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ABSTRACT

According to international banking standards, all financial institutions must

classify the risks associated with the credit portfolios they hold. Mathematical ap-

proximations of default distributions are among the most common ways of assessing

such risk. Understanding the errors of these approximations is crucial for generating

reliable credit portfolio default risk calculations. We consider the error associated

with Vasicek’s Asymptotic Single Risk Factor model for the cumulative distribution

of losses in a portfolio of N companies. We analytically and numerically verify the

scaling of the error to be O(N−1), scaling as the reciprocal of the number of com-

panies. Our results provide insight into the error associated with one of the most

commonly used credit risk models and serve as a model for future work in examining

the errors of more complex, hierarchical structural models.
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Chapter 1

INTRODUCTION

A credit portfolio is a group of loans or lines of credit issued by a bank or

financial institution generating interest over a fixed time frame. Banks, financial

institutions, and investors create credit portfolios to maximize returns while min-

imizing the risk of losses due to defaults. A default occurs when the assets of a

company in the portfolio fall below a threshold level and they are unable to pay

back the loan. Because institutional financial risk results from either market risks or

credit risks [1], understanding the risks of default associated with credit portfolios

remains of crucial importance to financial institutions and portfolio managers [2] [3].

Further, as part of international banking standards, financial institutions often use

statistics derived from portfolio loss distributions to set capital reserve requirements

to survive periods of economic distress [4].

Indeed, credit rating agencies, such as Standard & Poor’s and Moody’s [5],

exist to independently rate the credit worthiness of companies and loans (i.e. how

able or likely a company is to repay a given loan over a fixed time frame and what

interest should be charged as a safeguard against default). To distribute and min-

imize risks, portfolio managers rely on these ratings and other financial models to

understand risk concentration within a portfolio; that is, the likelihood of certain

groups of companies in a portfolio defaulting together. Companies are known to be

linked to each other and the greater economy in a complex system of correlations,
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meaning companies in a portfolio may be more likely to default in unison as a result

of underlying correlation in asset returns. Thus, credit portfolio managers rely on

economic and mathematical models, as well as numerical simulations, to gain insight

into the default risks inherent in portfolios.

One such family of models is known as structural factor models. These mod-

els, based on Wiener processes, allow each company in a portfolio to be correlated

through one, two, or more risk factors, such as a global and regional/sector economic

risk factor [4], [6]. The simplest model has a single global risk factor correlating all

companies within a portfolio [7], but hierarchical multi-factor models have also been

explored [8], [9]. In addition, portfolios with high exposure concentration (when a

few large loans dominate the portfolio) have been studied using structural factor

models [10]. From these models, one can calculate default probabilities for com-

panies in a portfolio, as well as financial indicators such as expected shortfall and

value-at-risk, important metrics for assessing the capital needed to cover losses or

seasons of extreme financial stress [11].

Numerical simulations of factor models provide an accurate and clear picture

of the risks associated with a portfolio, but such simulations can be time consum-

ing and costly [11]. Thus, mathematicians, economists, and financiers create analytic

formulas and approximations to key indicators of portfolio health and risk from these

models. However errors are always associated with approximations; therefore, calcu-

lating and quantifying errors remains a critical part of approximating portfolio risks.

In this thesis, we explore the Vasicek Asymptotic Single Risk Factor (ASRF) model

[7]. Our main contribution is the exploration and derivation of the truncation error

for the ASRF model. We derive the analytic approximation of the loss distribution,

the cumulative loss distribution, and the Value-at-Risk in chapter 2. In chapter 3,

we explore the error associated with our approximation and derive bounds for the

2



cumulative distribution using results from probability theory. Chapter 4 contains

asymptotic analysis of the Vasicek approximation and presents numerical and ana-

lytic results of the scaling of the error. We end with a summary of our findings in

chapter 5.
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Chapter 2

SINGLE RISK FACTOR MODEL

2.1 Derivation of Company Probability of Default for the Asymptotic

Single Risk Factor Model

Considering a portfolio of N company loans, structural models allow port-

folio managers to track the joint evolution of individual companies’ assets and de-

fault probability when companies are correlated through global, sector, or regional

economies [4] [9]. The simplest structure model is given by a single risk factor, i.e.

each company’s assets are correlated through a global economic risk factor and in-

cludes an idiosyncratic risk factor. This is known as the single factor Vasicek model

[7] and is given by

zi =
√
ρε̂+

√
1− ρεi (2.1)

0 < ρ < 1

where zi is the asset return for company i, ε̂ is a global economic factor, and εi

is the company specific idiosyncratic risk factor. Equation (2.1) is derived from

an underlying logarithmic Wiener process, so that ε̂ ∼ N(0, 1) and εi ∼ N(0, 1).

Further, ρ is the correlation of assets between any two companies and is assumed to

be positive.

To calculate the loss distribution of the portfolio, we can calculate the cumu-

lative distribution function (CDF) of the return of the portfolio. From the CDF, we

are able to calculate the Value-at-Risk (VaR), which is the inverse of the CDF. With
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a given confidence level, q, the VaRq is defined as the q-quantile of the portfolio loss

distribution and is given mathematically by [10]

VaRq = inf{x : P (R∗N ≤ x) ≥ q} (2.2)

All VaR calculations are associated with a given q confidence level (typically

90, 95, or 99 percent) and will be denoted VaRq. Common holding periods are 1, 2, 10

days, and 1 month [11] for stock portfolios, but typically much longer for portfolios of

bonds. VaRq is an important financial metric not only for risk management, but also

for financial control and reporting [5]. Indeed, the VaRq forms a major component

of the Basel II Accord which regulates how much capital a financial institution must

maintain against their institutional and credit risks, and is a possible disclosure

method to the U.S. Securities and Exchange Commission for reporting quantitative

measures of market risk [11] [12].

Thus, in order for banks and financial institutions to understand the risks

associated with portfolios, a full understanding of the loss distribution must be ex-

plored. We define the loss of the portfolio with N companies over a given time

horizon, T , as

R∗N(T ) =
N∑
i=1

wiRi(zi, T ) (2.3)

where T is the time horizon, wi is the weight of the ith loan as a proportion of the

entire portfolio (in this thesis, we will always take wi = 1/N), and Ri(zi, T ) is the

loss on investment for the ith company in the portfolio. Thus, the loss is simply the

fraction of companies to default. Because the Ri(zi)’s are Bernoulli random variables,

R∗N is Bin(N, p) with p the probability of default.

Hence for a given time horizon, T , we want to find the distribution of

R∗N =
1

N

N∑
i=1

Ri(zi). (2.4)

5



Conditioned on the global risk, ε̂, the Ri’s are independent, each with the same

distribution function FRi(x). We can use the central limit theorem to approximate

the CDF of R∗N |ε̂(x), denoted FR∗N |ε̂, by Φ
(
x−m
σ

)
, where m is the mean of FR∗N (x)

and σ is the standard deviation of FR∗N (x). Note that

meanRi = αi = E (Ri) = p(ε̂) (2.5)

and

mean = m =
N∑
i=1

αi = p (2.6)

where p(ε̂) is the probability of default for the ith company. Futher,

σ =
√
σ2

1 + · · ·+ σ2
N

=

(
p(1− p)

N

)1/2

,
(2.7)

we have

Φ

(
x−m
σ

)
= Φ

(
(x− p)

√
N√

p(1− p)

)
. (2.8)

Hence, the conditioned CDF of R∗N , FR∗N |ε̂(x, ε̂), is approximated by Φ

(
(x−p)

√
N√

p(1−p)

)
.

