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US energy demand is projected to continue increasing, and exploiting 

sustainable resources is critical to minimizing risks in economy, geopolitics, and 

environment. Lignocellulosic biomass is a key sustainable source of carbon for the 

production of renewable fuels and chemicals. Compared to petroleum processes, 

biomass utilization requires selective de-functionalization, calling for innovations in 

catalysis. Previously, metal surface catalysts have shown promising performance for 

hydrogen generation and hydrodeoxygenation (HDO) in biomass conversion 

processes. However, mechanistic understandings are lacking and the search for 

optimal catalysts continues. In this regard, density functional theory (DFT) studies can 

aid, but DFT is computationally too expensive to investigate large reaction networks 

of biomass monomers on metal surfaces. Previous research introduced a semi-

empirical based framework to reduce the computational cost and rapidly build 

microkinetic models (MKMs), but several tasks remain to realize the framework. This 

thesis aims to narrow the gaps in this framework. 

One gap is modeling capability for lignin monomer derivatives whose 

theoretical investigation has been minimal prior to this thesis. This thesis has two 

overarching goals. First, we build reliable semi-empirical methods mainly for 

thermochemistry and to an extent for kinetics. Second, we apply these methods to the 

HDO mechanism of a lignin model compound, cresol, on a metal surface for the first 

time.  

ABSTRACT 



 xxiv 

Three chapters are dedicated to improving and expanding the capability of 

thermochemistry prediction for molecules on metal surfaces. With the reaction 

network identified, group additivity for lignin monomers is developed. The new group 

additivity introduces more sophisticated descriptors based on the theoretical basis of 

the group additivity and electron density analysis. The cross-validation shows 2.8 

kcal/mol mean absolute error (MeanAE) with 591 data points, an improvement over 

the previous framework by 2.3 kcal/mol in the MeanAE. The model is capable of 

rapidly predicting ~14,000 molecules (accounting different binding geometries) in the 

reaction network of a lignin model compound, guaiacol. Next, group additivity for 

solvated molecules on a metal surface is developed that provides an excellent first 

approximation of solvation energy at MeanAE of 1.0 kcal/mol at no computational 

cost. To further improve the thermochemistry prediction framework, a machine 

learning method called LASSO was introduced. LASSO is used to automatically 

select the most informative patterns (descriptors) of the molecules in datasets. The 

application to the 591 lignin dataset reveals a MeanAE of 2.08 kcal/mol, achieving the 

sub 0.1 eV error for the first time for an adsorbate group additivity method. In order to 

simplify the user interface for these thermochemistry prediction methods as well as to 

automatically build datasets, a machine-learning algorithm for predicting adsorption 

geometries is presented. Methods are made available on Github.  

Next application of these methods on MKM is carried out. Our DFT-refined 

MKM of cresol on Pt(111) demonstrates a novel mechanism consistent with multiple 

experiments, suggesting that Pt alone is capable deoxygenation. The MKM and DFT 

results suggest that cresol undergoes deoxygenation upon sufficient ring 

hydrogenation. Innovations in the semi-empirical model frameworks are made to build 



 xxv 

the MKM. In order to rapidly estimate activation barriers of ~500 reactions, Brønsted-

Evans-Polanyi (BEP) relations were developed. The previous approach for building 

BEP relations results in a significant MeanAE of 17.3 kcal/mol for the rate-limiting C-

OH scission reactions. A new framework introduced herein categorizes transition 

states based on their structure and reduces the MeanAE to 1.6 kcal/mol. In addition, 

the computational cost in building a model for lateral interactions has been reduced by 

coarse-graining surface species (from 150 to 7 species).  
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INTRODUCTION 

1.1 Conversion of Biomass to Fuels and Chemicals 

As the US energy demand is projected to grow by 50 - 60 percent by 2030, 

relying on conventional fossil fuels brings economic, geopolitical, and environmental 

uncertainties.[1] These risks can be mitigated by diversifying resources for chemicals 

and energy production. Potential candidates include natural gas, solar, biomass, carbon 

dioxide, wind, geothermal and nuclear resources. Out of these, biomass is the only 

sustainable source of carbon. In this regard, the United States Department of Energy 

(DOE) has set a goal of displacing 30% of gasoline and diesel,[2, 3] and 25% of all 

petroleum-derived chemicals from biomass by 2022.[4] Biomass utilization has 

potential for production of many chemicals due to its diverse functional groups.[5] 

Compared to petroleum, biomass is highly polymerized and over-

functionalized.[6] These characteristics present new challenges. As the current 

petrochemical industry has focused on functionalization of hydrocarbons, innovations 

in selective deoxygenation are necessary to remove undesired functional groups.[7] In 

addition, while various compounds in petroleum can often be separated using mature 

distillation technology, lignocellulosic biomass is a solid composed of carbohydrate 

and aromatic oxygenate polymers. Inherently, the biomass utilization requires 

depolymerization to break down the polymer linkages, resulting in high cost.[8] Lastly, 

the high oxygen content of biomass causes depolymerized biomass to be of low 

energy density, corrosive, and prone to re-polymerization to undesired products.[6, 9] 

Chapter 1 
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Hence, innovations in deoxygenation are critical to render biomass useful. Catalysis 

can play a key role in realizing the economic conversion of biomass.[10] 

A number of catalytic routes have been demonstrated for biomass 

conversion.[5] One of the most researched pathways is the production of 5-

hydroxymethylfurfural (HMF) from cellulose and furfural from hemicellulose via a 

three-step acid-catalyzed hydrolysis, isomerization, and dehydration process.[7] HMF 

is readily accessible from biomass and one of the DOE‘s top 10 bio-based platform 

chemicals.[5]  

Fast pyrolysis is an alternative process to thermally decomposed lignocellulose 

at temperatures between 400 – 650 °C at short retention times.[6] Fast pyrolysis of 

biomass forms a liquid mixture of various linear, branched, furanic, and aromatic 

oxygenates monomers called bio-oil. Even though the composition of bio-oil is 

complex, bio-oil has great potential as it contains naturally occurring C6 aromatics to 

form key chemicals: benzene, toluene, and xylene (BTX). BTX represents ~5% of all 

the chemicals produced by volume and ~25% of the total revenue in the petrochemical 

industry.[11, 12] 

The products either of acid-catalyzed hydrolysis or pyrolysis need to be further 

upgraded by removing oxygen. In this respect, hydrodeoxygenation (HDO) has widely 

been explored where oxygen is selectively removed as water using hydrogen gas over 

heterogeneous catalysts.  Metal catalysts have been investigated for HDO as hydrogen 

gas readily adsorbs, dissociates and reacts on metal surfaces. Depolymerized 

monomers can also be utilized in aqueous phase reforming, popularized by Dumesic 

and co-workers.[13] In this process, hydrogen is produced along with CO2 and alkanes 

in the aqueous phase using solid metal catalysts. This thesis focusses on computational 
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work on metal catalysts for these downstream biomass conversion processes. The next 

section elaborates on the framework of computational catalysis.   

1.2 Predictive Modeling via Multiscale Modeling and Descriptors 

1.2.1 Multiscale Modeling 

Multiscale modeling simulates a system consisting of phenomena occurring at 

multiple time and length scales. Simulation of each scale involves a different model. 

The multiscale approach address this scale disparity by coupling adjacent scales via 

either coarse-graining of small-scale models (bottom-up approach) or linking models 

via feedback information among different scale models (top-down approach). In 

computational catalysis, the bottom-up approach is dominant and is the focus of this 

thesis. 

There are at least four different time and length scales in reaction engineering 

as illustrated in Figure 1.1. The smallest scale (the bottom of Figure 1.1) involves 

quantum phenomena where the interactions between electrons and protons are 

simulated. In this simulation, energies of various states and atomic coordinates can be 

computed to obtain binding energies, reaction barriers, and vibrational frequencies. 

Typically, density functional theory (DFT) is adopted for this task. DFT solves an 

approximate representation of Schrödinger equation called Kohn-Sham equation. This 

equation is based on a proof by Hohenberg that the ground state energy of a system is 

a functional of electron density of the system.[14] This theorem effectively reduces the 

complexity of solving the many-electron problem of the Schrödinger equation to ―one-

electron‖ problem, making computation feasible. Analysis at this scale is crucial for 
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predictive modeling, as fundamental electronic characteristics of a material correlate 

to its catalytic activity.  

 

Figure 1.1. Schematic of multi-scale modeling showing different scales and models at 

each scale as well as couplings between scales. The computational fluid 

dynamics (CFD) illustration is adopted from Ref.[15] 

At the mesoscopic scale (the second from the bottom of Figure 1.1), the 

collective behavior of individual reactions is averaged over time and space to obtain 

the observable reaction rate. Temperature-dependent parameters, such as the Gibbs 

free energy of formation of species and transition states, are rigorously coarse-grained 

from quantum-scale simulations using statistical thermodynamics (See supporting 

information of [16] for details). Two methods are widely applied for the mesoscopic 
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simulation to estimate reaction rates: lattice kinetic Monte Carlo (KMC) and mean-

field micro-kinetic modeling (MKM). In lattice KMC, the configuration of adsorbates 

on the catalytic surface is tracked with time. Each configuration defines a state of the 

system and a rate of transition to different states based on microscopic rates, called 

propensities. The propensities are employed to stochastically simulate the evolution of 

the system. While the KMC offers atomically resolved spatial and temporal 

information, MKM simulation is faster and easier to parameterize due to the mean-

field approximation. The mean-field approximation assumes that adsorbates on a 

catalytic surface are spatially uniform. As a result, the spatially average concentration 

of each adsorbate is tracked and is used to compute reaction rates. This approximation 

eliminates the spatial dependence and stochastic nature of the system. Typically, 

MKM is employed for simulation of large biomass molecules.  

The next largest scale (second from the top in Figure 1.1) involves transport 

and flow phenomena. Typically, reaction networks are coarse-grained to produce 

simplified reaction networks and compute rates from reduced rate expressions. Finally, 

information from this scale is used for plant and process optimization. This thesis 

focuses on micro and mesoscopic scales, as fundamental catalytic reactivity 

descriptors are inherent in electronic interactions.[17]  

1.2.2 Descriptor-based Modeling  

Traditional multiscale-modeling is computationally impractical for simulation 

of biomass conversion. Due to the large size of biomass molecules, the number of 

intermediates and reactions is very large, as shown in Figure 1.2. Parameterizing 

thermochemistry and kinetics of the glucose reaction network using DFT would take 

~1 billion CPU hours[18], an intractable task for current supercomputers.  
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Figure 1.2. (a) Visualized reaction network of glycerol reforming and (b) 

exponentially scaling of the number of intermediates and reactions with a 

number of carbon in linear polyols. Adopted from Sutton et al.[18] The 

nodes and edges in (a) represent intermediates and reactions, 

respectively. 

To overcome the computational cost, semi-empirical methods have been 

previously explored. While semi-empirical models are not as accurate as DFT, they 

rely on simple algebraic equations, eliminating the computational cost. In addition, the 

accuracy of the semi-empirical based MKM can be improved to DFT-level accuracy 

via hierarchical refinement of sensitive parameters.[19] Thus, development of semi-

empirical methods is crucial for biomass modeling.  

One of the most important semi-empirical relations is the linear scaling relation 

(LSR) between species energies. Specifically, Nørskov and co-workers [20] have 

demonstrated that the binding energy of a partially hydrogenated heteroatom ALx 

linearly correlates with the atomic binding energy of the heteroatom A 
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Here,      
 is the binding energy of an atom, A, with x number of hydrogens,     is 

the binding energy of an atom, A, and   is the intercept related to the correlation.   is a 

function of    ‘s valency, 

 

 
 ( )   

      

    
 

(1.2) 

where      is the maximum number of valence electron of atom A (e.g., 4 for C, and 

3 for N). For example, the binding energy of CH3 scales with the binding energy of C 

with a slope of 0.25. 

In order to use the LSRs for large adsorbates, the thermochemistry of all 

adsorbates on one metal is still necessary. To accomplish this task, Benson‘s group 

additivity framework has been extended from gas-phase molecules to surface 

adsorbates.[16, 21-23] The group additivity predicts thermochemistry by summing up 

the properties of molecular patterns, called groups, in a molecule: 

 

    ∑    

       

   

   (1.3) 

Here,    is a thermodynamic property of molecule i (such as entropy or heat of 

formation),         is the number of groups in the group additivity model,     is the 

number of occurrences of group j in datum i, and    is the thermodynamic property of 

group (pattern) j. A couple of examples of group additivity methods are provided in 

Figure 1.3. 
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Figure 1.3. Group additivity examples for (a) propane and (b) di-methylene ether on 

Pt(111). In this method, patterns in the molecule are identified (4 color-

coded groups and their heat of formation values are shown), and their 

thermochemistry values are summed together. ∆fH°GA, ∆fH°DFT, ∆fH°exp 

are the heat of formation calculated from group additivity, DFT, and 

experiments, respectively. 

With the thermochemistry predicted, another linear correlation called 

Brønsted-Evans-Polanyi relation can be used to compute activation energy, EA, of a 

homologous series, i.e., a family of reactions, from the reaction energy, Erxn, 

            (1.2) 

where α and β are the slope and intercept of the correlation. Traditionally, a reaction 

family is defined based on two atoms undergoing bond scission (e.g., C-C, C-O, C-H, 

O-H scission), and correlations are built for each family. This categorization has been 

found to roughly hold true over different catalytic surfaces.[24] 
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1.2.3 Prediction of Materials’ Activity and Selectivity 

Key to developing economic catalytic processes is the identification of active, 

selective, stable, and cheap catalysts.[10] Computational studies can aid identifying 

active materials using Sabatier‘s principle.[25] The idea behind Sabatier‘s principle is 

that catalyst cannot bind molecules too strong as molecules poison the catalytic 

surface or too weak as reactants are not activated. With the advancement of 

computational catalysis, descriptors based on species binding strengths can be 

computed and used to discover catalysts.[26-33]  

For example, an activity and selectivity map of ethylene glycol conversion 

based on oxygen and carbon binding energies as descriptors was constructed [33] and 

adopted in Figure 1.4. Ethylene glycol is a model compound of sugar polyols. 

Previously, platinum was known to be the best catalyst for reforming chemistry, but 

through this mapping, nickel overlayer on top of the platinum was predicted to be 

more active. Experiments demonstrated that Ni on Pt to be more active in reforming 

chemistry. In addition, tungsten and molybdenum carbides were discovered to 

selectively form ethylene, one of the most used monomers. Such a framework 

provides rapid material screening capabilities and has tremendous potential for 

biomass utilization.  
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Figure 1.4. Example of predictive catalyst mapping adopted from [33]. This map 

shows how activity and selectivity of ethylene glycol conversion changes 

with oxygen and carbon binding energy as key descriptors. The heat 

color indicates the turn-over-frequency, and the each divided region 

indicates favored selectivity shown in the white circle. Different catalysts 

are indicated with circles. Ni-Pt is superior to Pt for reforming and WC 

and Mo2C are selective but not as active catalysts for deoxygenation. 

Ethane is produced by in situ reforming to H2, followed by HDO. 

1.3 Gaps and Challenges of the Current Paradigm of Predictive Modeling for 

Biomass Conversion 

The current framework requires a number of tasks for it to be comprehensive, 

accurate and easy-to-use. These tasks are summarized in Figure 1.5. Previously, the 

Vlachos research group modeled aliphatic oxygenates and furanics (for HMF),[19, 22, 

23, 34, 35] but lignin monomers have not been studied (Figure 1.5a). As discussed 

above, lignin is one of the most abundant components of the biomass (18 - 35 wt%)[6] 

with the potential to be converted to BTX. However, modeling studies of lignin 
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monomers have been lacking. In addition, the roles of C6 aromaticity and ring strain 

for multi-dentate adsorption and kinetics remain elusive.[22, 35, 36] 

 

Figure 1.5. Overview of challenges and gaps in predictive modeling of biomass 

conversion on solid catalysts. 

Another gap is our ability to model chemistry on metals in the aqueous phase 

(Figure 1.5b). The hydrolysis and pyrolysis involve aqueous phase (aqueous phase 

medium for hydrolysis, and aqueous product for pyrolysis). Developing efficient solid 

catalysts in aqueous phase could simplify the multi-step biomass conversion. In 

addition, fundamental understanding of the aqueous phase reforming mechanism is 

lacking. Recent works have investigated a subset of a reaction network C3 molecules 

via hybrid DFT and molecular mechanics approach,[37-41] but investigation of entire 

reaction networks remains too computationally intensive. Combined with hierarchical 
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refinement methodologies, a solvation energy semi-empirical model could provide 

significant insights into aqueous phase processing at reduced computational cost.[18] 

Despite their efficiency, semi-empirical tools exhibit low accuracy (Figure 

1.5c). Previous group additivity models have large cross-validation error (>5.5 

kcal/mol).[35, 36] This error is especially important as microkinetic models have been 

found to be sensitivity to thermochemistry.[42] Similarly, BEP relations have a high 

mean absolute error (MeanAE) (>4.5 kcal/mol), [43] which combined with group 

additivity, result in as much as four orders of magnitude standard deviation in turn-

over-frequency (TOF).[42] When errors are too large, local sensitivity analysis may 

not correctly identify the rate-determining-steps (RDS) and lead to improper 

hierarchical model refinement. In this case, correlated global sensitivity analysis needs 

to be employed.[42] The model error is worse when the thermochemistry and kinetics 

parameters are transferred to other metals via LSRs.[44] The LSR‘s error is additive 

with the number of adsorbate atoms bonding to the surface, where the MeanAE for a 

single surface-bonded atom is about 3.2 kcal/mol.[20] As the biomass molecules are 

multi-dentate, errors from the LSRs are expected to be larger, resulting in poor model 

predictions.  

Vorotnikov et al. has found that LSRs can be improved by accounting for the 

binding site of furanics molecules.[34] The preferred binding conformation changes 

based on the fundamental characteristics of the surface. Similarly, multi-dentate 

adsorbates, such as benzene, have a binding energy difference of 10 kcal/mol between 

two binding sites on Pt(111).[45] As benzene is the backbone of lignin monomers, 

binding sites play a critical in describing lignin monomers‘ thermochemistry. Clearly, 

the ability of automatically predicting adsorption conformation is essential (Figure 
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1.5d). While gas group additivity has been implemented via a web interface by the 

NIST Webbook and MIT (rmg.mit.edu), adsorbate group additivity requires prior 

knowledge of the adsorbates‘ binding geometry. Currently, this step is manual which 

is tedious and time-consuming for a reaction network involving hundreds of species. 

Development of an algorithm to automate the conformation prediction will aid 

computational studies.  

Thermochemistry prediction requires also the inclusion of lateral interactions. 

Benzene‘s adsorption energy ranges from 48 to 16 kcal/mol as the coverage varies 

between 0 and 1 (Figure 1.5e).[46] As microkinetic models are typically 

parameterized with zero-coverage DFT calculations, thermochemistry parameters are 

expected to have at least ~30 kcal/mol error, which would then propagate errors in 

activation energies. For example, Sayes et al. has shown that the toluene 

hydrogenation energy profile dramatically changes with coverage effects.[47] 

Estimating lateral interactions for large biomass reaction networks is expected to take 

significant DFT calculations. Developing a semi-empirical framework for estimating 

lateral interactions will aid in correctly capturing the physics while reducing 

computation time for building a MKM.  

The last two tasks relate to the extension of the framework. Previously, semi-

empirical method capabilities have been focused on closely packed surfaces (111 for 

fcc, 0001 for hcp, and 110 for bcc metals). Though the optimal material prediction 

may be independent of the studied facet,[25, 28, 48, 49] developing tools for other 

facets can aid understanding structural effects. Another phenomenon that has not been 

studied much is the effect of support. The support may affect the solid catalyst via: (1) 

changing the electronic structure of the metal surface, (2) creating interfacial sites with 
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different reactivity than the metal, (3) carrying out reactions itself and participating in 

spillover and reverse effects, and (4) changing the physical structure of the catalyst.[50, 

51]  

1.4 Dissertation Scope 

This thesis addresses five challenges shown in Figure 1.5 (a, b, c, d, and e). 

Metal-catalyzed biomass conversion has been extended for the first time to lignin 

monomers as well as sugar alcohols in the aqueous phase. Major methodological 

developments have enabled these kinetic studies: (1) transition state structure-sensitive 

BEP relations; (2) a lateral interaction model based on the number of the surface 

bonding atoms; (3) a binding-site based group additivity framework; and (4) a 

machine-learning method for thermochemistry prediction. The organization of this 

thesis is outlined next. 

While the HDO of phenolics has been widely studied experimentally, a 

consistent mechanism has been lacking. Chapter 2 builds a DFT-based microkinetic 

modeling for the conversion of p-cresol, a lignin model compound, on Pt(111). This 

model elucidates the mechanism and is consistent with all experimental results. In 

addition, an improved BEP-relation and a lateral interaction model are introduced. The 

new BEP relationship is capable of predicting DFT barriers near the chemical 

accuracy. 

Chapter 3 develops a group additivity model for lignin components on Pt(111). 

We improve the prior group additivity framework via examining the theoretical 

background of group additivity and implementing electronic analysis. Bader et al.[52] 

has demonstrated that the regressed group energy is conserved across molecules as the 

electron distribution within a group is transferable to other molecules. In order to 
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select the best groups, electron density (Bader) analysis is employed. The method 

reduces the previous mean absolute error from 5.15 to 2.81 kcal/mol. 

Chapter 4 extends group additivity to solvated alcohol adsorbates on Pt(111). 

Adsorbate group additivity is combined with solvation group additivity. The DFT 

solvation energy is predicted within chemical accuracy (MeanAE of ~1 kcal/mol). The 

effect of solvation on the reaction network thermochemistry of ethanol steam 

reforming is studied. The solvation group additivity scheme, in conjunction with 

published BEPs, is applied to develop a MKM for aqueous phase reforming of 

glycerol for the first time in Appendix E. 

Despite the advancement in the group additivity framework, the group 

additivity‘s cross-validation MeanAE remains high (2.81 kcal/mol). Chapter 5 exploits 

machine-learning techniques to further improve our model. A descriptor selection 

regression called Least Absolute Shrinkage and Selection Operator (LASSO) is 

implemented to automatically find the most informative graph patterns that describe 

thermochemistry accurately. The LASSO-trained model performs better than the 

previous group additivity (reduces MeanAE from 2.81 to 2.08 kcal/mol). The LASSO 

method is promising especially for large data sets. 

To address the manual adsorption conformation, a machine learning 

framework for adsorbate conformation prediction is introduced in Chapter 6. This 

algorithm learns from a diverse adsorption conformation data computed using DFT, 

and rapidly predicts adsorption configurations given the gas structure of a molecule. 

The algorithm shows promising accuracy to eliminate manual construction of 

conformation for performing DFT calculations.  

Finally, Chapter 7 summarizes this thesis. Future work is also suggested. 
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MECHANISM OF DEHYDRATION OF PHENOLS ON NOBLE METALS VIA 

FIRST-PRINCIPLES MICROKINETIC MODELING 

2.1 Introduction 

Conversion of biomass to petroleum-like fuels and chemicals is an active area 

of research.[53] Fast pyrolysis techniques provide one such viable option to convert 

biomass into a depolymerized liquid bio-oil.[6] The high oxygen content in the bio-oil 

makes it unsuitable for applications.[6] Consequently, current research has been 

centered around developing catalysts for hydrodeoxygenation (HDO),[54-62] a 

process involving high hydrogen pressure and temperature to remove oxygen as 

water.[6] More specifically, HDO of phenolic compounds has attracted significant 

attention because alkyl phenols constitute a major portion of the remaining oxygenates 

from catalytic pyrolysis over zeolites (17 – 35%).[63-68]  

Unlike short-chain hydrogenated alcohols, such as ethanol, whose Brønsted- 

and Lewis-catalyzed dehydration mechanisms are well-established and involve OH 

and H removal from the -C and-C, respectively,[69-73] phenols, such as phenol 

and cresol, cannot follow the same mechanism due to having an unsaturated ring. 

Several mechanisms have been proposed for HDO of these alcohols, as summarized in 

Figure 2.1 for the case of p-cresol. Direct dehydroxylation followed by hydrogenation 

(Figure 2.1a) has been proposed for oxophilic metals such as Fe, Ru, and CoMoS.[74-

77] This mechanism cannot be operable on low oxophilicity metals like Pt. A bi-

functional mechanism has been the most popular and entails full ring hydrogenation 

Chapter 2 
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on the metal to form methyl cyclohexanol, followed by dehydration on the acid 

support to form methyl cyclohexene and dehydrogenation on the metal to form 

toluene, as shown in Figure 2.1b.[58, 59, 61, 78-83] This mechanism may be 

applicable on metal/Brønsted acid catalysts. However, this mechanism falls short in 

explaining HDO on non-acid-based supported catalysts (Rh/C, Pd/C, Pt/C, Pt/SiO2, 

Pd-Fe/C, Ni/SiO2).[58, 62, 84-87] Lobo and co-workers confirmed that methyl 

cyclohexanol is not dehydrated on Pt/SiO2, and suggested that, instead of methyl 

cyclohexanol, reactive methyl cyclohexadienol or methyl cyclohexenol with 

hydrogenated α-carbon undergoes dehydration.[58] Additional experiments feeding 

methyl cyclohexanol or methyl cyclohexanone did not lead to toluene, further 

indicating that mechanism B is not applicable on these catalysts.[62] In order to 

resolve this enigma, Resasco and co-workers suggested that a fast keto-enol 

tautomerization followed by carbonyl hydrogenation to form methyl cyclohexadienol 

precedes dehydration[62, 88, 89] (Figure 2.1c). Furthermore, in order to explain the 

formation of oxygenated products, methyl cyclohexanone and methyl cyclohexanol, 

they postulated a parallel ring hydrogenation path (lower path in Figure 2.1c). Given 

the lack of acidity of Pt/SiO2 and the fact that keto-enol tautomerization is often acid 

catalyzed, this mechanism may not be plausible either. Despite many experimental 

advances, the mechanism by which phenols dehydrate remains unclear. 
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Figure 2.1. Proposed HDO mechanisms of phenolic compounds in the literature. 

Density functional theory (DFT) studies have been limited to investigating 

adsorption and a select number of elementary reactions of phenols on metal surfaces, 

such as Pt(111),[90, 91] Rh(111),[91] and Ni(111).[92, 93] More recently, a few paths 

of the HDO mechanism of m-cresol were studied via DFT on Pt(111)[77], 

Ru(111)[77], and Ru/TiO2[87], but quantitative comparison to experimental data is 

still to be reported.  

In this work, we provide insights into the HDO mechanism of p-cresol on the 

Pt(111) surface. We encompass all the relevant reactions in a comprehensive reaction 
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network and build a microkinetic model. We develop Brønsted-Evans-Polanyi (BEP) 

and Transition State Scaling (TSS) relations for fast parameterization and refine the 

microkinetic model using DFT. Our results reconcile various experimental data 

starting from various substrates.[58, 62] Reaction path analysis demonstrates a novel 

HDO mechanism on Pt whereby the ring is activated prior to dehydroxylation but 

stable species, such as methyl cyclohexanol and methyl cyclohexanone, are not 

intermediates toward toluene but rather, they are side products. We show that ring 

hydrogenation changes the conformation of the molecule and is eventually responsible 

for facile dehydroxylation. Interestingly, while the fraction of toluene increases at the 

expense of methyl cyclohexanol and methyl cyclohexanone with increasing space 

velocity, this is not due to reactions in series but rather due to sharing common 

intermediates. 

2.2 Methods 

2.2.1 Reaction Network 

Previous experimental studies of HDO of cresol observed 4 products: methyl 

cyclohexanol, methyl cyclohexanone, methyl cyclohexane, and toluene.[58, 62] The 

saturated products imply hydrogenation of the ring carbon, which can occur at 6 

different ring locations with different combinations. Consequently, the extensive 

reaction network of p-cresol (Figure 2.1) required an automatic mechanism generation 

procedure using the RING software[94] (see A.2 of the appendix regarding the 

enumeration rules) to account for 4 different types of elementary reactions (Figure 

2.2): (1) hydrogenation of the ring to produce alcohol intermediates ending with 

methyl cyclohexanol, (2) dehydrogenation of the O-H group of alcohol derivatives to 
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form the corresponding ketones, leading to methyl cyclohexanone, (3) 

dehydroxylation of the alcohol derivatives to form hydrocarbon species that are H-

deficient at the α-carbon, and (4) hydrogenation of the resulting hydrocarbon at the 

dehydroxylated α-carbon followed by dehydrogenation or hydrogenation of the carbon 

ring to produce stable species, such as toluene and methyl cyclohexane. The reaction 

network is comprised of 464 elementary reactions (500 when including the adsorption 

steps) between 144 surface species. 

 

Figure 2.2. Summary of the overall p-cresol HDO reaction network. Ring carbon 

position is numbered as shown on p-cresol. Throughout the study, we 

will identify the original location of hydroxyl group as the α-carbon. 

Horizontal arrows represent ring (de)hydrogenation and vertical arrows 

represent bond scission/formation indicated in color. 
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2.2.2 Density Functional Theory (DFT) Calculations 

We performed plane-wave DFT calculations using the Vienna ab initio 

Simulation Package (VASP), version 5.3.2.[95]
 
The electron-electron exchange and 

correlation energies are computed using the PBE-D3, Perdew, Burke, and Ernzerhof 

functional with the dispersion correction.[96, 97] The inclusion of the dispersion 

corrections was based on their important role revealed in benzene-adsorption 

studies.[98, 99] Furthermore, the core electrons were treated with the projector 

augmented-wave (PAW) pseudopotentials. [100, 101] 

We optimized the lattice constant of Pt using the Birch-Murnaghan equation of 

state.[102, 103] The Pt bulk was simulated using the tetrahedron method with Blochl 

corrections and a 15 × 15 × 15 Monkhorst-Pack k-point mesh.[100, 104]
 
The lattice 

constant of Pt was calculated to be 3.917 Å  using the PBE-D3 functional, in close 

agreement with the experimental value of 3.92 Å .[105] 

The Pt slab was simulated using a four layer deep 4 × 4 unit cell. The bottom 

two layers of Pt were held fixed at the bulk position, whereas the top two layers were 

allowed to relax. The vacuum between the slabs was set at 20 Å  to minimize the 

interaction in the z-direction. The Brillouin zone was integrated using a 5 × 5 × 1 k-

mesh, with a Methfessel-Paxton smearing of 0.1 eV (0.01 eV for gas-phase 

calculations).[106] For the plane-wave set, a cutoff energy of 400 eV was used. The 

adsorbate-slab system was relaxed until all the forces were smaller than 0.05 eV/Å . 

The transition states (TSs) were located using the climbing image nudged elastic band 

(CI-NEB) as well as the dimer methods.[107, 108] 

The adsorption energy was calculated as Eads = Eslab+i –Eslab – Ei, where Eslab+i,, 

Eslab, and Ei are the total energies of the adsorbate-slab system, the clean slab and the 
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adsorbate in the gas-phase, respectively. The gas-phase molecules were calculated in a 

20 × 20 × 20 Å  cell. The reference energy was taken to be infinitely separated species. 

2.2.3 Brønsted-Evans-Polanyi (BEP) and Transition State Scaling (TSS) 

Relations 

As we show below, published BEP and TSS are inadequate for some of the 

lignin reactions. Therefore, we develop BEP and TSS relations for various 

homologous series using a select set of DFT calculations. The data sets are comprised 

of 29 reactions for the C-H scission, 8 reactions for the O-H scission, and 15 reactions 

for the C-OH scission. These reactions and the associated species primarily lie along 

the minimum energy hydrogenation pathway between p-cresol and methyl 

cyclohexanol. (Illustration and data are provided in Figure A.2 and Table A.3 and A.4, 

respectively) We discuss the statistics of BEP and TSS in the results section below.  

2.2.4 Parameterization of the Microkinetic Model 

We performed the microkinetic modeling using our in-house reactor code built 

around CHEMKIN
TM

.[109] Given the large number of reactions and species (Figure 

2.2), we employed and developed DFT-based fast screening methods for parameter 

estimation (see overview in Salciccioli et al.[19]). Specifically, we invoke a statistical 

mechanics approximation[110-112] for estimating the thermochemistry of surface 

species from the corresponding gaseous species (see A.3.1 in the appendix for detail); 

the thermochemistry of the latter is computed at the G4-level using Gaussian.[113] 

Reaction barriers were estimated using BEPs. 

In order to improve accuracy, we adopt the refinement methodology described 

by Salciccioli et al.,[19] where species and reactions are refined with subsequent DFT 

calculations.[18] In this study, we perform two sets of MKM refinement: (1) Inclusion 
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of the lateral interactions in an iterative fashion, where we identified the most 

abundant surface intermediates by running the microkinetic model and compute their 

interactions via DFT. This procedure is repeated until convergence. As the reaction 

network involves a large number of species, we developed a lateral interaction model 

that accounts for the number of surface-adsorbed carbon atoms (see Figure A.5 and 

A.3.2 in the appendix). The model is used to assign lateral interactions for the alcohol, 

ketone and hydrocarbon derivatives with 0, 1, and 2 hydrogenated ring carbons. Due 

to a large fraction of the reaction network being partially equilibrated, the dominant 

surface species are sensitive to these interactions. However, the overall conclusions of 

our work are unaffected. (2) Following the inclusion of the lateral interactions, the 

barriers and thermochemistry of important reactions were refined. Of the 144 surface 

species, the thermodynamic properties of 26 species encountered in the minimum 

energy hydrogenation pathway and 26 kinetically relevant species (identified via 

sensitive analysis) were calculated using DFT calculations and zero-point energy 

(ZPE) corrections in these species were included. Parameter adjustments for this study 

are discussed in A.5 of the appendix. 

To ensure thermodynamic consistency, we referenced the VASP-calculated 

surface reaction barriers and intermediates‘ thermochemistry to NIST experimental 

values of hydrogen, toluene, and water as discussed in Refs.[19, 114] Here, we 

preserve the gas-phase and surface reaction thermochemistry and adjust the adsorption 

thermochemistry. For the gas-phase thermochemistry of p-cresol, toluene, methyl 

cyclohexanol, methyl cyclohexanone and methyl cyclohexane, the G4 quantum 

chemical method[113] was used to calculate the electronic energies and vibrational 

frequencies. Then these quantities were referenced to the NIST experimental values to 



 

 

24 

compute thermodynamic properties (see supporting information of Vorotnikov et 

al.[35] for the referencing method). 

2.3 Brønsted-Evans-Polanyi (BEP) and Transition State Scaling (TSS) 

Relations 

Previously, our group has developed BEP relations for ethanol on Pt(111)[43]. 

When these BEPs were employed for a select group of reactions (see Methods), the 

mean absolute error (AE) in the reaction barriers was 0.13 eV, 0.50 eV, and 0.75 eV, 

for the C-H, O-H and C-OH scission reactions, respectively, i.e., the classic BEP 

relations, where the homologous series is based on the two atoms that undergo bond 

breaking, are sufficient for the C-H but inadequate for O-H and C-OH scission. Such 

shortcomings have recently been reported for other molecules. For example, Zaffran et 

al. and Sutton et al. observed improved accuracy by accounting for the adjacency of 

the C-H scission to the –OH group for small aliphatic molecules (< 5 C atoms) on 

Pt(111)[43] and Rh(111)[115]. Wang et al. concluded that structural similarity in 

reactants and transition states of a homologous series is a prerequisite for improved 

accuracy and developed C-O and C-C scission BEPs by accounting for the 

neighboring atoms of carbon and oxygen of furan derivatives and small molecules on 

Pd(111).[116] Lee et al. also observed a similar behavior for the C-O scission of 

methoxy and hydroxyl groups in guaiacol.[117]  

Here, we extend the definition of the homologous series and group the data 

based on the binding of the initial state (IS), transition state (TS), and final state (FS) 

structures, as shown in Figure 2.3. We identify two TS structures depending on the 

number of atoms involved. A 3-centered TS entails the α-carbon and the –OH group 

bound to the same Pt atom, whereas a 4-centered TS entails the α-carbon and –OH 
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group bound to two separate Pt atoms (Figure 2.3c). In addition, we find that the 

hybridization of the α-carbon in the FS of 4-centered TS is important. 

