
 
 
 
 
 

DATA FUSION WITH PARAFAC AND 

TRANSFER OF STACKED LOCAL CLASSIFIERS 

 

 
 
 
 
 

by 
 

Stephen Kaster 
 
 
 
 
 
 
 
 
 

A thesis submitted to the Faculty of the University of Delaware in partial 
fulfillment of the requirements for the degree of Master of Science in Chemistry and 
Biochemistry 

 
 
 

Spring 2013 
 
 
 

© 2013 Stephen Kaster 
All Rights Reserved 

 
 

  



 
 
 
 
 

DATA FUSION WITH PARAFAC AND 

TRANSFER OF STACKED LOCAL CLASSIFIERS 

 

 
 
 

by 
 

Stephen Kaster 
 

 
 
 
Approved: __________________________________________________________  
 Steven D. Brown, Ph.D. 
 Professor in charge of thesis on behalf of the Advisory Committee 
 
 
 
Approved: __________________________________________________________  
 Murray V. Johnston, Ph.D. 
 Chair of the Department of Chemistry and Biochemistry 
 
 
 
Approved: __________________________________________________________  
 George H. Watson, Ph.D. 
 Dean of the College of Arts and  Sciences 
 
 
 
Approved: __________________________________________________________  
 James G. Richards, Ph.D. 
 Vice Provost for Graduate and Professional Education 

 



TABLE OF CONTENTS 

LIST OF TABLES ........................................................................................................ iv 
LIST OF FIGURES........................................................................................................ v 
ABSTRACT .................................................................................................................. vi 

Chapter 

1 INTRODUCTION.............................................................................................. 1 

2 DATA FUSION.................................................................................................. 2 

3 STACKED CLASSIFIERS ................................................................................ 3 

Stacked Partial Least Squares........................................................................ 4 
Analysis of Forensic Paint Data .................................................................... 6 

4 MODEL TRANSFER ...................................................................................... 10 

Classification Transfer of Paint Spectra ...................................................... 10 

5 PARAFAC........................................................................................................ 19 

Design Set and Transfer of PARAFAC Model ........................................... 23 

6 CONCLUSION ................................................................................................ 29 

REFERENCES............................................................................................................. 30 

 

 iii



LIST OF TABLES 

Table 1 Classification errors for SPLSDA as compared to SPLSDA Transfer.... 12 

Table 2 Preprocessing methods for OP used in PARAFAC. ............................... 20 

Table 3 RMSE of PARAFAC regression compared to PLS regressions. ............ 25 

 

 iv



LIST OF FIGURES 

Figure 1 IR spectra collected with the Bio-Rad instrument (PDQ database). ......... 7 

Figure 2 IR spectra collected with the Thermo-Nicolet instrument (OSU 
dataset)....................................................................................................... 8 

Figure 3 Classification error for class 1 on the Thermo-Nicolet instrument. ........ 14 

Figure 4 Classification error for class 1 from the trasfer of the Thermo-Nicolet 
instrument to the Bio-Rad dataset. .......................................................... 15 

Figure 5 Classification error for class 2 on the Thermo-Nicolet instrument. ........ 16 

Figure 6 Classification error for class 2 from the transfer from the Thermo-
Nicolet instrument to the Bio-Rad dataset............................................... 17 

Figure 7 Predicted relative concentrations for each compounds after 
PARAFAC analysis and original least squares regression (slope and 
intercept).................................................................................................. 25 

Figure 8 Regression of the 3-component PARAFAC model generated using the 
fixed loadings. ......................................................................................... 27 

 

 v



ABSTRACT 

Some data analysis methods yield poor or only adequate information on their 

own but with data fusion, multiple datasets can be merged to possibly yield more 

information than when used alone.  Data fusion can even be used to merge reduced 

representations of different parts of the same dataset.  Data fusion yields improved 

results in situations where each set of data to be merged contains information unique 

from each other. 

 

Stacked Partial Least Squares Discriminant-Based Classification (SPLSDA) 

transfer attempts to use data fusion to aid in applying previous analysis to new data. 

Data transfer or model transfer allows for use of datasets taken under different 

conditions or on different instruments, if this variation can be accounted for. 