FR∗N |ε̂(x, ε̂) ' Φ

(
(x− p)

√
N√

p(1− p)

)
(2.9)

But R∗N is, however, the average of N dependent Bernoulli random variables

due to equations (2.1) and (2.11). To find the unconditioned CDF, FR∗N , we start

by finding the probability density function (PDF) of R∗N , denoted fR∗N . We first

condition on ε̂ to obtain independent Bernoulli random variables, apply the central

limit theorem, and then relax the conditioning by using the law of total probability.
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We start by calculating the return for each company in the portfolio. Note

that by fixing ε̂, the asset return of each company becomes independent such that

zi
∣∣ε̂ ∼ N(

√
ρε̂, 1− ρ). (2.10)

Then the loss distribution for each i company in the portfolio is given by

Ri(zi
∣∣ε̂) =

 0 : zi|ε̂ > θi

1 : zi|ε̂ ≤ θi
(2.11)

where θi is the threshold of loss for the ith company in the portfolio (i.e. should

the assets for company i fall below θi, we would expect a default on the loan). We

assume identical distribution for each company resulting in θi = θ and pi(ε̂) = p(ε̂).

This is justified given homogeneous portfolios.

First, notice that the probability of default for each company conditioned on

ε̂ is

p(ε̂) = P (zi < θ
∣∣ε̂) =

∫ θ

−∞

1√
2π(1− ρ)

exp

{
−

(t−√ρε̂)2

2(1− ρ)

}
dt. (2.12)

Making a change of variables in equation (2.12), we obtain

p(ε̂) =
1√

1− ρ

∫ θ−√ρε̂√
1−ρ

−∞

1√
2π

exp

{
−m2

2

}√
1− ρ dm = Φ

(
θ −√ρε̂
√

1− ρ

)
, (2.13)

where Φ denotes the cumulative distribution function for standard normal distribu-

tion N(0, 1),

Φ(x) =
1√
2π

∫ x

−∞
e−y

2/2dy. (2.14)

The portfolio loss distribution conditioned on ε̂ is the probability of k out of N

companies defaulting and follows a binomial distribution,

P (k defaults|ε̂) =

(
N

k

)
pi(ε̂)

k(1− pi(ε̂))N−k (2.15)
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Because R∗N |ε̂ is a weighted sum of independent Bernoulli random variables,

the portfolio loss is binomial distributed, Bin(N, p). And since the number of

Bernoulli random variables (the number of companies in our portfolio) is taken to

infinity, we use the central limit theorem to approximate the binomial distribution

with a normal distribution to obtain(
N

k

)
pi(ε̂)

k(1− pi(ε̂))N−k '
1√

2πσi
exp

{
−(k/N −m)2

2σ2
i

}
(2.16)

where m is the mean of R∗N |ε̂ and σ2 is the variance. Further, because R∗N |ε̂ =∑N
i=1

Ri(zi)
N

is Bin(N, p), we have m = p(ε̂) and σ =
√

p(ε̂)(1−p(ε̂))
N

. Thus(
N

k

)
p(ε̂)k(1− p(ε̂))N−k '

√
N√

2πp(ε̂)(1− p(ε̂))
exp

{
−N(k/N − p(ε̂))2

2p(ε̂)(1− p(ε̂))

}
. (2.17)

Letting y = k
N

, we have the probability of a fraction, y, of the companies

defaulting,(
N

k

)
p(ε̂)k(1− p(ε̂))N−k '

√
N√

2πp(ε̂)(1− p(ε̂))
exp

{
−N(y − p(ε̂))2

2p(ε̂)(1− p(ε̂))

}
(2.18)

Using the law of total probability, we have the probability density function of R∗N ,

fR∗N = P (k defaults) =

∫ ∞
−∞

(
N

k

)
pi(ε̂)

k(1− pi(ε̂))N−kφ(ε̂)dε̂

'
∫ ∞
−∞

√
N√

2πp(ε̂)(1− p(ε̂))
exp

{
−N(y − p(ε̂))2

2p(ε̂)(1− p(ε̂))

}
φ(ε̂)dε̂

(2.19)

where

φ(ε̂) =
1√
2π
e−ε̂

2/2 (2.20)

With the unconditioned PDF of R∗N calculated above, in the subsequent sections we

use asymptotic methods to evaluate the integral and derive the CDF of R∗N [10] [8].
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2.2 Laplace’s Method

Laplace’s method is an asymptotic approach to approximating the value of

Laplace-type integrals. It states that if some function τ(t) ∈ C4 has a minimum at

an interior point t∗ ∈ (a, b) then for a large parameter N � 1,∫ b

a

α(t)exp {−Nτ(t)} dt ∼ α(t∗)exp {−Nτ(t∗)}

√
2π

τ ′′(t∗)k
+O(k−3/2) (2.21)

where τ ′′(t∗) ≥ 0, τ ′(t∗) = 0, and α(t) ∈ C2 [13] [14]. Making a change of variables

in equation (2.19), we obtain a Laplace-type integral that can be evaluated used

Laplace’s method. Letting

τ(ε̂) =
(y − p(ε̂))2

2p(ε̂)(1− p(ε̂))
(2.22)

and

α(ε̂) =

√
N√

2πp(ε̂)(1− p(ε̂))
φ(ε̂) =

√
N√

2πp(ε̂)(1− p(ε̂))
1√
2π

exp

{
−ε̂2

2

}
, (2.23)

then the default probability of the portfolio given by (2.19) simplifies to

fR∗N =

∫ ∞
−∞

α(ε̂)exp {−Nτ(ε̂)} dε̂ (2.24)

and we apply Laplace’s method.

First note that for all ε̂, τ(ε̂) ≥ 0 so the minimum of τ(ε̂) occurs when y = p(ε̂)

(thus the minimum of τ(ε̂) is zero). Let ε̂ = ε̂∗ be the location of the minimum of

τ(ε̂). Then,

ε̂∗ = p−1(y) =

√
1− ρΦ−1(y)− θ
−√ρ

. (2.25)

Since we have a minimum, ε̂∗, by the Laplace approximation, the integral from (2.24),

in terms of the large parameter N , is given by

fR∗N ∼ α(ε̂∗)exp {−Nτ(ε̂∗)}

√
2π

Nτ ′′(ε̂∗)
(2.26)

9



We then compute τ ′′(ε̂) and evaluate at ε̂∗ for which the only non-zero term becomes

τ ′′(ε̂∗) =
p′(ε̂∗)2

p(ε̂∗)(1− p(ε̂∗))
. (2.27)

Note that

p′(ε̂) =
−1√
2π
e
− 1

2

(
θ−√ρε̂√

1−ρ

)2
( √

ρ
√

1− ρ

)
. (2.28)

Since y = Φ
(
θ−√ρε̂∗√

1−ρ

)
= p(ε̂∗), then Φ−1(y) =

θ−√ρε̂∗√
1−ρ and we have

p′(ε̂∗) = − 1√
2π

√
ρ

√
1− ρ

e−
1
2 [Φ−1(y)]

2

(2.29)

Then evaluating the Laplace approximation from equation (2.24), we have

fR∗N ∼
√

1− ρ · e
− 1

2

(√
1−ρΦ−1(y)−θ√

ρ

)2

· 1
√
ρe−

1
2

[Φ−1(y)]2
(2.30)

=⇒ fR∗N ∼
√

1− ρ
√
ρ

exp


[Φ−1(y)]

2 −
[√

1−ρΦ−1(y)−θ√
ρ

]2

2

 . (2.31)

Therefore, the density for the loss is given by

fR∗N (y) ∼
√

1− ρ
ρ

exp

{
1

2

[
Φ−1(y)

]2 − [√1− ρΦ−1(y)− θ
]2

2ρ

}
(2.32)

as N →∞.

2.3 Value-at-Risk

Now that we have found the probability distribution of the loss of the portfolio,

we are able compute the CDF and, from that, the VaRq. Making a change of variables
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in equation (2.32) such that u =
√

1− ρΦ−1(y) − θ and integrating the PDF, we

obtain P{R∗N < x} = FR∗N (x):

FR∗N (x) =

∫ x

0

√
1− ρ
ρ

exp

{
1

2

[
Φ−1(y)

]2 − [√1− ρΦ−1(y)− θ
]2

2ρ

}
dy

=

∫ √1−ρΦ−1(x)−θ

−∞

√
1− ρ
ρ

exp

{
1

2

(
u+ θ√
1− ρ

)2

− u2

2ρ

}
1√
2π

exp

{
−1

2

(
u+ θ√
1− ρ

)2
}

du√
1− ρ

=

∫ √1−ρΦ−1(x)−θ

−∞

1√
2πρ

exp

{
−u2

2ρ

}
du.