In IS1, the α-carbon and an adjacent ring carbon share a Pt atom resulting in a 

π-mode binding. This IS leads to a 3-centered TS, because upon dehydroxylation, the 

α-carbon forms a sp
2
 hybridized C-Pt bond (bond angles being 120

o
) with a nearby Pt 

atom on which the –OH group is also bound to. The π-mode binding occurs frequently 

for unsaturated species due to the relatively large Pt lattice spacing compared to the 

bond distances between the ring carbons. In IS2, the center of the ring is over a bridge 

site, and the carbon is ζ-bonded and is off-centered with respect to the Pt atom, as 

shown in Figure2.3c. During C-OH scission, the –OH group forms a bond with the Pt 

atom on which the carbon is bound to, resulting in a 3-centered TS. IS2 is again 

observed frequently in unsaturated molecules as the off-centered carbon is caused 

by strain (see below for strain discussion). Finally, IS3 has the α-carbon ζ-bonded 

directly to a Pt atom and the TS involves the -OH group bound to a neighboring Pt 

atom, leading to a 4-centered TS. The α-carbon in the FS is typically sp
2
 hybridized 

owing to the strain restricting the α-carbon from becoming sp
3
 hybridized (a few 

exceptions of sp
3
 hybridized structures are shown in Figure A.3). Strain on the α-

carbon needs to be minimized for direct binding to a Pt atom, and, as a result, IS3 is 

observed more frequently for partially hydrogenated species. 

Figure 2.3a and b shows BEP and (FS-based) TSS relations. The blue, red, and 

green colored data correspond to a 3-centered TS and a 4-centered TS with sp
2
 and sp

3
 

hybridized FS, respectively. Reactions with a 4-centered TS entail lower reaction 

barriers than those with a 3-centered TS by ~1 eV for the same reaction energy. This 

trend is similar to observations made by Neurock and co-workers,[118] who proposed 



 

 

26 

lower stability of the 3-centered TS due to the destabilization from overcrowding. sp
3
 

hybridization leads to a stabilization of the FS energy by ~0.25 eV (green data) 

compared to sp
2
 hybridization (red data), decreasing the reaction energy by 0.25 eV. 

In implementing the ―structure-sensitive‖ BEP relations in the microkinetic 

model, we computed all the adsorption configurations of p-cresol and its hydrogenated 

derivatives following the adsorption study for benzene derivatives by Morin et 

al.[119] We used adsorption structures of alcohol derivatives that lead to a 4-centered 

TS (IS3), due to their lower dehydroxylation barrier, provided such structures were 

stable; otherwise structures with 3-centered TS (IS1 and IS2) were employed.  
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Figure 2.3. (a) BEP relations for the C-OH scission reactions of three homologous 

series. Raw data is shown in Table A.4 and BEP relations in Table2.1. (b) 

Corresponding TSS based on the FS energy. (c) Structural characteristics 

of each BEP relation with examples (bond lengths in Å ). Identical color 

codes are maintained in the plots and the figures. The Table (panel a) 

summarizes the types of TS structures. Barriers and reaction energies are 

reported as electronic energies with no zero-point energy corrections for 

these fast screening methods. 
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A synopsis of BEP and TSS relations is given in Table 2.1 and Table 2.2. The 

accompanying graphical representation is shown in Figure A.4. Significant reduction 

in the mean AE of O-H and C-OH scission was found from 0.50 and 0.75 eV to 0.04 

and ~0.06 eV, respectively. For barrier estimation, the barriers obtained using the FS 

based TSS are slightly more accurate than those using the BEP relations, but owing to 

the ease of implementation, the latter were used for microkinetic modeling. 

Table 2.1. Slopes and intercepts with 95% confidence intervals for BEP and TSS 

relations (uncorrected for zero-point energy). 

  BEP Relations TSS Relations –IS TSS Relations -FS 

Correlation n α β (eV) α β (eV) α β (eV) 

C-H 29 0.65 ± 0.24 0.91 ± 0.09 0.94 ± 0.10 0.51 ± 0.36 1.14 ± 0.08 0.93 ± 0.26 

O-H 8 1.04 ± 0.40 0.23 ± 0.18 0.99 ± 0.35 0.64 ± 1.04 1.06 ± 0.11 -0.16 ± 0.23 

C-OH (3-centered TS)  6 0.94 ± 0.25 0.67 ± 0.37 2.12 ± 1.76 4.09 ± 4.88 0.95 ± 0.17 1.25 ± 0.38 

C-OH (4-centered TS; sp2) 6 1.11 ± 0.33 -0.24 ± 0.51 1.66 ± 0.47 3.54 ± 1.51 1.03 ± 0.14 0.75 ± 0.34 

C-OH (4-centered; sp3) 3 1.33 ± 12.21 -0.06 ± 10.44 1.38 ± 1.09 2.39 ± 3.79 1.12 ± 1.98 1.38 ± 6.69 

n is the number of regressed data points, and α and β are coefficients of the linear correlation, y = 

α∆Ereaction + β 

Table 2.2. Mean and max absolute errors (AE) of reaction barriers computed using 

each correlation. 

Correlation 

BEP Relations TSS Relations-IS TSS Relations-FS 

Mean AE 

(eV) 

Max AE 

(eV) 

Mean AE 

(eV) 

Max AE 

(eV) 

Mean AE 

(eV) 

Max AE 

(eV) 

C-H 0.11 0.30 0.16 0.50 0.09 0.45 

O-H 0.04 0.12 0.15 0.20 0.04 0.10 

C-OH (3-centered TS)  0.07 0.12 0.23 0.54 0.07 0.11 

C-OH (4-centered TS; sp2) 0.07 0.12 0.10 0.20 0.05 0.09 

C-OH (4-centered; sp3) 0.05 0.07 0.02 0.02 0.03 0.05 

 

2.4 Energetics of the p-cresol HDO Reaction Network 

Figure 2.4 shows the elementary reactions in converting p-cresol to methyl 

cyclohexanol along the minimum energy path, i.e., the path where hydrogen is 
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sequentially added to the most stable position (see Figure A.2 for more details). The 

reactions leading to ketone and hydrocarbon derivatives are also depicted. Reaction 

energies, computed via DFT, and barriers, computed via BEP or DFT, are also shown. 

These DFT values were the main data used to build the BEP and TSS discussed above. 

 

 

Figure 2.4. Minimum energy path of ring hydrogenation of p-cresol to methyl 

cyclohexanol along with C-H, O-H, and C-OH reactions. For each 

reaction, upper number is reaction barrier and lower number is reaction 

energy in eV. Reaction energies (electronic energies without zero point 

correction) are calculated using DFT. Reaction barriers, Ea, are 

calculated using DFT (black) or BEP relations developed herein (cyan). 

Color convention of arrows as in Scheme 1.  

Examination of the data indicates that the O-H scission barriers (0.67 ± 0.12 

eV) are lower than the hydrogenation reactions (1.02 ± 0.05 eV), and the reverse O-H 

formation barriers (0.29 ± 0.08 eV) are even lower. Thus, O-H reactions are expected 

to be fast and equilibrated. This finding is consistent with the general understanding 

that phenols are more acidic than alcohols. The desorption energy for all stable 

products is higher (1.1 – 1.3 eV for saturated vs. 2.3 – 2.4 eV for unsaturated) owing 
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to the dispersion interactions. This finding indicates that desorption may be slower 

than hydrogenation/dehydrogenation, potentially affecting product selectivity. 

Figure 2.5 depicts the C-OH scission barriers for all the C-OH scission 

reactions in the reaction network. The C-OH scission barrier of the unsaturated p-

cresol is 2.45 eV, strongly suggesting that direct dehydroxylation on Pt is unlikely, 

refuting mechanism A (Scheme 1). This finding is consistent with a recent DFT 

calculation of m-cresol on Pt.[77] In addition, the dehydroxylation barrier of the 

methyl cyclohexanol is significantly high, 1.77 eV, indicating that complete ring 

hydrogenation followed by dehydration on Pt is not effective. (mechanism B, Scheme 

1)  Similarly, the dehydroxylation barriers of stable alcohol species with hydrogenated 

α-carbon are expected to be high as dehydroxylation from non-surface bound α-carbon 

is not catalyzed by the Pt surface. This indicates that the suggested mechanism where 

stable alcohols with hydrogenated α and β carbon undergo dehydration is not 

favorable on Pt.[58]  

Pt can easily hydrogenate the ring, with typical hydrogenation barriers falling 

in the green shaded region in Figure 2.5. As the carbon atoms get hydrogenated, the 

ring lifts gradually off the surface (see Figure 2.6), resulting in the dehydroxylation 

reaction becoming less endothermic (see Figure A.14a; 1.68 eV at zero hydrogenation 

vs. 0.31 eV at full saturation) and C-OH scissions involving more frequently 4-

centered rather than 3-centered TS with significantly lower barriers (see Figure 

A.14b). While the locations of hydrogens added to the ring affect the barrier (vertical 

scatter in Figure 2.6), species along the minimum energy path expose some of the 

lowest barriers. Interestingly, the minimum C-OH scission barrier decreases 

profoundly with increasing degree of hydrogenation. Upon 3-5 sequential 
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hydrogenations, some of the dehydroxylation barrier are ~1 eV hinting to the 

possibility that dehydroxylation is likely upon sufficient hydrogenation of the ring. 

Importantly, complete ring hydrogenation does not kinetically favor dehydroxylation, 

pointing to the fact that methyl cyclohexanol and cyclohexanone are not main 

products from which hydrocarbons form (see also below). Instead, dehydroxylation is 

facile on Pt for sufficiently hydrogenated species but not necessarily for stable species. 

 

 

Figure 2.5. C-OH scission barriers vs. degree of ring hydrogenation. Typical 

hydrogenation barriers fall within the green shaded region. Open (closed) 

symbols are BEP (DFT) computed barriers. Filled green triangles 

correspond to C-OH scission of methyl cyclohexanol 
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Figure 2.6. Alcohol intermediates along the minimum energy path demonstrating 

lifting as the ring carbons are hydrogenated (the number indicates the 

number of hydrogenated carbons). During hydrogenation the sp
3
 

hybridized ring carbons give place to a chair shape structure with less 

strain. 

2.5 Conversion and Selectivity to Major Gas Products 

Here we compare to experimental data reported by Nie et al.[62] and Foster et 

al.[58] (Figure 2.7). Our model is for HDO of p-cresol while the experimental data is 

for m-cresol. p-cresol is investigated instead to lessen the computational burden as p-

cresol‘s –OH and –CH3 symmetry results in 64 less alcohol intermediates that those in 

m-cresol. Given the similarity of these isomers, no significant differences in reactivity 

are expected.  

Overall, the model predictions are in very good agreement with the 

experimental results, indicating that the metal sites of Pt are sufficient to carry out the 

chemistry in the absence of an acid functionality. Interestingly, while methyl 

cyclohexanone is the dominant product in Nie‘s data, toluene dominates in Foster‘s 

data. This appears as a contradiction in experimental results. However, a major 

difference between these data is the space velocity. Careful examination of both the 
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data and model results indicates that methyl cyclohexanol and to a much lesser extent 

methyl cyclohexanone form early on in the reactor (short contact times) and they then 

convert to toluene downstream (longer contact times). The reduction of oxygenates 

downstream to toluene is typically taken in textbooks as a signature of reactions in 

series. If this were true, this will contradict experiments starting from either 

oxygenate, which do not give toluene under those conditions. We resolve this paradox 

below. Some differences in the distribution of cyclohexanone vs. cyclohexanol 

between data are seen but this may arise from sensitivity to particle size, catalyst 

precursors, and pretreatment conditions, as previous studies have shown.[120-124] 

These factors are not currently captured by our model. Good agreement is also 

observed when methyl cyclohexanol and methyl cyclohexanone are used as feeds 

(Figure 2.8). These data were obtained at short contact times relevant to those 

experimental data. 

 

 

Figure 2.7. Comparison of model (lines) with (a) Nie et al.‘s[62] and (b) Foster et al.‘s 

experimental data[58] (solid symbols). Experimental conditions were (a) 

1.25×10
-2

 atm m-cresol, 1.0 atm H2 at 573 K on 1.0 wt% Pt/SiO2, and (b) 

7.5×10
-3

 atm m-cresol, 0.5 atm H2, 0.5 atm N2, at 533 K on 1.55 wt% 

Pt/SiO2.  
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Figure 2.8. Comparison of model (lines) and experimental data[62] (solid symbols). 

Experimental conditions are 1.25×10
-2

 atm (a) methyl cyclohexanone and 

(b) methyl cyclohexanol, 1.0 atm H2 at 573 K on 1.0 wt% Pt/SiO2. The 

model agrees well with the experimental data. 

Next we conduct reaction pathway analysis to understand the HDO mechanism 

(Figure 2.9). Here we compute forward, backward, and net rates and identify paths of 

high flux and paths that are equilibrated. The pathway leading to toluene starts with 

adsorption of p-cresol, and continues on with hydrogenation of 3-5 ring carbons 

(either in the alcohol and ketone hydrogenation network). Subsequently, C-OH bond 

scission occurs consistent with the energetics shown in Figure 2.5, followed by 

hydrogenation at the H-deficient α-carbon, and dehydrogenations of the ring to 

produce adsorbed toluene, which subsequently desorbs to the gas phase. A critical 

aspect here is dehydroxylation does not necessarily happen from a stable compound 

but rather from an intermediate and thus building a full microkinetic model is 

essential. The adsorption of p-cresol is slightly irreversible whereas the alcohol and 

ketone network is partially-equilibrated. The derivatives, which are deficient in α-C, 

hydrogenate irreversibly to the hydrocarbon network. Importantly, the oxygenates are 
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not stable intermediates from which toluene forms, i.e., the formation of toluene and 

oxygenates are not reactions in series. Rather, the oxygenates are products of parallel 

reactions that share common intermediates with the toluene network. 

 

 

Figure 2.9. Reaction network for HDO of p-cresol to toluene at short contact times of 

W/F=2 gh/mol for Nie et al.‘s[62] experimental condition. Double 

(single) arrows represent reversible (irreversible) reactions. Thickness of 

the arrows indicates the magnitude of the net flux. The network is based 

on fluxes at the exit of the reactor. 

Thermodynamics also plays an important role in driving the dehydroxylation 

reaction. The dehydroxylation reactions on Pt are very endothermic with an energy 

ranging from 1.6 to 0.6 eV, and with a low reverse reaction barrier due to the late 

transition state (Figure 2). Thus, it is natural to expect that the reverse reaction 

(oxygenation) would be fast. However, our reaction path analysis reveals that the 

dehydroxylation reactions are irreversible due to the low hydroxyl coverage on the 
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surface (10
-13

). This low coverage results from the thermodynamics highly favoring 

water formation.  

The formation of oxygenated products, such as methyl cyclohexanol and 

cyclohexanone, is kinetically limited by desorption at short contact times and 

thermodynamically controlled at long contact times. As suggested by DFT results, 

desorption barriers (1.1-1.3 eV) are higher than the hydrogenation barriers (1.02 ± 

0.05 eV). Combined with the high hydrogen coverage, hydrogenation is fast compared 

to desorption; the latter controls the formation of the saturated oxygenated products. 

Reaction path analysis at various locations of the reactor (not shown) indicates that at 

low space velocities, the formation of methyl cyclohexanol and methyl cyclohexanone 

is irreversible. In contrast, at longer contact times, the methyl cyclohexanol and 

methyl cyclohexanone reactions are in partial equilibrium and these compounds 

gradually convert through the partially hydrogenated intermediates to toluene because 

thermodynamics favors hydrocarbons over oxygenates under these conditions (see 

equilibrium composition in Figure A.16a). This explains the reduction in 

concentration of oxygenates at longer space velocities shown in Figure 2.7b. Our 

reaction network supports the concept of common intermediates being at play rather 

than reactions in series.  

Finally, the hydrogenation and dehydrogenation reaction barriers of toluene 

derivatives determine the selectivity between toluene and methyl cyclohexane upon 

dehydroxylation. Equilibrium composition also favors toluene formation at higher 

temperatures, suppressing methyl cyclohexane formation at high space velocity. This 

indicate that cyclohexane formation is sensitive to the hydrogen pressure, and agrees 
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with experimental data for Pt/C[86, 125], where methyl cyclohexane is observed at 

high H2 pressure (40 atm H2, and 82 atm H2 respectively). 

Compared to previously suggested mechanisms (Figure 2.1), our microkinetic 

results elucidate a new HDO mechanism for phenolic compounds. Direct 

dehydroxylation from any stable unsaturated with hydrogenated α-carbon or saturated 

compound is not favored due to high barriers. Consistently, concerted dehydration of 

3-methyl-3,5-cyclohexadienol on Pt(111) suggested by Resasco and co-workers[77] 

exhibits a high barrier of 1.58 eV. Our model indicates that methyl cyclohexanone and 

methyl cyclohexanol form in parallel with toluene formation, different from previous 

sequential hydrogenation mechanisms. In addition, the keto-enol tautomerization 

pathway, which was proposed before, and observed in aqueous phase to follow a 

concerted mechanism with a low barrier,[90] is not an important pathway for the HDO 

of p-cresol. Specifically, a concerted mechanism where H is transferred from OH to 

the nearby C is slow (we computed a barrier of 2.69 eV for hydrogen transfer). 

Instead, this intermediate can form in two sequential elementary steps: OH 

dehydrogenation and H addition to the nearby C. The barriers of the aforementioned 

reactions turned out to be 0.47 and 1.01 eV, in close agreement with results for m-

cresol (0.40 and 0.80 eV).[77] Our microkinetic model accounts for these elementary 

steps early on in the network but indicates that these reactions are equilibrated and are 

not kinetically relevant. 

The most abundant surface species are hydrogen, derivatives of p-cresol and 

toluene derivatives (A and F in Figure 2.9) with 3 hydrogenations (see Figure A.15 for 

detailed coverages). The hydrogen surface coverage, of up to 60%, facilitates 

hydrogenation of p-cresol derivatives toward saturated intermediates to promote ring 
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activation. The next most abundant species are intermediates with three 

hydrogenations with a total coverage up to 26%. Although hydrogenation is 

thermodynamically uphill, repulsive lateral interactions decrease with increasing level 

of hydrogenation as a result of the molecule being lifted off the surface (see Figure 

2.6), resulting in increased stability of the hydrogenated intermediates. Recently, 

Sabbe et al.[126] have shown a downhill energy profile of benzene hydrogenation on 

Pt, as a consequence of co-adsorption with hydrogen. This result supports our 

observation that saturated molecules have higher coverage than the unsaturated 

molecules.  

In summary, Pt alone is capable of performing HDO chemistry because of the 

following key factors: (1) Pt is an excellent hydrogenation catalyst. As hydrogenation 

proceeds, the ring lifts gradually off the surface, reducing the reaction energy and 

barrier for dehydroxylation; (2) frequent appearance of low barrier 4-centered TSS as 

the ring is being saturated; (3) high hydrogen coverage shifting the equilibrium 

towards saturated products on the surface; (4) reaction conditions favoring 

deoxygenated products. These factors lead to a drastically different mechanism in 

comparison with the existing pathways, where the dehydroxylation occurs after 

sufficient ring hydrogenation. Dehydroxylation may occur earlier (less ring 

hydrogenation) on more oxophilic metals, like Ni, Fe and Ru, which are expected to 

have lower dehydroxylation barrier to render it competitive with hydrogenation. 

However, oxygen removal is harder on these materials due to their lower 

hydrogenation ability. 
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2.6 Conclusions 

We have analyzed the hydrodeoxygenation (HDO) reaction network of a 

prototypical phenolic compound, p-cresol on Pt catalyst. We enumerated all the 

possible reactions and parameterized the network consisting of four sequences of 

interconnected pathways. Our results are in excellent agreement with various 

experimental data on Pt/SiO2. In contrast to the general belief, and consistent with the 

experimental data, our results demonstrate that Pt alone can perform effective HDO 

upgrade of lignin-derived phenolic compounds. Interestingly, full hydrogenation of the 

ring is neither required nor is preferred. However, partial hydrogenation is necessary 

to activate the ring and lead to dehydroxylation. Similarly, dehydrogenation of the de-

oxygenated ring to toluene is thermodynamically favored over methyl cyclohexane. 

Our results indicate that the network prefers a much longer sequence of elementary 

reactions with an overall uphill and downhill energy landscape rather than the more 

intuitive paths through methyl cyclohexanol and/or methyl cyclohexane. Stable 

species such as methyl cyclohexanol and methyl cyclohexanone are not key 

intermediates, as suggested before.[127] Rather, they share common intermediates 

with the hydrocarbons. Due to thermodynamics, at longer reaction times, these species 

are consumed through the common pool of intermediates to hydrocarbons. Our results 

also provide insights into catalyst screening that can prove useful in future studies. For 

example, more oxophilic metals, such as Ni and Ru, may require less ring activation 

and thus lower hydrogen pressure while having a lower cost than noble metals, like Pt, 

due to the dehydroxylation being more exothermic and of lower reaction barrier. 
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GROUP ADDITIVITY FOR THERMOCHEMICAL PROPERTY 

ESTIMATION OF LIGNIN MONOMERS ON PT(111) 

3.1 Introduction 

Biomass is received increasing attention as a promising replacement of fossil 

fuels for renewable energy and chemicals.[53] Typical biomass conversion involves 

depolymerization via hydrolysis or pyrolysis.[6] While the depolymerization is 

relatively facile, removal of extraneous oxygen remains a challenge in the production 

of petrochemical-like products. In this regard, the research community has focused on 

understanding hydrodeoxygenation (HDO),[128] a process involving high hydrogen 

pressures (1–100 bar) and temperatures (200–400 °C) to remove oxygen as water.[6] 

While there have been several theoretical studies on the HDO of depolymerized lignin 

monomers using first-principles,[77, 87, 90, 91, 93, 117, 129-133] it was only recently 

that the full reaction network was modeled through ab–initio and kinetic models[134] 

due to the complexity involved in the reaction network.  

In order to rapidly parametrize microkinetic models, our research has focused 

on developing first-principles-based semiempirical or screening methods,[18, 33] 

wherein thermodynamic and kinetic parameters are estimated using adsorbate group 

additivity and Brønsted–Evans–Polanyi relationships, respectively. Combined with 

DFT refinement and uncertainty quantification, first-principles-based semiempirical 

methods are a powerful hierarchical approach to building and understanding complex 

reaction mechanisms.[19, 42, 44] Uncertainty quantification reveals that errors 

Chapter 3 



 

 

42 

propagated from the thermodynamic-property estimation have significantly more 

impact on the activity and selectivity prediction than those arising from the kinetic-

parameter estimation.[18, 42, 44] Thus, the development of an accurate adsorbate 

group additivity scheme is key to building accurate kinetic models for large lignin 

derivatives. 

Previously, we have developed BEP relationships for relevant elementary 

reactions,[117, 134] with the HDO mechanism of p-cresol being revealed through 

microkinetic modeling.[134] However, the full mechanism for the HDO of other 

derivatives, such as guaiacol, has yet to be elucidated due to the large reaction network 

involved. Here, we develop a group additivity scheme for lignin derivatives on Pt(111) 

surface, a material that exhibits a high activity and selectivity,[61, 135-137] and re-

examine the framework of the previous adsorbate group additivity[22, 35, 36, 138] by 

means of the quantum theory of atoms in molecules (QTAIM). We reformulate the 

group definition in agreement with the theoretical background of the group 

additivity,[139] and demonstrate significant improvement over the previous method. 

3.2 Methods 

3.2.1 Density Functional Theory (DFT) Calculations 

DFT calculations were performed using the Vienna ab initio Simulation 

Package (VASP), version 5.3.2.[140]
 
Exchange and correlation energies are computed 

with the Perdew, Burke, and Ernzerhof (PBE) functional with the DFT-D3 dispersion 

correction of Grimme et al.[96, 97] The core electrons are treated with the projector 

augmented-wave function (PAW) method.[100, 101] We used a plane-wave basis set 

with a 400 eV kinetic energy cutoff for the valence electrons. 
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The lattice constant of Pt was optimized using the Birch–Murnaghan equation 

of state,[102, 103] with a 15 × 15 × 15 Monkhorst-Pack k-point mesh.[104, 141]
 
The 

lattice constant of Pt was calculated to be 3.917 Å , which is in close agreement with 

the experimental value of 3.92 Å .[105] The Pt slab was modeled with a (4 × 4) unit 

cell using four layers. The bottom two layers were held fixed at the bulk position, 

whereas the top two layers were allowed to relax. A 20 Å  vacuum was inserted to 

minimize the interaction between the supercells normal to the surface. The Brillouin 

zone was integrated using a 5 × 5 × 1 Monkhorst-Pack k-mesh,[104] with a 

Methfessel–Paxton smearing of 0.1.[106] The adsorbate-slab system was relaxed 

using quasi-Newton and conjugate-gradient algorithm with a 0.05 eV/Å  convergence 

threshold.  

The chemical bonds were subsequently analyzed using Bader‘s QTAIM[142] 

using the critic2 software package.[143] In order to ensure convergence of the bond 

critical point (BCP) properties, the integration grid was increased by a factor of 5 

(0.03 Å /grid point). The valence charge density is employed for BCP analysis as it is 

located outside of the pseudopotential core region. All BCPs are converged within |ρ| 

= 10
-12

 e
-
/rbohr

4
. 

Thermodynamic properties (       
 ,      

  and     
 ) were computed with the 

DFT energetics and vibrational frequencies using statistical mechanics (see ref[35] for 

details), followed by referencing to the standard state using the method described in 

ref.[35]  

3.2.2 Group Additivity 

Utilization of group theory provides an estimate for the various 

thermodynamic properties by summing up contributions from ―groups,‖  
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   ∑   

       

   

   (3.1) 

   

where Ф is thermodynamic property of a molecule, νi is number of occurrence of 

group i, and φi is group i‘s contribution to the thermodynamic properties. 

Parameterization of the φi terms involves a linear regression,  

 

  (   )   (   )
   (   ) (3.2) 

  

where φ is the group thermodynamic property vector, ν is the group coefficient matrix, 

Ф is the molecular thermodynamic property vector, and M and N are the total number 

of data points and groups in the model, respectively. Linear regression of the group 

contributions involves a rank-deficient ν matrix due to a linear dependency between 

the groups. Originally, the linear dependency was lifted by assigning the contribution 

of a dependent group with those of a similar group.[144] For convenience, we applied 

the Moore-Penrose pseudoinverse of ν to assign a ―minimum norm solution‖ to all the 

dependent groups (see ref[145] for details). 

3.2.3 Training Set Sampling 

We define our population set as all the reaction intermediates in the HDO of 

lignin monomers. Previous studies of bio-oil have shown lignin monomers consist of a 

benzene ring with different combinations of three substituents: methoxy (-OCH3), 

hydroxyl (-OH), and alkyl (-(CH2)xCH3).[146] Multiring dimers are not observed as 

the dimer linkages are readily broken under pyrolysis conditions;[147] as such we 
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focused on elucidating the C-OH[134] and C-OCH3 scission[117] mechanisms. These 

studies demonstrate the C-OH scission requires partial ring hydrogenation, and C-

OCH3 scission requires dehydrogenation of the methoxy. On the basis of these 

observations, the reaction intermediates were enumerated with the following 

elementary reactions: (1) Cring-H formation, (2) C-OH scission, (3) Cmethoxy-H scission 

(dehydrogenation all the way down to 1 H), (4) C-OCHx scission, (5) O-CHx scission, 

and (6) O-H scission. Guaiacol and its 3,4,5,6-methyl derivatives are employed as 

lignin model molecules as their reaction network includes those of other lignin 

monomers observed in bio-oil. Reaction network generation was performed using the 

R.I.N.G. software package,[148, 149] resulting in a total of 6820 species (14036 

intermediates when different adsorption conformations are distinguished) and 19153 

elementary reactions. 

We develop an improved group additivity method that accounts for the 

adsorption conformation of the adsorbates. The training set consists of a total of 591 

data points with 59 intermediates obtained from previous studies.[117, 134] As a 

result, 201 calculations were performed to build the adsorption-conformation library 

for the lignin monomers. We also included an additional 331 randomly selected 

samples generated by R.I.N.G. Structures (CONTCAR and xyz format), energetics, 

and vibrational frequencies of the training set are provided in the supporting 

information of Gu et al.[21] 
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3.3 Result and Discussion 

3.3.1 Adsorption Conformations of Bio-oil Lignin Monomers on Pt(111) 

For the lignin monomers, the adsorption conformations are complex due to the 

various hydrogenation combinations of the ring. To analyze the conformations 

systematically, we classify each conformation based on the type of binding of the 

binding (central) atom, as shown in Figure 3.1. The type of binding captures the 

energetics in part; strain induced from the nearest neighbors needs also to be 

accounted for (see below). Examination of the binding reveals a unique set of 

adsorption conformations given the location of the atoms available for binding to the 

surface as well as the number of valence electrons of atoms interacting with the 

surface. Adsorption conformations of the methoxy group (–OCHx, 1<x<3) can be 

decoupled from those of the rest of the adsorbate due to the bridging oxygen. 

Nonbinding substituent groups, such as =O, –OH, –OCH3, and –CH3, do not affect 

these conformations, indicating that a change in the hybridization and the steric 

hindrance of the substituent groups is not strong enough to affect the adsorption 

conformations. In this fashion, a total of 201 ring conformations were identified; the 

chemical drawings of all conformations are shown in Appendix B. Within all the ring 

adsorption conformations found, the face–centered cubic and hexagonal close–packed 

variation affect ∆Hf,298 by 0.68 kcal/mol on average, and 3.42 kcal/mol in maximum 

with higher deviation seen for the unsaturated molecules likely due to strain. 
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Figure 3.1. Local binding sites observed in lignin monomers on Pt(111). M represents 

metal atom. Top (bottom) row shows the side (top) view of the binding 

site. 

3.3.2 Conjugation-Character Analysis 

Our previous surface group additivity scheme[22, 35, 36] was built under the 

assumption that the aromaticity and the conjugation of the adsorbates are completely 

lost upon adsorption; thus the bonds of surface bound atoms were treated as a single 

bond in the gas phase. However, the molecular orbitals of an adsorbate split into 

bonding and antibonding orbitals upon interaction with the d-band of the metal. 

Therefore, we expect the C–C bond in the gas phase involving only s- and p-orbitals to 

be different from the C–C bond on the surface where each carbon is adsorbed in a ζ 

configuration. Specifically, ethylene adsorption on Ni(111)[150] and Rh(111)[151] 

shows only a portion of the electrons are donated to the surface from the π orbital, and 

vice versa with following electron back-donation from the surface to the π* orbital. 

Additionally, the molecular orbitals from benzene adsorption on Pt(111)[45] and 

ethlyene adsorption on Ag(001),[152] Cu(110)[153] and Ni(11)[153] show the lobe of 
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pz-orbitals (specifically, HOMO/π) pointing toward the surface is localized on the 

surface metal atom(s), while the other lobe pointing normal to the surface remains 

conjugated (when they are in-phase).[154] This indicates that a ―single bond‖ between 

two adsorbed atoms is not the same as a single bond in the gas phase.  

While previous DFT studies show that the chemical environment of adsorbates 

differs from that in the gas phase, it is not clear how it affects the bond classification 

in group additivity. The virial theorem allows for the spatial partitioning of the 

electronic energy that has previously been used to understand group additivity using 

DFT.[139] The energy of each atom (or group of atoms) in the system is computed by 

integrating the energy density within the Bader volume. Comparison of the partitioned 

atomic energy with the regressed group additivity values reveals the partitioned energy 

of a group changes depending on the connecting groups; however the regressed group 

energy is conserved as the partitioned energy of the connected group changes in an 

equal and opposite amount. Furthermore, the energy of a group is transferable to other 

molecules as the charge distribution within a Bader volume is identical between 

different molecules. Finally, the electron delocalization does not affect the energy of a 

group as delocalized electrons from other groups and the local electrons sum up to 

construct an identical charge distribution, regardless of where the delocalized 

electron(s) comes from.[139, 155] While more accurate energy partitioning methods 

have recently been introduced,[156, 157] it is clear that the electron distribution within 

the groups needs to be consistent. Therefore, we investigate bonds in adsorbates by 

means of the QTAIM bond critical point to quantitatively analyze the charge topology 

in order to correctly categorize homologous bonds for the application of group 

additivity.   
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In Table 3.1, the properties of the electronic density at the BCPs for the 

binding configurations in Figure 3.1 are compared to those of gas phase ethane, 

ethylene, acetylene, and benzene. The magnitude of electronic density (ρ) and the 

Laplacian of the electronic density (
2
ρ) are related to the strength of the bond, and the 

sign of 
2
ρ indicates whether the bond is covalent (negative) or ionic/van der Waals 

(positive). Furthermore, we compute the ellipticity, which is defined as the anisotropy 

of the electron density orthogonal to the bond direction, that is, the π characteristics of 

the bond, 

 

   
  

  
   (1) 

where λ1 and λ2 are the lowest and second lowest Hessian eigenvalues of the electron 

density. Table 3.1 shows the ε of ethane is 0 while the ε of ethylene and benzene are 

0.30 and 0.17, respectively. Thus, the conjugation is nonexistent for a single bond 

(ethane), is stronger for a double bond (ethylene), and is weaker for a delocalized bond 

(benzene). The ε of acetylene is 0 as the two π orbitals are orthogonal to each other 

giving rise to a circular anisotropic geometry. The bond order, n, can be computed as a 

function of ρ,[158, 159]  

     (   ) (2) 

where A and B are fitted using ethane, ethylene, and acetylene as our standards. While 

the fitted bond order is empirical, it provides a convenient measure to compare the 

electron density at the BCP with those of the standard gas-phase molecules. 
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Table 3.1. BCP analysis between two carbons in gas phase and on the surface. C2 and 

C3 molecules are used where valence is capped with hydrogen. 

Subscription of C indicates the binding-site type. Structures are shown in 

Figure B.6 in the appendix. 

