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ABSTRACT

In computer networks, routing determines how data move across a network from

a source to a destination, while medium access control (MAC) defines when and how to

transmit data from one node to another. Ant-based routing protocols have successfully

provided an effective, if not optimal, solution to the routing problem by using control

packets, called “ants”, to explore networks, discover routes and reinforce the best

routes. However, the modeling of ant-based routing in the context of wireless local area

networks (WLANs) is challenged by the intrinsic complexity of wireless medium access

control and its cross-layer interaction. Therefore, this dissertation mainly concerns two

problems: improvement of an ant-based algorithm’s performance on routing problem

and mathematical characterization of medium access control for wireless local area

networks.

Our contributions are threefold. First we introduce a novel strategy for ant-

based routing to achieve optimal solutions that have least hop count. Next, we modestly

analyze the integrated behaviors of ant-based routing with medium access control based

on the case investigations of a practical MAC protocol MACA (Multiple Access with

Collision Avoidance). Finally, we develop a detailed Markov model according to the

comprehensive descriptions of the Distributed Coordination Functions (DCF) in IEEE

802.11, an international standard that specifies access scheme for WLANs.

This dissertation is organized as follows. Chapter 1 presents the background of

routing and medium access control problems in WLANs, and reviews related research

efforts on ant-based network routing and the IEEE 802.11 DCF. In Chapter 2, we

show that our strategy leverages the previous efforts to model and analyze ant-based

routing protocols on wired networks that explained how some critical parameters drive

the network into near optimal route configurations. A simulation study of the strategy

xiv



on both simple 5-node network and large 50-node network demonstrates a significant

improvement on the discovery rate of stable single route solutions with minimum dis-

tance from a source to a destination as measured by hop count. In Chapter 3, we start

by performing case studies to understand the MACA protocol based on a Markov chain

analysis. The findings are incorporated into the previous analytical framework of ant-

based routing protocol, and the predicted behaviors of the resulting integration model

are validated through realistic simulations. A regression study is also conducted to

evaluate MACA performance by packet delivery ratio in multi-hop wireless networks.

Finally in Chapter 4, we give the detailed derivation of our new model for the IEEE

802.11 DCF. The validity of our model does not depend on the network parameters

and topology. For steady state calculations, we approximate joint probabilities from

marginal probabilities using product approximations. By assessing the model in a va-

riety of representative networks, we find excellent agreement of equilibrium node states

with realistic simulations of network traffic.
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Chapter 1

INTRODUCTION

1.1 Background and Motivations

With proliferation of computers and thriving technologies of telecommunication,

wireless local area networks (WLANs) play a critical role in modern society. Since its

debut at the University of Hawaii laboratory in 1971, WLANs are becoming more ubiq-

uitous than ever. Interactions between computers, mobile phones, tablets, wearable

and smart devices all require data communications over shared radio frequencies. The

increasing popularity comes with the major benefit of mobility, as users can dynami-

cally access the network, move among different environments, create ad hoc scenarios

for a limited time and then leave [41]. On the other hand, the technological limitations

in radio transmission such as low bandwidth and vulnerability to signal interference

necessitates an optimal network framework with delicate design and efficient implemen-

tation in response to typical performance requirements and Quality of Service (QoS)

demands. It is often of interest to simulate a wireless LAN to gain insight into its be-

haviors for the purpose of performance improvement. However, experimentation with

the live network is usually disruptive and can be very costly both in terms of software

and time [38]. Instead, a detailed and comprehensive model is usually more desired

and valuable both qualitatively and quantitatively for apprehending the problems such

as performance analysis and optimizations. The most exploited mathematical tools

and foundations belongs to the theory of stochastic processes such as Markov chains

[36] and queuing systems [33]. The accompanying complexity of developing and inves-

tigating these models is such that exact solutions are available only for limited simple

cases which are theoretically important but lack practical relevance [61]. The intrinsic
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challenges of modeling as well as explosive growth of applications together has made

wireless local area networks one of the most important research topics in computer

science, and has drawn considerable attentions from the mathematics community as

well [5, 9, 20, 24, 31].

Most common WLANs are based on IEEE 802.11 international standards, also

known as Wi-Fi [3], which describe two variations of operating mode for WLANs.

The first one contains infrastructure such that every device/computers/nodes in the

network only communicate to a centralized control unit called Access Point (AP),

which also serves as bridges cabled to other local networks or the internet. Sacrificing

some flexibility that wireless communications provide, the infrastructure WLANs are

simpler to design and can guarantee certain level of QoS for chosen nodes [40]. In

contrasts, the infrastructure-less scenarios, also referred to ad hoc networks, offers

greatest possible flexibility as each node can either directly communicate (peer to

peer) or relay message to another (multi-hop forwarding) without any coordination

from central administration. However, it also leads to complex issues such as the

problem of routing for maximal network utilization. Routing, in essence, is the task of

exploring and maintaining the paths from a source to a destination on which a data

packet can travel. Such tasks are particularly challenging in the ad hoc setting where

the nodes are able to move within the network. This means that the network topology

will vary dynamically. Also the data transmissions are unreliable due to broken links.

Many routing protocols have appeared in the literature that incorporate certain level

of adaptivity and robustness to cope with mobility and loss of information in wireless

ad hoc networks. Those classical protocols, such as link state routing algorithms, are

called proactive routing, or table-driven routing, as they maintain up-to-date routes

information to all nodes, including those to which no packets are being sent [53]. On the

other hand, the reactive protocols, or source-initiated on-demand routing, create and

maintain routes only on as needed basis, for example, Dynamic Source Routing [29].

Moreover, hybrid routing combines both proactive and reactive components trying

to merge the advantages of the two. A specific example of a hybrid algorithm are

2



ant-based routing protocols, which differ substantially from traditional protocols in

terms of the technologies implemented. Inspired by swarm intelligence and Ant Colony

Optimization (ACO) [8], ant-based routing naturally provides desired properties of

wireless ad hoc networks such as adaptivity and robustness [18]. As the first part of

the thesis, we focus on the mathematical analysis and simulation study for a dynamical

system that was developed in [59] for basic ant-based routing protocols (BARP). We

improve the performance of BARP by showing it is possible to select near-optimal

routes as measured by hop count when using a time dependent routing strategy.

Although ant-based routing protocols have been successfully applied to exploit

routes in multi-hop wireless networks [16, 17, 18, 43], the rigorous mathematical model-

ing and analysis of the performance was limited to wired networks because the models

did not include particular pathological features of channel access in wireless networks

such as the hidden terminal problem: data transmissions are vulnerable to interference

when transmitting nodes have only partial information about the network topology.

The efficiency of wireless communication requires independent nodes to coordinate

transmission and reception of data packets over a shared spectrum in a distributed

way. The coordination of such communications is accomplished through Medium Ac-

cess Control (MAC) protocol, a set of rules that defines when and how to transmit

data from one node to another. Operating on the data link layer in OSI (Open Sys-

tems Interconnection) architecture of modern computer network, the MAC protocols

aim for avoiding interference from packets collisions while maximizing spatial reuse. A

number of MAC protocols, such as Aloha [4, 47], MACA [30], CSMA/CA, etc., have

proven to be effective both generally and in special circumstances [34]. Most stud-

ies of MAC protocols are experimental, using either simulated or real network traffic

to directly compare performance. MAC protocols themselves are complex and have

resisted efforts to create consistent mathematical models that can reproduce detailed

network performance timelines. The main bulk of the thesis is therefore to derive and

validate a detailed mathematical model for the Carrier-Sensed Multiple Access with

Collision Avoidance (CSMA/CA) protocol together with binary exponential backoff,

3



which form the IEEE 802.11 Distributed Coordination Function (DCF). This detailed

model is valuable in and of itself to understand how protocol parameters affect perfor-

mance, and it is a natural building block for understanding upper layer protocols such

as BARP that operate on top of the MAC layer.

1.2 Related Works

Inspired by the mechanisms of ant’s pheromone trail laying and following behav-

iors, ant-based routing protocols deploy control packets to discover routes between pairs

of nodes, reinforce optimal routes via pheromone deposition, and discard less-efficient

routes through pheromone evaporation. There have been a variety of contributions in

the design and mathematically study of ant-based routing algorithms. The pioneering

works of Schoonderwoerd et al. [54] in 1997 were the first to consider the applications

of ant-based algorithms within the domain of routing in distributed networks. The

authors designed an ant-based control system for call-routing in telephone networks.

The development of ant-based routing protocols for packet-switched communication

networks dates back to 1997-1998 when Di Caro and Dorigo introduced an algorithm

called “AntNet” [15]. It was designed to provide adaptive routing solutions in fixed,

wired computer networks, and was followed by a number of other ant-based algorithms

such as ARA [25], AntHocNet [16], ANSI [43], which were proposed for solving routing

problems of wireless mobile ad hoc networks. While the merits of these routing algo-

rithms were experimentally studied using a set of predetermined protocol parameters,

other investigators began to apply deep mathematical analysis to understand the com-

plex behaviors of ant-based routing protocols and the impacts of protocol parameters

on network performance. Yoo, La and Makowski rigorously studied a simple two router

ant-based system with multiple parallel routes [65]. The study rigorously determined

the long-time asymptotics for the system. This work was augmented by Punyaslok

and Baras [42], who modeled the arrival times of data and control packets along par-

allel routes between two routers. Following the similar patterns in [59], the extensions

map the stochastic problem to a system of ordinary differential equations (ODEs).
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The authors identify stationary states and analyze their stability. For larger networks,

Bean and Costa developed a framework for studying ant-based systems, connecting

equilibrium solutions with Wardrop equilibrium, a special case of Nash equilibrium,

from traffic flow theory [6]. Different from [59], Bean and Costa’s routing model fol-

lows a succession of unique steady states and assume globally-synchronized clocks at

each nodes. Others have augmented empirical studies by modeling different aspects of

the protocol. Saleem et al. have developed mathematical frameworks for the analysis

and measurement of collision probabilities to routing overhead, route optimality and

energy consumption [50, 51, 52]. Along similar lines, Zhahid et al. have developed a

mathematical framework for analyzing beehive based protocols [66]. Finally, an an-

alytic framework based on Markov chain analysis is proposed in [48, 49] where the

authors analyze and explore a full range of routing exponents (referred to as sensitivity

parameter) to optimize network performance.

On the other hand, in the domain of wireless medium access control, many

researchers have constructed mathematical models to understand and predict ensem-

ble network behaviors under IEEE 802.11 Distributed Coordination Function (DCF).

However, the complexity of this DCF under general network topologies requires that

investigators make severe assumptions about potential collisions between nodes. The

enormously influential work of Bianchi [7] on fully connected single-hop saturate net-

works begins by assuming that the collision probability on each node is constant and

independent of network topology and node states. As we shall see, this is clearly not

the case in general and a Markov model based on this assumption cannot hope to model

the DCF. Numerous works have extended this approach to try to capture missing el-

ements of the DCF in a way that is both simpler than a full simulation and valuable

as a predictive instrument for studying protocols.

There have been many extensions of Bianchi’s work to model single-hop trans-

missions where there are no hidden terminals. For instance, the basic model in [7] is

adapted to the assumption of freezing backoff counter due to busy medium in [68],

which is further polished and strengthened in [19] by introducing the dependence of
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consecutive slots, and also in [57] by redefining the discrete time scale given in [7]. Wu

et al. [63] augment Bianchi’s model by assuming finite retransmission attempts, which

is also adopted in [27]. In [26], the authors propose another model extension for sat-

uration throughput analysis by considering the effect of non-ideal channel conditions,

while [14] presents a similar model for unsaturated cases. In addition to throughput

analysis, a comprehensive analysis of delay performance is conducted by [67], where

the authors modify node state transitions in [7] with signal transfer functions to char-

acterize the probability distribution of MAC layer service time for WLANs in both

saturated and non-saturated traffic situations. Others, for instance, [13], model the

statistical behaviors of the Head-of-Line packet instead of nodes and perform unified

study on both throughput and delay. A great deal of effort has also been made to

model and analyze IEEE 802.11 DCF in the presence of hidden terminals, where some

prospective senders are not within the sensing range of others. For instance, to model

the existence of hidden terminals, [64] employs fix-sized time slots and details the state

transition to formalize the channel status considering the interaction between physical

and virtual carrier sensing in a discrete time Markov system. However, the authors

follow the same assumption that collision probability is constant regardless of retrans-

mission history. In contrast, [28] uses the joint backoff stage of the two stations that

are hidden from each other as state in order to account for the interactions between

them. Unfortunately, these models are limited to infrastructure scenarios using access

points and depend on the network topology.

There has also been some efforts to model and analyze multi-hop transmissions.

Guillemin et al. propose a model for CSMA in multi-hop settings based on a random

walk on lattice [24]. The underlying assumption in this model is that node behavior

is synchronized so that the problem can be parametrized by the queue size on each

node. However, nodes in a network undergo random exponential backoffs when there is

channel contention so these assumptions are not valid. Efficiency requires that network

protocols operate asynchronously with each node acting opportunistically to empty its

queue or respond to other node’s requests for it to accept data. Other investigators
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rely upon statistical descriptions of transmission nodes combing with channel behaviors

to develop a model. Garetto et al. [23] model CSMA for various two contenting

flow topologies to study the unfairness problem and further supplement it to predict

throughput in arbitrary topology [22]. The authors implement a decoupling model

for each individual node with an embedded discrete time renewal process based on

the basic assumption that the current channel state is independent of previous state.

However, [60] points out that the above assumption is unrealistic with the presence of

hidden terminals and the consequent de-synchronization of the nodes. Instead, Tsertou

and Laurenson describe the channel by modeling a first-order dependence between

consecutive channel state and adjusted Bianchi’s original model using fixed-sized time

slot and contention window [60]. Mustapha et al. [37] apply a discrete-time modeling

approach that combines a topology model, a channel model and a simplified node state

model with only three states for analyzing throughput of multi-hop ad hoc networks. In

the similar vein but different methodology, Shi et al. [55] extend Bianchi’s assumptions

on backoff-stage dependence of collision probabilities, non-saturate queues, etc., and

develop a detailed continuous-time model of CSMA networks where the correlations

of nodes are described through a companion channel model of joint backoff states.

Unfortunately, the true statistical description that they are attempting to capture

depends upon network topology and queue sizes. A more useful model will generate

the statistical description given network parameters and topology. This is precisely

what we set out to do.

1.3 Dissertation Outline

This dissertation is divided into three components to tackle different yet inter-

connected issues regarding to WLANs. In chapter 2, we start by briefly introducing

the ant-based routing protocols and its merits for exploiting the intelligence of swarms

to solve a complex problem such as near-optimal path searching. Then we describe a

modeling framework in detail that was originally developed by [59] for ant-based rout-

ing protocol in ad hoc networks using dynamical systems theory. The rigorous study
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of a representative small network by examining stationary solutions and their linear

stability suggests we can improve the performance of ant-based routing by dynamically

adjusting the routing exponent, a critical parameter that controls the behaviors of the

protocol and our model. The contribution of this thesis is novel in that we leverage

this technology and validate its effectiveness and efficiency by two specific examples, a

5-node network and a 50-node network, using both theoretically and realistic simula-

tions with Matlab and QualNet respectively. As a concluding remark of this chapter,

we point out the limitations of current modeling frameworks for ant-based routing on

wireless networks due to the intrinsic complexity of medium access controls (MAC)

and its cross-layer interactions.

To investigate the integrated behaviors of ant-based routing algorithm with

medium access control (MAC) in wireless networks, Chapter 3 begins with an intro-

ductory review of several important wireless MAC protocols, from Aloha to CSMA/CA,

which lay the foundation for the modern wireless communication standards. We then

explore the operational details of one specific MAC protocol MACA (Multiple Access

with Collision Avoidance) in the following sections. MACA is the first one ever de-

signed to address the hidden terminal problem in shared channel networks [30]. We

model the behavior of MACA and perform case studies in both two-sender and three-

sender network scenarios with a Markov chain analysis. Then we take a modest step

by modeling and analyzing the integrated behaviors between ant-based routing proto-

col and MACA on a simple 6-node topology. The efforts are validated by comparing

numerical solutions of steady states with the QualNet simulation of realistic wireless

communications. The last section of this chapter discusses the difficulties we have en-

countered to generalize our MACA modeling framework with Markov chain analysis

and an alternative approach where the details of MAC protocol are lumped together

with a single linear regression model.

In chapter 4, we focus on the derivation and verification of a stochastic model

from the detailed IEEE 802.11 DCF description. Our work starts with making rea-

sonable assumptions, which, distinct from [7] and its many extensions such as [19, 26,

8



57, 63, 67, 68], does not claim that the packets collision probabilities on each node are

constant or independent of network topology. Instead, we have developed a detailed

discrete time Markov model of interconnected node states including multiple back-off

stages and binary exponential back-off counters to capture the dominant first order

effects of nodes responses to contention. For steady state calculations, we approximate

joint state densities from marginal probabilities using product approximations. To as-

sess the quality of the model, we compare detailed equilibrium node states with results

from realistic QualNet simulations in three representative wireless network configura-

tions. We find a very close correspondence between our model and realistic simulations

of network traffic.
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Chapter 2

DYNAMIC ROUTING EXPONENT STRATEGY FOR ANT-BASED
ROUTING PROTOCOL

Ant-based routing originates from the Ant Colony Optimization algorithm within

the field of swarm intelligence. With the highly desirable features such as flexibility,

robustness, decentralized control and self-organization, ant-based routing protocols has

been shown to provide an effective solution in terms of both delay and packet delivery

ratio to the routing problem of wireless ad hoc LANs, i.e., mobile Ad Hoc Networks

(MANET) [12], where bandwidth is limited and topology is constantly changing. In

ant-based routing protocols, the routing exponent controls how ants hop from node

to node to discover routes. Previous work has shown that stable multi-route solutions

for small routing component values are dynamically connected to stable single-route

solutions for large routing component values. Typically, these stable single-route so-

lutions correspond to paths that have or almost have the smallest hop count. In this

chapter, we leverage this idea to improve the performance of ant-routing protocols by

dynamically adjusting the routing exponent. The results are validated via simulation.

2.1 Introduction

Swarm intelligence is a term that refers to the action of a locally coordinated

group of individuals that can achieve a complex objective or behavior. Often the local

coordination algorithms are inspired by ecological systems including social insects, self-

organizing colonies of single-celled organisms or movements of larger animals such as

flocks of birds. Each individual possesses incomplete information about the problem to

be solved, and coordination is achieved typically through interaction with a subset of

individuals in the swarm. Through these interactions, complex, near-optimal behavior
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can emerge [8]. One successful application of swarm intelligence is the use of ant-based

protocols to route data through networks.

Ant-based routing protocols use control packets, called “ants”, to explore net-

works, discover routes and reinforce the best routes. Throughout this thesis, we will

use the terms “ant” and “control packet” interchangeably. True ants in the biological

world mark foraging trails with chemical pheromone that can be detected by other

ants. The pheromone evaporates over time, so that inefficient routes fade from disuse.

More efficient popular routes are reinforced as ants deposit more pheromone along

them. Similarly, in ant-based protocols, virtual pheromone is stored on the nodes as

the ants traverse the network. In short, the key to the routing protocol is a spatially

distributed, mathematical model of pheromone deposition and evaporation. Research

has shown that ant-based routing protocols provide an effective solution to the routing

problem of both wired networks [15] and mobile ad hoc networks [16, 17, 43]. In this

chapter, we will use a mathematical framework for studying routing protocol dynamics

to improve their performance.

A modeling framework introduced in [59] to describe the evolution of pheromones

in ant-based routing protocols using dynamical systems theory correctly predicts sta-

tionary states of realistic network protocols. In this study, it was shown that some

of the principles gained from rigorous analysis of small networks, transfer to larger

networks that are much more difficult to be mathematically analyzed. In particular

routing exponents that are much smaller than unity, lead to multi-route solutions and

exponents that are much larger than unity lead to single-route solutions. However,

not all single-route solutions are optimal in the sense that they require more than the

minimum number of hops to travel from a sender node to a receiver node. Also, it

was shown that if one treats the routing exponent β as a parameter, stable multi-route

solutions were dynamically connected to the optimal single-route solution on small net-

works. In this chapter, we will leverage this idea to show that on large networks, it is

possible to improve the performance of ant-routing protocols by dynamically adjusting

the routing exponent.
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The rest of the chapter is organized as follows. In Section 2.2, we describe a

modeling framework, which is the mathematical foundation of dynamic routing expo-

nent strategy. In Section 2.3, we introduce this strategy by two specific examples, a

5-node network and a 50-node network using Matlab and QualNet simulations, and

then validate its effectiveness by statistical comparison. Section 2.4 concludes this part

our work and states the limitations.

2.2 Preliminaries of Ant-based Routing

In our modeling framework, a computer network is viewed as a directed graph.

Each node represents a computer station or a wireless transmitter and pairs of node

are neighbors if they are connected either through cable or within the radio coverage

range of each other. Each link is weighted by pheromone values, which determine

how ants will travel in the network along multi-hop routes. Using pheromone tables

on each node, ant-based routing protocols deploy ants to discover possible routes be-

tween pairs of nodes, and optimize routing tables to enhance shorter, desirable routes

via pheromone deposition and discard longer, less efficient routes via evaporation of

pheromone. In our mathematical modeling framework, the behaviors of ant-based

routing are characterized by three general rules: route discovery, route reinforcement

(deposition) and route decay (evaporation).

Route discovery is accomplished by the random motion of ants through the

network as they hop from node to node. Following the notation used in [59], an ant at

node i will move to node j with probability pij,

pij =
(τij)

β

∑
h∈Ni(τih)

β
, (2.2.0.1)

where τij represents the pheromone values on the link from node i to node j, Ni is

the set of all connected neighbors of nodes i and β is the routing exponent which

controls the behaviors of the protocols. The routing tends toward pure random if

β → 0, resulting in more option of routes. On the contrary, if β → ∞, the routing is

deterministic, and the ants will always pick the link with the most pheromone value,
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consequentially favoring single-route solution. The protocol uses two different types of

ants. Ants traveling from source s, seeking route to destination d. are called “forward

ants”. If the network consists of m nodes, we define y(n) be the m-dimensional vector

probability density of ants over the network at the nth time step, and discrete time scale

h3 be the amount of time for each ant to make one hop between nodes. The forward

ants traverse the network following the Markov process according to a transition matrix

P (n)(β) = [pji] at the nth time step,

y(n+1) = P (n)(β)y(n), (2.2.0.2)

because both probability density and pheromone values on each link are evolving only

dependent on present state by every discrete synchronous step. Here the kth component

of the density vector y(n) is the probability of finding an ant on the kth node of the

network. This implies that if we have N ants in the networks, then the expected number

of ants at each node is Ny(n). Once a forward ant reaches the destination, it becomes

a “backward ant”, and will trace back to the source from the destination, reinforcing

route by depositing pheromone along the path it takes. On the other hand, route decay

(evaporation) follows a global rule regardless of ant activity. Pheromone throughout

the networks decays exponentially in the absence of deposition. Overall, the routing

protocol defines how the matrix P = [pji] evolves from one iteration to the next through

pheromone deposition and evaporation. We denote the matrix P at discrete time step

n as P (n). From the previous analysis and implications from 2.2.0.1, we know that

the routing exponent β controls whether single-path routes are selected or multi-path

routes are selected. For a complete description and analysis of the protocol, see [59].

In this section, we will review the essential features and properties of the protocol.

A full-fledged routing protocol is very difficult to analyze because it has many

parameters such as packet size, processing time of ants [11], and features to respond

to different contingencies, for instance, network congestion. Instead, we will study and

implement a very simple routing protocol and explore it using an analytic framework.

Since ant-based routing is a dynamic process, we identify three critical time increments.
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The increment h1 is the amount of time between evaporation events on each node. The

increment h2 is the amount of time between deployment of ants from a source node

s. The increment h3 is the time required for a control packet to move from one node

to the next. For stability issues, we assume that h1 < h3 � h2 such that all ants in

the networks can finish their tour before a new cohort of ants is released. The routing

protocol can be described as follows. Independent of all the ant activity, pheromone

1 N ants are released from the source node. The source node resets its clock
to t = 0.

2 Each ant moves through the network following (2.2.0.1) and maintaining a
node-visited stack until it arrives at the destination node.

3 An ant reaching the destination node will retrace its steps back to the
source. If the ant’s route from source to destination is cycle-free (i.e. no
node is visited twice), the ant deposits pheromone along the links it
traverses. Otherwise, no pheromone is deposited. Typically, the amount of
pheromone deposited on a link is inversely proportional to the hop count of
the route traveled between source s and destination d.