(2.33)

Making a second change of variables and simplifying terms yields

FR∗N (x) =

∫ √
1−ρΦ−1(x)−θ√

ρ

−∞

1√
2π
e−v

2/2dv

= Φ

(√
1− ρΦ−1(x)− θ

√
ρ

)
.

(2.34)

To find VaRq, we compute the inverse of the CDF. Thus

FR∗N (x) = Φ

(√
1− ρΦ−1(x)− θ

√
ρ

)
= q

=⇒
√

1− ρΦ−1(x)− θ
√
ρ

= Φ−1(q)

=⇒ Φ−1(x) =

√
ρΦ−1(q) + θ
√

1− ρ
Hence

F−1
R∗N

(q) = VaRq = Φ

(
θ +
√
ρφ−1(q)

√
1− ρ

)
(2.35)

In summary, the PDF, CDF, and VaRq of the portfolio loss respectively are given by

fR∗N (y) =

√
1− ρ
ρ

exp

{
1

2

[
Φ−1(y)

]2 − [θ −√1− ρΦ−1(y)
]2

2ρ

}
, (2.36)
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FR∗N (x) = Φ

(√
1− ρΦ−1(x)− θ

√
ρ

)
, (2.37)

VaRq = Φ

(
θ +
√
ρφ−1(q)

√
1− ρ

)
. (2.38)

Thus Vasicek’s ASRF model provides us with an analytic approximation of

market risks associated with a credit portfolio. Using this approach, portfolio man-

agers can use these analytic formulas as approximations for numerical simulations

which are generally much more computationally intensive. It should be noted that

above model is an implicit copula model based on the multivariate Gaussian distribu-

tion of asset value processes and that such applications of copulas to credit portfolio

modeling have become widely used in risk management [15].

2.4 Monte Carlo Simulations

With the PDF, CDF, and VaRq calculated above (2.36) - (2.38), we run Monte

Carlo simulations and compare the approximated and simulated distributions. The

plots below show the CDF and VaRq of the Monte Carlo simulations and the Vasicek

formulas derived above. Note that the Monte Carlo simulated CDF and VaRq are

step functions due to the discreteness of R∗N in (2.4). As the number of companies, N ,

increases, the Monte Carlo simulated CDF and VaRq become better approximations

of the analytic Vasicek formulas.
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(a) 5 companies (b) 20 companies

(c) 100 companies (d) 1,000 companies

Figure 2.1: Plots of the Vasicek approximated CDF against the Monte Carlo simu-

lated CDF. Plots generated using ρ = 0.9058, θ = -0.8730, and 50,000 Monte Carlo

realizations.
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(a) 5 companies (b) 20 companies

(c) 100 companies (d) 1,000 companies

Figure 2.2: Plots of the Vasicek approximation of the VaRq against the Monte Carlo

simulated VaRq. Plots generated using ρ = 0.9058, θ = -0.8730, and 50,000 Monte

Carlo realizations.
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In the next section, we examine the error associated with our approximation

of the CDF as the number of companies, N , in the portfolio increases. That is, as N

goes to infinity, what is the scaling of the error between the Vasicek approximation

and the Monte Carlo simulated CDF? We explore the scaling and find a bound for

the error using analytic and numerical techniques.
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Chapter 3

THE BERRY-ESSEEN BOUND

Recall from the derivation of the approximation for the portfolio loss, we used

the central limit theorem to approximate a binomial distribution with a normal dis-

tribution. The central limit theorem is a fundamental result in probability theory

and determines when the sum of many random variables has a probability distribu-

tion that is approximately normal [16]. In this chapter, we discuss the central limit

theorem, derive an error bound associated with approximating a binomial distribu-

tion with a normal distribution, and examine the scaling of the error as it relates to

Vasicek’s analytic approximation of portfolio default risk.

3.1 Central Limit Theorem

The central limit theorem is a well-studied branch of probability theory and

states:

Theorem 3.1.1. Let X1, X2, · · · be a sequence of independent and identically dis-

tributed random variables, each having mean µ and variance σ2 < ∞. Then the

distribution of

Zn(x) =
X1 + · · ·+Xn − nµ

σ
√
n

tends to the standard normal distribution as n→∞. [16]

DeMoivre put forth the first version of the central limit theorem, proving it for

the case of Bernouilli random variables with p = 1
2
. Laplace generalized the theorem

16



to binomial distributions, and then to general distributions; however, a rigorous proof

of the generalized central limit theorem was not obtained until the 20th century by

Alexander Liapounoff [16].

Once the central limit theorem was proven, many mathematicians have ded-

icated their energies to studying the convergence rate of ZN . In other words, what

is the error in approximating the PDF of ZN with the normal distribution? Andrew

Berry and Carl-Gustav Esseen independently calculated the bound for the error in

1942 [17], [18]. Since then, Esseen and others continued to refine the error estima-

tion to understand how well the normal distribution approximates other distributions

when n is large.

3.2 The Berry-Esseen Bound

As stated, Esseen calculated a rate for how quickly the binomial CDF con-

verges to the normal distribution and provided a bound on the error of the approx-

imation. Let F (x) be the distribution function for each {Xk} defined in Theorem

3.1.1 and let FN(x) be the CDF for ZN also defined in Theorem 3.1.1. The Berry-

Esseen Theorem [19] states that the error of the approximation of the binomial CDF

is bounded such that

|FN(x)− Φ(x)| ≤
1.88 max(µ3

µ2
)

σ(ε̂)
(3.1)

where Φ(x) is the Gaussian distribution function as defined in (2.14), µ3 is the third

absolute moment of F (x), µ2 is the second absolute moment of F (x), and σ(ε̂) is the

standard deviation of F (x).

We will show that this error bound should scale like O(N−1/2). Conditioned

on global risk ε̂, the total portfolio loss over time horizon T for a portfolio of N

17



companies is R∗N(T ) = 1
N

∑N
i=1Ri(zi), i = 1, · · · , N , with Ri independent Bernoulli

random variables. If θi = θ and pi = p, the Ri’s are identically distributed and

second moment = µ2 = E

(
R2
i

N2

)
=
p(ε̂)

N2
(3.2)

third moment = µ3 = E

(
R3
i

N3

)
=
p(ε̂)

N3
(3.3)

where p(ε̂) is defined as in (2.13) as

p(ε̂) = Φ

(
θ −√ρε̂
√

1− ρ

)
= 1/2

[
1 + erf

(
θ −√ρε̂√
2(1− ρ)

)]
. (3.4)

Thus, as ε̂ → ∞, we have p(ε̂) → 0, i.e. as the health of the economy strengthens,

company default becomes less likely. Similarly, as ε̂→ −∞, we have p(ε̂)→ 1.

Further

σ2
i = Var(Ri/N) =

p(ε̂)

N2
−
(
p(ε̂)

N

)2

=
p(ε̂)(1− p(ε̂))

N2
. (3.5)

Therefore

σ =
√
σ2

1 + · · ·+ σ2
N

=

(
p(1− p)

N

)1/2 (3.6)

So, from the Berry-Esseen bound we have∣∣∣∣∣FR∗N |ε̂(x, ε̂)− Φ

(
(x− p)

√
N√

p(1− p)

)∣∣∣∣∣ ≤ 1.88max(µ3/µ2)

σ

=
1.88/N√
p(1− p)

√
N

=
1.88√

Np(1− p)

(3.7)
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where FR∗N |ε̂(x, ε̂) is the CDF of R∗N conditioned on ε̂, Φ (·) is the Gaussian cumulative

normal distribution defined as in (2.14), and Φ

(
(x−p)

√
N√

p(1−p)

)
is the conditioned CDF

from the central limit theorem given in (2.8).

