sequence and each prediction program, we run our framework using

the regular, centered, and optimized chunking methods with maximum chunk length

Cmax equal to 60, Lmin ranging from 3 to 8, and Gmax ranging from 3 to 8. When

32

considering the prediction of each sequence as a whole (non-chunk-based) using each

well-known prediction program, we use one of the compute nodes on our cluster.

In Figure 2.14, we present the execution time for both the Hadoop chunk-based

predictions and the sequential predictions using the four prediction programs: (a)

pknotsRG, (b) HotKnots, (c) PKNOTS, and (d) NUPACK. In each subfigure, the x-

axis is the 12 RFAM sequences sorted based on their lengths in increasing order; the y-

axis is the execution time in seconds in logarithmic scale for both chunk-based MR and

non-chunk-based sequential predictions. Note that in PKNOTS and NUPACK, some

long sequences are missing. The reason is that these prediction programs cannot pre-

dict the whole sequence sequentially, because of memory limitations. From Figure 2.14,

we observe that for HotKnots and NUPACK, the execution time for chunk-based pre-

dictions is larger than the sequential prediction when the sequence length is short (less

than 150 bases). When the sequence length grows (more than 150 bases), however,

the chunk-based predictions run significantly faster than the sequential prediction. For

PKNOTS, our chunk-based framework always runs faster than the sequential predic-

tion. For pknotsRG, our framework runs slower than the sequential prediction, but

the runtime of the sequential prediction grows rapidly with the length of the sequences

while our method stays relatively constant. This result indicates that for longer se-

quences, our framework may run faster than the sequential prediction. Overall we

observe that as the length of the sequence grows, the execution time of the sequential

prediction grows exponentially or polynomially with the length of the sequences for

all the 4 prediction programs. However, in the prediction of RNA secondary structure

using the chunk-based method and using Hadoop implementation, we observe that the

execution time for chunk-based predictions does not grow significantly with the se-

quence length. The reason is that our chunking methods cut the whole RNA sequence

into segments smaller than or equal to 60 bases. In other words, as the length of the

whole sequence grows, the lengths of chunked segments are still smaller than or equal

to 60 bases. The predictions are performed in parallel across the Hadoop nodes of

the distributed memory system. Our chunking methods cut the sequence into more

33

segments and by doing so add execution time for chunking (overhead) and prediction.

Our measurements show, however, that this overhead is not significant. With very long

RNA sequences (e.g., RNA viral genomes with thousands of bases), the chunk-based

method is promising for two reasons. First, it allows us to predict secondary structures

that cannot be predicted otherwise, namely, when considering the sequence as a whole.

Second, it allows us to keep under control the total execution time by controlling the

max length of the chunk.

(a) pknotsRG (b) HotKnots

(c) PKNOTS (d) NUPACK

Figure 2.14: Profile of execution time for chunk-based MapReduce (MR) method
and non-chunk-based sequential method.

Execution time on the virus family Nodaviridae sequence benchmarks: When

the sequences are long (i.e., thousands of nucleotide bases), the well-known programs

cannot predict the secondary structures of such sequences. The use of the Hadoop

34

framework is vital for the exhaustive, efficient exploration of the tree branches. We

measure the total time needed to explore the chunking tree of each sequence using either

the centered or optimized methods and with either the coarse-grained or fine-grained

mapping. The total time includes chunking and predictions (map time), reconstruc-

tion (reduce time), exchanging of predictions among nodes (shuffling time), and any

overhead due to load imbalance and synchronizations. Note that this time does not

include analysis since the secondary structures of the sequences considered here are not

known experimentally and thus an analysis in terms of accuracy is not feasible. We

use IPknot for our predictions since it is the most recently implemented code and its

accuracy values are very high, as Section 2.5 will show.

Each of the four subfigures in Figure 2.15 shows the total times in seconds for ex-

ploring the prediction trees (left y-axes) and the number of map tasks (right y-axes) for

the 14 sequences when a max chunk length Cmax of 60, 150, and 300 bases, Lmin ranging

from 3 to 8, and Gmax ranging from 3 to 8 are used. Each subfigure shows three groups

of times, one for each maximum chunk length. Each group lists the 14 sequences sorted

based on their lengths in nucleotide bases. More specifically, Figure 2.15(a) presents

the times and number of map tasks when the coarse-grained MapReduce implemen-

tation and the centered chunking method are used; Figure 2.15(b) presents the times

and number of map tasks when the coarse-grained MapReduce implementation and

the optimized chunking method are used; Figure 2.15(c) presents the times and num-

ber of map tasks when the fine-grained MapReduce implementation and the centered

chunking method are used; and Figure 2.15(d) presents the times and number of map

tasks when the fine-grained MapReduce implementation and the optimized chunking

method are used. As presented above, when using coarse-grained mapping, each map-

per performs the chunking for the assigned sequence using a set of parameter values

for the max length of stems (L) and gaps (G); the mapper then predicts the secondary

structures of all its local chunks. This approach results in the exploration of a whole

branch of the tree by the mapper. The total number of branches (and map tasks)

is given by the combinations of L and G values (i.e., 54). When using fine-grained

35

mapping, chunking of a sequence based on a set of L and G values is performed across

mappers and mappers are assigned resulting chunks in a round-robin fashion. Compu-

tationally this is performed by replicating the chunking processes across mappers and

by using a hash function to assign different chunks to different mappers. The number

of chunks equals the number of map tasks and depends on the number of inversions

identified in the chunking process. We observe that using coarse-grained mapping,

our method predicts the secondary structures for the group of sequences with shorter

lengths (i.e., ranging in size from 1,305 to 1,433 nucleotide bases) in less than 200

seconds and for the groups of sequences with longer lengths (ranging in size from 3,011

to 3,204 nucleotide bases) in less than 1,200 seconds (i.e., under 20 minutes). We also

observe that using fine-grained mapping, our method predicts the secondary structures

for the group of sequences with shorter lengths in less than 500 seconds and for the

group of the sequences with longer lengths in around 3,500 seconds. Note that these

sequences are too long for the well-known prediction programs to handle using the

whole sequence.

Centered vs. optimized chunking method : Here we discuss the performance dif-

ference by using the centered or the optimized chunking method on the two groups of

sequences from the virus family Nodaviridae. When comparing centered with optimized

chunking methods for the coarse-grained mapping, we observe that the two methods

result in similar execution times (Figure 2.15(a) and Figure 2.15(b)). Table 2.2 quan-

tifies the similarity for both subgroups (i.e., RNA2 and RNA1), which is within 3%.

This observation differs from previous results in which the centered method resulted in

shorter execution times because a different implementation of the chunking methods

and a different program were used.

When comparing centered with optimized chunking methods for the fine-grained

mapping, the optimized method results in a slightly lower execution time. As shown

in Table 2.3, the execution times of fine-grained mapping when using the optimized

chunking method for both subgroups (RNA2 and RNA1) is 11% to 18% slower than

using the centered method. Table 2.4 shows the average number of chunks (i.e., map

36

60 150 300
0

200

400

600

800

1000

1200

T
o

ta
l

ti
m

e
 (

s
e

c
)

Max chunk length

0

200

400

600

800

1000

1200

N
u

m
b

e
r

o
f

m
a

p
 t

a
s

k
s

Number of map tasks

60 150 300
0

200

400

600

800

1000

1200

T
o

ta
l

ti
m

e
 (

s
e

c
)

Max chunk length

0

200

400

600

800

1000

1200

N
u

m
b

e
r

o
f

m
a

p
 t

a
s

k
s

Number of map tasks

60 150 300
0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
o

ta
l

ti
m

e
 (

s
e

c
)

Max chunk length

0

200

400

600

800

1000

1200

N
u

m
b

e
r

o
f

m
a

p
 t

a
s

k
s

Number of map tasks

60 150 300
0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
o

ta
l

ti
m

e
 (

s
e

c
)

Max chunk length

0

200

400

600

800

1000

1200

N
u

m
b

e
r

o
f

m
a

p
 t

a
s

k
s

Number of map tasks

(c)

(a)

(d)

(b)

Figure 2.15: Total time in seconds for coarse- vs. fine-grained mapping and cen-
tered vs. optimized methods: (a) coarse-grained mapping using cen-
tered method, (b) coarse-grained mapping using optimized method, (c)
fine-grained mapping using centered method, and (d) fine-grained map-
ping using optimized method.

Table 2.2: Average total times for the seven sequences in RNA2 and in RNA1 for
coarse-grained mapping using centered and optimized methods.

Mean Total RNA2(∼1300 bases) RNA1(∼3100 bases)
Time (sec) 60 150 300 60 150 300
Centered 68.7 99.0 134.3 410.7 618.0 971.7
Optimized 66.7 98.9 131.6 404.3 618.9 986.1
Opti./Cent. 0.97 1.00 0.98 0.98 1.00 1.01

tasks) for both subgroups using centered and optimized methods. We can see that

optimized method results in 10% to 19% fewer chunks. The reason is that the optimized

method tends to cut sequences into fewer chunks; this process leads to fewer map tasks

37

Table 2.3: Average total times for the seven sequences in RNA2 and in RNA1 for
fine-grained mapping using centered and optimized methods.

Mean Total RNA2(∼1300 bases) RNA1(∼3100 bases)
Time (sec) 60 150 300 60 150 300
Centered 257.7 232.3 185.7 3228.7 2871.7 2303.9
Optimized 226.6 197.4 164.6 2758.0 2366.0 1907.7
Opti./Cent. 0.88 0.85 0.89 0.85 0.82 0.83

Table 2.4: Average number of chunks (i.e., number of map tasks) for the seven se-
quences in RNA2 and in RNA1 for fine-grained mapping using centered
and optimized methods.

Mean Total RNA2(∼1300 bases) RNA1(∼3100 bases)
Time (sec) 60 150 300 60 150 300
Centered 395 258 155 939 622 383
Optimized 355 218 134 825 525 312
Opti./Cent. 0.90 0.84 0.86 0.88 0.84 0.81

and shorter MapReduce total times.

Coarse- vs. fine-grained mapping : We next discuss the performance of our

method by using the coarse- or the fine-grained mapping on the two groups of se-

quences from the virus family Nodaviridae. We can see from Figures 2.15(a) and 2.15(b)

that coarse-grained mapping results in shorter execution time compared with fine-

grained mapping, as shown in Figure 2.15(c) and 2.15(d), independently of the chunk-

ing method used. Also we observe the trend that when the max chunk length grows

from 60 to 300, the time gain of coarse-grained mapping over fine-grained mapping

decreases. The speedup of coarse-grained mapping over fine-grained mapping using

the centered chunking method for RNA2 subgroup of sequences decreases from 3.75 to

1.38, and for RNA1 it decreases from 7.86 to 2.37. A similar behavior is observed for

the optimized chunking method: speedup of coarse-grained mapping over fine-grained

mapping for RNA2 subgroup of sequences decreases from 3.4 to 1.25, and for RNA1 it

decreases from 6.82 to 1.93.

38

60 150 300 60 150 300
0

50

100

150

200

250

300

350

400

T
o

ta
l

ti
m

e
 (

s
e

c
)

60 150 300 60 150 300
0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
o

ta
l

ti
m

e
 (

s
e

c
)

60 150 300 60 150 300
0

50

100

150

200

250

300

350

400

T
o

ta
l

ti
m

e
 (

s
e

c
)

60 150 300 60 150 300
0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
o

ta
l

ti
m

e
 (

s
e

c
)

(b)(a)

(c) (d)

Chunking method Chunking method

Chunking method Chunking method

centered optimized

centered optimizedcentered optimized

centered optimized

Figure 2.16: Box-and-whisker diagram of total MapReduce times for each subgroup
of sequences (RNA2 and RNA1) using centered and optimized methods
as well as max chunk length of 60, 150, and 300: (a) coarse-grained map-
ping on RNA2 (short sequences), (b) coarse-grained mapping on RNA1
(long sequences), (c) fine-grained mapping on RNA2 (short sequences),
and (d) fine-grained mapping on RNA1 (long sequences).

The same trend of the total times is summarized in the box-and-whisker diagram

of min, median, mean, and max execution time for each subgroup of sequences (RNA2

and RNA1) in Figure 2.16. More specifically, in Figure 2.16(a), we show the box-

and-whisker diagram of the total times for the RNA2 subgroup of sequences (∼1300

nucleotides bases) using coarse-grained mapping, both centered and optimized meth-

ods, and max chunk lengths of 60, 150, and 300. In Figure 2.16(b), we show a similar

box-and-whisker diagram but for the RNA1 subgroup of sequences (∼3100 bases). In

Figure 2.16(c), we show the box-and-whisker diagram of the min, mean, max execution

time for the RNA2 subgroup of sequences using fine-grained mapping, centered and

39

optimized methods and max chunk lengths of 60, 150, and 300. In Figure 2.16(d), we

show a similar box- and-whisker diagram but for the RNA1 subgroup of sequences. We

observe that for coarse-grained mapping, when using the centered and optimized meth-

ods, the average total times increase with the max chunk length at the rate of 2.0 for

RNA2 and 2.4 for RNA1. On the contrary, for the fine-grained mapping, when using

centered and optimized methods, the average total times decrease with the max chunk

length at the rate of 0.7 for both subgroup of sequences. These results suggest that for

larger max chunk length and sequence lengths, the fine-grained mapping potentially

could outperform the coarse-grained mapping.

Map efficiency and load imbalance: When decoupling the total time in its com-

ponents, we observe that the times for the reduce function and shuffling are marginal

compared with the times used for the mapping functions (around 1% of the total time).

We also observe that as a prediction tree is explored, some mappers are performing

more work than others, resulting in idle time and low efficiency. The load imbalance

among mappers depends on the granularity and chunking methods used. To better

understand the causes of load imbalance, we reduce the mapping times into compute

time (i.e., chunking and predictions) and idle time (i.e., waiting for all the mappers

to complete their predictions). Figure 2.17(a) and Figure 2.17(b) show the percent-

ages for compute and idle times for the coarse-grained framework with centered and

optimized methods, respectively; and Figure 2.17(c) and Figure 2.17(d) show the same

percentages but for the fine-grained framework and the two chunking methods.

Independently from the max chunk length, Figure 2.17 shows how fine-grained

mapping reaches better efficiency compared with coarse-grained mapping. In other

words, with fine-grained mapping, the mappers spend more time doing real chunking

and predictions. We observe in Figure 2.15 (right y-axes) that fine-grained mapping

has a larger number of map tasks and that each map task is shorter (it predicts only one

chunk), making it easier for the Hadoop scheduler to allocate the several tasks efficiently

by using a first-in-first-out policy. On the other hand, coarse-grained mapping has a

smaller number of map tasks, and each map task is longer (all the sequence chunks

40

60 150 300

50

100

P
e

rc
e

n
ta

g
e

 %

Max chunk length

Compute time
Idle time

60 150 300

50

100

P
e

rc
e

n
ta

g
e

 %

Max chunk length

Compute time
Idle time

60 150 300

50

100

P
e

rc
e

n
ta

g
e

 %

Max chunk length

Compute time
Idle time

60 150 300

50

100

P
e

rc
e

n
ta

g
e

 %

Max chunk length

Compute time
Idle time

(a) (b)

(c) (d)

Figure 2.17: Percentages of compute and idle time in map function for coarse- vs.
fine-grained mapping and centered vs. optimized methods: (a) coarse-
grained mapping using centered method, (b) coarse-grained mapping us-
ing optimized method, (c) fine-grained mapping using centered method,
and (d) fine-grained mapping using optimized method.

of a given L and G combination are predicted by a single mapper). In this case, once

the scheduler assigns a longer task to a mapper, it has to wait for its completion, even

if the other mappers have generated their chunk predictions, before proceeding to the

reduce phase. We also observe that as the max chunk length increases from 60 to 300

bases, the map efficiency tends to drop. More specifically, the average map efficiency

for coarse-grained mapping on RNA2 decreases from 36% to 25% and from 18% to

15% on RNA1 when using centered or optimized chunking methods. The average map

efficiency for fine-grained mapping on RNA2 decreases from 91% to 79% and from

97% to 93% on RNA1. The reason is that when using a max chunk length of 60, the

centered and optimized chunking methods tend to produce more chunks with shorter

41

chunk lengths. On the other hand, when using a max chunk 300, the same methods

tend to produce fewer chunks each with longer lengths.

Diverse chunk lengths within a prediction can also cause inefficiency. To study

this phenomenon, we consider the Nodamura virus (NoV) RNA2 sequence, which in

Figure 2.17 shows the largest drop in efficiency when moving from 60 to 300 max chunk

length. Figure 2.18 and Figure 2.19 show the number of chunks and their lengths (i.e.,

max, min and median) for the different L and G parameter combinations with centered

and optimized methods when the max chunk length is equal to 60 and when the length

is equal to 300, respectively. When the maximum length grows from 60 to 300, the

number of resulting chunks for each combination of L and G parameters decreases.

At the same time the length of each set of chunks increases as well as the length

variability within the set of chunks for a defined combination of L and G values. Note

that for some combinations of L and G, the chunking process does not identify any set

of chunks, and we do not report any result for these cases. This situation confirms our

observation that as the number of chunks decreases, the chunk lengths increase but

not homogeneously within a prediction, causing load imbalance and loss in efficiency.

Selecting the shorter max length for the sake of efficiency is not always a wise decision:

a max chunk length of 60 bases may be too short for the type of RNA sequences we

are considering. In Figure 2.18, for example, the median is close to the max length of

60 for the centered methods, indicating that we are cutting out valuable parts of the

inversion and ultimately of the secondary structures we are predicting.

The overall results suggest that the best set of parameter values to achieve

higher performance depends on multiple aspects, including the targeted sequence and

the different chunking method and mapping used.

2.5 Accuracy

2.5.1 Platform

The accuracy tests are run on the same platform as the performance tests (as

described in Section 2.4.1).

42

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8
0

10

20

30

N
u

m
.

o
f

c
h

u
n

k
s

Centered
Optimized

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8
0

20

40

60

Centered method

L
e

n
.

o
f

c
h

u
n

k
s

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7 5,8
0

20

40

60

Optimized method

L,G parameters

L
e

n
.

o
f

c
h

u
n

k
s

Figure 2.18: Number of chunks and chunk lengths for the Nodamura virus (NoV)
RNA2 with centered and optimized methods and maximum chunk
length of 60 bases.

2.5.2 Datasets

To study the framework accuracy, we use two datasets of sequences for which the

secondary structures have been previously established. The first dataset consists of 50

non-pseudoknotted sequences from the RFAM database, and the lengths of sequences

range from 127 to 568 bases. The second dataset consists of 23 pseudoknotted sequences

from the RFAM and Pseudobase++ [21,29] databases, and the lengths of the sequences

in this dataset range from 77 to 451 bases. Note that there are no large datasets of

experimentally determined RNA secondary structures including pseudoknots, and to

the best of our knowledge the one used in this thesis is one of the few available to the

public for free.

43

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7
0

2

4

6

8

N
u

m
.

o
f

c
h

u
n

k
s

Centered
Optimized

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7
0

100

200

300

Centered method

L
e

n
.

o
f

c
h

u
n

k
s

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8 5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7
0

100

200

300

Optimized method

L,G parameters

L
e

n
.

o
f

c
h

u
n

k
s

Figure 2.19: Number of chunks and chunk lengths for the Nodamura virus (NoV)
RNA2 with centered and optimized methods and maximum chunk
length of 300 bases.

2.5.3 Results and discussion

Here we compare the secondary structures obtained by our chunk-based method

with the known secondary structures (AC) and with the secondary structures obtained

by using the whole sequences (AR). Moreover, we examine the accuracy of our method

when the length of the sequence increases. In addition, we discuss the accuracy of the

centered and optimized chunking methods.

Chunk-based prediction vs. known structures (AC): To assess how well the pre-

dictions based on chunking agree with known RNA structures, we measure the maxi-

mum AC (MAC) values of the sequences in the two datasets when the maximum chunk

length Cmax ranges from 60 to 150 bases (incremental 10 bases each time), Lmin ranges

44

from 3 to 8, and Gmax ranges from 3 to 8. Figures 2.20(a), (b), and (c) show the box-

and-whisker diagram for the regular, centered, and optimized methods, respectively,

for the dataset of 50 non-pseudoknotted sequences. Figures 2.21 (a), (b), and (c) show

the box-and-whisker diagram for the regular, centered, and optimized methods, re-

spectively, for the dataset of 23 pseudoknotted sequences. In the figures, the lower and

upper quartiles are at the top and bottom boundaries of the box for the kernels; the

median is the band inside the box; the mean is the black square; the whiskers extend

to the most extreme data points or outliers; and outliers are plotted individually as

“+” symbols.

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

M
A

C
 (

R
)

IP
k
n

o
t

p
k
n

o
ts

R
G

H
o

tK
n

o
ts

N
U

P
A

C
K

P
K

N
O

T
S

U
N

A
F

o
ld

R
N

A
fo

ld 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

M
A

C
 (

C
)

IP
k
n

o
t

p
k
n

o
ts

R
G

H
o

tK
n

o
ts

N
U

P
A

C
K

P
K

N
O

T
S

U
N

A
F

o
ld

R
N

A
fo

ld

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

M
A

C
 (

O
)

IP
k
n

o
t

p
k
n

o
ts

R
G

H
o

tK
n

o
ts

N
U

P
A

C
K

P
K

N
O

T
S

U
N

A
F

o
ld

R
N

A
fo

ld 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

M

A
W

IP
k
n

o
t

p
k
n

o
ts

R
G

H
o

tK
n

o
ts

N
U

P
A

C
K

P
K

N
O

T
S

U
N

A
F

o
ld

R
N

A
fo

ld

(a) (b) (c) (d)

Figure 2.20: MAC and MAW values obtained using the prediction programs IPknot,
pknotsRG, HotKnots, NUPACK, PKNOTS, RNAfold, and UNAFOLD
for the dataset of 50 non-pseudoknotted sequences.