4 When a backward ant arrives at the source, it is destroyed.

5 When the source node clock reaches t = h2, return to step 1.

Algorithm 1: Basic Ant-based Routing Protocol

will decay along all links every h1 period.

In [59], the reduction of pheromone level on link ij from discrete time step tn

to tn+1 (e.g. tn+1 − tn = h1) is described as

τ
(n+1)
ij = τ

(n)
ij − κ1h1τ

(n)
ij = (1− κ1h1)τ

(n)
ij (2.2.0.3)

where κ1 is a constant evaporation rate. If h1 → 0, (2.2.0.3) is equivalent to τ ′ij(t) =

−κ1τij(t) which indicates that pheromone will decay exponentially in time: τij(t) =

τij(0)e−κ1t. The deposition of cohort of N ants on link ij is characterized by

τ
(n+1)
ij = τ

(n)
ij + κ1h2NF

(n)
ij (2.2.0.4)

Here, the discrete time interval is h2, a sufficient amount of time for all ants to complete

their tour to the destination and return (recall h2 � h3); κ2 is a constant rate that
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controls deposition and F
(n)
ij is the deposition function that determines the increment

of pheromone value at each step. According to the step 3 in the ant-based routing

algorithm, stochastically, the deposition function takes the form:

F
(n)
ij =

1

N

∞∑

k=1

1

k
p̃sdij (k) (2.2.0.5)

where p̃sdij (k) is the probability of an ant following a k-hop route from source node s

to destination node d passing through link ij without any cycles. The summation is

the expected inverse hop count,
〈

1
Hsd

〉
made by a single ant. This is a natural way

to reinforce shorter routes more than longer routes because the amount of pheromone

deposited along the route is inversely proportional to the path cost. Unfortunately,

there is no known close form of probability p̃sdij (k) for a given graph. However, the

computation of
〈

1
Hsd

〉
is still possible by construction of a K-cycle-free tree using

recursive algorithm [59].

Now, combine (2.2.0.3), (2.2.0.4) and (2.2.0.5), an analytic model for the be-

havior of this ant-based routing protocol can be derived:

τ
(n+1)
ij = (1− h1κ1)(h2/h1)τ

(n)
ij︸ ︷︷ ︸

evaporation

+h2κ2

∞∑

k=1

1

kp
p̃sdij (k)

︸ ︷︷ ︸
deposition

, (2.2.0.6)

The link undergoes h2/h1 evaporation events between step 1 and step 5 of the routing

algorithm, and it is understood that h2/h3 transitions of (2.2.0.2) occur for every

transition of (2.2.0.6).

If we think of the ant-based protocol as a nonlinear dynamical system, we can

understand network performance by examining stationary solutions and their linear

stability. A stationary state occurs when (2.2.0.2) and (2.2.0.6) are independent of the

time steps h1, h2 or h3 by taking the limit to 0 and satisfy the system,

Λτ
(n)
ij =

∞∑

k=1

1

k
p̃sdij (k) (2.2.0.7)

where τ
(n)
ij is an equilibrium pheromone distribution and Λ = κ1

κ2
is called pheromone

deposition number. For a detailed derivation of (2.2.0.7), see Appendix A. Note that
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Figure 2.1: Stationary states calculated using the stochastic model. Solutions S1,
S5 and S7 were calculated with β = 0.5 and Λ = 0.3. Solution S1p was
calculated with β = 2 and Λ = 0.3.

p̃sdij (k) depends upon τij. Since this is a nonlinear system, solutions are not necessarily

unique. In fact, a single β, Λ pair may have many stationary solutions. The eigenvalues

and eigenvectors of the Jacobian of this system reveals whether or not a given stationary

solution is stable. Earlier work presented a phase diagram for a representative 5-node

network [59].

The previous work shows that some of the principles and features gained from

rigorous study of small networks are consistent with larger and more complicated net-

works that are much more difficult to analyze. In particular, for the simple 5-node

network and a larger 50-node network, small routing exponents β � 1 lead to sta-

ble, multi-route solutions whereas large exponents β � 1 lead to stable single-route

solutions. Examples are shown in Figure 2.1 where solution S1 is stable but solutions

S1p, S5 and S7 are unstable in the parameter regimes used to generate the solutions.

However, solutions with the same qualitative structure as S5 and S7 are stable when

β = 2.

Moreover, stable multi-route solutions are dynamically connected to the optimal

single route solution on the 5-node network. As shown in Figure 2.2, if we follow the
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Figure 2.2: Continuous dependence of solutions on β for the simple 5-node network
configuration used in Figure 2.1. Here λ is fixed on 0.3. Each curve
represents the pheromone values on corresponding link shown by the
legends.

structure of certain stationary solutions, we see that the stable multiple-route solution

S1 is dynamically connected to the optimal single-route solution S5 by sweeping the

value of β from 0.5 to 2. On the other hand, the unstable multiple route solution S1p

is connected to the suboptimal, unstable single-route solution S7 by a sweep of β from

2 to 0.5. One possible explanation is that shorter routes are reinforced more readily

when the system is more deterministic which is the case when β is large.

These results and observations on large networks suggest that we can improve

ant-based routing by dynamically adjusting the routing exponent. Large values of β

offer the advantage of stability and determinism, but there is no guarantee that the

single-route selected will be optimal. The earlier study suggests that the system will
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Total time of Simulation 199.99
N 200
β 0.5 → 2
κ1 0.3
κ2 1
Λ 0.3
h1 1
h2 1
h3 0.01

Table 2.1: Table of parameters used in network simulations.

naturally evolve into the optimal single-route state if we start with a stable multi-route

solution with β small and then steadily increase β to a large value.

2.3 Dynamic Routing Exponents

In this section, we first validate the efficiency of this technique of dynamically ad-

justing the routing exponent on a 5-node network. Then, we leverage this idea to show

that on large networks, it is also possible to improve the performance of ant-routing

protocols. We implement our algorithm in Matlab, without a physical communica-

tion model so there are no packet drops, and in QualNet with realistic protocol and

communication models. QualNet [2] is a state-of-the-art simulator that contains sets

of comprehensive tools for accurate, efficient simulation of large-scale, heterogeneous

networks. It provides an exact, high quality, reproduction of external network behav-

ior so that the simulation result is almost the same as on actual systems. Table 2.1

summarizes the parameter settings used by both Matlab and QualNet simulations. In

the QualNet simulation, each topology is modeled as a point-to-point mesh network

with link bandwidth of 100 Mbps and link propagation delay of 1 millisecond. The

ant-based routing protocol operates in the network layer, and encapsulates ants in the

IP packets.
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2.3.1 5-node network

To demonstrate the concept of using dynamic routing exponents, we apply this

idea on the 5-node network where the dynamics are well understood. (We note that a

phase portrait was calculated in [59]). We initiate simulation with random pheromone

values over the network. Rather than using a fixed value in (2.2.0.1), β will be a

function of time and slowly vary from 0.5 to 2.0 as follows.

β(t) =





0.5, t < 50 (allow time for multiroute solution to stabilize)

0.5 + t−50
20
, 50 ≤ t ≤ 80 (move network toward single-route solution)

2.0, t > 80 (proceed with optimal solution)

(2.3.1.1)

This function allows the routing protocol to relax into a multiroute solution

before slowly moving the system toward an optimal or near-optimal single-route solu-

tion. Thus, we expect the network to move toward stable multiroute solution S1 when

0 < t ≤ 50 and then move toward S5, the optimal single-route that directly connect

source and destination. This is precisely what we observe in Figure 2.3, which demon-

strates dynamic pheromone distribution on four critical routes of the simple 5-node

networks shown in Figure 2.1.

2.3.2 50-node network

With the same configurations summarized in Table 2.1, the Matlab simulation

for a 50-node network has successfully validated the anticipated result that routing

exponent β = 0.5 leads to the formation of multiple route solution, while β = 2, on

the other hand, corresponds to the existence of the single-route solutions. We consider

optimal solutions to be solutions with the minimum possible hop-count. Depending on

the initial conditions, single-route stable solutions found with large routing exponents

are observed to be close to optimal, but not typically optimal. In Figure 2.4, we see

two typical stable solutions. Since the shortest path possible connecting source and
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Figure 2.3: Pheromone values as a function of time using dynamic routing exponents
for both Matlab and QualNet simulations.

destination in this network is 6-hops, the single-route is nearly optimal (7 hops) but

not optimal.

Now we will explore our dynamic routing exponent strategy (2.3.1.1) by trans-

lating the design principles for the small network to 50-node network settings. Again,

the simulations begin with random pheromone values over all links in the network.

Along the time of simulation of ant-based routing protocol, we capture several key

instants, shown by Figure 2.5, that illustrate the reorganization of pheromone values

over the network driven by the dynamic routing exponent β. Similar to the 5-node

network case, we see the system initially settles into a multi-route solution as shown in

Figure 2.5(a). As β increases, we see the network evolve toward single-route solutions

in Figure 2.5(b,c). Beyond this point, the system has settled into a stable, globally

optimum, 6-hop solution as shown in Figure 2.5(d). In addition, Figure 2.6 depicts

one instance of the evolution of average hop count from the perspective of the control

packets over time as β changes linearly from 0.5 to 2 between simulation time instances
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Figure 2.4: Two stationary solutions with β = 0.5 on the left, β = 2 on the right, both
with Λ = 0.3. Node s is shown by red spot and node is shown by green
spot. Pheromone values are normalized by the maximum pheromone
value over the entire network.

50 and 80.

2.3.3 Statistical Comparison and Impact of Λ

We implemented a statistical analysis to quantify how the performance of ant-

based routing protocols can be improved by dynamically adjusting routing exponent

from a value less than unity to that larger than unity. We performed the same ex-

periment on the 50-node network 100 times using different random initial conditions

and compared the performance using β = 2 (standard practice for protocols like An-

tHocNet) to using the dynamic β algorithm. All other network parameters are the

same. All the simulations are executed with random initial pheromone distribution

and Λ = 0.3. Our simple comparison, shown in Figure 2.7, demonstrates a consider-

able benefit when using the dynamic β algorithm. The difference between the average

length of a single-route solution for the β = 2 algorithm compared to the variable β

algorithm at the end of simulation is almost 2 hops (mean value: 8.01→ 6.11) for the

Matlab simulations and 4 hops (mean value: 10.2 → 6.2) for the QualNet simulations.

Our statistical results indicate that the dynamic β strategy is still somewhat

sensitive to initial pheromone levels though not nearly so much as the constant β sys-

tem. If the system is too far from a stable multi-route solution that includes an optimal
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Figure 2.5: Distribution of normalized pheromone values at some important moments
of simulation. At time 50, a multi-route state is achieved and beta starts
to vary. The solution settles down at time 80, when beta stops to vary.

path as an option for ants, the dynamic β algorithm will not be able to smoothly move

the network into an optimal configuration. This explains why the optimal route are

not always achieved as the mean remains above 6 in the dynamic β trials.

Finally, we test the performance of dynamic routing exponent technique under

different values of Λ, the pheromone deposition number (recall Λ = κ1
κ2

), an equally

crucial parameter as β in our model. Since κ1 corresponds to the rate of evaporation

while κ2 corresponds to the rate of deposition, Λ controls the ratio of evaporation to

deposition. We anticipate larger values of Λ to reduce the impact of deposition and
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Figure 2.6: Evolution of average hop count over time.

so reduce the benefit of the overall technique as we try to drive the system toward an

optimal solution. To illustrate this affect, we performed the statistical study on the

50-node network for Λ = 0.1, 0.2, . . . , 1.0. Figure 2.8 shows that when Λ < 0.5, the

results are acceptable as the average length of the optimized single-route is roughly 6.

However, when Λ > 0.5, the average hop count of the optimized single-routes increases

linearly and reach 7.5 when Λ = 1, which is consistent with our expectation.

2.4 Conclusions

2.4.1 Summary

We have introduced and explored a new algorithm that dynamically adjusts

the routing exponent in ant-based protocols. The new algorithm was motivated by an

analytic framework that provided a complete description of the nonlinear dynamics of

a small network. From this description, we observe that stable multi-route solutions for
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Figure 2.7: Statistic research of dynamic routing exponent strategy on improving
performance of routing protocols.

small β are dynamically connected to stable single-route solutions for large β. These

stable single-route solutions correspond to paths that have the smallest hop count.

We give two examples using simulations in both Matlab and QualNet, a simple, 5-

node network and a larger 50-node network. For the 5-node network, the results are

exactly compatible with the previous rigorous study. For the 50-node network, we

leverage principles from the simpler 5-node network and successfully validate them

via Matlab and QualNet simulation. In particular, we find the dynamic β protocol

performs significantly better than the static β = 2 protocol in a large series of tests

using random initial pheromone values. Finally, we explore the impact of Λ, the key

parameter that determines the relative importance of evaporation and deposition. As

expected, we find that the effectiveness of the dynamic β algorithm will be impaired

when Λ is large. However, for moderate Λ, our new dynamic β routing protocol finds

shorter routes than tradition ant-based routing methods.
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Figure 2.8: Average length of optimal single-route with respect to Λ.

2.4.2 Limitation and Next Step

Given superior features of adaptability and robustness, ant-based routing algo-

rithms are naturally suitable for ad hoc networks and have been shown empirically

to outperform many reference routing algorithms in the field such as AODV [39] in

multi-hop WLANs. However, our mathematical modeling and analysis were confined

to wired networks because the dynamic model did not incorporate particular patholog-

ical features of wireless networks such as the hidden terminal problem which may lead

to severe losts of information and waste of bandwidth due to packet collisions when

two or more frames arrive at the receiver’s interface simultaneously. For instance, if we

assume wireless communications over the 5-node network in (2.1), n1 and n4 will not

detect the presence of each other due to the limited signal transmission power. Thus,

both nodes are highly vulnerable to transmission failures caused by packet collisions

and we observed a considerable amount of ant lost from simulations. In computer net-

working, such issues are dealt with by medium access control (MAC) protocols, a set

of rules that essentially allow multiple independent devices coordinate transmissions

and receptions of data packets over shared spectrum so as to mitigate collision.
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In the next chapter, we will present case studies for understanding the op-

erational details of wireless MAC protocol MACA (Multiple Access with Collision

Avoidance) [30], one of the pioneering schemes designed to handle the hidden termi-

nal problem on shared medium. In particular, MACA introduces a distributed virtual

sensing mechanism that has been recognized as a critical part of the modern WLANs

standards [3]. Based on the studies, we take a modest step by modeling and analyzing

the integrated behavior of Ant-based routing with medium access control of MACA on

a simple wireless topology.
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Chapter 3

ANALYSIS OF ANT-BASED ROUTING WITH WIRELESS MEDIUM
ACCESS CONTROL PROTOCOL MACA

As a first step to rigorously characterize the behaviors of ant-based routing al-

gorithm in wireless local area networks, in this chapter we start by investigating the

delicate maneuvers of a practical wireless MAC protocol MACA in coordinating inde-

pendent network traffic over shared spectrum. In particular, a Markov chain analysis

of the MAC protocol is presented to reproduce the timeline of channel behaviors and

network performance in representative settings. We incorporate the findings into the

previous analytic framework of BARP and solve for the equilibrium distribution of ant

packets and pheromone level over a simple wireless topology. The results are validated

via QualNet simulation using realistic protocol and channel conditions. Finally, we

point out the difficulties of model extensions into general wireless networks and adopt

an alternative regression approach to identify the problems.

3.1 Review of Basic Wireless MAC Protocols

In this section, we will review some fundamental MAC protocols available for

wireless LANs. The literature on these protocols and their many variants is huge and

is still expanding. We therefore do not intend to provide a detailed account on every

aspect of these protocols and contributions to their development. Instead we provide

a general background and some key features in which we are particularly interested for

further study and in depth analysis.
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In wireless computer networks, an effective channel access method allows mul-

tiple network devices or nodes to transmit data packets over the same physical trans-

mission medium (i.e. air) and share its capacity. The simplest design is called ran-

dom access. With this scheme, all network devices may transmit whenever they want

without considering others’ conditions. The ALOHA protocol [4], developed along

the pioneering computer network system ALOHAnet in 1970s, was the forerunner of

modern wireless MAC technologies that implement a contention based random access

mechanism over shared medium for client transmissions without centralized controls.

Based on the pure ALOHA protocol (the original one implemented in ALOHAnet),

a user transmits whenever a data packet is ready to be sent irrespective of whether

the channel is occupied by other users. Despite the simplicity and convenience of this

design, random access leads to packet collisions when two or more devices decide to

transmit within the same transmission period. The resulting mingling of signals will

corrupt both data packets thus packet collisions cause the loss of information and waste

channel bandwidth. ALOHA requires that all failed packets be retransmitted at a later

time. The moment is randomly chosen following certain prior selected probability dis-

tribution in order to shrink the possibility of future interruptions. One implement

was slotted version of ALOHA protocol where time is divided into uniform time in-

tervals. In this scheme, each device only transmits at the beginning of the next time

slot. The collision problem is relieved because there are no overlapping transmissions

compared to pure ALOHA. Any two packets either collide completely or not at all.

The performance of both pure and slotted ALOHA protocol has been rigorously mod-

eled and analyzed by assuming independent Poisson traffic source with constant packet

generation rate [4, 47].

Successful implementations of the ALOHA system led to the development of

the Carrier Sense Multiple Access (CSMA) protocol. Within the same vein, CSMA

protocol is especially reinforced to protect the payloads from being destroyed by packet

collisions. In its essence, CSMA requires all stations monitor the channel first before

the initiation of every transmissions (including the retransmissions). Only when the
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channel is sensed idle will a station be permitted to transmit. The Carrier Sensing

(CS), known as CCA (Clear Channel Assessment), is accomplished through physical

measurement of the energy level received on the station’s radio interface. If that value

is above a pre-selected threshold, the sensing node determines that another node is

currently transmitting, i.e. the channel is occupied. The CSMA protocol operates in

two types. The first one is called p-persistent. Under this mode, a sender transmits the

packet with probability p if the channel is determined idle. Otherwise, the sender waits

persistently until the channel goes idle, then attempts to send again with probability

p. If the sender chooses not to transmit (with probability 1 − p), then it repeats the

described procedures at the next available time slot. As a special case when p =

1, nodes will aggressively transmit whenever the channel becomes available. The 1-

persistent mode has been widely implemented in wired network system such as Ethernet

which uses CSMA/CD (with Collision Detection) protocol [1]. The second type of

CSMA protocol aims to limit the interference among packets by always rescheduling

transmissions after a randomly distributed back-off (waiting) time when a busy channel

is detected. Therefore this is known as a non-persistent algorithm, which has been

shown to have overall superior performance compared to 1-persistent (or p-persistent if

p is not carefully determined) CSMA in terms of the network throughput, an important

measure that represents the rate of all successful transmissions over the channel [32].

Although CSMA protocols greatly reduce the chance of signal interference and

offer large advantages as compared to ALOHA protocol [32], the physical CS mech-

anism has not completely eliminated the possibility of collisions. For instance, two

stations may decide to transmit at the exact same time so neither will find the channel

is busy prior to their transmissions. Moreover, despite the sensing efforts, in a general

wireless setting collisions can still be unconfined at the receiver in the presence of two

(or more) concurrent transmitters who can not detect the traffic from each other. In

other words, a lack of a carrier does not necessarily mean it is always safe to transmit.

The latter is referred to as the hidden terminal problem or hidden node problem. This

problem is usually illustrated through a typical topology given by Figure 3.1. Due to
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A Two-Sender Scenario

1 R 2

Figure 3.1: The Hidden Terminal Problem. The sensing ranges of the transmitters 1
and 2 are marked with shaded disks while that of receiver R is denoted
by green circle. Both 1 and 2 are exposed to R but hidden from each
other, resulting in vulnerable transmissions at R.

the effect of path attenuation in wireless communications, i.e. the reduction in power

density of a radio wave as it propagates through medium, a node can only determine

the channel conditions accurately within a certain range. This pathological feature of

the radio communications has been shown to badly degrade the performance of CSMA

in wireless LANs [32, 58].

To address the hidden terminal issues, a virtual carrier sensing scheme has been

widely recognized and implemented to improve the original CSMA protocols. The

augmented scheme, known as Carrier Sense Multiple Access with Collision Avoidance,

or simply CSMA/CA, has not only been shown beneficial to WLANs in the present of

hidden terminals, but used in various wired network architectures as well. According

to the virtual sensing scheme, a sender and a receiver handshake via short and expend-

able RTS (Request To Send)/ CTS (Clear To Send) control packets before transmitting

the long and valuable data packets. Both RTS and CTS packets are transmitted with

a duration field, an indicator called Network Allocation Vector (NAV), in which the
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sender explicitly specifies the least amount of time required by the transmission imme-

diately following the current packet that contains the NAV. Therefore, a neighboring

node overhearing the broadcasted RTS or CTS packets addressed to other nodes will

defer its own transmission long enough for the addressed communication to finish. Af-

ter a successful RTS/CTS handshake, the sender can transmit its data packet without

frequently incurring collisions with neighboring and hidden nodes.

The virtual carrier sensing algorithm using RTS/CTS handshakes was first pro-

posed by the MAC protocol Multiple Access with Collision Avoidance (MACA) [30]

on single wireless channel. MACA was inspired from the collision avoidance method

that was used by the legacy Apple Localtalk network system in which a RTS / CTS

dialogue was introduced. Simplified from the traditional CSMA protocols, MACA re-

places the physical carrier sensing method by exclusive RTS/CTS exchanges to address

the hidden terminal problem and detect collisions at the receiver. Although collisions

may frequently occur between RTS packets especially without the CS step before trans-

mitting, MACA can reduce the chance of collisions between data packets as long as

RTS packets are significantly shorter than the data packets. However, data packets

can still collide with RTS packets. For instance, in Figure 3.1, if 2 fails to overhear the

CTS packet that R responds to its sender 1 (for some reasons that will be discussed

later), then the RTS packet from 2 and a data packet from 1 may collide at R. To

study and rigorously characterize the complex behaviors of medium access control on

wireless LANs, we first explore the operational details of the MACA protocol. The

objective is to understand how MACA manages packet collisions.

The remaining chapter is organized as follows. In Section 3.2, we propose a

Markov chain analysis to evaluate MACA performance for a 2-sender network, then

discuss the generalization for 3-sender case. In Section 3.3, we analyze the cross-

layer interactions between stochastic routing using BARP with medium access control

under MACA. In Section 3.4, we implement a regression approach to evaluate MACA

performance in wireless multi-hop local area networks. Section 3.5 concludes the efforts

and limitations.
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3.2 Modeling and Case Studies for MACA Protocol

In this section, we perform a case study to understand the complex interactions

in the exchange of RTS/CTS packet pairs together with data transmissions. Specifically

we model the behavior of MACA protocol in both two-sender and three-sender scenarios

with hidden terminals. The model is validated through comparisons between numerical

calculations using Matlab and realistic network simulations using QualNet.

3.2.1 Two-Sender Scenarios

We start by analyzing the operations of MACA protocol under the classic two-

sender topology shown by Figure 3.1 with following assumptions: (i) Senders are po-

sitioned symmetrically about the receiver and hidden from each other. (ii) Senders

have identical configurations and are synchronized at the beginning. i.e. they intend

to transmit at the exact same time. (iii) RTS and CTS packets have the same size

and are both significantly shorter than DATA packets. (iv) The channel is in perfect

condition without path loss and packet loss during the propagation.

Figure 3.2 illustrates the MACA timeline associated with a typical communi-

cation between sender 1 and receiver R. Before a data packet can be transmitted, a

successful RTS/CTS handshake between sender and receiver is required:

1 Sender 1 randomly chooses a time t1 (e.g. t1=λ1 in the timeline) between 0
and CW to send a RTS packet RTS1 by broadcasting.

2 After a delay of σ + TD, receiver obtains RTS1, then replies with a CTS
packet CTS1 by broadcasting immediately.

3 When sender 1 receives CTS1 after another delay of σ + TD, it begins to
transmit data packet by broadcasting immediately.

4 When sender 2 overhears CTS1 at the moment t1 + 2TD + 2σ (e.g. λ3 in
the timeline), it freezes and sets its NAV counter equal to the transmission
delay of DATA1 immediately.