Thus the error associated with the central limit theorem should be bounded

by a function scaling like O(N−1/2). Given the Berry-Esseen bound, the CDF of R∗N

conditioned on ε̂ is bounded by

Φ

(
(x− p)

√
N√

p(1− p)

)
− 1.88√

Np(1− p)
≤ FR∗N |ε̂(x, ε̂) ≤ Φ

(
(x− p)

√
N√

p(1− p)

)
+

1.88√
Np(1− p)

.

(3.8)

To find the bounds for the unconditioned cumulative density, we have∫ ∞
−∞

(
Φ

(
(x− p)

√
N√

p(1− p)

)
− 1.88√

Np(1− p)

)
φ(ε̂)dε̂ ≤

∫ ∞
−∞

FR∗N |ε̂(x, ε̂)φ(ε̂)dε̂ (3.9)

and∫ ∞
−∞

FR∗N |ε̂(x, ε̂)φ(ε̂)dε̂ ≤
∫ ∞
−∞

(
Φ

(
(x− p)

√
N√

p(1− p)

)
+

1.88√
Np(1− p)

)
φ(ε̂)dε̂. (3.10)

Thus the error of the unconditioned CDF is bounded such that∣∣∣∣∣
∫ ∞
−∞

FR∗N |ε̂(x; ε̂)φ(ε̂)dε̂−
∫ ∞
−∞

Φ

(
(x− p)

√
N√

p(1− p)

)
φ(ε̂)dε̂

∣∣∣∣∣ ≤ 1.88√
N

∫ ∞
−∞

φ(ε̂)dε̂√
p(1− p)

.

(3.11)

We now check the convergence of the integral on the right-hand side of (3.11).

Considering the integrand of the right-hand side of (3.11) we have

1.88e−ε̂
2/2√

2πNp(ε̂)(1− p(ε̂))
. (3.12)

Again, since p(ε̂) → 0 as ε̂ → ∞, we have
√

2πNp(1− p) → 0 and e−ε̂
2/2 → 0.

Thus we must consider the behavior of both the numerator and denominator to
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see whether the integral will converge. Note that the denominator should scale like√
p(ε̂) as p → 0. Recall from (3.4) that p(ε̂) is a constant plus the erf function.

Recall the asymptotic formula for the error function for large arguments,

erf(x) ∼ 1− 1

x
√
πex2 + · · · , x→ +∞. (3.13)

The erf function is odd, hence -erf(x) = erf(−x), and we have

erf(−x) = −erf(x) ∼ −1 +
1

x
√
πex2 + · · · , x→ −∞ (3.14)

for large negative arguments. Therefore, we have x 7→ −√ρε̂√
2(1−ρ)

and as ε̂→∞ we use

(3.14) to obtain

p(ε̂) = 1/2

[
1 + erf

(
−√ρε̂√
2(1− ρ)

)]

∼ 1/2

1 +

−1 +
1

√
πρε̂√

2(1−ρ)
exp

{(
√
ρε̂√

2(1−ρ)

)2
} + · · ·




∼ 1
2
√
πρε̂√

2(1−ρ)
exp

{
ρε̂2

2(1−ρ)

}
(3.15)

But the denominator of (3.12) scales like
√
p. Therefore the denominator scales like

√
p(ε̂) ∼

(
e
−ρε̂2

2(1−ρ)

)1/2

= e
−ρε̂2

4(1−ρ) (3.16)

while the numerator scales like e−ε̂
2/2.
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Similarly, for large negative arguments, we have that as ε̂ → −∞, x → ∞.

Using (3.13) and the fact that erf is odd,

p(ε̂) = 1/2

[
1 + erf

(
−√ρε̂√
2(1− ρ)

)]

∼ 1/2

1 +

1− 1

√
πρε̂√

2(1−ρ)
exp

{(
√
ρε̂√

2(1−ρ))

)2
} + · · ·




∼ 1
2
√
πρε̂√

2(1−ρ)
exp

{
ρε̂2

2(1−ρ)

}
(3.17)

Therefore, as ε̂→ −∞ we have p− 1→ 0 and the denominator scaling like√
p(ε̂) ∼

(
e
−ρε̂2

2(1−ρ)

)1/2

= e
−ρε̂2

4(1−ρ) (3.18)

while the numerator scales like e−ε̂
2/2.

As ε̂ → ∞ and ε̂ → −∞, the integral on the right-hand side of (3.11) scales

like

exp

{
−
(

1

2
− ρ

4(1− ρ)

)
ε̂2
}

Therefore, in order for the integral to converge, we require

1

2
− ρ

4(1− ρ)
> 0 (3.19)

Solving for ρ, we find that 2
3
> ρ in order for (3.19) to hold. Thus, for ρ ∈ [0, 2/3),

the integral on the right-hand side of (3.11) will converge. The main result of this

section is that the error bound of the unconditioned CDF is bounded by a function

that scales like O(N−1/2). In other words,

∣∣∣∣∣
∫ ∞
−∞

FR∗N |ε̂(x; ε̂)φ(ε̂)dε̂−
∫ ∞
−∞

Φ

(
(x− p)

√
N√

p(1− p)

)
φ(ε̂)dε̂

∣∣∣∣∣ ≤ C/
√
N (3.20)
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where

C = 1.88

∫ ∞
−∞

φ(ε̂)dε̂√
p(ε̂)(1− p(ε̂))

<∞ (3.21)

for ρ ∈ (0, 2/3).

3.3 Numerical Results

From the above discussion, we note that the error is bound by a function

that scales like O(N−1/2). Thus, we likely expect the error of the CDF to scale like

O(N−1/2). However, numerical simulations indicate that the scaling of the error of

the CDF may be quite different. For default thresholds close to zero, a numerical

investigation of the error finds the scaling to be O(N−1) which is smaller than ex-

pected. The plots that follow demonstrate the scaling error between the Monte Carlo

simulated CDF and the analytic CDF derived in (2.37).
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(a) (b)

(c) (d)

Figure 3.1: Plots of the error between the Monte Carlo simulated CDF and the

Vasicek approximation of the CDF in (2.37) as the number of companies in the

portfolio is increased. Figure 3.1a corresponds to 500 Monte Carlo realizations,

ρ = 0.35, and θ = −0.1. Figures 3.1b, 3.1c, and 3.1d correspond to 5K, 50K, and

500K respectively with the same ρ and θ as in 3.1a.
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The flattening out of the error for large number of companies is a result of the

error associated with Monte Carlo simulations and can be shown to beO
(

1

number of trials1/2

)
.

∆

N∗

err ∝ 1/Nα

Number of companies, N

error of

the CDF

Figure 3.2: Monte Carlo simulation error

Note that

∆ = Monte Carlo error ∝ 1

(number of trials)1/2
(3.22)

Therefore
1

N∗α
=

1

(number of trials)1/2
(3.23)

N∗ = (number of trials)1/2α (3.24)
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Thus, the 1/Nα scaling is valid providing N � N∗ = (number of trials)1/2α.

So for the plots in Figure 3.1, where α = 1, we have

Monte Carlo trails approximate N∗

500 22

5,000 70

50,000 225

500,000 700

Table 3.1: N∗ values for given Monte Carlo realizations.

Plots in Figure 3.1 demonstrate a leveling off at roughly these figures; therefore, the

transition point of where the CDF error flattens out is due to the finite sample size

and moves to the right as the number of Monte Carlo realizations are increased.

Hence, as the number of Monte Carlo realizations increases, this error becomes small

and the total error of the CDF converges to the true scaling as seen in the plots

below, shown to be O(N−1).