As described in Section 2.3, the AC value for a predicted RNA structure is

the percentage of agreement between the known structure and the structure obtained

by concatenating the predicted structures of the chunks. Likewise, the AW value is

the percentage of agreement between the known structure and the predicted structure

when the whole sequence is used. These values indicate how closely the predicted

structure resembles the real structure. A larger AC value means that the chunk-based

predicted structure is more similar to the real structure. For a given dataset, prediction

program, and chunking method, our MapReduce framework collects multiple predicted

structures associated with different Cmax, Lmin, and Gmax parameters. The MAC value

for a sequence gives the highest accuracy that can be attained for that sequence by the

45

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

M
A

C
 (

R
)

IP
k

n
o

t

p
k

n
o

ts
R

G

H
o

tK
n

o
ts

N
U

P
A

C
K

P
K

N
O

T
S 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

M
A

C
 (

C
)

IP
k

n
o

t

p
k

n
o

ts
R

G

H
o

tK
n

o
ts

N
U

P
A

C
K

P
K

N
O

T
S

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

M
A

C
 (

O
)

IP
k

n
o

t

p
k

n
o

ts
R

G

H
o

tK
n

o
ts

N
U

P
A

C
K

P
K

N
O

T
S

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

M

A
W

IP
k

n
o

t

p
k

n
o

ts
R

G

H
o

tK
n

o
ts

N
U

P
A

C
K

P
K

N
O

T
S

(b)(a) (c) (d)

Figure 2.21: MAC and MAW values obtained using the prediction programs IPknot,
pknotsRG, HotKnots, NUPACK, and PKNOTS for the dataset of 23
pseudoknotted sequences.

chunking method and the specific prediction program employed. Figure 2.20(d) and

Figure 2.21(d) show the AW values of the sequences in the two datasets, respectively.

From these figures, one can see that most of the prediction methods have similar ac-

curacy ranges regardless of the chunking method used and whether the prediction was

obtained with the whole sequence or with the chunks; however, the PKNOTS pro-

gram produces somewhat lower accuracies. This lower accuracy is expected because

PKNOTS is the earliest algorithm allowing for pseudoknot prediction. The other pre-

diction programs with pseudoknot prediction capability that have developed afterwards

have incorporated improvements over the original PKNOTS.

Chunk-based vs. non-chunk-based sequential programs predictions (AR): From

Figures 2.20 and 2.21, the prediction accuracies with chunking (MAC values in (a)

(c)) appear to be higher than those without (AW values in (d)), suggesting that the

prediction accuracy, on average, can be enhanced by sequence segmentation. To get a

clearer characterization of the effect of sequence segmentation, we carry out statistical

tests on the maximum accuracy retention (MAR) obtained for each RNA sequence over

the Cmax, Lmin, and Gmax parameters. In the majority of the sequences in our dataset,

the MAR turns out to be greater than 1. With a one-sample t-test, we test whether

the mean MAR is significantly greater than 1 with p-value < 0.05. Tables 2.5 and 2.6

display the means, standard deviations, and p-values for the non-pseudoknotted and

46

pseudoknotted sequences respectively.

Table 2.5: Mean and standard deviations of MAR for regular, centered, and opti-
mized chunking methods over 50 non-pseudoknotted sequences, and the
corresponding p-values of the t-test for mean MAR > 1.

Cut Regular Centered Optimized
Prediction Mean Stdev p Mean Stdev p Mean Stdev p
IPknot 1.13 0.32 0.002 1.23 0.36 0.000 1.21 0.36 0.000
pknotsRG 1.19 0.50 0.005 1.27 0.49 0.000 1.27 0.47 0.000
HotKnots 1.19 0.48 0.003 1.32 0.50 0.000 1.33 0.50 0.000
NUPACK 1.12 0.34 0.010 1.23 0.41 0.000 1.24 0.41 0.000
PKNOTS 1.33 0.19 0.000 1.65 0.35 0.000 1.70 0.35 0.000
UNAFold 1.19 0.49 0.003 1.31 0.47 0.000 1.31 0.46 0.000
RNAfold 1.19 0.46 0.002 1.31 0.48 0.000 1.30 0.45 0.000

Table 2.6: Mean and standard deviations of MAR for regular, centered, and optimized
chunking methods over 23 pseudoknotted sequences, and the correspond-
ing p-values of the t-test for mean MAR > 1.

Cut Regular Centered Optimized
Prediction Mean Stdev p Mean Stdev p Mean Stdev p
IPknot 1.19 0.48 0.037 1.33 0.62 0.009 1.40 0.64 0.004
pknotsRG 1.21 0.84 0.116 1.39 0.99 0.036 1.48 1.00 0.016
HotKnots 1.11 0.41 0.098 1.32 0.71 0.021 1.43 0.80 0.009
NUPACK 0.93 0.18 0.955 1.14 0.39 0.071 1.17 0.35 0.032
PKNOTS 1.16 0.20 0.003 1.29 0.26 0.000 1.38 0.29 0.000

For non-pseudoknotted sequences, the mean MAR is significantly greater than

1 for all three chunking methods, whereas the mean MAR values for the pseudoknotted

sequences are greater than 1 for the centered and optimized chunking methods. With

the regular chunking method, one of the mean MAR values (with NUPACK) falls below

1 to 0.93. Looking at all the p-values, we can conclude that the average prediction

accuracy attained with segmentation is not significantly less than that without. With

the inversion-based centered and optimized chunking methods, we can conclude that

the average prediction accuracies attained with segmentation are at least as good as,

and often even better than, those without segmentation.

47

Shorter length vs. longer length sequences (ranging from 77 to 568): While the

above results show that sequence segmentation does not reduce prediction accuracy

on average, we still need to examine whether the MAR values decline as the whole

sequence length grows, because a declining trend implies that the accuracy retention

deteriorates when the segmentation approaches are applied to longer RNA sequences.

To this end, for each dataset, chunking method, and prediction program, we perform

the Pearson correlation analysis on the MAR values of the sequences [73]. For each

dataset, we report both the correlation coefficient r and corresponding p-value between

MAR and sequence length. If the r value is close to -1, it means that MAR and

sequence lengths are negatively correlated, implying a decline in accuracy retention

of the chunking method. If the associated p value is less than 0.05, we consider the

correlation statistically significant; otherwise the correlation is not significant.

Figure 2.22 is a scatter plot of MAR values versus sequence lengths for one of the

prediction programs, IPknot. Similar scatter plots for the other prediction programs

have also been examined, and no statistically significant negative correlation has been

detected in any of these plots. Table 2.7 presents the correlation coefficients r and their

corresponding p-values when the null hypothesis of no correlation is tested against the

alternative hypothesis of having a negative correlation. These p-values indicate that

no significant negative correlation has been detected for any of the prediction programs

and chunking methods. We therefore do not expect any substantial decline in accuracy

retention of our chunking methods while sequence length increases.

Centered vs. optimized chunking method : Given the three chunking methods

considered (i.e., regular, centered, and optimized) we also want to determine which

among them is better at retaining the accuracies of the various prediction programs.

For this purpose, we examine each sequence in our two datasets and keep track of

which chunking method produces the highest MAR. Table 2.8 gives the total counts of

sequences attaining the highest MAR for each of the chunking methods. If more than

one chunking method get the same highest MAR for one sequence, we split the count

of this sequence equally among the methods. We can see that the sequence counts in

48

100 150 200 250 300 350 400 450 500 550 600
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Sequence length

M
A

R

R
C
O

Figure 2.22: Scatter plot of MAR values versus sequence lengths for the IPknot
program. Similar scatter plots for the other prediction programs have
been examined, and no statistically significant negative correlation has
been detected in any of these plots.

Table 2.8 for the centered and optimized (C and O) methods are higher than those for

the regular method (R).

To see whether any differences exist among the accuracy retention capabilities

among the three cutting methods, we perform the Friedman test for each dataset and

each prediction program. The Friedman test is a non-parametric statistical test based

on rank sums and requires ranking the MAR attained by each chunking method for

each prediction program and each sequence in our datasets. The method producing

the lowest MAR is given a rank of 1, and the method producing the highest MAR is

given a rank of 3. Again, the ranks are averaged for ties. Table 2.9 shows the p-values

of the Friedman tests in the “R-C-O” columns. From these very low p-values, we can

conclude that significant differences do exist among the three methods.

49

Table 2.7: Correlation coefficients (r) between MAR and sequence lengths and cor-
responding p-values (p) when testing for a negative correlation.

Non-Pseudoknotted Sequences Pseudoknotted Sequences
Prediction r C O r C O
IPknot r -0.2077 -0.2141 -0.1629 0.1379 0.1572 0.0841

p 0.1478 0.1354 0.2582 0.5303 0.4738 0.7028
pknotsRG r -0.1550 -0.0670 -0.0756 0.2030 0.1971 0.1987

p 0.2825 0.6437 0.6018 0.3528 0.3673 0.3634
HotKnots r -0.1434 -0.0476 -0.0732 -0.0360 -0.0669 -0.0855

p 0.3204 0.7428 0.6136 0.8705 0.7618 0.6982
NUPACK r -0.1622 -0.0137 -0.0059 -0.0532 0.0666 -0.1331

p 0.2604 0.9249 0.9676 0.8340 0.7928 0.5986
PKNOTS r 0.4598 0.7053 0.7045 -0.0233 0.1001 0.0597

p 0.0008 0.0000 0.0000 0.9294 0.7023 0.8199
UNAFold r -0.1449 -0.1055 -0.1311

p 0.3155 0.4658 0.3643
RNAfold r -0.1056 -0.0646 -0.0538

p 0.4654 0.6559 0.7104

Because the Friedman test does not reveal whether any one method is signifi-

cantly better than another, we also perform the post hoc pairwise comparison test on

each pair of the three chunking methods in order to confirm that the inversion based

centered and optimized chunking methods are indeed superior to the naive regular

method. The p-values, shown in the “R-C,” “R-O,” and “C-O” columns, indicate that

both the centered and optimized methods are better than the regular method. Fur-

thermore, the centered and optimized methods show no significant differences except

when PKNOTS is applied to the pseudoknotted sequences.

These results demonstrate that for a variety of secondary structure prediction

programs, our segmentation approach for handling the long RNA sequences can retain

and even enhance the average prediction accuracy. Furthermore, using the inversion-

based centered and optimized methods to cut the sequence produces better prediction

accuracy than the naive r method does.

50

2.6 Summary and Future Work

Summary: This chapter presents the application of our general data analysis

method to the classification problem in which we identify an RNA secondary structure

as more or less likely to occur based on multiple chunk-based secondary structures. We

discuss the workflow of mapping RNA sequences to chunk-based secondary structures

(i.e., metadata) using inversion information, the classification of whole secondary struc-

tures into more or less likely to occur based on the accuracy retention, the integration

of the workflow into the Hadoop framework, and the different granularity of the tree

search in the Hadoop framework.

We evaluate the performance of our method on 8 nodes of the Geronimo clus-

ter using the RFAM database and the virus family Nodaviridae with sequence lengths

varying from 90 to 3,204 nucleotide bases. Results show that as the lengths of the

sequences increase, our method achieves constant execution time whereas the execu-

tion times for traditional prediction methods grow exponentially or polynomially. In

addition, the traditional prediction methods often fail on long RNA sequences because

of memory limitations.

Moreover, we evaluate the accuracy of our chunk-based framework using two

datasets from RFAM and Pseudobase++ database. Results show that the prediction

accuracy, on average, is enhanced by our framework. In particular, the accuracy of

our framework is significantly higher than that of the traditional method in 35 of 36

experiments. In the best case, our framework achieves 1.7 times higher accuracy com-

pared with that of the traditional method using PKNOTS on the 50 non-pseudoknotted

sequences.

Future work: Future work lies in two directions: (1) further investigate how

to cut the RNA sequence into chunks in a way that avoids cutting in long secondary

structures, and (2) study how to classify the resulting secondary structures into those

more or less likely to happen without referring to the known structure.

For the first research direction, a possible approach is to cut the RNA sequence

into chunks such that long secondary structures are not cut in the middle. We refer to

51

this proposed approach as the mega-chunk method. To this end, a possible strategy

is to extend the chunking approach such that an RNA sequence is cut into multiple

sets of chunks and the chunks in each set can have varying lengths and can contain

inversions with larger gaps in between. The method will have to first identify all the

inversions in the sequence, including the ones with large gaps, and then it will have

to remove redundant inversions that are nested in longer inversions. All the possible

cutting points that cut the sequence around inversions will have to be considered before

cutting the sequence into sets of chunks (i.e., a brute-force exploration of all possible

sets of chunks). In this way, we should be able to eliminate the threshold parameters

in the current chunking methods (i.e., maximum chunk length Cmax, minimum stem

length Lmin, and maximum gap length Gmax). Because of allowing larger gaps, we

should also be able to capture potential secondary structures, including pseudoknots

that engage nucleotides in different regions of the sequence.

For the second research direction, we envision an approach capable of classifying

resulting secondary structures into those more or less likely to occur in nature. To this

end, the training of a family model using the known secondary structures of other se-

quences in the given family will be needed, and then the assignment of a score to each

resulting structure of the sequence using the family model can naturally complete the

classification process. Inspired by research in protein structure predictions, we hypoth-

esize that the sequences in the same family share structural similarities. The proposed

research direction can benefit from this feature to design, develop, and evaluate a

method to classify new secondary structures. Figure 2.23 shows a case study for this

scenario in which the known secondary structures for two RNA sequences PDB 00307

and PDB 00421 that belong to the same RNA family (transfer RNA) from the database

RNA STRAND exhibit structural similarities [71]. We observe that although the two

sequences have different lengths and nucleotide bases, their secondary structures share

similarities. For example, they both have six hairpin loop structures and three multi-

branched loops. Both descriptive statistical information and hidden Markov model

(HMM) can be used to build the RNA family model and classify resulting secondary

52

structures.

(a)

(b)

Figure 2.23: RNA structures from the same family: (a) PDB 00307 and (b)
PDB 00421.

53

T
a
b
le

2
.8
:
C
ou

n
t
(c
o)

an
d
ra
n
k
su
m

(r
s)

of
se
q
u
en
ce
s
at
ta
in
in
g
th
e
h
ig
h
es
t
M
A
R

w
it
h
ea
ch

ch
u
n
k
in
g
m
et
h
o
d
fo
r
th
e

va
ri
ou

s
p
re
d
ic
ti
on

p
ro
gr
am

s.
N
on

-P
se
u
d
ok

n
ot
te
d
S
eq
u
en
ce
s

P
se
u
d
ok

n
ot
te
d
se
q
u
en
ce
s

P
re
d
ic
ti
on

R
-c
o

R
-r
s

C
-c
o

C
-r
s

O
-c
o

O
-r
s

R
-c
o

R
-r
s

C
-c
o

C
-r
s

O
-c
o

O
-r
s

IP
k
n
ot

7.
7

74
.0

24
.7

11
5.
5

17
.7

11
0.
5

2.
0

32
.0

7.
0

47
.0

14
.0

59
.0

p
k
n
ot
sR

G
6.
3

71
.5

22
.3

11
5.
5

21
.3

11
3.
0

2.
0

30
.0

7.
0

50
.0

14
.0

58
.0

H
ot
K
n
ot
s

4.
0

68
.0

22
.0

11
5.
5

24
.0

11
6.
5

1.
0

32
.0

6.
0

47
.0

16
.0

59
.0

N
U
P
A
C
K

4.
0

68
.5

17
.0

11
5.
5

29
.0

12
0.
0

1.
3

24
.5

7.
3

40
.5

9.
3

43
.0

P
K
N
O
T
S

1.
0

55
.5

17
.5

11
4.
5

31
.5

13
0.
0

1.
5

21
.0

4.
0

35
.5

11
.5

45
.5

U
N
A
F
ol
d

4.
0

67
.0

25
.0

11
8.
0

21
.0

11
5.
0

R
N
A
fo
ld

4.
0

65
.0

18
.0

11
2.
5

28
.0

12
2.
5

54

T
a
b
le

2
.9
:
P
-v
al
u
es

fr
om

th
e
F
ri
ed
m
an

te
st

to
co
m
p
ar
e
th
e
ac
cu
ra
cy

re
te
n
ti
on

of
th
e
th
re
e
ch
u
n
k
in
g
m
et
h
o
d
s
as

w
el
l
as

th
e
p
os
th
o
c
p
ai
rw

is
e
co
m
p
ar
is
on

te
st
s.

N
on

-P
se
u
d
ok

n
ot
te
d
S
eq
u
en
ce
s

P
se
u
d
ok

n
ot
te
d
S
eq
u
en
ce
s

P
re
d
ic
ti
on

R
-C

-O
C
-O

R
-C

R
-O

R
-C

-O
C
-O

R
-C

R
-O

IP
k
n
ot

9.
21
E
-0
6

5.
27
E
-0
1

2.
43
E
-0
5

4.
02
E
-0
4

2.
16
E
-0
5

4.
55
E
-0
2

4.
50
E
-0
3

3.
74
E
-0
5

p
k
n
ot
sR

G
1.
82
E
-0
7

5.
27
E
-0
1

1.
86
E
-0
6

9.
72
E
-0
6

3.
65
E
-0
6

1.
84
E
-0
2

1.
08
E
-0
4

9.
62
E
-0
5

H
ot
K
n
ot
s

8.
80
E
-0
9

6.
47
E
-0
1

4.
20
E
-0
7

5.
36
E
-0
7

2.
47
E
-0
5

1.
84
E
-0
2

1.
30
E
-0
3

1.
62
E
-0
4

N
U
P
A
C
K

5.
16
E
-0
9

2.
17
E
-0
1

5.
79
E
-0
8

1.
41
E
-0
6

3.
70
E
-0
4

5.
64
E
-0
1

9.
11
E
-0
4

1.
30
E
-0
3

P
K
N
O
T
S

1.
22
E
-1
5

2.
69
E
-0
2

3.
56
E
-1
0

1.
18
E
-1
1

6.
78
E
-0
6

6.
70
E
-0
3

5.
32
E
-0
4

1.
83
E
-0
4

U
N
A
F
ol
d

5.
25
E
-0
9

2.
74
E
-0
1

6.
91
E
-0
7

2.
96
E
-0
7

R
N
A
fo
ld

1.
18
E
-0
8

8.
82
E
-0
1

1.
29
E
-0
6

1.
81
E
-0
7

55

Chapter 3

CLUSTERING OF LIGAND GEOMETRIES

In studies of disease processes, a common problem is to search for small molecules

(ligands) that can interact with a larger molecule such as a protein when the protein

is involved in a disease state. More specifically, when ligands dock well in a protein,

they can potentially be used as a drug to stop or prevent diseases associated with

the protein’s malfunction. The study of the docking process is computationally per-

formed with docking simulations, which consist of sequences of independent docking

trials. Since the process is highly parallelizable, it is efficiently performed on distributed

memory systems (e.g., supercomputers and volunteer computing platforms), resulting

in a distributed collection of hundreds of thousands of ligand conformations across the

nodes of the system.

A second analysis problem, also tackled in this thesis, is a clustering problem in

which we identify the geometries of ligand conformations and predict their probabilities

of well-docking into a protein pocket based on their geometries in a distributed way,

without moving the ligand conformations to a central server. We concurrently extract

the geometry of a ligand conformation into metadata by performing the linear regres-

sion analysis on the ligand’s atoms in which the coordinates are projected on three

planes and interpolated in three different ways resulting in 3-D or 6-D metadata. The

clustering is performed by an N-dimensional (N-D) clustering algorithm that searches

for the densest subspace of metadata in two different variations. This subspace is

expected to contain well-docked ligands. We integrate the metadata extraction and N-

D clustering algorithm into the MapReduce programming model, and we study both

the performance and the accuracy of the MapReduce framework for several structural

biology datasets of up to several millions of ligand molecules.

56

The rest of the chapter is organized as follows. Section 3.1 gives the back-

ground information on protein-ligand docking simulations, the sampling process of the

Docking@Home datasets used in the accuracy study, the distributed memory systems

simulated in performance study, and the MapReduce-MPI framework. Section 3.2

reviews the related work on the centralized clustering of ligand conformations and

the distributed clustering using MapReduce. Section 3.3 presents our methodology.

Sections 3.4 and 3.5 present the performance and accuracy evaluations, respectively.

Section 3.6 summarizes our research results and briefly discusses future work.

3.1 Background

3.1.1 Protein-ligand docking

Computationally, a protein-ligand docking search seeks to find near-native lig-

and conformations in a large dataset of conformations that are docked in a protein [41].

A conformation is considered near-native if the root-mean-square deviation (RMSD)

of the heavy atom coordinates is smaller than or equal to two angstroms (Å) from the

experimentally observed conformation. Algorithmically, a docking simulation consists

of a sequence of independent docking trials. An independent docking trial starts by

generating a series of random initial ligand conformations; each conformation is given

multiple random orientations. The resulting conformations are docked into the protein-

binding site. Hundreds of thousands of docking attempts are performed concurrently.

Molecular dynamics simulated annealing is used to search for low energy conforma-

tions of the ligand on the protein pocket. Traditionally, docked conformations with

minimum energy are assumed to be near native. Research has shown, however, that

this is not always the case [28]. Docked conformations with minimum energy are not

necessarily near native.

In previous work, we showed that compact clusters of docked conformations

grouped by their geometries are more likely to be near native than are the individual

conformations with lowest energy [28, 29]. Large numbers of ligand conformations were

sampled through the Docking@Home (D@H) project in the past five years and are used

57

in this thesis as the dataset. Hundreds of millions of docked ligand conformations have

to be compared with one another in terms of their geometries.

The docking process is only one of the key steps; once the results (ligand con-

formations) are collected, they need to be evaluated to predict the near-native ligand

geometry. Selecting the near-native ligand geometry based on energy alone may result

in incorrect conclusions. An alternative approach is to select the near-native geometry

from clustering, but this approach can result in extensive computing and storage needs.