If the RTS/CTS handshake fails, another RTS will be scheduled by the sender

at a later time. Specifically, the retransmission of an RTS follows a random back-off

scheme where the moment of retry is uniformly chosen between 0 and the back-off
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Figure 3.2: σ denotes the propagation delay (time); TD denotes the transmission
delay of RTS or CTS packets; λ1,2,3 are three critical moments; CW
denotes the initial back-off contention window size.

contention window (CW ) size. We require that the back-off window size doubles for

each RTS retry. When a RTS retry limit is reached, the data packet will be dropped.

Based on the results of QualNet simulation using realistic communication mod-

els, we make three key observations:

#1. If one terminal is receiving a packet while another packet arrives, then both

packets will be corrupted.

#2. If one terminal is sending a packet while another packet arrives, then both pack-

ets will be dropped (inward packet is ignored, the signal of outward packet is

weakened).

#3. In the PHY layer, sending has a higher priority than receiving [21].

Here the first observation corresponds to the packet collision. The PHY (physical) layer

in observation #3 is defined in the seven-layer OSI framework of computer networking.

It specifies the methods of transmitting raw bits over a real link.
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Thus, given the second sender also randomly choosing a time t2 (assume t2 >

t1 here) between 0 and CW to send a RTS packet RTS2, we can conclude three

possibilities:

1) If t2 < λ2 = λ1 + 2TD, RTS2 either collides with RTS1, according to observation

#1, or interrupts the sending of CTS1, based on the observation #2. No data

packet will be sent, and both senders will resend RTS packet following the rules

of the back-off mechanism (back-off window size doubles) after a constant period

called RTS timeout.

2) If λ2 < t2 < λ2 + 2σ = λ3, CTS1 will successfully arrive at sender 1 but not at

sender 2 according to the observation #3. Sender 1 then sends the data packet

which will collide with RTS2 provided the size of the data packet � the size of

RTS packet.

3) If t2 > λ3, both senders will successfully receive CTS1. Then sender 2 will become

quiet and sender 1 successfully sends the data packet.

For the case of t2 < t1, by the symmetry assumption, the analysis is the same. In

general, we define the time that the j-th sender sends RTS packets with back-off

window size 2n−1CW as

T
(n)
j = (n− 1)T̃ +

n∑

k=1

t
(k)
j , T

(0)
j = 0 (3.2.1.1)

where T̃ is the length of RTS timeout, and ∀j,



t
(0)
j = 0

t
(n)
j ∼ U(0, 2n−1CW ) i.i.d ∀n > 0

From the analysis above, we develop a stochastic model for the two-senders system,

of which the behaviors at time t are characterized with the joint statuses of the two

senders. Figure 3.3 demonstrates the directed diagram of the states. In particular, the

transition possibilities are given by the aggregating behaviors of the RTS-competing
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process. All the other transition probabilities unlabeled in the figure are equal to 1

because there are only two competitors in this scenario such that whoever first finishes

the data transmission, the other always succeed.

P1, n = P

(
T

(n)
2 − T (n)

1 > 2(TD + σ)

∣∣∣∣
∣∣T (m)

2 − T (m)
1

∣∣ < 2TD,m = 0, 1, 2, · · · , n− 1

)

(3.2.1.2)

P2, n = P

(
T

(n)
2 − T (n)

1 < −2(TD + σ)

∣∣∣∣
∣∣T (m)

2 − T (m)
1

∣∣ < 2TD,m = 0, 1, 2, · · · , n− 1

)

(3.2.1.3)

P3, n = P

(∣∣T (n)
2 − T (n)

1

∣∣ < 2TD

∣∣∣∣
∣∣T (m)

2 − T (m)
1

∣∣ < 2TD,m = 0, 1, 2, · · · , n− 1

)

(3.2.1.4)

P4, n = P

(
− 2(TD + σ) < T

(n)
2 − T (n)

1 < −2TD

∣∣∣∣
∣∣T (m)

2 − T (m)
1

∣∣ < 2TD,m = 0, 1, 2, · · · , n− 1

)

(3.2.1.5)

P5, n = P

(
2TD < T

(n)
2 − T (n)

1 < 2(TD + σ)

∣∣∣∣
∣∣T (m)

2 − T (m)
1

∣∣ < 2TD,m = 0, 1, 2, · · · , n− 1

)

(3.2.1.6)

3.2.1.1 Model Validation

If we set the RTS retransmission limit as L, then we can verify the two-sender

model by evaluating the success, failure and drop rates of data packets for any sender

and comparing the results with QualNet simulations. In particular, we only focus on

the results of sender 1. Let PD denote the probability that sender 1 drops the data

packet, PS be the chance that sender 1 succeed in delivering the data packet and PF

represent the probability that sender 1 fails to send the data packet due to collision,
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Figure 3.3: Directed diagram for the Markov chain: S represents the successful send-
ing of data packet. F corresponds to data packet being corrupted, and
Ci’s, i = 1, 2, 3, · · · mean sender is competing with others (if any) by ran-
domly sending RTS packet within period of back-off window size 2i−1CW .
The states, (s1(t), s2(t)), where s1, s2 ∈ {S, F, C1, C2, C3, · · · }, show the
status of (sender1, sender2) at time t.

based on the diagram 3.3 and define P3, 0 := 1, we conclude

PD =
L−1∏

i=0

(P3, i)(P4, L) +
L∏

i=1

(P3, i) (3.2.1.7)

PS =
L∑

n=1

∏

i<n

(P3, i)((P1, n) + (P2, n)) +
L−1∑

n=1

∏

i<n

(P3, i)(P4, n) (3.2.1.8)

PF =
L∑

n=1

∏

i<n

(P3, i)(P5, n) (3.2.1.9)

Notice that sender 1 will drop the data packet in the case of sender 2 encountering a

collision with RTS packet from sender 1 associated with the probability (P4, L), as the

RTS retransmission limit L has been reached.

The transition probabilities (3.2.1.2) - (3.2.1.6) are calculated in Mathematica

using the parameters shown in Table 3.1. The results are plugged into the equations
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TD 290.583
CW 600
σ 3.75

Table 3.1: Parameters used in verification. The values are in microsecond (10−6s).

(3.2.1.7) - (3.2.1.9). On the other hand, for the QualNet trials, both senders compete in

separated and synchronized sessions and in total each forwards one million data packets.

In the end, we summarize the frequency of the data packets delivered, collided or

dropped for sender 1. We repeat the experiments 3 times using distinct retransmission

threshold for RTS packets. e.g. L = 1, 2, 3. The results are given in Table 3.2 where

the relative error between two probabilities p and q is computed by |p−q||p| .

Table 3.2: Comparisons of drop, success and fail rate of data packets between model
and simulations.

RTS limit 1 PD PS PF
Model 0.999329 0.000357 0.000314
QualNet 0.999347 0.000322 0.000331
Relative error 0.00002 0.097 0.052

RTS limit 2 PD PS PF
Model 0.695105 0.301066 0.003515
QualNet 0.695335 0.300747 0.003918
Relative error 0.00032 0.001 0.114

RTS limit 3 PD PS PF
Model 0.287799 0.707052 0.005150
QualNet 0.287638 0.706752 0.005611
Relative error 0.00056 0.00042 0.089

3.2.2 Three-sender Scenario with MACA

We also consider a generalization of the mathematical model for MACA protocol

to a scenario with three senders and one receiver, illustrated by Figure 3.4. We follow

a similar set of assumptions as described above. Again a form of 3-tuple

(
s1(t), s2(t), s3(t)

)
, s1, s2, s3 ∈ {S, F,N,C1, C2, C3, · · · }
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A Three-Sender Scenario

1

R

2

3

Figure 3.4: The three-sender scenario with hidden terminals

is used to represent the states of (sender1, sender2, sender3) at time t. Here a new

status N is added, which represents that a sender receives CTS packet destined for

another node so that it freezes for a specific amount of time governed by NAV.

The Markov process of the system with three senders is much more complicated.

In fact, the joint state space of three senders tends to expand exponentially. Starting

from any state

(Cn1 , Cn2 , Cn3), ∀ n1, n2, n3 = 1, 2, 3, . . .

in one transition, there are eight new possible states if we focus on node 1. The

descriptions are presented below. Notice that the associated conditions for transmission

time of RTS are given regardless of the state transition history.

1. (Cn1+1, Cn2+1, Cn3+1): No data packets will be sent due to the collision of RTS

38



packets, or failing to receive a CTS. The corresponding RTS transmission mo-

ments satisfy,

0 < T
(nα(2))

α(2) − T (nα(1))

α(1) < 2TD, 0 < T
(nα(3))

α(3) − T (nα(2))

α(2) < TD, ∀α ∈ S3.

(3.2.2.1)

2. (Cn1 , Cn2+1, Cn3+1): Senders 2 and 3 send RTS packets which collide while sender

1 is still backing off. The corresponding RTS transmission moments satisfy,

0 < T
(nα′(2))

α′(2) −T (nα′(3))

α′(3) < 2TD, T
(n1)
1 −T (nα′(2))

α′(2) > TD, ∀α′ ∈ S3 s.t. α′(1) ≡ 1.

(3.2.2.2)

3. (Cn1+1, Cn2 , Cn3+1): Senders 1 and 3 send RTS packets which collide while sender

2 is still backing off. The corresponding RTS transmission moments satisfy,

0 < T
(nα′′(1))

α′′(1) −T (nα′′(3))

α′′(3) < 2TD, T
(n2)
2 −T (nα′′(1))

α′′(1) > TD, ∀α′′ ∈ S3 s.t. .α′′(2) ≡ 2

(3.2.2.3)

4. (Cn1+1, Cn2+1, Cn3): Senders 1 and 2 send RTS packets which collide while sender

3 is still backing off. The corresponding RTS transmission moments satisfy,

0 < T
(nα′′′(1))

α′′′(1) −T (nα′′′(2))

α′′′(2) < 2TD, T
(n3)
3 −T (nα′′′(1))

α′′′(1) > TD, ∀α′′′ ∈ S3 s.t. .α′′′(3) ≡ 3

(3.2.2.4)

5. (S,N,N): Sender 1 delivers the packet successfully while the other two freeze by

NAV. The corresponding RTS transmission moments satisfy,

T
(n2)
2 − T (n1)

1 > 2TD + 2σ, T
(n3)
3 − T (n1)

1 > 2TD + 2σ. (3.2.2.5)

6. (F,Cn2+1, N): The RTS packet from sender 2 collides with the data packet from

sender 1 and sender 3 freezes by NAV. The corresponding RTS transmission

moments satisfy,

2TD < T
(n2)
2 − T (n1)

1 < 2TD + 2σ, T
(n3)
3 − T (n1)

1 > 2TD + 2σ. (3.2.2.6)
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7. (F,N,Cn3+1): The RTS packet from sender 3 collides with the data packet from

sender 1 and sender 2 freezes by NAV. The corresponding RTS transmission

moments satisfy,

T
(n2)
2 − T (n1)

1 > 2TD + 2σ, 2TD < T
(n3)
3 − T (n1)

1 < 2TD + 2σ. (3.2.2.7)

8. (F,Cn2+1, Cn3+1): Both RTS packets from sender 2 and 3 collide with the data

packet from sender 1. The corresponding RTS transmission moments satisfy,

2TD < T
(n2)
2 − T (n1)

1 < 2TD + 2σ, 2TD < T
(n3)
3 − T (n1)

1 < 2TD + 2σ. (3.2.2.8)

Here S3 represents the set of all permutations of {1, 2, 3}, RTS transmission time

is defined in (3.2.1.1) and the constraints, (3.2.2.1) - (3.2.2.8), are conditioned on the

history of state transitions. In particular, we conclude that ∀ix ∈ {1, 2, . . . , nx−1}, x ∈
{1, 2, 3}, there exists iy ∈ {1, 2, . . . , ny − 1}, y ∈ {1, 2, 3}\x, such that

|T (ix)
x − T (iy)

y | < 2TD (3.2.2.9)

(3.2.2.9) ensures the existence of a path which links the current state (Cn1 , Cn2 , Cn3)

and the initiate state (C1, C1, C1).

Notice that once sender 1 gets to the states S or F , we go back to the two-sender

case. Although it is unlikely that we will find a regular repeating structure like Figure

3.3 with a linear growth state space as in the two-sender case, it is still possible to find

a truncated approximation of the complete state space with recurrent configuration

given some proper settings of network parameters. More specifically, the truncated

chain should satisfy the following property:

|nx − ny| ≤ 1, ∀x, y ∈ {1, 2, 3}

For example, we can assume that the branching term (Cn1 , Cn2+1, Cn3+1) will always

transit to (S,N,N) as long as the RTS timeout, T̃ , is sufficiently longer than the n1-th

back-off window size at node 1. In this case, node 1 will successfully occupy the channel

before node 2 and node 3 resume.
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Under this assumption, given current backoff window size as 2n−1CW , let P
(n)
cc

be the probabilities that all three RTS packets collide, and P
(n)
ci represents that two RTS

packets collide while the last one from sender i has not been sent yet. P
(n)
si represents

the chance that sender i successfully delivers the data packet and P
(n)
fi represents the

probability that data packet from sender i is corrupted, we have,

P (n)
cc =

∑

α∈S3

P
(

0 < T
(n)
α(2) − T

(n)
α(1) < 2TD, 0 < T

(n)
α(3) − T

(n)
α(2) < TD

∣∣∣

0 < T
(m)
α(2) − T

(m)
α(1) < 2TD, 0 < T

(m)
α(3) − T

(m)
α(2) < TD,∀α ∈ S3,m = 0, 1, 2, . . . , n− 1

)
.

(3.2.2.10)

P
(n)
c1 =

∑

α′∈S3
α′(1)=1

P
(

0 < T
(n)
α′(3) − T

(n)
α′(2) < 2TD, T

(n)
α′(3) − T

(n)
1 > TD

∣∣∣

0 < T
(m)
α(2) − T

(m)
α(1) < 2TD, 0 < T

(m)
α(3) − T

(m)
α(2) < TD,∀α ∈ S3,m = 0, 1, 2, . . . , n− 1

)
.

(3.2.2.11)

P
(n)
s1 = P

(
T

(n)
2 − T (n)

1 > 2TD + 2σ, T
(n)
3 − T (n)

1 > 2TD + 2σ
∣∣∣

0 < T
(m)
α(2) − T

(m)
α(1) < 2TD, 0 < T

(m)
α(3) − T

(m)
α(2) < TD,∀α ∈ S3,m = 0, 1, 2, . . . , n− 1

)
.

(3.2.2.12)

P
(n)
f1 = P

(
2TD < T

(n)
2 − T (n)

1 < 2TD + 2σ OR 2TD < T
(n)
3 − T (n)

1 < 2TD + 2σ
∣∣∣

0 < T
(m)
α(2) − T

(m)
α(1) < 2TD, 0 < T

(m)
α(3) − T

(m)
α(2) < TD,∀α ∈ S3,m = 0, 1, 2, . . . , n− 1

)
.

(3.2.2.13)

The representations of P
(n)
c2 , P

(n)
s2 , P

(n)
f2 , P

(n)
c3 , P

(n)
s3 , P

(n)
f3 are similarly defined. We point

out that the direct computing of probabilities (3.2.2.10) - (3.2.2.13) becomes increas-

ingly hard as n goes up. In fact, a crude effort with Mathematica fails to provide

effective results when n = 2.
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3.2.2.1 Approximating Transition Probabilities with Monte Carlo Simula-

tion

In this section, we implement a Monte Carlo method to approximate the tran-

sition probabilities. The detailed description for the 3-sender scenario with focus on

node 1 is given by Algorithm 2. The same method applied for all senders. To check

the accuracy of this algorithm, we first compute the relative error by comparing the

simulated data with the theoretical value achieved through Mathematica when RTS

retry limit L = 1. The parameters used and the results are shown by Table 3.3 and

3.4 respectively. The realistic simulation of QualNet with L = 1 also validate the ef-

Table 3.3: Parameters used in Monte Carlo Simulations

TD 293
CW 600
σ 1.333
M 106

Table 3.4: Evidence for the effectiveness of Monte Carlo Method

RTS limit 1 Pcc Pc1 Ps1 Pf1

Theory 0.866032 0.044652 2.24646 ∗ 10−6 1.98811 ∗ 10−6

Monte Carlo 0.866382 0.044535 1.6 ∗ 10−6 1.7 ∗ 10−6

Relative error 4.0414−4 0.0026 0.2857 0.1414
QualNet 0.866765 0.044623 2 ∗ 10−6 2.7 ∗ 10−6

forts. Note that the three-sender model accurately captures the behaviors of the system

transitions on the first phase of RTS competition (C1, C1, C1). For the second phase

of RTS competition and above, Mathematica fails to work, however the Monte Carlo

method still provide us reasonable results. In particular, since all the transmitters are

symmetrically positioned and independent, the probabilities P
(n)
ci , P

(n)
si , P

(n)
fi for each

sender should be the same in theory. This is confirmed by the simulation solutions

summarized in Table 3.5 with L = 2.
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Input: A matrix T of size M ×K ×N . Here M is the number of trials, K is
the number of sender (K=3), and N is the number of times RTS packets
have been resent.

Output: P
(N)
cc , P

(N)
c1 , P

(N)
s1 , P

(N)
f1 .

1 Generate matrix T = [τmkn], whose elements are given by
∑n

i=1 t
(i)
k (m), where

t
(i)
k (m) ∼ U(0, 2i−1CW ) i.i.d

2 Initialize the following counters to 0.

nvalid : Number of trials that are valid – satisfying (3.2.2.1) for all n ≤ N − 1.

ncc : Number of valid trials that satisfy (3.2.2.1) for n = N .

nc1 : Number of valid trials that satisfy (3.2.2.2) for n = N .

ns1 : Number of valid trials that satisfy (3.2.2.5) for n = N .

nf1 : Number of valid trials that satisfy (3.2.2.6), (3.2.2.7) or (3.2.2.8) for n = N .

3 for m = 1 to M do
4 for n = 0 to N − 1 do
5 if τm1n, τm2n, τm3n do not satisfy (3.2.2.1) then
6 goto step 3
7 end

8 end
9 nvalid = nvalid + 1;

10 if τm1N , τm2N , τm3N satisfy (3.2.2.1) then
11 ncc = ncc + 1;
12 else if τm1N , τm2N , τm3N satisfy (3.2.2.2) then
13 nc1 = nc1 + 1;
14 else if τm1N , τm2N , τm3N satisfy (3.2.2.5) then
15 ns1 = ns1 + 1;
16 else if τm1N , τm2N , τm3N satisfy (3.2.2.6), (3.2.2.7) or (3.2.2.8) then
17 nf1 = nf1 + 1;
18 end

19 end

20 Evaluate P
(N)
cc = ncc

nvalid
, P

(N)
c1 = nc1

nvalid
, P

(N)
s1 = ns1

nvalid
, P

(N)
f1 =

nf1
nvalid

.

Algorithm 2: Monte Carlo Method for approximating transition probabil-
ities on node 1 in the three-sender scenario
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Table 3.5: Validation of symmetry with Monte Carlo method

Monte Carlo - RTS limit 2 Pci Psi Pfi
sender 1 0.121810 0.047302 575
sender 2 0.122600 0.048001 488
sender 3 0.121802 0.047245 505

3.3 Modeling and Analysis of BARP with MACA

As we briefly discussed in Section 2.4.2, the modeling of ant-based routing in

the context of multi-hop wireless networks is challenged by the intrinsic complexity of

wireless medium access control and its cross-layer interaction. Leveraging our previous

work of modeling and analyzing ant-based routing protocols on wired networks, in this

section we investigate the integration of such model with the mathematical modeling

framework of MACA proposed in Section 3.2.

3.3.1 Modeling of BARP with Packet Loss

Our modest step of modeling and analyzing the integrated behaviors between

wireless MAC and ant-based routing starts on a simple six-node topology shown in

Figure 3.5. Node 1 is the source (s), node 5 is the destination (d), and there exist

exactly two paths, 1→2→3→4→5 and 1→6→5.

4

5

6

3

2

1 ds

Figure 3.5: A simple network topology
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Since the maximum number of neighbors for each node is two, we only consider

the MACA model for the two-sender scenario. Also, we assume that the probability of

a sender successfully sending data packet (ants) only depends on whether other nodes,

in the communicating range of the receiver, have data packet (ants) to send. Thus,

we define a new component, y
(n)
D which represents the probability of finding an ant

dropped at the n-th time step in the network, to the original density vector of ants y(n)

in BARP. One can think there exists a virtual node D that collects all the dropped ant

packets. Here, ants are dropped either due to collision at the receiver or RTS retry limit

reached at the sender. Also, based on the MACA modeling and the representations of

PD and PF , (3.2.1.7) and (3.2.1.9) in Section 3.2.1, if we set the RTS retransmission

limit as L times and let δ be the probability that sender 1 fails to deliver data packet,

then

δ = PF + PD ≈
L∑

n=1

∏

i<n

(P3, i)(P5, n) +
L∏

i=1

(P3, i), P3, 0 := 0

This approximation is accurate in general when L > 5. Recall the basic ant-based

routing procedure described by Algorithm 1 in Section 2.2. The corresponding tran-

sition matrix in (2.2.0.2) for the forward ants now also relates to distributions of the

ants over the network and becomes

P̄ (n)(β,y(n)) =
[
p

(n)
ji ∗ Si(y(n)

l )
]
, l ∈ Ni\j

where Ni represents the set of neighboring nodes of i and

Si(y
(n)
l ) =





1− δy(n)
l , l 6= d

1, otherwise.

By the definition of y
(n)
D , we get:

y
(n)
D =

∑

i,j

y
(n)
j (1− p(n)

ji Si(y
(n)
l )).

We exclude the destination d in the definition of Si(y
(n)
l ) because once a forward ant

arrives at d, it becomes a backward ant which proceeds on a different channel thus
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won’t interfere with other ongoing forward transmissions. For modeling the backward

ants and the existence of equilibrium solution, we add one link from d back to s and

one link from D back to s both with transition probability of 1, that is,

y(n+1)
s = y

(n)
d + y

(n)
D .

To complete the system, we also have the normalization condition:

y(n) · 1 + y
(n)
D = 1.

Finally, together with the equilibrium equation of pheromone (recall equation (2.2.0.7)),

our stationary solutions for both pheromone and density of ants as n → ∞ should

satisfy the following non-linear system:

Λτij =
∞∑

k=1

1

k
p̃sdij (k) (3.3.1.1)

y = P̄ (β,y)y (3.3.1.2)

yD =
∑

i,j

yi(1− pjiSi(yl)) (3.3.1.3)

ys = yd + yD (3.3.1.4)

1 = y · 1 + yD (3.3.1.5)

3.3.2 Evaluation and Validation

We validate the developed model by comparing the Matlab numerical results

of solving its steady state solution with the QualNet simulation results of executing

MACA and BARP protocols with realistic wireless communications, using the six-node

topology of Figure 3.5.

By using Matlab’s fsolve subroutine, we compute the steady state solution for

both the pheromone distribution (τij on the link from node i to node j) and the ant

drop rate (yD). The initial value of pheromone on each link is 1, and the starting

probability density vector of ants is (1, 0, 0, 0, 0, 0).

The QualNet simulation uses the parameters summarized in Table 3.6. The

initial contention window size is set to 1200 microsecond and RTS retransmission limit
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(a) QualNet parameter

Terrain size 1500×1500 m2

Number of nodes 6
Mobility 0
Radio range up to 500 m
PHY protocol 802.11b
Bandwidth 2 Mbps
MAC protocol MACA

(b) BARP parameter

Ant interval 2 second
Decay interval 2 second
β 0, 0.5, 2
h1 1
k1 0.3
h2 1
k2 1

Table 3.6: BARP parameters used in QualNet simulation

is 6. The channel model implemented is two-ray ground-reflection without fading [44].

Along the two paths (1→2→3→4→5 and 1→6→5) from the source to the destination,

forward ants sent from nodes 4 and 6 will collide at the destination node 5. The

source originates one forward ant every two seconds. In the simulation, after receiving

an ant, a node does not forward the ant until the next integer second. For instance,

if a node receives an ant at time 2.123S, it will forward it at 3.000S. By adopting

this mechanism, we ensure that node 4 and node 6 compete for sending ants to the

destination at exactly the same time, which corresponds to the modeled two-sender

scenario. Also notice that the proposed analysis only models the behavior of forward

ants. To accommodate this feature in QualNet simulation, backward ants trace its

steps back to the source through a ‘wired’ interface at each hop to avoid colliding with

forward ants sent wirelessly.