Because of the numerical error associated with the Monte Carlo simulation,

for the rest of this thesis we consider the error of the CDF over 100 to 102 companies

using 100,000 Monte Carlo realizations. From the above discussion, this should

exhibit the O(N−1) scaling. Next, we verify the scaling of the error for values of ρ ∈

[0.3, 0.6].
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(a) ρ = 0.3, θ = -0.1 (b) ρ = 0.3, θ = -0.3

(c) ρ = 0.4, θ = -0.1 (d) ρ = 0.4, θ = -0.3

Figure 3.3: Scaling of the error between the Monte Carlo simulated CDF and the

analytic Vasicek CDF derived from 100,000 Monte Carlo realizations.
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(a) ρ = 0.5, θ = -0.1
(b) ρ = 0.5, θ = -0.3

(c) ρ = 0.6, θ = -0.1 (d) ρ = 0.6, θ = -0.3

Figure 3.4: Scaling of the error between the Monte Carlo simulated CDF and the

analytic Vasicek CDF derived from 100,000 Monte Carlo realizations.
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Note that for higher values of ρ, the scaling initially seems to shift from away

from O(N−1) when N is moderate. However, when we consider larger portfolios,

we see the error scaling converging to O(N−1). From the central limit theorem, we

know that the binomial distribution, Bin(N , p), is well approximated with a normal

distribution for values of p not too close to 0 or 1.

For values of p near 0 or 1, the central limit theorem still holds but N must

be sufficiently large for the normal distribution to be a good approximation. Note

that as ρ increases, p → 0. Recall that in (3.6), for p close to 0 or 1, N must be

taken large in order to make 1.88√
Np(1−p)

small. Thus larger values of N are needed to

see the scaling converge to O(N−1) as shown in Figures 3.3 and 3.4: as N increases,

the error becomes parallel to the 1/N diagonal.

We verify this numerically, by plotting the error when ρ = 0.6 as the scale

in N is increased. As we increase the number of companies, N, we also increase the

number of Monte Carlo trials to account for the simulation error discussed above.

We see that as the scaling increases, the error becomes parallel to the 1/N diagonal.
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(a) (b)

(c)

Figure 3.5: Scaling of the error between the Monte Carlo simulated CDF and the

analytic Vasicek CDF as the number of companies increases when ρ = 0.6 and θ

= -0.1. Plots 3.5a and 3.5b use 100,000 Monte Carlo realizations, while 3.5c uses

1,000,000 realizations.
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Plotting the Berry-Esseen bound given by the right-hand side of equation

(3.11), we observe that while the bound always scales like O(N−1/2), the error of the

CDF scales like O(N−1).

(a) ρ = 0.5, θ = -0.1 (b) ρ = 0.3, θ = -0.5

Figure 3.6: Plots depict the Berry-Esseen bound and error of the CDF for given ρ

and θ generated by 100,000 Monte Carlo realizations.

3.4 Rao-Chattacharya Bound

The CDF of the portfolio loss, however, has discontinuities due to the dis-

creteness of the portfolio. To account for these discontinuous jumps in the CDF and

improve upon the Berry-Esseen bound, a correction term is added to the bound. Rao

and Bhattacharya [20] derive the following bound for the discontinuous CDF

∣∣∣∣∣FR∗N |ε̂(x; ε̂)− Φ

(
(x− p)

√
N√

p(1− p)

)∣∣∣∣∣ ≤ 3σ2 + |µ3|
6
√

2πNσ3
(3.25)

where µ3 is the third moment of R∗N |ε̂ and σ2 is the variance (derived in chapter 4).
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Again, this is the bound of the error of the CDF conditioned on ε̂. To find

the unconditioned bound, we multiply by φ(ε̂) and integrate over ε̂. Therefore,∣∣∣∣∣
∫ ∞
−∞

FR∗N |ε̂(x; ε̂)φ(ε̂)dε̂−
∫ ∞
−∞

Φ

(
(x− p)

√
N√

p(1− p)

)
φ(ε̂)dε̂

∣∣∣∣∣ ≤ 1√
N

∫ ∞
−∞

3σ2 + |µ3|
6
√

2Nπσ3
φ(ε̂)dε̂

(3.26)

In the context of the problem of the large portfolio, we have∣∣∣∣∣
∫ ∞
−∞

FR∗N |ε̂(x; ε̂)φ(ε̂)dε̂−
∫ ∞
−∞

Φ

(
(x− p)

√
N√

p(1− p)

)
φ(ε̂)dε̂

∣∣∣∣∣ ≤ 1√
N

∫ ∞
−∞

3p(1− p) + |p− 3p2 + 2p3|
6
√

2Nπ(p(1− p))3/2
φ(ε̂)dε̂

(3.27)

Numerically investigating this bound, we find that it is a much tighter bound

for the error of the CDF, though it still exhibits the incorrect scaling. In the next

section, we asymptotically analyze the scaling of the error.

(a) ρ = 0.5, θ = -0.5 (b) ρ = 0.3, θ = -0.5

Figure 3.7: Plots show the error of the CDF, the continuous Berry-Esseen bound,

and the corrected discontinuity bound for given ρ and θ values, and 100,000 Monte

Carlo realizations.
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Chapter 4

ASYMPTOTIC ANALYSIS

4.1 The Approximation of a Binomial Distribution with the Normal Dis-

tribution

Recall from our model derivation that the portfolio loss, R∗N(T ), is a weighted

sum of Bernoulli random variables for a fixed global risk, ε̂. When the weights are

equal, the portfolio loss is binomially distributed, Bin(N, p). Because the number of

Bernoulli random variables (the number of companies in our portfolio) is taken to

infinity, we use the central limit theorem to approximate the binomial distribution

with a normal distribution. To derive this approximation, we employ characteristic

functions.

First, let Ri ∼ Bernoulli(p). Then

Ri =

1 with probability p

0 with probability (1− p)
(4.1)

Thus E(Ri) = p and Var(Ri) = σ2 = E(R2
i )−E(Ri)

2 = p(1− p). Now consider the

total loss of a portfolio consisting of N companies,

R∗N |ε̂ =
N∑
i=1

Ri

N
(4.2)

Let

Yi =
Ri − p
σ

(4.3)
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with

Yi =


1−p
σ

with probability p

−p
σ

with probability (1− p)
(4.4)

Define

ZN =
N∑
i=1

Yi√
N
. (4.5)

Then from Theorem 3.1.1,

ZN =

∑N
i=1 Xi −Np√
Np(1− p)

=

∑N
i=1 Xi√

Np(1− p)
− Np√

Np(1− p)
(4.6)

tends to the standard normal distribution as n→∞. Notice that

ZN√
N

=

∑N
i=1Xi

N
√
p(1− p)

− p√
p(1− p)

(4.7)

=⇒
ZN
√
p(1− p)√
N

=

∑N
i=1 Xi

N
− p

= R∗N − p.
(4.8)

Hence
ZN
√
p(1− p)√
N

+ p = R∗N . (4.9)

Therefore

FR∗N |ε̂(x) = FZN

(
(x− p)

√
N√

p(1− p)

)
. (4.10)

Moreover, note that

E(ZN) =
1√
N
E

(
N∑
i=1

Yi

)
=

1√
N
NE(Yi) = 0, (4.11)

and

Var(Zn) = E(ZN)− E(ZN)2 = 1. (4.12)
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We first seek to find the distribution function, FZN , using an Edgeworth ex-

pansion [17]. To approximate using the central limit theorem, we have FZN → N(0, 1)

+ γ(N), where γ is the error term. Using properties of characteristic functions, note

that

ϕZN (t) = ϕY1/
√
N+···+Yn/

√
N(t)

= ϕY1(t/
√
N)ϕY2(t/

√
N) . . . ϕYN (t/

√
N)

=
[
ϕY1(t/

√
N)
]N (4.13)

since the Yi’s are independently and identically distributed. However,

ϕY1(t/
√
N) = E(eitYi) = peit

(1−p)
σ + (1− p)e

−ipt
σ

= pe
it
σ e
−itp
σ + e

−itp
σ − pe

−itp
σ

= e
−itp
σ

[
pe

it
σ + 1− p

]
.