Phase Bond Type ρ (e
-
/rbohr

3
) 

2
ρ (e

-
/rbohr

5
) ε n 

Gas  C-C (ethane) 0.242 -0.61 0.00
3 

1.00 

 

C=C (ethylene) 0.354 -1.35 0.30
3
 2.00 

 

C≡C (acetylene) 0.420 -1.58 0.00
3
 3.00 

 

C-C (benzene) 0.316 -1.12 0.17
3
 1.58 

      Adsorbed  Cζ-Cζ 0.267 -0.78 0.06 1.17 

 

Cζ-Cζζ 0.276 -0.82 0.03 1.23 

 

Cζ-Cπ 0.278 -0.85 0.08 1.25 

 

Cζ-C=M 0.287 -0.92 0.01 1.32 

 

Cζ-Cζπ 0.278 -0.83 0.05 1.25 

 

Cζ-Cπζ 0.263 -0.73 0.06 1.14 

 

Cζ-C 0.252 -0.67 0.01 1.06 

      

 

Cζζ-Cζζ 0.297 -0.96 0.07 1.41 

 

Cζζ-Cπ 0.278 -0.85 0.05 1.25 

 

Cζζ-C=M 0.330 -1.17 0.13 1.72 

 

Cζζ-Cζπ Unstable 

   

 

Cζζ-Cπζ Unstable 

   

 

Cζζ-C 0.258 -0.72 0.02 1.10 

      

 

Cπ-Cπ
1
 0.283 -0.88 0.06 1.28 

 

Cπ-Cπ
2
 0.305 -1.04 0.15 1.48 

 

Cπ-C=M 0.289 -0.94 0.05 1.34 

 

Cπ-Cζπ 0.276 -0.82 0.03 1.24 

 

Cπ-Cπζ Unstable 

   

 

Cπ-C 0.257 -0.72 0.03 1.10 

      

 

C=M-C=M 0.356 -1.33 0.25 2.02 

 

C=M-Cζπ 0.317 -1.10 0.07 1.59 

 

C=M-Cπζ 0.264 -0.70 0.09 1.14 

 

C=M-C 0.271 -0.82 0.03 1.19 

 

     

 

Cζπ-Cζπ Unstable    

 

Cζπ-Cπζ
1
 0.275 -0.81 0.03 1.22 

 

Cζπ-Cπζ
2
 0.299 -0.97 0.13 1.42 

 

Cζπ-C 0.255 -0.70 0.02 1.08 

      

 

Cπζ-Cπζ  Unstable 

   

 

Cπζ-C 0.255 -0.70 0.02 1.08 
1 At separate sites. 2 At the same site. 3 These values are in agreement with the previous 

studies.[158-160] 
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Overall, ε > 0 and n > 1 suggest the bonds between the adsorbed carbons are 

partially conjugated, signifying the adsorbate C–C bonds are different from those of 

the gas phase. The majority of the adsorbate‘s ε and n are between those of the gas-

phase ethane and benzene, indicating the presence of a weak conjugation with the 

magnitude of the conjugation being dependent on the overlap of the p-orbital lobes. 

For example, the conjugation character of the Cζζ–C=M bond is strong (ε = 0.13, n = 

1.72) as the molecular orbital of the Cζζ atom, which binds carbon to the two Pt, aligns 

with the p-orbital of the C=M atom, which double-bonds to the Pt (see Cζζ–C=M in 

Figure B.6) Alternatively, the Cζ–C=M bond shows minimal conjugation (ε = 0.01, n = 

1.32) as the p-orbitals do not align (see Cζ–C=M in Figure B.6). The C–C bond in the π 

and ζπ local binding sites (see Figure 3.1) shows a fairly strong conjugation 

comparable to the benzene C–C bond (see Cπ–Cπ
2 

and Cζπ–Cπζ
2
 in Table 3.1). This is 

expected as the π-orbital of the C-C bond is retained and interacts with the surface. By 

taking the average of ε, the conjugation strength in increasing order is: C < Cζ < Cζπ < 

Cζζ < Cπ < Cπζ < C=M. This ordering is justified as the p-orbital character becomes 

more discernible going from left to right (from C being sp
3
 hybridized to Cπ with a 

retained π-orbital to C=M with a double bond). The conjugation of the C=M–C=M bond 

closely resembles the C=C bond of ethylene, suggesting the C=M bond is likely the 

C–M bond, and the M–C=C–M configuration is more stable than M=C–C=M. Our 

analysis indicates that categorizing bonds based on the binding type is important for 

adsorbate group-additivity as the conjugation strength is site sensitive. 

Next, we explore the effect of the binding of nearest neighbor atoms on the 

conjugation to account for possible strain effects mentioned above. Table 3.1 shows 

that the C–C bond in benzene exhibits less conjugation than in ethylene. For ethylene, 
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the p-orbital has another p-orbital with which to conjugate, whereas for benzene each 

p-orbital has two p-orbitals to conjugate with, allowing electron delocalization. This 

delocalization effect for adsorbates is investigated in the case of ζ binding of nearest 

neighbor(s) in Table 3.2. Overall, the degree of the C–C bond conjugation is 

dependent on the binding of the nearest neighbors. Specifically, electrons may localize 

or delocalize depending on the binding type. For example, conjugation of the Cζ–Cζ 

bond is weakened in the presence of Cζ neighbors (ε = 0.06, 0.05, 0.05 for 0, 1, 2 Cζ 

neighbors), which indicates delocalization. The opposite trend is observed for the Cπ–

Cπ bond (ε = 0.14, 0.15, 0.16 for 0, 1, 2 Cζ neighbors) with a similar trend for the Cζπ–

Cπζ bond. Charge-flow analysis (shown in Figure B.8 in the appendix) suggests that 

the π electrons from the neighboring Cζ are donated to the π system of the Cπ–Cπ, 

which strengthens the conjugation. For the Cζ–Cζζ bond, the conjugation is 

strengthened with Cζ neighbor attached at the Cζ side, and is weakened when attached 

at the Cζζ side. Therefore, electron (de)localization is dependent on the binding type 

and further supports the inclusion of type-specific terms into the group additivity 

framework. Additionally, the binding of the nearest neighbor changes the geometrical 

alignment of the p-orbital by inducing strain. For example, the Cζ–C=M bond shows a 

minimal conjugation without binding neighbor, but a strong conjugation with a Cζ 

neighbor attached at C=M. This is attributed to the Cζ neighbor straining the C=M 

carbon to lay flat, resulting in a better alignment of the p-orbital as shown in (C)Cζ-

C=M(Cζ) in Figure B.7. Thus, the nearest neighbors‘ effect is not only due to the 

binding type dependence of the electron (de)localization, but also to the geometric 

alignment of the p-orbital. 
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Table 3.2. C-C BCP dependence on the binding of the nearest neighboring carbon. (C) 

represents a –CH3 group, and (Cζ) represents a -CH2 group adsorbed on a 

ζ site. Structures are shown in Figure B.7. 

Bond ρ (e-/rbohr
3
) 

2
ρ (e-/rbohr

5
) ε n 

(C)Cζ–Cζ(C) 0.261 -0.73 0.06 1.12 

(C)Cζ–Cζ(Cζ) 0.270 -0.77 0.05 1.19 

(Cζ)Cζ–Cζ(Cζ) 0.271 -0.77 0.05 1.19 

     (C)Cζ–Cπ(Cπ) 0.274 -0.81 0.07 1.22 

(Cζ)Cζ–Cπ(Cπ) 0.276 -0.83 0.09 1.23 

     (C)Cζ–Cζζ(C) 0.270 -0.77 0.02 1.19 

(C)Cζ–Cζζ(Cζ) 0.264 -0.73 0.01 1.15 

(Cζ)Cζ–Cζζ(C) 0.267 -0.76 0.05 1.17 

(Cζ)Cζ–Cζζ(Cζ) 0.261 -0.73 0.06 1.12 

     (C)Cζ–C=M(C) 0.281 -0.87 0.02 1.27 

(C)Cζ–C=M(Cζ) 0.281 -0.85 0.08 1.27 

(Cζ)Cζ–C=M(C) 0.285 -0.89 0.04 1.31 

(Cζ)Cζ–C=M(Cζ) 0.290 -0.91 0.10 1.34 

     (C)Cζπ–Cπζ(C) 0.286  -0.86 0.07 1.31 

(Cζ)Cζπ–Cπζ(C) 0.287 -0.88 0.11 1.32 

(C)Cζπ–Cπζ(Cζ) 0.296 -0.96 0.12 1.39 

(Cζ)Cζπ–Cπζ(Cζ) 0.294 -0.94 0.14 1.38 

     (C)Cπ–Cπ(C) 0.304 -1.02 0.14 1.47 

(C)Cπ–Cπ(Cζ) 0.301 -0.99 0.15 1.43 

(Cζ)Cπ–Cπ(Cζ) 0.291 -0.92 0.16 1.35 

3.3.3 Group-Additivity-Model Description 

Previous group additivity models used a ―valence-based scheme‖ where the 

number of valence electrons of the atom forming a bond with the surface atom(s) was 

specified in each group.[35] For example, the C(C)(H)2(M) group in prior work would 

represent carbon adsorbed in any of the three different binding modes: ζ-site, π-site, 
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and ζπ-site, as shown in Figure 3.1. This method reduces the number of fitted 

parameters, but the binding-energy difference arising from the type of binding mode is 

not accounted for.  

On the basis of the discussion above, we introduce two new group additivity 

schemes to account for the dependence on the binding type, as summarized in. The 

major difference between the two models is the strategy employed in defining the 

group centers and their nearest neighbors. The BCP analysis has shown that the degree 

of bond conjugation depends on the binding type of the two atoms, as well as the 

conjugation of the nearest neighbors and their binding mode. Therefore, we derive a 

―site-based‖ model that resolves the type of bond of both the group center and the 

nearest neighbors. This model requires a high number of fitted parameters due to its 

higher spatial resolution. In order to reduce the number of fitted parameters, we also 

introduce a ―conjugation-based‖ model which lumps some of the nearest neighbor 

terms. Specifically, while C=O and C=M both have full double bond orbital available for 

conjugation, only a portion of the p-orbital is available for the Cζ, Cζζ, Cπ, and Cζπ 

sites. Thus, those terms are lumped as a single type Cpp, which indicates that a portion 

of the p-orbital is available for conjugation.  

Table 3.3. Level of site description in prior and new group additivity schemes. 

  Valence-based
1
 Conjugation-based Site-based 

Group center
2 

Element and 

hybridization 

+ Site resolved + Site resolved 

Nearest Neighbor
2
 Element and 

hybridization 

+ Lumped based on 

binding mode 

Cζ, Cζζ, Cπ, Cζπ → Cpp 

+ Site resolved 

1 Groups only describe number of valence electrons interacting with the surface. 
2 For a group, A(B)x(C)y(D)z, A represents the group center, and B, C, D represent nearest neighbors. 
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3.3.4 Model Assessment 

Following parameter regression, we compare the group additivity estimates 

with the DFT computed values in Figure 3.2a. We focus on ∆Hf,298 as it is the largest 

source of error for the computation of the kinetically relevant ∆Gf,298 (∆S298 and Cp 

contribute minimally to the ∆Gf,298 error[35]). For model validation (Figure 3.2b), we 

adopt the leave-one-out cross-validation method.[161] In this method, the ∆Hf,298 

regression is performed without one datum which is then estimated and compared with 

the real ∆Hf,298. This omission–regression–estimation process is repeated for all the 

data points to provide a better assessment of the model than the regression alone. 

Additionally, this approach has an advantage over the conventional validation method 

where the data set is partitioned to 70% training set and 30% validation set: because 

the most amount of data possible is used to regress the model parameter, the error 

attributed to the lack of data points is minimized. 
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Figure 3.2. Parity plots for group-additivity computed versus DFT-estimated ∆Hf,298 

for (a) regression and (b) validation. AE stands for absolute error. 

The valence based model performs poorly, with a mean absolute error (AE) of 

5.15 kcal/mol. The conjugation- and site-based models perform significantly better. 

With the description of binding type of both the group center and its nearest 

neighbor(s), conjugation is described better. The mean AE disparity between the 

regression and validation suggest overfitting of the model. The valence-based model 

shows the smallest disparity (0.21 kcal/mol) as only 17 parameters are regressed, 

followed by the conjugation-based model (0.52 kcal/mol) with 95 regressed 

parameters (rank = 83), and the site-based model (0.86 kcal/mol) with 202 regressed 

parameters (rank = 169). However, given the same amount of data, overfitting is 

expected to be the highest with the number of parameters is largest, and despite the 

Mean AE =  5.01 kcal/mol 
Max AE =  22.43 kcal/mol 

Valence-based Conjugation-based Site-based a) 

b) 

Mean AE =  3.30 kcal/mol 
Max AE =  17.75 kcal/mol 

Mean AE =  1.95 kcal/mol 
Max AE =  9.46 kcal/mol 

Mean AE =  5.15kcal/mol 
Max AE =  22.65 kcal/mol 

Mean AE =  3.83 kcal/mol 
Max AE =  19.89 kcal/mol 

Mean AE =  2.81 kcal/mol 
Max AE =  13.14 kcal/mol 

Valence-based Conjugation-based Site-based 
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overfitting, the site-based model remains the best model as the mean and max AE 

from the cross-validation are the lowest. Prior surface models invoked various 

corrections, such as weak H–M interaction, furan ring deformation, adsorbed furan 

ring, and C(M)2–C(M) –C(M) and ring strain[35, 36] to correlate the data well. These 

are no-longer necessary as information about the nearest neighbors accounts for the 

physical phenomena described by these corrections. We introduced only one 

correction for the excess strain observed when a methoxy group is bound to the 

surface, while the rest of the adsorbate remains in a certain adsorption conformation. 

This correction is discussed in detail in Appendix B. 

3.3.5 Strain Description 

The group additivity method often falls short for strained systems. For gas 

phase molecules, strain-corrections are assigned for the various ring sizes.[144, 162] 

For adsorbates, strain is complex as multiple rings are created with multiple binding 

sites. Our previous model empirically accounted for strain by considering a ring 

formed by two surface binding atoms (e.g. M–C–C–C–M, and M–C–C–M).[36] This 

method is satisfactory for linear aliphatics where the adsorbate involves one strained 

ring,[22, 36] but, for the multidentate ring molecules, such as benzene, the strain of the 

six-carbon ring is often affected by other strained rings formed by the carbons and 

surface atoms; thus computation of ring-strain would require knowledge about 

multiple strained angles. 

Here, we show that the site-based model captures the strain effect the best. 

Previous strain studies described the angle-strain as a function of the angle of the 

central atom and two neighbor atoms making up the angle.[144, 163-166] In terms of 

group additivity, this means the strain energy would be captured by each group better 
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if the angles between the group center and the nearest neighbors are closer to constant 

among the species in the training set as the group already captures element and 

hybridization. To assess this, we plot a histogram of the deviations between each angle 

in the training set and its average in each group, as shown in Figure 3.3. The site-based 

model gives the most narrow-distribution, that is, the most consistent angle description 

in each group. The deviation is due to the strain induced by other groups in the 

adsorbate. The largest deviations are observed for Cζζ(C)2 and C=M(C)2 groups. These 

groups‘ two nearest neighbors point in opposite direction of each other (see Cζζ and 

C=M in Figure 3.1) but the two nearest neighbors must curve inward in order to enclose 

the six-carbon ring, and, as a result, these group centers are sensitive to the location of 

the next nearest surface binding atoms. On the other hand, Cζ, Cπ, and Cζπ provide 

naturally inward curved substituent directions (see Figure 3.1) and are less sensitive to 

strain induced from other groups. 

 

Figure 3.3. Deviation of bond angles in each group from their average. The more 

narrow the distribution, the more alike the angles are for a group among 

all species in the training set. 

Valence-based Conjugation-based Site-based 

Mean AD =  2.50 o 
Max AD =  23.41 o 

STD = 3.62 o 

Mean AD =  2.01 o 
Max AD =  17.63 o 

STD = 3.10 o 

Mean AD =  3.97 o 
Max AD =  27.56 o 

STD = 5.40 o 
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3.4 Conclusions 

We developed an adsorbate group additivity scheme for bio-oil lignin 

monomers and single-ring aromatic hydrocarbons on Pt(111). Using the reaction 

network of HDO of guaiacol as an example, we defined an ensemble of 591 

adsorbates for DFT calculations and subsequent regression of group values. Using 

QTAIM, we were able to define bonds in the adsorbates in accordance with the 

theoretical backbone of the group additivity. We have found that the binding type of 

adsorbates with surface sites not only affects the binding strength, but also the 

conjugation character of the bonds in the adsorbates. We have introduced a model 

(site-based) where the groups are defined based on the binding type of the group 

centers and of their first nearest neighbors with surface sites. In a simpler version of 

this model (conjugation-based model), some of the nearest neighbors are lumped to a 

single group (partial conjugation). Both models show significant improvement over 

previous models in accurately describing the thermochemistry of adsorbates. Other 

corrections invoked in prior work are no-longer necessary. The group additivity can be 

used to build large microkinetic models at significantly lower cost followed by the 

DFT refinement and to estimate thermodynamics on different mono-/bi-metallic 

surfaces using linear scaling relationships. 

3.5 Acknowledgements 

This research was supported by the NSF under grant number CHE-1415828. 

The authors acknowledge computational resources of the Extreme Science and 

Engineering Discovery Environment (XSEDE), which is supported by National 

Science Foundation Grant OCI-1053575. In connection with XSEDE, the 

computations were performed on high performance computing clusters administered 



 

 

60 

by the Texas Advanced Computing Center (TACC) and on the Kraken cluster 

administered by the National Institute for Computational Sciences (NICS). G. G. is 

grateful to Dr. Glen R. Jenness for the paper writing improvement. 

 

 



 

 

61 

GROUP A DDITIVITY FOR AQUEOUS PHASE THERMOCHEMICAL 

PROPERTIES OF ALCOHOLS ON PT(111) 

4.1 Introduction 

Biomass processing occurs often in water. Aqueous phase reforming is one of 

the processes and converts polyols and sugars in water to H2 and CO2 at relatively low 

temperatures under pressure, as popularized by Dumesic and co-workers.[167] An 

alternative large scale use of biomass conversion is bio-oil production via pyrolysis, 

which contains 15-30% water[6], and which needs to be further upgraded via 

hydrodeoxygenation. Here solvation effects are important due to the deactivation of 

well-studied NiMo sulfides in aqueous environment.[168] Another alternative is the 

selective transformation of sugar derivatives to largely used monomers such as acrylic 

or adipic acid.[169, 170] All of these processes involve hydrogenations, C−C and 

C−OH bond breakings in the presence of water, which impose different conditions 

than for the current petro-chemistry. As demonstrated by several experimental studies, 

the presence of water is not innocent, even beyond catalyst stability, driving the need 

for new catalytic systems.[13, 171-173] 

The difference between chemistry in the gas- and solution-phase can be 

dissected into several distinct effects: (1) solubility influences the concentration of 

reactants, intermediates and products and hence impacts the kinetics even if the rate 

constants would not change compared to the gas-phase ; (2) the solvent can participate 

directly in the reaction, either as a reactant or as co-catalyst (e.g., in relay mechanisms 

Chapter 4 
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of proton transfers); (3) the averaged interaction between the solvent and the solute 

changes the energetics compared to the gas-phase, stabilizing large dipole moments 

and charge-separations (heterolytic bond dissociations); (4) entropic contributions 

arise as the available phase-space can be significantly different in solution compared 

to the gas-phase, both in terms of translation/rotations and accessible configurations; 

and (5) the occurrence of homogeneous reactions in solvent phase such as dehydration 

and aldol condensation.[174] 

Despite the wide use of solvent in biomass conversion, only a limited number 

of theoretical studies have explicitly addressed solvation effects.[39-41, 90, 175-179] 

This shortcoming is due to the methodology: there are no computationally affordable, 

broadly validated and general methods to include solvent effects in heterogeneous 

catalysis. The most rigorous way to describe reactivity in condensed phases is to 

perform thermodynamic integration at the ab initio molecular dynamics (AIMD) 

level.[180, 181] However, these computations are prohibitively expensive, as 

equilibration of the solid-liquid interface and convergence of the free energy would 

require more than 100 ps of simulations,[182] but todays computing power only 

allows to obtain about 10 ps for metallic surfaces with a reasonable effort.[183] 

Therefore, different approximations have been proposed: inclusion of only a couple of 

solvent molecules (called micro-solvation),[184, 185] adsorption of ice-like water 

layers on metallic surfaces,[186, 187] the use of a combination of optimization and 

AIMD,[90, 178, 179] the classical treatment of solvent interactions[37, 176] or the 

application of implicit solvent models.[38, 188, 189] In terms of interpretable 

differences between gas-phase and solution-phase reactivity, the advantage of implicit 

solvents is that solvation energies are directly accessible, which is not the case for 
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AIMD simulations. On the other hand, the main limitation of implicit solvents is that 

no direct participation of the solvent can be described, in contrast to micro-solvation 

approaches. As a compromise between efficiency and general accuracy, the 

combination of an implicit solvent with micro-solvation has been explored.[185, 190-

193] 

The main conclusions of the various theoretical studies are that adsorbate 

bindings are weaker in solution than in gas-phase given that the surface needs to be 

desolvated and only roughly half of the adsorbate is exposed to the solvent.[40] 

Second, reaction barriers are minimally affected, except for proton transfers for which 

water can act as a relay or at least activates O−H bonds[185] and when hydroxyl 

groups are well-exposed to the solvent in the course of the elementary step.[37, 39] As 

a minor variant, elementary steps that drastically change the surface dipole moment 

are also influenced by the solvent.[39, 41] This phenomenon can, in the case of acidic 

protons, lead to heterolytic bond breakings at the water/metal interface.[184] 

Furthermore, solvent effects are critical when surfaces are partially charged, either in 

electrochemistry[194] or when assessing the influence of a base which promotes the 

reaction through co-adsorption.[195] Despite these progress, investigation of the effect 

of solvent on the entire reaction networks using density functional theory (DFT) 

remains challenging due to the tremendous computational burden, especially for large 

alcohols and polyols.[18]  

Previously, group contribution methods were pioneered by Benson to predict 

thermodynamic properties of molecules at a greatly reduced computational cost.[162] 

Those methods use molecular fragments to correlate thermodynamic properties. The 

simplest form is to estimate the property of a given component as the sum of its 



 

 

64 

molecular fragments or groups and is simply called group additivity.[162] It is based 

on the observation that state properties of molecules can be expressed as simple sums 

over values assigned to the functional groups. As an example, elongating a linear 

alkane by one additional methylene (CH2) group decreases the heat of formation of the 

alkane by ~5 kcal/mol. This simple picture can be refined by applying various 

corrections for neighboring groups. Nevertheless, the property evaluations are 

extremely simple compared to quantum mechanical computations. This method was 

initially developed for closed-shell gas molecules,[162, 196, 197] and it has since been 

extended to open-shell radicals,[198] transition states,[199, 200] and carbenium 

ions.[201] Additionally, group additivity has been applied to pure liquids and dilute 

solutes,[202] and it has been shown to accurately predict various state properties such 

as the volume, density, viscosity, boiling point, melting point, critical temperature, and 

pressure.[203-206]  

The group additivity scheme accounts for intra-molecular interactions, whereas 

solution non-ideality requires inclusion of inter-molecular interactions, whose strength 

depends on the composition of the mixture. To address this issue, group contribution 

methods that include group interactions were developed. For instance, universal 

quasichemical functional-group activity coefficients (UNIFAC),[207, 208] computes 

the average interaction between groups using Flory-Huggins statistical-mechanics 

model. This method employs the surface area and volume of each group, in addition to 

the interactions between groups as descriptors, which are then correlated to activity 

coefficients. More recently, the group contribution method has been extended to 

equations of state, with the statistical associating fluid theory (SAFT) and conductor-

like screening model-segment activity coefficient (COSMO-SAC) models 
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demonstrating promising performance.[209, 210] These methods apply to bulk fluid 

mixtures but do not consider catalyst surfaces. The Delaware group has been 

developing group contribution methods[138] to predict adsorbate properties for 

hydrocarbons, oxygenates, furanics and aromatics,[35, 36, 211] which, combined with 

linear scaling relationships, can predict thermochemistry on metal surfaces.[22, 34] 

However, such a group additivity method for the prediction of thermodynamic 

properties of adsorbates in the presence of a solvent has yet to be developed. 

In this paper, we demonstrate that the introduction of an implicit solvent 

changes the reaction equilibrium constants of specific reaction types (e.g., C−H and 

O−H dissociations). Then, we build a group additivity method for Gibbs free energy 

of formation of linear alcohol adsorbates in vacuum and solvent using the polarizable 

continuum method (PCM) for implicit solvation. Cross-validation reveals that the 

mean absolute error (MeanAE) is 1.0 kcal/mol and 3.3 kcal/mol for the solvation free 

energy and the Gibbs free energy of formation, respectively. We further assess our 

model by comparing DFT computed reaction energies to those predicted via group 

additivity. 

4.2 Methods 

4.2.1 Density Functional Theory and Polarizable Continuum Model 

The DFT computations are carried out with the Vienna Ab initio Simulation 

Package VASP 5.3.5.[212] The electronic structure is described within the generalized 

gradient approximation using the PBE[96] exchange correlation functional. The 

dispersion correction is included using the dDsC approach.[213, 214] The projector 

augmented wave method (PAW) is used to describe the ion-electron interactions.[100, 
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101] The plane wave basis set is cut off at 400 eV. The electronic energy is converged 

to 10
-6

 eV and the forces to 0.02 eV Å
-1

. The solvation is described using an implicit 

solvation model as implemented in the package VASPsol.[188, 215] Dipole correction 

in the z direction is applied for adsorbates to avoid periodic summation of induced 

dipole and solvent model effect.[176]  

The platinum surface is simulated as a p(4 × 4) slab consisting of four layers. 

The two bottom layers are kept fixed at the optimal bulk position in which the Pt-Pt 

distance is 2.80 Å . The vacuum distance is large enough to avoid spurious interactions 

(the norm of the vector perpendicular to the surface is 22.86 Å ). The integration of the 

Brillouin zone is performed using a Monkhorst-Pack mesh of with 3 × 3 × 1 k-points 

for surfaces. The gas phase calculations are done at the gamma point in a cubic box of 

20 Å  in length. 

4.2.2 Thermodynamic Property Calculations of Molecules 

The Gibbs free energy of formation of a species i in gas-phae, ∆G°f,i(gp)
, is 

 

      (  )
      (  )

    (  )
 (4.1) 

 

where ∆Hf,i(gp) 
is the enthalpy of formation of the molecule i in gas-phase, T is 

the  temperature, and Si(gp)
 is the entropy of the species i in gas-phase computed using 

statistical mechanics, atoms‘ coordinates and vibrational frequencies (See ref[35] for 

details). We consider two type of species i: a gaseous molecule and an adsorbate. 

∆Hf,i(gp)
 is estimated as 
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where Ei(vac)
 is the DFT electronic energy of the gaseous species i in vacuum, Ei*(vac) 

is 

the DFT electronic energy of the adsorbate i and the slab, E*(vac)
 is the DFT electronic 

energy of the empty slab, Hrt,i(gp)
 and Hv,i(gp)

 are the rotational (r), translational (t)  and 

vibrational (v) contribution to the heat of formation for the species i computed in the 

gas-phase, respectively (See ref[35] for calculation details). For a strongly bounded 

adsorbate, the rotational and translational degrees of freedom of atomic motion 

become vibrational upon binding, thus Hrt,i(gp) 
does not exist for adsorbates. To change 

from DFT reference system (infinitely separated atoms and electrons) to conventional 

heat of formations, we introduce the adjustment ∆Href,i (see refs [35] and [34] for 

computational details and the Supporting Information of Gu et al.[216] for the 

structures and properties of reference molecules). For the computation of the Gibbs 

free energy of formation of a solute i in water or an adsorbate i at water/metal 

interface (∆G°f,i(aq)
), we assume that solvation does not depend on temperature (see the 

Appendix for further discussion) and that the entropy of a species is the same in gas-

phase and water. In particular the later approximation is rather severe for adsorption 

from the liquid phase on the catalyst: Although for ideal solutions the entropy of a 

solute is the same as the one in the corresponding gas-phase when appropriately taking 

into account the available volume,[217, 218] the entropy in aqueous solution for real 

solutes differs by roughly a factor 2.[174, 219] Since an adsorbate competes with the 

solvent for adsorption sites, the entropy of the adsorbate is, in general, even more 

challenging to assess than the entropy in solution. Although the structure of the solid-

liquid interface remains a matter of debate, it is well established that the solvent 

properties at the interface are different compared to the bulk liquid.[220-223] 

Determining the change in entropy upon adsorption requires large-scale molecular 
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dynamics simulations, which are difficult to converge, both in terms of size and time 

scale.[222, 224-226] While AIMD would be ideal for such studies, the corresponding 

computational effort is tremendous.[223, 227-229] On the other hand, force field 

methods, which make such investigations affordable,[230, 231] suffer from low 

availability for general interfaces and very limited accuracy, best exemplified for the 

seemingly trivial water-metal interface, for which many potentials exist,[181, 227, 232, 

233] but only for the case of Cu/H2O does there exists a well validated force field.[225] 

Because of all these considerations, the simplistic approximation taken herein makes 

our approach transparent, and once established, the corresponding entropy corrections 

can be trivially applied to our model. Hence, ∆Gf,i(aq)
 is 

 

      (  )
      (  )

    (  )
  

  (  )
   (  )

 
(4.3) 

 

where ∆Hf,i(aq)
 and Si(aq)

  are the enthalpy of formation and the entropy of species i in 

aqueous solvent, respectively. The effect of the implicit solvation is included in 

∆Hf,i(aq)
 as the change in electronic energy: 
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Here Esol,i is the solvation electronic energy of a species i, Ei(aq)
 is the DFT 

electronic energy of the solute i in implicit water, Ei*(aq) 
is the electronic energy of the 

solvated adsorbate i and the slab, E*(aq) 
is the electronic energy of solvated empty slab 

(all without cavitation energy). The cavitation energy approximates the energetic cost 

to insert a solute in a solvent, such as solvent reorganization and (Pauli) repulsion. Its 
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energy is usually assumed to be proportional to the solvent accessible surface area. We 

introduce an empirical cavitation energy correction term, Ecav,i. The computation of 

cavitation energy using PCM is difficult for the adsorbates and the slab due to 

numerical instability. Instead, we compute cavitation energy for a small subset of our 

data, and regress the cavitation energy contribution for each element. The computation 

of Ecav,i is discussed below in detail. The Gibbs free energy of solvation of a species i, 

∆G°sol,i, is the Gibbs free energy to transfer a species i from the gas-phase to the liquid 

bulk, which, using the equations above, is 

 

              (  )
      (   )

               (4.6) 

 

The accuracy of the PCM is further assessed in Figure C.1 in the Appendix, 

where the DFT-computed values of ∆Gsol,i are in a good agreement with the 

experimental ∆Gsol,i at 298 K, with a mean absolute deviation of 1.1 kcal/mol. 

Unfortunately, such data are not available for species at the interface. Hence, the 

accuracy of the herein applied PCM cannot be assessed. Furthermore, computationally 

feasible alternatives to implicit solvents to produce a consistent set of undoubtedly 

reliable solvation free energies at the interface are, to the best of our knowledge, not 

yet available. More reliable solvation free energies could be obtained with an accurate 

force field[176] or with long-time-scale ab initio molecular dynamics simulations; in 

the first case, the force field is currently missing, and the second option is not yet 

computationally affordable. 

In addition to the heat of formation and entropy, we also compute the heat 

capacity at any temperature T for the species i, CP,T,i(gp)
 (CP,T,i(aq)

 CP,T,i(gp)
; See ref[35] 

for calculation detail) for the group additivity regression in order to transfer properties 

to different temperatures. We surveyed CP,T,i(gp)
 between 100 and 1500 at 100 K 
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intervals. Figure 4.1 summarizes the relationship between gaseous molecules, 

molecule in the bulk liquid, adsorbates, and solvated adsorbates in a thermodynamic 

cycle. 

 

 

Figure 4.1. Various considered states for the system, summarized in a thermodynamic 

cycle. i is an arbitrary species, and i‘ is the species i adsorbed on the 

surface. Boxes represents a molecule in the gaseous state, in the bulk 

liquid, adsorbed on Pt(111), and adsorbed and solvated on Pt(111) going 

from left to right and from top to bottom. The three thermodynamic 

properties in each box represent the parameters predicted by our method. 

We assume that the solvation effect is temperature independent, and thus 

the entropy and heat capacity are the same in vacuum and in water. 

4.2.3 Group Additivity 

The group additivity method assumes that a thermodynamic property, Ф, is a 

linear combination of the thermodynamic properties of groups found within a 

molecule  
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    ∑    

       

   

   (4.7) 

   

where nij is the number of times group j appears in a species i and φj is group 

j‘s contribution to the thermodynamic property. φj values can be derived via linear 

regression of experimental data or quantum chemical calculations (vide inf ra). 

Conventionally, the linear regression is performed for three thermodynamic 

properties: standard heat of formation, standard entropy, and heat capacity at 

temperature T.[162, 198] To account for the solvation effect, we perform the 

regression to one additional property, the standard heat of formation of solvated 

species. In order to perform regression to properties of both gaseous molecules and 

adsorbate molecules together, we found that subtracting rotational and translational 

contribution from the heat of formation of gaseous molecules improves the fitting.[22, 

35, 36] Hence, the dependent variables for the regression are 
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(4.8) 

 

where the subscript ―GA‖ represents the part of the quantity which is 

expressed in terms of a group additivity scheme. CP,T,rt,i(gp)
 is rotational and 

translational contribution to the heat capacity. For the entropy, we do not correct for 
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rotational and translational contribution but correct for the symmetric number (σ) 

contribution following Bensons‘ group additivity formulation:[162] 

 

 
  (  )    ,

  (  )
    ( )                       

  (  )
                                              

 (4.9) 

 

We assume that there is no symmetry contribution for adsorbates. The 

rotational and translational corrections are only applied to the heat of formation and 

heat capacity as the rotational and translational contributions do not depend on the 

groups, but are a constant shift (e.g. Hrt,i(gp)
 = CP,rt,i(gp)

 = 4RT for nonlinear molecules, 

or 
7
/2RT for linear molecules). However, the rotational and translational corrections for 

entropy depend on the atoms‘ weight and coordinates, and hence group additivity 

approach can describe these terms. For the computation of gaseous molecule 

properties, these subtracted terms needed to be added back when using the group 

additivity.   

The group additivity parameters, φ(N×1), are computed by exploiting the Moore-

Penrose pseudoinverse indicated by 
+
, in the linear regression: 

 

   (   )     (4.10) 

 

Here N is the number of groups, n(M×N) is the group contribution matrix, M is 

the number of data points, and  (   ) is the vector of thermodynamic parameters. 

The predictive accuracy of the model is assessed using k-fold cross validation.[234, 

235] In this method, the data set is randomly partitioned into k subsamples of equal 

size. The model is trained using k-1 subsamples, and the remaining subsample is used 

as the validation set to compute the model error. This process is repeated k times with 

each subsample used as a validation set once. Since the data partitioning involves 
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randomization, Monte Carlo sampling is employed to compute the average error of 

each molecule. We used 10 as the value of k and 1000 repetitions of random 

partitioning which results in 95% confidence interval of predicted values less than 0.1 

kcal/mol for ∆Hf,i(gp),GA and ∆Hf,i(aq),GA, and 0.1 cal/(mol K) for Si(gp),GA and CP,T,i(gp),GA. 

4.2.4 Training Set 

Our training set consists of 200 data points that are divided into three 

subcategories: (i) 27 gas molecules, (ii) 53 adsorbates found in the ethanol aqueous 

phase reforming reaction network, and (iii) 110 adsorbates and 10 gas molecules from 

the butanetetraol reaction network.[236] The adsorbates in the ethanol reaction 

network include the dissociation products of ethanol as well as species from the water-

gas-shift reaction and are used to examine the solvation effect on the reaction energies. 