Ideally the clustering methods have to be scalable, efficient, and accurate, allowing sci-

entists to compare and select across a very large set of docking results.

3.1.2 Sampling conformational spaces with Docking@Home

Many computational molecular docking approaches for sampling large confor-

mational spaces of ligands have been used for virtual screening [60, 2, 55]. Typically

a docking method is evaluated with a selected number of experimentally determined

protein-ligand complexes. In general, various docking methods differ from one another

in the algorithm used in the conformational search [13, 57], the scoring function used

to predict ligand geometries, and the scoring function used to rank compounds or to

predict DGbinding [30].

Although the system software for sampling large conformation spaces is not the

key contribution of this thesis, here we briefly describe how we collect the docking

data for this thesis using volunteer computing (VC). VC is a well-established program-

ming model for scientific projects. It is a form of distributed computing in which

ordinary people volunteer processing and storage resources across the Internet to sci-

entific simulations. The growing volunteer computing community includes 65 scientific

projects, over 2 million volunteers, and 6 million computers distributed across the

world. Berkeley Open Infrastructure for Network Computing (BOINC) [4], a well-

known VC middleware, supports Docking@Home (D@H) version 2, the VC project

producing the data used in this thesis. D@H is an NSF-funded project in molecular

58

docking that computationally searches for potential drug-like molecules against dis-

eases, such as breast cancer and HIV. D@H generates a very large space of possible

docking conformations. In order to extensively search this space, millions of indepen-

dent docking attempts (jobs) are processed by the D@H server that distributes them for

computation to clients across the Internet. Volunteers’ computers perform the dock-

ing simulation and return results, consisting of the docked 3-D ligand conformation

and its associated energy value. Currently, more than 89,000 volunteers and 188,000

computers worldwide support D@H.

To explore the conformational space of the ligands, D@H considers a repre-

sentation of the solvent by using two docking methods: (1) a implicit representation

of water using a distance-dependent dielectric coefficient (low if the atoms are close

and progressively larger as the interatomic distance increases) and (2) a more phys-

ically accurate implicit representation of water using a generalized Born model [46].

The method based on the generalized Born model is a more compute- and memory-

intensive method. At the same time it provides a more physically accurate description

of the potential energy of a ligand where part of the ligand conformation is exposed

to solvent. In many situations where a large portion of the ligand is solvent exposed,

the generalized Born model should help significantly in providing better ligand confor-

mations (e.g., when one orientation of a given ligand leaves a large bulky hydrophobic

group exposed to solvent, this is penalized, where exposing a hydrophilic group such

as a hydroxyl group to solvent is much more favorable).

The molecular docking is performed by using the CHARMM (Chemistry at

HARvard Molecular Mechanics) molecular simulation package [11] and an intermediate-

accuracy all-atom force field. The CHARMM script describing the docking process

considers a protein-ligand complex as a composition of a flexible ligand and a rigid

protein structure (i.e., on a three-dimensional lattice of regularly spaced points sur-

rounding and centered on the active site of the protein, where each point on the grid

stores the potential energy of a “probe” atom’s interaction with the molecule). A

D@H simulation consists of a sequence of independent trials. For each trial, either a

59

randomly generated conformation or a user-defined conformation for a ligand is used

as the initial conformation. Random conformations are generated starting from the

ligand crystal structure with random initial velocities on each ligand atom. Then the

initial conformation is randomly rotated to produce a set of different orientations that

are placed into the active site of the protein or docking pocket (docking attempts).

Once the ligand is docked into the protein site, a molecular dynamics simulation

is performed consisting of a gradual heating phase of 4,000 1-femtosecond (1 fs) steps

from 300K to 700K, followed by a cooling phase of 10,000 1 fs steps back to 300K. In

order to facilitate the penetration of ligands into protein sites and to allow larger con-

formational changes, van der Waals (vdW) and electrostatic potentials with soft-core

repulsions are utilized. A soft-core repulsion reduces the potential barrier at vanishing

interatomic distances to a finite limit, allowing ligands to pass between conformational

minima with a relatively small potential barrier that normally is very large and impos-

sible to overcome with an unmodified standard potential. The detailed description of

the docking method and its comparison with other docking codes is not in the scope

of this thesis; this information can be found in past work [75, 74]. Once the results

(ligand conformations) are collected, they need to be scored. Initially D@H used an

energy-based scoring method; our previous work showed how this scoring approach can

result in incorrect conclusions, however, because energy values are approximated by the

simplified methods used in the computational algorithms. The alternative approach

that we pursue in this thesis is to score ligands based on the geometry of their resulting

conformations.

3.1.3 Semi-decentralized and fully-decentralized systems

Data considered in this thesis comprises a large number of individual data

records and is distributed across the nodes of a large distributed memory system. More

specifically, we consider semi-decentralized and fully-decentralized distributed memory

systems. In a semi-decentralized system, processes report to more than one node, usu-

ally the closest one, and take advantage of locality by reducing expensive data transfer

60

and potential storage pressure. In contrast, in a fully-decentralized system, each node

stores its own data, thus reducing the need for data transfers and increasing the amount

of locally stored data. Logically, the entire dataset can converge toward one or mul-

tiple scientific properties, or it may not convey any scientific information. Physically,

data with similar scientific properties may agglomerate in topologically close nodes or

may be dispersed across nodes. Logical and physical tendencies are not known a priori

when data is generated in semi- or fully-decentralized systems. In general, scientists

must move data across nodes in order to analyze and understand it. This process can

be extremely costly in terms of execution time. For the sake of completeness, we de-

fine three scenarios that resemble the challenging conditions faced by scientists when

dealing with distributed systems with large amounts of data. The scenarios consist of

data distributed as follows:

• A semi-decentralized manner in which data with similar properties is generated
by and stored in specific nodes.

• A fully-decentralized, synchronous manner in which data is gathered at regular
intervals producing a uniform distribution of data properties across the nodes in
a round-robin fashion.

• A fully-decentralized, asynchronous manner in which every node acts by itself
and properties are stored randomly across nodes.

3.1.4 MapReduce-MPI

MapReduce-MPI is a runtime library supporting the MapReduce programming

model [59]. It is written in C++ and MPI. It runs a MapReduce program using MPI

processes, the number of which is defined by the programmer. Each process runs both

the map and the reduce functions. It first runs the map function on its partial data

and outputs the intermediate 〈key, value〉 pairs in parallel. Then, the MapReduce-

MPI framework communicates all the values with the same key across the distributed

memory system to the same process. After this data shuffle stage, each process runs

the reduce function and generates the final output.

61

Compared with Hadoop, MapReduce-MPI is more flexible when structuring

computation: the programmer can specify any combination of map and reduce func-

tions, including multiple map functions followed by one reduce, one map followed by

multiple reduce functions, and multiple map followed by multiple reduce functions. In

Hadoop, on the other hand, iterations must be expressed as a chain of MapReduce jobs.

In addition, MapReduce-MPI eliminates the use of HDFS for data input and output

by using the Lustre file system or the local disk of each node in the distributed memory

system directly. In other words, it eliminates the time-consuming data-staging phases

required in Hadoop. Moreover, it runs on any platform that supports MPI and C++,

as most distributed memory systems including supercomputers do. In comparison,

Hadoop requires installing HDFS and Hadoop MapReduce components on the system.

MapReduce-MPI also utilizes the high-speed InfiniBand for data communication by

default.

3.2 Limits of Current Practice

3.2.1 Centralized clustering of docking conformations

Traditionally, a näıve approach used to group similar structural biology con-

formations is through geometry-based clustering. Important work in this direction

includes that of Lorenzen et al. [49], Bouvier et al. [9], Chang et al. [16], and Estrada

et al. [27]. Lorenzen et al. [49] select near-native docking conformations by assuming

that a bigger cluster is more likely to have better candidate conformations. Bouvier

et al. [9] use a Kohonen self-organizing map that is trained in a preliminary phase by

using drug-protein contact descriptors. Chang et al. [16] perform a simple cluster anal-

ysis for docking simulations and use the size of the clusters to estimate the vibrational

entropy of the resulting conformations. Estrada et al. [27] identify near-native ligand

conformations using a probabilistic hierarchical clustering and fuzzy c-means.

Such a technique requires that data be stored in a centralized location in order

to compute the RMSD of each ligand with all the other ligands in the dataset. The

analysis requires that the molecular dataset be moved in its entirety into a central

62

server. Figure 3.1 shows an abstract representation of a centralized data analysis system

in which all the ligands have to be moved to a local storage where they can be compared

and clustered. This fully-centralized approach is not scalable and can result in serious

storage and bandwidth pressure on the server side. Thus, the challenge involves ways to

efficiently find these dense ligand clusters of geometric representations, especially when

the data is acquired in a distributed manner. While each conformation is small (on

the order of ten kilobytes), the number of conformations that must be moved across

the distributed memory system and compared with one another is extremely large;

depending on the type and number of proteins, the conformation dataset can comprise

tens or hundreds of millions of ligands. This scenario is expected when thousands of

processes perform individual docking simulations and store their results locally. As

an example, consider the D@H project that is supported by more than 188,000 hosts.

If all the hosts communicate their local results to a centralized server simultaneously,

even when each host communicates data in terms of 100 ligand conformations (i.e.,

around 7 MB in size), the data sending across the distributed memory system is more

than 1 TB. This situation can lead to serious storage and bandwidth pressure on the

server side.

3.2.2 Distributed clustering in MapReduce

The MapReduce programming model has been used in the past to analyze large

data in science and engineering fields by using clustering techniques. Some efforts have

investigated well-known clustering methods, such as k-means clustering and proba-

bilistic hierarchical clustering, which were adapted to fit into the MapReduce frame-

work [47, 25]. However, the resulting implementations suffer from the limitations of the

clustering algorithms, which do not scale, despite being formulated in the MapReduce

programming model.

A similar clustering approach based on the density of single points in an N-

dimensional space was presented by Cordeiro et al. [18]. The three algorithms presented

in that work rely on local clustering of subregions and the merging of local results into

63

issues when the level of approximation is low. In our work, we deliver scalable perfor-

mance without sacrificing the accuracy. Rasheed et al. cluster metagenome sequence

reads using a minwise hashing approach and agglomerative hierarchical clustering or a

greedy clustering. Their work requires computing the similarity of a given metagenome

sequence read with groups of sequence reads. In our work, on the other hand, no com-

parison is needed between data records (i.e., ligand conformations).

To the best of our knowledge, our approach is the first to emphasize a local,

single pass of data to extract global properties or densities and, by doing so, to avoid

major data movements [84]. In our work, scalability plays a key role and is particularly

well supported by the LG variant. Our approach expands our previous work [28].

In this thesis we use MapReduce-MPI rather than Hadoop to move away from the

overhead of the Hadoop Distributed File System (HDFS). HDFS acts as the central

storage space for input and output data, adding additional space and operation time

to move in and out data. We also extend the previous algorithm into two variations

for fully-distributed environments. In the variations, data no longer needs to be moved

a priori with HDFS, making our approach completely scalable. These variations allow

us to study the performance impact of exchanging extracted properties in contrast to

exchanging property densities; this evaluation was not achievable in Hadoop because

of the coarse-grained control on data placement of HDFS.

3.3 Methodology

The overall method for clustering ligand geometry first extracts the relevant

geometrical properties of each ligand conformation and represents the properties as N-

dimensional points and then performs an N-D clustering by searching dense subspaces

through counting properties or property aggregates. Figure 3.2 shows an overview of

our approach.

65

variation, when ligand conformations are in an almost-vertical position in the pro-

tein pocket, the three resulting slopes are large. When the shape rotates or changes

slightly, the resulting slopes change significantly. This situation may result in confor-

mations with similar shape and in an almost-vertical position to be unmapped into

a dense metadata subspace. When using the logarithmic of the slopes as metadata,

we decrease the changes in the metadata coordinates and thus increase the chance for

ligand conformations with similar shape to form a dense-enough subspace. We call this

variation “3-Dlog mapping.”

In the third variation, in addition to the slopes, we compute the intersection

of the three linear regression lines with the x-axis for the line on the (x, y) plain, the

y-axes for the line on the (y, z), and the z-axis for the line on the (z, x). We map

each conformation into a 6-D point that coordinates the three slopes and the three

line intersections. Unlike the other two variations, this variation not only captures the

conformation shape and rotation but also stores the correct location of the ligand in

the docking pocket. We call this variation “6-D mapping.”

The advantage of our space reduction is that it does not rely on calculations

of atomic distances between two or more ligand conformations as do most traditional

analysis algorithms, such as k-means and fuzzy c-means clustering. Those calculations

may require moving conformations across nodes, thus causing many frequent communi-

cations and multiple storages of the same data across nodes. On the contrary, our space

reduction can be applied individually and concurrently to each ligand conformation by

transforming each molecule containing p atomic coordinates in the three-dimensional

space (p ∗ 3) into a single point of (1 ∗ 3) for the 3-D and 3-Dlog mappings and (1 ∗ 6)
for the 6-D mapping, all in the Euclidean space. This transformation is performed lo-

cally on the compute node that generates and stores the ligand conformation, and thus

no communication is required during this phase. The projections and interpolations

are low-cost processes in terms of computing and memory requirements.

68

−10
−5

0
5

10

−20

−10

0

10
−10

−5

0

5

10

−10 −5 0 5 10
−10

0

10

−15 −10 −5 0 5 10

−10

0

10

−10 −5 0 5 10
−10

0

10

−10
−5

0
5

10

−20

−10

0

10
−10

−5

0

5

10

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

−10 −5 0 5 10
−10

0

10

−15 −10 −5 0 5 10

−10

0

10

−10 −5 0 5 10
−10

0

10

Figure 3.4: Capturing relevant geometrical properties by using projection and linear
interpolation for the 3-D mapping variation.

3.3.2 Searching and counting property aggregate

By dealing with property-encoding metadata (i.e., three-dimensional points for

the 3-D and 3-Dlog mappings or six-dimensional points for the 6-D mapping) rather

than raw atom coordinates, we implicitly transform the analysis problem from a cluster-

ing or classification problem into a search of the smaller subspaces in the newly defined

metadata space (i.e., an octant for the 3-D and 3-Dlog mappings or a 6-D space for

the 6-D mapping) with high property aggregates. To perform the search, we build

an N-D tree by recursively partitioning the N-D space into fixed-sized subspaces, each

of which forms the tree nodes. Extracted properties can be unpredictably distributed

across the N-D space of property-encoding points and across the compute nodes of the

distributed memory system. Thus, the next challenge we face is how to efficiently count

the aggregates of close property-encoding points in a distributed way. We address the

69

for convergence.

In LocalToGlobal, instead of exchanging extracted metadata, compute nodes

exchange partial densities represented as scalar property aggregates; see Figure 3.5(b).

Each compute node preserves a global vision of the metadata associated with its local

data and counts its densities before shuffling the densities (or aggregates) rather than

the metadata with other compute nodes. After shuffling the aggregates, each compute

node sums the aggregates to obtain the global cluster densities while searching for

convergence.

As already outlined above, the local property-encoding points can populate the

space in an unpredictable way, the points can reside across multiple subspaces, and

each compute node has a disjointed vision of the whole space. GlobalToLocal and

LocalToGlobal address the uncertainty associated to the above described data distri-

butions differently. In GlobalToLocal, each compute node has an assigned subspace

of the N-D space, and the extracted properties (i.e., the 3-D or 6-D points) are com-

municated among compute nodes so that each node has all the information needed to

analyze similar properties in the assigned subspace. Consequently the density analy-

sis is applied to each compute node’s local properties iteratively. On the other hand,

in LocalToGlobal, after capturing relevant properties, each compute node applies the

data analysis operation to its local extracted properties and computes scalar property

aggregates based on densities for the entire assigned N-D space. In this scenario, each

compute node has a disjointed view of the entire N-D space containing the metadata

for the ligand conformations stored on its disk. The union of the disjointed N-D spaces

is important for knowledge acquisition of the densest subspaces. This is pursued in

LocalToGlobal through the communication of the local aggregates among compute

nodes so that each compute node has all the partial results necessary to analyze the

density globally. An aggregate operation (i.e., sum) is applied to the partial results.

Communication of properties and aggregates is done iteratively. To sum up, commu-

nication in GlobalToLocal happens only once, and the communicated package is larger

while communication in LocalToGlobal happens multiple times, and each time the

71

communicated package is smaller.

From the implementation point of view, in both variations (i.e., GlobalToLocal

and LocalToGlobal) we reshape the space of property-encoding points into an N-D

tree and search for the deepest, densest tree nodes. These nodes contain the solution

to our analysis problem. Our search for dense tree nodes begins with each compute

node generating its N-D tree on its own local data by recursively subdividing the

space into 2k subspaces: 8 (23) subspaces for the 3-D and 3-Dlog mapping and 64 (26)

subspaces for the 6-D mapping. Figure 3.6 shows an example for a dataset of 1hbv

ligand conformations when docked in the HIV protease. Figure 3.6(a) is the result

of the 3-D mapping, after the mapping of 1hbv ligand confirmations into metadata

has been performed. The compute nodes build an octree by assigning octkeys to the

points, an N-D tree by assigning N-D keys to the points in the case of 6-D mapping.

A point belongs to a specific tree node based on its key. The point’s key is generated

as follows. We initially determine the edge size (i.e., N-D resolution) of the N-D space

containing all the projected conformations. Since we are dealing with the 3-D mapping

in this example, we divide the initial space into eight subspaces of the same size, half

the original edge size. A similar process is followed for the 3-Dlog mapping; however,

when using the 6-D mapping, the metadata space is subdivided into 64 subspaces (not

shown here). Every subspace is given an unique identifier ranging from 0 to 7 for the

3-D space or from 0 to 63 for the 6-D space, based on its position in the N-D space.

The key of each point is extended by attaching the subspace identifier to the point’s

key by padding the left side with the identifier. This process is recursively repeated an

arbitrary number of times on each subspace to produce a complete key for each point

(key[1...Nkey]), where Nkey is the number of digits selected to represent each point.

As previously observed in [29], Nkey can be empirically defined, and a value key of 15

digits is sufficient to capture diverse geometries in the dataset of ligand conformations

considered in this work. Figure 3.6(c) shows an example of the generated octree for

the 3-D mapping points in Figure 3.6(b).

The compute node explores the N-D space (the octree in Figure 3.6(c)), moving

72

shows the deepest and densest octant (points in red) that is identified by our tree

search when looking for the deepest tree node with at least 500 points. For a 6-D

tree, the same approach is applied but on a larger number of branches at each level.

During the search, compute nodes may exchange either extracted properties (metadata)

or scalar property aggregates based on which variation of the algorithm is used. As

shown in Figures 3.5(a) and 3.5(b), in both variations each compute node transforms

its locally stored ligand conformations into a local N-D space, as described in the steps

involving capture of the relevant properties, and exchanges only partial knowledge on

its metadata with the other compute nodes. Since compute nodes work on disjointed

sets of ligand conformations and metadata, they can map ligand conformations into

metadata concurrently and count aggregates locally in advance to perform a global

summation.

3.3.3 Integration of the clustering algorithm into MapReduce

The MapReduce programming model naturally accommodates the capturing of

properties from local data and the iterative search for either properties or densities in its

map and reduce functions, respectively. Thus, we integrated our two variations of the

search described above into the MapReduce-MPI framework rather than implementing

a new MPI-based framework from scratch.

In the GlobalToLocal variation, the operation of capturing relevant properties is

implemented as the map function. It takes the identifier and coordinates of each ligand

conformation as the input key and value, respectively; applies the geometry reduction

operation; and outputs the id and the property-encoding point of each conformation

as the intermediate key and value pair. The MapReduce-MPI library shuffles the

property-encoding points across the distributed memory system to rebuild the global

knowledge of the N-D space on each node. It achieves this goal by communicating all

the property-encoding points in one N-D subspace to one process such that this process

has all the information needed to explore the N-D tree locally. Then, the operation of

counting property densities is implemented as the reduce function. This function takes

74

as input the id of the tree node and all the property-encoding points in the node and

iteratively explores its local N-D tree by counting the density of the nodes in one level

of the N-D tree until the deepest and densest tree node is found.

The LocalToGlobal variation has two map functions. The first function captures

the relevant geometrical properties in the same way as in the GlobalToLocal variation.

After the relevant properties are extracted by the first map function, the second map

function counts locally the property aggregates for a certain level of the N-D tree

nodes. It takes the id and the property-encoding point of each conformation as the

input key and value pair, respectively; counts the aggregates for tree nodes at a certain

level; and outputs the id and aggregates of each tree node as the intermediate key

and value pairs. The exploration of the N-D tree starts at the middle level of the tree

and branches up or down depending on whether a dense enough node is found. The

MapReduce-MPI framework shuffles the id and all the aggregates of each node across

the distributed memory system. Then, the reduce function applies a sum operation

to all the aggregates to compute the density of the nodes. The process of counting

aggregates (i.e., the second map function) and summing aggregates (i.e., the reduce

function) is iterated until the deepest and densest node is found.

As already outlined in the previous section, it is important to notice how the

differences between the two variations lie in the communication stage (i.e., data shuffle

stage). In the GlobalToLocal variation communication happens only once, and the size

of the communicated data (i.e., the property-encoding points) is larger. In comparison,

in the LocalToGlobal variation the communication happens multiple times, and each

time the size of the communicated data (i.e., local aggregates) is smaller.

3.4 Performance

3.4.1 Platforms

We consider three platforms with different scales in terms of number of nodes.

At the small scale, we use a dedicated cluster called Geronimo at the University of

Delaware (UD) and a shared cluster called Gordon at the San Diego Supercomputer

75

Center. Geronimo is composed of 8 dual quad-core compute nodes (64 cores), each

with two Intel Xeon 2.5 GHz quad-core processors and 48 GB RAM. The nodes are

connected by high-speed DDR InfiniBand. Gordon, a Track 2 supercomputer at the

San Diego Supercomputer Center, features powerful flash memory storage private to

each compute node that can be used to simulate a fully distributed memory system [15].