(4.14)

Thus [
ϕY1

(
t/
√
N
)]N

=
[
e−itp/

√
Nσ
(
peit/

√
Nσ + 1− p

)]N
(4.15)

[
ϕY1

(
t/
√
N
)]N

= e−itp
√
N/σ

[
peit/

√
Nσ + 1− p

]N
(4.16)

=⇒ lnϕZN (t) =
−it
√
Np

σ
+N ln

[
1− p(1− eit/σ

√
N)
]
. (4.17)

Expanding the right-hand side in Taylor series for N � 1 and for fixed t,

lnϕZN (t) =
−it
√
Np

σ
−Np(1− eit/σ

√
N)− Np2

2
(1− eit/σ

√
N)2 − Np3

3
(1− eit/σ

√
N)3 +O(t4)

=
(−p+ p2)t2

2σ2
− p− 3p2 + 2p3

6
√
Nσ3

it3 +O
(
t4

N

)
(4.18)
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Recall that σ2 = p(1− p). Thus

lnϕZN (t) =
−t2

2
− (p− 3p2 + 2p3)

6
√
Nσ3

it3 +O
(
t4

N

)
(4.19)

Letting (p−3p2+2p3)

6
√
Nσ3 = α, and expanding once more using the series expansion of ex,

we have

ϕZN (t) = exp

{
−t2

2
− (p− 3p2 + 2p3)

6
√
Nσ3

it3 +O(t4/N)

}
= e−t

2/2e−αit
3

eO(t4/N)

= e−t
2/2
(
1− αit3 +O(t4/N)

)
= e−t

2/2 − αit3e−t2/2 +O(t4/Net
2/2)

(4.20)

Taking the inverse Fourier transform, substituting in α, and integrating over x, we

have

FZN (x) = Φ (x) +
(p− 3p2 + 2p3)

6
√

2πN(p(1− p))3/2

[
1− x2

]
e−x

2/2 (4.21)

Recalling that FR∗N |ε̂(x) = FZn

(
(x−p)

√
N√

p(1−p)

)
yields

FR∗N |ε̂(x) = Φ

(
(x− p)

√
N√

p(1− p)

)
+

(p− 3p2 + 2p3)

6
√

2πN(p(1− p))3/2

[
1−

(
(x− p)2N

p(1− p)

)]
e−

(x−p)2N
2p(1−p)

(4.22)

Thus a Binomial distribution function can be approximated with a standard

normal distribution, Φ

(
(x−p)

√
N√

p(1−p)

)
, plus a correction term that scales like N−1/2. As

shown, when N →∞, the Binomial distribution converges to a normal distribution

as the central limit theorem mandates. Because (4.20) is only valid for small t and

the inverse Fourier transform requires an integral over all t ∈ R, obtaining (4.21)

from (4.20) is non-rigorous. When the characteristic function is defined only on a

small interval, the CDF is not uniquely determined [17]. Thus, (4.22) is not the only

CDF with (4.20) as the characteristic function. In the next section, we discuss one

of the candidates for the CDF with the given characteristic function.
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4.2 A Discontinuity Correction

Again, equation (4.22) is only valid provided the characteristic function of

Ri in (4.1) is not periodic and defined for all t ∈ R. Because the portfolio loss is

a lattice random variable, i.e. the CDF is a discontinuous function with uniform

discrete jumps, there is an additional correction term of O(N−1/2) that accounts for

the discrete jumps in the distribution function. Esseen proves the following theorem

[19]

Theorem 4.2.1. Let X1, X2, · · · , Xn be a sequence of independent random variables

with the same distribution function F (x), the mean value zero, the σ2 6= 0, and the

third moment α3. Suppose further that Xis are discrete random variables so that

F (x) is a CDF with discontinuities separated by a distance d. Then

Fn(x) = Φ(x) +
α3

6σ3
√

2πn
(1− x2)e−x

2/2 +
d

σ
√

2πn
ψn(x)e−x

2/2 +O(n−1/2). (4.23)

We have shown the derivation of the first two terms and will now explore the third

term d
σ
√

2πn
ψn(x)e−x

2/2. Esseen [17] defines the following:

ψn(x) = Q

(
(x− ξn)σ

√
n

d

)
(4.24)

Q(x) = [x]− x+
1

2
(4.25)

ξn =
d

σ
√
n

{nx0

d
−
[nx0

d

]}
(4.26)

where [·] is the floor function and ξn is the “least non-negative discontinuity point.”

of Fn(x) [17]. In the context of the problem above, recall that

ZN =
R1 + · · ·+RN

σ
√
N

−
√
Np

σ
(4.27)
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with Ri ∼ Bernoulli(p) random variables with mean zero.

Since each Ri can be zero or one, Zn has support on{
−
√
Np

σ
,

1

σ
√
N
−
√
Np

σ
,

2

σ
√
N
−
√
Np

σ
, · · · , N√

Nσ
−
√
Np

σ

}
.

Simplified, we obtain that ZN has support on{
−
√
Np

σ
+

k

σ
√
N

}
, for k ∈ {0, 1, · · · , N}.

Thus, ξN occurs for the ceiling of k, denoted dke, i.e. when k satisfies

0 =
−
√
Np

σ
+

k

σ
√
N
. (4.28)

Hence k = Np and since the ceiling of k is given by [Np] + 1, we have

ξN =
−
√
Np

σ
+

[Np] + 1

σ
√
N

=
−Np+ [Np] + 1

σ
√
N

. (4.29)

Since the CDF of Ri has discontinuitites at −p and (1− p), we have that d = 1, the

discontinuity correction term becomes

1√
2πNp(1− p)

Q

((
(x− p)

√
N√

p(1− p)
− −Np+ [Np] + 1√

p(1− p)
√
N

)√
p(1− p)

√
N

)
e−

(x−p)2N
2p(1−p) .

Moreover,

Q

((
(x− p)

√
N√

p(1− p)
− −Np+ [Np] + 1√

p(1− p)
√
N

)√
p(1− p)

√
N

)
= Q ((x− p)N − (1 + [Np]−Np))

= Q (xN − 1− [Np]) .

(4.30)

So (4.23) becomes

FZN (x) = Φ(x)+
p− 3p2 + 2p3

6(p(1− p))3/2
√

2πN
(1−x2)e−x

2/2+
Q (xN − 1− [Np])

σ
√

2πN
e−x

2/2+O(N−1/2).

(4.31)
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since σ = [p(1− p)]1/2 and α3 = p− 3p2 + 2p3 when Ri ∼ Bernoulli(p). Again, since

FR∗N |ε̂(x) = FZn

(
(x−p)

√
N√

p(1−p)

)
, we have that the CDF of FR∗N conditioned on ε̂ is given

by

FR∗N |ε̂(x) = Φ

(
(x− p)

√
N√

p(1− p)

)
+

(p− 3p2 + 2p3)

6
√
N(p(1− p))3/2

(
1− (x− p)2N

p(1− p)

)
e
− (x−p)2N

2p(1−p)

+
1√

2πNp(1− p)
Q (xN − 1− [Np]) e

− (x−p)2N
2p(1−p)

(4.32)

To find the unconditioned CDF, we multiply by φ(ε̂) and integrate over all

values of ε̂.∫ ∞
−∞

FR∗N |ε̂(x)φ(ε̂)dε̂ =

∫ ∞
−∞

Φ

(
(x− p)

√
N√

p(1− p)

)
φ(ε̂)dε̂

+

∫ ∞
−∞

(p− 3p2 + 2p3)

6
√
N(p(1− p))3/2

(
1− (x− p)2N

p(1− p)

)
e−

(x−p)2N
2p(1−p) φ(ε̂)dε̂

+

∫ ∞
−∞

Q (xN − 1− [Np]) e−
(x−p)2N
2p(1−p)√

2πNp(1− p)
φ(ε̂)dε̂.

(4.33)

It can be shown that the Vasicek approximation to the CDF is asymptotic to∫ ∞
−∞

Φ

(
(x− p)

√
N√

p(1− p)

)
φ(ε̂)dε̂.