We perform Matlab numerical computation and QualNet simulation with dif-

ferent β values, as they affect pheromone distribution and ant drop rate. When β is
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HHH
HHHβ
Path

1→2→3→4→5 1→6→5

0 0.178177
0.137059

0.356880
0.297402

0.5 0.118665
0.117521

0.476191
0.470853

2 0
0

0.714286
0.713762

HHH
HHH

β
0 0.5 2

Matlab 3.68 2.92 0.00
QualNet 5.12 3.01 0.00

Table 3.7: At left and right, the pheromone distribution on each path and ants drop
rate (×10−4) comparisons.

0, a path is randomly selected independently of pheromone values. As β increases, the

path with higher pheromone concentration is favored.

Both Matlab numerical results and QualNet simulation results of pheromone

distribution (τij on the link from node i to node j) are presented together in Table 3.7

(left). Each entry has the format x
y

where x denotes the Matlab result and y denotes

the QualNet result. As evidenced, they show comparable values.

Table 3.7 (right) compares the Matlab and the QualNet results of ant drop rate

with different β values. We observe that the ant drop rate decreases as β increases.

When β = 0, ants choose the two paths with equal probability, which then results in

more collisions at the destination and drops over the network. As β increases, more

ants favor the shorter path 1→6→5 with higher pheromone concentration, which leads

to less collisions at the destination. When β is 2, all the ants choose the path 1→6→5

without causing any collision at the destination. Again, we observe comparable results.

3.4 Evaluation of MACA for Multi-hop Wireless Networks: A Regression

Study

Up to this point, our modeling and analysis efforts of the virtual carrier sensing

mechanism for wireless MAC are bound to symmetric single-hop network scenarios

where all sources can directly communicate with the destination. Under the symme-

try assumption, the detailed timeline of RTS/CTS handshake can be understood by
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concentrating on one sender only. Furthermore, with the restriction of single-hop dis-

tance, it is also reasonable to assume that the packet collision or delivery rate of a

specific sender-receiver pair solely depends on the decisions of other competing nodes

within the receiver’s vicinity. The generalization of the Markovian framework presented

in Section 3.2, however, is very difficult, especially for the case of wireless multi-hop

networks. Instead, in this section we adopt an alternative approach for the purpose

of understanding the cross interaction and interference patterns among various traffic

flows in a typical setup of wireless multi-hop networks. In particular, we perform a

linear regression study of the packet delivery ratio on each directed link by lumping

together all the MACA protocol details into the regression coefficients.

3.4.1 The Complications of Multi-hop Wireless Networks

In a multi-hop wireless network, e.g. ad hoc WLANs, data traffic flows from

source to destination through a series of intermediate nodes whose function is to relay

information from one device to another. The previous modeling assumptions on the

topology features such as symmetry and one-hop range of interference are therefore in-

sufficient if multiple data frames traverse through the network contemporaneously. For

instance, consider the simple yet practical linear network topology in Figure 3.5. Two

data flows such as 1→2 and 3→4 might compete for channel access at the same time,

resulting in a problematic asymmetric configuration that leads to severe unfairness

at all time scales and starvation of the upstream flow [22, 23], since the handshakes

between 1 and 2 may be interrupted by the hidden node 3 but not vice versa (no

contention at 4). Moreover, the collision/delivery rate of the data stream 1→2 is not

exclusively influenced by node 3 as a direct neighbor of the receiver 2, but the ac-

tions of two-hop neighbor, 4, as well. The complication is that the transmissions from

node 4, either RTS or DATA packet, may collide with the CTS packet broadcasted

by 2 at node 3, who then won’t be aware of the succeeding data transmission on 1→2

and may potentially cause a collision. This problem is referred to as the masked node

problem in the literature [45, 46, 56]. Here node 3 is called “masked” if it is receiving
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two or more signals simultaneously. As a consequence, none of the ongoing trans-

missions, nor the new packets that arrive within the masked period, will be decoded

correctly. The masked node problem has been shown to severely limit the effectiveness

of the RTS/CTS mechanism in preventing performance degradation in wireless ad hoc

networks [62].

3.4.2 A Regression Model

In this section, we describe a linear regression model with coefficients calibrated

from the QualNet simulations. We intend to capture and evaluate the impacts of asym-

metric configurations and masked nodes on the packet delivery ratio for any directed

routes. Here, the packet delivery ratio measures the percentage of packets that has

been successfully transmitted. Now, given a network topology with n directed links

(i.e. there are potentially 12 directed routes for the topology in Figure 3.5), we assume

the delivery ratio over a specific link m is determined by the following:

dm(p) = c0 + c
(m)
i

n∑

i=1

pi +
n∑

i=1

∑

j /∈Ni

c
(m)
i,j pipj (3.4.2.1)

Here dm(p) is the deliver ratio of data packets on route m given p = (p1, p2, . . . , pn)

where pi is the probability that link i is “active” and Ni is the set of directed links that

originate from the same sender as route i. The interaction terms pipj are included to

capture the effects of cross-inference among every pair of concurrent transmissions on

the network. Notice that one sender cannot initiate two transmissions simultaneously,

hence the interactions do not exist if j ∈ Ni.

Naturally, no packets will be delivered on route m if it has never been activated,

that is, dm = 0 if pm = 0, the model then can be reduced to,

d̃m(p) = c̃(m)pm +
∑

j /∈Nm

c̃
(m)
j pmpj. (3.4.2.2)

The coefficients will be calibrated using the QualNet simulator operated on MACA

protocol. The experiments are conducted as follows. Each QualNet trial is comprised
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of M (a sufficient large number) transmission sessions with a chosen p: given any link

m, pm is uniformly chosen between 0 and 1 such that

∑

j∈Nm
⋃
{m}

pj < 1 (3.4.2.3)

(3.4.2.3) implies that at the beginning of each transmission session, a node may decide

not to send the head-of-line packet (which then will be dropped). After a trial is done,

the delivery ratio, d̃m(p), are calculated by

dm(p) =
# of packets delivered on m

M
(3.4.2.4)

Based on the data tuples (dm(p),p) obtained from a sufficient large number (� 2n) of

QualNet trials, we perform a multilinear regression of the observations in dm(p), ∀m,

on the predictors in p with Matlab diagnostic function.

3.4.3 Evaluations and Predictions

We start by solving the regression model (3.4.2.2) on a simple 5-node ring topol-

ogy shown by Figure 3.6. In particular, we execute the QualNet trials 1000 times with

arbitrary combinations of p that satisfy the condition (3.4.2.3). The significant coef-

ficients concluded from Matlab statistical test reveal three types of dominant 2-link

interactions. Figure 3.7 demonstrated the interactions for a specific link. Since the

corresponding coefficients are negative, the regression model confirms and quantifies

the adverse influence of masked nodes (interaction type 1) and asymmetric hidden

contentions (interaction type 3) on the performance of MACA protocol (measured by

packet delivery ratio) in representative wireless multi-hop networks. In particular, the

masked node problem impacts performance the most, then the hidden node problem

in symmetry, and finally the unbalanced contentions.

Next, we leverage the existing linear model of the 5-node ring topology by only

including the above three types of interaction. For any link i, let Iij denote the link

that interacts with i in the fashion of type j. Due to symmetry, all links should be
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Figure 3.6: A simple 5 node topology. The circles indicate the transmission ranges of
each nodes. There are 10 possible directed transmissions demonstrated
by the arrows.
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Figure 3.7: Three types of prime interactions observed for the target link (red):
deeper blue means higher impact. Type 1 relates to the masked node
problem, as the interface at node 4 will be occasionally blocked by signal
from node 5; Type 2 indicates the typical symmetric hidden terminal
problem; Type 3 corresponds to the asymmetric hidden node problem
which causes unfairness because receiver 3 will more likely be blocked by
4, but not by 2.

identical. Thus we average the coefficients with respect to directed routes and rewrite
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the reduced model for general ring topology as

d̃m(p) = (
1

10

10∑

i=1

c̃(i))pm +
3∑

j=1

(
1

10

10∑

i=1

c̃
(i)
Iij

)pmpImj

:= C0pm +
3∑

j=1

CjpmpImj (3.4.3.1)

where c̃(i) and c̃
(i)
Iij

, ∀i are known from the solution of 5-node ring topology.

With the new model (3.4.3.1), we achieve good predictions of packet delivery

ratio on both ring topologies with 6 nodes and 8 nodes respectively. Focus on one link,

Figure 3.8 compares the numerical results dpred with data d from 100 QualNet trials

using randomly generated transmission probabilities p. The relative error,
‖dpred−d‖2
‖d‖2 ,

indicates a 4.89% deviation for 6-node scenario and 4.46% for 8-node.
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Figure 3.8: A comparison between model predictions and QualNet statistics on data
delivery. The result on the top corresponds to 6 node ring topology and
the bottom corresponds to 8 node ring topology.

3.5 Conclusion

In this chapter, we have briefly reviewed several pivotal wireless medium access

control protocols and their primary design for managing effective packets switching

over a shared radio spectrum. Specifically, we have explored the functional details of

MACA, a practical MAC protocol proposed to address the hidden terminal problem,

and introduced a Markovian modeling framework to characterize the behaviors of the
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RTS/CTS mechanism implemented by MACA protocol on representative single-hop

network scenarios. On top of the proposed mathematical analysis of MACA, we revisit

the rigorous model of BARP to investigate the cross-layer interactions between wireless

medium access control and ant-based routing on a simple network topology. The efforts

were validated by comparable results from the numerical analysis of the equilibrium

solution to the integration model and QualNet simulations with realistic implementa-

tions of wireless communication protocols. Finally, given the difficulties of generalizing

the MACA analysis for wireless multi-hop networks, we have implemented an alterna-

tive approach with multilinear regression on a simple multi-hop ring topology of size

5 to reveal the problematic asymmetric configurations and the masked node problem.

The reduced model using significant coefficients and corresponding interaction terms

predicts packet delivery ratios accurately on larger ring topologies.

The modeling efforts and analysis using Markov processes and linear regres-

sion have been validated to correctly characterize MACA and network performance

on representative infrastructure and ad hoc topologies respectively. However, both

approaches are inapplicable to general network scenarios with arbitrary topology and

parameters. The Markov model is likely to contain irregular transition structure and

rapidly expanded state space unless certain requirements about network parameters

are met. For the regression model, it will be difficult to establish an elegant experi-

mental design for universal network scenarios similar to the ring configuration for linear

topologies such that all transmissions are equivalent due to prefect symmetry. In the

next chapter, we introduce a more useful Markov model with a discrete fixed time

scale to generate the statistical description of node behavior and status given network

parameters and topology.
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Chapter 4

PROBABILISTICALLY MODELING OF IEEE 802.11 DISTRIBUTED
COORDINATION FUNCTION

In this chapter, we will introduce and analyze a new Markov model of the IEEE

802.11 Distributed Coordination Function (DCF) for wireless LANs. The new model is

derived from a detailed DCF description where transition probabilities are determined

by precise estimates of collision probabilities based on network topology and node

states. For steady state calculations, we approximate joint probabilities from marginal

probabilities using product approximations. To assess the quality of the model, we

compare detailed equilibrium node states with results from realistic simulations of

wireless networks. We find very close correspondence between the model and the

simulations in a variety of representative network topologies.

4.1 Review of IEEE 802.11 Distributed Coordination Function (DCF)

IEEE 802.11 [3], the international standard designed for WLANs, provides a

detailed MAC layer specification in which the fundamental mechanism for network

devices to access the channel without any centralized control is called Distributed

Coordination Function (DCF). This is a contention based random access scheme, im-

plementing the non-persistent Carrier Sense Multiple Access with Collision Avoidance

(CSMA/CA) protocols. Recall Section 3.1, carrier sense is the ability of a network de-

vice to determine if the transmission medium is idle. In general, wireless carrier sense

is composed of two distinct techniques: 1) CCA (Clear Channel Assessment), which

is performed through physical evaluation of the signal energy on the station’s radio

interface, and 2) NAV (Network Allocation Vector), a virtual carrier sense mechanism,
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which is a data segment that indicates the amount of time required for the transmis-

sion immediately following the current packet that contains the NAV. The collision

avoidance feature of CSMA/CA requires that a station transmits only when the chan-

nel is sensed to be idle. Unfortunately, collisions may still occur when two stations

determine an idle channel at the same instant and subsequently transmit. To reduce

the chance of repeated collisions of retransmitted packets, CSMA/CA protocols apply

a binary exponential back-off (BEB) algorithm, by which every station selects a ran-

dom back-off time before each retransmission. The name binary exponential originates

from the fact that at each retransmission attempt, the longest possible back-off time

(contention window size) doubles. Hence it is less likely for two stations to retransmit

at the same moment. Diagram 4.1 summarizes the procedures of CSMA/CA protocols

implemented by 802.11 DCF. Notice that we implement the same back off rules when

Carrier Sense

busy

busy

idle

idle

timer>0

idle
idle

timer=0

success

failure
Transmit

Set backoff timer to 
random number 

between 0 and CW

Decrement 

Backoff timer 
while idle

CW = 2*CW Defer until 

medium idle

Listen for 
DIFS period

Start

End

CW=CWmin

CSMA/CA 
algorithm

BEB

Figure 4.1: Non-persistant CSMA/CA algorithm implemented in 802.11 DCF
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exploring MACA protocol in Section 3.2.

DCF specifies two approaches for packet transmission. The default scheme is

called Basic Access mechanism. Provided the channel is sensed idle, a sender trans-

mits the data packet after a random back-off time interval. A receiver, following the

successful reception of a data packet, replies a positive acknowledgment frame. The

communication is complete whenever the sender receives an acknowledgment that it

anticipates. However, a packet collision may still occur at the receiver node in the

presence of other concurrent transmitters who are hidden from the sender. To address

this issue, DCF provides an optional technique similar to MACA protocol, known as a

Request-to-Send/Clear-to-Send (RTS/CTS) mechanism. Recall that instead of broad-

casting a long and valuable data packet directly, a sender/receiver pair operated in

RTS/CTS mode reserves the channel by handshaking via RTS and CTS short packets.

In particular, since NAV is transmitted along both RTS and CTS packets, a node in

immediate vicinity when overhearing either RTS or CTS packets will defer its own

transmission long enough for the addressed communication to finish. Although col-

lisions may still occur among RTS or CTS frames, this virtual sensing scheme can

diminish the chance of collisions between data packets and improve network through-

put as long as RTS/CTS packets are significantly shorter than the data payloads. A

complete and comprehensive description of 802.11 DCF can be found in the standard

[3].

The remainder of the chapter is organized as follows. In Section 4.1.1 and 4.1.2

we examine the RTS/CTS operations of IEEE 802.11 DCF and introduce assumptions

used for model derivation. In Section 4.2 we formulate and discuss the model in details.

In Section 4.3 we apply the model in three representative network configurations and

examine the results. Section 4.4 concludes the modeling efforts.

4.1.1 Preliminaries

In a wireless local area networks, not all nodes are necessarily within the sensing

range of each other, creating hidden terminals. To address this, the 802.11 DCF adopts
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an RTS/CTS/DATA/ACK four way handshaking scheme, shown in Figure 4.2 and

described as follows:

A sender, x, will constantly monitor the channel activity by carrier sensing.

x will not attempt to transmit RTS unless the channel is sensed idle for a period of

time called the Distributed InterFrame Space (DIFS). On the other hand, x accesses the

channel following the BEB algorithm: at each transmission of RTS packet, the back-off

counter is uniformly chosen between 0 and the current Contention Window size. Here

the contention window determine the longest possible back-off time a node can choose.

The back-off counter is decremented to zero unless x senses a busy channel. This will

suspend the counter until the channel is sensed idle again after a DIFS. Broadcasting

of RTS starts when the timer reaches zero. If the receiver y successfully captures the

RTS packet, it will reply to x by broadcasting a CTS packet after a short period of

time interval called the Short InterFrame Space (SIFS). The contention window will be

reset to an initial value only when x correctly receives the CTS from y. However, CTS

reception can be disrupted by a transmission from another node anywhere within range

of x. If the CTS is not received, the contention window doubles, and x retransmits

RTS according to the new contention window after waiting a specified time period of

Tout, called RTS Timeout. Thus, at each failed RTS/CTS handshaking attempt, w

is doubled up to a maximum value. Then the window size remains at that threshold

until it is reset. If the maximum transmission failure limit (Retry Limit) is reached,

x will discard the data packet and the window size returns to an initial value. The

RTS/CTS exchange improves the chances that two nodes will be able to reserve the

channel and exchange data after another SIFS in a complex environment. At the end

of the successful reception of the data packet from x, y immediately responds with a

positive acknowledgement (ACK) after a SIFS. The RTS/CTS/DATA/ACK four way

handshaking is complete whenever an ACK is correctly received by x. If not, x will

reschedule the data packet transmission.
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Figure 4.2: IEEE 802.11 DCF timeline with RTS/CTS access mechanism

4.1.2 Assumptions

In this section, to systematically develop a predictive model of 802.11 DCF, we

introduce the following notation and assumptions.

Network : We assume ideal channel conditions. This means there will be no noise,

capture effect, etc., and the propagation delay is ignored. Each node operates

under homogeneous configurations. All nodes have the same sensing range Rs

and transmission range R, where R < Rs.

Timescale : Distinct from [7] and its many extensions, we adopt a constant timescale

of least duration, σ, which is equal to the time needed at any node to detect the

transmission of a packet from any other node. Because σ is very small, we shall

assume that any node can immediately detect the transmission of a packet from

any other node inside its sensing range Rs. All the time parameters in the model,

i.e, transmission time of RTS, DATA, etc, are assumed to be multiples σ.

MAC protocol : For simplification of modeling, we use a modified version of IEEE

802.11 DCF implementing the RTS/CTS mechanism: DIFS is set to be one

time unit and SIFS is assumed to be negligible. RTS and CTS packets have the
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same size, hence their transmission delays, denoted as TRTS and TCTS, are equal.

The protocol still adopt the BEB algorithm and the back-off counter is chosen

uniformly between 1 and the contention window size. Furthermore, we set the

retry limit of the RTS is the number of times that a contention window is allowed

to double. Hence if the contention window achieves its threshold, we assume the

data packet being sent is dropped.

Data : There is no retransmission of data packets. A data frame is dropped either

because there is a collision at the receiver or retry limit of RTS reached. Also,

we assume the acknowledgment packet (ACK) following a successful data packet

transmission has fixed size (2 slots) and always succeeds. Hence the transmission

time TDATA includes the sending/receiving period of data plus ACK.

Carrier sense :

1. CAA - Clear Channel Assessment: Since the signals from different

neighboring nodes can overlap, the busy period a node physically senses in

general will not be constant and will most likely depend on the number of

active neighbors.

2. Network Allocation Vector (NAV): It is included in both RTS and CTS

packets indicating how long the channel will be occupied. In the standard,

the value of NAV is TNAV r = TCTS +TDATA +TACK if contained in RTS, or

TNAV c = TDATA + TACK if contained in CTS. When a node freezes through

NAV, it will ignore arriving packets until the NAV period ends. On the other

hand, a node will update the freezing period of NAV with the information

overheard from either a CTS or RTS packet if a new NAV value is greater

than the current NAV value. For simplicity, we employ fixed-size NAV

period, and assume a node freezes at the end of NAV if the channel is busy.

CTS Timeout : Within the period of CTS timeout, Tout = TCTS + σ, any incoming

packets arrived from the physical medium, valid or not, will be ignored. At the
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end of CTS timeout, we assume a node freezes if the channel is occupied, and

resumes back-off/idle if otherwise.

4.2 Modeling the Distributed Coordination Function

In a single-hop network (i.e. a fully connected graph), every node can sense each

other and consequently experiences the same level of contention. However, in a WLAN,

the competition among stations for channel access can be biased: a station with more

nodes hidden from it may back off longer or encounter more packet collisions than the

others which have fewer undetectable contenders. As a result, the performance of the

DCF will vary for each node in the network.

4.2.1 Modeling of Node States

We model each node x in the network as a multi-dimensional stochastic process,

denoted by

Hx(t) := (sx(t), bx(t), ax(t), vx(t), ~Qx(t))

with the discrete-time Markov chain, in which the uniform integer time scale, σ, is

adopted: tn and tn+1 correspond to the beginning of two consecutive slots. (tn := nσ.)

sx(t) : Back-off stage (0, 1, 2, . . . ,m) of node x at time t, where m is the maximum

back-off stage. By the exponential back-off scheme described in Section 4.1,

sx(t) = i implies that the contention window size at time t = wi = 2iw. w is the

initial window size.

bx(t) : Back-off counter of node x at time t. At the beginning of any back-off

stage i, the counter will randomly choose a value among (1, . . . , wi) based on

the assumptions of protocol. Then for each following time step tn, the back-off

counter either decrements or freezes with respect to carrier sense.

61



ax(t) : Action/Status of node x at time t:





I, x is idle

B, x is back-off counting

U, x is waiting due to unidentified signals sensed

R−→z , x is sending RTS to z

R←−z , x is receiving an uncorrupted RTS from z

Rz, x is overhearing an uncorrupted RTS from z

C−→z , x is sending a CTS to z

C←−z , x is receiving an uncorrupted CTS from z

Cz, x is overhearing an uncorrupted CTS from z

A−→z , x is sending DATA to z

A←−z , x is receiving an uncorrupted DATA from z

Dz, x is waiting due to NAV triggered by RTS/CTS from z

W, x is waiting for a responding CTS

Here z ∈ Nx where Nx denotes the set of neighboring nodes of x. Remark on W :

ax(t) = W implies that either the previous RTS packet has been dropped at the

receiver so there will be no responding CTS, or the CTS has become unidentified

due to collisions at x.

Table 4.1 characterizes the actions/statuses of x by the behaviors of x’s antenna,

the channel conditions, and the status of x’s queue. For instance, if ax(t) = I,

x has nothing to send in the buffer and there is no signal in the medium. Hence

its antenna keeps quiet, the channel is sensed free, and its queue is empty. If

ax(t) = Dz, x will be frozen because of NAV, which means the antenna is quiet,

the channel can be either busy or free depending on the other nodes’ actions, and

x’s queue can be either empty or occupied. The other actions can be described

similarly as above.

vx(t) : Virtual timer associated with ax(t). It will start (t = t0) at one of the

following values and decrement to 0 at the beginning of each time slot. Otherwise
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Table 4.1: The node statues in terms of antenna, channel, and queue

ax(t) Antenna
(Quiet/Sending)

Channel
(Busy/Free)

Queue
(Empty/Occupied)

I Quiet Free Empty
B Quiet Free Occupied
Dz Quiet Busy/Free Empty/Occupied
W Quiet Busy/Free Occupied

U/R←−z /A←−z /Rz/Cz Quiet Busy Empty/Occupied
C←−z Quiet Busy Occupied
C−→z Sending Busy Empty/Occupied

R−→z /A−→z Sending Busy Occupied

the timer stays at 0.

vx(t0) =





tRTS, if ax(t0) ∈ {R−→z , R←−z , Rz}
tout, if ax(t0) = W

tCTS, if ax(t0) ∈ {C−→z , C←−z , Cz}
tDATA, if ax(t0) ∈ {A−→z , A←−z }
tNAV r/tNAV c, if ax(t0) = Dz

where t0 is the initial start time. Here, tRTS := dTRTS/σe − 1 (similarly defined

for other time parameters).

~Qx(t) : Queue status vector of node x at time t. Here, ~Qx(t) = 〈Y, L〉, where

Y is the receiver of the Head of Line (HoL) packet that being sent by node

x. The second entry, L, represents the length of the queue (including the HoL

packet) at node x. If there is no packet in the queue, we say ~Qx(t) = ~0 = 〈∅, 0〉.
Furthermore, we say node x is on l-th layer at time t if L = l. Whenever the

node x successfully receives a packet during the back-off counting, L is increased

by 1. If node x finishes transmitting a packet (either success or failure), L is

dropped by 1, and Y will be updated based on the receiver of the next packet in

the queue.
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4.2.2 Modeling of States Transitions

In this section, we investigate and model the state transitions at each node using

notation introduced above. Notice that we do not characterize network performance by

thoroughly examining the joint node states and their transitions, even though the joint

distribution, once found, can be considered as the most universal form of expressing

knowledge [69]. As we shall see an example in Section 4.3.2, the joint state model cor-

rectly produce a complete probabilistic description of the network behaviors, however,

the full distribution is difficult to model and analyze because it grows exponentially

with both the size of network and the cardinality of node state space.