For the tests, we are limited to 64 nodes because of the allocation constraints defined

by the provider. Each node contains two 8-core 2.6 GHz Intel EM64T Xeon E5 (Sandy

Bridge) processors and 64 GB of DDR3-1333 memory and mounts a single 300 GB SSD.

The nodes are connected by a 4 x 4 x 4 3-D torus with adjacent switches connected by

three 4 x QDR InfiniBand links.

At the large scale, we use Fusion, a 320-node computing cluster at the Labo-

ratory Computing Resource Center at Argonne National Laboratory. For these tests,

we use 256 compute nodes. Each of Fusion’s compute nodes contains two Nehalem 2.6

GHz dual-socket, quad-core Pentium Xeon processors, 36 GB of RAM, and 250 GB

local disk. The nodes are connected by InfiniBand QDR at 4 GB/s per link.

3.4.2 Datasets

We define different type of datasets and different sizes for each type. The

datasets are built from real Docking@Home data. Smaller datasets are in the order of

0.5 GB (200K ligand conformations) up to 4 GB (1.6 million ligand conformations).

Larger datasets are in the order of 250 GB (100 million ligands) up to 2 TB (800 million

ligands).

The datasets are built to fit five specific property distributions in the N-dimensional

space (logical distributions) that reflect five scientific conclusions in terms of conver-

gence toward specific ligand geometries. Figures 3.7 shows the five logical distributions

for the 3-D and 3-Dlog mapping. The 6-D mapping is not presented here because of

the complexity of its representation on a 2-D page, but similar conclusions hold for it.

76

(a) (b) (c) (d) (e)

Figure 3.7: Five scenarios of logical distributions of data: 1D (a), 1S (b), UN (c), 2D
(d), and 2S (e).

As shown in Figure 3.7(a), in the first scenario with one dense cluster (1D),

the information content in the scientific data strongly converges toward one ligand

conformation; the 3-D points densely populate one small region of the metadata space

while most of the remaining space is empty. We select ligands from the Docking@Home

dataset whose geometries generate 3-D points with normal distribution around one

point in the 3-D space with a standard deviation of 0.1 for this scenario. As shown

in Figure 3.7(b), in the second scenario with one sparse cluster (1S), the information

content in the data more loosely converges toward one ligand conformation; the 3-D

points sparsely populate one larger region of the space. The ligand geometries generate

points with normal distribution around one point in the 3-D space with a standard

deviation of 1.

As shown in Figures 3.7(c) and 3.7(d), respectively, in the third scenario with

two dense clusters (2D) and the fourth scenario with two sparse clusters (2S), we extend

the first and second scenarios by presenting scientific cases in which information in

the data either strongly or loosely converges toward two major conformations rather

than one. More specifically, in the third scenario, ligand geometries are mapped onto

points with normal distribution around two separate points with a standard deviation

of 0.1. In the fourth scenario, we generate points with normal distribution around

two separate points with a standard deviation of 0.5. As shown in Figure 3.7(a),

in the fifth scenario with a uniform distribution of the information (UN), the 3-D

77

space does not convey any main scientific conclusion; no single ligand conformation

was repeatedly generated. This scenario can happen, for example, with insufficient

sampling or inaccurate mathematical modeling.

We also study the impact of the data distribution across the nodes’ storage

(physical distribution). Specifically, we study these three different ways in which dis-

tributed data can be generated and stored across the nodes’ disks: Uniform, Round-

robin, and Random. Figures 3.8 shows the three physical distributions considered

in our study, respectively. In the Uniform physical distributions, property-encoding

points that belong to the same subspace in the logical distribution are located in the

same physical storage. This scenario happens most likely in a semi-decentralized dis-

tribution in which points mapping close properties are collected by the same node or

topologically close nodes; hence, there is uniformity of the property-encoding points in-

side the nodes’ storages. In the Round-robin physical distributions, points that belong

to the same subspace in the logical distribution are stored in separate physical storage

in a round-robin manner. This scenario happens most likely in a fully-decentralized,

synchronous distribution in which points are collected at each predefined time inter-

val; hence, the data points for each time interval are stored in separate storage across

the distributed system. In the Random physical distributions, points are randomly

stored in the physical storage of all the system nodes. This scenario simulates the

fully-decentralized asynchronous manner. In each of the scenarios, the whole dataset

is roughly evenly distributed among the physical storage sites.

3.4.3 Results and discussion

We study two important aspects of our method: first, whether our method

is sensitive to data distributions at both small and large scales, and second, what

is the data scalability of our method as the data size grows when comparing to a

probabilistic hierarchical clustering [27] that more traditionally relies on data movement

and root-mean-square deviation (RMSD) calculations to identify well-docked ligand

conformations.

78

(a) Uniform (b) Round-robin

(c) Random

Figure 3.9: Total execution time for GlobalToLocal and LocalToGlobal on the five
logical distributions and (a) (b) the Uniform physical distribution, (c) (d)
the Round-robin physical distribution, and (e) (f) the Random physical
distribution.

both GlobalToLocal and LocalToGlobal variations, we observe that the performance

of GlobalToLocal is highly sensitive to the logical distributions, while LocalToGlobal

delivers scalable performance across the five logical scenarios. For example, in the case

of Uniform physical distribution, when the information content in the dataset strongly

converges to one cluster (i.e., the 1D logical distribution), the total execution time for

GlobalToLocal is more than one order of magnitude larger than when the information

does not converge at all in the UN logical distribution (i.e., 8.06E06 seconds in 1D

vs. 3.35E05 seconds in UN). When the information content in the dataset strongly

converges to two clusters (i.e., the 2D logical distribution), the total execution time for

80

GlobalToLocal is one order of magnitude larger than with the UN logical distribution

(i.e., 3.35E06 seconds in 2D vs. 3.35E05 seconds in UN), while for LocalToGlobal,

the execution time varies only 3.4% across the five logical distributions. We observe

similar results in the case of Round-robin and Random physical distributions. Note

that scenarios such as one dense cluster 1D and two dense clusters 2D are scientifically

meaningful because the information content of the science strongly converges toward

a few conclusions. GlobalToLocal has significantly longer execution time for such

scenarios, while LocalToGlobal has scalable performance regardless of the information

content latent in the datasets.

To study the reason for the big variations in GlobalToLocal and the small vari-

ation in LocalToGlobal, we show in Figure 3.10 the four MapReduce time components

(i.e., Map, Shuffle, Overhead and Reduce times) normalized with respect to the to-

tal execution time. Specifically, the figure presents the percentages of the four time

components across Gordon’s 1,024 cores. Map includes the time a process spends

extracting properties during the preprocessing and searching across subspaces in the

tree. Shuffle is the time spent exchanging properties in GlobalToLocal or densities in

LocalToGlobal. Overhead is the time introduced by the MapReduce-MPI library for

either synchronizing processes at the end of each MapReduce step (i.e., the implicit

MPI ALL Reduce operations to communicate small bookkeeping information such as

the total number of 〈key, value〉 pairs processed by the map or reduce function) or for

awaiting certain processes to complete their Map or Reduce in case of load imbalance.

Reduce is the time to aggregate properties in GlobalToLocal or the time to aggregate

densities in LocalToGlobal. In the figure, we report the average execution time in sec-

onds over three runs; the time traces are obtained by using TAU [70]. We instrumented

the source code so that only a limited number of events (i.e., the time to perform the

key Map, Shuffle, and Reduce functions in the two variations) are measured by TAU;

thus, the overhead introduced by TAU is negligible.

When looking at the percentages of time for GlobalToLocal and LocalToGlobal

across the five logical distributions in Figure 3.10, we observe that for all the three

81

(a) Uniform, GlobalToLocal (b) Uniform, LocalToGlobal

(c) Round-robin, GlobalToLocal (d) Round-robin, LocalToGlobal

(e) Random, GlobalToLocal (f) Random, LocalToGlobal

Figure 3.10: Percentage of time for GlobalToLocal and LocalToGlobal for five logical
and (a) the Uniform physical distribution, (b) the Round-robin physical
distribution, and (c) the Random physical distribution.

82

physical distributions, the overhead percentage for GlobalToLocal varies significantly

across the five logical distributions, while the overhead percentage for LocalToGlobal

is relatively constant. More specifically, in the case of Uniform physical distribution,

when the information content in the dataset strongly converges to one cluster or two

clusters (i.e., the 1D and 2D logical distribution), the overhead for GlobalToLocal is

96.4% and 91.6%, respectively. When the information content loosely converges to

one cluster or two clusters (i.e., the 1S and 2S logical distribution), the overhead is

27.4% and 31.9%, respectively. In the UN logical distribution, when the information

content does not converge at all, the overhead is at minimum 20.0%. In comparison,

for the LocalToGlobal variation, the overhead is consistently around 19.0% across all

five logical distributions. Similar results are observed for the Round-robin and the

Random physical distributions. In general, we see that when the datasets contain

strong scientific conclusions (i.e., the 1D and 2D logical distributions), GlobalToLocal

has a significant overhead, while LocalToGlobal has consistent overhead across the

five logical distributions. The reason is that in the dense cluster 1D and two dense

clusters 2D scenarios, the properties (3-D points) are densely populated in a small

octant space; in order to explore the octree, GlobalToLocal requires relocating all the

properties (3-D points) to one or two processes, respectively, on which the iterative

search is performed locally. When points are sparsely distributed (one sparse cluster

1S and two sparse cluster 2S), GlobalToLocal overhead is still tangible but smaller than

for one dense cluster 1D and two dense clusters 2D (i.e., up to one order of magnitude

larger than in LocalToGlobal). Note that for GlobalToLocal, scenarios like one dense

cluster 1D and two dense clusters 2D are associated with high total times because of the

load imbalance and ultimately poor performance. On the other hand, LocalToGlobal

performs similarly across scenarios (one dense cluster 1D, one sparse cluster 1S, two

dense clusters 2D, and two sparse clusters 2S), and the overheads have lower magnitudes

regardless of the embedded scientific results and the physical distributions.

When looking at the other time components, we observe that both GlobalToLo-

cal and LocalToGlobal total Map times are similar; both variations perform similar

83

preprocessing. The GlobalToLocal total Reduce times are two orders of magnitude

larger than the equivalent LocalToGlobal times; LocalToGlobal has been simplified to

sum single density values (SPAs) rather than counting densities from properties and

then summing them up. Dense and sparse clusters have different Shuffle times with

dense scenarios taking longer than sparse scenarios. The reason is that shuffling all

the properties to one or two processes for the global analysis, as in the case of dense

scenarios, takes more time than does shuffling the same properties to a larger subset

of processes. The scenarios with a logical uniform distribution always outperform the

other scenarios in terms of performance independently from the physical distribution of

the data, but these scenarios are also less desirable to work with from the science point

of view since they do not convey any conclusion. When comparing the time compo-

nents across physical distributions, we observe that semi-decentralized scenarios (i.e.,

Uniform) outperform fully-decentralized scenarios (i.e., Round-robin and Random) in

GlobalToLocal and have similar performance for LocalToGlobal. The reason is that

the 3-D points with similar properties are stored in the same node in the Uniform

physical distribution; hence the data shuffled across the distributed memory system is

smaller than with the Round-robin and Random physical distributions.

To better understand the reasons behind the observed overheads, in Figure 3.11

we present the typical time pattern per process for the Uniform, Round-robin, and

Random physical distributions and the five logical distributions; each bar is a collection

of 1,024 thin bars, one per each process. For each subfigure, each process time in the

two bars is normalized with respect to the longest process time for both GlobalToLocal

and LocalToGlobal. This approach allows us to better compare the two variations.

Figure 3.11 shows that overheads have two components: (1) a much larger component

that is present in GlobalToLocal only and is due to load imbalance and (2) a smaller

component that is present in both variations and is due to a collective communication

embedded into MapReduce-MPI when synchronizing all the processes. This is visible

in the figure where thin black lines (corresponding to the Reduce phase) at the top of

the bars are observed in one dense cluster 1D and two dense clusters 2D for one and

84

two processes, respectively, that perform most of the reduce task (i.e., the aggregate

operation on the extracted properties). During this time, the remaining processes

sit idle until the Reduce step is completed. For the one sparse cluster 1S and two

sparse clusters 2S scenarios and GlobalToLocal, we still observe load imbalance (in the

form of drifting lines at the top of the bars) but in a smaller proportion compared

with one dense cluster 1D and two dense clusters 2D. This time, multiple processes

across multiple nodes perform the aggregation operation on more dispersed properties.

The synchronization time for the 1,024 processes is similar for the two variations, is

negligible compared with the other overhead component in GlobalToLocal, and can

take up to 20% of the total time in LocalToGlobal. Both Figures 3.10 and 3.11 convey

the important findings that LocalToGlobal is able to perform implicit load balancing

regardless of the logical and physical data distributions.

GL LG GL LG GL LG GL LG GL LG

GL LG GL LG GL LG GL LG GL LG

GL LG GL LG GL LG GL LG GL LG

U
N

IF
O

R
M

R
O

U
N

D
-R

O
B

IN
R

A
N

D
O

M

1D 1S UN 2D 2S

Map Shuffle Overhead Reduce

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

Figure 3.11: Per process times normalized with respect to the longest process per
experiment for the Uniform, Round-robin and Random physical distri-
butions.

85

Large-scale study: Because at the small scale, the GlobalToLocal variation ex-

hibits substantial loss in scalability but the LocalToGlobal variation exhibits constant

performance independent of the logical and physical distributions, at the large scale

we focus only on LocalToGlobal. We compare and contrast the weak scalability of

this search variation on Fusion when the data size increases from 128 GB (50 million

ligands) to 2 TB (800 million ligands) while the number of nodes increases from 16

nodes (128 cores) to 256 nodes (2,048 cores). In our study, we use a single MPI process

per core and a fixed data size per core of 1 GB. In our tests, we consider the five differ-

ent logical distributions (i.e., 1D, 1S, 2D, 2S, and UN) and the Round-robin physical

distribution.

In our performance analysis, we consider both the total execution time and its

time main components (i.e., Map, Shuffle, and Reduce times). Each test is repeated

three times; the measurements reported are average values. Figure 3.12 shows the aver-

age runtime in seconds and its variation across the three runs when using an increasing

number of nodes on Fusion. We observe that as the number of nodes increases, the Map

and Reduce times stay constant while the Shuffle times increase and eventually dom-

inate the overall execution time. The Map and Reduce times are computation times.

When studying weak scaling, the computation work per node is fixed; thus, we observe

a constant behavior. However, the Shuffle times are associated with communication

times during which either metadata (in the case of GlobalToLocal) or property aggre-

gates (in the case of LocalToGlobal) are moved across nodes. The MapReduce-MPI

library uses MPI Alltoallv for communication; when the size of data and the number

of processes increase, the communication overhead increases. At a smaller scale (i.e.,

on 16 nodes on Fusion), the execution times do not vary across the different logical

metadata distributions; this result is consistent with what we observed on Gordon

when using its 64 nodes. At a larger scale (i.e., when using 256 nodes), however, the

execution times (mainly Shuffle times) vary with the logical distribution. Specifically,

dense metadata (i.e., 1D and 2D) has smaller execution times (and associated Shuffle

times). On the other hand, sparse metadata (i.e., 1S, 2S, and UN) has larger execution

86

times (and associated Shuffle times). This phenomenon is not observed at the small

platform scales on Gordon or Fusion with only 16 nodes.

1D1S2D2SUN 1D1S2D2SUN 1D1S2D2SUN 1D1S2D2SUN 1D1S2D2SUN

E
xe

cu
tio

n
tim

e
(s

ec
on

d)

0

50

100

150

200

250

300

350

400

450

500

Map
Shuffle
Reduce

16 nodes 64 nodes 128 nodes 256 nodes32 nodes

Figure 3.12: Averaged execution times in seconds and their variations cut down in
Map, Shuffle, and Reduce times on Fusion with number of nodes ranging
from 16 to 256.

To further investigate what causes the runtime variance, we look at the time

breakdown of the Shuffle times. Specifically, we measure the average time taken by

four consecutive shuffling calls in LocalToGlobal. The selection of four shuffling calls

is based on empirical observations in our previous work [29] suggesting that we can

represent each metadata point in the N-D space with a key that is 15 digits long (Nkey

=15). Consequently, our search along the tree nodes explores four levels of the tree and

performs four shuffling calls, as described in detail in Section 3.3.2. Table 3.2 shows

the four levels explored in our search for the five logical distributions.

Figure 3.13 shows the average execution times over three runs and the associated

variability for the different logical distributions when searching the larger dataset on

256 nodes of Fusion. In the figure, we observe how in the first shuffling call, 1D and 2D

87

Logical distribution
 1D 1S 2D 2S UN

E
xe

xu
tio

n
tim

e
(s

ec
on

d)

0

50

100

150

200

250

300

350

400

Shuffling I
Shuffling II
Shuffling III
Shuffling IV

Figure 3.13: Averaged Shuffle times and their variations for the four shuffling calls
and the five distributions on 256 nodes of Fusion.

distributions take less time than the 1S, 2S, and UN distributions do. In this shuffle

phase, every compute node counts the octants at Level 8. All the octkeys starting

with the same 8 digits (e.g., 00000000, 00000001, 00000002) are at the same level, and

potentially there are 88 many possible octants. In the 1D and 2D distributions, since

the metadata populates only a small region of the space, there are fewer octants to

count, so the scalar property aggregates that need to be communicated are smaller. In

the 1S, 2S, and UN distributions, the metadata populates a larger number of tree nodes;

thus, the scalar property aggregates that need to be communicated across nodes are

larger. This phenomenon ultimately results in higher Shuffle times. The second, third,

and fourth Shuffle phases explore different levels of the tree depending on whether a

dense octant is found or not at Level 8. Specifically, in their second Shuffle, 1D and 2D

explore Level 12 of the tree (i.e., move down); this exploration results in more octants

to explore, larger messages to exchange, and longer Shuffle times compared with the

first Shuffle phase at Level 8. However, 1S, 2S, and UN explore Level 4 of the tree (i.e.,

88

move up); this results in fewer octants to explore, smaller messages to exchange, and

shorter Shuffle times compared with the first Shuffle.

In the third shuffling call, 1D and 2D explore Level 10 (i.e., move up); this

Shuffle deals with fewer octants compared with the second Shuffle and, ultimately,

shorter Shuffle times than at Level 12. This is not the case for 1S and 2S that explore

Level 6 (i.e., move down); this level has more octants and thus requires longer Shuffle

times compared with the second Shuffle at Level 4. During the third Shuffle, UN

explores Level 3; this is associated with fewer octants and shorter Shuffle times than

the second Shuffle phase at Level 4. In the fourth shuffling call, 1D and 2D explore

Level 9 with its smaller number of octants compared with the previous shuffling calls

and consequently requires shorter Shuffle times. 1S and 2S explore Level 5 with fewer

octants compared with the third shuffling call and shorter Shuffle times. UN explores

Level 2; this level has fewer octants than does the previous shuffling call and requires

shorter Shuffle times.

Empirically we observe how, at the large scale, communication times associated

with shuffling calls are related to two factors in the search process: (1) the tree level to

explore in the shuffling call (i.e., the deeper the level, the more the number of octants

and the longer the Shuffle times) and (2) the metadata distribution. For the latter

factor, distributions where the metadata populates a smaller space (e.g., 1D and 2D)

exhibit Shuffle times that are smaller than distributions where metadata populates a

larger space (e.g., 1S, 2S, and UN). Moreover, while at small scales the LocalToGlobal

variation of our search does not show any sensitivity to the logical distributions, this

situation is no longer true at the larger scales. Thus, this study outlines the limits of

our approach for loosely convergent simulations (i.e., 1S and 2S) and for not convergent

simulations (i.e., UN); for the datasets generated by these simulations new algorithms

are needed to archive scalability at the large scale.

Data scalability : To evaluate the scalability of our method for tightly convergent

simulations with growing data sizes (e.g., 1D and 2D), we consider a synthetic dataset

of ligand conformations sampled with Docking@Home for the 1dif ligand-HIV protease

89

complex. The dataset is built so that it exhibits a strong convergence towards a single,

dense cluster (1D). For this dataset, we compare and contrast the execution times of

a hierarchical clustering presented in [27] and discussed in Section 3.2.1 versus our

N-D clustering [86]. The hierarchical clustering is performed on a dedicated cluster

such as Geronimo; the N-D clustering is performed on a larger shared cluster such as

Fusion. We use the 3-D metadata as an example since empirically we observed that

3-D and 6-D metadata have similar performance results. The time reported for the

hierarchical clustering is the execution time on up to 8 nodes of Geronimo and includes

both communication time, in which the distributed dataset is sent to a centralized node

through InfiniBand, and analysis times, in which the hierarchical clustering performs

comparisons of the conformations’ geometries. Data ranges from 0.5 GB (200K ligand

conformations) to 4 GB (1.6 million ligand conformations). The time reported for the

N-D clustering is the total time for the MapReduce-MPI key steps including Map,

Shuffle, and Reduce times on Fusion. The number of Fusion’ s nodes ranges from 8

to 256 and the data range from 4 GB (1.6 million ligand conformations) to 2 TB (800

million ligand conformations). Figure 3.14 shows the results of this comparison. In

0.5GB/8nodes 1GB/8nodes 2GB/8nodes 4GB/8nodes
-0

200

600
800

1000
1200
1400
1600
1800
2000

Ex
ec

ut
io

n
tim

e
(s

ec
)

Hierarchical clustering

4GB/8nodes 64GB/8nodes 128GB/16nodes 256GB/32nodes 512GB/64nodes 1024GB/128nodes 2048GB/256nodes
-0

200

600
800
1000
1200
1400
1600
1800
2000

E
xe

cu
tio

n
tim

e
(s

ec
)

Octree-based clustering

Data size / number of nodes

Figure 3.14: Performance comparison of our distributed clustering vs. the hierarchi-
cal clustering when the size of data increases.

the figure, we observe that the hierarchical clustering is not able to scale out to more

than a dataset of 4 GB (1.6 million ligand conformations) and 8 nodes due to the

fact that it needs to move the whole distributed dataset onto one node, and performs

90

all-to-all comparisons among the conformation records on that node. The type of

comparison (i.e., the computation of the root-mean-square deviations among all the

conformations) quickly fills the node’s memory. A comparisons of the times for the

hierarchical clustering for the 4 GB dataset versus the N-D clustering for the same

dataset reveals a performance speedup of 400X for our analysis method. Specifically,

the same type of analysis on the identical dataset is performed in 1999 seconds by the

hierarchical clustering and in 5 seconds by our N-D clustering.