To show this, let

FN(x) =

∫ ∞
−∞

Φ

(
(x− p)

√
N√

p(1− p)

)
φ(ε̂)dε̂. (4.34)

Taking the derivative with respect to x yields

F ′N(x) =

∫ ∞
−∞

φ

(
(x− p)

√
N√

p(1− p)

) √
N√

p(1− p)
φ(ε̂)dε̂ (4.35)

=⇒ F ′N(x) ∼
∫ ∞
−∞

e
−N(x−p)2

2p(1−p)

√
N√

2πp(1− p)
φ(ε̂)dε̂ (4.36)
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Notice that this integral is the same as in (2.19). Following the procedure in

Section 2.2 using Laplace’s method and (2.21),

F ′N(x) ∼
√
N

{
α(ε̂∗) exp{−Nτ(ε̂∗)}

√
2π

Nτ ′′(ε̂∗)
+O(N−3/2)

}

∼ α(ε̂∗) exp{−Nτ(ε̂∗)}

√
2π

τ ′′(ε̂∗)
+O(N−1)

(4.37)

where α(ε̂) = φ(ε̂)√
2πp(ε̂)(1−p(ε̂))

and τ(ε̂), τ ′′(ε̂) are defined as in (2.22) and (2.27), re-

spectively. The O(N−1) are given by

1

N

√
2π

τ ′′(ε̂∗)

{
α′′(ε̂∗)

2τ ′′(ε̂∗)
+
α(ε̂∗)dτ (4)/dε̂4(ε̂∗)

8[τ ′′(ε̂∗)]2
+
α′(ε̂∗)τ ′′′(ε̂∗)

2[τ ′′(ε̂∗)]2
− 5[τ ′′′(ε̂∗)]2α(ε̂∗)

24[τ ′′(ε̂∗)]3

}
(4.38)

Integrating over x, we obtain the Vasicek approximated CDF found in (2.34)

plus an error term of O(N−1), as N →∞. Hence,

∫ ∞
−∞

Φ

(
(x− p)

√
N√

p(1− p)

)
φ(ε̂)dε̂︸ ︷︷ ︸

First term on the right-hand side of (4.32)

= Φ

(√
1− ρΦ−1(x)− θ

√
ρ

)
︸ ︷︷ ︸
Vasicek’s CDF, equation (2.37)

+EN(x) (4.39)

where the EN(x) error term of O(N−1) is given by

EN(x) =

∫ x

0

1

N

√
2π

τ ′′(ε̂∗)

{
α′′(ε̂∗)

2τ ′′(ε̂∗)
+
α(ε̂∗)dτ (4)/dε̂4(ε̂∗)

8[τ ′′(ε̂∗)]2
+
α′(ε̂∗)τ ′′′(ε̂∗)

2[τ ′′(ε̂∗)]2
− 5[τ ′′′(ε̂∗)]2α(ε̂∗)

24[τ ′′(ε̂∗)]3

}
dx′

=
1

N

√
2π

τ ′′(ε̂∗)

{
α′′(ε̂∗)

2τ ′′(ε̂∗)
+
α(ε̂∗)dτ (4)/dε̂4(ε̂∗)

8[τ ′′(ε̂∗)]2
+
α′(ε̂∗)τ ′′′(ε̂∗)

2[τ ′′(ε̂∗)]2
− 5[τ ′′′(ε̂∗)]2α(ε̂∗)

24[τ ′′(ε̂∗)]3

}
(4.40)

Plotting the CDF obtained from Monte Carlo simulations against the right-hand

side of (4.33) shows that the asymptotic approximation of the CDF converges as the

number of companies in the portfolio gets large.
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Figure 4.1: A comparison of the CDF generated by Monte Carlo simulations versus

the CDF of the asymptotic approximation for different sized portfolios. The green

lines plot the right-hand side of equation (4.33) while the blue lines plot the Monte

Carlo simulated left-hand side of equation (4.33). Plots were generated using ρ =

0.4, θ = -0.9, and 50,000 Monte Carlo realizations.
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4.3 Scaling of the Asymptotic Error

Recall that FR∗N in (4.32) is the CDF of R∗N conditioned on ε̂. In order to find

the unconditioned form, we must multiply by φ(ε̂) and integrate over all values of ε̂.

Thus to find the scaling of the error, we consider

I(N) =

∫ ∞
−∞

(p− 3p2 + 2p3)

6
√
N(p(1− p))3/2

(
1− (x− p)2N

p(1− p)

)
e−

(x−p)2N
2p(1−p) φ(ε̂)dε̂

+

∫ ∞
−∞

Q (xN − 1− [Np]) e−
(x−p)2N
2p(1−p)√

2πNp(1− p)
φ(ε̂)dε̂.

(4.41)

Let

I1(N) =

∫ ∞
−∞

(p− 3p2 + 2p3)

6
√
N(p(1− p))3/2

e−
(x−p)2N
2p(1−p) φ(ε̂)dε̂ (4.42)

I2(N) =

∫ ∞
−∞

(p− 3p2 + 2p3)

6
√
N(p(1− p))3/2

(x− p)2N

p(1− p)
e−

(x−p)2N
2p(1−p) φ(ε̂)dε̂ (4.43)

and

I3(N) =

∫ ∞
−∞

Q (xN − 1− [Np])√
2πNp(1− p)

e−
(x−p)2N
2p(1−p) φ(ε̂)dε̂ (4.44)

For N →∞, we can use Laplace’s method to approximate the integrals.

Considering I1(N) first, we transform this integral into a Laplace-type so as

to use Laplace’s method. First, let τ(ε̂) = (x−p(ε̂))2

2p(ε̂)(1−p(ε̂)) . Then τ(ε̂) has a minimum at

ε̂∗ where ε̂∗ is defined as in (2.25). Thus, τ(ε̂∗) = 0.

Hence we have

I1(N) =

∫ ∞
−∞

(p(ε̂)− 3p(ε̂)2 + 2p(ε̂)3)

6
√
N(p(ε̂)(1− p(ε̂)))3/2

e−Nτ(ε̂)φ(ε̂)dε̂ (4.45)

Letting

α1(ε̂) =
(p(ε̂)− 3p(ε̂)2 + 2p(ε̂)3)

6
√
N(p(ε̂)(1− p(ε̂)))3/2

φ(ε̂) (4.46)
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Then we have the Laplace-type integral,

I1(N) =

∫ ∞
−∞

α1(ε̂)e−Nτ(ε)̂dε̂ (4.47)

Note that τ(ε̂) is defined as in (2.22), and using that τ(ε̂∗) = 0 along with (2.25) and

(2.27)-(2.29) we have by Laplace’s method,

I1(N) ∼ α1(ε̂∗) exp{−Nτ(ε̂∗)}

√
2π

Nτ ′′(ε̂∗)

=
(p(ε̂∗)− 3p(ε̂∗)2 + 2p(ε̂∗)3)

6
√
N(p(ε̂∗)(1− p(ε̂∗)))3/2

φ(ε̂∗)

√
2π

Nτ ′′(ε̂∗)

=
p(ε̂∗)− 3p(ε̂∗)2 + 2p(ε̂∗)3

6Np(ε̂∗)(1− p(ε̂∗))
e−

1
2
ε̂∗2

p′(ε̂∗)

(4.48)

which is O(N−1).

Similarly, for the second integral in I2(N), we define τ(ε̂∗) as above and let

α2(ε̂) =
p(ε̂)− 3p(ε̂)2 + 2p(ε̂)3

6(p(ε̂)(1− p(ε̂)))3/2
τ(ε̂)φ(ε̂)

=
p(ε̂)− 3p(ε̂)2 + 2p(ε̂)3

6(p(ε̂)(1− p(ε̂)))3/2
τ(ε̂)φ(ε̂)

(4.49)

Then we have the integral

I2(N) =
√
N

∫ ∞
−∞

α2(ε̂)e−Nτ(ε)̂dε̂ (4.50)

Since α(ε̂∗) vanishes, we must expand the integral using higher-order Laplace

terms. Using [13], the higher order approximation of I2(N) using Laplace’s method

are given by

I2(N) ∼
√
N

√
2π

Nτ ′′(ε̂∗)
e−Nτ(ε̂∗)

{
α2(ε̂∗) +

1

N

[
−α′′2(ε̂∗)

2τ ′′(ε̂∗)

+
α2(ε̂∗)(d4τ/dε̂4)(ε̂∗)

8[τ ′′(ε̂∗)]2
+
α′2(ε̂∗)τ ′′′(ε̂∗)

2[τ ′′(ε̂∗)]2
− 5[τ ′′′(ε̂∗)]2α2(ε̂∗)

24[τ ′′(ε̂∗)]3

]} (4.51)
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as N →∞.