4.2.2.1 x As a Listener/Receiver

A node x is a listener when it is in back-off counting (with occupied queue) or

idle (with empty queue). It consistently monitors the channel by both physical and

virtual carrier sense. Upon the successful reception of a RTS packet, x becomes a

receiver by completing the RTS/CTS/DATA/ACK handshake. Diagram 4.3 and 4.4

represent the states’ transitions for x based on the description of 802.11 DCF and the

assumptions in Section 4.1. Both diagrams share a similar structure, called Carrier

Sense Block (CSB), which repeatedly appears in our model for every pair of back-off

stage and back-off counter.

For Figure 4.3, suppose that at time step tn where n = 0, 1, 2, · · · , node x is at

the kth step of the ith backoff stage for receiver y with l packets in the queue. At the

next time step there are five possible state transitions on node x, associated with the

following probabilities respectively:

1a = Prob
{

(i, k − 1, B, 0, 〈y, l〉)n+1

∣∣(i, k, B, 0, 〈y, l〉)n
}

(4.2.2.1)

1b = Prob
{

(i, k, R←−z , tRTS, 〈y, l〉)n+1

∣∣(i, k, B, 0, 〈y, l〉)n
}

(4.2.2.2)

1c = Prob
{

(i, k, Rz, tRTS, 〈y, l〉)n+1

∣∣(i, k, B, 0, 〈y, l〉)n
}

(4.2.2.3)

1d = Prob
{

(i, k, Cz, tCTS, 〈y, l〉)n+1

∣∣(i, k, B, 0, 〈y, l〉)n
}

(4.2.2.4)

1e = Prob
{

(i, k, U, 0, 〈y, l〉)n+1

∣∣(i, k, B, 0, 〈y, l〉)n
}

(4.2.2.5)
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Here we adopt the short notation:

P{(z1, z2, z3, z4, z5)n+1

∣∣(z′1, z′2, z′3, z′4, z′5)n}

= P{Hx(tn+1) = (z1, z2, z3, z4, z5)
∣∣Hx(tn) = (z′1, z

′
2, z
′
3, z
′
4, z
′
5)}

Transition 1a occurs when x detects a quiet channel, that is, currently no

neighbors of x are broadcasting or beginning to transmit any signals. As a result, the

back off counter decrements by 1. Transition 1b accounts for the fact that, one of x’s

neighbor, z, begins to send a RTS packet for x while others neighboring nodes stay

quiet. In this case, node x takes the first step of receiving the RTS packet, so that

ax(tn+1) = R←−z , vx(tn+1) = tRTS. Transition 1c or 1d takes place provided that only

z starts to broadcast a RTS packet or a CTS packet not for x. In those scenarios,

ax(tn+1) = Rz, vx(tn+1) = tRTS or ax(tn+1) = Cz, vx(tn+1) = tCTS. The transition 1e ,

ax(tn+1) = U , happens when x detects disordered signals in the channel, caused by

either corrupted or partial packets from x’s neighbors.

During the receiving (overhearing) of RTS or CTS from a neighbor z, node x

may observe packet collisions when the hidden nodes of z initiate transmissions to x.

Thus, given the j-th step of receiving (vx(tn) = j), we have the following probabilities

associated with the transitions 2b , 3b and 4b :

2b = Prob
{(
i, k, U, 0, 〈y, l〉)n+1|(i, k, R←−z , j, 〈y, l〉)n

}
(4.2.2.6)

3b = Prob
{

(i, k, U, 0, 〈y, l〉)n+1

∣∣(i, k, Rz, j, 〈y, l〉)n
}

(4.2.2.7)

4b = Prob
{

(i, k, U, 0, 〈y, l〉)n+1

∣∣(i, k, Cz, j, 〈y, l〉)n
}

(4.2.2.8)

Otherwise, x keeps receiving and the virtual counter vx(t) decreases by 1 at each time

step with the probabilities:

2a = Prob
{(
i, k, R←−z , j − 1, 0, 〈y, l〉)n+1|(i, k, R←−z , j, 〈y, l〉)n

}
(4.2.2.9)

3a = Prob
{

(i, k, Rz, j − 1, 0, 〈y, l〉)n+1

∣∣(i, k, Rz, j, 〈y, l〉)n
}

(4.2.2.10)

4a = Prob
{

(i, k, Cz, j − 1, 0, 〈y, l〉)n+1

∣∣(i, k, Cz, j, 〈y, l〉)n
}

(4.2.2.11)

If a RTS is successfully received, that is, ax(tn) = R←−z , vx(tn) = 0, x will start to

respond with a CTS to z, shown by ax(tn+1) = C−→z , vx(tn+1) = tCTS. The transmission
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of the CTS takes tCTS steps and if successful, x should begin to receive a data packet

from z. Otherwise, no data will be sent, and x resumes carrier sensing. Thus we have

the following transition probabilities:

5a = Prob
{(
i, k, A←−z , tDATA, 〈y, l〉)n+1|(i, k, C−→z , 0, 〈y, l〉)n

}
(4.2.2.12)

5b = Prob
{(
i, k, B, 0, 〈y, l〉)n+1|(i, k, C−→z , 0, 〈y, l〉)n

}
(4.2.2.13)

At each step of receiving DATA, there are two possible transitions:

6a = Prob
{(
i, k, A←−z , j − 1, 〈y, l〉)n+1|(i, k, A←−z , j, 〈y, l〉)n

}
(4.2.2.14)

6b = Prob
{(
i, k, U, 0, 〈y, l〉)n+1|(i, k, A←−z , j, 〈y, l〉)n

}
(4.2.2.15)

For the first transition, x correctly receives the next piece of data so vx(t) decrease by

1. Otherwise, x detects a collision, which implies the signal is corrupted, shown by

ax(tn+1) = U . When vx(t) = 1, the receiving of data is complete and x shall reply

with an ACK packet. When vx(t) decreases to 0, that is, the DATA/ACK handshake

is successful, x will resume back off counting on the next layer and the queue size

increases by 1. If the queue is full, as shown by the dashed arrow in diagram 4.3, the

data received will be dropped and x will resume back-off counting on the same layer.

If x successfully overhears a RTS, then with probability 1 it will go to silent

mode Dz and update vx(t) to tNAV r. Similarly, if a CTS is overheard, vx(t) changes to

tNAV c. Upon vx(t) reaches 0, the behavior of x at the next time step depends on the

channel status. With probability 7a , x resumes back-off counting because it senses a

quiet channel, or with probability 7b , x detects a busy channel and waits.

7a = Prob
{(
i, k, B, 0, 〈y, l〉)n+1|(i, k,Dz, 0, 〈y, l〉)n

}
(4.2.2.16)

7b = Prob
{(
i, k,Dz, 0, 〈y, l〉)n+1|(i, k,Dz, 0, 〈y, l〉)n

}
(4.2.2.17)

Finally, if x senses jumbled signals in the channel at time step tn (ax(tn) = U),

then after one discrete time step x either senses the channel is clear and resumes back-

off counting (ax(tn+1) = B), or detects a busy channel (ax(tn+1) = U) and waits, with
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the following probabilities:

8a = Prob
{(
i, k, B, 0, 〈y, l〉)n+1|(i, k, U, 0, 〈y, l〉)n

}
(4.2.2.18)

8b = Prob
{(
i, k, U, 0, 〈y, l〉)n+1|(i, k, U, 0, 〈y, l〉)n

}
(4.2.2.19)

For Figure 4.4 where x has empty queue, the state transitions are similar except

with probability 1a x stays idle and keeps monitoring the channel. After a data packet

is received, if x is a relay node, it will randomly or deterministically choose a receiver

in Nx and set a back-off counter between 1 and the initial contention window size w.

4.2.2.2 x As a Sender

At the end of counting (bx(t) = 0) at any back-off stage, x becomes a sender

by immediately initiating a RTS transmission. The state transitions of x as a sender

are shown in Figure 4.5. A structure, called a RTS/CTS Contention Block (RCB)

emerges in the model whenever x attempts a RTS/CTS handshake.

Suppose node x transits a RTS packet to y during ith backoff stage with l packets

in the queue. After a time period of tRTS, the RTS transmission either succeeds and

begins to receive a CTS from y with probability

9a = Prob
{(
i, 0, C←−y , tCTS, 〈y, l〉)n+1|(i, 0, R−→y , 0, 〈y, l〉)n

}
(4.2.2.20)

or fails with probability

9b = Prob
{(
i, 0,W, tout, 〈y, l〉)n+1|(i, 0, R−→y , 0, 〈y, l〉)n

}
(4.2.2.21)

In this case, there will be no reply so that x waits until the virtual counter vx(t) reaches

0.

At each step of receiving a CTS, depending on whether there is a collision at x,

we have the following transition probabilities:

10a = Prob
{(
i, 0, C←−y , j − 1, 〈y, l〉)n+1|(i, 0, C←−y , j, 〈y, l〉)n

}

10b = Prob
{(
i, 0,W, tout − j, 〈y, l〉)n+1|(i, 0, C←−y , j, 〈y, l〉)n

}
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Full 

queue

, Rz, tRTS ,

, R←−z , tRTS − 1,

, R←−z , tRTS ,

, U,
, Rz, tRTS − 1, , Cz, tCTS − 1,

, Cz, tCTS ,

, Dz, tNAV r,

, Dz, tNAV c,

, Dz, 0,

, Rz, 0, , Cz, 0,, R←−z , 0,

, C−→z , tCTS ,

, C−→z , 0,

...

, A←−z , tDATA,

, A←−z , tDATA − 1,

, A←−z , 0,

, A←−z , 1,

......

... ...

...
...

1b 1c 1d

1e

2a2b 3a3b 4a4b

5a

5b

6b
6a

7a

7b

8a

8b

 CSB(x)
0
: A Carrier Sense Block of node x when idle (l=0).

∀z ∈ Nx

Back off stage 0 on 1st layer 

for any receiver y

1a0, 0, I, 0, < ∅, 0 >

0, ∗, B, 0, < y, 1 >

Figure 4.4: Carrier Sense Block at base layer
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...

...

l > 1

l = 1

i < m

i = m, l >1
i = m, l =1

i, 0, B, 0, < y, l >

0, 0, A−→y , tDATA, < y, l >

0, 0, A−→y , 0, < y, l >

,R−→y , tRTS ,

, R−→y , 0,

, C←−y , 0,

, C←−y , tCTS ,

, C←−y , tCTS − 1,

,W, tout,

,W, tout − 1,

,W, 1,

,W, 0,

i+ 1, ∗, B, 0, < y, l >

0, ∗, B, 0, < z, l − 1 >

0, 0, I, 0, < ∅, 0 >

...

9a 9b

10a
10b

11a

11b

 RCB(y,l)
i: A RTS/CTS 

Contention Block of 
node x at the i th back-
off stage on l th layer 
for receiver y (l > 0).

Back off stage i+1 on l-th 
layer for receiver y. 
(*: back off counter is 
randomly chosen)

The end of counting at 

the back off stage i on 

l-th layer for receiver y.

Back off stage 0 on (l-1)-th 
layer for any receiver z
 

 RCB(y,l)
i-1

 RCB(y,l)
i+1

Figure 4.5: RTS/CTS Contention Block
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When the receiving of the CTS is complete, x will initiate an DATA/ACK

handshake, which lasts tDATA time steps. In the end, if l = 1, i.e. the queue is empty,

x becomes idle, otherwise x restarts the back-off procedure for the next HoL packet

and the queue size decreases by 1.

Finally, suppose the RTS/CTS handshake fails, x senses the channel at the end

of the CTS timeout. Given no transmitting neighbors, if the current back-off stage is

less than the maximum stage allowed (i < m), x will reset the back off counter between

1 and the doubled contention window size, then resume counting procedure at the back

off stage i+ 1. The associated probability function is:

11a =
∑

k

Prob
{(
i+ 1, k, B, 0, 〈y, l〉)n+1|(i, 0,W, 0, 〈y, l〉)n

}

However, if the maximum stage is reached, then the data packet will be dropped. Based

on the current queue size, x can either restart back-off procedure (l > 1) or become

idle (l = 1):

11a =
∑

k

Prob
{(

0, k, B, 0, 〈y, l − 1〉)n+1|(m, 0,W, 0, 〈y, l〉)n
}

11a = Prob
{(

0, 0, I, 0, 〈∅, 0〉)n+1|(m, 0,W, 0, 〈y, 1〉)n
}

For the case that a busy channel is sensed, x will freeze, as shown by,

11b = Prob
{(
i, 0,W, 0, 〈y, l〉)n+1|(i, 0,W, 0, 〈y, l〉)n

}

4.2.3 Representation of Transition Probabilities

In this section, we address the formulations of transition probability functions

in detail. For simplicity, we first denote the probability density function for any node

x in the network at time step tn by

P (n)([χ
〈y,l〉
i,k,j]x) := Prob{Hx(tn) = hx} = Prob{Hx(tn) = (i, k, χ, j, 〈y, l〉)}

Here i ∈ [0,m], k ∈ [0, 2iw], χ ∈ {I, B, U,R−→z /←−z /z, C−→z /←−z /z, A−→z /←−z , Dz,W}, j ∈
[0, tNAV r], y, z ∈ Nx and l ∈ [0, Lx] where Nx is the set that contains x’s neighbors
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(and ∅), and Lx represents the maximum queue size of x. The joint probability density

functions are similarly defined and symmetric:

P (n)([χ
〈y,l〉
i,k,j]x, [χ̄

〈y′,l′〉
i′,k′,j′ ]x′ , · · · ) = P (n)([χ

〈y,l〉
i,k,j]x′ , [χ̄

〈y′,l′〉
i′,k′,j′ ]x, · · · )

The probability density function of node x can be obtained by marginalizing

out other nodes in the joint state probability density function, i.e.

Prob(Hx(tn) = hx) = Prob(Hx(tn) = hx, •)

=
∑

(h′x,··· )∈Ω(hx;x′,··· )

Prob(Hx(tn) = hx,Hx(tn) = hx′ , · · · )

where Ω(hx;x
′, · · · ) represents the sub state space of nodes {x′, · · · } such that,

Prob(Hx(tn) = hx,Hx′(tn) = hx′ , · · · ) 6≡ 0

∀(hx′ , · · · ) ∈ Ω(hx;x
′, · · · )

On the other hand, given a set of marginal densities, the joint distribution in

general cannot be uniquely determined unless the random variables are independent.

This brings forward the main challenge in our modeling framework since for each node,

all the critical state transitions mentioned in the last section are dependent on the con-

current states of its neighboring nodes. To be precise, suppose Nx = {x1, x2, · · · , xr}
and expanding the marginal probability density function of x on Ω(hx;x1, · · · , xr), we

have

Prob{Hx(tn+1) = h′x|Hx(tn) = hx}

=
∑

(hx1 ··· ,hxr )∈ΩA(hx;x1,··· ,xr)

Prob{Hx(tn) = hx,Hx1(tn) = hx1 , · · · ,Hxr(tn) = hxr}
Prob{Hx(tn) = hx}

=

∑
ΩA([χ

〈y,l〉
i,k,j ]x;x1,··· ,xr)

P (n)([χ
〈y,l〉
i,k,j]x, [χ

〈y,l〉
i,k,j]x1 , · · · , [χ

〈y,l〉
i,k,j]xr)

∑
Ω([χ

〈y,l〉
i,k,j ]x;x1,··· ,xr)

P (n)([χ
〈y,l〉
i,k,j]x, [χ

〈y,l〉
i,k,j]x1 , · · · , [χ

〈y,l〉
i,k,j]xr)

:=
FΩA([χ

〈y,l〉
i,k,j]x)

FΩ([χ
〈y,l〉
i,k,j]x)

where ΩA(hx;x1, · · · , xr) ⊆ Ω(hx;x1, · · · , xr) and

Prob{Hx(tn+1) = h′x|Hx(tn) = hx,Hx1(tn) = hx1 , · · · ,Hxr(tn) = hxr}

=





1, if (hx1 · · · ,hxr) ∈ ΩA(hx;x1, · · · , xr)

0, otherwise
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For the purpose of evaluating the transition probability functions introduced in Section

4.2.2, we shall establish their connections (shown by functions FΩ and FΩA) to the

probability density functions of joint states with the neighboring nodes. The joint

state spaces Ω and ΩA will be discussed based on four categories of actions A that x

takes.

4.2.3.1 Carrier Sensing while in the Idle or Back-off States

Let us suppose at the current time step tn x is sensing a free channel and not

freezing or waiting, that is, x is in back off state B (or equivalently, idle state I, if its

queue is empty), and the parameters i′, k′, y′, l′ are fixed: Hx(tn) = (i′, k′, B, 0, 〈y′, l′〉).
Referring to Table 4.1 the channel must be quiet, hence all the neighboring nodes of x

are not sending and not receiving from x or common neighbors with x (as x is known

to be in the back-off state). Using the notation of cartesian product, we then have

Ω([B
〈y′,l′〉
i′,k′,0]x;x1, · · · , xr) = Ω([B

〈y′,l′〉
i′,k′,0]x;x1)× · · · × Ω([B

〈y′,l′〉
i′,k′,0]x;xr)

= ×xα∈NxΩ([B
〈y′,l′〉
i′,k′,0]x;xα)

= ×xα∈Nx{Hxα(tn)|χα /∈ {R−→z , C−→z , A−→z }︸ ︷︷ ︸
not transmitting

&χα /∈ {R←−z′/z′ , C←−z′/z′ , A←−z′ , Dz′}, z′ /∈ Nx
︸ ︷︷ ︸

not interacting with x and Nx

}

such that P (n)([B
〈y′,l′〉
i′,k′,0]x)) = FΩ([B

〈y′,l′〉
i′,k′,0]x)). At the next time step tn+1, if no neighbors

of x are ready to send any signals, the channel will remain quiet. Hence we conclude

that

1a =
FΩ1a([B

〈y′,l′〉
i′,k′,0]x)

FΩ([B
〈y′,l′〉
i′,k′,0]x)

=

∑
Ω1a([B

〈y′,l′〉
i′,k′,0 ]x;x1,··· ,xr)

P (n)([B
〈y′,l′〉
i′,k′,0]x, [χ

〈y,l〉
i,k,j]x1 , · · · , [χ

〈y,l〉
i,k,j]xr)

∑
Ω([B

〈y′,l′〉
i′,k′,0 ]x;x1,··· ,xr)

P (n)([B
〈y′,l′〉
i′,k′,0]x, [χ

〈y,l〉
i,k,j]x1 , · · · , [χ

〈y,l〉
i,k,j]xr)

Here, Ω1a([B
〈y′,l′〉
i′,k′,0]x;x1, · · · , xr) ⊆ Ω([B

〈y′,l′〉
i′,k′,0]x;x1, · · · , xr) and includes an extra restric-

tion:

Ω1a([B
〈y′,l′〉
i′,k′,0]x;x1, · · · , xr) = ×xα∈NxΩ1a([B

〈y′,l′〉
i′,k′,0]x;xα)

= ×xα∈Nx{Hxα(tn) ∈ Ω([B
〈y′,l′〉
i′,k′,0]x;xα)| (χ, k, j)xα /∈ {(B, 0, 0), (R←−z , k, 0), (C←−z , 0, 0)}︸ ︷︷ ︸

not begin to send RTS/CTS/DATA

}.
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For transition 1b , it accounts for the fact that one neighbor of x, for example, x′,

begins to send a RTS packet to x, while the rest neighbors do not begin to send. We

thus have

Ω1b([B
〈y′,l′〉
i′,k′,0]x;x

′, · · · , xr) = Ω1b([B
〈y′,l′〉
i′,k′,0]x;x

′)×xα∈Nx\x′ Ω1a([B
〈y′,l′〉
i′,k′,0]x;xα)

= {Hx′(tn)| (χ, k, y)x′ = (B, 0, x)︸ ︷︷ ︸
begins to sent a RTS to x

} ×xα∈Nx\x′ Ω1a([B
〈y′,l′〉
i′,k′,0]x;xα)

such that

1b =
FΩ1b,x′([B

〈y′,l′〉
i′,k′,0]x)

FΩ([B
〈y′,l′〉
i′,k′,0]x)

.

On the other hand, if x′ begins to send a RTS not to x while all other neighbors remain

quiet and do not start to transmit any packet, x will start to overhear the RTS. The

probability 1c is given by

1c =
FΩ1c,x′([B

〈y′,l′〉
i′,k′,0]x, x

′)

FΩ([B
〈y′,l′〉
i′,k′,0]x)

where Ω1c([B
〈y′,l′〉
i′,k′,0]x;x

′, · · · , xr) is similarly defined by

Ω1c([B
〈y′,l′〉
i′,k′,0]x;x

′, · · · , xr)

= {Hx′(tn)| (χ, k)x′ = (B, 0) & yx′ 6= x︸ ︷︷ ︸
begins to sent a RTS not to x

} ×xα∈Nx\x′ Ω1a([B
〈y′,l′〉
i′,k′,0]x;xα)

Likewise, if x′ starts to sent a CTS not to x while the remaining neighbors stay

quiet and do not initiate a transmission, we get

Ω1d([B
〈y′,l′〉
i′,k′,0]x;x

′, · · · , xr)

= {Hx′(tn)| (χ, k)x′ = (R←−z , 0), z /∈ Nx︸ ︷︷ ︸
begins to sent a CTS not to x (or Nx)

} ×xα∈Nx\x′ Ω1a([B
〈y′,l′〉
i′,k′,0]x;xα)

so that

1d =
FΩ1d,x′([B

〈y′,l′〉
i′,k′,0]x)

FΩ([B
〈y′,l′〉
i′,k′,0]x)
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Otherwise, x detects an unidentified busy channel. The corresponding transition

has probability computed by

1e = 1−
FΩ1a([B

〈y′,l′〉
i′,k′,0]x)

FΩ([B
〈y′,l′〉
i′,k′,0]x)

−
∑

x′∈Nx

(
FΩ1b,x′([B

〈y′,l′〉
i′,k′,0]x)

FΩ([B
〈y′,l′〉
i′,k′,0]x)

+
FΩ1c,x′([B

〈y′,l′〉
i′,k′,0]x)

FΩ([B
〈y′,l′〉
i′,k′,0]x)

+
FΩ1d,x′([B

〈y′,l′〉
i′,k′,0]x)

FΩ([B
〈y′,l′〉
i′,k′,0]x)

)

4.2.3.2 Receiving/overhearing Packets

Next suppose at tn x is receiving or overhearing a packet from a neighbor x′ with-

out interference by the others that are hidden from x′: Hx(tn) = (i′, k′, χ̃, j′, 〈y′, l′〉),
χ̃ ∈ {R←−

x′
, Rx′ , C←−x′ , Cx′ , A

←−
x′
}, j′ 6= 0. We observe that x′ is at the j′-th step of trans-

mitting the same packet, and all the other neighbors of x that are hidden from x′

are quiet and do not interact with x. The common neighbors of x and x′ are ignored

because they share the same channel and will not intervene. Now let Nxx′ represent

the neighbors of x that hidden from x′, we can write

Ω([χ̃
〈y′,l′〉
i′,k′,j′ ]x;x

′, · · · , xr) = Ω([χ̃
〈y′,l′〉
i′,k′,j′ ]x;x

′)×xα∈Nxx′ Ω([χ̃
〈y′,l′〉
i′,k′,j′ ]x;x

′;xα),

such that




Ω([R
〈y′,l′〉
←−
x′/i′,k′,j′

]x;x
′) = {Hx′(tn)| (χ, j)x′ = (R−→x , j

′)︸ ︷︷ ︸
j′-th step of sending RTS to x

}

Ω([R
〈y′,l′〉
x′/i′,k′,j′

]x;x
′) = {Hx′(tn)| (χ, j)x′ = (R−→z , j

′), z 6= x︸ ︷︷ ︸
j′-th step of sending RTS not to x

}

Ω([C
〈y′,l′〉
x′/i′,k′,j′

]x;x
′) = {Hx′(tn)| (χ, j)x′ = (C−→z , j

′), z /∈ Nx︸ ︷︷ ︸
j′-th step of sending CTS not to x and Nx

}

Ω([C
〈y′,l′〉
←−
x′/i′,k′,j′

]x;x
′) = {Hx′(tn)| (χ, j)x′ = (C−→x , j

′)︸ ︷︷ ︸
j′-th step of sending CTS to x

}

Ω([A
〈y′,l′〉
←−
x′/i′,k′,j′

]x;x
′) = {Hx′(tn)| (χ, j)x′ = (A−→x , j

′)︸ ︷︷ ︸
j′-th step of sending DATA to x

}

where Ω([χ̃
〈y′,l′〉
i′,k′,j′ ]x;x

′;xα) contains all the possible states of neighboring node xα in Nxx′

given ongoing communication between x and x′. If x is receiving a RTS or overhearing
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a RTS/CTS from x′ (χ̃ ∈ {R←−
x′
, Rx′ , Cx′}), then for the hidden nodes xα, x should

appear to be in a back-off or idle state since the conversation between x and x′ are

concealed:

Ω([χ̃
〈y′,l′〉
i′,k′,j′ ]x;x

′;xα) = Ω([B
〈y′,l′〉
i′,k′,0]x;xα), χ̃ ∈ {R←−

x′
, Rx′ , Cx′}.