The study of the weak scalability on Fusion when the number of conformations

increases from 25 million ligands (64 GB) to 800 million ligands (2 TB) and the number

of nodes increases from 8 nodes (64 cores) to 256 nodes (2,048 cores), reveals that

our analysis of the pharmaceutical dataset of interest scales up to 500X in data size.

Specifically, the hierarchical clustering can deal with up to 4 GB of data without

encoring in substantial slow down due to memory swap, while the N-D clustering can

deal with up to 2 TB of data without encoring into major slow down due to the iterative

exchange of densities in the MapReduce-MPI shuffle phase.

3.5 Accuracy

3.5.1 Platform

The accuracy tests are executed on the Geronimo cluster at the University of

Delaware; the cluster is described in Section 3.4.1. Geronimo mounts the real datasets

generated by Dockign@Home and thus provides easy access to the data generated at

runtime.

3.5.2 Datasets

To assess the accuracy of our proposed method, we run docking trials on Dock-

ing@Home for 23 protein-ligand complexes for HIV protease (an aspartic acid protease

protein), 21 protein-ligand complexes for Trypsin (a serine protease protein), and 12

protein-ligand complexes for P38alpha kinase (a serine/threonine kinase protein) over

five years. Figure 3.15 shows the three proteins. For each protein-ligand complex,

91

deactivating the Trypsin-like protease and are, therefore, potential agents capable of

stopping the spread of breast cancer [24].

P38alpha is the most flexible protein among the three proteins considered.

P38alpha is also known as SAPK2a and MAPK14. It is involved in the regulation

of cellular stress responses as well as the control of proliferation and survival of many

cell types. Several promising compounds that inhibit P38alpha are being investigated

as potential therapies for arthritic and inflammatory diseases [81].

3.5.3 Results and discussion

We study three key aspects in our accuracy tests: (1) the accuracy of our

methods versus an accurate but not scalable method (i.e., our previous work based on

probabilistic hierarchical clustering [27]) and a scalable but not accurate method (i.e.,

the näıve selection approach based on only the lowest conformation energy [27]); (2)

the impact of the different mappings on the accuracy when using our method; and (3)

the impact of the different density thresholds on our N-D search and selection.

For each protein, its accuracy is the number of complexes with captured near-

native conformations over the total number of complexes for that protein. Note that a

near-native conformation has an RMSD from the experimentally observed conforma-

tion that is smaller than or equal to two angstroms (Å). For our clustering, we apply

the three mapping methods described in Section 3.3 (i.e., 3-D, 3-Dlog, and 6-D map-

pings) to the real Docking@Home data and reduce the ligand geometries into metadata

points. We compare and contrast the three mappings as they allow us to progressively

capture a richer range of aspects related to the ligand geometry and location in the

protein pocket. We consider two criteria when selecting the density threshold (i.e., the

minimum number of metadata points in the tree nodes selected by the N-D search).

The first criterion is to set the density threshold to a fixed number equal to 500 meta-

data points. In other words, we always select the densest tree node with at least 500

ligand conformations (i.e., octant in the case of the 3-D and 3-Dlog mappings or 6-D

subspace in the case of the 6-D mapping). The second criterion is to set the density

93

threshold equal to 0.5% of the number of ligands conformations in each protein-ligand

complex dataset. For example, when the dataset contains 100,000 ligand conforma-

tions, the density threshold for this dataset is 500 points. When the dataset contains

500,000 ligand conformations, the density threshold for this dataset is 2,500 points.

In both cases, we capture a near-native conformation if the arithmetic median of the

conformations associated with the metadata point in the selected tree node is below

or equal to two Å. The use of the median is preferred as the accuracy metric over the

mean because it is less affected by extreme values, although the majority of our overall

results are not very sensitive to whether the median or mean is used for selection [36].

For the probabilistic hierarchical clustering, the distance metric used to cluster

each ligand is the RMSD of its atom coordinates versus all the other ligands already

in the cluster. If a simulation converges, then the largest cluster with lower internal

variance is likely the cluster that contains more near-native conformations. We cap-

ture a near-native conformation if the centroid of the selected cluster is a near-native

conformation [27]. For the energy-based approach, we consider 100 D@H conforma-

tions selected based on their lowest energy versus the same crystal structure, which we

denote as the näıve approach. Here, we identify the near-native conformation if the

arithmetic median of the lowest energy conformations is below or equal to two Å.

When using our method, the probabilistic hierarchical clustering, or the energy-

based approach, we perform the clustering and selection of the near-native candidates

without using any information on the crystal structures available for the complexes.

The crystal structures play an important role only in the validation phase when, for

each complex, we calculate the RMSD of the clustering candidate with respect to its

crystal structure. Table 3.3 summarizes the accuracy of the three approaches: (1) our

method (N-D clustering) with a fixed density threshold equal to 500 and with density

threshold equal to 0.5% of the dataset, (2) the probabilistic hierarchical clustering, and

(3) the energy-based approach.

Clustering methods: N-D, hierarchical, energy-based : When comparing our

methods with the two more traditional methods in Table 3.3, we observe how, for

94

all three proteins (i.e., HIV protease, Trypsin, and P38alpha), our N-D clustering al-

ways gives better accuracy. In particular, for the HIV protease, our clustering (using

3-D, 3-Dlog, or 6-D mappings and the two density threshold selection criteria) captures

all the 23 near-native conformations (100%); the probabilistic hierarchical clustering

method captures 20 of the 23 near-native conformations (87.0%); and the energy-based

approach is able to identify only 8 of the 23 near-native conformations (34.8%). For

Trypsin, our clustering captures 17 of the 21 near-native conformations (81.0%); the

probabilistic hierarchical clustering method captures 16 of the 21 near-native confor-

mations (76.2%); and the energy-based approach identifies only 5 of the 21 near-native

conformations (23.8%). For the P38alpha kinase, our clustering captures 10 of the 12

near-native conformations (83.3%); the probabilistic hierarchical approach captures 6

of the 12 near-native conformations (50.0%); and the energy-based approach identifies

1 of the 12 near-native conformations (0.8%).

Metadata mapping: 3-D vs. 3-Dlog vs. 6-D : When mapping the ligand con-

formation into metadata using the three mapping techniques, we find no clear winner

between the 3-D and the 6-D mappings when considering the HIV and P38alpha pro-

teins, as shown in Table 3.3. In particular, for the HIV protease, the 3-D and 6-D

mapping methods capture 21 of the 23 near-native conformations (91.3%) and 23 of

the 23 near-native conformations (100%) using a density threshold equal to 500, re-

spectively, and capture both 100% near-native conformations using a density threshold

equal to 0.5% of the dataset, respectively. For the P38alpha protease, the 3-D and

6-D mapping methods capture 9 of the 12 near-native conformations (75%) and 10

of the 12 near-native conformations (83.3%) using a density threshold equal to 500,

respectively, and capture both 83.3% near-native conformations using a density thresh-

old equal to 0.5% of the dataset, respectively. These overall tendencies can be due to

the fact that the ligands docked in these proteins’ pockets are long and with a high

degree of freedom. We note that the docking pockets considered in Docking@Home are

relatively small and known a priori. If this were not the case (e.g., we deal with large

docking regions and we do not know the exact location where the ligand conformation

95

is docked), then we would expect that a 6-D mapping was the right approach to pur-

sue with our method. When dealing with a relatively rigid protein such as Trypsin,

however, we observe that the ligands are relatively small and rigid (with very low de-

grees of freedom). In this case, the 3-Dlog mapping method achieves better accuracy

than the 3-D and 6-D methods achieve. In particular, for the Trypsin protease, the

3-Dlog mapping method captures 16 of 21 (76.2%), and 17 of 21 (81.0%) near-native

conformations using the two density threshold selection criteria.

The reduced flexibility of ligand conformations in the pocket explains why the

3-Dlog mapping works well for ligands docking in the Trypsin protease but not for

ligands docking in the other two proteins. The ligands docked into Trypsin are very

small and with limited flexibility as the protein itself is rigid. When a small and rigid

ligand conformation is in a near-vertical position in a pocket, its slope is very large. If

the conformation position slightly changes, the slope also changes significantly, because

of the projections. In the case of Trypsin, some near-native conformations may have

similar shapes and be in near-vertical positions, and their slopes may differ to the

extent such that the mapping may not result in a dense enough subspace containing

the metadata. By taking the log of the slopes, we slow the slope differences when

dealing with vertical ligand conformations.

As an example, Figure 3.16 and Figure 3.17 show the 3-D metadata obtained

by using the 3-D mapping and the 3-Dlog mapping respectively for ligand 1c2d from

protein Trypsin using 10,000 ligand conformations. Figure 3.16(a) shows the set of

metadata obtained by using 3-D mapping. The points in cyan have RMSD less than

8 Å but larger than 2 Å, the points in pink have RMSD less than 2 Å but larger

than 1 Å, and the points in red have RMSD less than 1 Å. The black subspaces

denote the subspaces with densities larger than the 0.5% threshold. The deepest black

subspace contains the ligand conformations identified by our clustering. As shown in

Figure 3.16, many of the near-native metadata points (i.e., red points) have larger

absolute coordinates values (i.e., in a near-vertical position). The red metadata points

are spread out in the subspace to the extent that they do not form a dense-enough

96

We evaluate the performance of our method on 64 nodes of Gordon at the San

Diego Supercomputer Center and on 256 nodes of Fusion at Argonne National Labora-

tory, considering fifteen scenarios by combining five different clustering configurations

and three physical distributions of the data. At a smaller scale of 64 nodes of Gordon,

our method shows that when exchanging smaller messages of scalar property aggre-

gates in the LocalToGlobal variation, the execution time is not sensitive to metadata

distributions in the datasets: it varies only 3.4% across the five logical distributions.

The GlobalToLocal variation, on the other hand, is sensitive to the metadata distribu-

tions. At a larger scale of 256 nodes of Fusion, our method shows that the data shuffle

stage dominates the execution time, and the Shuffle time is affected by the metadata

distribution as well as the level of trees explored in the N-dimensional tree. From the

point of view of the scalability, our method is approximately 400X faster in execution

and can analyze approximately 500X larger datasets compared with the hierarchical

clustering, because it does not require any direct movement and comparisons of ligand

conformations.

The accuracy results on 56 ligands docking in 3 proteins (i.e., HIV, Trypsin,

and P38alpha) show that our method can achieve 100%, 81.0%, and 83.3% clustering

accuracy, respectively, whereas the hierarchical-based clustering achieves 87.0%, 76.2%,

and 50.0% clustering accuracy and the energy-based scoring achieve only 34.8%, 23.8%,

and 0.8% accuracy.

Future work : Future work lies in two directions: (1) investigate how to auto-

matically choose the best mapping method (i.e., 3-D, 3-Dlog, and 6-D) for individual

ligand based on various features of the ligand and the protein pocket, and (2) study how

to exchange and aggregate the partial densities more efficiently in the LocalToGlobal

variation at the extreme scale when the metadata is not tightly converged.

For the first research direction, we empirically observed that for relatively rigid

proteins such as Trypsin, and for ligands such as 1c2d whose crystal structure is in

near-vertical position in the x, y, or z dimensions inside the docking pocket, the 3-

Dlog mapping method tends to produce results with higher accuracy. However, for

100

relatively flexible proteins such as P38alpha, and for relatively long and flexible (with

high degrees of freedom) ligands, the 3-D and 6-D mapping methods achieve better

accuracy. Moreover, when considering docking pockets that involve large regions for

which the exact docking location is not known a priori, the 6-D mapping method can

potentially give higher accuracy because it takes into consideration the ligand positions

in the docking pocket as well as the ligand shape and orientation. Future work should

study automatic techniques to quantify the accuracy of the 3-D, 3-Dlog, and 6-D

mappings for various types of ligands and protein pockets at runtime and without the

scientist’s intervention.

For the second research direction, in our large-scale performance study, we ob-

served that the Shuffle times, in which the partial densities of subspaces (i.e., scalar

property aggregates) are communicated, is affected by the logical distributions of the

metadata. In other words, when data loosely converge, the Shuffle times are responsible

for performance decays. Moreover, at the largest scale (i.e., 2,048 compute cores), the

Shuffle times take up more than half of the total execution time. Future studies should

investigate how to minimize the communication times associated with the shuffling

calls. One possibility is to consider both the metadata distribution and the topology

of the nodes when shuffling calls are performed. Instead of exchanging densities among

nodes based on the N-D subspace identifiers, we envision a shuffling phase that ex-

changes densities among topologically close nodes. Another possibility is to design a

more efficient and scalable library than MapReduce-MPI to communicate data among

compute nodes using advanced parallel computing techniques such as overlapping com-

munication with computation and multithreading.

101

T
a
b
le

3
.1
:
T
ot
al

M
ap

R
ed
u
ce

ti
m
es

in
se
co
n
d
s
ac
ro
ss

p
ro
ce
ss
es

b
ro
ke
n
d
ow

n
in
to

d
is
ti
n
ct
iv
e
co
m
p
on

en
ts
:
M
ap

(M
),

S
h
u
ffl
e
(S
),
O
ve
rh
ea
d
(O

),
R
ed
u
ce

(R
),
an

d
T
ot
al

(T
).

U
n
if
or
m

1D
1S

U
N

2D
2S

G
L

L
G

G
L

L
G

G
L

L
G

G
L

L
G

G
L

L
G

M
2.
64
E
+
05

2.
68
E
+
05

2.
65
E
+
05

2.
68
E
+
05

2.
65
E
+
05

2.
68
E
+
05

2.
65
E
+
05

2.
68
E
+
05

2.
64
E
+
05

2.
69
E
+
05

S
2.
35
E
+
04

2.
65
E
+
03

1.
40
E
+
03

2.
74
E
+
03

1.
32
E
+
03

1.
82
E
+
02

9.
88
E
+
03

2.
71
E
+
03

2.
63
E
+
03

1.
56
E
+
03

O
7.
77
E
+
06

5.
86
E
+
04

1.
01
E
+
05

6.
18
E
+
04

6.
69
E
+
04

5.
39
E
+
04

3.
07
E
+
06

5.
91
E
+
04

1.
26
E
+
05

5.
45
E
+
04

R
8.
63
E
+
03

6.
95
E
+
00

1.
64
E
+
03

8.
38
E
+
00

1.
72
E
+
03

1.
32
E
+
00

6.
50
E
+
03

7.
98
E
+
00

2.
06
E
+
03

6.
43
E
+
00

T
8.
06
E
+
06

3.
29
E
+
05

3.
69
E
+
05

3.
33
E
+
05

3.
35
E
+
05

3.
22
E
+
05

3.
35
E
+
06

3.
30
E
+
05

3.
95
E
+
05

3.
25
E
+
05

R
ou

n
d
-r
ob

in
1D

1S
U
N

2D
2S

G
L

L
G

G
L

L
G

G
L

L
G

G
L

L
G

G
L

L
G

M
2.
64
E
+
05

2.
69
E
+
05

2.
64
E
+
05

2.
70
E
+
05

2.
65
E
+
05

2.
68
E
+
05

2.
64
E
+
05

2.
69
E
+
05

2.
65
E
+
05

2.
68
E
+
05

S
1.
91
E
+
04

3.
65
E
+
03

1.
33
E
+
03

5.
04
E
+
03

1.
47
E
+
03

2.
50
E
+
03

1.
04
E
+
04

3.
85
E
+
03

2.
68
E
+
03

3.
98
E
+
03

O
8.
49
E
+
06

7.
10
E
+
04

1.
13
E
+
05

5.
62
E
+
04

6.
02
E
+
04

6.
55
E
+
04

3.
30
E
+
06

6.
18
E
+
04

1.
51
E
+
05

6.
04
E
+
04

R
9.
35
E
+
03

1.
06
E
+
01

1.
90
E
+
03

1.
31
E
+
01

1.
93
E
+
03

6.
16
E
+
00

7.
09
E
+
03

1.
11
E
+
01

2.
56
E
+
03

1.
13
E
+
01

T
8.
78
E
+
06

3.
43
E
+
05

3.
80
E
+
05

3.
31
E
+
05

3.
28
E
+
05

3.
36
E
+
05

3.
59
E
+
06

3.
35
E
+
05

4.
21
E
+
05

3.
33
E
+
05

R
an

d
om

1D
1S

U
N

2D
2S

G
L

L
G

G
L

L
G

G
L

L
G

G
L

L
G

G
L

L
G

M
2.
66
E
+
05

2.
69
E
+
05

2.
65
E
+
05

2.
69
E
+
05

2.
65
E
+
05

2.
69
E
+
05

2.
66
E
+
05

2.
69
E
+
05

2.
64
E
+
05

2.
69
E
+
05

S
1.
94
E
+
04

3.
73
E
+
03

1.
35
E
+
03

4.
92
E
+
03

1.
25
E
+
03

2.
53
E
+
03

1.
02
E
+
04

3.
77
E
+
03

3.
17
E
+
03

3.
98
E
+
03

O
8.
63
E
+
06

6.
16
E
+
04

1.
14
E
+
05

5.
72
E
+
04

6.
09
E
+
04

6.
28
E
+
04

3.
62
E
+
06

5.
67
E
+
04

1.
66
E
+
05

6.
28
E
+
04

R
9.
52
E
+
03

1.
06
E
+
01

2.
03
E
+
03

1.
30
E
+
01

1.
96
E
+
03

6.
12
E
+
00

7.
81
E
+
03

1.
09
E
+
01

2.
99
E
+
03

1.
07
E
+
01

T
8.
93
E
+
06

3.
35
E
+
05

3.
82
E
+
05

3.
32
E
+
05

3.
29
E
+
05

3.
34
E
+
05

3.
90
E
+
06

3.
30
E
+
05

4.
37
E
+
05

3.
36
E
+
05

102

Table 3.2: The four levels explored in our tree search for the five logical distributions
when representing each point with a 15-digit key.

Logical Shuffle
Distribution I II III IV
1D 8 12 10 9
1S 8 4 6 5
2D 8 12 10 9
2S 8 4 6 5
UN 8 4 3 2

103

T
a
b
le

3
.3
:
C
om

p
ar
is
on

of
th
e
n
u
m
b
er

of
h
it
s
fo
r
d
iff
er
en
t
sc
or
in
g
ap

p
ro
ac
h
es
:
ou

r
cl
u
st
er
in
g
w
it
h
d
en
si
ty

th
re
sh
ol
d

eq
u
al

to
50
0
an

d
eq
u
al

to
0.
5%

of
th
e
to
ta
l
n
u
m
b
er

of
p
oi
n
ts
,
a
p
ro
b
ab

il
is
ti
c
h
ie
ra
rc
h
ic
al

cl
u
st
er
in
g,

an
d
an

en
er
gy

-b
as
ed

sc
or
in
g
m
et
h
o
d
.

P
ro
te
in

N
-D

C
lu
st
er
in
g
w
it
h
5
0
0
P
o
in
ts

N
-D

C
lu
st
er
in
g
w
it
h
0
.5
%

P
o
in
ts

H
ie
ra
rc
h
ic
a
l

M
in
.
E
n
er
g
y

3
-D

3
-D

lo
g

6
-D

3
-D

3
-D

lo
g

6
-D

H
IV

2
1
/
2
3
(9
1
.3
%
)

1
7
/
2
3
(7
3
.9
%
)

2
3
/
2
3
(1

0
0
.0
%

)
2
3
/
2
3
(1

0
0
.0
%

)
2
0
/
2
3
(8
7
.0
%
)

2
3
/
2
3
(1

0
0
.0
%

)
2
0
/
2
3
(8
7
.0
%
)

8
/
2
3
(3
4
.8
%
)

T
ry
p
si
n

1
2
/
2
1
(5
7
.1
%
)

1
6
/
2
1
(7

6
.2
%

)
1
3
/
2
1
(6
1
.9
%
)

1
5
/
2
1
(7
1
.4
%
)

1
7
/
2
1
(8

1
.0
%

)
1
4
/
2
1
(6
6
.7
%
)

1
6
/
2
1
(7

6
.2
%

)
5
/
2
1
(2
3
.8
%
)

P
3
8
a
lp
h
a

9
/
1
2
(7
5
.0
%
)

7
/
1
2
(5
8
.3
%
)

1
0
/
1
2
(8

3
.3
%

)
1
0
/
1
2
(8

3
.3
%

)
8
/
1
2
(6
6
.7
%
)

1
0
/
1
2
(8

3
.3
%

)
6
/
1
2
(5
0
.0
%
)

1
/
1
2
(0
.8
%
)

A
ll

4
2
/
5
6
(7
5
.0
%
)

4
0
/
5
6
(7
1
.4
%
)

4
6
/
5
6
(8

2
.1
%

)
4
8
/
5
6
(8

5
.7
%

)
4
5
/
5
6
(8
0
.4
%
)

4
7
/
5
6
(8
3
.9
%
)

4
2
/
5
6
(7
5
.0
%
)

1
4
/
5
6
(2
5
.0
%
)

104

Chapter 4

CLUSTERING OF PROTEIN FOLDING TRAJECTORIES

Protein folding simulations search for trajectories leading to conformations close

to the native (folded) protein structure originating from an unfolded conformation.