In our case, the α2(ε̂∗) terms vanish and the term with the first derivative

in α2 will not contribute because it is multiplied against a Gaussian and integrated

through a symmetric interval during Laplace’s method. Hence using the fact that

α2(ε̂∗) = 0 and the definitions in (2.25) and (2.27)-(2.29), we have

I2(N) ∼

√
2π

τ ′′(ε̂∗)

1

N

−α′′2(ε̂∗)

2τ ′′(ε̂∗)

∼
√

2πφ(ε̂∗)

N

−α′′2(ε̂∗)

2
(

p′(ε̂∗)2

p(ε̂∗)(1−p(ε̂∗))

)3/2

φ(ε̂∗)

∼
√

2πφ(ε̂∗)

Np′(ε̂∗)

−α′′2(ε̂∗)[p(ε̂∗)(1− p(ε̂∗))]3/2

2φ(ε̂∗)p′(ε̂∗)2

(4.52)

which is O(N−1).

Lastly, we consider I3(N) from (4.44). Defining τ(ε̂) as above and

α3(ε̂) =
Q (Nx− 1− [Np(ε̂)])√

2πNp(ε̂)(1− p(ε̂))
φ(ε̂) (4.53)

we have

I3(N) =

∫ ∞
−∞

α3(ε̂)e−Nτ(ε̂)dε̂ (4.54)

However, Laplace’s method requires α3(ε̂) to be sufficiently smooth andQ (Nx− 1− [Np(ε̂)])

has discontinuities. Thus we first bound I3(N) by noting

|I3(N)| =

∣∣∣∣∣
∫ ∞
−∞

Q (Nx− 1− [Np(ε̂)])√
2πNp(ε̂)(1− p(ε̂))

e−Nτ(ε̂)φ(ε̂)dε̂

∣∣∣∣∣
≤
∫ ∞
−∞

∣∣∣∣∣Q (Nx− 1− [Np(ε̂)])√
2πNp(ε̂)(1− p(ε̂))

e−Nτ(ε̂)φ(ε̂)

∣∣∣∣∣ dε̂
(4.55)
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By Cauchy-Schwarz,

|I3(N)| ≤
∫ ∞
−∞

∣∣∣∣∣Q (Nx− 1− [Np(ε̂)])√
2πNp(ε̂)(1− p(ε̂))

e−Nτ(ε̂)φ(ε̂)

∣∣∣∣∣ dε̂
≤
∫ ∞
−∞
|Q (Nx− 1− [Np(ε̂)])|

∣∣∣∣∣ φ(ε̂)√
2πNp(ε̂)(1− p(ε̂))

e−Nτ(ε̂)

∣∣∣∣∣ dε̂
≤
∫ ∞
−∞

max (|Q (Nx− 1− [Np(ε̂)])|)

∣∣∣∣∣ φ(ε̂)√
2πNp(ε̂)(1− p(ε̂))

e−Nτ(ε̂)

∣∣∣∣∣ dε̂
≤ 1

2

∫ ∞
−∞

φ(ε̂)√
2πNp(ε̂)(1− p(ε̂))

e−Nτ(ε̂)dε̂

(4.56)

since |Q (Nx− 1− [Np(ε̂)])| ≤ 1/2.

We now use Laplace’s method by defining α3(ε̂) such that

α3(ε̂) =
φ(ε̂)√

2πNp(ε̂)(1− p(ε̂))
. (4.57)

Using the definitions given in (2.25) and (2.27)-(2.29) yields

I3(N) ∼ 1

2

φ(ε̂∗)√
2πNp(ε̂∗)(1− p(ε̂∗))

√
2π

Nτ ′′(ε̂∗)
exp{−Nτ(ε̂∗)}

=
φ(ε̂∗)

2Np′(ε̂∗)

(4.58)

which is O(N−1). Therefore, the integral in (4.41) is asymptotic to
√

2πφ(ε̂∗)

Np′(ε̂∗)

{
p(ε̂∗)− 3p(ε̂∗)2 + 2p(ε̂∗)3

6p(ε̂∗)(1− p(ε̂∗))
− α′′2(ε̂∗)[p(ε̂∗)(1− p(ε̂∗))]3/2

2φ(ε̂∗)p′(ε̂∗)2
+

1

2
√

2π

}
(4.59)

This confirms the O(N−1) scaling of the error between the Monte Carlo sim-

ulated CDF and the Vasicek approximated CDF seen numerically in section 3.3.

Moreover, we numerically verify the scaling for∣∣∣∣∣
∫ ∞
−∞

FR∗N |ε̂(x)φ(ε̂)dε̂−
∫ ∞
−∞

Φ

(
(x− p)

√
N√

p(1− p)

)
φ(ε̂)dε̂

∣∣∣∣∣ (4.60)
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represented by light blue lines in the plots to follow compared with I(N) in (4.41)

represented by the red lines. Notice that as N increases, the two lines converge as

expected, i.e. the asymptotic approximation improves for larger N . Moreover, the

scaling is consistent with O(N−1).
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(a) θ = -0.3, ρ = 0.5 (b) θ = -0.5, ρ = 0.4

(c) θ = -0.7, ρ = 0.4 (d) θ = -0.9, ρ = 0.3

Figure 4.2: The error of the Monte Carlo simulated CDF against the asymptotic

approximated CDF. The red line represents the asymptotic terms given in equation

(4.41). Plots were generated using 100,000 trials Monte Carlo trials.
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Chapter 5

CONCLUSIONS

Error quantification of approximated distributions remains an important study

in mathematics, particularly in mathematical finance where such approximations are

used to guard against financial losses during times of economic stress. In this thesis,

we build upon the work of Esseen and others who seek to quantify the error of the

approximation of a sum of N independent Bernoulli random variables with a nor-

mal distribution. In this case, the error incurred in the CDF was O(N−1/2). Our

main contribution is studying this error when the random variables summed are not

independent. We find the scaling of error both analytically and numerically to be,

surprisingly, O(N−1).

We started by deriving the Vasicek CDF for cumulative portfolio loss, as

well as the associated approximation of VaRq. In chapter 3, we analytically and

numerically explored the bound of the error between our analytic approximation

and the Monte Carlo simulated CDF. Lastly, we quantified the scaling of the error

due to the central limit theorem using asymptotic analysis.

We found that the total error of (4.60) is comprised of two terms - the error

associated with Laplace’s method in estimating the Vasicek approximation and the

error derived in chapter 4 associated with the approximation of the CDF using the

central limit. Recall that (4.40) gives the integral approximation using Laplace’s

method and the associated error which scales like O(N−1). From chapter 4, we find
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that the error associated with the central limit theorem approximation is given by

(4.59). Therefore, the total error of the Vasicek approximation is O(N−1) and is

given by

∫ ∞
−∞

FR∗N |ε̂(x)φ(ε̂)dε̂ =

∫ ∞
−∞

Φ

(
(x− p)

√
N√

p(1− p)

)
φ(ε̂)dε̂+ (4.59)︸ ︷︷ ︸

Central Limit theorem error

= Φ

(√
1− ρΦ−1(x)− θ

√
ρ

)
︸ ︷︷ ︸

Vasicek approximation

+ (4.40)︸ ︷︷ ︸
Laplace approximation error

+ (4.59)︸ ︷︷ ︸
Central Limit theorem error

(5.1)

With an understanding of the error scaling for the Vasicek model, future

work includes exploring the scaling of the error for other methods of calculating

VaRq, such as through historical simulations or the Delta-Normal approach [11].

Further work also remains to extend this analysis to the hierarchical multi-factor

model, a structural model allowing for correlation among companies on a global and

sector/regional scale.
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