 

SPLSDA transfer is based upon a previously developed classification transfer 

approach which uses a reduced dimensional representation for each different section 

of the data, in order to classify new samples taken under different conditions.  A 

similar method is Interval Partial Least Squares (IPLS) with the exception that these 

intervals collectively cover all of the data.  Only some of the data in each section is 

used as much of the data contains very redundant information or is uninformative 

 vi



 vii

which can hinder the classification model.  The purpose of SPLSDA transfer is for 

transferring new infrared samples into an existent database, which were collected on a 

different instrument.  Classification models can be fused from the infrared spectra of 

new samples and converted to allow classification using an existing database.   

 

Another method involving data fusion is Parallel Factor Analysis 

(PARAFAC), which can be used to analyze multiple datasets simultaneously to find 

the causes of underlying variation in the sample.  PARAFAC is used here to determine 

the concentration of three specific compounds found in a growth medium along with 

other unknown compounds.



Chapter 1 

INTRODUCTION 

There are instances where many datasets are provided, on a single sample or 

set of samples, and rather than analyze each dataset individually, the datasets can be 

combined and analyzed as a single multidimensional dataset.  This process, called data 

fusion, can yield more information than analyzing datasets individually.  The benefit 

of this is that information unique to each of the composite datasets is contained in the 

fused dataset.  Data fusion is a broadly defined process comprised of multiple levels, 

which each contain many methods, some of which are covered in detail in the 

following pages. 
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Chapter 2 

DATA FUSION 

Data fusion is the technique where multiple datasets, representation of datasets, 

or resulting analysis from the datasets, can be combined to yield more information 

than either dataset analyzed individually1-3.  One such method involves the stacking of 

classifiers4. 

 

There are three main levels of data fusion named for the type of representation 

of the data that is fused.  Data level, feature level, and decision level data fusion, are 

convenient ways to summarize the different methods of data fusion, but methods 

typically can be classified into multiple levels.  Data level fusion usually involves 

appending datasets together directly after some form of scaling and recentering.  

Appending features (simplified representations) of datasets is strictly feature level 

fusion but can also be thought of as data level.  Decision level fusion involves 

classification of the data, or some segment of it, and combination of the results via a 

voting or other method.  SPLSDA transfer involves the feature level of data fusion. 
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Chapter 3 

STACKED CLASSIFIERS 

The stacking used here is a form of data fusion where a dataset is broken up 

into multiple parts, each part is classified individually, then the weighed based on the 

results5,6, similarly to IPLS7,8, except that all parts are used in the analysis.  The 

stacking algorithm was used to merge the information obtained by individual 

classifiers to yield better or comparable results to each individual classifier.  Stacking 

was done for these classifiers taken over subsets of the dataset, allowing for regions 

with higher classification rates to improve the overall classification rate of the model.  

The classification results from this analysis were used as a weight for the stacking of 

all of the classifiers.  The theoretical advantage of using stacking is that it should be 

approximately no worse than the same individual classifier done on the entire 

spectrum.  If there is a region of very high classification rate or all areas are of similar 

classification rate, stacking should yield the same results as the individual classifier.  

In the case where there are multiple regions of relative importance, stacking can place 

more focus on these than the worse regions, resulting in an overall improvement in the 

classification. 
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Stacked Partial Least Squares 

 
The recently developed classification technique Stacked Partial Least Squares 

Discriminant-Based Classification (SPLSDA)9 was used to create the model for the 

classification transfer.  Partial Least Squares (PLS) was developed as a regression 

technique but has been used as a classification technique as well10-12.  In the closely 

related technique, Stacked Partial Least Squares regression (SPLS)13, small intervals 

of the data matrix comprising the X-block (data) are each regressed on the Y-block 

(response) values separately.  The simple regression models are then combined, giving 

a simpler and often better regression model, and can even have new regression models 

transferred to it14.  For SPLSDA, a discriminant analysis-based classifier is used on 

each of the small intervals to classify samples.  One main reason for using SPLSDA 

over some other classification techniques is the inherent dimension reduction obtained 

for each PLS model.  Most PLS models are simple, with only a few latent variables 

needed to describe the class-related information in the data, as much of the data 

contains redundant information or is uninformative15-17. 