During the folding process, the protein changes its conformations into what are called

meta-stable and transition stages. In a meta-stable stage, consecutive protein confor-

mations have similar geometric shapes and thus display small structural variations.

In a transition stage, consecutive protein conformations change from one meta-stable

stage to another and thus exhibit large structural variations. The study of folding

trajectories includes intra-trajectory analysis, which aims to identify meta-stable and

transition stages, and inter-trajectory analysis, which studies the ability of multiple

trajectories to explore overlapping folding space and eventually converge to the same

conformation. Traditionally, both intra-trajectory and inter-trajectory analysis meth-

ods follow a centralized approach that moves the trajectory datasets to one centralized

node and processes the data only after the simulations are complete.

The third analysis problem in this thesis is to identify recurrent patterns in the

folding trajectories locally, without moving the trajectory datasets. To this end, we

consider each protein conformation in the trajectory in isolation and extract its geo-

metric shape as a single 3-D metadata point consisting of the three largest eigenvalues

of the atoms’ distance matrix. A hierarchical fuzzy c-means clustering is performed on

subsets of local metadata points to map a trajectory’s subsegment into meta-stable and

transition stages. The performance and accuracy study of the method are performed

on the 207 GB folding trajectory dataset of the protein HP-35 NleNle (i.e., a variant of

the villin headpiece subdomain containing alpha helix) and 5.4 TB folding trajectories

105

of the protein BPTI (i.e., bovine pancreatic trypsin inhibitor containing both alpha

helix and beta sheet).

The rest of this chapter is organized as follows. Section 4.1 gives background in-

formation on protein folding trajectories, the intra- and inter-trajectory analysis prob-

lems, and the Parallel MATLAB framework. Section 4.2 reviews the related work on

traditional approaches for trajectory analysis and other big data analysis problems in

MapReduce. Section 4.3 presents the methodology. Sections 4.4 and 4.5 present the

performance scalability and accuracy evaluation on the NleNle and BPTI datasets,

respectively. Section 4.6 summarizes the research results and discusses future work.

4.1 Background

4.1.1 Protein folding trajectories

Protein folding simulations generate trajectories that reveal ensembles of diverse

structures as well as folding kinetics involved in actual protein folding process. During

the folding process, the protein changes its conformations into what are called meta-

stable and transition stages. In a meta-stable stage, consecutive protein conformations

have similar geometric shapes and thus display small structural variations. In a tran-

sition stage, consecutive protein conformations change from one meta-stable stage to

another and thus exhibit large structural variations.

With the power of high-performance computing platforms, folding trajectories

are generated in large scale on large distributed memory systems. For a typical trajec-

tory dataset, each trajectory is divided into consecutive frames. Each frame contains

a fixed number of consecutively sampled protein conformations during the simulation.

Each frame is generated and stored separately on the node of the distributed memory

system. Ideally, the analyses of such trajectory datasets should be in a distributed

fashion as are the generation and storage of the datasets.

106

4.1.2 Intra- and inter-trajectory analysis

Molecular dynamics (MD) simulations generate large datasets of folding trajec-

tories of biomolecules such as proteins. The trajectories explore a large conformational

space of protein structures and thus provide information for investigating the structure-

function relationship, which is essential in protein folding studies. By looking at the

groups of conformations that share similar geometric features and the transitions be-

tween these groups, scientists can learn more about the protein folding process. Such

knowledge has many practical applications including a better understanding of protein

misfolding and of how to speed drug design for certain related diseases [22].

The study of folding trajectories includes intra-trajectory analysis, which aims to

identify meta-stable and transition stages, and inter-trajectory analysis, which studies

the ability of multiple trajectories to explore overlapping folding space and eventually

converge to the same conformation. The analyses typically rely on clustering techniques

and can reveal important information about structural ensembles and the pathways a

protein can go through during its folding process.

4.1.3 Parallel MATLAB

As a high-level scripting language, MATLAB has been considered an inefficient

language for high-performance computing(HPC) [52]. Recently, however, because of

the advances in its memory model and its finer programming granularity, Parallel

MATLAB has emerged as a suitable language for HPC, as suggested by the HPC com-

munity in a spring 2013 meeting at Argonne National Laboratory [53]. Today, several

supercomputers support Parallel MATLAB, including Gordon, the SDSC cluster used

for our tests.

In Parallel MATLAB, users can launch parallel jobs, comprising a set of tasks,

in what is called a client session. This session usually runs on the local machine used by

the programmer. Launched jobs are submitted to a cluster or supercomputer to execute

the tasks on its processors. Each MATLAB session running a task on a processor is

called a worker. MATLAB provides the user with the functionality to define jobs

107

and tasks. A job represents an abstraction of the application to be solved through

the execution of multiple tasks. Tasks are blocks of code with specific functionalities.

For example, consider an application performing matrix multiplication over very large

matrices. In this case, a job is the matrix multiplication, and tasks are identical

sets of operations performed over partitions of data in which the multiplication was

decomposed. As another example, consider a classifier exploiting functional parallelism.

In this case, the tasks are different processing units including the preprocessing of the

data and the training module. To showcase that our method does not depend on a

particular MapReduce library or framework, we implemented our method in Parallel

MATLAB.

4.2 Limits of Current Practice

4.2.1 Traditional methods for trajectory analysis

When performed in a distributed fashion, trajectory analysis targets simple

properties such as the number and position of ion molecules that permeate a channel.

For example, Tu et al. proposed a parallel framework called HiMach to analyze long

MD trajectories [80]. HiMach’s scalable and user-friendly MapReduce-style program-

ming interface exclusively analyzes simple statistical data of long trajectories in which

the analysis operation is naturally parallel. In contrast, our work considers more so-

phisticated geometric features of protein conformations on large datasets in which the

analysis operation is traditionally considered as naturally centralized.

Another group of research efforts focuses on various statistical information of

folding trajectories. Work in this direction includes Ensign et al. [26] and Shaw et

al. [69]. Ensign et al. investigated the heterogeneity in folding trajectories by looking

at selected characteristics such as the RMSDs of the alpha helices between sampled

protein conformations and the energy-minimized native structure. Shaw et al. studied

the atomic-level of protein structure dynamics by looking at the RMSDs as well as

other statistics of sampled protein conformations characterizations (e.g., computational

f-values for selected mutants, survival probability distributions for the internal water

108

molecules of a protein). In our work, we focus on the more complex geometric shape

for groups of conformations in the trajectory without making reference to the native

structure.

More sophisticated trajectory analyses, such as the intra-trajectory and inter-

trajectory analysis considered in this thesis, are traditionally centralized, target small

protein molecules, and work for short folding trajectories. Algorithmically the analysis

requires constructing a centralized dissimilarity matrix using all the trajectory data,

reducing the dimensionality of the matrix, and then clustering the low-dimensional

matrix. The work of Best el al. and Phillips et al. follows this method [58, 7]. In

general the centralized nature of the algorithms in Best el al. and Phillips et al. make

their analysis inefficient when dealing with large proteins and long trajectories. Our

work differs from these approaches in three ways. First, it considers and supports the

analysis for sophisticated protein conformations; we look at the protein HP-35 NleNle

(i.e., a variant of the villin headpiece subdomain) with 35 amino acids, whereas Best

et al. focused on a single molecule with only three amino acids. Second, we use the

real folding trajectories of the protein HP-35 NleNle for validation, in contrast to the

synthetic folding trajectories used in the work of Phillips et al. Third, our work exhibits

high scalability, whereas the work of both Best el al. and Phillips et al. does not.

4.2.2 Other big data analysis problems

More general big data analysis problems can be categorized as small analytics

on big volumes of data and big analytics on big volumes of data [82]. Small analytics

refers to running simple count, sum, min, max and average operations. The operations

are usually data parallel and extract simple statistical information from large amounts

of data. For these problems, there are multiple research efforts using in-situ analysis to

improve performance. For example, Bennett et al. introduced a hybrid approach that

combines in-situ and in-transit processing for extreme-scale scientific analysis such

as topological analysis, descriptive statistics, and visualization [6]. Their approach

requires dealing with the in-transit overhead, however, whereas our method enables

109

purely in-situ data analysis without the overhead of in-transit operations. The work

of Lakshminarasimhan et al. is another relevant example [44]. Their work combines

in-situ data encoding and index generation techniques exclusively for efficient query

processing. Arguably, this approach reduces the time to generate indexes and thus

indirectly reduces the time to analysis. Our work, however, enables efficient in-situ

analysis for geometric shape analysis without the need for indexing.

Big analytics refers to data clustering, regression, machine learning, and other

more complex operations. For these big data analyses, several research efforts have

focused on improving the performance of the analysis methods by reducing data move-

ment across nodes. For example, as discussed in Section 3.2.2, Cordeiro et al. optimized

a density-based clustering approach by finding a trade-off between disk I/O and net-

work communication [18]. The three algorithms presented in their work rely on local

clustering of subregions and the merging of local results into a global solution. The

algorithm requires iterative data reading from disk. In contrast, our method performs

only a single-pass analysis on the whole dataset. The work of Liu et al. is another

example of big analytics methods with the same goal of reducing data movement [48].

Their work caches sub-results of tasks for later use in order to reduce data movement;

therefore, it is more efficient when a large number of tasks share the same subtasks

and use the same sub-results. On the other hand, our work considers how to reduce

data movement in the context of a single task (i.e., the intra- and inter-analysis for

the whole dataset). To the best of our knowledge, our work is the first to rethink

and redesign the analysis method on large-scale protein folding trajectories in order to

provide a one-pass, distributed online, in-situ data analysis.

4.3 Methodology

The method of identifying recurrent patterns in folding trajectories of proteins

consists of two steps. Given a trajectory composed of frames generated in a dis-

tributed fashion and containing up to 400 consecutively folding protein conformations,

110

amount of variations in the data associated with the corresponding eigenvector [8]. In

this case we use the information contained in the leading eigenvalues to summarize the

conformational features of the protein at a given time in the folding process. Thus, we

are able to reduce the protein dimensionality into a single point in the 3-D Euclidean

space. In other words, the three eigenvalues represent the variance or curves of the

backbone atoms with respect to each other in the protein’s alpha helices or beta sheets.

Figure 4.2(c) shows the three eigenvalues and eigenvectors obtained for the matrix in

Figure 4.2(b). The figure also shows the reduced representation of the protein confor-

mation into the 3-D point. In summary, the method maps each protein conformation

from 3∗M atom’s coordinates to 3∗1 floating-point numbers. It performs the mapping

for each conformation in a frame separately from the other mapped conformations in

a concurrent manner.

By mapping geometries into single 3-D points and working on the points rather

than the trajectory frames, we hypothesized that close 3-D points in the new three-

dimensional space were generated by similar protein conformations in the original fold-

ing trajectory. We empirically validated this hypothesis using the whole villin dataset

consisting of 451 trajectories. Each trajectory contains around 30K protein conforma-

tions. For each trajectory, we performed a two-sided Pearson correlation coefficient test

on the following two variables: RMSDdm and RMSD3D. RMSDdm is the RMSD be-

tween the distance matrix of the crystal structure and the distance matrix of each pro-

tein conformation in the whole trajectory. Similarly, RMSD3D is the RMSD between

the 3-D point of the crystal structure and the 3-D point of each protein conformation

in the whole trajectory. As discussed in Section 3.3.1, Pearson coefficients can fall in

the range of [-1, 1]. A value close to -1 means that there is a strong negative linear

correlation between the two variables in a test. A value close to 1 means that there is a

strong positive linear correlation between the two variables in a test. More specifically,

a value equal to or larger than 0.7 denotes a strong linear correlation, and a value

between 0.5 and 0.7 denotes a moderate linear correlation [73]. In our case, if the 3-D

points that are close together have similar protein conformations, we should observe

113

a linear correlation between the two variables RMSDdm and RMSD3D. As shown in

Table 4.1, in 341 of the 451 trajectories (i.e., 75.6%), the RMSD3D and RMSDdm are

strongly correlated. In 78 of 451 (i.e., 17.3%), the two variables are moderately corre-

lated. In all, we empirically observed that in 92.9% of the trajectories, our method is

effective in maintaining the conformational information.

Table 4.1: Number of trajectories with Pearson coefficient (co) in range for the 451
trajectories

Condition co ≥ 0.7 0.7 > co ≥ 0.5 0.5 > co
Count 341/451 (75.6%) 78/451 (17.3%) 32/451 (7.1%)

4.3.2 Clustering of meta-stable and transition stages

As the folding evolves, the protein changes between meta-stable and transition

stages. Each frame composing a trajectory may contain up to 400 protein confor-

mations that can be clustered into one or more of these two stage categories. Rather

than clustering the 400 conformations based on their N atomic coordinates, our method

works on the 400 3-D points generated above, each of which represents a protein confor-

mation, and then computes the probability that each point belongs to a meta-stable or

transition stage within a frame. Probabilities are computed by using a fuzzy clustering

technique. More specifically, the method uses a hierarchical fuzzy c-means clustering

to classify the points into meta-stable and transition stages for each local frame. By

taking all the 3-D points in one frame as input, the method partitions the points into

two stages using the fuzzy c-means algorithm [14]. From here each point has a certain

probability of belonging to one of two initial stages. The points that do not strongly

belong to either stage (probability < 0.6) are removed. Our method then performs a

Welch’s t-test with p-value less than 0.01 to assess the equality of the two stages. If

the two stages are equal according to the t-test, then the classification process finishes

having identified one single stage within the frame. If the two stages are not equal, then

114

the stage with more points inside is selected as the new input. The method iterates

using the new input throughout the process by mapping the selected points into two

new stages, removing those points that do not strongly belong, and testing the equality

of the two stages. For each identified stage, the method selects the 3-D point with the

highest probability to be the representative of this stage and renames it as such. The

method also computes a within-cluster or intra-cluster variance, which is basically the

squared distance from each point in the stage to the representative [54]. The method

then uses the within-cluster variance to automatically classify stages into meta-stable

or transitional. Empirically we observed that when the variance is less than 100, the

stage can be classified as meta-stable; otherwise, the stage can be classified as transi-

tional. As a result, we partition the frame conformations into stages by using only the

generated 3-D points.

Figure 4.3(a) shows the 400 3-D points in one frame of the folding villin. The

points are colored to change from blue to red to show the simulation advancing from

time step 1 to time step 400. Figure 4.3(b) shows the three stages (clusters) for the

same frame identified by our method; in this figure, all points belonging to the same

color correspond to a single stage. The method also selects one conformation within

each cluster as a representative of the associated stages (black diamond marks in the

figure). Figure 4.3(c) maps back the three stages to the 400 conformations in terms

of the root mean square deviation (RMSD) of each folding conformation from the

folded protein observed with crystal structure techniques. More specifically, the x-axis

represents the 400 protein conformations as the simulation steps proceed, and the y-

axis represents the RMSD of each conformation with respect to the crystal structure.

The asterisks mean that the given stage is a meta-stable stage, while the crosses mean

that the given stage is a transition stage.

In order to rebuild the global knowledge of the trajectory stages (intra-trajectory

analysis) as well as to explore overlapping structural phase space of all the trajectories

(inter-trajectory analysis), the local knowledge collected with the two steps described

above is ultimately collected into a global knowledge on a single node by using a

115

0

2000

4000

6000

200
400

600
800

1000
1200

100

200

300

400

500

600

50

100

150

200

250

300

350

400

T
im

e
 s

te
p

(a)

0

2000

4000

6000

200
400

600
800

1000
1200

100

200

300

400

500

600

Stage 1

Stage 2

Stage 3

Representative

(b)

100 200 300 400
0

2

4

6

8

10

12

Protein conformations

R
M

S
D

Stage 1
Stage 2
Stage 3
Representative

(c)

Figure 4.3: 3-D points in one frame sorted based on the time generation of the asso-
ciated conformation (a); the three clusters and representatives identified
by our method (b); and the mapping of the stages back to the folding
conformation RMSDs from native protein conformation (c).

reduction operation. In intra-trajectory analysis, the global knowledge comprises the

representatives for each stage in each frame and the stage classifications indicating

whether it is a meta-stable or a transition stage. In inter-trajectory analysis, the

global knowledge comprises the representative 3-D point of each stage in all the frames

of all the trajectories. The reduction operation enables scientists to reconstruct a

global knowledge of the trajectories from the metadata with limited data storage and

movement.

4.3.3 Integration of the clustering algorithm into Parallel MATLAB

We implemented the MapReduce-style framework in Parallel MATLAB. As re-

call from Section 4.1.3, Parallel MATLAB supports the concept of job and tasks. A

job consists of a set of tasks that can be executed in parallel. Users submit the job to

the distributed memory system (e.g., the Gordon supercomputer), and the set of tasks

run in parallel on nodes of the system.

In our implementation, a MATLAB job is the intra- and inter-trajectory anal-

ysis on the whole trajectory dataset. The job comprises identical tasks executing in

116

parallel for the three consecutive functional modules in our method (i.e., the confor-

mational feature extraction, the per-frame stage classification, and the rebuilding of a

global knowledge). When in execution, each worker performs the task on its own local

data. There is a reduction communication at the end of the tasks, in which represen-

tatives’ metadata of stages are sent to one node to rebuild the recurrent stages that

the trajectory goes through. Note that the representatives information is significantly

smaller comparing to the original trajectory dataset.

In our implementation, we take advantage of data parallelism whenever possi-

ble. For this purpose we use the SPMD constructions provided by MATLAB to enable

workers to automatically execute code blocks within SPMD keywords in parallel; each

worker operates on its local data assuring the one-pass, distributed online characteri-

zation of an in situ analysis.

4.4 Performance

4.4.1 Platform

The hardware platform used in this work is Gordon, which was also used for

the tests on the ligand datasets discussed in Section 3.4.1. Gordon provides support

for Parallel MATLAB execution. We use 16 Gordon compute nodes (i.e., 256 cores)

for our performance and accuracy tests.

4.4.2 Datasets

The dataset we are working with is the protein folding trajectories of a variant of

the villin headpiece subdomain (HP-35 NleNle) that was generated by Folding@Home

using the volunteer computing paradigm (i.e., a distributed memory system) [26]. The

villin protein contains 35 amino acids and 576 atoms. The whole dataset is available

to the public and consists of 451 trajectories, starting from nine initial conformations.

Each trajectory is segmented into multiple frames, which are each generated on inde-

pendent computers. The dataset has 19,483 frames, each containing 400 consecutively

folding conformations or snapshots. The whole dataset is 203 GB, and each frame is

117

approximately 11 MB in size. In order to emulate the condition in which frames are

distributed in a scattered way across the nodes of Gordon, the dataset is distributed

on the compute nodes in a round-robin fashion.

4.4.3 Results and discussion

We study two important performance aspects of our method: first, whether it

meets the requirements of the in-situ analysis compared to traditional methods, and

second, whether it scales as both the data size and the number of cores grow.

Proposed distributed clustering vs. sequential clustering of Phillips : To assess

whether our method meets the requirements of the in-situ analysis, we compare its

performance with that of the traditional approach adopted in Phillips’ work, which

is the most recent and complete study of intra-trajectory analysis [58]. To ensure a

fair comparison, we rigorously implemented the algorithm presented in Phillips’ work

in Parallel MATLAB and exploited all the parallelism available in the algorithm. We

compared the two methods in terms of execution times, memory usage, and size of data

exchanged among nodes (i.e., the three main criteria that an in-situ analysis is expected

to meet). Because Phillips performs only intra-trajectory analysis on single trajectories,

we selected the longest trajectory in the dataset and considered its 50 frames and 20,000

protein conformations. Phillips’ method moves the 50 trajectories’ frames to one single

node and builds a dissimilarity matrix containing the distance between each pair of the

protein conformations in the whole trajectory. The method reduces the dimensionality

of the dissimilarity matrix and performs the k-mean clustering on the lower dimensional

matrix for different values of k. Since k is not known a priori and the selection of the

initial centroids can affect the accuracy of the clustering results, Phillips proposes to

use four values of k equal to 3, 5, 10, and 15 and perform each clustering with 10

random initial centroids. To maximize the parallelism in Phillips’ method, we ran

each k value with a set of random centroids in parallel by one MATLAB worker. The

40 partial results are ultimately reduced to a single node. In our method, the same

trajectory is processed by 50 MATLAB workers in parallel, and each worker operates

118

on one of the 50 frames. The partial results are then reduced to a single node as in

Phillips’ method. We repeated the runs for both methods ten times and reported the

average values observed.

The performance results are shown in Figure 4.4, which includes the execution

times and shows how our method runs the intra-trajectory analysis in 41.5 seconds in

contrast to the 10,116 seconds (approximately 3 hours) that Phillips’ method required

to analyze the same trajectory. Phillips’ method spends most of the execution time

working on the real data. The most time-demanding phases of Phillips’ algorithm

are building the matrix to store all the atom coordinates for the entire trajectory

(approx. 23% of the average execution time); constructing the dissimilarity matrix

(approx. 51% of the average execution time); and computing the normalized graph

Laplacian of the dissimilarity matrix (approx. 24% of the average execution time).

Our method has a shorter execution time since it generates and analyzes metadata.

Figure 4.4(b) shows that our method uses 6.9 MB per core to store the local data

needed for the analysis while the traditional method uses approximately 16 GB per

core. Our method uses significantly less memory than the traditional method does,

since we kept only the distance matrix of each conformation and the corresponding 3-

D points of the local frame in memory. In contrast, Phillips’ method keeps the distance

matrix, the centralized dissimilarity matrix, and the dimensional-reduced matrix of the

entire trajectory in memory. Figure 4.4(c) shows that our method moves 4.4 KB local

results to a single node in the final reduction step to rebuild the global knowledge,

whereas the traditional method moves 539 MB of data to each core performing a single

k-mean clustering with one set of k randomly selected centroids (i.e., the node receives

50 frames each of approximately 11 MB). Our method significantly reduces the size of

communication since it uses only the local reduced results (i.e., a selection of the 3-D

points) to rebuild the global knowledge. Overall, this evaluation shows that our method

meets the requirements of in-situ analysis by reducing the execution time of more than

2 orders of magnitude, using 4 orders of magnitude less memory, and reducing the

size of the moved data more than 3 orders of magnitude. Similar behaviors have been

119

observed when performing the intra-trajectory analysis for the other trajectories in the

dataset of interest.