On the other hand, if x is receiving a CTS or DATA from x′, then xα should be

informed because of the network allocation vector (NAV) incorporated inside the pre-

vious RTS/CTS packets sent from x. As a result, xα should be in corresponding step

of NAV delay. If not, it is also impossible for xα to receive any CTS/DATA packets

because its own RTS/CTS handshakes should have failed. To summarize, we have the

following:

Ω([C
〈y′,l′〉
←−
x′/i′,k′,j′

]x;x
′;xα) = Ω([B

〈y′,l′〉
i′,k′,0]x;xα)

⋃
{Hx′(tn)|

(χ, j)xα = (Dx, tNAV c + 1 + j′)︸ ︷︷ ︸
tNAV c + 1 + j′-th step of NAV delay

& χxα /∈ {C←−z , A←−z }︸ ︷︷ ︸
not receiving CTS/DATA

& (χ, j)xα 6= (R←−z , 0)︸ ︷︷ ︸
not begin to send CTS

}

Ω([A
〈y′,l′〉
←−
x′/i′,k′,j′

]x;x
′;xα) = Ω([B

〈y′,l′〉
i′,k′,0]x;xα)

⋃
{Hx′(tn)|

(χ, j)xα = (Dx, j
′)︸ ︷︷ ︸

j′-th step of NAV delay

& χxα /∈ {C←−z , A←−z }︸ ︷︷ ︸
not receiving CTS/DATA

}.

Note that in general tDATA � tRTS(tCTS), thus it is possible that xα finishes receiving

a RTS and starts to broadcast a CTS during the period of DATA reception at x.

At the next time step tn+1, x will continue to receive from x′ unless some neigh-

bors starts to broadcast, thus

Ω2([R
〈y′,l′〉
←−
x′/i′,k′,j′

]x;x
′, · · · , xr) = Ω([R

〈y′,l′〉
←−
x′/i′,k′,j′

]x;x
′)×xα∈Nxx′

{Hxα(tn) ∈ Ω([R
〈y′,l′〉
←−
x′/i′,k′,j′

]x;x
′;xα)| (χ, k, j)xα /∈ {(B, 0, 0), (R←−z , k, 0), (C←−z , 0, 0)}︸ ︷︷ ︸

not begin to send RTS/CTS/DATA

}

Ω3([R
〈y′,l′〉
x′/i′,k′,j′

]x;x
′, · · · , xr) = Ω([R

〈y′,l′〉
x′/i′,k′,j′

]x;x
′)×xα∈Nxx′

{Hxα(tn) ∈ Ω([R
〈y′,l′〉
x′/i′,k′,j′

]x;x
′;xα)| (χ, k, j)xα /∈ {(B, 0, 0), (R←−z , k, 0), (C←−z , 0, 0)}︸ ︷︷ ︸

not begin to send RTS/CTS/DATA

}
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Ω4([C
〈y′,l′〉
x′/i′,k′,j′

]x;x
′, · · · , xr) = Ω([C

〈y′,l′〉
x′/i′,k′,j′

]x;x
′)×xα∈Nxx′

{Hxα(tn) ∈ Ω([C
〈y′,l′〉
x′/i′,k′,j′

]x;x
′;xα)| (χ, k, j)xα /∈ {(B, 0, 0), (R←−z , k, 0), (C←−z , 0, 0)}︸ ︷︷ ︸

not begin to send RTS/CTS/DATA

}

Ω6([A
〈y′,l′〉
←−
x′/i′,k′,j′

]x;x
′, · · · , xr) = Ω([A

〈y′,l′〉
←−
x′/i′,k′,j′

]x;x
′)×xα∈Nxx′

{Hxα(tn) ∈ Ω([A
〈y′,l′〉
←−
x′/i′,k′,j′

]x;x
′;xα)| (χ, k, j)xα /∈ {(B, 0, 0), (R←−z , k, 0)}︸ ︷︷ ︸

not begin to send RTS/CTS

}

Ω10([C
〈y′,l′〉
←−
x′/i′,k′,j′

]x;x
′, · · · , xr) = Ω([C

〈y′,l′〉
←−
x′/i′,k′,j′

]x;x
′)×xα∈Nxx′

{Hxα(tn) ∈ Ω([C
〈y′,l′〉
←−
x′/i′,k′,j′

]x;x
′;xα)| (χ, k, j)xα 6= (B, 0, 0)︸ ︷︷ ︸

not begin to send RTS

}

and the transition probability functions during receiving are given by

2a =
FΩ2([R

〈y′,l′〉
←−
x′/i′,k′,j′

]x)

FΩ([R
〈y′,l′〉
←−
x′/i′,k′,j′

]x)
, 3a =

FΩ3([R
〈y′,l′〉
x′/i′,k′,j′

]x)

FΩ([R
〈y′,l′〉
x′/i′,k′,j′

]x)
, 4a =

FΩ4([C
〈y′,l′〉
x′/i′,k′,j′

]x)

FΩ([C
〈y′,l′〉
x′/i′,k′,j′

]x)
,

6a =
FΩ6([A

〈y′,l′〉
←−
x′/i′,k′,j′

]x)

FΩ([A
〈y′,l′〉
←−
x′/i′,k′,j′

]x)
, 10a =

FΩ10([C
〈y′,l′〉
←−
x′/i′,k′,j′

]x)

FΩ([C
〈y′,l′〉
←−
x′/i′,k′,j′

]x)
.

4.2.3.3 End of Sending

At the last step of transmissions from x to x′, Hx(tn) = (i′, k′, χ̃, 0, 〈y′, l′〉),
χ̃ ∈ {R−→

x′
, C−→

x′
}, we know the communications are successful only if x′ also reaches

the last step of receiving. Thus we only consider the joint state probability functions

between x and x′ in this case:

9a =
∑

Ω9([R
〈x′,l′〉
−→
x′/i′,0,0

]x;x′)

P (n)([R
〈x′,l′〉
−→
x′/i′,0,0

]x, [χ
〈y,l〉
i,k,j]x′)

1

P (n)([Rx′,l′
−→
x′/i′,0,0

]x)
,

5a =
∑

Ω5([C
〈y′,l′〉
−→
x′/i′,k′,0

]x;x′)

P (n)([C
〈y′,l′〉
−→
x′/i′,k′,0

]x, [χ
〈y,l〉
i,k,j]x′)

1

P (n)([C
〈y′,l′〉
−→
x′/i′,k′,0

]x)
,
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where

Ω9([R
〈x′,l′〉
−→
x′/i′,0,0

]x;x
′) = {Hx′(tn)| (χ, j)x′ = (R←−x , 0)︸ ︷︷ ︸

last step of receiving RTS from x

},

Ω5([C
〈y′,l′〉
−→
x′/i′,k′,0

]x;x
′) = {Hx′(tn)| (χ, j)x′ = (C←−x , 0)︸ ︷︷ ︸

last step of receiving CTS from x

}.

Furthermore, since the RTS/CTS x′ received must be sent from x, we have

P (n)([R
〈y,l〉
←−x /i,k,0]x′) = FΩ([R

〈y,l〉
←−x /i,k,0]x′) =

∑

Ω([R
〈y,l〉
←−x /i,k,0]x′ ;x)

P (n)([R
〈y,l〉
←−x /i,k,0]x′ , [χ

〈y,l〉
i,k,j]x),

P (n)([C
〈x,l〉
←−x /i,0,0]x′) = FΩ([C

〈x,l〉
←−x /i,0,0]x′) =

∑

Ω([C
〈x,l〉
←−x /i,0,0]x′ ;x)

P (n)([C
〈x,l〉
←−x /i,0,0]x′ , [χ

〈y,l〉
i,k,j]x),

where i and l are fixed for x′ and

Ω([R
〈y,l〉
←−x /i,k,0]x′ ;x) = {Hx(tn)| (χ, j)x = (R−→

x′
, 0)

︸ ︷︷ ︸
last step of sending RTS to x′

},

Ω([C
〈x,l〉
←−
x′/i′,0,0

]x′ ;x) = {Hx(tn)| (χ, j)x = (C−→
x′
, 0)

︸ ︷︷ ︸
last step of sending CTS to x′

}.

We can now rewrite the transition probability functions as

9a =
∑

Ω9([Rx
′,l′
−→
x′/i′,0,0

]x;x′)

(
P (n)([Rx′,l′

−→
x′/i′,0,0

]x, [χ
〈y,l〉
i,k,j]x′)

FΩ([R
〈y,l〉
←−x /i,k,0]x′)

P (n)([R
〈y,l〉
←−x /i,k,0]x′)

P (n)([Rx′,l′
−→
x′/i′,0,0

]x)

)
,

5a =
∑

Ω5([C
〈y′,l′〉
−→
x′/i′,k′,0

]x;x′)

(
P (n)([C

〈y′,l′〉
−→
x′/i′,k′,0

]x, [χ
〈y,l〉
i,k,j]x′)

FΩ([C
〈x,l〉
←−x /i,0,0]x′)

P (n)([C
〈x,l〉
←−x /i,0,0]x′)

P (n)([C
〈y′,l′〉
−→
x′/i′,k′,0

]x)

)
.

4.2.3.4 End of Waiting

Finally, suppose at time tn node x is waiting (busy channel/NAV/CTS timeout)

as well as monitoring the channel: Hx(tn) = (i′, k′, χ̃, 0, 〈y′, l′〉), χ̃ ∈ {U,Dz,W}. If a

busy channel is sensed by x during backing-off or idle, then there must be at least one

active neighbor accessing the channel at the same time. Moreover, it is impossible for
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x to send any packet, or receive a responding CTS (as x will be a sender in that case).

Thus

Ω([U
〈y′,l′〉
x′/i′,k′,0]x;x1, · · · , xr) = ×xα∈NxΩ([U

〈y′,l′〉
x′/i′,k′,0]x;xα;x1, · · · , xα−1, xα+1, · · · , xr)

=
⋃

xα∈Nx

Ω([U
〈y′,l′〉
x′/i′,k′,0]x;xα)×xβ∈Nx\xα Ω([U

〈y′,l′〉
x′/i′,k′,0]x;xα;xβ)

=
⋃

xα∈Nx

{Hxα(tn)|χxα ∈ {R−→z , C−→z′ , A−→z }, z
′ 6= x

︸ ︷︷ ︸
transmitting (except CTS to x)

}

×xβ∈Nx\xα {Hxβ(tn)|χxβ /∈ {R←−x /x, C←−x /x, A←−x }︸ ︷︷ ︸
not receiving from x

& χxβ 6= C−→x︸ ︷︷ ︸
not sending CTS to x

}

At the next time step if at least one neighbor is at the end of transmitting while no

neighbors are in the middle of or ready to initiate a broadcasting, x will sense a free

channel again and resume back-off counting (or become idle if the queue is empty) at

the next time step. Otherwise, x will continue waiting. Therefore,

Ω8([U
〈y′,l′〉
x′/i′,k′,0]x;x1, · · · , xr)

=
⋃

xα∈Nx

{Hxα(tn)| (χ, j)xβ ∈ {(R−→z , 0), (C−→
z′
, 0), (A−→z , 0)}, z′ 6= x

︸ ︷︷ ︸
end of transmitting (except CTS to x)

}

×xβ∈Nx\xα {Hxβ(tn) ∈ Ω([U
〈y′,l′〉
x′/i′,k′,0]x;xα;xβ)|

(χ, j)xβ /∈ {(R−→z , j′), (C−→z′ , j
′), (A−→z , j

′)}, j′ 6= 0
︸ ︷︷ ︸

not in the middle of sending

& (χ, k, j)xβ /∈ {(B, 0, 0), (R←−z , k, 0), (C←−z , 0, 0)}︸ ︷︷ ︸
not begin to send RTS/CTS/DATA

}

so that

8a =
FΩ8([U

〈y′,l′〉
i′,k′,0 ]x)

FΩ([U
〈y′,l′〉
i′,k′,0 ]x)

If x is at the end of NAV waiting period due to RTS or CTS from x′. Using the facts

that x can not interact with other nodes during waiting and if x′ is sending or receiving
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DATA, it must be at the last step, we conclude that

Ω([D
〈y′,l′〉
x′/i′,k′,0]x;x

′, · · · , xr)

= {Hx′(tn)| (χ, j)x′ /∈ {(A−→z /←−z , j′)}, j′ 6= 0︸ ︷︷ ︸
not in the middle of DATA

& χx′ /∈ {R←−x /x, C−→x /←−x /x, A−→x /←−x , Dx}︸ ︷︷ ︸
not interacting with x

}

×xα∈Nx\x′ {Hxα(tn)|χxα /∈ {R←−x /x, C−→x /←−x /x, A−→x /←−x , Dx}︸ ︷︷ ︸
not interacting with x

}

At the next time step if all neighbors of x are not transmitting or begin to send,

x will detect a free channel and consequentially resume back-off counting (or become

idle). Otherwise we assume x will wait until the channel is clear. The corresponding

conditions are

Ω7([D
〈y′,l′〉
x′/i′,k′,0]x;x

′, · · · , xr) = Ω([D
〈y′,l′〉
x′/i′,k′,0]x;x

′, · · · , xr)
⋂
×xα∈Nx{Hxα(tn)|

χxα /∈ {R−→z , C−→z , A−→z }︸ ︷︷ ︸
not transmitting

& (χ, k, j)xα /∈ {(B, 0, 0), (R←−z , k, 0), (C←−z , 0, 0)}︸ ︷︷ ︸
not begin to send RTS/CTS/DATA

}

such that

7a =
FΩ7([D

〈y′,l′〉
x′/i′,k′,0]x)

FΩ([D
〈y′,l′〉
x′/i′,k′,0]x)

If x is at the last step of CTS timeout for x′, the previous RTS/CTS between x and

x′ fails, Based on the timing assumption of CTS timeout in Section 4.1.2, the possible

concurrent states of x′ are summarized as

Ω([W
〈x′,l′〉
i′,0,0 ]x;x

′) = {Hx′(tn)|χx′ ∈ {I, B, U,R−→z , R←−z′/z′}, z
′ 6= x}

For any other neighbor xα ∈ Nx\x′, the previous RTS from x maybe overheard. Then

Ω([W
〈x′,l′〉
i′,0,0 ]x;x

′;xα) = Ω([W
〈x′,l′〉
i′,0,0 ]x;xα)

⋃
{Hxα(tn)| (χ, j)xα = (Dx, tNAV c)︸ ︷︷ ︸

tNAV c-th step of NAV for x

}

Thus for all neighboring nodes of x we have

Ω([W
〈x′,l′〉
i′,0,0 ]x;x

′, · · · , xr) = Ω([W
〈x′,l′〉
i′,0,0 ]x;x

′)×xα∈Nx\x′ Ω([W
〈x′,l′〉
i′,0,0 ]x;x

′;xα)
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At the next time step, if no neighbors are sending or begin to send RTS:

Ω11([W
〈x′,l′〉
i′,0,0 ]x;x

′, · · · , xr) = Ω([W
〈x′,l′〉
i′,0,0 ]x;x

′, · · · , xr)
⋂

×xα∈Nx {Hxα(tn)| (χ, k)xα 6= (B, 0) & χxα 6= R−→z︸ ︷︷ ︸
not sending or begin to send RTS

}

x resumes idle or back-off with probability evaluated by

11a =
FΩ11([W

〈x′,l′〉
i′,0,0 ]x)

FΩ([W
〈x′,l′〉
i′,0,0 ]x)

4.2.4 Equilibrium Distribution

In this section we will set up the global balance equations [36] for solving the

stationary distribution, π[χ
〈y,l〉
i,k,j]x, of the discrete time Markov chain as n → ∞. i.e.

π[χ
〈y,l〉
i,k,j]x = limn→∞ P

(n)([χ
〈y,l〉
i,k,j]x). For the transition probabilities such as 1a , we adopt

the following notation:

px1a = lim
n→∞

P x
1a(tn) := lim

n→∞
1a

If the transition such as 2a involves a specific neighboring node x′, we use

pxx
′

2a = lim
n→∞

P xx′

2a (tn) := lim
n→∞

2a

4.2.4.1 System Formulation

We start building the system from the base layer where l = 0:

π[I
〈∅,0〉
0,0,0 ]x = px1aπ[I

〈∅,0〉
0,0,0 ]x + px8aπ[U

〈∅,0〉
0,0,0 ]x +

∑

z∈Nx

(pxz5bπ[C
〈∅,0〉
−→z /0,0,0]x + pxz7aπ[D

〈∅,0〉
z/0,0,0]x)

+





∑
z∈Nx(π[W

〈z,1〉
m,0,0]x + π[A

〈z,1〉
−→z /0,0,0]x), Lx > 0

∑
z∈Nx π[A

〈∅,0〉
←−z /0,0,0]x, Lx = 0

(4.2.4.1)

Lx = 0 implies that node x has an empty queue. Next, suppose the queue is non-empty

( l > 0) and node x is backing off for node y where y ∈ Nx. If k = 0, x transmits

immediately, thus

π[B
〈y,l〉
i,0,0 ]x = px1aπ[B

〈y,l〉
i,1,0 ]x (4.2.4.2)
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Otherwise, depending on the value of i (back-off stage), k (back-off counter) and l (size

of queue), we have

π[B
〈y,l〉
i,k,0]x =





px1aπ[B
〈y,l〉
i,k+1,0]x + px8aπ[U

〈y,l〉
i,k,0 ]x

+
∑

z∈Nx(p
xz
5bπ[C

〈y,l〉
−→z /i,k,0]x + pxz7aπ[D

〈y,l〉
z/i,k,0]x), 0 < k < 2iw

px8aπ[U
〈y,l〉
i,k,0 ]x +

∑
z∈Nx(p

xz
5bπ[C

〈y,l〉
−→z /i,k,0]x + pxz7aπ[D

〈y,l〉
z/i,k,0]x), k = 2iw

+





∑
z∈Nx π[A

〈y,l−1〉
←−z /i,k,0]x, 1 < l < Lx

∑
z∈Nx(π[A

〈y,Lx−1〉
←−z /i,k,0 ]x + π[A

〈y,Lx〉
←−z /i,k,0]x), l = Lx

0, l = 1

+





1
2iw
π[W

〈y,l〉
i−1,0,0]x, i > 0

∑
z∈Nx

Pxy
w

(π[W
〈z,l+1〉
m,0,0 ]x + π[A

〈z,l+1〉
−→z /0,0,0]x), i = 0

+





∑
z∈Nx

Pxy
w
π[A

〈∅,0〉
←−z /0,0,0]x, i = 0, l = 1

0, otherwise

(4.2.4.3)

where Pxy denotes the probability of x sending a data packet to its neighbor y. Within

each CSB and RCB, the steady state distribution of x should satisfy:

π[A
〈y,l〉
←−z /i,k,0]x = · · · = (pxz6a)

tDATAπ[A
〈y,l〉
←−z /i,k,tDATA

]zx = (px6a)
tDATA · pxz5aπ[C

〈y,l〉
−→z /i,k,0]x

= · · · = (pxz6a)
tDATA · pxz5a · (pxz2a)

tRTSπ[R
〈y,l〉
←−z /i,k,tRTS

]x

=
(
(pxz6a)

tDATA · pxz5a · (pxz2a)
tRTS · pxz1b

)
π[B

〈y,l〉
i,k,0]x (4.2.4.4)

pxz7aπ[D
〈y,l〉
z/i,k,0]x = · · · = π[D

〈y,l〉
z/i,k,tNAV c+1]x + π[C

〈y,l〉
z/i,k,0]x

= · · · = (pxz3a)
tRTSπ[R

〈y,l〉
z/i,k,tRTS

]x + (pxz4a)
tCTSπ[C

〈y,l〉
z/i,k,tCTS

]x

=
(
(pxz3a)

tRTS · pxz1c + (pxz4a)
tCTS · pxz1d

)
π[B

〈y,l〉
i,k,0]x (4.2.4.5)
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px8aπ[U
〈y,l〉
i,k,0 ]x =

∑

z∈Nx

( tRTS∑

j=1

pxz2bπ[R
〈y,l〉
←−z /i,k,j]x +

tDATA∑

j=1

pxz6bπ[A
〈y,l〉
←−z /i,k,j]x +

tRTS∑

j=1

pxz3bπ[R
〈y,l〉
z/i,k,j]x

+

tCTS∑

j=1

pxz4bπ[C
〈y,l〉
z/i,k,j]x

)
+ px1eπ[B

〈y,l〉
i,k,0]x (4.2.4.6)

π[A
〈y,l〉
−→y /0,0,0]x = · · · =

m∑

i=0

(pxy10a)
tCTSπ[C

〈y,l〉
←−y /0,0,tCTS

]x =
m∑

i=0

(pxy10a)
tCTS · pxy9aπ[R

〈y,l〉
−→y /i,0,0]x

= · · · =
m∑

i=0

(pxy10a)
tCTS · pxy9aπ[B

〈y,l〉
i,0,0 ]x (4.2.4.7)

pxy11aπ[W
〈y,l〉
i,0,0 ]x = · · · =

tCTS∑

j=1

pxy10bπ[C
〈y,l〉
i,0,j ]x + π[W

〈y,l〉
i,0,tout

]x

= · · · =
(
1− (pxy10a)

tCTS · pxy9a

)
π[B

〈y,l〉
i,0,0 ]x (4.2.4.8)

Now using equations (4.2.4.4)–(4.2.4.8), we can rewrite (4.2.4.1) and (4.2.4.3) as:

π[I
〈∅,0〉
0,0,0 ]x =

(
px1a + px1e +

∑

z∈Nx

(pxz1b (1− P xz
R ) + pxz1c + pxz1d)

)
π[I
〈∅,0〉
0,0,0 ]x

+
∑

z∈Nx

(P xz
S

m−1∑

i=0

π[B
〈z,1〉
i,0,0 ]x + π[B

〈z,1〉
m,0,0]x) (3.4.1a)
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π[B
〈y,l〉
i,k,0]x =





px1aπ[B
〈y,l〉
i,k+1,0]x

+
(
px1e +

∑
z∈Nx(p

xz
1b (1− P xz

R ) + pxz1c + pxz1d)
)
π[B

〈y,l〉
i,k,0]x, 1 < k < 2iw

(
px1e +

∑
z∈Nx(p

xz
1b (1− P xz

R ) + pxz1c + pxz1d)
)
π[B

〈y,l〉
i,k,0]x, k = 2iw

+





∑
z∈Nx p

xz
1bP

xz
R π[B

〈y,l−1〉
i,k,0 ]x, 1 < l < Lx

∑
z∈Nx p

xz
1bP

xz
R (π[B

〈y,Lx−1〉
i,k,0 ]x + π[B

〈y,Lx〉
i,k,0 ]x), l = Lx

0 otherwise

+





1−PxyS
2iw

π[B
〈y,l〉
i−1,0,0]x, i > 0

Pxy
w

∑
z∈Nx(P

xz
S

∑m−1
i=0 π[B

〈z,l+1〉
i,0,0 ]x + π[B

〈z,l+1〉
m,0,0 ]x), i = 0

+





∑
z∈Nx

Pxy
w
pxz1bP

xz
R π[I

〈∅,0〉
0,0,0 ]x, i = 0, l = 1

0, otherwise

(3.4.3a)

where P xz
S := (P xz

10a)
tCTS · P xz

9a represents the probability of a successful sending of a

data packet at x to z, while P xz
R := (pxz6a)

tDATA · pxz5a · (pxz2a)
tRTS denotes the probability

of a successful receiving of a data packet at x from z.