 

Each of these intervals must be optimized by cross-validation to determine an 

average misclassification rate.  This average misclassification rate is used in the 

formulation of weights for each interval in the final, stacked, model.  For the kth 
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interval with sk  as the reciprocal of the number of misclassifications, the weight wk is 

calculated as shown in equation 1 below.  The summation normalizes all of the 

weights to a unit sum.  If there are zero misclassifications for an individual interval, an 

appropriate weight is used instead (  = 10).  The purpose of calculating the weights 

this way is to ensure that a high weight is assigned to any interval with very few or no 

misclassifications. 
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The calculated weight matrix is then used to effectively scale each interval’s 

regression coefficients, which are then all summed together to obtain a single 

regression coefficient matrix.  The regression coefficient matrix, , defines the 

discriminant distinguishing the target class from all other classes and is used to obtain 

the predicted Y values, , as seen in equation 2 below.  Threshold values are then 

determined and used to classify samples as in or out of the target class. 
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Establishment of a classification model with SPLSDA, using a previously 

generated dataset, was completed allowing the classification transfer process1 to begin.  

This classification transfer is based on the calibration transfer technique18.  Another 

dataset collected from a different instrument uses the previously calculated regression 
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coefficient matrix to find the predicted Y values as if they had been collected on the 

original instrument.  The same set of discriminants used in the final classification in 

SPLSDA are also used to classify the dataset collected from the different instrument. 

 

Analysis of Forensic Paint Data 

 
A dataset involving infrared spectra from paint samples and analyzed on a 

Thermo-Nicolet instrument, was provided by Oklahoma State University (OSU).  The 

intent is to compare this data to the infrared spectra of paint samples collected in the 

International Forensic  Automotive Paint Data Query-Canada (PDQ) database, most of 

which were analyzed on a Bio-Rad instrument.  Only the samples from the PDQ 

database that were measured on the Bio-Rad instrument were used in the analysis, as 

any instrumental differences within the (PDQ) database would affect the transfer.  The 

spectra from the PDQ database and from OSU are shown below in Figures 1 and 2 

respectively.  The forensic paint data included 19 classes where the classes assigned 

were the identity of the manufacturing plant in which the car paint was produced. 

 

Another assignment of classes, based on clusters of manufacturing plants 

instead of individual plants, was also attempted.  This class assignment yielded 

improved results because of the simpler discriminants that could be used.  By 

clustering manufacturing plants with similar features, the class discriminants only 
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need to separate clusters of similar plants from other clustered plants.  Because the 

plant clusters differed much more than the individual manufacturing plants, the 

discrimination is greatly simplified.  The remainder of the analysis of the forensic 

paint data will use individual manufacturing plants as classes. 

 

Figure 1 IR spectra collected with the Bio-Rad instrument (PDQ database). 
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Figure 2 IR spectra collected with the Thermo-Nicolet instrument (OSU dataset). 

Both the Bio-Rad and Thermo-Nicolet infrared datasets have the same general 

shape, due to the analysis being done on the same type of compound, car paint.  There 

are regions that are quite distinct between the two instruments and the Thermo-Nicolet 

instrument seems to have, in general, more variation in the intensities for the spectra. 

 

Some sample removal and preprocessing must be done to allow the 

classification and transfer using SPLSDA.  Any sample that was the only sample in its 

class was removed because it could not be cross-validated, which disallows the 

calculation of the weights.  Also, any sample in the second (Thermo-Nicolet, OSU 

database) instrument’s dataset in a class that was not part of the first instrument’s 
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(Bio-Rad, PDQ database) dataset could not be involved in the transfer.  If the first 

instrument did not have any samples in a particular class, the transfer will always 

misclassify this sample, as the transferred model cannot account for classes that were 

not in the training set.  All datasets were then preprocessed using Savitzky-Golay first 

derivative smoothing using the window size of 15 wavelengths followed by mean-

centering. 

 

SPLSDA transfer was used on the first instrument samples to aid in the 

classification of the second instrument samples without using their class identities.  

Because a one-vs.-all discriminant analysis is used within SPLSDA, there is little 

benefit in analyzing only a few, select classes.  Clustering of classes generally 

improved results, as clusters made from similar classes are more easily distinguished 

from each other than the classes taken separately. 
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Chapter 4 

MODEL TRANSFER 

There are many cases where analysis of standards and samples is performed 

and data is generated under certain conditions.  However, at a later time, when 

additional data is generated, conditions have changed or standards are no longer 

available.  Model transfer is a method that attempts to correct for these issues, such as 

instrument failure and subsequent replacement, instrumental variation due to too long 

of a time span between runs, sample potency decrease, or other reasons.  In model 

transfer, a classification is done using any desired algorithm (here SPLSDA).  The 

weights used in the model along with the regression information are used to regress 

the new spectra to the old classes.  Usually before a direct transfer can be done, the 

new data needs to be centered and scaled to match the old classes.  As with any 

standards used, the new samples must have no new classes in them otherwise there is 

no chance of a correct classification. 
 