(a) (b) (c)

Figure 4.4: Comparison of our method with the traditional method proposed by
Phillips in terms of execution time (a), memory usage per core (b), and
data moved for the analysis (c).

Study of weak scalability : To assess whether our method scales for a large

dataset, we use all of the 203 GB folding trajectories of the villin HP-35 dataset. The

scalability study consists of the inter-trajectory analysis for the multiple trajectories to

explore overlapping folding spaces. We measured the communication and computation

times of this analysis and evaluated the weak scalability of our method as the size of

the distributed memory system (i.e., the number of cores used on Gordon) and the size

of the simulation (i.e., the size of the dataset) grow. We fixed the size of trajectory

data per MATLAB worker (Gordon core) to 76 frames (i.e., 846 MB). The dataset

was distributed on the compute nodes by using a round-robin fashion to simulate the

actual distribution resulting from a simulation on a distributed memory system. We

repeated the runs three times and reported the average results.

Table 4.2 shows the observed weak scalability. We observed a linear scalability

and a parallel efficiency above 90% using up to 128 workers (cores). As the input data

size grows, the size of local results that need to be sent to the core with the global

knowledge grows proportionally. The number of cores involved in the communication

120

also increases. Both factors result in the increasing trend in the communication time

and a slight decrease of the efficiency on 256 cores. Overall, by taking advantage of local

data and communicating only a small amount of local results, our method provides a

scalable method for in-situ analysis for big folding trajectory datasets generated on

large distributed memory systems.

Table 4.2: Weak scalability study of our method on the 203 GB villin dataset on
Gordon

Num. of cores 16 32 64 128 256
Input data (GB) 12.5 25.5 51 101.5 203
Exchanged data (KB) 86.4 182.3 370.7 745.7 1498.4
Computation (sec) 1996.3 1997.5 1991.4 1960.3 2002.4
Communication (sec) 34.9 50.6 80.6 188.4 402.5
Total time (sec) 2031.2 2048.2 2072.5 2149.3 2407.3
Parallel efficiency (%) n/a 99.2 98.0 94.5 84.4

4.5 Accuracy

4.5.1 Platform

The accuracy tests are run on the same platform as the performance tests (as

described in Section 4.4.1).

4.5.2 Datasets

Two folding trajectory datasets of two proteins are used in the accuracy tests.

One is the trajectory for a smaller protein HP-35 NleNle generated by Folding@Home [26].

This protein contains 35 amino acids and 576 atoms and forms 3 alpha helices, as shown

in Figure 4.5(a). The other one is the trajectory for a larger protein BPTI generated

by the Anton supercomputer of D. E. Shaw [69]. This protein contains 58 amino acids

and 909 atoms and forms 2 beta sheets and 2 alpha helices, as shown in Figure 4.5.

121

dataset. Figures 4.6(a) and 4.6(b) show a scenario in which it is known that the protein

conformations within a given simulation frame go through only minor conformational

changes. Figure 4.6(a) shows the 3-D points generated by our method. For this case,

the variance measured by our method among the points is 25; therefore, the frame is

automatically classified as one single meta-stable stage. In Figure 4.6(b), the x-axis

represents the 400 protein conformations, and the y-axis represents the RMSD of each

conformation in comparison with the crystal structure of the protein. Because the 400

conformations have all close RMSD values, this figure confirms the presence of the

single meta-stable stage.

0

2000

4000

6000

200
400

600
800

1000
1200

100

200

300

400

500

600

(a)

100 200 300 400
0

2

4

6

8

10

12

Protein conformations

R
M

SD

Stage 1
Representative

(b)

Figure 4.6: Case study with single meta-stable stage: 3-D points generated by our
method and their classification (a) and RMSDs of the conformations from
the crystal structure (b).

Figures 4.7(a) and 4.7(b) show the scenario in which it is known that the con-

formations go through minor conformational changes and then change dramatically

to a different conformational structure at the end of the frame. Figure 4.7(a) shows

the 3-D points generated by our method. For this case, the method identifies three

stages with variances of 75, 170, and 93, respectively. Thus, the frame is automat-

ically partitioned first as one meta-stable stage, second as one transition stage, and

third as another meta-stable stage. Figure 4.7(b) shows the 400 conformations and

123

their RMSDs compared with the crystal structure. This figure confirms how the pro-

tein changes its structure through three stages with three different RMSD ranges: two

different meta-stable stages denoted by two groups of different-colored asterisks (i.e.,

green and red), and one transition stage between the two meta-stable stages denoted

by the crosses (i.e., blue).

0

2000

4000

6000

200
400

600
800

1000
1200

100

200

300

400

500

600

(a)

50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

Protein conformations

R
M

SD

Stage 1
Stage 2
Stage 3
Representative

(b)

Figure 4.7: Case study with two meta-stable stages and one transition stage: 3-D
points generated by our method and their classification (a) and RMSDs
of the conformations from the crystal structure (b).

Figures 4.8(a) and 4.8(b) show the scenario in which it is known that the folding

protein goes through a meta-stable stage followed by a transition stage that returns

the protein into the original meta-stable stage. Figure 4.8(a) shows the 3-D points

generated by our method. According to our method, the points first map conformations

that maintain a similar structure and then change drastically but return to the same

structure once again at the end of the frame. Figure 4.8(b) shows the 400 conformations

and their RMSDs compared to the crystal structure. The RMSDs confirm the transition

phase (i.e., from the red asterisks to the blue crosses) and the roll back to the starting

structure with similar RMSDs (i.e., from the blue crosses to the red asterisks).

Validation of inter-trajectory analysis on the smaller protein: We also hypothe-

sized that our method could identify whether multiple trajectories explore similar pro-

tein conformations and eventually converge to a similar structure. This hypothesis is a

124

0

2000

4000

6000

200
400

600
800

1000
1200

100

200

300

400

500

600

(a)

50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

Protein conformations

R
M

SD

Stage 1
Stage 2
Representative

(b)

Figure 4.8: Case study with one meta-stable stage and one transition stage: 3-D
points generated by our method and their classification (a) and RMSDs
of the conformations from the crystal structure (b).

corollary of the first hypothesis assessing how two close-in-space 3-D points in a single

trajectory map two similar protein conformations. Because of the independent manner

in which we extract the coordinates of each 3-D point (i.e., the eigenvalues of each

single protein conformation) without any reference to other conformations within the

trajectory or across trajectories, we can claim that the first hypothesis holds for points

across trajectories. Across the villin dataset we observed two relevant case studies.

Figure 4.9 depicts the scenario in which two trajectories explore different structures.

Each point in Figure 4.9(a) corresponds to a representative of one meta-stable stage,

and points with the same color belong to the same trajectory. Figure 4.9(b) shows

the RMSDs of the conformations associated to the two trajectories in Figure 4.9(a)

from the known crystal structure. By showing how the two trajectories have signifi-

cantly different RMSDs, Figure 4.9(a) confirms that the 3-D representative points of

the trajectories explore different structural spaces.

Figure 4.10 presents a different scenario in which it is known that two trajectories

explore similar structural space. Figure 4.10(a) presents the results of our method and

Figure 4.10(b) the validation in terms of RMSDs of the associated conformations versus

the crystal structure. As it is displayed in Figure 4.10(b), the two trajectories have

125

a smaller protein such as HP-35 NleNle, our method accurately captures the geomet-

ric shape features and clusters protein conformations into recurrent patterns. Next,

we study the accuracy of our method when dealing with a larger and more complex

protein structure such as the protein BPTI. The aspect we assess is whether the three

eigenvalues of the entire distance matrix can still capture the changes in the folding

protein.

Figure 4.11 shows the scenario in which it is known that the conformations go

through two meta-stable stages. Figure 4.11(a) shows the 3-D metadata and the two

clusters identified by our method. Figure 4.11(b) shows the 1,000 protein conformations

and their RMSDs compared with the crystal structure of the protein. We observe that

the two clusters identified by our clustering method still match the two meta-stable

stages shown in the RMSDs of protein conformations but the classification presents

some noise (i.e., the mixture of blue and red metadata shown in Figure 4.11(b)).

×10
6

4.5
4

3.5
3

2.50.5

1×106

2
2.5

3
3.5

4
4.5

5
5.5

6

1.5

×10
5

(a)

Protein conformations
0 100 200 300 400 500 600 700 800 900 1000

R
M

S
D

0

0.5

1

1.5

2

2.5

3

3.5

4 Stage 1
Stage 2
Representative

(b)

Figure 4.11: Case study with two meta-stable stages: 3-D points generated by our
method and their classification (a) and RMSDs of the conformations
from the crystal structure (b).

The reasons for the noise are that the BPTI protein is larger in size (i.e., number

of amino acids) and has a more complex structure (i.e., two alpha helices and two

antiparallel beta sheets) than the NleNle protein. BPTI contains 58 amino acids,

compared with the 35 in NleNle. This larger number results in larger entries in the

127

distance matrix of each protein conformation and thus larger eigenvalues. When using

the set of the three largest eigenvalues, one eigenvalue is much larger than the other

two, as shown in Figure 4.11(a). When applying our hierarchical clustering algorithm

to this set of eigenvalues, the largest one almost always determines how the clusters

are formed, which results in the observed noise.

In addition to its larger size, BPTI also has a more complex structure. It con-

tains two alpha helices and two antiparallel beta sheets. As shown in previous research,

antiparallel beta sheets are significantly more stable than alpha helices because of the

well-aligned H-bonds [38]. Thus, the stable antiparallel beta sheets in the protein

structure result in relatively small conformational changes in the protein’s geometry

compared with NleNle. Specifically, for BPTI, the range of RMSDs of the protein struc-

tures in the trajectory is from 1 to 3.5 angstroms (Å), as validated in [69]. For NleNle,

on the other hand, the range is from 0.5 to 12 angstroms (Å), as shown in Figure 4.9

and 4.10. Our method represents the geometrical features of a protein conformation

by using the three largest eigenvalues obtained from the entire distance matrix. In

this case, because of the stable and larger structure of the protein, the 3-D metadata

can no longer capture the small changes in the geometrical features accurately. Both

observations on the larger protein size and the more complex protein structure suggest

that we should look at specific portions of the distance matrix. In particular, we should

zoom into the distance matrix and compute eigenvalues associated for sub-matrices of

different rigid or flexible sub-structures in the protein.

4.6 Summary and Future Work

Summary : This chapter presents the application of our data analysis method

to a clustering problem in which we identify any folding patterns within and across

trajectories of a folding protein. To this end, we use our one-pass, distributed method

to perform the intra- and inter-trajectory analysis of two protein-folding datasets (i.e.,

a smaller HP-35 NleNle protein and a larger BPTI protein) generated in a distributed

fashion. Our method maps the geometrical shape of the protein conformation at a

128

specific folding time to the matrix’s three main eigenvalues. The computation of the

eigenvalues is performed in isolation, without considering past or future conformations

of the folding protein or moving all the conformations to a central server. The eigen-

values become the metadata on which the clustering is performed. We integrate the

method into a MapReduce-based framework using Parallel MATLAB. We measure the

performance of the framework when analyzing the folding trajectory of the small pro-

tein called HP-35 NleNle (i.e., a variant of the villin headpiece subdomain) on 256

compute cores of Gordon supercomputer. We compare our framework’s performance

with a more traditionally used and centralized approach and observe significantly faster

runtimes (i.e., two orders of magnitude faster, 41.5 seconds comparing to 3 hours in

the traditional method). We also observe three and four orders of magnitude reduction

respectively in the size of data movement and memory usage (i.e., 6.9 MB memory us-

age comparing to 16 GB in the traditional method, 4.4 KB data moved comparing to

539 MB). In addition, our framework presents a linear weak scalability and maintains

a parallel efficiency above 90% when using up to 128 cores. The overall results in this

thesis support our claim that our method is suitable for in-situ data analysis of folding

simulation for small proteins, since we observe that our method executes sufficiently

fast, avoids the need for moving trajectory data, and uses a limited amount of memory.

Empirically we also observe that our framework performs accurate intra-trajectory

analysis and inter-trajectory analysis on the smaller protein but fails to capture the

meta-stable stages and transition stages for the larger and more complex BPTI protein

without adding tangible noise. This observation has resulted in the identification of

interesting directions for future work presented below.

Future work : Future work includes research in three directions: (1) investigate

new methods to effectively capture the geometrical features of a protein when dealing

with more complex protein structures, (2) use stream clustering methods to identify

patterns as the trajectories are generated, and (3) apply our method in the field of

protein structure refinement in which the structures have only minor conformational

changes.

129

For the first research direction, we observe that using the distance matrix of

the whole conformation for large and complex proteins to generate the metadata may

result in noisy geometrical clustering of the trajectory stages. One possible approach

to address this problem is to look at the part of the distance matrix that corresponds

to a specific protein substructure such as a specific alpha helix or a specific beta sheet

and to extract metadata only on this partial distance matrix.

For the second research direction, we envision performing our clustering as the

protein trajectory is generated in a streaming fashion. The stream clustering can

drive intelligent decisions on whether to continue a simulation (e.g., when the protein

is going through several transition stages) or to interrupt it (e.g., when the protein

is continually in meta-stable stage) without the need for the scientist to review the

trajectory. To this end, one should explore and adapt existing and popular stream

clustering algorithms such as BRICH and COBWEB [89], [33]. Both algorithms build

and update a hierarchical data structure as new data points are generated.

For the third research direction, we anticipate applying our analysis method to

the protein structure refinement problem in which protein structures have only minor

conformational changes. We should identify which parts of the protein structure are

involved in the refinement process, and apply our method by extracting metadata using

the corresponding parts of the distance matrix. By considering only the parts of the

protein structure that are involved in the refinement process, we should be able to

observe the changes that protein structure go through in the refinement process.

130

Chapter 5

CONCLUSION

This chapter concludes the thesis by summarizing the research results, discussing

the limits and opportunities of our method, as well as presenting the broader impact

of the thesis.

5.1 Summary

In this thesis, we propose a general method for the classification and clustering

analysis of large structural biology datasets on large distributed memory systems. Our

method extracts properties and/or features of each data record locally and in parallel,

represents the capture properties as concise metadata, and performs a classification or

clustering of the metadata without moving the original data to a central server. Our

method supports three types of analysis: (1) identification of class memberships from

a specific feature or property, (2) identification of features that can be used to predict

class memberships, and (3) identification of recurrent patterns in datasets. For each

type of analysis, we present a case study in which we apply our method to a specific

structural biology dataset to study a relevant scientific problem.

In Chapter 2, we present the first case study in which we use RNA sequences

and their secondary structures as a concrete example of datasets for which we want to

identify class memberships from a specific feature or property. To this end, we design

and implement a MapReduce-based, modularized framework that allows scientists to

systematically and efficiently explore the parametric space associated with chunk-based

secondary structure predictions of long RNA sequences. The framework cuts a long

RNA sequence into chunks and uses powerful prediction programs (e.g., HotKnots,

pknotsRG, PKNOTS, and NUPACK) for each chunk’s secondary structure prediction.

131

We note that while these programs work efficiently on single chunks of a sequence,

most of the time they do not work on the entire original sequence. We implement

our chunk-based framework in Hadoop where chunks’ sampling and predictions are

associated with map functions while the entire secondary structures are rebuilt from

single chunk predictions in reduce functions. We evaluate the framework’s performance

and accuracy using two datasets of RNA sequences on the Geronimo cluster at the

University of Delaware using up to 64 compute cores. We observe that in a first dataset

from the RFAM database, when using the HotKnots prediction program on chunks with

79 to 451 bases, our chunk-based framework can deliver scalable performance (i.e., the

execution times increase from 49 to 93 seconds). In contrast, the execution times of

the same prediction program when entire sequences are predicted as a whole (i.e., no

chunking is applied) grow exponentially with the sequences’ lengths, ranging from 1 to

16,103 seconds. Similar behaviors are observed with other prediction programs such

as pknotsRG, PKNOTS, and NUPACK. In a second dataset from the virus family

Nodaviridae with sequences’ lengths ranging from 1,305 to 3,204 bases, our chunk-

based framework can rebuild the longest sequence in less than 20 minutes, while none

of the existing prediction programs can handle the 3,204-base sequence as a whole.

Our accuracy study using datasets from the RFAM and Pseudobase++ databases

outlines how our chunk-based framework obtains structures that are more similar to

the structures observed in nature than when no chunking is used.

In Chapter 3, we present the second case study in which we consider struc-

tural biology datasets of ligand conformations from protein-ligand docking simulations

as an example of datasets for identifying features that can be used to predict class

memberships. To this end, we define a method that can efficiently capture the geome-

tries of ligand conformations and predict what conformations dock well into a protein

pocket, without moving the conformations to a central server or comparing them with

each other. Specifically, for each ligand conformation in the dataset, our method first

extracts relevant geometrical properties and transforms these properties into a single

metadata point in the N-dimensional (N-D) space. Then, it performs an N-D clustering

132

on the metadata to search for predominant clusters. Our method avoids the need to

move ligand conformations among nodes because it extracts relevant data properties

locally and concurrently. By doing so, we transform the analysis problem into a search

for densest property aggregates. We integrate the method into the MapReduce-MPI

framework where the properties’ extractions are performed in the map function of the

framework and the search consists of one or multiple map and/or reduce functions.

We use the framework for our performance and accuracy study on an 8-node dedicated

cluster at the University of Delaware, a 64-node shared cluster at the San Diego Super-

computer Center, and a 256-node shared cluster at Argonne National Laboratory. Our

study shows that when using our framework on small computer systems of up to 64

nodes, the performance is not sensitive to data content and distribution. When consid-

ering up to 256 nodes at the large scale and with strongly convergent metadata toward

a single dense cluster of similar ligand conformations, our framework is approximately

400X faster in execution and can analyze approximately 500X larger datasets compared

with a traditional hierarchical clustering based on direct comparisons of ligand confor-

mations. We also demonstrate that our framework captures the geometrical properties

of ligand conformations more effectively and predicts near-native ligand conformations

more accurately than traditional methods do, including the hierarchical clustering and

the energy-based scoring methods. The accuracy results on 56 ligands docking in three

proteins (i.e., HIV, Trypsin, and P38alpha) show that our method can achieve 100%,

81.0%, and 83.3% clustering accuracy, respectively, whereas the traditional hierarchical

clustering achieves 87.0%, 76.2%, and 50.0% clustering accuracy and the energy-based

scoring achieve only 34.8%, 23.8%, and 0.8% accuracy.

In Chapter 4, we present the third case study in which we consider multiple

protein folding trajectory datasets sampled from folding simulations as an example of

datasets for finding recurrent patterns in datasets. To this end, we define a method

that can identify any folding patterns within and across trajectories (i.e., intra- and

inter-trajectory, respectively). The one-pass, distributed method also enables in-situ

data analysis for large protein folding trajectory datasets by executing sufficiently

133

fast, avoiding moving trajectory data, and limiting the memory usage. First, the

method extracts the geometric shape features of each protein conformation in parallel.

Next, it classifies sets of consecutive conformations into metastable and transition

stages using a probabilistic hierarchical clustering method. Then, it rebuilds the global

knowledge necessary for the intra- and inter-trajectory analysis through a reduction

operation. We implement the method in a MapReduce-based framework using Parallel

MATLAB in which the shape extractions and classifications are performed as part of

the map function and the global knowledge is rebuilt as part of the reduce function.

The comparison of our performance results obtained with our framework versus a

traditional method based on moving data to a central server that was proposed by

Phillips shows the strength of our method. Specifically, the framework can analyze

the folding trajectory of a villin headpiece subdomain consisting of 20,000 protein

conformations in 41.5 seconds whereas Phillips’ method takes approximately 3 hours.

Our framework uses 6.9 MB of memory per core while Philips method uses 16 GB

per core. Moreover, our framework communicates only 4.4 KB to a central server

whereas Phillips’ method moves the entire dataset of 539 MB. The overall results in

this thesis support our claim that our method is suitable for in-situ data analysis of

folding trajectories.

5.2 Limitations and Opportunities

While the overall set of steps to extract knowledge from data is general (i.e.,

from data to metadata and from metadata to knowledge), the implementation of the

individual step depends on the data characteristics and the scientific questions we are

trying to answer. For example, the use of projections and linear interpolations for

protein folding trajectories has showed poor accuracy because, once folded, the shape

of the protein tends to resemble symmetrical round shapes. On the other hand, the

use of eigenvalues for simple ligands is not ideal because of the limited number of

carbon atoms and the more rigid structure of ligands compared to proteins. Thus

we cannot use a single mapping to metadata but we need to understand the nature

134

of the simulations and the properties embedded in the data before to define creative

mapping algorithms that accurately capture only those properties of interest. This

limit is actually an opportunity to design new algorithms.

Our overall method assesses the accuracy and performance of the three different

analyses empirically on large but still finite datasets. The fact that our results are

accurate and efficient, does not exclude that for other datasets we may not be able

to reach similar conclusions. An in-depth approach based on quantitatively analyzes

of how accurately metadata captures the relevant properties of the original data is a

possible future direction.