The adsorbates from the reaction network of butanetetraol supplement the polyol 

backbone of our group-additivity scheme. This reaction network, generated using the 

R.I.N.G. software package,[148, 149] contains a total of 5374 species, of which 120 

species have been chosen randomly under the constraint that each nonunique group is 

found in at least seven points of the complete training set. The gas molecules are 

computed to test the effect of the PCM on the vibrational frequencies (see Figure C.2 

in the Appendix). The computed thermodynamic properties and structures of the 

training set species are also provided in the Supporting Information of Gu et al.[216]  

4.2.5 Cavitation Energy Corrections 

The cavitation energy correction introduced above, Ecav,i, corrects the solvation 

energy computed using DFT calculations without the cavitation energy. To determine 
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the corrections, we compute cavitation energies, Ecav,i, of 20 solutes and nine solvated 

adsorbates using the equation below: 

 

                              (4.11) 

 

Here Esol,i,+c and Esol,i,-c are Esol,i using equation (4.5) with the cavitation energy 

accounted and unaccounted, respectively. Here, Esol,i,+c is computed using energy cut 

off of 600 eV to improve the accuracy of this numerically delicate quantity. In a 

similar spirit to group additivity, we perform a regression of cavitation contribution for 

each element (C, H, O) to 29 data 

 

 

       ∑          

     

 

 (4.12) 

where nij is the number of occurrence of element j in species i, and ecav,j is the 

cavitation energy of element j computed using the linear regression method introduced 

above. The MeanAE and MaxAE (training error, not cross-validation error) are 0.18 

and 0.47 kcal/mol, respectively. The training set data and regression coefficients are 

provided in Supporting Information. 

4.3 Result and Discussion 

Having presented the methodological approach, we now turn to the results of 

our study. First, we discuss the influence of the implicit solvent on geometries and 

reaction free energies. Then, we present the performance of our group additivity 

scheme for gas- and solution-phase species and reactions. 
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4.3.1 Influence of the Solvation on the DFT Geometries 

Upon solvation by water using a continuum model, isolated molecules showed 

limited structural changes with a root-mean-square deviation (RMSD) of 0.02 Å  and a 

maximum RMSD of 0.09 Å . The RMSD have been evaluated using the Kabsch 

algorithm.[237-239] This algorithm optimally superposes the two molecules to 

minimize translational and rotational error and computes the RMSD. For the surface 

species, we disregarded the change in surface atom‘s position. These small positional 

changes are induced by the dipolar interactions with the continuum solvent mostly 

affecting the relative orientation of the C−O bonds. The structures of the adsorbed 

species are slightly more sensitive to the solvation with a mean RMSD of 0.03 Å  and a 

maximum RMSD of 0.16 Å . This maximum corresponds to a change in the orientation 

of the OH bonds of COH−C−CH2−CHOH that rotates from pointing toward the 

surface to pointing toward the solvent. To better analyze this effect, we considered this 

reorientation for surface intermediates in the ethanol steam reforming reaction 

network. While the conformer with the OH bond pointing down is the most stable in 

vacuum, pointing the OH bond up becomes more stable in water. This effect, 

illustrated in the simple case of the CHOH fragment in Figure 4.2, is assigned to a 

better solvation of the OH by up 3 to 5 kcal/mol compared to OH down.  

 

Figure 4.2. DFT structures of the HCOH fragment adsorbed on a Pt(111) slab: (left) 

the H down configuration (right) the H up configuration. Associated 

solvation energies are also given.  
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4.3.2 Influence of the Solvation on Reactions. 

 We assess the influence of PCM on ethanol aqueous reforming, including 

water-gas shift reactions, by considering the corresponding standard Gibbs free energy 

of reactions in gas-phase (gp) and solution (aq): 

 

     (  )  ∑        (  )

 

 

    (  )  ∑        (  )

 

 
(4.13) 

 

where the reaction involves species i with the stoichiometric coefficient νi with 

νi > 0 if i is a product. To assess the change in the standard Gibbs free energy of 

reaction upon solvation, we further define Λsol as the change of a reaction energy upon 

solvation: 

 

          (  )      (  ) (4.14) 

 

When Λsol is negative, the reaction is favored by solvation, the Gibbs energy of 

reaction at the solid-liquid interface being more exergonic than in the gas-phase. This 

change can also be seen as the sum of the solvation energies of each species i involved 

in the chemical reaction with a stoichiometric coefficient νi: 

 

      ∑          

        

 

 (4.15) 

Λsol is reported as a box plot on Figure 4.3a for each type of reaction under 

consideration: adsorption, C−H, O−H, C−C and C−O bond scissions. 

In general, the adsorption of close-shell molecules is only slightly disfavored 

by the solvation with a mean of 0.2 kcal/mol for Λsol. The most affected species is 

acetaldehyde with Λsol= 2.4 kcal/mol: its adsorption at the Pt(111) surface is 
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disfavored by the stronger solvation in the solution (∆Gsol  = -5.6 kcal/mol) than at the 

surface (∆Gsol  = -3.3 kcal/mol).  

Since the solvation energy does not change significantly upon adsorption, the 

analysis of the solvation energy of different species is done jointly for the molecules in 

bulk water and the ones adsorbed at the interface. The species have been split into 

three groups to represent the solvation Gibbs energy ∆Gsol with box plots in Figure 

4.3b: (1) Hydroxyl contains at least one hydroxyl group, including water; (2) aprotic 

Oxygenate includes all the species that contain an oxygen atom but not a hydroxyl 

group, for instance acetaldehyde; (3) hydrocarbon selects species that do not contain 

any oxygen atom. As expected, hydrocarbon members are weakly solvated by water 

(on average, ∆Gsol = -1.7 kcal/mol, standard deviation of ζ = 1.0 kcal/mol). Aprotic 

oxygenate are more solvated (on average, ∆Gsol = -2.9 kcal/mol, ζ = 0.9 kcal/mol) 

with a small standard deviation (ζ). The hydroxyl species show a stronger Gibbs 

solvation energy (on average, ∆G°sol = -5.6 kcal/mol, ζ = 1.9 kcal/mol) and, more 

importantly, a large standard deviation, with a maximum and minimum of -2.5 and -

9.8 kcal/mol, respectively. For the surface species, the strong variations can be directly 

related to the two possible orientations of the OH bond, up or down. In most cases, the 

O−H down is the most stable configuration and is poorly solvated (for instance, ∆G°sol 

= -3.5 kcal/mol in CHOH). In some cases, the O−H up is the most stable configuration 

and is strongly solvated such as in CCHOH (∆G°sol = -9.3 kcal/mol, the up 

configuration being more stable by 0.3 kcal/mol). 

While most bond dissociations are made more exergonic by the solvation (Λsol 

<0), the OH scission is generally disfavored (Λsol > 0). This Λsol dependency on the 

reaction type is in agreement with that computed using the report by Behtash et al.[39-
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41] With the loss of the most solvated functional group, the OH scission leads to a net 

loss in solvation, explaining why such a reaction is less likely in water than at the 

metal/gas-phase interface. This thermodynamic observation contrasts with our 

previous kinetic study using microsolvation, where the O−H breaking was found to be 

slightly accelerated by the presence of a water molecule.[240] On the other hand, it 

agrees with  the study of Lopez and co-workers, who have employed implicit 

solvation in combination with some explicit water molecules.[241] In the absence of a 

detailed study at an explicit water/Pt(111) interface, it is not possible to assert that one 

or the other study captures the essential effect. The outliers identified in Figure 4.3a 

correspond to reactions where the solvation effect between reactants and products is 

the most unbalanced. For instance, the three outliers of the C−O scission all 

correspond to reactions that generate the OH fragment. Two reactions are strongly 

disfavored at the water-metal interface, due to a strong solvation of the reactants 

(CCOH, ∆Gsol = -9.8 kcal/mol and COH, ∆Gsol = -7.9 kcal/mol) that exhibit an OH 

bond that is pointing toward the solvent. Conversely, the CH3COH fragmentation is 

favored at the water/Pt interface, since this species is only weakly solvated when 

adsorbed on Pt(111) (∆Gsol = -2.5 kcal/mol), with a OH bond that points downward. 

In, summary, most of the steps along the ethanol reforming process are favored 

by the presence of the water solvent except O−H scission (disfavored) and adsorption 

(neutral). The solvation Gibbs energy of an adsorbate can be related to the presence of 

a hydroxyl group and more precisely to its orientation: when an OH bond points 

toward the bulk water, the corresponding adsorbate is particularly well solvated. This 

aspect allows rationalizing and predicting the effect of water on most elementary 

steps. 
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Figure 4.3. Box plot for the change of (a) the Gibbs energy of a reaction upon 

solvation Λsol (see text for definition) and (b) the solvation Gibbs energy 

∆Gsol of each species using DFT in the ethanol reforming reaction 

network (without water-gas shift reactions and species). Black dots and 

white dots represent mean and outliers, respectively. The box represents 

the second and third quartiles while the whisker represents the first and 

fourth quartiles. Outliers are at least 1.5 times the box range (between the 

second and third quartile) from the edge of the box. 

4.3.3 Group Additivity Schemes 

In this section, we present a group additivity scheme to predict ΔGf,i(gp) 
and 

ΔGf,i(aq)
. These two quantities are computed using the equations described in the 

Methods. The group additivity scheme for these quantities follows the strategy of 

Benson‘s original group additivity. Groups are given as A(B)b(C)c… where A is a 

group center, and B and C are group peripherals, and b and c are the numbers of 

connectivity to the B and C group peripherals. A, B, and C are typically an atom and 

sometimes a group of atoms. A, B, and C are further categorized by their 

hybridization. For example, C= indicates a carbon with a double bonded neighbor. 

Also, if the bond order between group center and group peripherals are higher than 
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single bond, the bond order is described (e.g., A(=B) for A double bonded to B). 

Every atom must be accounted once as a group center with the exception of hydrogen. 

 Previously, we have extended this formulation to the adsorbate on surface.[19, 

35, 36] In these schemes, the valence electrons covalently interacting with the surface 

electrons are denoted as (Pt)x group peripheral. For example, the group C(H)(Pt)2(O) 

contains a carbon central atom single-bonded to peripheral groups, a hydrogen and an 

oxygen, and has 2 valence electrons interacting with the surface denoted as (Pt)2. This 

scheme does not distinguish whether the central carbon sits on an atop, bridge, or 

hollow site; thus, the scheme only requires adsorbates‘ connectivity to compute their 

energy. We also adopt ring-strain correction as implemented in a previous study.[36] 

These corrections account for the strain of the ring formed by surface atoms and 

adsorbate atoms. For example, a ring is formed when two connected carbons are 

bonded to two surface atoms, forming Pt−C−C−Pt ring where two Pt atoms are 

connected. Additionally, we introduce 16 pair corrections that describe the valence 

electrons of pairs of central atoms, e.g., C(Pt)3C(Pt)3, C(Pt)3C(Pt)2, C(Pt)3C(Pt), 

C(Pt)2C(Pt)2, and so on. These corrections accounts for the partial π-mode interaction 

between the two surface-bound organic atoms. Previous studies[139, 211] have shown 

that when two connected atoms are bonded to the surface, the bond between two 

connected atoms remains partially conjugated whereas we previously assumed that the 

bond between two atoms are single bonds. These inadequately defined bond order 

causes an error as the group additivity relies on transferable electron spatial density 

profile of the homologous groups between molecules. Thus, groups accounting for 

conjugation are essential to the group additivity scheme.[211] These corrections 

improve the model significantly (reduce the MeanAE in ΔGf,(gp) from 4.6 to 3.3 
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kcal/mol using 10-fold cross-validation).  Additionally, we add a group specific to an 

outlier, CCOH. CCOH has a unique structure that leads to high deviation for ∆Gsol. 

This correction improves the MaxAE of ∆Gsol from 6.4 to 5.3 kcal/mol. 

Following the formulation described above, the model results in total of 82 

groups/corrections. The effective rank of this model is 75; i.e., it is rank-deficient. 

Five of seven linearly dependent descriptors are C(Pt)3C(Pt)3, OC, OC(Pt)1, OC(Pt)2, 

and OC(Pt)3 which are part of the new corrections introduced in this work. Since these 

corrections are already implicitly accounted by the scheme, we remove these 

corrections. The last two rank deficiency comes from C= (CO)(C=)(H) group‘s 

dependence to CO(C=)(H), and O(CO)(H) group‘s dependence to CO(O)(Pt) 

(determined using reduced row echelon form). These groups are found in gas/solute 

molecules, which are not the focus of this study, and the related methods have been 

previously developed extensively, thus we combine these groups together as a single 

multigroup. The list of group centers and peripherals as well as corrections and unique 

groups are summarized in Table 4.1, and their values are listed in the Appendix.  
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Table 4.1. List of group centers and peripherals that constitute groups (See the body 

for group description), corrections and unique groups 

Group Centers Group Peripherals Corrections/Outlier Correction 

C 

CO
a
 

O 

C= 

C≡ 

C 

CO
a
 

O 

C= 

C≡ 

H 

Pt 

Corrections: 

C(Pt)xC(Pt)x 

C(Pt)xO(Pt)x 

(5 linearly dependent corrections removed) 

Surface ring strain[36] 

 

Outlier Correction: 

CCOH (Chemisorbed) 
a
 CO indicates C=O carbonyl group. 

4.3.4 Model Validation 

The predictive accuracy of the group additivity model is assessed using k-fold 

cross validation as described in the computational details.[234, 235] Parts a and b of 

Figure 4.4 show the average of predicted values using the group additivity models vs. 

the DFT computed ∆Gf,(gp) and ∆Gsol. Cross validation reveals a reasonable MeanAE 

in ∆Gf,(gp) of 3.3 kcal/mol, and the MaxAE of 16.5 kcal/mol as shown in Table 4.2. 

The large errors are attributed to unaccounted binding modes (e.g., adsorption 

conformation of polyols). Our previous group additivity model has shown that 

including binding modes‘ information to the group descriptors results in large 

improvement of the cross-validation error.[211] However, including these 

unaccounted binding modes requires a significantly larger data set. Since the main 

utility of the group additivity is to rapidly screen large reaction networks before 

computing the most promising intermediates at the DFT level, a huge computational 

effort is not justified. The MeanAE and MaxAE for ∆Gsol are as small as 1.0 and 5.4 

kcal/mol, respectively. Importantly, the MeanAE is within chemical accuracy; 
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therefore, the solvation free energy scheme from group additivity provides a good first 

approximation to estimate the thermochemistry.  

 

Figure 4.4. Parity plot between 10-fold cross-validation computed prediction and DFT 

data for (a) Gibbs free energy of formation, ∆Gf,(gp), (b) Gibbs free energy 

of solvation, ∆Gsol, (c) Gibbs free energy of reaction, ∆Gr,(vac), and (d) the 

change of reaction energies upon solvation, Λsol, as defined in equation 

(4.14) and (4.15). 151 reactions of the ethanol reaction network are 

considered (see the Appendix for the details).  

  

(a) (b) 
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Table 4.2. Mean and Maximum (Max) Absolute Errors (AEs) and Root Mean Square 

Error (RMSE) for 10-Fold Cross-Validation of Thermodynamic 

Properties in kcal/mol 

Properties MeanAE MaxAE RMSE 

∆Gf,(gp) 3.3 16.5 4.8 

∆Gf,(aq) 3.3 17.5 4.8 

∆Gsol 1.0 5.4 1.6 

∆Gr,(gp) 2.9 13.8 4.0 

∆Gr,(aq) 2.8 15.1 3.9 

Λsol 0.9 3.8 1.2 

 

We also assess the model‘s predictive ability for the (151) reaction free 

energies in the ethanol steam reforming reaction network.[236] Specifically, we 

compare the Gibbs free energy of reaction in gas-phase, ∆Gr,(gp), and the change in 

Gibbs free energy of reaction upon solvation, Λsol  

Parts c and d of Figure 4.4 show the parity plot of the group additivity 

computed values vs. the DFT-derived ∆Gr,(gp) and Λsol. The MeanAE and MaxAE for 

∆Gr,(gp)  are 2.9 and 13.8 kcal/mol, which are smaller than those for ∆Gf,(gp). 

Considering that the number of groups constituting a molecule is typically larger than 

the number of groups changing in a reaction, the variance is likely smaller for the 

reaction energy, explaining the smaller error. The MeanAE and MaxAE for Λsol are 

reasonable at 0.9 and 3.8 kcal/mol, respectively. However, as can be seen in Figure 

4.4d, the parity plot is not perfect, i.e., the predicted change of solvation energies 

along a reaction is not very well correlated to the DFT data. One of the main issues is 

the evidenced reorientation of OH-groups discussed above: in the GA, the orientation 

of the OH group is not accounted for, implying that these subtle effects cannot be 

investigated by the present group additivity scheme. However, since the Gibbs 
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reaction energy prediction is rather accurate, the main goal of the GA is still achieved: 

rapid prediction of various reaction energies at a solvated metal surface. 

For a further assessment of the quality of the solvation free energy group 

additivity, we compare the trends we obtained in Figure 4.3 with the DFT calculations 

with the trends we obtain using our group additivity scheme (Figure C.3 in the 

Appendix). Overall, the solvation free energy group additivity captures the trend very 

well. The mean and median between the DFT and the group additivity are close, 

signifying that our model captures the general dependency on the reaction type and 

functional groups. However, the boxes and whiskers are tighter for the model than the 

DFT (i.e., variance is not captured by the model). Especially, the model computed Λsol 

for O−H scission and ∆Gsol for Hydroxyls have significantly lower variance than the 

DFT-computed values. Future work will be based on information from explicit water 

simulations and include heterolytic bond breakings involving protons, which may be 

important in biomass conversion. These improvements would, ultimately, allow to 

investigate the pH dependence of reaction schemes at the group additivity level. 

4.4 Conclusions 

The impact of an implicit solvent on adsorption of alcohols on the Pt(111) 

surface has first been investigated by DFT computations. We evidenced only minor 

changes in the geometries upon solvation, with the reorientation of an O−H bond 

pointing toward the surface in vacuum and being more stable pointing into the solvent 

being the rare exception. Examination of the ethanol reforming reaction network 

reveals, however, that equilibrium constants of surface reactions change significantly 

in solvent depending on the reaction type. In aqueous environment, C−H scission is 

slightly favored as the oxygen group of the oxygenate is raised toward bulk water, 
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whereas O−H scission is thermodynamically disfavored as the oxygen binds to the 

surface which decreases the oxygen-water interaction. In order to cut down the 

computational expense of such studies, we have developed a simple group additivity 

scheme for the Gibbs free energy of linear alcohols at the Pt(111) water interface by 

computing the thermodynamic properties of 200 adsorbates and gaseous species using 

DFT and an implicit solvent. The 10-fold cross-validation yields a MeanAE for the 

Gibbs free energy of formation and the Gibbs free energy of solvation of 3.3 and 1.0 

kcal/mol, respectively, and smaller error for reaction energies (MeanAE = 2.8 

kcal/mol). Despite severe approximations regarding the entropy of adsorption, this 

development allows addressing large and complex reaction networks, e.g., hydro-

deoxygenations of polyols such as glycerol, erythritol, or even sorbitol, in order to 

narrow down the most likely reaction routes, which then can be studied by DFT 

computations. Furthermore, the corresponding solvent effects can be improved in 

order to refine the subtle enthalpy-entropy balance at the solid-liquid interface. 
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THERMOCHEMISTRY OF GAS-PHASE AND SURFACE SPECIES VIA 

LASSO-ASSISTED SUBGRAPH SELECTION 

5.1 Introduction 

Modeling of chemical kinetics plays a key role in a wide variety of fields such 

as catalysis, biology, and combustion. While first-principles modeling can provide 

insights into reaction mechanisms and better catalysts for reactions of small 

molecules,[242-247] it is prohibitive for large molecules and reaction networks due to 

the computational burden of electronic structure calculations, especially for reactions 

occurring on catalysts.[18, 21, 134, 248-250] Development of semi-empirical 

methods, which can quickly estimate thermochemistry and activation energies, is thus 

essential. In addition, semi-empirical methods have been combined with microkinetic 

modeling and uncertainty quantification and demonstrated a powerful hierarchical 

approach to building and understanding complex reaction mechanisms.[19, 42, 44] 

Given that uncertainty quantification reveals higher model sensitivity to 

thermochemical parameters, the development of a more accurate thermochemistry 

estimation tool as well as model uncertainty quantification is crucial.[19, 42] 

Graph theory is one such widely employed approach for estimating 

thermochemistry[52, 202-206, 251-259] that represents species with graphs. A vertex 

represents an atom or a group of atoms and bonds among them, and an edge represents 

a bond between two atoms. A graph made of such vertices and edges representing a 

chemical compound is called a molecular graph. A graph, whose vertices and edges 

Chapter 5 
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are subsets of a molecular graph, is called subgraph, and, typically, the subgraph 

frequency — the number of appearances of a subgraph in a molecular graph — 

correlates with thermodynamic properties.[52, 202-206, 251-259] The most prominent 

thermochemistry estimation method is the group additivity (GA) pioneered by 

Benson,[162, 260-262] which estimates the standard enthalpy and entropy of 

formation of species. GA has been proven effective for simple hydrocarbons and 

oxygenates with mean absolute error (MAE) for standard enthalpy of formation, on 

average, comparable to experimental precision (within 1.0 kcal/mol of experimental 

values).[162, 260-262] Since its original application to gaseous molecules, GA has 

been extended to solvated species, ions, radicals, and surface adsorbates.[21-23, 34, 

216, 249, 252, 263-267]  

GA involves two graph descriptors, namely groups and corrections, as shown 

in Figure 5.1. A group graph consists of a single atom, its nearest neighbor atoms, and 

the covalent bonds between them (coarse-grained or pseudo atoms (e.g., C=O) are 

occasionally used). Such graph descriptors have physical basis.[52, 259] A graph of 

corrections usually involves a larger number of vertices and edges than a group and 

describes non-nearest-neighbor electronic effects, such as steric hindrance, resonance 

structures, and ring strain. Corrections are introduced when large errors in prediction 

using only groups occur.[162, 249, 250, 260, 268] In most cases, both group and 

correction graphs are heuristically selected.[162, 248-250, 260, 264, 266, 268]  
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Figure 5.1. Examples of graph descriptors used in estimating thermochemistry: (a) 

gaseous propane[162, 260] and (b) benzene on Pt(111).[21] The left/top 

legend indicates the element represented by each vertex. ∆fH°i and 

∆fH°GA,i indicate standard enthalpy of formation, either experimental (a) 

or the DFT computed value (b) and group additivity computed standard 

enthalpy of formation for datum i, respectively.    is the contribution of 

graph t to the ∆fH°GA,     is the number of appearances of graph 

descriptor t in the molecular graph of datum i, and          ∑       . 

Heuristics-based graph selection requires manual identification of corrections, 

which is often difficult (e.g., for alkyl peroxides,[269, 270] proteins and 

enzymes,[271, 272] or ring strain corrections for complex adsorbates[16, 21-23]). For 

example, strain energies of rings are significantly affected by the electronegativity of 

rings‘ substituents[165, 273-276] but ring strain corrections in previous models do not 

account for substituents.[162, 250, 260] Importantly, selection of graphs is not 

Propane
∆fH°i = -24.8 kcal/mol

Benzene on Pt(111)
∆fH°i = -35.3 kcal/mol

2
C(H)3(C)

-10.1

1
C(H)2(C)2

-5.0

2
Cσ(Cπ)2(H)(Pt)

-1.5

4
Cπ(Cπ)(Cσ)(H)(Pt) 

-8.0

∆fH°GA,i = -25.2 kcal/mol

∆fH°GA,i = -35.0 kcal/mol

Molecular Graph
Selected
Subgraph

Name
  

   

Edge

Vertex

C

H

Pt

(a)

(b)



 

 

91 

optimal, leading to potentially lower accuracy and ad hoc introduction of new 

rules.[16, 21-23, 277-285] Development of a systematic approach for graph selection 

could lead to models with the improved predictive ability and enable subgraph-based 

modeling of more complex systems.  

In this work, we exploit a feature selection method called LASSO to 

systematically and optimally choose subgraphs for estimating thermochemistry. We 

gather all hydrocarbon gas molecules from the NIST Chemistry WebBook 

database[286] and the Burcat‘s thermodynamic database[287] and exploit LASSO 

with complete graph enumeration for small molecules. A new semi-supervised 

learning framework, the Least Angle Regression (LAR)-LASSO method with branch 

pruning, is introduced for selecting graphs for large molecules to keep computational 

cost and memory tractable. Improved accuracy of the new methods compared to the 

traditional group additivity is demonstrated. We also compare this framework with the 

state-of-the-art machine learning models by applying it to QM9 database.[288] In 

addition, we introduce an adsorbate subgraph enumeration algorithm and apply 

LASSO to previously published surface science data.[16, 21, 23] The framework 

shows a good predictive ability for lignin monomer adsorbates[21] but is not effective 

for other adsorbate data sets[16, 23] due to poor data sets. We suggest a simple 

approach to identify such poorly sampled data. 

5.2 Methods 

5.2.1 Data Sets and Graph Mining 

We obtain thermodynamic properties from 5 different data sets: (1) 738 

gaseous hydrocarbons from the NIST Chemistry WebBook database[286] and the 
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Burcat‘s thermodynamic database[287] obtained as of February 2017; (2) ~134,000 

gaseous molecules in the QM9 data set;[288]  (3) 150 linear oxygenate adsorbates 

from Salciccioli et al.[23]; (4) 87 furanic adsorbates from Vorotnikov et al.;[16] and 

(5) 591 lignin monomer adsorbates from Gu et al.[21] For (1), (3), (4) and (5), we 

exclude data points that contain groups encountered only once in previous GA 

schemes. These data points are outliers as their electron density profile of the 

described atom is non-transferrable.[52, 289] This removal results in 695, 137, 76, and 

591 data in the order of sets listed above. QM9 is a popular data set for testing 

machine learning models. This data set contains density functional theory computed 

properties of ~134,000 molecules with up to 9 heavy atoms (C, O, F, and N) found in 

the GDB-17 chemical database.[288, 290] This data set is used in its entirety and 

differs from data set (1) in that (1) is a smaller data set and contains molecules with as 

many as 42 heavy atoms as well as radical species, which are known to be difficult to 

build models for. We use the QM9 data set to directly compare the proposed LASSO 

method to published machine-learning models. We focus on the standard enthalpy of 

formation, ∆fH°, as the electronic energy accounts for the majority of the error in the 

Gibbs free energy of formation.[16]  

We obtain available molecular graphs for gas molecules, and when these are 

missing, we convert their molecule names to SMILES strings, using OPSIN,[291] and 

then to molecular graphs. The molecular graphs are then converted to subgraphs and 

frequencies of appearance. All graph operations are performed using the RDKit 

software.[292] We lump together hydrogen atoms connected to the same atom for 

simplicity. For example, instead of assigning a vertex to each hydrogen on a methyl 

group, a single vertex that represents three hydrogens is used.  
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For adsorbates, we construct molecular graphs from atomic coordinates. We 

determine connectivity between atoms, i and j, using the following inequality: 

        (       ) (5.1) 

Here, dij is the distance between the atom i and j, tol is a tolerance factor, and 

cri and crj are the covalent radii of the atoms i and j, respectively. The covalent radius, 

fitted using 228,000 experimentally computed bond lengths,[293, 294] is the average 

size of a covalently bonded atom. The sum of two atoms‘ covalent radii is a good 

estimate of the bond length, and by multiplying with a tolerance factor, connectivity is 

estimated well. Here, we use a value of tol of 1.35. This factor is chosen by inspecting 

electron density, and performing Bader analysis and charge flow analysis for the 

bond‘s existence given interatomic distances in our previous work.[21] Motivated by 

Bader analysis,[21] all bonds between adsorbate atoms (C, H, and O) are taken to be 

single bonds, giving occasionally leftover electrons denoted in the atom‘s label. For 

example, a carbon in benzene is labeled as C1 to indicate that it has one leftover 

electron after the aromatics bonds are set to single bonds. This modification improves 

fitting as the number of surface interacting-electrons is correlated to binding.[295] 

Hydrogen atoms are lumped together as discussed above. 

As shown in Figure 5.1, the molecular graphs of adsorbates on a lattice can be 

complex if one includes all surface atoms. To cope with this, we introduce an 

algorithm that enumerates all possible subgraphs using atoms in adsorbates (i.e., C, H, 

and O) only, and adds surface atoms bonded to adsorbate-atoms in a subgraph but 

ignores bare surface atoms. The adsorbate atoms‘ connectivity to surface atoms 

captures binding site information which is crucial for the description of electronic 

energy.[21] This enumeration algorithm is summarized in Figure 5.2 and is available 
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at https://github.com/vlachosgroup/GraphLearning. This approach does not currently 

differentiate molecules on other miller index surfaces. Thus, a separate model is 

needed for each surface. It may be possible to build a unified model that accounts for 

the local site-environment at which binding happens, based on surface atom 

coordination numbers, as the latter has recently been shown to scale with binding 

energy.[295] In order to use models based on molecular graphs for adsorbates, an 

algorithm that can predict adsorption geometry from the gas molecular graph is 

necessary. This algorithm, based on data-based machine learning methods, is currently 

work in progress.[296]  
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Figure 5.2. (a) Flow chart of the adsorbate graph enumeration algorithm and (b) 

example of the algorithm using benzene on Pt(111)[21] (only subgraphs 

with a number of vertices    are shown). ―1)‖ and ―2)‖ in arrows in (b) 

represent the steps in the flow chart of (a). 

5.2.2 Least Absolute Shrinkage and Selection Operator (LASSO) 

Here we introduce a feature selection algorithm, LASSO,  which is a 

constrained ordinary least square regression for automatic and optimal selection of 

graphs.[297] Based on previous studies, we correlate graph descriptors to 

thermochemistry with a linear model:[52, 202-206, 251-258] 

         (5.2) 

     is the response variable (here the standard enthalpy of formation), N is 

the number of data,        is the descriptor matrix where the element xij indicates 
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the frequency of graph descriptor j in the molecular graph of datum i, P is the number 

of descriptors,       is the regression coefficient vector, and      is the model 

residual or error. For the ordinary least square method, the following loss function is 

minimized to compute  : 

 
 ( )   

 

  
(    ) (    ) (5.3) 

In LASSO, the L1 norm of   is minimized together with the loss function: 

  ( )      
 

 ( )   ‖ ‖  (5.4) 

Here, λ is a tunable parameter called the regularization parameter. The surface 

of the L1-norm penalty in   space is pointed on each axis, thus favoring sparse 

solutions (see Figure D.1 for illustration). λ controls the relative importance of the L1 

norm of  . A larger λ selects less descriptors and vice versa. The L1 norm penalizes a 

large number of regression coefficients and sets coefficients of insignificant 

descriptors to zero. The parameter λ is typically chosen such that the cross-validation 

error is minimized (see below). Subgraphs with non-zero coefficients are the LASSO-

selected graph descriptors. We perform LASSO optimization using the 

implementation in MATLAB
TM

. For the QM9 set, we perform LASSO using parallel 

block coordinate descent method in C++ for efficient regression,[298] as QM9 set 

regression involves a highly sparse 120,496 × 110,498,191 data matrix (data available 

at http://files.ccei.udel.edu/p/QM9SubgraphData/). The workflow of the graph 

selection using LASSO is presented in Figure 5.3. 

LASSO can be seen as a feature selection machine learning type of algorithm. 

The L1 regularization is chosen to encourage sparsity in the parametric fit and the 

extension to the graph mining is novel. As a result, the LASSO algorithm used here 
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differs from the textbook-like LASSO. As compared to neural networks, the method 

does not involve intuition to tune parameters. Below, we compare its accuracy to other 

methods. 

 

Figure 5.3. Workflow of the graph selection method using LASSO. 

5.2.3 Semi-Supervised Learning 

Selecting optimal graphs for LASSO regression requires complete enumeration 

of all subgraphs. However, exhaustive enumeration scales exponentially with the size 

of the molecule, as shown in Figure 5.4.  For example, for icosane (C20H42, x = 18 in 

Figure 5.4), there are 10
12

 unique subgraphs, and storing the subgraph frequencies 

requires 10 PB of memory. To overcome the complete enumeration challenge, the 

Least Angle Regression (LAR)-LASSO method,[299] a method analogous to LASSO, 

is combined with a frequent subgraph mining algorithm called gSpan.[300, 301] Here, 

the set of subgraphs is pruned during regression to prevent enumerating all subgraphs. 

The pruning method involves computing an upper bound score of not-yet-enumerated 

subgraphs and suppressing the enumeration of subgraphs with a low score. This 

simultaneous dimension reduction of descriptor space while conducting regression is 

called semi-supervised learning. The pruning method in previous semi-supervised 

learning methods has only been applicable to logical graph descriptors (the descriptor 

value is 1 if the subgraph appears at least once or 0 if not). Modification of the pruning 

method is required for graph frequency descriptors. 
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Figure 5.4. Number of unique subgraphs and descriptor vector memory vs. number of 

secondary carbons in alkanes. The solid and dashed lines indicate 

explicitly computed and extrapolated (estimated) data, respectively. The 

Spyder python software[302] is used for memory estimation. 

LAR-LASSO starts at the highest possible λ that chooses the first descriptor 

(Figure 5.5), and,  , the direction of   along λ, is set as the equiangular direction of  , 

that is (   )   ,[299] where      is the vector of 1 and -1, computed by applying 

the sign function to     . Then, λ decreases and   is tracked. While λ decreases, a 

descriptor is either added or removed. The former occurs when a descriptor vector is 

as correlated to the model residual as   is. This descriptor is added to the active set, A, 

of non-zero coefficients. If one of the active descriptor coefficients becomes zero 

while moving in  , then that descriptor is removed. Upon change in the number of 

descriptors,   is updated as (   )   .[299] This process is repeated until the number 

of coefficients is equal to the number of data and the algorithm is terminated. This 

algorithm is illustrated in Figure D.2.  
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Figure 5.5. Illustration of the difference between LASSO and LAR-LASSO. Here, ×  

indicates the addition or removal of a descriptor. LAR-LASSO moves 

along the path of λ and tracks the additions or removals, whereas LASSO 

computes the regression coefficients at a single value of λ. The dashed 

line shows an example of the single LASSO solution obtained at λ = 10. 

Taking infinitesimal steps to traverse along λ is impractical. Instead, the step 

sizes for all potential moves are computed and the smallest step size is selected. The 

practical implementation of LAR-LASSO is shown in the pseudo-code (Algorithm 

5.1). Here,       is the frequency vector of the descriptor t. In line 1, the algorithm 

searches through the descriptor space and finds the first descriptor, and in the next 

line, it adds it to the active set, and   is set. Lines 4 and 5 find the minimal step sizes 

for addition and removal of a descriptor, respectively. The step in   is taken in line 7 

(technically, the step size, Δλ, is equal to d× N). The direction is updated as 

equiangular direction (line 10) and this process is repeated until the number of selected 

descriptors is equal to the number of data.  
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Algorithm 5.1. Semi-Supervised LAR-LASSO Algorithm. 

1:  Find descriptor t with max|    | (Algorithm 5.2) 

2:    * +          (    )               (   )    

3:  while P ≠ n do  

4:      Find descriptor t with minimal dt and set to d1 (Algorithm 5.2) 

5:             *    (    )       + 
6:      Find step size: d = min (d1, d2) 

7:      Take step: β ← β + dγ 

8:      If d = d1, add           ( 
   )             

9:      If d = d2, remove i
th 

entry from         

10:      (   )    

11:end while 

The determination of the step size for adding a descriptor t, dt, is derived 

through the Karush-Kuhn-Tucker conditions (see ref[299] for derivation), which result 

in 

 
      

 
,
  

     
  

  
     

  
 
  

     
  

  
     

  
-          

           
(5.5) 

and    
 

 stands for the operation of taking minimum among positive elements for 

forward traversing in λ.  