 

Classification Transfer of Paint Spectra 

 
The dataset provided by OSU (Thermo-Nicolet instrument) involved infrared 

spectra of clearcoat paint samples from vehicles made at different manufacturing 

plants.  This dataset was analyzed with stacked PLSDA using a maximum of 50 
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intervals, each with 10 latent variables, and 10-fold cross-validation on the spectrum.  

Cross-validation was done by selecting half of the samples from each class for the test 

set with the remainder in the training set.  A total of 1869 wavelengths were available 

in the spectra as provided.  Each interval and latent variable combination seen in 

Figures 3, 4, 5, and 6 represent a different SPLSDA model with its overall 

classification errors. 

 

 For the paint dataset, there was no region in the infrared spectrum that gave a 

very high stacking weight for the stacked discriminants.  This result is peculiar in that 

high weights are normally associated with informative regions of the data.  Ideally, 

there will be a region or a series of particular regions that are more informative for the 

classification than the other regions, and these more informative regions will have 

good accuracy in the cross-validation, leading to very high stacking weights for these 

regions.  These heavily weighted regions allow the stacked classification to focus 

more on these informative regions.  The fact that no particular interval in the data 

leads to a much better classification implies that the entire dataset is equally 

informative or equally uninformative.  Because the stacking weights are very similar 

across all intervals in the paint dataset, the stacking classifier algorithm demonstrates 

less of an improvement over that obtained with conventional PLSDA (seen as the 1-

interval case) when compared to datasets that result in intervals with high stacking 

weights. 
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Table 1 Classification errors for SPLSDA as compared to SPLSDA Transfer. 

SPLSDA Classification 
Error (%) 

SPLSDA Transfer 
Classification Error (%) 

Class 

LV 1 LV 2 LV 3 LV 1 LV 2 LV 3 
1 26.97 16.87 8.28 14.86 18.45 15.34 
2 5.48 1.12 1.26 3.26 2.94 3.06 
3 21.90 14.98 13.98 12.95 12.67 13.40 
4 26.40 22.05 17.14 15.91 12.70 9.66 
5 27.55 17.06 13.73 19.25 21.38 17.14 
6 8.25 5.54 5.26 6.21 4.49 5.86 
7 0.24 0.26 0.35 2.37 2.55 2.71 
8 29.56 14.46 13.46 19.87 32.04 23.66 
9 9.54 7.51 8.15 3.82 3.74 4.50 
10 3.93 4.22 4.25 9.75 8.55 6.68 
11 30.54 9.64 7.83 9.77 12.83 9.15 
12 3.21 0.95 0.62 2.73 2.49 2.61 
13 29.67 7.10 6.62 23.64 14.98 11.00 
14 8.50 9.22 8.94 7.15 10.47 10.37 
15 7.00 7.09 9.48 7.08 7.53 6.55 
16 12.71 11.41 7.85 5.56 8.84 9.26 
17 9.55 9.43 8.39 9.10 11.04 14.04 
18 9.76 8.09 6.11 3.88 3.78 5.73 
19 7.04 7.30 6.05 7.10 6.74 6.47 

 

  The classification errors shown in Table 1 are means calculated for all 19 

classes over the number of intervals, as the number of intervals used in stacking has a 

smaller effect on the classification than the number of latent variables.  As an 

example, class 1 and 2 are representative of high and low classification errors, 

respectively.  The accuracy of classification for SPLSDA transfer was often 

approximately the same or lower than that obtained from building a classification 
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model on the target data, when the samples measured on the second instrument are 

directly regressed on their own class identities using SPLSDA.  This result is to be 

expected, as a classification model built on the training data should yield better 

classification results on the training dataset than one built on different data.  The 

corrections involved in using the model from the Bio-Rad data, which uses 

predetermined threshold values on the response matrix adjusted by using the weighted 

regression coefficient matrix, reduce the increase in classification error for the 

Thermo-Nicolet data.  Because the classification error change between most of the 

stacking intervals is less than that of the latent variables, a mean classification 

accuracy can be calculated from the results of each number of stacking intervals used 

to better compare the classification accuracy of the first few latent variables for 

SPLSDA and SPLSDA transfer.  Only classification results from use of the stacked 

models using combinations of up to the first three latent variables are reported here, 

for the same reason as that given above in the discussion of the synthetically-generated 

IR-spectral data. 