Even in the best scalability results, we observed that the MapReduce paradigm

suffers from performance loss at the extreme scale due to the long data shuffle time. In

particular, our performance results for large ligand datasets of 2 TBytes on 256 nodes

of Fusion supercomputer show that the data shuffle stage takes more than half of the

execution time at this scale. This is due to the fact that the all-to-all communication

in the data shuffle stage is expensive, especially when there is load imbalance in the

metadata distribution. While we have substantially reduced the size of the data, we

have not included the topology of the machine as one of the key tuning factors in the

shuffle phase. We expect that a topology-aware data communication, in which the data

is aggregated in nodes that are topologically close, can further reduce the impact of

the data shuffle stage at the large scale.

5.3 Broader Impact

Cutting-edge distributed memory systems, such as cloud infrastructures and

high-end clusters, provide scientists with an efficient and scalable way to generate

large-scale distributed datasets by performing various computationally expensive sim-

ulations. This massive amount of data results in new challenges for the scientists who

have to analyze these data in order to gain scientific insights. This thesis bridges this

gap between distributed large-scale data generation and data analyses by providing a

general classification and clustering method together with a set of effective algorithms.

135

From a computer science perspective, by providing a scalable classification and

clustering method and the three case studies on the three computational structural

biology datasets, this work opens the door to a new generation of distributed analysis

methods. These analysis methods are designed from the beginning with the concept

of distributed processing and hence ensure performance scalability. Our method is

especially attractive to the scientific community because of two features. First, we

perform the analyses in a distributed fashion, without moving datasets that are gener-

ated and stored locally across a distributed memory system. By avoiding excessive I/O

and communication, our method reduces the network bandwidth usage and the energy

consumption of the system. Second, our method requires a relatively small amount of

memory and is executed sufficiently fast. These two features make our method an ideal

candidate for in-situ data analysis, in which we can provide runtime feedback to sci-

entific simulations to ensure and help these simulations make scientifically meaningful

progress. Potentially, these features allow the integration of our analysis method into

the data generation process of scientific simulations, which bring runtime intelligent to

the simulations.

From a scientific perspective, our method provides meaningful information and

feedback about the computational simulation’s efficiency and accuracy. The accurate

results that our method generates help advance the landscape of scientific discoveries

by speeding the scientific process such as designing drugs or studying diseases related

to protein misfolding. Moreover, the feedback from the accuracy study of our method

helps the development of more efficient and accurate mathematical models for scientific

simulations.

136

BIBLIOGRAPHY

[1] MATLAB and statistics toolbox release 2012b. The MathWorks Inc., 2012.

[2] R. Abagyan, M. Totrov, and D. Kuznetsov. A new method for protein modeling
and design: Applications to docking and structure prediction from the distorted
native conformation. Journal of Computational Chemistry, 15(5):488–506, 1994.

[3] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

[4] D. P. Anderson. BOINC: A system for public-resource computing and storage. In
Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing
(GRID), pages 4–10, 2004.

[5] K. Backbro, S. Lowgren, K. Osterlund, J. Atepo, T. Unge, J. Hulten, N. M.
Bonham, W. Schaal, A. Karlen, and A. Hallberg. Unexpected binding mode
of a cyclic sulfamide HIV-1 protease inhibitor. Journal of Medical Chemistry,
40(6):898–902, 1997.

[6] J. C. Bennett, H. Abbasi, P. T. Bremer, R. Grout, A. Gyulassy, T. Jin, S. Klasky,
H. Kolla, M. Parashar, V. Pascucci, P. Pebay, D. Thompson, H. Yu, F. Zhang,
and J. Chen. Combining in-situ and in-transit processing to enable extreme-
scale scientific analysis. In Proceedings of the 2012 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC), pages 1–9, 2012.

[7] C. Best and H. C. Hege. Visualizing and identifying conformational ensembles in
molecular dynamics trajectories. Computing in Science Engineering, 4(3):68–75,
2002.

[8] I. Borg and P. J. F. Groenen. Modern multidimensional scaling: Theory and
applications. Springer, second edition, 2005.

[9] G. Bouvier, N. Evrard-Todeschi, J. P. Girault, and G. Bertho. Automatic clus-
tering of docking poses in virtual screening process using self-organising map.
Bioinformatics Advance Access, 26(1):53–60, 2009.

[10] I. Brierley, S. Pennell, and R. J. Gilbert. Viral RNA pseudoknots: Versatile motifs
in gene expression and replication. Nature Reviews Microbiology, 5(8):598–610,
2007.

137

[11] B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and
M. Karplus. CHARMM: A program for macromolecular energy minimization, and
dynamics calculations. Journal of Computational Chemistry, 4(2):187–217, 1983.

[12] S. W. Burge, J. Daub, R. Eberhardt, J. Tate, L. Barquist, E. P. Nawrocki, S. R.
Eddy, P. P. Gardner, and A. Bateman. Rfam 11.0: 10 years of RNA families.
Nucleic Acids Research, 41(D1):D226–D232, 2013.

[13] B. D. Bursulaya, M. Totrov, R. Abagyan, and C. L. Brooks III. Comparative
study of several algorithms for flexible ligand docking. Journal Of Computer-
Aided Molecular Design, 17(11):755–763, 2003.

[14] R. L. Cannon, J. V. Dave, and J. C. Bezdek. Efficient implementation of the
fuzzy c-means clustering algorithms. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 8(2):248–255, 1986.

[15] A. M. Caulfield, L. M. Grupp, and S. Swanson. Gordon: Using flash memory to
build fast, power-efficient clusters for data-intensive applications. ACM SIGARCH
Computer Architecture News, 37(1):217–228, 2009.

[16] M. W. Chang, R. K. Belew, K. S. Carroll, A. J. Olson, and D. S. Goodsell. Empiri-
cal entropic contributions in computational docking: Evaluation in APS reductase
complexes. Journal of Computational Chemistry, 29(11):1753–1761, 2008.

[17] D. S. Chew, M.-Y. Leung, and K. P. Choi1. AT excursion: A new approach to
predict replication origins in viral genomes by locating AT-rich regions. BMC
Bioinformatics, 8(1):163, 2007.

[18] R. L. F. Cordeiro, C. Traina Jr, A. J. M. Traina, J. López, U. Kang, and C. Falout-
sos. Clustering very large multi-dimensional datasets with MapReduce. In Proceed-
ings of the 17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pages 690–698, 2011.

[19] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[20] R. M. Dirks and N. A. Pierce. A partition function algorithm for nucleic acid
secondary structure including pseudoknots. Journal of Computational Chemistry,
24(13):1664–1677, 2003.

[21] R. M. Dirks and N. A. Pierce. An algorithm for computing nucleic acid base-
pairing probabilities including pseudoknots. Journal of Computational Chemistry,
25(10):1295–1304, 2004.

[22] C. M. Dobson. Protein folding and misfolding. Nature, 426(6968):884–890, 2003.

[23] Docking@Home. [ONLINE] http://docking.cis.udel.edu.

138

[24] F. Dullweber, M. T. Stubbs, D. Musil, J. Sturzebecher, and G. Klebe. Factorising
ligand affinity: A combined thermodynamic and crystallographic study of trypsin
and thrombin inhibition. Journal of Molecular Biology, 313(3):593–614, 2001.

[25] A. Ene, S. Im, and B. Moseley. Fast clustering using MapReduce. In Proceedings
of the 17th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), pages 681–689, 2011.

[26] D. L. Ensign, P. M. Kasson, and V. S. Pande. Heterogeneity even at the speed
limit of folding: Large-scale molecular dynamics study of a fast-folding variant of
the villin headpiece. Journal of Molecular Biology, 374(3):806–816, 2007.

[27] T. Estrada, R. S. Armen, and M. Taufer. Automatic selection of near-native
protein-ligand conformations using a hierarchical clustering and volunteer comput-
ing. In Proceedings of the 1st ACM International Conference on Bioinformatics
and Computational Biology (BCB), pages 204–213, 2010.

[28] T. Estrada, B. Zhang, P. Cicotti, R. S. Armen, and M. Taufer. Accurate analysis
of large datasets of protein-ligand binding geometries using advanced clustering
methods. Computers in Biology and Medicine, 42(7):758–771, 2012.

[29] T. Estrada, B. Zhang, P. Cicotti, R. S. Armen, and M. Taufer. Reengineer-
ing high-throughput molecular datasets for scalable clustering using MapReduce.
In Proceedings of the 14th IEEE International Conference on High Performance
Computing and Communications (HPCC), pages 351–359, 2012.

[30] P. Ferrara, H. Gohlke, D. Price, G. Klebe, and C. L. Brooks III. Assessing scor-
ing functions for protein-ligand interactions. Journal of Medicinal Chemistry,
47(12):3032–3047, 2004.

[31] A. Fielding. Cluster and classification techniques for the biosciences. Cambridge
University Press, 2007.

[32] E. J. Finnegan and M. A. Matzke. The small RNA world. Journal of Cell Science,
116(23):4689–4693, 2003.

[33] D. H. Fisher. Knowledge acquisition via incremental conceptual clustering. Ma-
chine Learning, 2(2):139–172, 1987.

[34] M. Friedman. The use of ranks to avoid the assumption of normality implicit in the
analysis of variance. Journal of the American Statistical Association, 32(200):675–
701, 1937.

[35] Apache Hadoop. [ONLINE] http://hadoop.apache.org/.

[36] P. C. D. Hawkins, G. L. Warren, A. G. Skillman, and A. Nicholls. How to do
an evaluation: Pitfalls and traps. Journal of Computer-Aided Molecular Design,
22(3-4):179–190, 2008.

139

[37] M. Hefeeda, F. Gao, and W. Abd-Almageed. Distributed approximate spectral
clustering for large-scale datasets. In Proceedings of the 21st International Sym-
posium on High-Performance Parallel and Distributed Computing (HPDC), pages
223–234, 2012.

[38] K. A. W. Henzler, D. K. Lee, and A. Ramamoorthy. Determination of alpha-
helix and beta-sheet stability in the solid state: a solid-state NMR investigation
of]oly(L-alanine). Biopolymers, 64(5):246–254, 2002.

[39] I. L. Hofacker, W. Fontana, P. F. Stadler, S. Bonhoeffer, M. Tacker, and P. Schus-
ter. Fast folding and comparison of RNA secondary structures. Monatshefte für
Chemie, 125(2):167–188, 1994.

[40] D. Hong, A. Rhie, S.-S. Park, J. Lee, Y. S. Ju, S. Kim, S.-B. Yu, T. Bleazard,
H.-S. Park, H. Rhee, H. Chong, K.-S. Yang, Y.-S. Lee, I.-H. Kim, J. S. Lee, J.-I.
Kim, and J. S. Seo. FX: an RNA-Seq analysis tool on the cloud. Bioinformatics,
28(5):721–723, 2012.

[41] A. N. Jain. Bias, reporting, and sharing: Computational evaluations of docking
methods. Journal of Computer-Aided Molecular Design, 22(3-4):201–212, 2008.

[42] K. N. Johnson, K. L. Johnson, R. Dasgupta, T. Gratsch, and L. A. Ball. Com-
parisons among the larger genome segments of six Nodaviruses and their encoded
RNA replicases. Journal of General Virology, 82(Pt 8):1855–1866, 2001.

[43] S. Karlin, A. Dembo, and T. Kawabata. Statistical composition of high-scoring
segments from molecular sequences. Annals of Statistics, 18(2):571–581, 1990.

[44] S. Lakshminarasimhan, D. A. Boyuka, S. V. Pendse, X. Zou, J. Jenkins, V. Vish-
wanath, M. E. Papka, and N. F. Samatova. Scalable in situ scientific data encoding
for analytical query processing. In Proceedings of the 22nd international sympo-
sium on High-performance parallel and distributed computing (HPDC), pages 1–12,
2013.

[45] B. Langmead, K. D. Hansen, and J. T. Leek. Cloud-scale RNA-sequencing differ-
ential expression analysis with Myrna. Genome Biology, 11:R83, 2011.

[46] M. S. Lee, M. Feig, F. R. Salsbury Jr., and C. L. Brooks III. New analytic
approximation to the standard molecular volume definition and its application
to generalized Born calculations. Journal of Computational Chemistry, 24:1348–
1356, 2003.

[47] H. G. Li, G. Q. Wu, X. G. Hu, J. Zhang, L. Li, and X. Wu. K-means clustering
with bagging and MapReduce. In Proceedings of the 44th Hawaii International
Conference on System Sciences (HICSS), pages 1–8, 2011.

140

[48] J. Liu, S. Byna, and Y. Chen. Segmented analysis for reducing data movement. In
Proceedings of the IEEE International Conference on Big Data (BigData), 2013.

[49] S. Lorenzen and Y. Zhang. Identification of near-native structures by clustering
protein docking conformations. PROTEINS: Structure, Function, and Bioinfor-
matics, 68:187–194, 2007.

[50] N. R. Markham and M. Zuker. UNAFold: Software for nucleic acid folding and
hybridization. Methods in Molecular Biology, 453:3–31, 2008.

[51] A. Matsunaga, M. Tsugawa, and J. Fortes. CloudBLAST: Combining MapReduce
and virtualization on distributed resources for bioinformatics applications. In
Proceeding of the IEEE 4th International Conference on eScience (eScience), pages
222–229, 2008.

[52] C. Moler. Why there isn’t parallel Matlab. Mathworks Newsletter, 00:12, 1995.

[53] C. Moler. Parallel MATLAB: From hell no to you bet. Thirty Years of Parallel
Computing at Argonne: A Symposium, 2013.

[54] E. Mooi and M. Sarstedt. A concise guide to market research: The process, data,
and methods using IBM SPSS statistics. Springer, 2011.

[55] G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew,
and A. J. Olson. Automated docking using a Lamarckian genetic algorithm and
empirical binding free energy function. Journal of Computational Chemistry,
19(14):1639–1662, 1998.

[56] R. Nussinov and A. B. Jacobson. Fast algorithm for predicting the secondary
structure of single stranded RNA. Proceedings of the National Academy of Sciences
of the United States of America, 77(11):6309–6313, 1980.

[57] E. Perola, W. P. Walters, and P. S. Charifson. A detailed comparison of current
docking and scoring methods on systems of pharmaceutical relevance. Proteins,
56(2):235–249, 2004.

[58] J. Phillips, M. Colvin, and S. Newsam. Validating clustering of molecular dynamics
simulations using polymer models. BMC Bioinformatics, 12(1):445–467, 2011.

[59] S. J. Plimpton and K. D. Devine. MapReduce in MPI for large-scale graph algo-
rithms. Parallel Computing, 37(9), September 2011.

[60] M. Rarey, B. Kramer, T. Lengauer, and G. A. Klebe. A fast flexible docking
method using an incremental construction algorithm. Journal of Molecular Biol-
ogy, 261(3):470–489, 1996.

141

[61] Z. Rasheed and H. Rangwala. A Map-Reduce framework for clustering
metagenomes. In Proceedings of the 13th IEEE International Workshop on High
Performance Computational Biology (HiCOMB), pages 549–558, 2013.

[62] J. Reeder, P. Steffen, and R. Giegerich. pknotsRG: RNA pseudoknot folding
including near-optimal structures and sliding windows. Nucleic Acids Research,
33(suppl 2):W320–324, 2007.

[63] J. Ren, B. Rastegari, A. Condon, and H. H. Hoos. Hotknots: Heuristic prediction
of RNA secondary structures including pseudoknots. RNA, 11(10):1494–1504,
2005.

[64] E. Rivas and S. R. Eddy. A dynamic programming algorithm for RNA structure
prediction including pseudoknots. Journal of Molecular Biology, 285(5):2053–2568,
1999.

[65] J. J. Rosskopf, J. H. Upton III, L. Rodarte, T. A. Romero, M.-Y. Leung, M. Taufer,
and K. L. Johnson. A 3’ terminal stem-loop structure in Nodamura virus RNA2
forms an essential cis-acting signal for RNA replication. Virus Research, 150(1-
2):12–21, 2010.

[66] D. Sankoff. Simultaneous solution of the RNA folding,alignment and protose-
quence problems. SIAM Journal on Applied Mathematics, 45(5):810–825, 1985.

[67] K. Sato, Y. Kato, M. Hamada, T. Akutsu, and K. Asai. IPknot: Fast and ac-
curate prediction of RNA secondary structures with pseudoknots using integer
programming. Bioinformatics, 27(13):i85–i93, 2011.

[68] M. C. Schatz. Cloudburst: Highly sensitive read mapping with MapReduce. Bioin-
formatics, 25(11):1363–1369, 2009.

[69] D. E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana, R. O. Dror, M. P. East-
wood, J. A. Bank, J. M. Jumper, J. K. Salmon, Y. Shan, and W. Wriggers.
Atomic-level characterization of the structural dynamics of proteins. Science,
330(6002):341–346, 2010.

[70] S. S. Shende and A. D. Malony. The TAU parallel performance system. In-
ternational Journal of High Performance Computing Applications, 20(2):287–311,
2006.

[71] C. H. Siederdissen and I. L. Hofacker. Discriminatory power of RNA family models.
Bioinformatics, 26(18):i453–i459, 2010.

[72] A. Smith, Z. Xuan, and M. Zhang. Using quality scores and longer reads improves
accuracy of Solexa read mapping. BMC Bioinformatics, 9(1):128, 2008.

142

[73] G. W. Snedecor and W. G. Cochran. The sample correlation coefficient R. In
Statistical Methods, pages 175–178. Iowa State Press, 7th edition, 1980.

[74] M. Taufer, R. S. Armen, J. Chen, P. J. Teller, and C. L. Brooks III. Computational
multi-scale modeling in protein-ligand docking. IEEE Engineering in Medicine and
Biology Magazine, 28(2):58–69, 2009.

[75] M. Taufer, M. Crowley, D. Price, A. A. Chien, and C. L. Brooks III. Study of an
accurate and fast protein-ligand docking algorithm based on molecular dynamics.
Concurrency and Computation: Practice and Experience, 17(14):1627–1641, 2005.

[76] M. Taufer, M.-Y. Leung, T. Solorio, A. Licon, D. Mireles, R. Araiza, and K.L.
Johnson. RNAVLab: A virtual laboratory for studying RNA secondary structures
based on grid computing technology. Parallel Computing, 34(11):661–680, 2008.

[77] M. Taufer, A. Licon, R. Araiza, D. Mireles, A. Gultyaev, F. H. D. Van Baten-
burg, and M.-Y. Leung. Pseudobase++: An extension of PseudoBase for easy
searching, formatting, and visualization of pseudoknots. Nucleic Acids Research,
37(Database-Issue):127–135, 2009.

[78] V. Thiel, K. A. Ivanov, A. Putics, T. Hertziq, B. Schelle, S. Bayer, B. Weissbrich,
E. J. Snijder, H. Rabenau, H. W. Doerr, A. E. Gorbalenya, and J. Ziebuhr. Mech-
anisms and enzymes involved in SARS coronavirus genome expression. Journal of
General Virology, 84(Pt 9):2305–2315, 2003.

[79] R. Thiery, K. L. Johnson, T. Nakai, A. Schneemann, J. R. Bonami, and D. V.
Lightner. Family Nodaviridae. In Virus Taxonomy: Ninth Report of the Interna-
tional Committee on Taxonomy of Viruses, pages 1061–1067. Elsevier Academic
Press, 2011.

[80] T. Tu, C. A. Rendleman, D. W. Borhani, R. O. Dror, J. Gullingsrud, M. O.
Jensen, J. L. Klepeis, P. Maragakis, P. Miller, K. A. Stafford, and D. E. Shaw. A
scalable parallel framework for analyzing terascale molecular dynamics simulation
trajectories. In Proceedings of the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage and Analysis (SC), pages 1–
12, 2008.

[81] Z. Wang, B. J. Canagarajah, J. C. Boehm, S. Kassisa, M. H. Cobb, P. R. Young,
S. Abdel-Meguid, J. L. Adams, and E. J. Goldsmith. Structural basis of inhibitor
selectivity in MAP kinases. Structure, 6:1117–1128, 1998.

[82] What does big data mean. [ONLINE] http://cacm.acm.org/blogs/blog-
cacm/155468-what-does-big-data-mean/fulltext.

[83] D. T. Yehdego, B. Zhang, V. K. R. Kodimala, K. L. Johnson, M. Taufer, and
M.-Y. Leung. Secondary structure predictions for long RNA sequences based on

143

inversion excursions and MapReduce. In Proceedings of the12th IEEE Interna-
tional Workshop on High Performance Computational Biology (HiCOMB), pages
520–529, 2013.

[84] B. Zhang, T. Estarda, P. Cicotti, and M. Taufer. On efficiently capturing scientific
properties in distributed big data without moving the data - a case study in dis-
tributed structural biology using MapReduce. In Proceedings of the 16th IEEE In-
ternational Conferences on Computational Science and Engineering (CSE), pages
117–124, 2013.

[85] B. Zhang, T. Estarda, P. Cicotti, and M. Taufer. Enabling in-situ data analysis
for large protein folding trajectory datasets. In Proceedings of 28th IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS), pages 221–230,
2014.

[86] B. Zhang, T. Estrada, P. Cicotti, P. Balaji, and M. Taufer. Accurate scoring
of drug conformations at the extreme scale. In Proceedings of the 2015 15th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), 2015.

[87] B. Zhang, D. Yehdego, K. L. Johnson, M.-Y. Leung, and M. Taufer. A modular-
ized MapReduce framework to support RNA secondary structure prediction and
analysis workflows. In Proceedings of the 2012 Computational Structural Bioin-
formatics Workshop (CSBW), pages 86–93, 2012.

[88] B. Zhang, D. T. Yehdego, K. L. Johnson, M.-Y. Leung, and M. Taufer. En-
hancement of accuracy and efficiency for RNA secondary structure prediction by
sequence segmentation and MapReduce. BMC Structural Biology, 13(Suppl 1):S3,
2013.

[89] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clustering
method for very large databases. In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data (SIGMOD), pages 103–114,
1996.

[90] M. Zuker. Mfold web server for nucleic acid folding and hybridization prediction.
Nucleic Acids Research, 31(13):3406–3415, 2003.

144