The key tothe semi-supervised learning is in finding the descriptor with 

minimal dt (lines 1 and 4 in Algorithm 5.1) where the subgraph search space reduction 

occurs. The search through the subgraph search space is performed via gSpan[300] 

that organizes graph descriptors in a tree (a meta-graph) where each node represents a 

unique graph descriptor and a child node is a supergraph built from its parent node by 

adding one more edge. The algorithm visits each graph descriptor node from a root 

(single vertex graphs) to branches using a recursive algorithm where each recursion 

represents an addition of an edge. An example of gSpan meta-graph is shown in 

Figure 5.6. 
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Figure 5.6. Example of gSpan‘s meta-graph enumeration (up to adding 3 edges). The 

algorithm employs mathematical techniques to avoid generating 

duplicate nodes.  

In a previous gSpan-based LAR-LASSO algorithm,[301] each node was 

visited recursively and d1 was updated when dt with a lower value was found. To 

reduce the subgraph search space, the enumeration of supergraphs is suppressed by 

computing the lower bound of dt for the supergraphs. This method is called branch 

pruning as the generation of the child nodes is suppressed. This pruning method has 

been previously applied to logical graph descriptors.[301, 303-305] For a logical 

descriptor, if graph    is a supergraph of   (denoted by     ), then         , and this 

provides a pruning condition[301]  

         |  
  |    |  

  |               

      {∑|  |   

    

 ∑|  |   

    

}  

       {∑|  |   

    

 ∑|  |   

    

} 

(5.6) 
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Here, ri and vi are the elements of the vector r and v for the datum i, 

respectively. If equation (5.6) is satisfied, then,        for all     .[301] In 

describing thermochemistry, graph frequencies are used as    .[52, 202-206, 251-259] 

In this case,         . For example, the C-C graph is observed six times in benzene 

in Figure 5.2, but its supergraph, H-C-C, occurs 12 times. Thus, the assumptions of 

equation (5.6) do not hold. We modify equation (5.6) to provide an approximate 

pruning condition. Here, we keep track of variable      that contains the maximum 

frequency among all the supergraphs of t enumerated so far for the datum i. Then, we 

replace     with      in equation (5.6). Algorithm 5.2 shows the pseudo-code for this 

modified search method. Here, d1 is initially set to infinity (line 2), and the algorithm 

recursively visits each node;        where       is updated in lines 10-14; d1 is set to 

dt if a lower dt is found. Then, the pruning condition is checked (line 21) and if it 

holds, the recursive function is returned, which prevents enumeration of supergraphs 

of t. 

 

Algorithm 5.2. Modified gSpan graph search 

1:  procedure Subgraph Search 

2:      d1 = ∞ 

3:      for t   Single vertex graphs do 

4:          gSpan search(t) 

5:      end for 

6:      return dt, t 

7:  end procedure 

8:  function gSpan search (t) 

9:                  

10:       for      do 

11:        if            then 

12:                       
13:        end if 

14:     end for 

15:     if t   A, 
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16:        Compute dt using equation (5.5) 

17:        if dt < d1 then 

18:            d1 = dt 

19:        end if 

20:    end if 

21:    if pruning condition equation (5.6) is true then 

22:        return 

23:    end if 

24:    Enumerate     using the gSpan algorithm 

25:    for       do 

26:        gSpan search (   ) 
27:    end for 

28:end function 

For the initial descriptor search, the following equation is used instead of 

equation (5.5) in line 10:[301] 

 
   |∑   

 
  

 

| (5.7) 

The pruning condition, equation (5.6), is also replaced with[301] 

 

      {∑|  | 
 
  

    

 ∑|  | 
 
  

    

} (5.8) 

We have implemented this algorithm in C++ and made it available at 

https://github.com/vlachosgroup/LARLASSO-gSpan. 

5.2.4 Cross Validation 

We assess the predictive ability of LASSO models using leave-one-out cross 

validation.[234, 235] Here, the LASSO regression is performed without one datum 

and the response value of the leftover datum is predicted using the trained model. This 

process is repeated for the entire data set to obtain the predicted value for each datum. 

For LAR-LASSO and the QM9 data set, we perform hold-out cross-validation where 

90% of the data is used for regression and the rest is used for testing. Despite the 
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pruning, the LAR-LASSO regression is computationally expensive for the entire 

NIST‘s and BURCAT‘s data set. Thus, hold-out cross-validation is performed to 

reduce computational time. 

5.3 Result and Discussion 

5.3.1 Comparison of LASSO and Group-Additivity Models 

In order to understand the potential of LASSO, we obtain cross validation 

errors for various LASSO models trained using the exhaustively enumerated subgraph 

space focusing on the gas-phase dataset. To reduce computational time, we select data 

with less than 12 atoms. This results in 217 data points out of 695 data points. Figure 

5.7 shows the cross validation results for two values of λ, namely when the number of 

parameters, P, is the same to that of the Benson‘s GA model[306] (for a fair 

comparison) and for the optimal λ at which the cross validation error is minimal. 

Figure 5.7 depicts also the cross-validation error of the graph selection method using 

Morgan fingerprints at optimal λ.[307] Morgan fingerprinting generates a tree graph 

rooted at each atom at a chosen depth – the maximum number of edges from the root 

vertex considered.  
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Figure 5.7. Parity plot between experimental ∆fH° and cross-validation predicted ∆fH° 

computed using (a) the Benson‘s gas group additivity,[306] and various 

LASSO-trained models (b)-(d): (b) λ is chosen using the Morgan 

fingerprints[307] so the cross validation mean square error is minimal, 

(c) λ is chosen so the number of descriptors, P, is similar to that of group 

additivity, and (d) λ is chosen so the cross validation mean square error is 

minimal. The Morgan fingerprints and the exhaustively enumerated 

subgraph space consist of 835 and 16513 descriptors, respectively. CV 

RMSE is the cross validation root mean square error, and MeanAE and 

MaxAE are the mean and max absolute error, respectively.  

Figure 5.7 demonstrates that the LASSO-trained models (panels b, c, and d) 

possess lower CV RMSE than the Benson‘s GA (panel a). As expected, the model 
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trained using all possible graph descriptors at optimal λ (Figure 5.7d) performs the 

best. The LASSO-trained model with the same number of parameters (non-optimal λ; 

Figure 5.7c) performs slightly better than the Benson‘s GA model indicating that 

LASSO selects comparable graph descriptors. The model trained using the Morgan 

fingerprint space performs better than the Benson‘s GA model but worse than the 

model trained with the exhaustively enumerated subgraph space, signifying that 

Morgan fingerprint space misses important subgraphs. However, the model trained 

using the Morgan fingerprint space performs better than the model trained using 

exhaustive graph space with the same number of parameters (CV RMSE 11.36 vs. 

11.75 kcal/mol). This indicates that performing regression by exhaustively 

enumerating the graph space results in the selection of non-true descriptors 

(overfitting), and the Morgan fingerprint more selectively enumerates descriptive 

subgraphs. Therefore, developing a graph space enumeration method that selectively 

enumerates descriptive graphs has a potential to improve this framework.  

All models have significant errors in multi-cyclo and radical molecules such as 

benzvalene, HCCC, cyclopropenyl, cyclopentadieneyl, Bicyclo[1.1.0]but-1(3)-ene, 

and cyclobutadiene. These molecules contain ring and electronic subgraph patterns not 

observed elsewhere in the data set (outliers in descriptor space[289]), making the 

development of a predictive LASSO-trained model impossible unless similar 

molecules are introduced into the dataset. Part of the errors is attributed to the lack of 

sufficient data points as the learning curve in Figure D.3a shows that the test and 

training set RMSEs have not fully converged.  

Figure 5.7d shows that the LASSO method can outperform the conventional, 

intuitively-based GA scheme. The suboptimality of the Benson‘s GA descriptors is 
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shown by the unexpected sign of the corrections‘ contribution. The graph descriptors 

in third and fourth rows of Figure 5.8a represent the corrections for gauche 

interactions. The contributions for these corrections are positive (destabilizing) in the 

Benson‘s GA, but negative (stabilizing) in the present work. We suspect that these 

gauche interaction corrections are compensating for missing radical and ring 

corrections. Due to the missing corrections, ∆fH° of radical and ring molecules are 

under-estimated, which, in return results in over-estimation of other molecules such as 

closed-shell, non-ring molecules.  

The LASSO-selected graphs (Figure 5.8b) differ from those of GA (Figure 

5.8a). In LASSO, single atom graphs likely account for the formation energy from 

each elements‘ standard state to a reference state. Graphs with 2 and 3 vertices 

resemble C-H, C-H2, and C-H3 bonds and likely account for bond energy between 

atoms. Graph descriptors that focus on bond energies rather than an atom‘s 

environment resemble those of the so-called bond-centered GA.[281]  Finally, larger 

graphs are conceptually similar to the GA‘s corrections and have a small contribution.   
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Figure 5.8. Graph descriptors (a) used in group additivity and (b) selected by LASSO 

for P = 60. Only graphs related to alkanes are shown. R indicates any 

atom. The value below a graph indicates the graph‘s contribution to ∆fH° 

in kcal/mol. 

5.3.2 Subgraph Search Space Reduction and Performance of Semi-Supervised 

Learning 

To assess the effectiveness of the semi-supervised learning method, we 

compare the computational time and the number of enumerated graph descriptors of 

the exhaustive enumeration method and the semi-supervised learning method using 

the entire hydrocarbon dataset. We control the subgraph space size by limiting the 

maximum number of edges in subgraphs during the enumeration as shown in Figure 

5.9. Unlike the exponential explosion in subgraphs when complete enumeration is 
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done, the computational cost for the semi-supervised method plateaus, enabling the 

extension of the method to larger molecules.  

 

Figure 5.9. (a) Computation time and (b) number of enumerated graph descriptors vs. 

maximum allowed edges in subgraphs for the exhaustive enumeration 

method and the semi-supervised learning using the dataset of 695 

hydrocarbon molecules. The dashed line indicates the extrapolation of the 

exhaustive enumeration method. The semi-supervised learning is 

performed until λ = 0.1. The exhaustive enumeration was performed 

using the RdKit[292] C++ package (python API), and the semi-

supervised learning performed in C++.  

The semi-supervised learning model and the Benson‘s GA scheme are 

compared for the entire 695 hydrocarbon data set in Figure 5.10. Overall, the former 

performs better than the latter. Both models exhibit significant errors for outliers in 

descriptor space, such as [18]-Annulene, 9,10-dihydro-Phenanthrene, 

Trispiro[2.0.2.0.2.0]nonane, and Tetraspiro[2.0.0.0.2.1.1.1]undecane as well as a 

number of radicals. In order to assess the performance of the approximate pruning 

condition, we apply the semi-supervised learning to the 217 hydrocarbon data set and 
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compare to complete enumeration. The RMSE, MeanAE and MaxAE at optimal λ, 

(13.94, 6.38, and 72.06 kcal/mol, respectively) vs. (11.26, 5.74, and 61.67 kcal/mol), 

are comparable.  

 

Figure 5.10. Parity plot between experimental data and prediction of (a) Benson‘s 

group additivity and (b) the semi-supervised model at optimal λ for the 

695 hydrocarbon data set. 

5.3.3 Comparison to Machine Learning Models Using the QM9 Data Set 

In predicting chemical properties, several machine learning models have been 

introduced using the data set QM9. Most widely used regression models are kernel 

ridge regression,[308-316] neural network[309, 317-319] and convolutional 

network[320-323] with molecular representations such as bag of bonds,[311] 

Coulomb matrix,[309, 312, 313, 315, 318] BAML,[311] SOAP,[316] and many 

others.[308, 310, 317, 319, 320, 323, 324] Similar to this work, a couple of models are 

based solely on molecular graphs. Li et al. presented gated graph neural networks 

whose inputs are node and edge features and an adjacency matrix. Each atom has 
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hidden representation which is updated using its feature as well as the neighboring 

edge and atom features until convergence is achieved. The parameters of the update 

functions are learned to correlate with the data.[319] Similarly, Kearnes et al. and 

Duvenaud et al. presented molecular graph convolution neural networks where atom 

and bond features undergo transformation to an abstract representation of atoms and 

bonds. The abstract atoms are, then, correlated to data using a function of one‘s 

choice.[321, 322] Recently, Faber et al. implemented both methods to build models 

for 0 K atomization energy, achieving 3.46 kcal/mol and 0.97 kcal/mol MeanAE, 

respectively.[323]  

Compared to published state-of-the-art methods involving abstraction of atoms 

and bonds in molecular graphs, our approach lies on finding optimal descriptors that 

possess more theoretical basis. Bader et al. discusses that the groups in group 

additivity describe structures transferable among molecules.[52] Using DFT, 

transferable structures are found to have similar electron density profiles, resulting in 

the transferable energy of groups according to the virial theorem. In a similar spirit, 

this framework operates under the assumption that, if a subgraph implicitly describes a 

structure consistent over all molecules in the data set, their number of occurrence in a 

molecule linearly scales with the contribution of this subgraph‘s structure to the 

energy of the molecule.  

To compare the performance directly with state-of-the-art machine learning 

models, we fully enumerated subgraphs and performed LASSO on the QM9 data set. 

Validation results are shown in Figure 5.11. Here, the MeanAE is 1.39 kcal/mol, 

comparable to some state-of-the-art and better than several published machine 

learning models. In addition, our model offers high interpretability as well as 
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accessible computation of uncertainty (a topic beyond the scope of this work), as the 

literature of statistical inference for LASSO is ample.[325-331] On the other hand, 

model inference of kernel ridge regression has been only studied in the case of 

heteroscedastic regression,[332] and leading efforts to quantify uncertainty for deep 

learning frameworks, which involve generalization of deep learning and Bayesian 

statistics, are currently in embryonic stage.[333-335]  

 

Figure 5.11. Parity plot between DFT data and predicted data using the subgraph 

selection method for 10 % of the QM9 data set. 

5.3.4 Application to Surface Adsorbates 

We use the adsorbate graph mining algorithm to enumerate all possible 

adsorbate subgraphs and perform LASSO to three data sets taken from our prior work 

(lignin monomers[21], furanics[16], and linear oxygenates[23]). The parity plot for the 

lignin monomer dataset is shown in Figure 5.12 (for furanics and linear oxygenates, 



 

 

113 

see Figure D.4). Selected subgraphs of benzene and its hydrogenated derivatives are 

shown for illustration in Figure 5.13.  

 

Figure 5.12. Parity plot between DFT-computed[21] and predicted ∆fH° for the lignin 

monomer dataset. 
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Figure 5.13. Molecular graphs and subgraphs of benzene and its hydrogenated 

derivatives. The arrows indicate the subgraphs encountered in each 

molecule. 

 

Figure 5.12 demonstrates the great performance of the adsorbate fingerprint 

combined with LASSO (MeanAE and MaxAE of 2.08 and 16.58 kcal/mol, 

respectively). The cross-validation statistics for the other data sets are shown in Table 

5.1. Despite the great performance for lignin adsorbate dataset, the graph enumeration 
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combined with LASSO performs poorly for the furanics and linear oxygenate datasets, 

as shown in Table 5.1. We attribute this to the large number of outliers in the 

descriptor space due to poor diversity in the data and the low number of data. To 

illustrate this fact, we have performed classical multi-dimensional scaling or principal 

coordinates analysis (Figure 5.14).[336] In this method, coordinates      for each 

datum are initially randomly set and are optimized to match the distance between data 

points specified by a distance matrix, where each element contains a numerical 

measurement of the ―dissimilarity‖ between data. Then, similar to the principal 

component analysis, the eigenvectors in the coordinate space are found, and the two 

dimensions that have the maximal variance are plotted for visualization. In this work, 

the dissimilarity measure between data i and j, Dij, is computed by 
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Here, Oit is the logical graph descriptor, nt is the number data containing graph t, α is 

the tunable parameter for the effect of division by nt, and ε is the order of Minkowski 

distance. This dissimilarity is a variation of the classical Euclidean distance or 

(∑ |       |
 

   )
   

 . The modifications to Euclidean distance are made to 

exaggerate the distance of data containing descriptors with small nt as these data tend 

to have high cross-validation error due to the biased descriptor coefficient. The 

division of         by nt
α
 enlarges the distance if the given descriptor is not 

frequently observed in the data set. A high ε value amplifies large (       )   
 . 

Here, we use α and ε of 0.5 and 4, respectively, and plot the optimized coordinates in 
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two eigenvectors with the highest variance, as shown in Figure 5.14. A highly dense 

data set is desired to avoid outliers and have high nt for each descriptor. Such is the 

case for the lignin adsorbate dataset (Figure 5.14a). However, for the furanics and 

linear oxygenates, several data points are far away from other data points (i.e., outliers 

in descriptor space) and have high cross-validation errors. These datasets are not well 

suited for LASSO training.  

The furanics and linear oxygenates contain a large number of outliers. The 

previous group additivity model for the lignin data set uses binding-site resolved 

descriptors.[21] As the graph mining method considers the binding site via the 

adsorbate atoms‘ connectivity to surface atoms, the lignin data set is well-sampled in 

the descriptor space. On the other hand, descriptors in the group additivity models for 

the furanics and linear oxygenate data sets consider the number of electrons 

interacting with the surface instead of the binding site. Thus, these data sets are not 

well sampled in the descriptor space.  

In sampling the descriptor space, two types of outliers are observed: (1) 

molecules exhibiting unique characteristics and patterns in the entire descriptor space, 

such as H2, CO and CO2; and (2) molecules with patterns scarce in the data set (poor 

sampling). Building a model for the former molecules is impossible as these data 

appear only once. Examination of outliers in the furanics and linear oxygenates sets 

reveals that the data set contains outliers of both types. Figure D.5a and b shows 

outliers in the furanics and linear oxygenate data sets, respectively, which are highly 

unsaturated species and possess rare structures due to complex connectivity patterns. 

The cluster at the bottom right corner of Figure 5.14 represents unsaturated 

hydrocarbons shown in Figure D.5b. Cross-validation errors for these hydrocarbons 



 

 

117 

can be improved by sampling larger unsaturated molecules of similar adsorption 

conformation. On the other hand, Figure D.5c and d shows relatively saturated 

adsorbates. These adsorbates are unstrained and are expected to contain structures 

transferable to many adsorbates in the descriptor space even for the same size. The 

issue here is poor data sampling. Identification of outliers in the entire descriptor space 

is beneficial to improve sampling. 

 The furanics and linear oxygenate data set also lack a sufficient number of 

data points, resulting in high errors as demonstrated by the learning curve (Figure 

D.6). A large gap between the test and training set RMSEs indicates overfitting of a 

model and a low training set RMSE indicates the high complexity of a model. Figure 

D.6a shows that the selected model is simple as the training set RMSE is high, but a 

large gap is still present between the training and test set RMSEs. This indicates 

overfitting of a relatively simple model. Since the LASSO framework balances over- 

and under-fitting, the graph signifies lack of data points to support a more complex 

model. On the other hand, Figure D.6c shows that the selected model for lignin data 

set is complex enough to keep the training set RMSE low while having a lower test set 

RMSE due to the ample data. The relatively small number of data in these sets is due 

in part to the large computational cost of DFT for surface species as compared to gas-

phase species. 

In order to remove outliers in descriptor space, data points are filtered using a 

threshold of the sum of distance. The correlation between the sum of distance and the 

model absolute error as well as the threshold is shown in Figure 5.15. The LASSO 

performance without outliers for linear oxygenate and furanics data sets are shown in 

the last two rows of Table 5.1. The performance of LASSO significantly improves for 
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both data sets. Especially, the performance for linear oxygenates without outliers 

exceeds that of group additivity. Thus, the development of a reliable outlier detection 

method poses great potential for LASSO fitting improvement as well as data sampling.  

Table 5.1. Comparison between the performance of the previous group additivity 

models and the graph selection method.[16, 21, 23]  

 

Model 
MeanAE 

(kcal/mol) 

MaxAE 

(kcal/mol) 

RMSE 

(kcal/mol) 

Lignin; GA 2.72 15.09 3.61 

Furanics; GA 5.76 31.61 8.51 

Linear oxygenates; GA 5.75 89.10 10.86 

Lignin; LASSO 2.08 16.58 3.03 

Furanics; LASSO 9.06 60.40 14.87 

Linear oxygenates; LASSO 6.51 46.55 9.67 

Furanics; LASSO without outliers 7.73 30.07 10.66 

Linear oxygenates; LASSO without 

outliers 
3.79 30.22 7.56 
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Figure 5.14. Principal coordinates analysis plot projected to 2D using the distance 

measurement shown in equation (5.9) for (a) the lignin, (b) the furanics, 

and (c) the linear oxygenates adsorbate datasets. The color scheme 

represents the absolute error in ∆fH° (kcal/mol) where data points with an 

absolute error higher than 20 kcal/mol are the same color as 20 kcal/mol 

error.  

 

Figure 5.15. Correlation between absolute errors and the sum of the distance of each 

data for (a) lignin, (b) furanics, and (c) linear oxygenates adsorbate 

datasets. The dashed line indicates the threshold values used to filter 

outliers. 

5.4 Conclusions 

In this work, we have exploited feature selection concepts to improve accuracy 

and automate descriptor selection as an alternative to the traditional group additivity 

scheme for predicting thermochemistry of gas phase species and surface adsorbates. 
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We considered four different datasets: (1) gas-phase hydrocarbons from the NIST 

webbook and BURCAT‘s thermodynamic databases, (2) gas molecules in the QM9 

dataset, and surface adsorbates consisting of (3) lignin monomers, (4) furanics, and (5) 

linear oxygenates. The LASSO trained model using all possible subgraphs for a small 

subset of the gas dataset demonstrates the high potential of this framework in 

automatically selecting subgraphs and improving accuracy. We find that the graphs 

selected by LASSO resemble the bond centered group additivity model.[281]  The 

computational time and the memory of exhaustive graph enumeration scale 

exponentially with the number of vertices in molecular graphs. In order to reduce the 

cost of graph enumeration, we have presented a semi-supervised learning framework 

based on LAR-LASSO, which performs similar to the rigorous exhaustive 

enumeration LASSO method but its cost no-longer scales with the molecular graph 

size. This framework has been also compared to state-of-the-art machine learning 

models for the popular QM9 data set. The framework shows comparable accuracy to 

several published machine learning models without the need to intuitively tune 

parameters as often happens in neural networks. We have also introduced an effective 

adsorbate graph mining algorithm that, given a healthy data set, possesses improved 

accuracy. We also presented a simple distance measurement to identify outliers in 

descriptor space, which may be removed to improve fit, or similar data to be 

additionally sampled. 
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PREDICTING MULTI-DENTATE ADSORBATE CONFORMATION ON 

METAL SURFACES 

6.1 Introduction 

Biomass conversion provides a renewable pathway to produce chemicals and 

fuels. While density functional theory (DFT) has provided insights into reaction 

mechanisms and catalyst design for conversion of small molecules on metal 

surfaces,[242-247] the computational cost of DFT is prohibitive for investigating large 

reaction networks, typically encountered when converting biomass molecules.[18, 21, 

134, 248-250] In this respect, semi-empirical methods have been developed to 

estimate thermochemistry of adsorbates.[21-23, 34, 35, 216, 337]  These studies have 

revealed that accounting for the adsorption mode (ζ vs. η) as well as the binding sites 

(one-, two-, three-fold sites) is crucial for estimating thermochemistry accurately.[21, 

34, 337] While manually manipulating atomic coordinates to generate potentially 

stable adsorption conformations for small species is rather easy, it becomes 

increasingly tedious and slow to do so for large multi-dentate adsorbates that bind to a 

catalyst via many heteroatoms. In this regard, adsorption conformation sampling 

methods have been introduced.[338, 339] However, these methods use DFT as ‗a 

calculator‘ for sampling minima on potential energy surfaces, and thus, they are 

unsuitable for large mechanisms.[18] Developing an adsorption conformation 

prediction tool can enable large reaction-network modeling.  

Chapter 6 
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Recently, molecular graphs of every possible closed-shell organic molecule 

with up to 17 heavy atoms (among C, O, F, and N) have been enumerated.[290] Such 

large chemical space has resulted in large DFT data sets, with the most popular one 

being the QM9.[288] This dataset involves 134,000 molecules and has resulted in the 

development of several machine-learning models whose accuracy has been found to 

be better than that of hybrid DFT methods.[310, 320, 323]  Development of such 

accurate models for surface species is lacking owing to two reasons. First, molecular 

graphs cannot be automatically created given that adsorbates can take multiple 

conformations on a surface and these can change with catalyst surface and catalyst 

itself. Second, the computational cost is high, leading to using lower accuracy DFT 

methods and smaller molecules consisting typically of up to 3 heteroatoms. Building a 

molecular graph enumeration tool, which accounts for the conformation of adsorbates, 

can overcome the first problem and facilitate advances in heterogeneous catalysis.  

This Chapter introduces a machine-learning algorithm that learns from a 

dataset without human intervention, and automatically generates adsorption 

conformations for adsorbates on close-packed metal surfaces (111 for fcc, 0001 for 

hcp, and 110 for bcc metals). The dataset is derived from 808 DFT calculations 

performed herein, involving various adsorption conformations for carbon-based 

molecules on Pd(111). We find that the algorithm possesses promising accuracy. 

6.2 Methods 

6.2.1 Representation of Adsorbate Conformation and Stability 

Adsorbate‘s conformations on a surface are represented using molecular graph 

theory concepts, where a vertex and an edge are abstract objects describing an atom 
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and the connectivity between a pair of atoms, respectively. A conformation may be 

stable or unstable. For example, gas phase cyclohexane‘s boat and half-chair 

conformations are unstable while the twisted boat and chair conformations are stable. 

The unstable boat and half-chair conformation relax to the stable twisted boat and 

chair conformations, respectively. Similarly, there are stable and unstable 

conformations for adsorbates. Describing conformations for adsorbates typically 

involves the binding site and the valency of a heteroatom. Heteroatoms of an 

adsorbate can potentially bind to one-, two-, or three-fold sites (called atop, bridge, or 

hollow sites, respectively). The valency is equal to xmax – x, where xmax represents the 

maximum number of ligands of an atom, and x is the actual number of ligands. For 

example, CH3 has a valency of 4 – 3 = 1. The valency represents the number of 

electrons interacting with surface atoms. Heteroatoms with valence of zero do not bind 

to a binding site, due to the lack of electrons interacting with the surface. For example, 

carbon of RCH3 does not bind and sticks out of the surface. Hereafter, we focus on 

carbons atoms for illustration.  

To describe adsorption of a heteroatom, we introduce the notation C
α

β, where α 

is the valency of a carbon and β denotes the type of binding site (β =A, B, H, u for 

atop, bridge, hollow or unoccupied site). For multiple heteroatoms, we employ a 

notation similar to the group additivity scheme. For example, C
1

A(C
1

B)2(C
1

H) indicates 

that the central atom C
1

A (leftmost) is attached to two C
1
B atoms (middle) and one C

1
H 

atom (rightmost in the formula). 

The stability of a single heteroatom is strongly affected by its valency and its 

binding site, as demonstrated in Figure 6.1 for a simple case of CHx adsorption on 
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three binding sites. Heuristically, a single heteroatom prefers a site to create a number 

of bonds with metal atoms equal to its valency. 

 

Figure 6.1. Carbon in CH3, CH2 and CH with varying number of valence electrons on 

atop, bridge and hollow sites. The superscript indicates the binding 

atom‘s valency and the subscript the type of binding site. S (U) indicate a 

stable (unstable) conformation. 

The stability of a conformation is strongly affected also by the neighbor atoms‘ 

binding site and valency, as illustrated in Figure 6.2. Due to the mismatch between C-

C and metal-metal bond distances and preferred bond angles, heteroatoms sometimes 

share surface atoms, as shown in the second conformation of C
1

A(C
1

A) in Figure 6.2. 

For the same reason, some conformations are strained compared to a single atom 

binding, as shown in the first conformation of C
1

A(C
1

A) row in Figure 6.2. As an 

example, the two C
1

A(C
1

A)2 conformations in Figure 6.2 are unstable due to the 

elongated C-C bond and large C-C-C angle (these instabilities are determined using 

DFT; see below). Another key observation is that C
2

A (Figure 6.1)
 
is unstable on the 
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atop site as it sits on the saddle point of the potential surface, but it is stable when two 

neighboring atoms are binding to the surface, as shown in C
2

A(C
1

A)2 (Figure 6.2). The 

two binding neighbors change the potential energy surface, making the C
2

A 

conformation stable. What these examples demonstrate is that the stability of a single 

heteroatom (see Figure 6.1) is insufficient to predict the stable conformations of an 

adsorbate consisting of multiple heteroatoms. For this reason, we define the local 

conformation subgraph (a fragment of a molecular graph) that describes the binding 

structure around an adsorbed atom. It is centered on a heteroatom and contains its 

nearest neighbor heteroatoms and the surface atoms connected to all of these. The role 

of local conformation is discussed below.  
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Figure 6.2. Examples of the effect of first-nearest neighbors on stability. Atoms with 

orange arrows are the central carbons. S (U) indicates a stable (unstable) 

conformation. 

From our experience, these binding conformations are typically transferable 

between strong-binding metals. The metal-metal distance in 12 metals (Ag, Au, Co, 

Cu, Fe, Ir, Ni, Pd, Pt, Re, Rh, Ru) is fairly constant (2.67 ± 0.10 Å ), thus the strain in 

the same conformation across metals is expected to be similar. However, for weakly 

carbon binding metals, such as Ag, Au, and Cu, the preferred binding sites are 

significantly different. For example, these surface atoms disfavor binding with 

multiple adsorbate atoms (e.g., the second conformation of C
1

A(C
1

A) in Figure 6.2). 
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On these metals, molecules with multiple non-zero valency heteroatoms (such as 

benzene and furan) prefer to be physisorbed. Here we focus on strong binding metals. 

Our overarching objective is to collect a data set of conformations and their 

stability, and extract their connectivity to enable generation of conformations and 

prediction of their stability. The sections below describe the data collection process 

and algorithm building using those data. 

6.2.2 Conformation and Stability Sampling via DFT 

The stability of a conformation is determined using DFT by examining 

whether this conformation relaxes to another one during the DFT ionic relaxation. In 

detail, atomic coordinates of an adsorbate and the slab are manipulated so that the 

coordinates describe the conformation‘s connectivity (confirmed by using the atomic 

coordinate to molecular graph conversion method introduced in Chapter 5). These 

atomic coordinates are inputted into DFT for ionic relaxation calculations. After the 

calculation converges, the atomic coordinates are redeemed and converted back to a 

molecular graph. The converged final conformation is added to the data set as a stable 

conformation. If the resulting conformation is not isomorphic to the initial 

conformation, the initial conformation is deemed unstable. Intermediate structures 

generated during ionic relaxation undergo the same stability classification. 

To build our data set, we have constructed 808 conformations on Pd(111) 

involving an atom adsorbed on a binding site with first and second-nearest neighbor 

atoms on various binding sites occasionally shared by heteroatoms. These 

conformations are heuristically chosen. The resulting data set of 808 initial structures 

is supplied to the DFT solver. In a DFT calculation, conformations in each ionic 

relaxation step are extracted and those that are non-isomorphic with the ground state 
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conformation are termed unstable. This approach results in 2,404 conformations with 

assigned stability. 

6.2.3 Automatic Surface Adsorbate Conformation Generation Algorithm 

The adsorption conformation prediction algorithm involves largely three steps, 

as illustrated in Figure 6.3. The first step enumerates the conformations of a species 

given its gas-phase structure. The conformation enumeration algorithm is inspired by 

the reaction network generation algorithm.[94, 149] While the reaction network 

generation algorithm enumerates species in a reaction network by exhaustively 

applying reaction rules to reactants and the generated species, the algorithm in this 

work uses ―binding rules‖ to enumerate conformations. Here a rule describes a graph 

transformation/graph rewriting procedure. Thus, the two algorithms mainly differ by 

the rules. Conformations are built starting from a gas-phase structure by assigning a 

binding site to one heteroatom at a time. The sections below describe the binding rules 

considering CH2CHCH2 as an example along with the methodology for harnessing 

these rules from the collected conformation and stability data discussed above. 
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Figure 6.3. Overview of the conformation enumeration algorithm. The algorithm 

involves three steps: (1) exhaustive enumeration of conformations using 

mined transformation rules; (2) mining conformations‘ subgraphs and 

their frequencies; and (3) prediction of stability using machine learning. 

Black, red, and blue edges indicate bonds between two adsorbate atoms, 

between an adsorbate and a metal atom, and between two metal atoms, 

respectively. M indicates a surface metal atom. 1 and 0 in the stability 

column indicates stable and unstable conformation, respectively. 

6.2.3.1 Binding Rules 

The enumeration is initiated by binding a single heteroatom (with valency 

greater than zero) randomly chosen on a metal site (denoted as the first atom binding 

rule). Typically 3 conformations are created to account for adsorption on an atop, 

bridge or hollow site. Then, a nearest neighbor site of the occupied metal site is 

assigned to a nearest neighbor heteroatom of the molecule (denoted as the neighbor 

atom binding rule). By doing so, the resulting molecular graph does not contain a 

disconnected lattice graph. This procedure is repeated until metal sites are assigned to 
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all heteroatoms atoms (with valency greater than zero), resulting in a potential 

conformation. The sequence of atoms chosen is irrelevant in the algorithm since 

complete enumeration is performed. For species that can form loops, e.g., CH2=CH-

CH2-CH2-CH=CH2, similar to polymers, a bridge-like rule can be applied to allow 

multiple, disconnected bindings. 

An example of a conformation generation for CH2CHCH2 is shown in Figure 

6.4. Here, the first atom binding rule is applied to the primary or secondary carbon. 

Since the two primary carbons are equivalent (isomorphic conformations), only one of 

them is selected. Once the C atom is bound, two neighbor atom binding rules are next 

applied to each structure. The three conformations generated are shown in the last 

column in Figure 6.4.   