4.2.4.2 System Closure

Notice that the transition probability functions are still related to unknown

joints probability functions. We remain very interested in a treatment to achieve

optimal estimates from given marginals, but as a first step to conclude a solution, we

complete the nonlinear system by applying naive product approximations [35, 10]:

P (n)([χ
〈y,l〉
i,k,j]x1 , [χ

〈y,l〉
i,k,j]x2 , . . . , [χ

〈y,l〉
i,k,j]xr) ≈

α=r∏

α=1

P (n)([χ
〈y,l〉
i,k,j]xα)

For simplicity we shall write

∑
Ωα

∏γ=r
γ=1 P

(n)([χ
〈y,l〉
i,k,j]xγ )∑

Ωβ

∏γ=r
γ=1 P

(n)([χ
〈y,l〉
i,k,j]xγ )

= Px1×···×xr
x1×···×xr

(
Ωα

Ωβ

)
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for any summation conditions Ωα and Ωβ, and nodes x1, · · · , xr. Furthermore, if Ωα

and Ωβ can be decomposed as
∏γ=r

γ=1 Ωα(xγ) and
∏γ=r

γ=1 Ωβ(xγ), we can interchange the

summation and product and denote:

γ=r∏

γ=1

∑
Ωα
P (n)([χ

〈y,l〉
i,k,j]xγ )∑

Ωβ
P (n)([χ

〈y,l〉
i,k,j]xγ )

=

γ=r∏

γ=1

Pxγ
xγ

(
Ωα(xγ)

Ωβ(xγ)

)

In terms of each types of actions in Section 4.2.3, we summarize the approx-

imations using tables 4.2 to 4.5. Note that if there are no nodes hidden from x in

the network (∀x′′ ∈ Nx, Nx′′x = ∅), we assume 6a ≈ 1 and 10a≈ 1. That is, without

hidden terminals, the receiving of CTS or DATA at x should always succeed since the

channel are expected to have been reserved by x through NAV contained in previous

RTS/CTS messages.

Table 4.2: Transition probability function approximations - case 1

Transition Probability Approximations

P x
1a

∏
xα∈Nx Pxα

xα

(
Ω1a([B

〈y′,l′〉
i′,k′,0 ]x;xα)

Ω([B
〈y′,l′〉
i′,k′,0 ]x;xα)

)

P xx′

1b Px′
x′

(
Ω1b([B

〈y′,l′〉
i′,k′,0 ]x;x′)

Ω([B
〈y′,l′〉
i′,k′,0 ]x;x′)

)
∏

xα∈Nx\x′ Pxα
xα

(
Ω1a([B

〈y′,l′〉
i′,k′,0 ]x;xα)

Ω([B
〈y′,l′〉
i′,k′,0 ]x;xα)

)

P xx′
1c Px′

x′

(
Ω1c([B

〈y′,l′〉
i′,k′,0 ]x;x′)

Ω([B
〈y′,l′〉
i′,k′,0 ]x;x′)

)
∏

xα∈Nx\x′ Pxα
xα

(
Ω1a([B

〈y′,l′〉
i′,k′,0 ]x;xα)

Ω([B
〈y′,l′〉
i′,k′,0 ]x;xα)

)

P xx′

1d Px′
x′

(
Ω1d([B

〈y′,l′〉
i′,k′,0 ]x;x′)

Ω([B
〈y′,l′〉
i′,k′,0 ]x;x′)

)
∏

xα∈Nx\x′ Pxα
xα

(
Ω1a([B

〈y′,l′〉
i′,k′,0 ]x;xα)

Ω([B
〈y′,l′〉
i′,k′,0 ]x;xα)

)

P x
1e 1− P x

1a −
∑

x′∈Nx(P
xx′

1b + P xx′
1c + P xx′

1d )

4.3 Examples

4.3.1 QualNet Simulation

To validate our model, we compare the detailed equilibrium node states of three

representative networks with results from realistic simulations of wireless networks in

the QualNet simulator. The parameters used are summarized in Table 4.6, and the
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Table 4.3: Transition probability function approximations - case 2

Transition Probability Approximations

P x
2a

∏
xα∈Nxx′

Pxα
xα

(
Ω2([R

〈y′,l′〉
←−
x′/i′,k′,j′

]x;x′;xα)

Ω([B
〈y′,l′〉
i′,k′,0 ]x;xα)

)

P xx′
3a

∏
xα∈Nxx′

Pxα
xα

(
Ω3([R

〈y′,l′〉
x′/i′,k′,j′

]x;x′;xα)

Ω([B
〈y′,l′〉
i′,k′,0 ]x;xα)

)

P xx′
4a

∏
xα∈Nxx′

Pxα
xα

(
Ω4([C

〈y′,l′〉
x′/i′,k′,j′

]x;x′;xα)

Ω([B
〈y′,l′〉
i′,k′,0 ]x;xα)

)

P xx′
6a





∏
xα∈Nxx′

Pxα
xα

(
Ω6([A

〈y′,l′〉
←−
x′/i′,k′,j′

]x;x′;xα)

Ω([A
〈y′,l′〉
←−
x′/i′,k′,j′

]x;x′;xα)

)
, ∃x′′ ∈ Nx, s.t. Nx′′x 6= ∅

1, otherwise.

P xx′
10a





∏
xα∈Nxx′

Pxα
xα

(
Ω10([C

〈y′,l′〉
←−
x′/i′,k′,j′

]x;x′;xα)

Ω([C
〈y′,l′〉
←−
x′/i′,k′,j′

]x;x′;xα)

)
, ∃x′′ ∈ Nx, s.t. Nx′′x 6= ∅

1, otherwise.

Table 4.4: Transition probability function approximations - case 3

Transition Probability Approximations

P xx′
5a Px′

x

(
Ω5([C

〈y′,l′〉
−→
x′/i′,k′,0

]x;x′)

Ω([C
〈x,l〉
←−x /i,0,0]x′ ;x)

)

P xx′
9a Px′

x

(
Ω9([R

〈x′,l′〉
−→
x′/i′,0,0

]x;x′)

Ω([R
〈y,l〉
←−x /i,k,0]x′ ;x)

)

associated model parameters are concluded by the following: (i) The RTS retry limit

m varies from 0 to
√

CWmax
CWmin

= 2, that is, we allow RTS to retransmit 0, 1 or 2 times

in each example. (ii) The initial window size w is set as CWmin = 3. (iii) The

transmission time of RTS/CTS are discretized as tRTS = tCTS =
⌈
TRTS
σ

⌉
− 1 = 1,

similarly tDATA = 5 and tout = 2. Note that tDATA combines the transmission time

of both data payload and ACK frame. (iv) The NAV contained in RTS frame should

include the remaining time of a complete RTS/CTS/DATA/ACK handshakes thus
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Table 4.5: Transition probability function approximations - case 4

Transition Probability Approximations

P xx′
7a Px′×···×xr

x′×···×xr

(
Ω7([D

〈y′,l′〉
x′/i′,k′,j′ ]x;x′,··· ,xr)

Ω([D
〈y′,l′〉
x′/i′,k′,j′ ]x;x′,··· ,xr)

)

P x
8a Px1×···×xr

x1×···×xr

(
Ω8([U

〈y′,l′〉
i′,k′,j′ ]x;x1,··· ,xr)

Ω([U
〈y′,l′〉
i′,k′,j′ ]x;x1,··· ,xr)

)

P xx′
11a Px′×···×xr

x′×···×xr

(
Ω11([W

〈x′,l′〉
i′,0,0 ]x;x′,··· ,xr)

Ω([D
〈x′,l′〉
i′,0,0 ]x;x′,··· ,xr)

)

tNAV r =
⌈
TCTS+TDATA+TACK

σ

⌉
− 1 = 7, similarly tNAV c = 5.

4.3.2 A 2-node Network.

We first consider the following scenario. The network contains two nodes, x1

and x2. Both nodes have infinite number of packets in their queue and consecutively

transmit to each other. Figure 4.6 shows the topology. Due to symmetry, we only

...x
1

x
2

...

Figure 4.6: A 2-node network scenario without hidden terminals.

focus on the behaviors of node x1. Since there is no hidden terminal problem in this

simple network and channel conditions are assumed to be ideal, all transmissions are
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Table 4.6: Parameters used in QualNet simulation

Terrain size 1500×1500 m2

Mobility 0
Radio range up to 500 m
PHY protocol 802.11b
Bandwidth 5 Mbps
MAC protocol MAC 802.11b
Slot time 140 Microsecond
SIFS 0 Microsecond
DIFS 140 Microsecond
RTS/CTS/ACK Tx time 280 Microsecond
CTS Timeout time 420 Microsecond
Data Tx time 562 Microsecond
CWmin 3
CWmax 12

guaranteed against collision and interference unless both nodes reach out at the same

moment.

In this case only four non-trivial transition probabilities exists at any time step

tn, which are described in Table 4.7.

Table 4.7: Non-Trivial Transition Probabilities

1a x1 detects a quiet channel while back-off

1b x1 detects a RTS while back-off

9a RTS from x1 succeeds

9b RTS from x1 fails

Using product approximations summarized in Table 4.2 and 4.4, we evaluate

the above transition probabilities as follows in terms of the marginal densities of x2
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only.

P x1
1a (tn) = Px2

x2

(∑
χ=B,k 6=0 +

∑
χ=W∑

χ∈{B,W}

)
(4.3.2.1)

P x1x2
1b (tn) = Px2

x2

(∑
χ=B,k=0∑
χ∈{B,W}

)
(4.3.2.2)

P x1x2
9a (tn) = Px2

x1

(∑
χ=R←−x1 ,j=0∑
χ=R−→x2 ,j=0

)
(4.3.2.3)

P x1x2
9b (tn) = 1− P x1x2

9a (tn) (4.3.2.4)

For the next step, let tn → ∞ and employing the equilibrium equations (4.2.4.2),

(3.4.3a), (4.2.4.4), (4.2.4.7) and (4.2.4.8), we have:

π[B
〈x2,∞〉
i,0,0 ]x1 = px11aπ[B

〈x2,∞〉
i,1,0 ]x1 (4.3.2.5)

π[B
〈x2,∞〉
i,k,0 ]x1 =




px11aπ[B

〈x2,∞〉
i,k+1,0]x1 + px1x21b π[B

〈x2,∞〉
i,k,0 ]x1 , 0 < k < 2i ∗ 3

px1x21b π[B
〈x2,∞〉
i,2iw,0

]x1 , k = 2i ∗ 3

(4.3.2.6)

+





1
2i∗3p

x1x2
9b π[B

〈x2,∞〉
i−1,0,0]x1 , i > 0, k 6= 0

1
3
(px1x29a

∑m−1
i=0 π[B

〈x2,∞〉
i,0,0 ]x1 + π[B

〈x2,∞〉
m,0,0 ]x1), i = 0, k 6= 0

. (4.3.2.7)

π[A
〈x2,∞〉
←−x2/i,k,0]x1 = · · · = π[A

〈x2,∞〉
←−x2/i,k,5]x1 = π[C

〈x2,∞〉
−→x2/i,k,0]x1 = · · · = π[R

〈x2,∞〉
←−x2/i,k,1]x1 = px1x21b π[B

〈x2,∞〉
i,k,0 ]x1

(4.3.2.8)

π[A
〈x2,∞〉
−→x2/0,0,0]x1 = · · · =

m∑

i=0

π[C
〈x2,∞〉
←−x2/i,0,1]x1 =

m∑

i=0

px1x29a π[R
〈x2,∞〉
−→x2/i,0,0]x1 = · · · =

m∑

i=0

px1x29a π[B
〈x2,∞〉
i,0,0 ]x1

(4.3.2.9)

π[W
〈x2,∞〉
i,0,0 ]x1 = · · · = π[W

〈x2,∞〉
i,0,2 ]x1 = px1x29b π[R

〈x2,∞〉
−→x2/i,0,0]x1 = · · · = px1x29b π[B

〈x2,∞〉
i,0,0 ]x1

(4.3.2.10)

Given the transition probability functions from (4.3.2.1) to (4.3.2.4), together with the

symmetry conditions:

π[χ
〈x2,∞〉
i,k,j ]x1 = π[χ

〈x1,∞〉
i,k,j ]x2 (4.3.2.11)
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for any i, k, χ, j, and the normalization constraints

∑

i,k,χ,j

π[χ
〈x2,∞〉
i,k,j ]x1 =

∑

i,k,χ,j

π[χ
〈x1,∞〉
i,k,j ]x2 = 1, (4.3.2.12)

the resulting non-linear system can be solved for stationary distribution at x1 by Mat-

lab’s fsolve subroutine. The initial conditions of the system are

P (0)[χ
〈x2,∞〉
i,k,j ]x1 =





1
3
, χ = B, i = 0, j = 0, k > 0

0, otherwise

and P x1
1a (0) = 1, P x1

1b (0) = 0, P x1
9a (0) = 1, P x1

9b (0) = 0.

([B
〈x2,∞〉
0,1,0 ]x1

, [B
〈x1,∞〉
0,0,0 ]x2

)

([B
〈x2,∞〉
0,2,0 ]x1

, [B
〈x1,∞〉
0,0,0 ]x2

)([B
〈x2,∞〉
0,2,0 ]x1

, [B
〈x1,∞〉
0,1,0 ]x2

)([B
〈x2,∞〉
0,2,0 ]x1

, [B
〈x1,∞〉
0,3,0 ]x2

)

([B
〈x2,∞〉
0,1,0 ]x1

, [B
〈x1,∞〉
0,2,0 ]x2

) ([B
〈x2,∞〉
0,1,0 ]x1

, [B
〈x1,∞〉
0,1,0 ]x2

)

([B
〈x2,∞〉
0,3,0 ]x1

, [B
〈x1,∞〉
0,1,0 ]x2

)

([B
〈x2,∞〉
0,0,0 ]x1

, [B
〈x1,∞〉
0,1,0 ]x2

)

Notation:
(
[χ

〈y,l〉
i,k,j ]x, [χ̄

<y′,l′>
i′,k′,j′ ]y

)
=

(
Hx(t) = (i, k,χ, j, 〈y, l〉),Hy(t) = (i′, k′, χ̄, j′, 〈y′, l′〉)

)

([A
〈x2,∞〉
−→x2/0,0,0

]x1
, [A

〈x1,∞〉
←−x1/0,1,0

]x2
)([A

〈x2,∞〉
−→x2/0,0,0

]x1
, [A

〈x1,∞〉
←−x1/0,2,0

]x2
)

([B
〈x2,∞〉
0,0,0 ]x1

, [B
〈x1,∞〉
0,2,0 ]x2

)

([B
〈x2,∞〉
0,3,0 ]x1

, [B
〈x1,∞〉
0,2,0 ]x2

)([B
〈x2,∞〉
0,3,0 ]x1

, [B
〈x1,∞〉
0,3,0 ]x2

)

([B
〈x2,∞〉
0,0,0 ]x1

, [B
〈x1,∞〉
0,0,0 ]x2

)

([B
〈x2,∞〉
0,1,0 ]x1

, [B
〈x1,∞〉
0,3,0 ]x2

)

([B
〈x2,∞〉
0,2,0 ]x1

, [B
〈x1,∞〉
0,2,0 ]x2

)

([R
〈x2,∞〉
←−x2/0,2,1

]x1
, [R

〈x1,∞〉
−→x1/0,0,1

]x2
)

([A
〈x2,∞〉
←−x2/0,2,0

]x1
, [A

〈x1,∞〉
−→x1/0,0,0

]x2
) ([A

〈x2,∞〉
←−x2/0,1,0

]x1
, [A

〈x1,∞〉
−→x1/0,0,0

]x2
)

([R
〈x2,∞〉
←−x2/0,1,1

]x1
, [R

〈x1,∞〉
−→x1/0,0,1

]x2
)

([R
〈x2,∞〉
−→x2/0,0,1

]x1
, [R

〈x1,∞〉
−→x1/0,0,1

]x2
)

([W
〈x2,∞〉
0,0,0 ]x1

, [W
〈x1,∞〉
0,0,0 ]x2

)

x
1 

receives

x
2 

receives

collision

Figure 4.7: 2-node joint state model (m = 0)

Figure 4.7 illustrates the dynamic among all the possible joint states of x1 and

x2 when no RTS retry is allowed (m = 0). The stationary joint state distribution can

be solved from the linear system B.0.0.1 - B.0.0.29 given in Appendix B. In the first plot

in Figure 4.8, we compare the steady state distributions attained separately by solving

the non-linear system using the product approximation (blue bars), exploring the joint

state diagram (red bars) and implementing QualNet simulation (green bars). Overall,

the joint state diagram accurately catch the nodes’ behaviors and interactions under
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Figure 4.8: Comparison of steady state probabilities at x1: the tuples represent (back-
off stage, back-off counter); ’W’ represents the status of CTS timeout;
’Snt’ combines states of sending RTS/ receiving CTS/ sending DATA;
’Rcv’ combines states of receiving RTS/ sending CTS/ receiving DATA
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802.11 DCF, and more importantly, so does the nonlinear system representing our

model. The following two graphs in 4.8 show the results when we allow RTS retransmits

1 or 2 times. The joint state model between x1 and x2 contains highly irregular

structure and therefore is difficult to solve directly. Nevertheless, our non-linear model

closely reproduces the network behavior captured by the QualNet simulation.

4.3.3 A Triangle Network

As an interesting extension of the simple two-node system, we now consider

an equilateral triangle network where three nodes x1, x2 and x3 share the medium.

Again, we assume each node has infinite packets in the queue and randomly chooses a

receiver. Figure 4.9 demonstrates the topology. Due to symmetry, only the transitions

x
2

x
3

...

...

x
1

...

Figure 4.9: A 3-node network scenario without hidden terminals.

associated with x1 will be discussed.

Since there are no hidden nodes, transmissions always succeed unless two or

three nodes start to send simultaneously. As a consequence, only 8 transition probabil-

ity functions at time tn are non-trivial, summarized by the following table. Notice in

this example, x1 may detect a busy channel during back-off if x2 and x3 send a RTS at
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the same moment, resulting in a collision at x1. By applying product approximation,

Table 4.8: Non-Trivial Transition Probabilities

1a x1 detects a quiet channel while
back-off

8a x1 detects the channel is clear

1b x1 detects a RTS while back-off 8b x1 detects the channel is still busy

1c x1 overhears a RTS while back-off 9a RTS sent from x1 succeeds

1e x1 detects an busy channel 9b RTS sent from x1 fails

we can evaluate the above probabilities in terms of the marginal densities of x2 and x3

as the following.

P x1
1a (tn) =

∏

xα∈{x2,x3}

Pxα
xα

(∑
χ=B,k 6=0 +

∑
χ∈{W,U}∑

χ∈{B,W,U}

)
(4.3.3.1)

P x1x2
1b (tn) = Px2

x2

(∑
χ=B,k=0,y=x1∑
χ∈{B,W,U}

)
Px3
x3

(∑
χ=B,k 6=0 +

∑
χ∈{W,U}∑

χ∈{B,W,U}

)
(4.3.3.2)

P x1x3
1b (tn) = Px3

x3

(∑
χ=B,k=0,y=x1∑
χ∈{B,W,U}

)
Px2
x2

(∑
χ=B,k 6=0 +

∑
χ∈{W,U}∑

χ∈{B,W,U}

)
(4.3.3.3)

P x1x2
1c (tn) = Px2

x2

(∑
χ=B,k=0,y=x3∑
χ∈{B,W,U}

)
Px3
x3

(∑
χ=B,k 6=0 +

∑
χ∈{W,U}∑

χ∈{B,W,U}

)
(4.3.3.4)

P x1x3
1c (tn) = Px3

x3

(∑
χ=B,k=0,y=x2∑
χ∈{B,W,U}

)
Px2
x2

(∑
χ=B,k 6=0 +

∑
χ∈{W,U}∑

χ∈{B,W,U}

)
(4.3.3.5)

P x1
1e (tn) = 1− P x1

1a (tn)− P x1x2
1b (tn)− P x1x3

1b (tn)− P x1x2
1c (tn)− P x1x3

1c (tn) (4.3.3.6)

P x1
8a (tn) = Px2×x3

x2×x3

(∑
Ω8a([U

〈y,∞〉
i,k,0 ]x1 ;x2,x3)∑

Ω([U
〈y,∞〉
i,k,0 ]x1 ;x2,x3)

)
(4.3.3.7)

P x1
8b (tn) = 1− P x1

8a (tn) (4.3.3.8)

P x1x2
9a (tn) = Px2

x1

(∑
χ=R←−x1 ,j=0∑
χ=R−→x2 ,j=0

)
(4.3.3.9)

P x1x2
9b (tn) = 1− P x1x2

9a (tn) (4.3.3.10)
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P x1x3
9a (tn) = Px3

x1

(∑
χ=R←−x1 ,j=0∑
χ=R−→x3 ,j=0

)
(4.3.3.11)

P x1x3
9b (tn) = 1− P x1x3

9a (tn) (4.3.3.12)

where Ω([U
〈y,∞〉
i,k,0 ]x1 ;x2, x3) represents

{Hx2(tn)|χx2 ∈ {(R/A)−→x1/−→x3 , C−→x3}} × {Hx3(tn)|χx3 /∈ {R←−x1/x1 , C−→x1/←−x1/x1 , A←−x1}}

∪ {Hx3(tn)|χx3 ∈ {(R/A)−→x1/−→x2 , C−→x2}} × {Hx2(tn)|χx2 /∈ {R←−x1/x1 , C−→x1/←−x1/x1 , A←−x1}}

and Ω8a([U
〈y,∞〉
i,k,0 ]x1 ;x2, x3) stands for

{Hx2(tn) ∈ Ω([U
〈y,∞〉
i,k,0 ]x1 ;x2)|jx2 = 0} × {Hx3(tn) ∈ Ω([U

〈y,∞〉
i,k,0 ]x1 ;x2;x3)|

(χx3 , jx3) /∈ {((R/C/A)−→x1/−→x2 , j)}, j 6= 0, (χx3 , kx3) 6= (B, 0)}

∪ {Hx3(tn) ∈ Ω([U
〈y,∞〉
i,k,0 ]x1 ;x3)|jx3 = 0} × {Hx2(tn) ∈ Ω([U

〈y,∞〉
i,k,0 ]x1 ;x3;x2)|

(χx2 , jx2) /∈ {((R/C/A)−→x1/−→x3 , j)}, j 6= 0, (χx2 , kx2) 6= (B, 0)}

The stationary distribution of back-off states as tn →∞ satisfy:

π[B
〈y,∞〉
i,0,0 ]x1 = px11aπ[B

〈y,∞〉
i,1,0 ]x1 (4.3.3.13)

π[B
〈y,∞〉
i,k,0 ]x1 =




px11aπ[B

〈y,∞〉
i,k+1,0]x1 + (1− px11a)π[B

〈y,∞〉
i,k,0 ]x, 0 < k < 2i ∗ 3

(1− px11a)π[B
〈y,∞〉
i,2iw,0

]x, k = 2i ∗ 3

+





Px1y
2i∗3 (px1x29b π[B

〈x2,∞〉
i−1,0,0]x1 + px1x39b π[B

〈x3,∞〉
i−1,0,0]x1), i > 0, k 6= 0

Px1y
3

(px1x29a

∑m−1
i=0 π[B

〈x2,∞〉
i,0,0 ]x1 + π[B

〈x2,∞〉
m,0,0 ]x1

+px1x39a

∑m−1
i=0 π[B

〈x3,∞〉
i,0,0 ]x1 + π[B

〈x3,∞〉
m,0,0 ]x1), i = 0, k 6= 0

(4.3.3.14)

for any y ∈ {x2, x3}. Note we assume at the beginning of each new DATA session, the

sender chooses its receiver randomly, thus Px1y = 1
|Nx1 |

= 1
2
. In general, this will be set

as a parameter that is determined by the routing algorithm or experimental settings.
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For the remaining part of the distribution, one can conclude that

π[A
〈y,∞〉
←−x2/i,k,0]x1 = · · · = π[A

〈y,∞〉
←−x2/i,k,5]x1 = π[C

〈y,∞〉
−→x2/i,k,0]x1 = · · · = π[R

〈y,∞〉
←−x2/i,k,1]x1 = px1x21b π[B

〈y,∞〉
i,k,0 ]x1

π[A
〈y,∞〉
←−x3/i,k,0]x1 = · · · = π[A

〈y,∞〉
←−x3/i,k,5]x1 = π[C

〈y,∞〉
−→x3/i,k,0]x1 = · · · = π[R

〈y,∞〉
←−x3/i,k,1]x1 = px1x31b π[B

〈y,∞〉
i,k,0 ]x1

(4.3.3.15)

π[D
〈y,∞〉
x2/i,k,0

]x1 = · · · = π[D
〈y,∞〉
x2/i,k,7

]x1 = π[R
〈y,∞〉
x2/i,k,0

]x1 = π[R
〈y,∞〉
x2/i,k,1

]x1 = px1x21c π[B
〈y,∞〉
i,k,0 ]x1

π[D
〈y,∞〉
x3/i,k,0

]x1 = · · · = π[D
〈y,∞〉
x3/i,k,7

]x1 = π[R
〈y,∞〉
x3/i,k,0

]x1 = π[R
〈y,∞〉
x3/i,k,1

]x1 = px1x31c π[B
〈y,∞〉
i,k,0 ]x1

(4.3.3.16)

π[U
〈y,∞〉
i,k,0 ]x1 =

px11e

px18a

π[B
〈y,∞〉
i,k,0 ]x1 (4.3.3.17)

π[A
〈y,∞〉
−→x2/0,0,0]x1 = · · · =

m∑

i=0

π[C
〈y,∞〉
←−x2/i,0,1]x1 =

m∑

i=0

px1x29a π[R
〈y,∞〉
−→x2/i,0,0]x1 = · · · =

m∑

i=0

px1x29a π[B
〈y,∞〉
i,0,0 ]x1

π[A
〈y,∞〉
−→x3/0,0,0]x1 = · · · =

m∑

i=0

π[C
〈y,∞〉
←−x3/i,0,1]x1 =

m∑

i=0

px1x39a π[R
〈y,∞〉
−→x3/i,0,0]x1 = · · · =

m∑

i=0

px1x39a π[B
〈y,∞〉
i,0,0 ]x1

(4.3.3.18)

π[W
〈y,∞〉
i,0,0 ]x1 = · · · = π[W

〈y,∞〉
i,0,2 ]x1 = px1y9b π[R

〈y,∞〉
−→y /i,0,0]x1 = · · · = px1y9b π[B

〈y,∞〉
i,0,0 ]x1

(4.3.3.19)

Given the transition probability functions from (4.3.3.1) to (4.3.3.12), together with

the condition of symmetric topology:

π[χ
〈y,∞〉
i,k,j ]x1 = π[χ

〈y,∞〉
i,k,j ]x2 = π[χ

〈y,∞〉
i,k,j ]x3 (4.3.3.20)

for any i, k, χ, j, y, and the normalization conditions

∑

i,k,χ,j,y

π[χ
〈y,∞〉
i,k,j ]x1 =

∑

i,k,χ,j,y

π[χ
〈y,∞〉
i,k,j ]x2 =

∑

i,k,χ,j,y

π[χ
〈y,∞〉
i,k,j ]x3 = 1 (4.3.3.21)

we form a non-linear system which can be solved again by Matlab with initial condi-

tions:

P (0)[χ
〈y,∞〉
i,k,j ]x1 =





1
6
, χ = B, i = 0, j = 0, k > 0

0, otherwise

and P x1
1a (0) = P x1

8a (0) = P x1x2
9a (0) = P x1x3

9a (0) = 1. The remaining significant transition

probabilities are initialized as 0.
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The plots in Figure 4.10 compare the steady state distributions with analytical

results from the above system and QualNet simulations where the RTS retransmission

limit (m) is set to be 0, 1, 2 respectively.