 

 Figures 3 and 4, and Figures 5 and 6, depict the performance of SPLSDA 

transfer for both poorly defined (3 and 4) and well-defined (5 and 6) classes.  Figures 

3 and 5 show SPLSDA classification errors for the Thermo-Nicolet dataset while 

Figures 4 and 6 the SPLSDA transfer classification errors from the Bio-Rad dataset, 

after the model transfer. 
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Figure 3 Classification error for class 1 on the Thermo-Nicolet instrument. 
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Figure 4 Classification error for class 1 from the trasfer of the Thermo-Nicolet 

instrument to the Bio-Rad dataset. 

There are a few particularly well-defined classes that result from both the 

SPLSDA classification and SPLSDA transfer.  Certain classes, like class 2, had very 

low classification errors across many combinations of number of intervals and 

maximum number of latent variables used, as seen in Figures 5 and 6.  Classes such as 

class 2 are very distinct from the other classes in their spectra, allowing for the 
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improved classification.  As only one-vs.-all discriminants were used, classes that 

have very low classification error (such as class 2) must have an easily established 

discriminant boundary.  Unfortunately, there are some classes that have much 

similarity in the spectra and it is difficult to correctly separate these classes, like class 

1. 

 

 

Figure 5 Classification error for class 2 on the Thermo-Nicolet instrument. 
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Figure 6 Classification error for class 2 from the transfer from the Thermo-Nicolet 

instrument to the Bio-Rad dataset. 

 Figures 5 and 6 above show that SPLSDA transfer has higher classification 

errors than a direct SPLSDA classification for some combinations of stacking intervals 

and number of latent variables used.  The classification error of SPLSDA transfer did 

not rise considerably over those obtained from a direct classification, especially 

considering no class information was provided in the transfer.  In the cases where the 
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error in classification after transfer does not differ much from the error obtained from 

a direct SPLSDA classification, it appears that both spectral datasets have the same 

underlying distributions for each class.  Even though only the first few latent variables 

are similar in many classes, these latent variables are the most important to the 

classification.  The remainder of the computed latent variables seems to be mostly 

contributions from spectral noise and instrumental differences. 
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Chapter 5 

PARAFAC 

Parallel Factor Analysis (PARAFAC)19 is a method that can be used to analyze 

a three or more dimensional matrix of data.  Two datasets of the same samples can be 

analyzed alongside each other by first merging them into an outer product (OP) 

matrix.  This is simply the outer product of both matrices taken for each sample.  This 

new matrix will resemble a three dimensional dataset that can be used in PARAFAC.  

If given standards for each desired component, PARAFAC can attempt to find the 

concentrations of these standards within an unknown mixture.  This method should 

work given that there are no other compounds that have a high response in regions 

similar to the standards in both spectra.  If at least one spectrum differs between the 

standard and an unknown, PARAFC should be able to correctly calculate the value of 

the known compound with no actual input of what the unknowns are. 
 

The goal in using PARAFAC was to use the design to find the spectral 

variations due to the differing concentrations of the compounds used in a process.  

These spectral differences found in the design near-infrared (NIR) and nuclear 

magnetic resonance (NMR) datasets could then be used to find the concentrations of 

the compounds in an unknown mixture later in the production.  The design datasets are 

akin to creating standards for multiple concentrations for each of the compounds, so 

that the concentrations of all 3 can be determined simultaneously. 
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As PARAFAC is very computationally draining for large outer product 

matrices, the original data must have its dimensionality reduced.    PLS was originally 

used to regress each sample to the corresponding Y-block(s).  Different preprocessing 

of both Nuclear Magnetic Resonance Spectroscopy (NMR) and Near-Infrared 

Spectroscopy (NIR) were tried, using the Root-Mean-Square Error of Cross-

Validation (RMSECV) from PLS to determine which preprocessing was most 

appropriate.  As the number of variables in both datasets needed to be reduced, any 

regions found to have low importance in the PLS were removed.  The final 

preprocessing after variable selection is shown in the table below for each dataset.  