 

Figure 6.4. An example of conformation generation of CH2CHCH2 using the rules in 

Figure 6.5. FR is the first atom binding rule in Figure 6.5a, NR1 and NR2 

are the neighbor atom binding rules in Figure 6.5c and e. The second and 

third column represent intermediate structures. Only one type of site 

(atop site) is shown here for simplicity. 
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Next we describe the binding rules using graph theory concepts. The illustrated 

first atom binding rule (Figure 6.5) shows adsorption of a carbon with valency 1 to an 

atop site. This operation is achieved via graph transformation. The rule contains a 

―pattern graph‖ which represents an unbound carbon with valency of 1 and an empty 

metal atom. This pattern is searched in the initial conformation containing the gaseous 

molecule and the lattice. If a match is found, the matched subgraph is replaced with 

the ―replacement graph,‖ which, in this rule, represents a carbon with valency 1 

adsorbed at an atop site. A more intuitive interpretation is that an edge is added 

between the said carbon atom and a surface atom. An example of finding the 

occurrence of pattern graph and replacement is shown in Figure 6.5b. This example 

involves the adsorption of the primary carbon. The secondary carbon is another 

candidate for applying this first atom binding rule, as shown in Figure 6.4. The 

numbers in the circle show how atoms in the pattern graph, replacement graph, and the 

matches are mapped to each other. Next, a neighbor atom binding rule is illustrated 

(Figure 6.5c). The pattern graph of this rule identifies an unbound carbon with valency 

of one (C
1

u) connected to another carbon with valency of one already bound to an atop 

site (C
1

A) and its connected metal atom M1, and an unoccupied metal atom M2 

connected to M1. In the replacement graph, C
1

u is adsorbed to M2. Another neighbor 

atom binding rule is illustrated in (Figure 6.5e). This rule is similar to Figure 6.5c 

where an unbound carbon becomes bound to an occupied metal atom instead of an 

unoccupied metal atom. These rules are applied twice to generate the final 

conformations.  
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Figure 6.5. Graph theory representation of binding rules. (a) The first atom binding 

rule used in Figure 6.4 for generation of a conformation; (b) An example 

of the first atom binding rule in (a); (c) The neighbor atom binding rule; 

(d) An example of the neighbor atom binding rule in (c); (e) Another 

neighbor atom binding rule; (f) An example of the neighbor atom binding 

rule in (e). In C
α

β notation, α is the valency of a carbon atom, and β =A, B, 

H or u is atop, bridge, hollow or unassigned binding site of the carbon 

atom. The index in a circle for (a), (b), (c), (d), (e) and (f) shows how 

atoms are mapped to each other. 
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The first and neighbor atom binding rules are mined from stable conformations 

from the 2,404 dataset built above. For the first atom binding rules, we extract every 

heteroatom bound to the surface and its binding surface sites among the stable 

conformations in the dataset. The resulting graphs are the replacement graphs. Pattern 

graphs are generated by removing the edges between the heteroatoms and the surface 

sites in the replacement graphs. For the neighbor atom binding rules, every two 

connected adsorbate atoms and their surface sites from stable conformations of the 

dataset are extracted. The resulting graphs are the replacement graphs. Pattern graphs 

are formed in a similar way by removing the related edges.  

6.2.3.2 Efficiency of Enumeration Algorithm 

The computational time for the resulting algorithm is high due to the large 

number of intermediate conformations. To overcome this problem, a set of ―stable 

local conformations‖ is created from the dataset to prune conformations during 

generation. Specifically, upon application of a binding rule, if a local conformation in 

the structure is not in the stable set, the structure is removed. This approach is 

summarized in Algorithm 6.1 together with the enumeration algorithm. Lines 1-4 

represent the initial adsorption of one atom to the surface using the first atom binding 

rule. The remaining of the algorithm exhaustively applies the neighbor atom binding 

rule to the conformation pool. This algorithm has been implemented using Python and 

the Rdkit package.[292] 
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Algorithm 6.1. Conformation Enumeration. 

1:  for each heteroatom do 

2:    apply first atom binding rule 

3:    add resulting structure to new species list 

4:  end for 

5:  while the new species list is not empty do 

6:    pop a species from the new species list 

7:    apply all binding rules 

8:    remove lattice ambiguity in each species using Algorithm 6.2 

9:    remove previously enumerated species 

10:  remove species with unobserved local conformations 

11:  add remaining species to the new species list 

12: end while 

6.2.3.3 Canonicalization and Ambiguity Removal of Conformations 

A naïve way to represent an adsorbate conformation is to simply include all 

occupied metal atoms (M) in a graph. However, this approach sometimes results in an 

ambiguous lattice structure. In particular, when a conformation contains a metal site M 

with only one or two non-connected neighboring metal sites, the lattice structure 

become ambiguous. Figure 6.6 shows such a case where the conformation contains a 

metal-metal-metal line-like lattice subgraph. As the angle of the metal-metal-metal is 

not described, the M-M-M structure is not unique.  
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Figure 6.6. Three lattice subgraphs possible for a metal-metal-metal lattice subgraph 

of a conformation. Algorithm 6.2 systematically and efficiently adds 

unoccupied metal atoms to represent a conformation canonically and 

unambiguously. 

In order to remove ambiguity, each metal atom in a conformation needs to be 

connected to at least two metal atoms connected to each other (see Figure 6.6). We 

introduce a simple and efficient algorithm to remove the ambiguity in the lattice of the 

conformation by adding appropriate unoccupied atoms to the conformation, as shown 

in Algorithm 6.2. There exists more than one way to add unoccupied atoms. The 

presented algorithm is designed to always result in the same lattice subgraph given an 

initial lattice subgraph in the conformation. This canonicalization feature, where a 

unique representation is outputted, when multiple representations are possible to 

achieve a goal, is critical to removing duplicate conformations. This algorithm is 
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applied whenever new conformations are produced during the enumeration. In detail, 

unoccupied metal atoms with more than 2 metal atoms in the conformation graph are 

iteratively added to the conformation. At the end of the iteration, the lattice subgraph 

of the conformation becomes planar without a concave corner, as demonstrated in 

Figure 6.6. One exception is if the lattice subgraph is a line. In this case, all the 

unoccupied metal sites with two occupied metal sites are added. Lines 1-4 in 

Algorithm 6.2 initialize the map O: i → ni where i is the index of unoccupied metal 

atom i, and ni is the number of metal atom neighbors of i that are in the conformation 

molecular graph. Lines 5-7 check whether the lattice in the conformation is a line, and, 

if it is, the algorithm adds unoccupied sites appropriately as discussed above and 

returns a new conformation without the lattice ambiguity (see Algorithm 6.1). Lines 9-

17 iteratively add metal atoms with more than two metal atoms to the conformation 

until no more metal atoms are added to the conformation. The canonical 

conformations are then converted to SMILES using Rdkit,[292] which are 

algorithmically guaranteed to canonically describe a molecular graph, i.e., to compare 

isomorphism between different conformations and ensure uniqueness of 

structures.[340]  
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Algorithm 6.2. Conformation Canonicalization. 

1:  O = {} 

2:  for each unoccupied metal atom i do 

3:    O(i) ← Number of occupied metal neighbors of atom i 

4:  end for 

5:  if all elements in O are 2 do 

6:    add all atoms in O to conformation and return 

7:  end if 

8:  add atoms in O with more than two to AtomToProcess list 

9:  while AtomToProcess is not empty do 

10:  pop an atom i from AtomToProcess and add i to conformation 

11:  for atom j in O do 

12:    if i is a neighbor of j do 

13:      O(j) ← O(j) + 1 

14:    end if 

15:    if O(j) is three do 

16:      add atom j to AtomToProcess list 

17:    end if 

16:  end for 

17:end while 

6.2.4 Determining Conformation Stability using Machine Learning 

The next two steps of the algorithm involve determining the stability of a 

generated conformation (Steps 2 and 3 in Figure 6.3). In step 2, conformations are 

decomposed to descriptors, namely, subgraphs and their frequency – number of 

occurrences. We hypothesize that subgraphs may represent an unphysical structure, 

and their frequency correlates to the stability of a conformation. Subgraphs are mined 

selectively using the adsorbate graph mining method of previous work (this differs 

from local conformations).[337] In this method, all possible subgraphs of the 

adsorbate without the surface atoms are enumerated, and, then, surface atoms 

connected to heteroatoms are added for each subgraph. These selectively mined 

subgraphs have been shown to correlate well with thermodynamic properties, and we 
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expect them to correlate well with the conformation stability. Finally, descriptor 

vectors are inputted into a logistic regression model as implemented in sckit-

learn.[341] Logistic regression is a classifier, which outputs the probability of having a 

feature, i.e., the conformation stability in this work. The input involves the linear 

function of the descriptor variables. 

Training the logistic regression model involves decomposition of all the 

collected 2,404 conformations to subgraphs followed by training using the stability 

data. An L1 penalty of the descriptor coefficients is applied to encourage sparsity of 

the descriptor coefficients. This reduces the number of isomorphisms required for 

building descriptor variables. The magnitude of L1 penalty is optimized by leave-one-

out cross-validation.  

6.3 Results and Discussion  

6.3.1 Rule Mining  

For the first atom binding rule, nine rules are mined which are C
1

A, C
1

B, C
1

H, 

C
2

A, C
2

B, C
2

H, C
3

A, C
3

B, and C
3

H. Therefore, carbons can adsorb at atop, bridge, or 

hollow site irrespective of their valency. This result is counter intuitive, as atoms are 

typically expected to adsorb at a site that result in a number of C-M bonds equal to 

their valency. However, when multiple heteroatoms bind to the surface, each 

heteroatom can adsorb at unintuitive binding sites due to strain, signifying the 

complexity of adsorption of multi-dentate species. A total of 47 pairs of connected 

heteroatoms are mined, as shown in Table 6.1. Depending on the graph symmetry, one 

or two neighbor atom binding rules are mined from these pairs, resulting in 86 

neighbor atom binding rules. As mentioned above, two atoms can share surface atoms 
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upon binding. For example, the C
1

A-C
1

A pair in the first row of Table 6.1 may share a 

surface atom or interact with two separate surface atoms. Interestingly, for each pair of 

binding sites, a minimum and maximum number of sharable surface atoms exist. For 

example, C
x
A-C

y
A or B or H and C

x
B-C

y
B pairs could share one surface atom or none. 

However, the carbons of a C
x
B-C

y
H pair must share one surface atom because the C-C 

bond cannot stretch far enough without dissociation. For C
x
H-C

y
H pairs, the only 

observed structure is when two surface atoms are shared. We have extracted a total of 

250 local conformations from stable conformations.  

Table 6.1. Binding Rule Information. 

Atom1 

 

Atom2 

 
Number of Shared 

Surface Atom Valency Site Valency Site 

1 A 1 A 0, 1 

1 A 1 B 0 ,1 

1 A 1 H 1 

1 B 1 B 1 

1 B 1 H 2 

1 H 1 H 2 

1 A 2 A 0 

1 B 2 A 1 

1 B 2 H 2 

1 A 3 H 0, 1 

1 B 3 H 2 

1 H 3 H 2 

2 A 1 A 1 

2 A 1 B 1 

2 A 1 H 1 

2 B 1 A 0, 1 

2 B 1 B 0 

2 B 1 H 1,2 

2 H 1 A 1 
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Table 6.1. continued. 

2 H 1 H 2 

2 A 2 A 0, 1 

2 A 2 B 0, 1 

2 A 2 H 1 

2 B 2 B 0, 1 

2 B 2 H 1, 2 

2 H 2 H 2 

2 A 3 H 1 

2 B 3 B 0 

2 B 3 H 1, 2 

2 H 3 H 2 

3 B 1 A 0 

3 H 1 B 1 

3 B 2 B 1 

3 H 3 H 2 

 

6.3.2 Model Assessment 

To thoroughly test the logistic regression model, cross-validation is performed. 

At the optimal L1 penalty, the accuracy of the model is 85%. The detailed statistics 

and parity plot are shown in Table 6.2 and Figure 6.7. In our model, 12% of the 

unstable conformations are falsely labeled. However, the cross-validation accuracy is 

likely over-predicted, as each datum is highly dissimilar to the others. The dataset is 

very sparse, with local conformations typically sampled only once. The dataset needs 

more redundancy to improve the cross-validation score. In addition, the data contains 

fundamental outliers where no similar datum exists in chemical space (all possible 

molecular structures) for extrapolation. For example, C
2
1, as discussed above, is 

unstable by itself but becomes stable with two anchoring neighbors. Thus, the 

instability of C
2

1 cannot be predicted without the datum itself. The actual accuracy is 

likely somewhere between the cross-validation and the training set accuracy. The 
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training set accuracy is 98% with only 2% false negatives, thus the prediction is 

expected to be reliable.  

Table 6.2. Error matrix of the logisic model. 

 Cross validation error Training set error 

 True 

Condition 

Positive 

True 

Condition 

Negative 

True 

Condition 

Positive 

True 

Condition 

Negative 

Predicted 

Condition 

Positive 
283 114 462 13 

Predicted 

Condition 

Negative 
219 1624 40 1725 
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Figure 6.7. Parity plot of the logistic model. Relative frequency is plotted for better 

visualization. 

6.3.3 An Example 

Here, we present results for a complex molecule, namely, CH2=C(CH2)2. The 

script only takes the SMILES of the gas structure as input, which is 

[CH2][C]([CH2])[CH2]. The script automatically generates 8 conformations and 

suggests that 5 of them are stable, as demonstrated in Figure 6.8.  
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Figure 6.8. Conformation enumeration of CH2=C(CH2)2. The results agree with the 

DFT calculations on Pd(111). The numbers indicate the stability 

computed by the logistic regression.  

6.3.4 Additional Post Processing 

The atomic coordinates for the dataset in this work was constructed manually. 

To avoid building data set manually in the future, we have modified the universal 

force-field to convert conformations to roughly optimized coordinates (using the 

implementation in the Rdkit software package).[164, 292] These coordinates can be 

used for visualizing molecular graphs or as a good initial guess for DFT calculations.  

6.4 Conclusions 

This chapter introduced a new algorithm to rapidly predict adsorption 

conformations of large adsorbates on a catalyst surface. 808 conformations were 

generated and passed onto DFT, and this gave 2,404 data by removing unstable 

conformations during the ionic relaxation of DFT calculations. In order to enumerate 

potential conformations, the algorithm introduces fundamental binding rules that are 

mined from stable conformations in a training dataset. The binding rules are designed 
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to avoid disconnected lattice structures. In order to prune the dimensionality of 

generated conformations, structures with unobserved stable local conformations are 

omitted. For instability caused by a structure that extends beyond the first nearest 

neighbor, the adsorbate graph mining method from Chapter 5 is employed, and 

logistic regression is applied to predict the stability of generated conformations. The 

cross-validation accuracy is 85%, but the accuracy should be between 85% and the 

training set accuracy 98% due to the non-redundancy and outliers in the dataset. 

Future work should involve accounting for binding sites of oxygen heteroatoms to 

address biomass chemical transformations. 
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CONCLUSIONS AND OUTLOOK 

7.1 Dissertation Summary 

In this thesis, several computational gaps for biomass conversion on metal 

surfaces have been addressed. Group additivity schemes for lignin monomers as well 

as solvated sugar alcohols have been developed for the first time. The previous semi-

empirical model framework has been improved via developing better descriptors and 

by implementing machine-learning. These new tools enable modeling of large biomass 

conversion reaction networks. In addition, a simple lateral interaction model has been 

introduced that is applied to diverse species in a reaction network. The frameworks 

introduced herein are extendable to other biomass monomers as well as to other 

surface facets. 

Chapter 2 carried out the first microkinetic study of a lignin model compound, 

cresol, on Pt to provide mechanistic understanding unattainable from experiments. The 

simulation results are consistent with multiple experiments, supporting that Pt(111) is 

capable of deoxygenation chemistry without an acidic support. This work elucidated a 

new mechanism where dehydroxylation becomes facile upon sufficient hydrogenation 

of the ring. In addition, our work implied that oxophilic metal such as Fe and Ni 

would likely dehydrate cresols via direct deoxygenation mechanism. In order to 

parameterize a large number of reactions, BEP relationships were significantly 

improved using transition state structure sensitivity. In addition, a model for lateral 

Chapter 7 
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interactions was introduced that can be extended to the modeling of other lignin 

monomers. 

Besides the deoxygenation of the hydroxyl group explored in Chapter 2, the 

methoxy group is another common oxygenate functional group in lignin monomers. 

To understand the methoxy groups‘ deoxygenation mechanism in the guaiacol HDO 

was investigated in a co-authored work, by Lee et al.[117] via DFT. However, MKM 

has never been applied to guaiacol HDO. Thus, Chapter 3 discussed a group additivity 

scheme for the guaiacol reaction network. 591 molecules were sampled using DFT. 

The previous group additivity framework was found to be inadequate for describing 

conjugation and ring strain imposed by the C6 ring. To identify groups that are 

transferable, Bader analysis was employed. The analysis revealed that groups must 

include the binding site of the central and the nearest neighbor atoms. The new 

framework reduced the MeanAE from 5.15 to 2.81 kcal/mol. 

Despite the presence of water in biomass conversion, the effect of water is 

poorly understood. Chapter 4 introduces a group additivity for solvated adsorbates on 

the metal surface. Specifically, sugar alcohols in aqueous solution on Pt(111) were 

investigated. The Gibbs free energy of solvation is predicted within MeanAE of ~ 1.0 

kcal/mol. The model provides an accurate estimation of solvation effect, at a 

dramatically reduced computational cost. Analysis revealed that O-H scission is 

thermodynamically disfavored and C-H, C-C, and C-O scissions are 

thermodynamically favored in aqueous solution. 

Chapter 5 discusses a feature selection machine learning method, LASSO, that 

automates selection of groups (optimal descriptors) especially for adsorbates that 

possess complex graphic structures for group additivity. For each datum, all possible 
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patterns were enumerated. Then, the patterns‘ occurrence in the datum was correlated 

to the heat of formation and LASSO automatically selected the most informative set of 

patterns for describing the datum‘s heat of formation. This framework is significantly 

more accurate than the traditional group additivity approach (9.17 → 5.74 kcal/mol 

improvement in MeanAE). In addition, a graph mining method was introduced to 

extract useful patterns from adsorbate DFT calculations. This method, combined with 

LASSO, improved the lignin group additivity MeanAE from 2.81 kcal/mol to 2.08 

kcal/mol, achieving < 0.1 eV (2.31 kcal/mol) error for the first time for an adsorbate 

group additivity scheme. Statistical analysis showed that a bigger data set is needed to 

improve the fitting further. As the computational time for pattern enumeration scales 

exponentially with molecular size, a semi-supervised method was developed where 

patterns are enumerated during regression, and uninformative patterns are pruned from 

the descriptor space to reduce computational burden. Using this method, the 

computational cost no-longer scales with the graph size. Lastly, a simple method to 

identify outliers was introduced in order to remove datums whose energy cannot be 

predicted, as well as to improve data sampling techniques. 

Chapter 6 introduced a data-based algorithm to rapidly predict adsorption 

conformations of large adsorbates on a close-packed metal surface. 2,404 

conformation and stability data were computed using DFT calculations. To enumerate 

conformations, this chapter introduced fundamental binding rules mined from stable 

adsorption conformations. The algorithm implements canonicalization features to 

remove ambiguity for the lattice in the conformation. To compute the stability, the 

conformation is decomposed into subgraphs using the graph mining method 

introduced in Chapter 5 and logistic regression is applied to predict the stability. The 
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accuracy of the stability classification is expected to be above 85%. This work 

introduces a streamlined algorithm to generate inputs for building a big data set as 

well as to compliment the developed group additivity method. Future work involves 

accounting for binding sites of oxygen heteroatoms to address biomass chemical 

transformations. Lastly, Appendix E shows results for the mechanism of the aqueous 

phase reforming for ethylene glycol on Pt(111).  

7.2 Future Work 

Figure 1.5 discussed computational gaps, some of which were addressed in this 

thesis. Critical future tasks include the development of a comprehensive lateral 

interaction framework (Figure 1.5e) and the improvement of LSRs (Figure 1.5c). 

Despite the improvement of the group additivity and the development of the machine-

learning model, the learning curve for the lignin dataset in Chapter 5 shows more data 

is necessary. With the development of the automatic adsorption conformation 

prediction algorithm, building data points could be fully automated without human 

intervention. Building a big data and applying a single machine learning framework is 

promosing to minimize model errors and would simplify the user interface. In 

addition, these frameworks can be employed as web applications to boost other 

computational researched in the field. Also, microkinetic modeling could be coupled 

with these semi-empirical methods to generate reaction network on the fly, so 

unfavorable reactions and species are unaccounted to minimize computation time of 

large microkinetic models. 

The BEP relations in Chapter 2 show that a three center-atom transition state is 

unfavorable due to the increased coordination of the Pt atom in the transition state 

(Figure 7.1a). This unfavorable three center-atom transition state could be bypassed by 
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designing the catalytic site. A simple example is presented in Figure 7.1b. On step 

sites, the Pt atom on the step is significantly closer to the OH group than those on the 

terrace slab and a four center atom transition state is expected. A similar observation 

has been reported for olefin C-C and C-H scission where the cracked components 

involve smaller reaction energy and barriers due to the nearby step site surface 

atom.[342] Facile olefin cracking has been experimentally observed on smaller 

catalyst particles.[342] Interestingly, deoxygenation of phenol has been shown to 

become more facile with decreasing particle size for Ni/SiO2, reinforcing this 

hypothesis.[343] Our results indicate that controlling particle size and shape provide 

simple strategies to tune reactivity.  

 

Figure 7.1. Example of (a) unstable C-OH scission transition state structure on the 

terrace (DFT calculations in Chapter2), and (b) expected C-OH scission 

transition state structure on step (based on heuristics). 
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MECHANISM OF DEHYDRATION OF PHENOLS ON NOBLE METALS VIA 

FIRST-PRINCIPLES MICROKINETIC MODELING – SUPPORTING 

INFORMATION 

A.1 Nomenclature of the p-cresol Derivatives 

For convenience, we refer to p-cresol as ―PC(OH)‖, where PC stands for the 

methyl ring without OH. The p-cresol derivatives undergoing O-H scission are 

referred to as ―PC(O)‖. Similarly, PC refers to derivatives after C-OH scission. 

Following the α-carbon hydrogenation of PC, the molecules are referred to as TOL. 

We number the ring carbons as shown in Figure A.1. Fully hydrogenated molecules 

are: MCH(OH), methyl cyclohexanol; MCH(O), methyl cyclohexanone; and MCH, 

methyl cyclohexane. 

 

Figure A.1. Numbering of the ring carbon atoms. Structures from left to right: 

PC(OH), PC(O), PC, and TOL. An intermediate X hydrogenated at ring 

positions 2, 4, and 6 is denoted as H246X. For example, H23456PC(OH) 

refers to p-cresol with hydrogenated ring carbon at positions 2, 3, 4, 5, 

and 6.  

A.2 Generation of the Reaction Network 

We generate the network using the RING[94, 149] software. The 

classifications of the elementary reactions are listed in Table A.1. The number of 
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associated reactions and intermediates are listed in Table A.2. C-C cracking is not 

considered, as light hydrocarbons are not observed experimentally.[58, 62] The C-H 

and O-H reactions are included, as a previous study on Pt(111) using BEP relations 

demonstrated low barriers,[43] and saturated ketone and alcohol were observed 

experimentally[58, 62]. C-OH bond scission is a main elementary reaction type for 

deoxygenation of p-cresol.  

Table A.1. Reaction rules and examples of input into RING. 

Reaction rules Example of reaction 

Hydrogenation of 

ring carbon, C-H
a
 

 

C-OH bond 

scission  

O-H bond scission 
 

aC-H scission for the carbon with (C)
2
(H)(Pt) connectivity is not considered as a 

previous benzene dehydrogenation study shows it disfavored.[344] Additionally, the 

high hydrogen to p-cresol ratio used in the experiment results in high hydrogen 

coverage, disfavoring surface intermediates with H-deficient ring carbons. 
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Table A.2. Number of reactions and intermediates in the HDO reaction network of p-

cresol on Pt(111). The table on the left lists the intermediates in each 

functional form similar to Figure 2.1. 

 
 

 

A.3 Parameterization of the Microkinetic Model 

Figure A.2 shows the minimum energy path as the ring is being hydrogenated. 

At each degree of hydrogenation, there are multiple positions where H can be added. 

The energy level of the most stable species is shown in red and subsequent 

hydrogenation starts from this species. The reaction energies and barriers studied by 

DFT are summarized in Table A.3 and Table A.4. 
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Figure A.2. Reaction energy profile (top) of hydrogenation of p-cresol (PC(OH)) 

following the minimum energy path (red arrows) and corresponding 

species (bottom) as hydrogens are being added. 
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Table A.3. C-H and O-H scission reactions used for development of BEP/TSS 

relations. 

Type Reactant Product Reaction 

energy (eV) 

Barrier 

(eV) 
C-H H2PC(OH)(S) PC(OH)(S) -0.26 0.85 

 H26PC(OH)(S) H2PC(OH)(S) -0.25 0.78 

 H246PC(OH)(S) H26PC(OH)(S) -0.27 0.63 

 H2346PC(OH)(S) H246PC(OH)(S) -0.37 0.57 

 H23456PC(OH)(S) H2346PC(OH)(S) -0.19 0.76 

 MCHOH(S) H23456PC(OH)(S) -0.28 0.55 

 H1PC(OH)(S) PC(OH)(S) -0.49 0.78 

 H3PC(OH)(S) PC(OH)(S) -0.34 0.73 

 H4PC(OH)(S) PC(OH)(S) -0.41 0.78 

 H5PC(OH)(S) PC(OH)(S) -0.35 0.84 

 H6PC(OH)(S) PC(OH)(S) -0.49 0.63 

 H12PC(OH)(S) H2PC(OH)(S) -1.10 0.14 

 H23PC(OH)(S) H2PC(OH)(S) -0.32 0.73 

 H24PC(OH)(S) H2PC(OH)(S) -0.51 0.64 

 H25PC(OH)(S) H2PC(OH)(S) -0.40 0.84 

 H23456PC(S) H2345PC(S) -0.24 0.63 

 H2345TOL(S) H2345PC(S) -0.05 1.15 

 H23456TOL(S) H23456PC(S) 0.04 1.12 

 H345TOL(S) H34TOL(S) -0.10 0.88 

 H2345TOL(S) H234TOL(S) -0.36 0.66 

 H2345TOL(S) H245TOL(S) -0.35 0.57 

 H2345TOL(S) H345TOL(S) -0.48 0.45 

 H2345TOL(S) H235TOL(S) -0.40 0.55 

 H12345TOL(S) H2345TOL(S) 0.07 0.93 

 H23456TOL(S) H2345TOL(S) -0.15 0.52 

 H23456TOL(S) H2356TOL(S) -0.06 0.86 

 H23456TOL(S) H2346TOL(S) -0.16 0.81 

 MCH(S) H23456TOL(S) -0.12 0.84 

 MCH(S) H12345TOL(S) -0.32 0.64 

     

O-H PC(OH)(S) PC(O)(S)a 0.18 0.47 

 PC(OH)(S) PC(O)(S)b 0.26 0.46 

 H2PC(OH)(S) H2PC(O)(S)a 0.60 0.86 

 H2PC(OH)(S) H2PC(O)(S)b 0.48 0.85 

 H26PC(OH)(S) H26PC(O)(S)a 0.51 0.79 

 H246PC(OH)(S) H246PC(O)(S)a 0.25 0.76 

 H2346PC(OH)(S) H2346PC(O)(S)a 0.40 0.61 

 H23456PC(OH)(S) H23456PC(O)(S)a 0.35 0.53 
a C=O lifted off the surface. b C=O chemisorbed to the surface. 
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Figure A.3. Structures of hydrogenated ring-carbons that lead to H-deficient 

derivatives with sp
3
 hybridized α-carbon.  

 

Figure A.4. BEP relations for C-H and O-H scission reactions. The training set is 

presented in Table A.3. 
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Table A.4. C-OH scission reactions used for development of BEP/TSS relations. 

IS TS FS Reactant Product Reaction 

energy 

(eV) 

Barrier 

(eV) 

1 3-centered sp
2 
α-C PC(OH)(S) PC(S) 1.81 2.45 

1 3-centered sp
2 
α-C H25PC(OH)(S) H25PC(S) 1.88 2.47 

1 3-centered sp
2 
α-C H34PC(OH)(S)-1

a
 H34PC(S)-1

 
1.20 1.68 

1 3-centered sp
2 
α-C H34PC(OH)(S)-2

a
 H34PC(S)-2 1.06 1.72 

2 3-centered sp
2 
α-C H2PC(OH)(S)-1

a
 H2PC(S) 1.66 2.15 

2 3-centered sp
2 
α-C H345PC(OH)(S) H345PC(S) 0.78 1.46 

3 4-centered sp
2 
α-C H2PC(OH)(S)-2

a
 H2PC(S)

 
1.83

b 
1.75 

3 4-centered sp
2 
α-C H23PC(OH)(S) H23PC(S)

 
1.62

b
 1.47 

3 4-centered sp
2 
α-C H26PC(OH)(S) H26PC(S)

 
1.71

b
 1.71 

3 4-centered sp
2 
α-C H246PC(OH)(S) H246PC(S)

 
1.53

b
 1.55 

3 4-centered sp
2 
α-C H2346PC(OH)(S) H2346PC(S)

 
1.34

b
 1.26 

3 4-centered sp
2 
α-C H23456PC(OH)(S) H23456PC(S)

 
1.11

b
 0.96 

3 4-centered sp
3 
α-C H2345PC(OH)(S) H2345PC(S)

 
0.91 1.10 

3 4-centered sp
3 
α-C H3456PC(OH)(S) H2345PC(S)

 
0.87 1.16 

3 4-centered sp
3 
α-C H23456PC(OH)(S) H23456PC(S)

 
0.79 0.96 

a Same intermediates but adsorbed in different conformation. b These reaction energies are higher than the 

corresponding barriers at infinite separation but lower at co-adsorbed state, implying an attractive 

interaction between cresol derivatives and OH. For C-OH scission reaction energy in Figure 2.4 is 

computed at co-adsorbed state. 

 

A.3.1 Vibrational Frequency Calculations and Statistical Mechanical 

Approximation 

We compute vibrational frequencies of 26 species along the minimum energy 

hydrogenation path, along with those of H2O, OH, and H. The frequencies of 26 

additional species are calculated for MKM refinement. Vibrational frequencies and 

binding energies are presented in Table A.5.  
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Table A.5. Binding energies and vibrational frequencies of species computed via DFT. 

Species B.E. 

(eV) 

ν (cm
-1

) 

PC(S) 3.44 3079, 3073, 3059, 3057, 3053, 3023, 2937, 1436, 1429, 1405, 1359, 1346, 1300, 1273, 

1240, 1177, 1136, 1064, 1024, 1004, 931, 926, 902, 882, 871, 826, 796, 719, 626, 568, 542, 

522, 480, 417, 372, 328, 298, 226, 210, 185, 154, 111 

H2PC(S) 4.68 3077, 3043, 3037, 3014, 3010, 3002, 2935, 2920, 1421, 1420, 1415, 1373, 1350, 1293, 
1273, 1215, 1170, 1136, 1131, 1082, 1042, 1012, 996, 948, 935, 926, 899, 859, 834, 778, 

692, 598, 576, 517, 493, 485, 416, 348, 335, 328, 241, 203, 192, 140, 119 

H26PC(S) 5.90 3067, 3050, 3020, 2987, 2985, 2951, 2927, 2912, 2894, 1428, 1420, 1413, 1405, 1383, 

1348, 1299, 1266, 1206, 1198, 1168, 1130, 1109, 1052, 1038, 1000, 994, 958, 945, 919, 
899, 870, 831, 778, 680, 593, 579, 506, 483, 405, 375, 343, 321, 313, 251, 198, 152, 130, 

94 

H234PC(S) 4.77 3056, 3044, 3036, 3009, 2979, 2963, 2958, 2957, 2955, 2821, 1452, 1447, 1428, 1404, 
1358, 1314, 1310, 1273, 1251, 1230, 1204, 1166, 1123, 1110, 1085, 1077, 1016, 999, 961, 

955, 930, 897, 884, 868, 831, 752, 696, 608, 594, 527, 496, 433, 404, 303, 265, 223, 206, 

191, 114, 74, 59 
H235PC(S) 5.05 3064, 3031, 2988, 2986, 2971, 2970, 2950, 2915, 2908, 2875, 1434, 1423, 1416, 1398, 

1385, 1341, 1302, 1278, 1225, 1204, 1182, 1164, 1146, 1119, 1096, 1074, 1029, 1007, 970, 

967, 930, 901, 878, 850, 823, 759, 675, 583, 506, 476, 445, 429, 343, 318, 276, 270, 237, 
219, 157, 99, 63 

H236PC(S) 4.85 3029, 3026, 2999, 2987, 2969, 2947, 2933, 2908, 2899, 2868, 1429, 1417, 1408, 1400, 
1393, 1348, 1302, 1273, 1240, 1202, 1184, 1168, 1160, 1095, 1078, 1065, 1026, 1000, 965, 

946, 932, 912, 892, 853, 798, 756, 676, 576, 558, 486, 448, 402, 362, 347, 304, 296, 248, 

219, 147, 114, 96 
H245PC(S) 5.16 3052, 3030, 3026, 3010, 3003, 2985, 2952, 2919, 2911, 2785, 1447, 1442, 1422, 1402, 

1355, 1310, 1277, 1269, 1248, 1239, 1196, 1151, 1146, 1121, 1085, 1042, 1031, 1022, 990, 

987, 927, 903, 873, 870, 811, 768, 684, 591, 579, 502, 483, 393, 379, 320, 269, 245, 213, 
159, 133, 85, 58 

H246PC(S) 7.72 3054, 3044, 3001, 2997, 2980, 2968, 2966, 2915, 2892, 2814, 1449, 1447, 1425, 1408, 

1351, 1293, 1283, 1266, 1234, 1188, 1182, 1170, 1105, 1095, 1079, 1025, 1015, 998, 991, 
982, 924, 915, 882, 851, 782, 762, 726, 612, 576, 574, 558, 418, 403, 361, 317, 260, 209, 

194, 164, 117, 108 

H2345PC(S) 2.16 3041, 3030, 3014, 2993, 2966, 2959, 2954, 2948, 2935, 2907, 2791, 1449, 1447, 1436, 
1407, 1394, 1362, 1324, 1310, 1274, 1267, 1239, 1232, 1211, 1183, 1150, 1123, 1096, 

1092, 1059, 1015, 987, 959, 909, 901, 869, 845, 831, 763, 688, 525, 512, 481, 377, 357, 

327, 248, 232, 216, 153, 128, 95, 69, 39 
H2346PC(S) 5.96 3052, 3043, 3012, 3010, 2982, 2966, 2957, 2938, 2905, 2864, 2728, 1450, 1447, 1431, 

1407, 1391, 1358, 1314, 1298, 1270, 1247, 1212, 1199, 1184, 1164, 1126, 1101, 1091, 

1028, 1018, 1006, 985, 944, 925, 903, 888, 829, 792, 742, 685, 602, 574, 537, 419, 403, 
379, 302, 264, 217, 185, 158, 113, 78, 65 

H2356PC(S) 6.07 3045, 3030, 3009, 3006, 2986, 2971, 2950, 2932, 2928, 2921, 2916, 1438, 1430, 1421, 

1412, 1404, 1390, 1345, 1316, 1288, 1236, 1225, 1208, 1187, 1181, 1154, 1124, 1099, 
1060, 1048, 998, 973, 960, 935, 884, 865, 839, 794, 754, 692, 530, 485, 440, 431, 343, 305, 

286, 269, 261, 233, 181, 92, 60, 51 

H23456PC(S) 4.75 3046, 3038, 3003, 3001, 2969, 2962, 2960, 2949, 2934, 2928, 2715, 2708, 1456, 1453, 
1431, 1422, 1394, 1372, 1366, 1325, 1319, 1312, 1281, 1260, 1249, 1205, 1184, 1152, 

1138, 1093, 1081, 1046, 1036, 975, 969, 936, 931, 916, 864, 850, 757, 753, 644, 567, 477, 

439, 385, 379, 329, 323, 218, 171, 156, 146, 105, 54, 45 

PC(O)(S) 3.26 3068, 3062, 3049, 3043, 3016, 3001, 2929, 1655, 1425, 1420, 1402, 1353, 1332, 1288, 
1267, 1242, 1152, 1138, 1069, 1034, 1011, 987, 956, 935, 897, 882, 839, 733, 724, 681, 

582, 574, 519, 467, 427, 408, 404, 324, 310, 239, 191, 138, 117, 104, 94 

H2PC(O)(S) 2.78 3070, 3040, 3018, 3013, 3007, 2989, 2920, 2887, 1513, 1425, 1413, 1403, 1382, 1350, 

1313, 1277, 1273, 1229, 1156, 1128, 1112, 1052, 1012, 1004, 975, 935, 914, 895, 861, 784, 
704, 695, 591, 560, 546, 445, 429, 422, 376, 325, 312, 255, 253, 208, 124, 119, 91, 55 
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Table A.5 continued. 