4.3.4 2 Senders and 1 Receiver

Finally we examine the following topology shown by Figure 4.11, where three

nodes, x1, x2 and x3, are presented in the network. Both x1 and x3 have infinite

data packets destined to node x2 in their queues. This case includes hidden terminals

because node x3 is not within range of x1 and vice versa. Node x2 has no queue

and absorbs data packet from x1 and x3. Due to symmetry, only x1 and x2 will be

considered.

Unlike the previous example, x1 and x3 are hidden to each other thus the re-

ceiving procedure of RTS at x2 may be interrupted by collision. On the other hand the

receiving of CTS packets at x1 always succeeds since x1 has no other neighbors (beside

x2) to interfere. Notice this fact indicates all the subsequent data packets (in this case,

from x3 to x2) will be protected by NAV hence probability 6a ≡ 1.

The only possible non-trivial transition probability functions at time tn are

summarized by Table 4.9 and 4.10. For node x1 we have

P x1
1a (tn) = Px2

x2

(∑
χ=R←−x3 ,j 6=0 +

∑
χ∈{I,U}∑

χ∈{I,R←−x3 ,U}

)
(4.3.4.1)

P x1x2
1d (tn) = Px2

x2

( ∑
χ=R←−x3 ,j=0∑
χ∈{I,R←−x3 ,U}

)
(4.3.4.2)

P x1x2
9a (tn) = Px2

x1

(∑
χ=R←−x1 ,j=0∑
χ=R−→x2 ,j=0

)
(4.3.4.3)

P x1x2
9b (tn) = 1− P x1x2

9a (tn) (4.3.4.4)
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Figure 4.10: Comparison of steady state probabilities at x1: the tuples represent
(back-off stage, back-off counter); ’W’ represents the status of CTS
timeout; ’U’ represents the freezing status due to busy channel; ’Snt’
combines states of sending RTS/ receiving CTS/ sending DATA; ’Rcv’
combines states of receiving RTS/ sending CTS/ receiving DATA; ’Ovh’
denotes overhearing RTS; ’NAV’ represents the freezing status due to
NAV
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3
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Figure 4.11: A 3-node network scenario with hidden terminal.

Table 4.9: Non-Trivial Transition Probabilities for x1

1a x1 detects a quiet channel while back-off

1d x1 overhears a CTS while back-off

9a RTS sent from x1 succeeds

9b RTS sent from x1 fails

Table 4.10: Non-Trivial Transition Probabilities for x2

1a x2 detects a quiet channel while idle

1b x2 detects a RTS while idle

1e x2 detects a busy channel while idle

2a x2 receives RTS correctly

2b x2 detects a collision while receiving RTS

8a x2 detects the channel is clear

8b x2 detects the channel is still busy

For node x2, we have

P x2
1a (tn) =

∏

xα∈{x1,x3}

Pxα
xα

(∑
χ=B,k 6=0 +

∑
χ=W∑

χ∈{B,W}

)
(4.3.4.5)

P x2x1
1b (tn) = Px1

x1

(∑
χ=B,k=0,y=x2∑
χ∈{B,W}

)
Px3
x3

(∑
χ=B,k 6=0 +

∑
χ=W∑

χ∈{B,W}

)
(4.3.4.6)

98



P x2x3
1b (tn) = Px3

x3

(∑
χ=B,k=0,y=x2∑
χ∈{B,W}

)
Px1
x1

(∑
χ=B,k 6=0 +

∑
χ=W∑

χ∈{B,W}

)
(4.3.4.7)

P x2
1e (tn) = 1− P x2

1a (tn)− P x2x1
1b (tn)− P x2x3

1b (tn) (4.3.4.8)

P x2x1
2a (tn) = Px3

x3

(∑
χ=B,k 6=0 +

∑
χ=W∑

χ∈{B,W}

)
(4.3.4.9)

P x2x1
2b (tn) = 1− P x2x1

2a (tn) (4.3.4.10)

P x2x3
2a (tn) = Px1

x1

(∑
χ=B,k 6=0 +

∑
χ=W∑

χ∈{B,W}

)
(4.3.4.11)

P x2x3
2b (tn) = 1− P x2x3

2a (tn) (4.3.4.12)

P x2
8a (tn) = Px1×x3

x1×x3

(∑
Ω8a([U

〈∅,0〉
0,0,0 ]x2 ;x1,x3)∑

Ω([U
〈∅,0〉
0,0,0 ]x2 ;x1,x3)

)
(4.3.4.13)

P x2
8b (tn) = 1− P x2

8a (tn) (4.3.4.14)

where Ω([U
〈∅,0〉
0,0,0 ]x2 ;x1, x3) represents

{Hx1(tn)|χx1 ∈ {R−→x2 , A−→x2}} × {Hx3(tn)|χx3 /∈ {C←−x2 , Cx2}}

∪ {Hx3(tn)|χx3 ∈ {R−→x2 , A−→x2}} × {Hx1(tn)|χx1 /∈ {C←−x2 , Cx2}}

and Ω8a([U
〈∅,0〉
0,0,0 ]x2 ;x1, x3) stands for

{Hx1(tn) ∈ Ω([U
〈∅,0〉
0,0,0 ]x2 ;x1)|jx1 = 0} × {Hx3(tn) ∈ Ω([U

〈∅,0〉
0,0,0 ]x2 ;x1;x3)|

(χx3 , jx3) /∈ {(R−→x2 , 1), (A−→x2 , j)}, j 6= 0, (χx3 , kx3) 6= (B, 0)}

∪ {Hx3(tn) ∈ Ω([U
〈∅,0〉
0,0,0 ]x2 ;x3)|jx3 = 0} × {Hx1(tn) ∈ Ω([U

〈∅,0〉
0,0,0 ]x2 ;x3;x1)|

(χx1 , jx1) /∈ {(R−→x2 , 1), (A−→x2 , j)}, j 6= 0, (χx1 , kx1) 6= (B, 0)}
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The equilibrium equations for x1 as tn →∞ are

π[B
〈x2,∞〉
i,0,0 ]x1 = px11aπ[B

〈x2,∞〉
i,1,0 ]x1 (4.3.4.15)

π[B
〈x2,∞〉
i,k,0 ]x1 =




px11aπ[B

〈x2,∞〉
i,k+1,0]x1 + (1− px11a)π[B

〈x2,∞〉
i,k,0 ]x1 , 0 < k < 2i ∗ 3

(1− px11a)π[B
〈x2,∞〉
i,2iw,0

]x1 , k = 2i ∗ 3

+





1
2i∗3p

x1x2
9b π[B

〈x2,∞〉
i−1,0,0]x1 , i > 0, k 6= 0

1
3
(px1x29a

∑m−1
i=0 π[B

〈x2,∞〉
i,0,0 ]x1 + π[B

〈x2,∞〉
m,0,0 ]x1), i = 0, k 6= 0

(4.3.4.16)

π[D
〈x2,∞〉
x2/i,k,0

]x1 = · · · = π[D
〈x2,∞〉
x2/i,k,7

]x1 = π[C
〈x2,∞〉
x2/i,k,0

]x1 = π[C
〈x2,∞〉
x2/i,k,1

]x1 = px1x21d π[B
〈x2,∞〉
i,k,0 ]x1

(4.3.4.17)

π[A
〈x2,∞〉
−→x2/0,0,0]x1 = · · · =

m∑

i=0

π[C
〈x2,∞〉
←−x2/i,0,1]x1 =

m∑

i=0

px1x29a π[R
〈x2,∞〉
−→x2/i,0,0]x1 = · · · =

m∑

i=0

px1x29a π[B
〈x2,∞〉
i,0,0 ]x1

(4.3.4.18)

π[W
〈x2,∞〉
i,0,0 ]x1 = · · · = π[W

〈x2,∞〉
i,0,2 ]x1 = px1x29b π[R

〈x2,∞〉
−→x2/i,0,0]x1 = · · · = px1x29b π[B

〈x2,∞〉
i,0,0 ]x1

(4.3.4.19)

The equilibrium equations for the receiver x2 follows (4.2.4.1), (4.2.4.6), (4.2.4.7):

π[I
〈∅,0〉
0,0,0 ]x2 =

1

1− px21a

(px28aπ[U
〈∅,0〉
0,0,0 ]x2 + π[A

〈∅,0〉
←−x1/0,0,0]x2 + π[A

〈∅,0〉
←−x3/0,0,0]x2) (4.3.4.20)

π[A
〈∅,0〉
←−x1/0,0,0]x2 = · · · = π[R

〈∅,0〉
←−x1/0,0,0]x2 = px2x12a π[R

〈∅,0〉
←−x1/0,0,1]x2 = px2x12a px2x11b π[I

〈∅,0〉
0,0,0 ]x2

π[A
〈∅,0〉
←−x3/0,0,0]x2 = · · · = π[R

〈∅,0〉
←−x3/0,0,0]x2 = px2x32a π[R

〈∅,0〉
←−x3/0,0,1]x2 = px2x32a px2x31b π[I

〈∅,0〉
0,0,0 ]x2

(4.3.4.21)

π[U
〈y,∞〉
i,k,0 ]x1 =

1

px28a

(px21eπ[I
〈∅,0〉
0,0,0 ]x2 + px2x18b π[R

〈∅,0〉
←−x1/0,0,1]x2 + px2x38b π[R

〈∅,0〉
←−x3/0,0,1]x2) (4.3.4.22)

Finally, using the symmetric conditions

π[χ
〈x2,∞〉
i,k,j ]x1 = π[χ

〈x2,∞〉
i,k,j ]x3 (4.3.4.23)

for any i, k, χ, j, and the normalization conditions

∑

i,k,χ,j

π[χ
〈x2,∞〉
i,k,j ]x1 =

∑

i,k,χ,j

π[χ
〈∅,0〉
i,k,j ]x2 =

∑

i,k,χ,j

π[χ
〈x2,∞〉
i,k,j ]x3 = 1 (4.3.4.24)
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we form a non-linear system by combing equations (4.3.4.1) - (4.3.4.22). The initial

conditions for x1 are similar to the settings in Section 4.3.2. For x2, we have

P (0)[χ
〈∅,0〉
0,0,j ]x1 =





1, χ = I

0, otherwise

and P x2
1a (0) = P x2x1

2a (0) = P x2x3
2a (0) = P x2

8a (0) = 1 while the remaining non-trivial

transition probabilities are initialized as 0.

The plots in Figure 4.12 and 4.13 show the difference between analytical results

and QualNet simulations for x1 and x2 respectively. When RTS retransmission limit

(m) is 0, it is possible to construct the stochastic joint state model of x1, x2 and x3

similar to the 2-node scenario in Section 4.3.2. We omit the diagram of the model since

the structure of transitions is complex, instead, we give the corresponding equilibrium

solutions shown by the red bar. As expected, the joint model accurately predicts the

behaviors of DCF. For the non-linear system, we observe some significant deviation

mainly due to the product approximation approach as we bring closure to the system.

In particular, the nonlinear model underestimates the collision rate of RTS. However,

as the complexity of the system increases, i.e. m = 1, 2, the results improve.

4.4 Conclusion and Future Work

In this chapter, we have introduced a new Markov model for the IEEE 802.11

Distributed Coordination Function (DCF), a central mechanism of our wireless in-

frastructure. Our Markov model does not rely upon the assumption that collision

probabilities on each node are constant or independent of network topology. Instead,

we have developed a detailed model of interconnected node states including multiple

back-off stages and binary exponential back-off counters to capture the dominant first

order effects of nodes’ responses to contention. The model is complex, but it is nec-

essarily so, and it is not so elaborate that it cannot be analyzed. Using the model,

we have calculated stationary node states for two and three node networks including a

configuration that includes a hidden terminal with varying numbers of back-off stages.
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Figure 4.12: Comparison of steady state probabilities at x1: the tuples denote (back-
off stage, back-off counter); ’R’ denotes status of sending RTS packets;
’C/A’ combines states of sending CTS/ receiving DATA; ’Ovh’ denotes
overhearing CTS; ’NAV’ represents the freezing status due to NAV from
CTS
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Figure 4.13: Comparison of steady state probabilities at x2: ’I’ represents the idle
status; ’U’ represents the freezing status due to busy channel; the tuples
represent the 1st step or last step of receiving RTS from x1 or x3; ’(C/A)’
combines states of receiving CTS/ sending DATA from/to x1 or x3
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To determine the transition probabilities for steady-state calculations we approximate

the joint probability densities with marginal probability densities using a product ap-

proximation. While this only uses a small subset of the information available in the

network description, we find it sufficient to achieve excellent agreement with realistic

simulations of network traffic.

In the future, we will continue to assess the quality of our DCF model through

comprehensive analysis on other aspects of the protocol performance such as through-

put, delay and packet drop rates. We will also move forward by combing our DCF

model and previous BARP model into an unified analytic framework that would rigor-

ously characterize the nonlinear dynamics of ant-based routing algorithms on WLANs

given network topology and protocols parameters.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

In this thesis, we have introduced a dynamic routing exponent strategy to im-

prove ant-based protocols, analyzed the integrated behaviors of ant-based routing with

medium access control based on the investigations of MACA protocol in a variety

of wireless topologies, and further developed a detailed probabilistic model for IEEE

802.11 Distributed Coordination Functions.

The first chapter has been focused on the mathematical analysis and simulation

studies for an analytic framework that was formulated in [59] for ant-based routing

protocols. In these protocols, there are a number of key parameters that control the

deposition and evaporation of pheromone as well as the exploratory routing of the

ants. In particular, the routing exponent β controls the forwarding patterns of the

ants, and deposition number Λ balances the evaporation and deposition of pheromone

value over the entire network. The previous efforts of a small wired network com-

pletely described the nonlinear dynamics of pheromone level over each link. From the

description, we observe that β controls the stability of the system, and more impor-

tantly, stable multi-route solutions for β = 0.5 are dynamically connected to stable

single-route solutions for β = 2. These stable single-route solutions correspond to the

paths that have the minimum hop count. Based on the observation, we propose a new

strategy to improve routing performance of BARP by initially letting β be 0.5 and

changing it continuously in time until β = 2. Using simulations in both Matlab and

QualNet, we find exactly consistent results to the previous rigorous analysis on the

same simple wired network. Then, we leverage these principles to a 50-node network

and successfully show the effectiveness of the dynamic β strategy in obtaining opti-

mal or near optimal hop numbers from the source to the destination via Matlab and
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QualNet simulations. Specifically, a large series of experiments with random initial

pheromone values demonstrates an increase in the frequency of achieving optimal hop

count of more than 70% when using dynamic β instead of static β = 2. We also explore

the impact of pheromone deposition number Λ. Although large Λ has been shown to

impair the performance of the dynamic β algorithm, for moderate Λ our new routing

protocol still outperforms the tradition ant-based routing methods in terms of average

hop count for stable single-route solution.

In chapter 3, we have examined several basic MAC schemes for wireless net-

works. We have employed a Markov chain analysis to correctly predict network per-

formance under wireless MAC protocol MACA in a typical 2-node scenario with the

present of hidden terminals. We also generalize the proposed Markovian framework

to a 3-node wireless topology and implement a Monte Carlo method to approximate

transition probabilities when the direct computing becomes difficult. For the second

part of this chapter, we have made the first modest effort to rigorously characterize

the behaviors of ant-based routing algorithm on wireless LANs. The previous analytic

framework of BARP is incorporated with the Markov model of MACA on a simple

wireless topology that contains two paths from source to destination. We assess the

integration model via comparisons of equilibrium solutions that obtained from numer-

ical solver using Matlab and realistic simulations using QualNet, respectively. Close

correspondences are found. In the last section of chapter 3, we have implemented a

statistical study using linear regression to evaluate the MACA performance of data

delivery ratio on wireless multi-hop ring topologies. Distinct from the Markovian ap-

proaches, we avoid the intricate characterization of MACA operations and rely on

the regression coefficients to capture all the protocol details. Based on the results

derived from the datasets simulated by QualNet, we identify three types of contend-

ing transmission pairs that interfere with data delivery the most on a simple 5-node

ring. Furthermore, we have shown that the reduced linear model using only significant

regressors correctly predicts packet delivery ratio on ring topologies with size 6 and 8.

Finally, in chapter 4, we develope a new discrete time Markov model for the
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Distributed Coordination Function (DCF) in IEEE 802.11 standard for WLANs. The

model is derived from the detailed descriptions of the DCF where each node behaves

as a multi-dimensional stochastic process with intertwined Markov states. The tuples

of back-off states including multiple stages and binary exponential counters capture

the dominant first order effects of nodes’ responses to contention, and the discrete

transition events at each node are determined locally by joint behaviors of neighboring

nodes. For steady-state computations, we approximate the joint probability densities

with marginal probability densities using a product approximation. To validate the

model, we have calculated the steady state probability distribution with different back-

off stages in three representative scenarios. Comparing with results from realistic

simulations, we find very close correspondences in both 2-nodes and 3-nodes examples

without hidden terminals. For the configuration that contains a hidden terminal, we

observe an underestimation on the packet collision rates since the model only uses a

small subset of the information available in the network description. However, the

results improve as the complexity of the system increases. We find the model achieves

excellent agreement with realistic simulations of network traffic.
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Appendix A

DERIVATION OF EQUATIONS

Here, we show the stationary states of τ
(n)
ij satisfy the system 2.2.0.7. First,

given Taylor expansion

(1− h1κ1)(h2/h1) = 1− h2κ1 +
1

2

h2

h1

(
h2

h1

− 1)(h1κ1)2 + . . . (A.0.0.1)

and the assumption for time intervals: h1 < h2, 2.2.0.6 can be expanded as follows:

τ
(n+1)
ij = (1− h1κ1)(h2/h1)τ

(n)
ij + h2κ2

∞∑

k=1

1

kp
p̃sdij (k)

= (1− h2κ1 +
1

2

h2

h1

(
h2

h1

− 1)(h1κ1)2 + . . . )τ
(n)
ij + h2κ2

∞∑

k=1

1

kp
p̃sdij (k)

= τ
(n)
ij − h2κ1τ

(n)
ij +O(h2

2) + h2κ2

∞∑

k=1

1

kp
p̃sdij (k)

= τ
(n)
ij + h2(κ2

∞∑

k=1

1

kp
p̃sdij (k)− κ1τ

(n)
ij +O(h2)) (A.0.0.2)

Now, move τ
(n)
ij to the left and divide both sides of A.0.0.2 by h2, we get

τ
(n+1)
ij − τ (n)

ij

h2

= κ2

∞∑

k=1

1

kp
p̃sdij (k)− κ1τ

(n)
ij +O(h2)

Taking the limit as h2 → 0 and implementing the definition of derivative with respect

to time, we have

dτij
dt

= lim
h2→0

τ
(n+1)
ij − τ (n)

ij

h2

= lim
h2→0

κ2
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k=1
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ij +O(h2)

= κ2
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k=1

1

kp
p̃sdij (k)− κ1τ

(n)
ij (A.0.0.3)
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If the dynamic system 2.2.0.6 is in equilibrium, we will observe
dτij
dt

= 0. Therefore,

from A.0.0.3 we conclude that the stationary pheromone distirubition τ
(n)
ij is governed

by

Λτ
(n)
ij =

∞∑

k=1

1

k
p̃sdij (k)

where Λ = κ1/κ2.
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Appendix B

BALANCE EQUATIONS FOR STATIONARY JOINT STATES

Here we formulate the global balance equations deviated from the joint state

diagram 4.7. For simplicity, we adopt the following notations to represent the limiting

state probabilities.

Bk1k2 = lim
n→∞

P (n)([B
〈x2,∞〉
0,k1,0

]x1 , [B
〈x1,∞〉
0,k2,0

]x2)

Wj = lim
n→∞

P (n)([W
〈x2,∞〉
0,0,j ]x1 , [W

〈x1,∞〉
0,0,j ]x2)

Rj = lim
n→∞

P (n)([R
〈x2,∞〉
−→x2/0,0,j]x1 , [R

〈x1,∞〉
−→x1/0,0,j]x2)

−→χ kj = lim
n→∞

P (n)([χ
〈x2,∞〉
−→x2/0,0,j]x1 , [χ

〈x1,∞〉
←−x1/0,k,j]x2), χ ∈ {R,C,A}

←−χ kj = lim
n→∞

P (n)([χ
〈x2,∞〉
←−x2/0,k,j]x1 , [χ

〈x1,∞〉
−→x1/0,0,j]x2), χ ∈ {R,C,A}

The balance equations, known as outward flux = inward flux at each state, are con-

cluded as follows:

B00 = B11 (B.0.0.1)

B01 = B12 (B.0.0.2)

B02 = B13 (B.0.0.3)
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B20 = B31 (B.0.0.8)
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Here Equations B.0.0.1 - B.0.0.14 correspond to the transitions among backing off

states while Equations B.0.0.15 - B.0.0.16 correspond to the state transitions when RTS

collides. The successful transmission from x1 to x2 accounts for Equations B.0.0.17 -

B.0.0.22 and that from x2 to x1 explains Equations B.0.0.23 - B.0.0.28. Together with
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the conservation law of probabilities:

∑

k1

∑

k2

Bk1k2 +
∑

j

Wj +
∑

j′

Rj′ +
∑

χ

∑

k

∑

j′′

(−→χ kj′′ +
←−χ kj′′) = 1 (B.0.0.29)

the above linear system B.0.0.1 - B.0.0.28 can be solved for equilibrium joint states

distribution.
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