Note that Savitzky-Golay smoothing was done before variable selection. 

Table 2 Preprocessing methods for OP used in PARAFAC. 

Dataset Preprocessing Methods (in order of use) 

Design NIR 
Savitzky-Golay 1st 
Derivative Smoothing 

Mean-centering  

Design NMR Variable Alignment Length Normalization Mean-centering 

Sample NIR Mean-centering   

Sample NMR Variable Alignment Length Normalization Mean-centering 
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The reduced datasets are both over an order of magnitude smaller than the 

original datasets, making the OP matrix over 100-fold smaller (NMR 64836 → 4776, 

NIR 4407 → 364).  This led to a great reduction in computation time for PARAFAC. 

 

Although mean-centering can be done on the OP matrix, it was done to the 

datasets prior to OP creation.  The process of mean-centering is more complicated on 

tensors than it is on the matrices used to create them.  After creation of the fully 

preprocessed OP matrix was completed, PARAFAC could be run. 

 

Two differently coded PARAFAC algorithms were compared, one from 

Rasmus Bro, Ph. D. and the other from Eigenvector Research, Inc.  Both produced the 

same result (within error) but the algorithm from Dr. Bro allowed for finding the 

optimal number of principle components (PC) and had a cleaner graphical output.  

Also, the only non-graphical data output from the Eigenvector model was the model 

itself while Dr. Bro’s algorithm also gives correlation coefficients, residuals for the fit 

of the model, and the iterations needed to complete each run of PARAFAC.  From this 

point on, the code was tailored to use Dr. Bro’s PARAFAC. 

 

PARAFAC was then run with many different combinations of preprocessing, 

constraints, and number of extracted components (sequentially largest sources of 

variation in the data, ideally corresponding to the growth medium concentrations).  

PARAFAC takes exponentially longer after passing the optimal number of 
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components as it attempts to find the least correlated next component.  For the design 

set, all PARAFAC runs had very few iterations for the first three components 

compared to the fourth and beyond.  This should be expected, as there are only 3 

components that were varied in the design. 

 

The design was most apparent in the spectra with all preprocessing done 

except for mean-centering.  Mean-centering seemed to amplify the differences 

between samples of similar composition.  The scores from this model were regressed 

to the concentrations using least squares fitting.  Constraining the slope of the fit line 

to nonnegative seemed to worsen the fit, meaning that some of the extracted 

components may be anti-correlated to the concentrations or PARAFAC simply 

generated a poor model. 

 

The loadings for each component should correspond to the spectra associated 

with the compound the component is correlated with.  The loadings do not seem to 

match as they are missing key regions that are specific to the compounds they are 

correlated with.  It seems that the components being extracted do not follow the design 

in that any adjustment to the overall mixture changes the concentration of all 3 

compounds, not just the ones corresponding to the compound concentrations that were 

altered.  As each component seems to correlate to all three compounds, even if in 

differing intensities, it is not surprising that the mixture that regressed the best was the 

one with equal concentrations of all 3 compounds. 
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For the analysis of the sample dataset, there appears to only be one or two 

components for the combinations attempted.  This is problematic as the loading need 

to be matched to the design to determine which component corresponds with which 

compound. 

 

Using least squares regression to fit the PARAFAC scores to the 

concentrations yields Root Mean Square Error (RMSE) errors on the order of 0.2 to 

0.6.  This is much worse than the RMSECV of 0.02 or less found using PLS of the 

NMR or NIR individually.  A better comparison would be to cross-validate the 

PARAFAC analysis of the OP matrix, but PARAFAC is too time consuming a method 

for this to be practical.  Note that all unconstrained runs of PARAFAC had come at 

least close to the same minimum so that the scores and loadings were barely 

distinguishable if at all. 

Design Set and Transfer of PARAFAC Model 

 
The goal in this analysis is to create a calibration for multiple compounds in a 

growth medium.  Two sets of NIR and NMR datasets were provided.  The first is 

spectra generated from mixtures of 3 compounds of various ratios.  The second is 

spectra taken on a growth medium comprised of amino acids, sugars, etc., including 

the 3 target compounds.  The purpose is to find the concentrations of these 3 particular 
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constituents of the growth medium and set up a calibration for these concentrations so 

that only the growth medium need be analyzed directly at a later point. 