H26PC(O)(S) 3.16 3052, 3046, 3020, 2996, 2984, 2932, 2918, 2896, 2891, 1639, 1433, 1415, 1406, 1375, 

1361, 1348, 1328, 1295, 1274, 1227, 1175, 1161, 1134, 1093, 1045, 1022, 1002, 975, 949, 
923, 893, 832, 747, 718, 696, 575, 544, 467, 450, 425, 371, 333, 308, 262, 233, 219, 192, 

123, 92, 76, 69 

H246PC(O)(S) 4.65 3057, 3050, 2995, 2987, 2977, 2970, 2968, 2905, 2899, 2759, 1652, 1448, 1444, 1375, 
1362, 1346, 1311, 1299, 1284, 1269, 1251, 1199, 1167, 1155, 1109, 1071, 1060, 1038, 

1004, 1002, 971, 964, 927, 866, 811, 776, 753, 699, 588, 546, 511, 509, 437, 405, 322, 288, 

250, 241, 207, 174, 111, 109, 63, 62 
H2346PC(O)(S) 2.83 3049, 3043, 3025, 3004, 2966, 2962, 2940, 2927, 2885, 2883, 2637, 1659, 1449, 1448, 

1394, 1371, 1364, 1352, 1321, 1317, 1292, 1273, 1258, 1223, 1206, 1179, 1135, 1128, 

1085, 1058, 1038, 1022, 979, 974, 921, 901, 866, 780, 769, 714, 680, 569, 518, 485, 447, 
403, 379, 279, 246, 214, 203, 151, 114, 90, 67, 51, 29 

MCH(O)(S) 1.35 3056, 3050, 3008, 3005, 2983, 2978, 2972, 2957, 2937, 2930, 2660, 2650, 1645, 1455, 

1450, 1390, 1375, 1373, 1370, 1356, 1329, 1323, 1313, 1299, 1267, 1244, 1229, 1203, 

1191, 1150, 1108, 1081, 1061, 1044, 992, 985, 932, 904, 882, 872, 770, 719, 682, 664, 504, 

478, 432, 405, 374, 344, 221, 216, 172, 109, 96, 91, 58, 38, 25, 18 

PC(OH)(S) 2.44 3410, 3095, 3082, 3053, 3043, 3036, 3007, 2933, 1452, 1425, 1421, 1401, 1364, 1353, 

1326, 1283, 1262, 1201, 1151, 1136, 1079, 1038, 1001, 951, 939, 922, 909, 868, 842, 741, 

703, 632, 580, 548, 507, 445, 427, 412, 392, 367, 319, 310, 238, 203, 188, 137, 124, 102 

H2PC(OH)(S) 3.68 3300, 3085, 3048, 3028, 3024, 3022, 3000, 2928, 2889, 1423, 1417, 1409, 1401, 1349, 
1335, 1305, 1299, 1267, 1235, 1172, 1139, 1102, 1085, 1051, 1010, 1009, 981, 937, 921, 

918, 876, 805, 730, 690, 610, 579, 558, 493, 454, 437, 421, 415, 344, 319, 294, 247, 242, 

203, 132, 121, 114 
H26PC(OH)(S) 5.00 3479, 3062, 3050, 3033, 2988, 2987, 2917, 2916, 2877, 2871, 1431, 1418, 1411, 1406, 

1389, 1350, 1345, 1312, 1300, 1271, 1235, 1182, 1145, 1129, 1092, 1063, 1038, 1011, 

1008, 981, 960, 937, 896, 865, 842, 748, 681, 594, 561, 510, 473, 441, 423, 407, 346, 319, 
314, 277, 259, 238, 196, 109, 99, 88 

H234PC(OH)(S) 3.16 3308, 3050, 3043, 3007, 3004, 2992, 2965, 2959, 2932, 2931, 2666, 1452, 1445, 1414, 

1385, 1357, 1335, 1330, 1314, 1301, 1277, 1264, 1248, 1183, 1157, 1137, 1117, 1087, 
1054, 1048, 1011, 987, 981, 914, 900, 880, 850, 771, 716, 676, 608, 536, 505, 469, 460, 

426, 412, 392, 268, 247, 236, 223, 198, 140, 99, 81, 70 

H235PC(OH)(S) 3.74 3285, 3033, 3029, 3009, 2978, 2975, 2945, 2926, 2909, 2862, 2841, 1424, 1420, 1416, 

1398, 1396, 1340, 1328, 1311, 1303, 1285, 1240, 1218, 1190, 1176, 1129, 1113, 1092, 
1084, 1025, 1021, 990, 970, 952, 906, 870, 826, 757, 732, 663, 575, 541, 514, 463, 425, 

407, 405, 327, 310, 283, 249, 245, 220, 191, 108, 101, 76 

H236PC(OH)(S) 3.7 3495, 3022, 3020, 3001, 2972, 2965, 2960, 2913, 2894, 2890, 2873, 1427, 1414, 1406, 

1400, 1395, 1350, 1341, 1314, 1301, 1289, 1243, 1227, 1182, 1167, 1127, 1110, 1082, 
1078, 1022, 1019, 1004, 974, 957, 885, 877, 837, 761, 733, 657, 568, 543, 483, 471, 416, 

408, 403, 333, 310, 297, 253, 236, 231, 189, 108, 104, 70 

H245PC(OH)(S) 3.86 3525, 3054, 3032, 3015, 3006, 2978, 2975, 2955, 2896, 2888, 2744, 1448, 1443, 1419, 

1399, 1357, 1338, 1312, 1286, 1278, 1262, 1239, 1215, 1173, 1143, 1134, 1105, 1062, 
1057, 1041, 1017, 1007, 981, 977, 936, 890, 860, 790, 753, 700, 616, 583, 557, 456, 438, 

431, 388, 368, 303, 265, 246, 230, 216, 133, 108, 91, 68 

H246PC(OH)(S) 6.63 3508, 3056, 3052, 3011, 2992, 2971, 2941, 2901, 2890, 2857, 2783, 1447, 1443, 1402, 

1386, 1351, 1335, 1312, 1289, 1280, 1276, 1266, 1189, 1172, 1127, 1114, 1093, 1073, 
1037, 1036, 1001, 998, 973, 966, 941, 871, 837, 834, 775, 708, 606, 583, 511, 506, 458, 

422, 390, 369, 332, 302, 251, 231, 206, 168, 113, 104, 88 

H256PC(OH)(S) 3.72 3506, 3025, 3013, 2999, 2987, 2971, 2947, 2902, 2870, 2855, 2808, 1426, 1410, 1401, 

1393, 1391, 1345, 1337, 1322, 1288, 1279, 1245, 1222, 1183, 1167, 1143, 1092, 1080, 
1058, 1022, 1018, 998, 974, 955, 882, 880, 843, 762, 736, 653, 569, 543, 494, 458, 416, 

410, 399, 333, 309, 299, 249, 240, 227, 210, 107, 101, 79 
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Table A.5. continued. 

H346PC(OH)(S) 3.88 3598, 3050, 3035, 3018, 3005, 3001, 2959, 2957, 2898, 2888, 2750, 1446, 1443, 1420, 

1397, 1356, 1331, 1307, 1284, 1275, 1267, 1245, 1214, 1182, 1145, 1131, 1098, 1081, 
1046, 1042, 1010, 1005, 981, 974, 939, 892, 861, 789, 755, 698, 618, 587, 559, 453, 440, 

408, 382, 364, 305, 259, 244, 234, 218, 134, 106, 92, 62 

H356PC(OH)(S) 3.81 3486, 3019, 3016, 3014, 2972, 2965, 2959, 2921, 2902, 2844, 2781, 1422, 1416, 1414, 

1396, 1388, 1342, 1332, 1307, 1295, 1265, 1250, 1207, 1185, 1170, 1123, 1107, 1097, 
1051, 1025, 1020, 994, 972, 944, 913, 870, 829, 757, 737, 663, 579, 544, 470, 454, 422, 

407, 396, 330, 307, 298, 252, 244, 228, 217, 110, 103, 78 

H456PC(OH)(S) 3.23 3550, 3052, 3046, 3008, 2999, 2997, 2979, 2964, 2953, 2934, 2702, 1452, 1444, 1414, 

1387, 1358, 1349, 1319, 1318, 1297, 1277, 1262, 1234, 1174, 1156, 1132, 1089, 1061, 
1048, 1040, 1010, 983, 974, 916, 894, 880, 855, 775, 722, 677, 606, 553, 496, 473, 452, 

436, 413, 387, 276, 252, 234, 214, 199, 151, 98, 85, 68 

H2345PC(OH)(S) 2.16 3328, 3043, 3023, 3010, 3006, 2994, 2970, 2945, 2936, 2893, 2884, 2849, 1454, 1446, 

1424, 1417, 1404, 1365, 1340, 1321, 1316, 1301, 1291, 1286, 1247, 1217, 1195, 1158, 

1149, 1101, 1085, 1072, 1054, 1018, 992, 983, 940, 902, 879, 832, 744, 724, 653, 563, 534, 

503, 450, 415, 390, 364, 313, 268, 243, 234, 201, 147, 102, 75, 55, 27 

H2346PC(OH)(S) 4.69 3421, 3047, 3041, 2994, 2993, 2989, 2962, 2935, 2905, 2897, 2840, 2608, 1450, 1448, 

1413, 1386, 1381, 1358, 1335, 1322, 1301, 1286, 1280, 1273, 1230, 1195, 1148, 1130, 
1118, 1099, 1071, 1048, 1037, 1012, 981, 969, 929, 899, 875, 822, 762, 746, 660, 596, 500, 

485, 461, 455, 414, 389, 354, 269, 247, 239, 225, 200, 143, 88, 81, 72 

H2356PC(OH)(S) 4.56 3506, 3024, 3002, 2988, 2984, 2960, 2949, 2932, 2915, 2909, 2905, 2898, 1434, 1425, 

1424, 1415, 1405, 1400, 1346, 1340, 1321, 1298, 1294, 1256, 1241, 1228, 1211, 1178, 
1136, 1103, 1091, 1070, 1027, 1018, 999, 971, 893, 871, 866, 817, 734, 730, 646, 519, 489, 

463, 452, 409, 404, 320, 282, 260, 252, 237, 228, 222, 159, 79, 71, 29 

H2456PC(OH)(S) 4.68 3520, 3051, 3045, 2996, 2994, 2970, 2962, 2921, 2894, 2894, 2829, 2607, 1447, 1445, 

1409, 1387, 1376, 1354, 1337, 1316, 1304, 1285, 1277, 1264, 1232, 1184, 1143, 1135, 
1123, 1069, 1066, 1043, 1031, 1014, 979, 969, 929, 896, 873, 829, 762, 739, 662, 595, 500, 

486, 460, 432, 415, 385, 352, 268, 251, 238, 220, 194, 139, 94, 73, 67 

H3456PC(OH)(S) 1.93 3615, 3046, 3029, 3012, 2996, 2992, 2984, 2950, 2931, 2895, 2876, 2686, 1451, 1447, 

1418, 1403, 1391, 1361, 1338, 1320, 1310, 1297, 1283, 1278, 1251, 1215, 1178, 1153, 
1144, 1098, 1077, 1069, 1042, 1013, 991, 982, 935, 908, 872, 828, 741, 731, 655, 581, 528, 

458, 426, 390, 375, 344, 318, 257, 238, 231, 193, 152, 96, 73, 57, 31 

H23456PC(OH)(S) 2.92 3401, 3049, 3046, 3008, 3005, 2966, 2963, 2962, 2954, 2896, 2893, 2625, 2614, 1455, 

1450, 1405, 1391, 1372, 1364, 1358, 1339, 1326, 1313, 1305, 1290, 1281, 1259, 1229, 
1189, 1150, 1142, 1090, 1076, 1070, 1050, 1046, 987, 976, 921, 917, 910, 874, 770, 741, 

726, 632, 512, 478, 461, 458, 393, 374, 372, 310, 278, 241, 213, 161, 149, 97, 75, 60, 48 

MCH(OH)(S) 1.31 3635, 3048, 3042, 3015, 3012, 3008, 2991, 2964, 2949, 2944, 2943, 2598, 2581, 2124, 

1456, 1451, 1427, 1410, 1373, 1371, 1354, 1351, 1330, 1318, 1309, 1295, 1286, 1253, 
1236, 1198, 1180, 1150, 1139, 1130, 1099, 1070, 1057, 1046, 1037, 976, 972, 943, 930, 

900, 866, 796, 757, 748, 636, 498, 462, 444, 389, 372, 340, 323, 259, 224, 211, 135, 102, 

100, 78, 55, 39, 29 
TOL(S) 2.33 3098, 3086, 3085, 3053, 3045, 3039, 3019, 2941, 1436, 1423, 1415, 1387, 1368, 1352, 

1325, 1307, 1261, 1144, 1140, 1087, 1015, 1004, 966, 928, 924, 909, 891, 866, 837, 829, 

721, 631, 566, 529, 503, 474, 394, 370, 338, 333, 231, 193, 161, 140, 118 

H2TOL(S) 3.66 3073, 3039, 3030, 3027, 3010, 3008, 2994, 2923, 2864, 1426, 1417, 1407, 1405, 1349, 

1327, 1320, 1306, 1273, 1210, 1155, 1138, 1089, 1051, 1028, 1000, 992, 972, 946, 925, 

892, 872, 819, 795, 712, 613, 562, 546, 491, 444, 411, 346, 333, 315, 249, 202, 156, 132, 

112 
H26TOL(S) 4.91 3063, 3046, 3028, 3021, 2979, 2958, 2916, 2904, 2856, 2853, 1432, 1415, 1408, 1403, 

1385, 1349, 1331, 1312, 1307, 1277, 1204, 1178, 1142, 1118, 1059, 1052, 1040, 995, 993, 

976, 952, 937, 875, 865, 834, 800, 717, 592, 552, 519, 452, 430, 357, 328, 322, 299, 266, 
200, 125, 122, 91 
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Table A.5. continued. 

H34TOL(S) 2.81 3068, 3061, 3049, 3044, 3026, 3018, 3005, 2965, 2901, 2565, 1446, 1444, 1415, 1399, 

1366, 1349, 1321, 1289, 1268, 1245, 1235, 1196, 1148, 1108, 1080, 1071, 1019, 1009, 990, 
962, 919, 900, 886, 844, 826, 799, 734, 605, 558, 536, 481, 443, 376, 332, 260, 231, 205, 

145, 131, 86, 71 

H234TOL(S) 3.12 3058, 3046, 3039, 3023, 3015, 3005, 3000, 2960, 2913, 2885, 2624, 1450, 1448, 1419, 
1405, 1381, 1364, 1350, 1330, 1308, 1296, 1263, 1259, 1199, 1155, 1139, 1097, 1090, 

1045, 1023, 991, 980, 956, 906, 891, 879, 852, 823, 754, 682, 584, 527, 511, 453, 409, 361, 

265, 248, 216, 189, 124, 97, 73, 68 
H235TOL(S) 3.69 3024, 3017, 3009, 2987, 2972, 2970, 2934, 2905, 2900, 2875, 2855, 1423, 1417, 1417, 

1396, 1391, 1340, 1323, 1315, 1293, 1282, 1233, 1207, 1181, 1172, 1115, 1105, 1094, 

1055, 1018, 988, 966, 959, 946, 884, 859, 828, 814, 741, 683, 554, 531, 463, 454, 405, 342, 
322, 280, 246, 242, 206, 130, 107, 80 

H245TOL(S) 3.81 3051, 3033, 3011, 3005, 3001, 2987, 2955, 2953, 2891, 2865, 2781, 1447, 1444, 1416, 

1397, 1355, 1323, 1307, 1288, 1277, 1270, 1243, 1214, 1173, 1146, 1114, 1075, 1061, 
1037, 1026, 1008, 986, 973, 960, 915, 866, 851, 822, 771, 736, 597, 561, 534, 479, 431, 

373, 328, 271, 250, 217, 141, 137, 93, 68 

H246TOL(S) 6.53 3050, 3045, 3008, 3001, 2999, 2962, 2909, 2908, 2855, 2853, 2746, 1446, 1443, 1397, 
1382, 1350, 1321, 1321, 1287, 1286, 1272, 1266, 1177, 1169, 1114, 1094, 1091, 1039, 

1031, 1025, 1001, 994, 979, 953, 930, 845, 840, 828, 787, 766, 601, 586, 548, 493, 467, 

363, 335, 306, 259, 221, 185, 140, 111, 99 
H345TOL(S) 3.19 3051, 3031, 3004, 3001, 2994, 2988, 2955, 2950, 2890, 2886, 2596, 1448, 1445, 1413, 

1399, 1364, 1348, 1318, 1305, 1281, 1266, 1232, 1224, 1220, 1140, 1129, 1110, 1089, 

1062, 1011, 1009, 1000, 969, 937, 874, 870, 844, 812, 777, 702, 563, 535, 463, 460, 417, 
389, 306, 240, 236, 199, 149, 132, 80, 63 

H2345TOL(S) 1.84 3048, 3028, 3007, 3002, 2989, 2985, 2959, 2949, 2912, 2899, 2891, 2739, 1451, 1446, 

1414, 1401, 1397, 1361, 1335, 1327, 1305, 1303, 1289, 1281, 1249, 1216, 1173, 1156, 
1137, 1090, 1077, 1057, 1021, 992, 974, 961, 924, 903, 857, 823, 809, 732, 657, 549, 496, 

473, 411, 369, 337, 268, 244, 189, 143, 118, 74, 60, 22 

H2346TOL(S) 4.60 3044, 3038, 3001, 2999, 2989, 2979, 2959, 2910, 2909, 2877, 2790, 2581, 1450, 1447, 

1406, 1383, 1374, 1355, 1333, 1322, 1295, 1287, 1281, 1265, 1224, 1179, 1137, 1126, 
1097, 1091, 1044, 1037, 1027, 1007, 975, 956, 930, 891, 844, 837, 797, 756, 676, 595, 534, 

474, 463, 424, 359, 274, 261, 232, 200, 153, 111, 81, 70 

H2356TOL(S) 4.50 3021, 2990, 2989, 2982, 2980, 2964, 2946, 2921, 2917, 2912, 2901, 2898, 1430, 1425, 

1421, 1409, 1402, 1395, 1345, 1324, 1311, 1305, 1292, 1235, 1227, 1218, 1202, 1170, 
1115, 1098, 1092, 1078, 1026, 992, 976, 968, 866, 864, 857, 818, 767, 722, 698, 503, 480, 

448, 432, 351, 280, 259, 251, 245, 227, 161, 82, 76, 24 

H12345TOL(S) 3.01 3042, 3025, 3012, 2994, 2968, 2946, 2922, 2921, 2915, 2880, 2877, 2600, 2453, 1442, 

1440, 1424, 1392, 1383, 1367, 1360, 1336, 1312, 1305, 1291, 1260, 1251, 1228, 1202, 
1193, 1172, 1108, 1105, 1086, 1084, 1048, 1025, 1010, 962, 945, 906, 870, 834, 817, 809, 

746, 618, 471, 462, 440, 408, 318, 310, 252, 221, 215, 141, 117, 82, 62, 39 

H23456TOL(S) 2.88 3047, 3042, 3003, 2999, 2973, 2965, 2949, 2929, 2925, 2889, 2885, 2604, 2586, 1455, 

1449, 1399, 1385, 1368, 1360, 1356, 1335, 1333, 1315, 1296, 1292, 1281, 1243, 1226, 
1184, 1144, 1105, 1098, 1097, 1053, 1042, 1039, 972, 963, 936, 913, 889, 847, 824, 754, 

731, 639, 547, 449, 445, 387, 380, 305, 294, 215, 164, 153, 102, 86, 65, 49 

MCH(S) 1.12 3048, 3047, 3013, 3008, 3006, 2995, 2990, 2966, 2945, 2944, 2931, 2561, 2535, 2471, 

1456, 1449, 1424, 1411, 1365, 1354, 1350, 1340, 1337, 1330, 1304, 1302, 1296, 1292, 
1256, 1236, 1186, 1170, 1145, 1112, 1110, 1066, 1050, 1028, 1014, 962, 945, 936, 878, 

850, 833, 789, 747, 745, 591, 468, 447, 390, 375, 304, 222, 208, 184, 113, 98, 80, 47, 40, 

29 

H2O(S) 0.46 3690, 3583, 1546, 525, 507, 160, 92, 92, 54 

OH(S) 2.99 3638, 924, 510, 119, 96, 52 

H(S) 0.54 1097, 627, 597 
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A statistical mechanical approximation method[111, 345, 346] is used to 

estimate the thermodynamics of surface species. The enthalpy of each surface species 

(∆Hi,surf) is computed by subtracting the DFT binding energy from the enthalpy of 

formation of the corresponding gas-phase species as shown below: 

                      (   )         ( ) (A.1) 

Here, Qi(T=0)i,VASP is the 0 K binding energy (without zero-point energy correction) 

obtained from periodic DFT calculations using the VASP software, and Qi(T) is a 

temperature dependent correction approximated using statistical mechanics to account 

for the change in degrees of freedom. 0 K binding energies are listed in Table A.6. For 

the chemisorbed p-cresol derivatives, Qi(T) is given by the  loss of 3 translational 

(3×0.5RT) and rotational (3×0.5RT) degrees of freedom, and a gain of 6 vibrational 

degrees of freedom (6×RT): 

   ( )                        (A.2) 

The entropy of each surface species is calculated from the following approximation 

reviewed in Salciccioli et al.[346] 

 

             (                      )  (3) 

             *  (
(      )

   

  
)    (

   

 
)  

 

 
+ 

(A.3) 

Using the above equation, the entropy of surface species, i, (∆Si,surf)  is computed by 

subtracting the translational entropy (∆Si,trans,3D) from the gas-phase entropy 

(∆Si,gas,G4). The multiplying factor Floc is fitted using known values (here is taken as 

0.99). 
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Table A.6. Binding energies of surface species whose thermodynamics is 

approximated using the equations above. 

Species 
B.E. 

(eV) 
Species 

B.E. 

(eV) 
Species B.E. (eV) 

H3PC(S) 5.04 H16PC(OH)(S) 2.89 H12345PC(OH)(S) 3.06 

H4PC(S) 4.57 H23PC(OH)(S) 2.79 H12346PC(OH)(S) 3.06 

H23PC(S) 4.21 H24PC(OH)(S) 4.99 H12356PC(OH)(S) 2.72 

H24PC(S) 4.22 H25PC(OH)(S) 2.78 H12456PC(OH)(S) 3.00 

H25PC(S) 3.80 H34PC(OH)(S) 2.96 H13456PC(OH)(S) 3.07 

H34PC(S) 4.46 H35PC(OH)(S) 5.04 H1TOL(S) 3.64 

H35PC(S) 6.52 H36PC(OH)(S) 2.83 H3TOL(S) 3.58 

H345PC(S) 4.50 H45PC(OH)(S) 2.86 H4TOL(S) 3.61 

H3PC(O)(S) 4.51 H46PC(OH)(S) 4.98 H12TOL(S) 2.84 

H4PC(O)(S) 2.66 H56PC(OH)(S) 2.84 H13TOL(S) 4.93 

H23PC(O)(S) 2.81 H123PC(OH)(S) 3.08 H14TOL(S) 2.65 

H24PC(O)(S) 3.71 H124PC(OH)(S) 3.75 H23TOL(S) 2.75 

H25PC(O)(S) 3.49 H125PC(OH)(S) 3.97 H24TOL(S) 4.93 

H34PC(O)(S) 3.44 H126PC(OH)(S) 3.29 H25TOL(S) 2.76 

H35PC(O)(S) 6.08 H135PC(OH)(S) 6.64 H35TOL(S) 4.86 

H234PC(O)(S) 2.01 H136PC(OH)(S) 3.82 H123TOL(S) 3.05 

H235PC(O)(S) 4.26 H145PC(OH)(S) 3.90 H124TOL(S) 3.70 

H236PC(O)(S) 1.86 H146PC(OH)(S) 3.72 H125TOL(S) 3.87 

H345PC(O)(S) 4.41 H156PC(OH)(S) 3.10 H126TOL(S) 3.23 

H245PC(O)(S) 4.36 H134PC(OH)(S) 3.92 H134TOL(S) 3.64 

H2345PC(O)(S) 2.76 H345PC(OH)(S) 3.31 H135TOL(S) 6.47 

H2356PC(O)(S) 2.70 H1234PC(OH)(S) 1.92 H236TOL(S) 3.62 

H1PC(OH)(S) 3.70 H1235PC(OH)(S) 4.54 H1234TOL(S) 1.80 

H3PC(OH)(S) 3.67 H1236PC(OH)(S) 2.02 H1235TOL(S) 4.52 

H4PC(OH)(S) 3.71 H1245PC(OH)(S) 4.63 H1236TOL(S) 1.78 

H5PC(OH)(S) 3.61 H1246PC(OH)(S) 4.72 H1245TOL(S) 4.44 

H6PC(OH)(S) 3.69 H1256PC(OH)(S) 1.93 H1246TOL(S) 4.63 

H12PC(OH)(S) 2.92 H1345PC(OH)(S) 4.87 H1345TOL(S) 4.68 

H13PC(OH)(S) 5.02 H1346PC(OH)(S) 4.85 H12346TOL(S) 2.91 

H14PC(OH)(S) 2.75 H1356PC(OH)(S) 4.57 H12356TOL(S) 2.75 

H15PC(OH)(S) 5.10 H1456PC(OH)(S) 1.85   
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A.3.2 Lateral Interactions 

We develop a lateral interaction model for self and binary interactions as 

shown below: 

 
  (       )              ∑    

 

       

   
(A.4) 

where Qi is the binding energy of species i, Qi,0 is the binding energy of species i in 

the zero coverage limit, wii is the lateral interaction of species i with itself, θi is the 

coverage of species i, wij is the lateral interaction of species i with species j. We 

included H-H lateral interactions adopted from previous work on Pt(111) (-3 

kcal/mol/monolayer).[347] Here, we introduce a simple lateral interaction model 

shown in Figure A.5. We calculated lateral interactions for various species with 

hydrogen by adding hydrogen to the unit cell and calculate the slopes. These species 

are along the minimum energy hydrogenation path. (PC(OH), H2PC(OH), 

H26PC(OH), H246PC(OH), H2346PC(OH), H23456PC(OH), and MCHOH) We find 

that the lateral interactions correlate linearly with number of Pt atoms involved in 

adsorption. For microkinetic modeling, we include lateral interactions for p-cresol 

derivatives with 0, 1, or 2 hydrogenations (using the correlation in Figure A.5). Our 

results are overall consistent with those of Sabbe et al. who found that the 

hydrogenation energy profile for benzene is downhill when the benzene is co-adsorbed 

with hydrogen as opposed to uphill at the zero-coverage limit.[126]  
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Figure A.5. Lateral interaction for the effect of hydrogen coverage on the binding energy of the p-

cresol derivatives vs. the number of Pt atoms involved in adsorption. 
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A.4 Adsorption and Transition State Structures 

In this section, we present the adsorption and transition state structures 

computed via DFT. The most stable adsorption structure of p-cresol is bridge site, 

consistent with benzene.[119] For the adsorption structures along the minimum energy 

hydrogenation path, we simply add hydrogen to the desired ring carbon position and 

relax the structure. We observe that the molecule remains at the same bridge site. 

Further addition of hydrogen at C6 creates a structure that is similar to both bridge and 

hollow site adsorption. For the next 4 added hydrogen atoms, the molecule relaxes to 

the hollow site. For toluene adsorption, we used the same adsorption configurations as 

p-cresol. For the dehydroxylated species, the adsorption configuration does not change 

except for the dehydroxylated p-cresol and H23456PC. The α-carbon of 

dehydroxylated p-cresol moves away from the original metal atom and binds to the 

adjacent Pt atom with sp
2
 hybridization. The α-carbon of dehydroxylated H23456PC 

relaxes into the bridge site with two Pt atoms via ζ bonds. 
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Figure A.6. Transition state structures of C-H bond scission reactions. 

 

Figure A.7. Transition state structures of O-H bond scission reactions. 
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Figure A.8. Transition state structures of C-OH bond scission reactions. 

 

Figure A.9. H-OH scission transition state structure. 
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Figure A.11. Adsorption structures of the p-cresol derivatives with H deficient 

oxygen. 

 

Figure A.12. Adsorption structures of the p-cresol derivatives with radical α-carbon. 
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Figure A.13. Adsorption structures for the toluene derivatives. 

A.5 MKM Parameters Adjustments 

Table A.7. List of parameter adjustments for the MKM model. 

Adjusted parameter Amount of adjustments 

ΔHf of methyl cyclohexanone -0.14 eV 

ΔHf of methyl cyclohexanol -0.12 eV 

Pre-exp. of methyl cyclohexanol desorption 40 fold (equivalent to 0.18 eV 

decrease in barrier) 

Pre-exp. of methyl cyclohexanone 

desorption 

5 fold (equivalent to 0.08 eV decrease 

in barrier) 

Pre-exp. of C-OH scission reactions 0.5 fold (equivalent to 0.03 eV 

increase in barrier) 

Pre-exp. of C-H scission reactions for 

toluene derivatives with 1or 2 hydrogenated 

ring carbons 

10 fold (equivalent to 0.11 eV 

decrease in barrier) 
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A.6 Reaction Energies 

 

Figure A.14. (a) C-OH scission reaction energy vs. degree of ring hydrogenation for 

the alcohols in the entire reaction network. (b) Number of C-OH scission 

reactions encountered vs. degree of ring hydrogenation. The combination 

of these two factors leads to efficient C-OH scission upon sufficient ring 

hydrogenation. 
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A.7 MKM Results 

 

Figure A.15. Surface coverages of p-cresol simulation for Nie et al. experimental 

data[62] shown in Figure 2.5 in the main text. Hydrogen is the most 

dominant species on the surface, followed by toluene derivatives with 3 

hydrogenated ring carbons (TOL+3H), p-cresol with 3 hydrogenated ring 

carbons (PC(OH)+3H), and p-cresol with H deficient oxygen and 2 

hydrogenated ring carbons (PC(O)+2H). 

 

Figure A.16. Molar equilibrium composition with (a) and without (b) hydrocarbon 

products accounted for. Panel (b) is reminiscent of near the entrance 

region of the reactor. Conditions are 1.25×10
-2

 atm p-cresol, 1.0 atm H2. 
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GROUP ADDITIVITY FOR THERMOCHEMICAL PROPERTY 

ESTIMATION OF LIGNIN MONOMERS ON PT(111) – SUPPORTING 

INFORMATION 

B.1 Adsorption Conformation of Lignin Monomer Ring 

Using the binding type approach, we identified a total of 107 ring 

conformations (201 including fcc/hcp variation). This section shows chemical 

drawings of conformations including hydrogenated derivatives of: (1) benzene ring 

(Figure B.1), (2) benzene ring with one H-deficient ring carbon (caused by Cring-O 

scission) (Figure B.2), (3) benzene ring with one surface interacting oxygen 

substituent (whether ζ binding or =Owk binding) (Figure B.3), (4) benzene ring with 

one H-deficient ring carbon and one surface interacting oxygen substituent (Figure 

B.4), and (5) benzene ring with two surface interacting oxygen substituents (Figure 

B.5).  

Appendix B 
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Figure B.1. Adsorption conformations of benzene ring and its hydrogenated 

derivatives. Legend at the top of the figure shows the binding type given 

the structure. The name convention follows the previous benzene 

adsorption study by Morin et al.[348] 



 

 

208 

 

Figure B.2. Adsorption conformations of benzene ring with one H-deficient ring 

carbon and its hydrogenated derivatives. Blue circles indicates Pt atoms. 
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Figure B.3. Adsorption conformations of benzene ring with one surface interacting 

oxygen substituent and its hydrogenated derivatives. 

 

Figure B.4. Adsorption conformations of benzene ring with one H-deficient ring 

carbon and one surface interacting oxygen substituent and their 

hydrogenated derivatives. 
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Figure B.5. Adsorption conformations of benzene ring with two surface interacting 

oxygen substituents and its hydrogenated derivatives. 
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B.2 Schematics of Binding Type Couples 

 

Figure B.6. Schematics of binding type couples listed in Table 1 along with expected 

p-orbital lobes in the same phase.[45, 151, 152, 349, 350] BCPs are 

shown in pink balls and Pt atoms in blue circles. 
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Figure B.7. Schematics of structures listed in Table 2 along with expected p-orbital 

lobes in the same phase. 
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B.3 Charge Flow Analysis 

 

Figure B.8. Electron density difference upon π-mode adsorption of a C2H2 fragment. 

Charge occupation of the conjugated π electron system depends on 

binding of substituent groups. 

B.4 Methoxy Strain Correction 

In the training set, we observed strong strain related to -OCH and –OCH2 

groups. The strain is visually observable where the methoxy and the ring are pulled 

towards the bridging oxygen, and the Pt atoms are pulled out of the surface (Figure 

B.9a, b). These strained fragments involve methoxy group bound to the surface, and 

the α-carbon and the two β-carbons bound to three separate Pt atoms (Figure B.9c). 

We assigned two different corrections for the fragment involving –OCH and –OCH2 

groups. 
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Figure B.9. (a) An example of a strained molecule with a –OCH group. (b) An 

example of a strained molecule with a –OCH2 group. (c) Schematics of 

strained fragments. 
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GROUP A DDITIVITY FOR AQUEOUS PHASE THERMOCHEMICAL 

PROPERTIES OF ALCOHOLS ON PT(111) – SUPPORTING INFORMATION 

C.1 Temperature Independence of Gibbs Free Energy of Solvation Assumptions 

Our test calculations (see Figure C.1) and previous study[351] also suggest that 

vibrational contribution is minimally affected by solvation. The solvation effect to 

translational contribution is often called liberation free energy and can be computed 

using the translational partition function of the gas phase,[351-353]  as long as the 

reference state remains the same as those of the gas phase translational contribution 

calculation. However, the solvation effect to rotational contribution is a rather debated 

area, but the computation of it is difficult as the molecular rotation becomes hindered 

as solvational cage forms around the solute.[351, 354] Particularly, the PCM method 

cannot simulate the solvation hindered rotation as it requires explicit water molecules 

for their structural perturbation. Nonetheless, PCM method validation section below 

shows that this assumption holds up well. 

Appendix C 
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Figure C.1. Parity graph of vibrational energy between vacuum and PCM calculations. 

Total of 26 molecules are tested. Mean absolute deviation is 0.10 

kcal/mol and max absolute deviation is 0.82 kcal/mol.  

C.2 PCM Method Validation 

Figure C.2 shows the comparison between the PCM and the experimental data. 

We also included COSMO-SAC calculation results for the methodology comparison. 

Overall, the COSMO-SAC performs the best at the mean absolute error of 0.68 

kcal/mol. For the PCM, the mean absolute error is 1.17 kcal/mol and 1.90 kcal/mol for 

when cavitation energy is included and not included, respectively. The PCM is 

expected to have errors as it computes solvation energy at the dilute limit instead of 

1M of the experimental condition. 
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Figure C.2. Parity plot between the model computed solvation free energy and the 

experimental solvation free energy.  Three models are shown: (1) PCM 

computed at 0 K without cavitation energy at dilute condition, (2) PCM 

computed at 0 K with cavitation energy at dilute condition, and (3) 

COSMO-SAC[355] computed at 298 K at 1 M. Experimental data[356] 

are obtained at 298 K at 1M condition. 
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C.3 Group Additivity Method Validation 

 

Figure C.3. Figure 4.3 is produced using group additivity method. Group additivity 

method reproduces the general trends seen by DFT well. 