 

At first Lorentzian peaks were used to model the ‘pure’ spectra for each 

compound based on the samples containing only 1 component.  This method may 

decrease error in regression due to the removal of instrumental error but the process of 

modeling each peak in the NMR is too time consuming. 

 

Another method for creating the ‘pure’ component loadings was used by 

making an extra assumption.  Assuming the samples containing only the 1 molar pure 

compound have insignificant instrumental error and contamination, their spectra can 

be used as the basis for the pure compound loadings.  By generating 1-component 

PARAFAC models using the 3 samples corresponding to each pure component, the 

pure loadings can be created.  These loadings are then used as fixed loadings in the 

PARAFAC using the entire OP matrix.  Results have lowered errors compared to all 

previous PARAFAC models created.  The result of the regression can be seen in 

Figure 7, in which the relative concentrations of the compounds are shown.  The 

design was constructed according to relative concentrations of 3 dilute solutions of 

these compounds.  There are triplicate of each combination with the fraction of each 

compound summing to 1.  The combinations shown below are approximately 1:0:0, 

0.5:0.5:0, 0.67:0.33:0, and 0.33:0.33:0.33. 
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Figure 7 Predicted relative concentrations for each compounds after PARAFAC 

analysis and original least squares regression (slope and intercept). 

Table 3 RMSE of PARAFAC regression compared to PLS regressions. 

 RMSE 
PARAFAC 0.0122 0.0149 0.0197 
NIR PLS 0.009549 0.010051 0.010250 
NMR PLS 0.012955 0.015432 0.022643 
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As seen in Table 3 above, the RMSE of this PARAFAC model is worse than 

that of PLS done on the NIR individually but shows a slight improvement over using 

just the NMR.  This is expected as PARAFAC has taken into account both datasets 

and being essentially a PLS fit of its own, cannot improve results over the lower error 

dataset (NIR) but uses its information to lower the error compared to the worse error 

dataset (NMR). 

 

One other major disadvantage is that the PARAFAC model is highly 

dependent on the pure compound samples, so any contamination or significant noise 

can degrade the model.  The advantage to PARAFAC is that with this method so 

cross-validation need be done, as there are as many components as pure compounds 

used.  As only 1-component PARAFAC models are used followed by the fixed 

loadings PARAFAC, computations are very fast. 

 

After the regression using the design PARAFAC results, the loadings were 

used along with the sample dataset OP matrix to generate corresponding scores 

(relative concentrations assuming PARAFAC worked as intended), as seen in Figure 8 

below.  Regression of these scores leads to concentrations more than 5 orders of 

magnitude below the design matrix with approximately equal concentrations across all 

samples. 
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Figure 8 Regression of the 3-component PARAFAC model generated using the 

fixed loadings. 

The discrepancy between the predicted and actual concentrations in the sample 

dataset is likely because the PARAFAC model cannot account for the extra sources of 

variation.  Ideally the PARAFAC model would be created with samples that represent 

the ‘pure’ version of the growth medium with the design compounds.  As it stands 

now, PARAFAC cannot extract any information regarding the design compounds as 
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any amount in the growth medium samples have too low of spectral intensities to 

detect. 

 

One possible solution to this is to have at least one sample for each pure 

compound be spiked with a known concentration so that PARAFAC will be able to 

extract the pure loadings for the both the pure component and the remainder of the 

sample dataset components.  Alternatively a single sample spiked with all 3 pure 

compounds may also work.  This would hopefully allow the pure loadings from the 

design to be used in the sample dataset PARAFAC along with these newly generated 

sample dataset loadings. 

 28



Chapter 6 

CONCLUSION 

Data fusion can aid in the analysis of complicated or multiple datasets, such as 

this, but there are limitations.  Methods such as PARAFAC are contingent upon the 

desired components having a large effect on the data and can fail when the data does 

not vary enough based on these components.  Other types of methods involving data 

fusion, like SPLSDA, take advantage of particular parts of the data that vary with the 

response.  Data fusion methods are limited by the quality of the data itself, and by 

issues of dimensionality, as it is uncommon to have very large datasets with few 

variables.  
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