C.4 Cavitation Energy Correction 

Table C.1 shows the regression coefficient, ecav from equation (4.12) and Table 

C.2 shows the DFT computed cavitation energy using equation (4.11) as well as the 

predicted value using the regression method introduced in equation (4.12). The 

MeanAE and MaxAE (training error, not the cross-validation error discussed in 

Chapter 4 Methods) of this model is insignificant at 0.18 and 0.47 kcal/mol. 

Table C.1. Regression Coefficient 

Name ecav (kcal/mol) 

C 0.33 

H 0.06 

O 0.23 
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Table C.2. Cavitation energy computed using DFT and the model in kcal/mol. 

Name C H O Ecav,DFT Ecav,model 

acetaldehyde 2 4 1 1.35 1.12 

acetylene 2 2 0 1.1 0.77 

butan1ol 4 10 1 2.06 2.12 

butan2ol 4 10 1 2.01 2.12 

butane 4 10 0 1.88 1.89 

ethan12diol 2 6 2 1.64 1.47 

ethane 2 6 0 1.34 1.01 

ethanol 2 6 1 1.45 1.24 

ethene 2 4 0 1.36 0.89 

methane 1 4 0 0.94 0.56 

methanol 1 4 1 1.13 0.79 

pentan1ol 5 12 1 2.34 2.57 

pentan2ol 5 12 1 2.33 2.57 

pentan3ol 5 12 1 2.26 2.57 

pentane 5 12 0 2.19 2.34 

prop1ene 3 6 0 1.49 1.33 

propan123triol 3 8 3 1.97 2.14 

propan1ol 3 8 1 1.74 1.68 

propan2ol 3 8 1 1.71 1.68 

propane 3 8 0 1.6 1.45 

formaldehyde 1 2 1 

 

0.67 

ethenol 2 4 1 

 

1.12 

acrolein 3 4 1 

 

1.45 

allylalcohol 3 6 1 

 

1.56 

propenol 3 6 1 

 

1.56 

propionaldehyde 3 6 1 

 

1.56 

G01 3 4 2 

 

1.68 

G02 3 2 3 

 

1.79 

G03 4 4 3 

 

2.24 

G04 6 4 5 

 

3.35 

G05 4 4 3 

 

2.24 

G06 5 6 3 

 

2.68 

G07 6 8 3 

 

3.12 

G08 7 10 3 

 

3.57 

G09 7 8 4 

 

3.68 
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Table C.2. continued. 

G10 3 4 3 

 

1.91 

CO2g 1 0 2 

 

0.79 

C 1 0 0 

 

0.33 

CC 2 0 0 

 

0.66 

CCH2O 2 2 1 

 

1 

CCH2OH 2 3 1 

 

1.06 

CCHO 2 1 1 

 

0.94 

CCHOH 2 2 1 

 

1 

CCO 2 0 1 

 

0.89 

CCOH 2 1 1 

 

0.94 

CH 1 1 0 

 

0.39 

CH2 1 2 0 

 

0.44 

CH2C 2 2 0 

 

0.77 

CH2CH 2 3 0 

 

0.83 

CH2CH2 2 4 0 

 

0.89 

CH2CH2O 2 4 1 

 

1.12 

CH2CH2OH 2 5 1 

 

1.18 

CH2CHO 2 3 1 

 

1.06 

CH2CHOH 2 4 1 

 

1.12 

CH2CO 2 2 1 

 

1 

CH2COH 2 3 1 

 

1.06 

CH2O 1 2 1 

 

0.67 

CH2OH 1 3 1 0.82 0.73 

CH3 1 3 0 0.78 0.5 

CH3C 2 3 0 

 

0.83 

CH3CH 2 4 0 

 

0.89 

CH3CH2 2 5 0 

 

0.95 

CH3CH2O 2 5 1 1.33 1.18 

CH3CH2OH 2 6 1 1 1.24 

CH3CHO 2 4 1 

 

1.12 

CH3CHOH 2 5 1 

 

1.18 

CH3CO 2 3 1 

 

1.06 

CH3COH 2 4 1 

 

1.12 

CH3O 1 3 1 0.74 0.73 

CH3OH 1 4 1 0.9 0.79 

CHC 2 1 0 

 

0.71 

CHCH 2 2 0 

 

0.77 
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Table C.2. continued. 

CHCH2O 2 3 1 

 

1.06 

CHCH2OH 2 4 1 

 

1.12 

CHCHO 2 2 1 

 

1 

CHCHOH 2 3 1 

 

1.06 

CHCO 2 1 1 

 

0.94 

CHCOH 2 2 1 

 

1 

CHO 1 1 1 

 

0.62 

CHOH 1 2 1 

 

0.67 

CO 1 0 1 0.74 0.56 

COH 1 1 1 0.66 0.62 

H 0 1 0 

 

0.06 

H2O 0 2 1 

 

0.35 

O 0 0 1 

 

0.23 

OH 0 1 1 

 

0.29 

CHOO 1 1 2 

 

0.85 

CO2 1 0 2 

 

0.79 

COOH 1 1 2 0.8 0.85 

CH4 1 4 0 

 

0.56 

M001 4 7 4 

 

2.64 

M002 4 6 4 

 

2.58 

M003 4 6 4 

 

2.58 

M004 4 8 4 

 

2.7 

M005 4 6 4 

 

2.58 

M006 4 6 4 

 

2.58 

M007 4 4 4 

 

2.47 

M008 4 4 3 

 

2.24 

M009 4 4 4 

 

2.47 

M010 4 5 2 

 

2.06 

M011 4 2 4 

 

2.35 

M012 4 2 4 

 

2.35 

M013 4 2 4 

 

2.35 

M014 4 3 4 

 

2.41 

M015 4 3 4 

 

2.41 

M016 4 6 3 

 

2.35 

M017 4 2 1 

 

1.66 

M018 4 5 3 

 

2.29 

M019 4 3 2 

 

1.95 
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Table C.2. continued. 

M020 4 6 3 

 

2.35 

M021 4 3 3 

 

2.18 

M022 4 6 1 

 

1.89 

M023 4 3 1 

 

1.72 

M024 4 0 1 

 

1.54 

M025 4 4 2 

 

2.01 

M026 4 3 3 

 

2.18 

M027 4 3 3 

 

2.18 

M028 4 0 3 

 

2 

M029 4 6 2 

 

2.12 

M030 4 4 4 

 

2.47 

M031 4 9 3 

 

2.53 

M032 4 7 1 

 

1.95 

M033 4 4 1 

 

1.77 

M034 4 6 3 

 

2.35 

M035 4 5 3 

 

2.29 

M036 4 0 3 

 

2 

M037 4 3 3 

 

2.18 

M038 4 0 3 

 

2 

M039 4 3 2 

 

1.95 

M040 4 3 2 

 

1.95 

M041 4 5 3 

 

2.29 

M042 4 5 1 

 

1.83 

M043 4 6 3 

 

2.35 

M044 4 5 2 

 

2.06 

M045 4 3 3 

 

2.18 

M046 4 5 2 

 

2.06 

M047 4 4 4 

 

2.47 

M048 4 3 2 

 

1.95 

M049 4 6 2 

 

2.12 

M050 4 2 2 

 

1.89 

M051 4 2 3 

 

2.12 

M052 4 4 3 

 

2.24 

M053 4 5 1 

 

1.83 

M054 4 4 3 

 

2.24 

M055 4 5 3 

 

2.29 

M056 4 3 2 

 

1.95 
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Table C.2. continued. 

M057 4 5 2 

 

2.06 

M058 4 4 3 

 

2.24 

M059 4 5 1 

 

1.83 

M060 4 4 2 

 

2.01 

M061 5 10 2 

 

2.68 

M062 4 4 2 

 

2.01 

M063 4 4 2 

 

2.01 

M064 4 3 3 

 

2.18 

M065 4 3 3 

 

2.18 

M066 4 6 2 

 

2.12 

M067 4 7 1 

 

1.95 

M068 4 5 2 

 

2.06 

M069 4 5 3 

 

2.29 

M070 3 1 2 

 

1.5 

M071 4 3 1 

 

1.72 

M072 3 1 1 

 

1.27 

M073 3 2 1 

 

1.33 

M074 5 8 2 

 

2.57 

M075 5 8 3 

 

2.8 

M076 5 8 3 

 

2.8 

M077 6 8 3 

 

3.12 

M078 4 7 1 

 

1.95 

M079 5 6 1 

 

2.22 

M080 5 7 1 

 

2.28 

M081 4 4 2 

 

2.01 

M082 4 3 1 

 

1.72 

M083 4 3 0 

 

1.49 

M084 4 2 2 

 

1.89 

M085 4 3 2 

 

1.95 

M086 4 3 3 

 

2.18 

M087 4 4 2 

 

2.01 

M088 4 4 1 

 

1.77 

M089 4 2 2 

 

1.89 

M090 4 2 3 

 

2.12 

M091 4 1 1 

 

1.6 

M092 4 3 2 

 

1.95 

M093 4 3 1 

 

1.72 
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Table C.2. continued. 

M094 4 6 2 

 

2.12 

M095 3 4 3 

 

1.91 

M096 4 5 3 

 

2.29 

M097 4 7 1 

 

1.95 

M098 4 4 2 

 

2.01 

M099 4 3 2 

 

1.95 

M100 4 3 2 

 

1.95 

M101 4 5 2 

 

2.06 

M102 4 5 2 

 

2.06 

M103 4 3 4 

 

2.41 

M104 4 2 3 

 

2.12 

M105 4 2 3 

 

2.12 

M106 4 4 4 

 

2.47 

M107 4 5 3 

 

2.29 

M108 4 2 3 

 

2.12 

M109 4 3 4 

 

2.41 

M110 4 4 4   2.47 

 

 

C.5 Ethanol Reforming Reaction Network Detail 

The 151 reactions examined in the Chapter 4 are extracted from the previous 

study.[236] The reaction network contains dissociation products of ethanol as well as 

water gas shift reactions. The reaction reactants and products as well as ∆Gr,(vac) and 

Λ°sol (see Chapter 4 Methods for definition) are listed in the Table C.3. 
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Table C.3. The ∆Gr,(vac) and Λ°sol of the 151 reactions examined in ethanol reforming 

reaction network are shown, computed using the DFT and group 

additivity. Here, the group additivity ∆Gr,(vac) and Λ°sol are computed 

from cross-validation computed the Gibbs free energy of formation and 

the Gibbs free energy of solvation of each molecule. The molecule names 

are in-line with those provided in the XLSX file in ref.[216] 

Reaction Type Reactant 1 Product 1 Product 2 ∆Gr,(vac) Λ°sol ∆Gr,(vac) Λ°sol 

αH abstraction CH3CH2OH CH3CHOH H -9.79 -0.72 -14.34 -1.04 

αH abstraction CH3CHOH CH3COH H -9.02 0.2 -6.07 -1.14 

αH abstraction CH2CH2OH CH2CHOH H -15.02 -1.05 -12.6 -1.7 

αH abstraction CH2CHOH CH2COH H -9.01 0.09 -5.24 -1.17 

αH abstraction CHCH2OH CHCHOH H -16.94 0.58 -11.49 -2.15 

αH abstraction CHCHOH CHCOH H -9.8 -4.02 -12.76 -0.7 

αH abstraction CCH2OH CCHOH H -7.28 -0.95 -1.23 -1.24 

αH abstraction CCHOH CCOH H 12.29 -6.46 5.35 -6.55 

αH abstraction CH3CH2O CH3CHO H -13.91 -1.24 -15.09 -0.9 

αH abstraction CH3CHO CH3CO H -18.59 -1.36 -14.51 -1.98 

αH abstraction CH2CH2O CH2CHO H -14.17 -2.72 -19.92 -2.19 

αH abstraction CH2CHO CH2CO H -20.72 -0.97 -16.18 -0.49 

αH abstraction CHCH2O CHCHO H -19.54 -1.82 -18.13 -3.62 

αH abstraction CHCHO CHCO H -16.95 -0.84 -15.7 -0.8 

αH abstraction CCH2O CCHO H -28.14 -2.41 -29.48 -3 

αH abstraction CCHO CCO H -10.11 -0.01 -6.36 -0.78 

αH abstraction CH3OH CH2OH H -9.32 -1.07 -8.49 -1.72 

αH abstraction CH2OH CHOH H -8.4 0.73 -8.99 -0.13 

αH abstraction CHOH COH H -17.26 -5.79 -17.26 -5.79 

αH abstraction CH3O CH2O H -11.46 -1.86 -9.26 -1.82 

αH abstraction CH2O CHO H -23.26 -2.43 -22.68 -1.55 
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Table C.3. continued. 

αH abstraction CHO CO H -21.15 0.4 -21.15 0.4 

αH abstraction CH4 CH3 H 0.67 -2.64 0.67 -2.64 

αH abstraction CH3 CH2 H 0.34 -1.96 0.34 -1.96 

αH abstraction CH2 CH H -16.74 -1.65 -16.74 -1.65 

αH abstraction CH C H 10.05 -0.33 10.05 -0.33 

αH abstraction ethanea CH3CH2 H 3.18 -3.06 -5.95 -1.87 

αH abstraction CH3CH2 CH2CH2 H -6.81 -2.08 -0.44 -2.65 

αH abstraction CH3CH CH2CH H -5.72 -1.69 0.03 -2.86 

αH abstraction CH3C CH2C H 11.91 -1.71 8.22 -2.26 

αH abstraction CH2CH2 CH2CH H -0.76 -1.9 0.44 -1.6 

αH abstraction CH2CH CHCH H -3.89 -1.97 -6.25 -2.2 

αH abstraction CH2C CHC H 14.93 -1.27 13.67 -0.63 

αH abstraction CHCH CHC H 15 -0.77 11.74 1.35 

αH abstraction CHC CC H 13.7 -0.03 15.88 -1.45 

βH abstraction CH3CH2OH CH2CH2OH H 0.01 -2.36 -2.47 -1.95 

βH abstraction CH3CHOH CH2CHOH H -5.22 -2.68 -0.73 -2.61 

βH abstraction CH3COH CH2COH H -5.21 -2.8 0.1 -2.63 

βH abstraction CH2CH2OH CHCH2OH H -1.1 -2.39 0.03 -1.39 

βH abstraction CH2CHOH CHCHOH H -3.02 -0.75 1.14 -1.84 

βH abstraction CH2COH CHCOH H -3.81 -4.86 -6.38 -1.37 

βH abstraction CHCH2OH CCH2OH H -19.06 0 -16.91 -1.13 

βH abstraction CHCHOH CCHOH H -9.4 -1.54 -6.65 -0.22 

βH abstraction CHCOH CCOH H 12.69 -3.98 11.46 -6.08 

βH abstraction CH3CH2O CH2CH2O H -6.15 -1.67 -1.73 -1.97 

βH abstraction CH3CHO CH2CHO H -6.41 -3.15 -6.57 -3.27 

βH abstraction CH3CO CH2CO H -8.53 -2.77 -8.24 -1.77 

βH abstraction CH2CH2O CHCH2O H -2 -1.89 0.45 -1.45 

βH abstraction CH2CHO CHCHO H -7.37 -0.99 2.24 -2.88 

βH abstraction CH2CO CHCO H -3.6 -0.86 2.71 -3.19 

βH abstraction CHCH2O CCH2O H 0.61 -1.11 -9.08 -1.83 

βH abstraction CHCHO CCHO H -7.99 -1.7 -20.43 -1.21 

βH abstraction CHCO CCO H -1.15 -0.86 -11.09 -1.19 

βH abstraction CH3CH2 CH3CH H -1.85 -2.29 -0.04 -1.39 

βH abstraction CH3CH CH3C H -21.45 -1.45 -16.38 -0.82 

βH abstraction CH2CH CH2C H -3.82 -1.47 -8.19 -0.22 

O-H abstraction CH3CH2OH CH3CH2O H 10.64 1.04 7.91 0.82 

O-H abstraction CH3CHOH CH3CHO H 6.52 0.53 7.16 0.96 

O-H abstraction CH3COH CH3CO H -3.05 -1.03 -1.28 0.12 
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Table C.3. continued. 

O-H abstraction CH2CH2OH CH2CH2O H 4.48 1.73 8.65 0.79 

O-H abstraction CH2CHOH CH2CHO H 5.33 0.06 1.32 0.3 

O-H abstraction CH2COH CH2CO H -6.38 -1 -9.61 0.98 

O-H abstraction CHCH2OH CHCH2O H 3.58 2.23 9.07 0.73 

O-H abstraction CHCHOH CHCHO H 0.98 -0.18 2.42 -0.74 

O-H abstraction CHCOH CHCO H -6.17 3 -0.53 -0.84 

O-H abstraction CCH2OH CCH2O H 23.26 1.12 16.9 0.04 

O-H abstraction CCHOH CCHO H 2.39 -0.34 -11.36 -1.73 

O-H abstraction CCOH CCO H -20.01 6.12 -23.07 4.05 

O-H abstraction CH3OH CH3O H 9.82 2.52 7.26 0.1 

O-H abstraction CH2OH CH2O H 7.67 1.73 6.5 0.01 

O-H abstraction CHOH CHO H -7.19 -1.42 -7.19 -1.42 

O-H abstraction COH CO H -11.07 4.77 -11.07 4.77 

O-H abstraction H2O OH H 12.83 4 12.83 4 

O-H abstraction OH O H -2.47 1.51 -2.47 1.51 

C-C dissociation CH3CH2OH CH3 CH2OH -0.31 -2.3 0.19 -1.55 

C-C dissociation CH3CHOH CH3 CHOH 1.08 -0.86 5.53 -0.64 

C-C dissociation CH3COH CH3 COH -7.16 -6.85 -5.65 -5.29 

C-C dissociation CH2CH2OH CH2 CH2OH 0.01 -1.91 3 -1.56 

C-C dissociation CH2CHOH CH2 CHOH 6.63 -0.13 6.61 0 

C-C dissociation CH2COH CH2 COH -1.62 -6.01 -5.41 -4.62 

C-C dissociation CHCH2OH CH CH2OH -15.62 -1.17 -13.76 -1.83 

C-C dissociation CHCHOH CH CHOH -7.08 -1.03 -11.27 0.2 

C-C dissociation CHCOH CH COH -14.54 -2.8 -15.78 -4.9 

C-C dissociation CCH2OH C CH2OH 13.49 -1.49 13.19 -1.02 

C-C dissociation CCHOH C CHOH 12.36 0.19 5.42 0.09 

C-C dissociation CCOH C COH -17.19 0.86 -17.19 0.86 

C-C dissociation CH3CH2O CH3 CH2O -3.28 -1.61 -1.22 -2.36 

C-C dissociation CH3CHO CH3 CHO -12.63 -2.8 -8.81 -3.02 

C-C dissociation CH3CO CH3 CO -15.19 -1.05 -15.45 -0.64 

C-C dissociation CH2CH2O CH2 CH2O 3.21 -1.91 0.85 -2.35 

C-C dissociation CH2CHO CH2 CHO -5.88 -1.61 -1.9 -1.72 

C-C dissociation CH2CO CH2 CO -6.31 -0.24 -6.87 -0.83 

C-C dissociation CHCH2O CH CH2O -11.53 -1.67 -16.34 -2.55 

C-C dissociation CHCHO CH CHO -15.25 -2.27 -20.88 -0.48 

C-C dissociation CHCO CH CO -19.45 -1.03 -26.32 0.71 

C-C dissociation CCH2O C CH2O -2.1 -0.88 2.79 -1.05 

C-C dissociation CCHO C CHO 2.79 -0.9 9.6 0.41 
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Table C.3. continued. 

C-C dissociation CCO C CO -8.25 -0.49 -5.19 1.58 

C-C dissociation ethanea CH3 CH3 9.55 -3.31 4.55 -1.92 

C-C dissociation CH3CH2 CH3 CH2 6.71 -2.2 10.84 -2 

C-C dissociation CH3CH CH3 CH -8.18 -1.56 -5.87 -2.26 

C-C dissociation CH3C CH3 C 23.32 -0.44 20.55 -1.77 

C-C dissociation CH2CH2 CH2 CH2 13.86 -2.09 11.62 -1.32 

C-C dissociation CH2CH CH2 CH -2.12 -1.84 -5.56 -1.36 

C-C dissociation CH2C CH2 C 11.75 -0.69 12.67 -1.47 

C-C dissociation CHCH CH CH -14.97 -1.52 -16.05 -0.81 

C-C dissociation CHC CH C -19.92 -1.07 -17.74 -2.49 

C-C dissociation CC C C -23.57 -1.36 -23.57 -1.36 

C-O dissociation CH3CH2OH CH3CH2 OH 8.71 -0.82 4.5 -1.12 

C-O dissociation CH3CHOH CH3CH OH 16.65 -2.39 18.8 -1.48 

C-O dissociation CH3COH CH3C OH 4.22 -4.04 8.5 -1.15 

C-O dissociation CH2CH2OH CH2CH2 OH 1.89 -0.54 6.53 -1.82 

C-O dissociation CH2CHOH CH2CH OH 16.15 -1.39 19.56 -1.73 

C-O dissociation CH2COH CH2C OH 21.34 -2.95 16.62 -0.78 

C-O dissociation CHCH2OH CH2CH OH 2.23 -0.05 6.94 -2.04 

C-O dissociation CHCHOH CHCH OH 15.28 -2.6 12.18 -2.09 

C-O dissociation CHCOH CHC OH 40.08 0.64 36.67 -0.04 

C-O dissociation CCH2OH CH2C OH 17.48 -1.52 15.66 -1.12 

C-O dissociation CCHOH CHC OH 39.68 -1.84 30.56 -0.51 

C-O dissociation CCOH CC OH 41.09 4.59 41.09 4.59 

C-O dissociation CH3OH CH3 OH 6.08 0.17 6.31 -1.33 

C-O dissociation CH2OH CH2 OH 15.74 -0.72 15.15 -1.57 

C-O dissociation CHOH CH OH 7.4 -3.09 7.4 -3.09 

C-O dissociation COH C OH 34.71 2.37 34.71 2.37 

C-O dissociation CH3CH2O CH3CH2 O -4.4 -0.35 -5.88 -0.43 

C-O dissociation CH3CHO CH3CH O 7.66 -1.4 9.17 -0.92 

C-O dissociation CH3CO CH3C O 4.8 -1.5 7.3 0.24 

C-O dissociation CH2CH2O CH2CH2 O -5.06 -0.76 -4.6 -1.11 

C-O dissociation CH2CHO CH2CH O 8.35 0.06 15.77 -0.52 

C-O dissociation CH2CO CH2C O 25.24 -0.44 23.76 -0.25 

C-O dissociation CHCH2O CH2CH O -3.83 -0.77 -4.6 -1.26 

C-O dissociation CHCHO CHCH O 11.83 -0.92 7.28 0.16 

C-O dissociation CHCO CHC O 43.77 -0.85 34.72 2.31 

C-O dissociation CCH2O CH2C O -8.25 -1.13 -3.71 0.35 

C-O dissociation CCHO CHC O 34.82 0.01 39.45 2.73 
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C-O dissociation CCO CC O 58.63 -0.01 61.69 2.06 

C-O dissociation CH3O CH3 O -6.21 -0.84 -3.42 0.08 

C-O dissociation CH2O CH2 O 5.59 -0.94 6.17 -0.07 

C-O dissociation CHO CH O 12.11 -0.17 12.11 -0.17 

C-O dissociation CO C O 43.3 -0.89 43.3 -0.89 

Adsorption ethanol CH3CH2OH -3.03 -0.43 -2.52 0.08 

Adsorption acetaldehyde CH3CHO  1.59 2.36 2.27 2.34 

Adsorption ethene CH2CH2  -20.07 -1.16 -16.97 -1.4 

Adsorption acetylene CHCH  -46.87 0.64 -45.79 -0.07 

Adsorption methanol CH3OH  -0.64 -1.13 -3.52 0.61 

Adsorption formaldehyde CH2O  -1.46 1.71 -2.04 0.84 

Adsorption methane CH4  9.04 -0.24 9.04 -0.24 

Adsorption CO2gb CO2b  2.02 -0.46 2.02 -0.46 

water-gas-shift  COOH CO OH 6.28 0.22 6.28 0.22 

water-gas-shift  CHOO CHO O 16.16 -1.47 16.16 -1.47 

water-gas-shift  COOH CO2 H -10.1 1.61 -10.1 1.61 

a  Dissociative adsorptions are used for ethane reactions. b CO2g is the gaseous carbon dioxide, and CO2 is the 

Physisorbed carbon dioxide. 
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THERMOCHEMISTRY OF GAS-PHASE AND SURFACE SPECIES VIA 

LASSO-ASSISTED SUBGRAPH SELECTION – SUPPORTING 

INFORMATION 

D.1 Supporting Figures 

 

Figure D.1. Illustration of L1 norm penalty constraining least square loss function. The 

red surface indicates the quadratic loss where the outer ellipse indicates a 

higher loss. The blue surface indicates the L1 norm penalty where the 

outer diamond corresponds to a higher penalty. In this illustration, 

  *     + converges to the center of the red surface without the L1 

norm penalty, whereas,   converges to a solution with      for the L1 

norm penalty. 

β1 

β2 
β without 
L1 Penalty 

β with 
L1 Penalty 
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Figure D.2. Illustration of LAR-LASSO tracking predicted response vector,   , along 

λ.    is projected to 2 dimensions from the dimension of N, the number 

of data points.      is the zero vector. LAR-LASSO starts at    = 0 

with initial descriptor selected, then   is moved along the direction of   

until the addition or removal of a descriptor occurs. The direction of    

changes at each addition or removal event. Eventually, LAR-LASSO 

terminates when the number of parameter, P, is equal to N when the 

selected descriptor space has enough degrees of freedom to completely 

describe the data.  

 

Figure D.3. The learning curve of Benson‘s group additivity model applied to a (a) 

217 and (b) 695 gas species data set. Leave-one-out cross-validation was 

used with 100 training-set data shuffling for (a) and 10 for (b).  

    0

    

(P=1)

(P=N)
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Figure D.4. Parity plot between DFT-computed and predicted ∆fH° for (a) 

furanics[16] and (b) linear oxygenates[23]. 
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Figure D.5. Outliers in furanics ((a) and (c)) and linear oxygenates ((b) and (d)) data 

set. Adsorbates in (a) and (b) are mostly unsaturated molecules expected 

to be outliers in chemical space, and those in (b) and (d) are outliers in 

the sampled data, indicating insufficient sampling. 
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Figure D.6. Learning curve of the model selected by LASSO using the entire data set 

for (a) the furanics, (b) the linear oxygenates, and (c) the lignin data sets. 

The curves are the average of 100 training set shuffles for (a) and (b) and 

of 10 shuffles for (c). 
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MICROKINETIC MODELING OF AQUEOUS PHASE ETHYLENE GLYCOL 

REFORMING 

E.1 Introduction 

Hydrogen production from biomass by aqueous-phase reforming (APR) has 

been popularized by Dumesic and co-workers.[13] Since then, many studies have 

focused on understanding the reforming mechanism in vapor and aqueous phases.[13, 

18, 114, 127, 357-359] While computations can provide valuable mechanistic insights 

and potentially help with catalyst design, such effort has been hindered from the high 

computational intensity of (1) computing kinetics and thermochemistry for biomass 

molecules involving more than three heteroatoms and (2) handling aqueous-phase 

conditions. To address these issues, we have recently developed an aqueous-phase 

adsorbate group additivity scheme on Pt.[216] Here we use the group additivity and 

BEP relations,[43] and provide preliminary insights into APR of ethylene glycol on 

Pt(111).  

E.2 Method 

E.2.1 Reaction Network Enumeration 

The reaction network of ethylene glycol is enumerated via the automatic 

mechanism generation method RING.[94] We applied C-H, O-H, C-C, and C-O 

scission rules, resulting in 193 reactions among 86 species. In addition, the water-gas-
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shift reaction (WGSR) is important.[13] Thus we added 3 more species and 12 

reactions relevant to the WGSR.[236] 

E.2.2 Microkinetic Model Parameterization 

Out of 89 species, the thermochemistry of 53 species is available in the dataset 

used to develop the solvation group additivity scheme. The thermochemistry for the 

rest of the species is computed using the group additivity scheme mentioned above. 

The aqueous and vapor phase barriers of most reactions (161 reactions) are available 

in the literature.[357] For those missing (32 C-O scission reactions), we used the 

vapor-phase barriers from our previous ethanol study on Pt[236] for both vapor and 

aqueous phase MKMs in this study. A tacit assumption is that thermochemistry is 

affected by the solvent and the difference in barriers between the vacuum and the 

aqueous phase is small. Indeed calculations by Heyden and co-workers in aqueous 

phase indicate that about 80% of all barriers fall within 0.05 eV of the vapor phase 

counterparts.[41] For any other missing barriers (12 C-OH scission reactions), we used 

the BEP relations from our previous work.[43] We have implemented lateral 

interactions using the following equation: 

 
              ∑      

 
 

(E.1) 

where EBE,i  is the binding energy of species i, EBE,i,0  is the zero-coverage binding 

energy of species i, wij is the lateral interaction of species j on species i, and θj is the 

coverage of species j.  We assign 15 kcal mol
-1

 coverage
-1

 lateral interaction to each 

species from itself as suggested by Faheem et al.[357] For CH3C and CH, 30 kcal/mol
-

1
 coverage

-1
 lateral interaction was assigned from itself as well as from CO and CH3C 

by 15 kcal mol
-1

 coverage
-1

 as suggested by Sutton et al.[127] 
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We performed microkinetic modeling using our in-house reactor code built 

around CHEMKIN
TM

.[109] We assume that the gaseous, closed-shell ethylene glycol 

derivatives (hydroxyacetaldehyde, ethanol, acetaldehyde, ethanol, ethane, ethylene, 

acetylene, methanol, acetone, methane) are in equilibrium with the respective surface 

species, and thus bulk solvation is bypassed. These compounds are in very low 

concentrations in this system. We compute the thermochemistry (∆fH°, S°, CP,T) of 

liquid water and aqueous-phase ethylene glycol (high concentration in water) using 

UNIFAC, and we assume that the liquid water and aqueous-phase ethylene glycol are 

in equilibrium with physisorbed water and ethylene glycol on Pt(111), respectively. 

E.3 Model Validation and Mechanistic Insights 

Here, we simulate experimental data reported by Dumesic and co-workers[358, 

359] of ethylene glycol APR over Pt/Al2O3 as shown in Figure E.1. Overall, turn-over-

frequency (TOF) predictions are all within one order of magnitude (Figure E.1). In 

addition, the reaction orders with respect to ethylene glycol and hydrogen agree 

qualitatively with experimental data (Table E.1), indicating that the species involved 

in the rate-determining step and site blocking are likely captured well. 
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Figure E.1. Comparison between experimental (filled bars) and model (empty bars) 

turn-over-frequency (TOF) for CO2 and H2 over Pt/Al2O3. Four 

experiments from [358] are considered. The conditions are: temperature 

(K), pressure (bar, H2), and liquid hourly space velocity (h
-1

):(1) 423, 4.8, 

1.9 (2) 453, 10.0, 3.8 (3) 483, 19.6, 42.9 and (4) 498, 25.8, 128.6. 

Calculations done at 1-3% conversion (surface to volume ratio of ~5 cm
-1

) 

and experiments at 1-10% conversion. 

Table E.1. Comparison between experimental[359] and model reaction orders of 

ethylene glycol and hydrogen. For ethylene glycol reaction order, 

conditions are 1, 4, and 10 wt% ethylene glycol feed at 225 °C, 29.3 bar 

(H2), 9.36 mol ethylene glycol ∙ mol
-1

 ∙ site h
-1

. For hydrogen reaction 

order, conditions are 10 wt% ethylene glycol feed at 225 °C, 9.36 mol 

ethylene glycol ∙ mol
-1

 ∙ site h
-1

 with 30.3, 32.3, 39.3 bar of H2.  

Species Exp. Model 

Ethylene Glycol 0.4 0.54 

Hydrogen -0.5 -0.48 

 

The reaction pathway of ethylene glycol reforming in vapor and aqueous 

phases is shown in Figure E.2. Our simulation suggests two major pathways for vapor 

phase initiated by (1) C-H scission or (2) O-H scission. These two initial reactions are 

the rate-determining step for each respective pathway. Subsequently, the molecule 

undergoes a number of dehydrogenations, followed by C-CO cracking. This finding is 
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in agreement with previous microkinetic models for ethylene glycol vapor-phase 

reforming.[245, 357]. In aqueous phase, the pathway initiated by O-H scission 

becomes less favorable due to the lower barrier of the competitive C-H scission 

pathway (19.1 vs. 17.3 kcal/mol for vapor and aqueous phase, respectively) compared 

to the vapor phase as well as an increase in the C-H scission barrier of the 

OCHCH2OH for formation of the OCCH2OH (6.2 vs. 7.1 kcal/mol respectively for 

vapor and aqueous phase). This is in contrast to a previous aqueous phase microkinetic 

model study, where O-H scission pathway remains active.[357] The transition state for 

the initial C-H scission is likely stabilized as the underside hydrogen of the ethylene 

glycol becomes exposed to the bulk water. On the other hand, the transition state of 

the C-H scission of OCHCH2OH is stabilized less in the aqueous phase relative to that 

in the vapor phase, resulting in a higher barrier in aqueous phase. Overall, CO* 

(adsorbed CO) formation pathways are similar. Specifically, CO is formed from C-H 

scission of CHO at 35% and 28%, from O-H scission of COH at 16% and 23%, and 

from C-C scission CHOHCO at 49% and 45% in aqueous and vapor phase, 

respectively. The small changes (within a few kcal/mol) of the barriers mentioned 

above are within the error of DFT and thus the changes in pathways may be sensitive 

to the parameterization of the model. Interestingly, a key difference is the high 

concentration of water that solvates the catalyst surface and promotes the WGSR. 
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Figure E.2. Major reaction pathway leading to CO in (a) vapor phase (210 °C, 1 bar, 

0.20 gas mol flow rate/Pt site [s
-1

], 25% ethylene glycol and 75% steam; 

ethylene glycol steam reforming conditions are comparable to those 

reported in ref[127]) and (b) aqueous phase (150 °C, 4.8 bar, 1.9 liquid 

hourly space velocity [h
-1

], 5 wt% ethylene glycol). CO is further 

converted to CO2 and H2O via the water-gas-shift reaction. 

A dramatic difference is observed in the outlet gas-composition, as shown in 

Figure E.3. The selectivity in the aqueous phase is 100% towards the reforming (CO2 

and H2) whereas CO is observed in the vapor phase. This is due to the high water 

coverage on the surface in the aqueous phase, as shown in Figure E.4. The high water 

coverage drives the WGSR in the aqueous phase, increasing the hydrogen selectivity. 
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Figure E.3. Gas composition (mol%) vs. temperature for (a) aqueous phase and (b) 

vapor phase. Conditions are the same as in Figure E.2. 

 

Figure E.4. Surface coverage of major species vs. temperature for (a) aqueous phase 

and (b) vapor phase. Conditions are the same as in Figure E.2. 
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