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The extracellular SH/SS redox status has been shown to play critical roles in a 

range of mammalian cell behaviors, including migration, proliferation, cancer 

invasion, and virus fusion. Quiescin-sulfhydryl oxidase (QSOX), a facile disulfide-

generating enzyme discovered in our laboratory, is believed to contribute to 

extracellular SH/SS status. Although the enzymological properties of QSOX have 

been studied extensively in our laboratory, its contribution to disulfide bond formation 

in biological contexts is still cryptic. This dissertation includes two projects that 

impact extracellular redox state regulation.  

In the first part of this work, a simple and sensitive fluorescence-based 

microplate assay for QSOX activity is described. This assay couples hydrogen 

peroxide formation generated by sulfhydryl oxidases to the generation of the strong 

red fluorescence formed during HRP-catalyzed oxidation of Amplex UltraRed and is 

suitable for testing QSOX activity in small samples of serum, plasma, or other 

biological fluids. This work shows that murine, bovine, and human sera contain 

significant levels of sulfhydryl oxidase activity. We also found similar levels of 

enzymatic activity between fetal and adult bovine sera in contract to a prior report.  A 

three-step purification protocol using adult bovine serum showed that this activity 

reflects circulating, soluble QSOX1. Peptide digests and mass spectrometric analysis 

confirmed that this disulfide-generating activity was indeed due to QSOX1. The 

presence of a facile oxidase for a wide range of thiol-containing peptides and proteins 

ABSTRACT 
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in mammalian plasma suggests a new dimension to the study of thiol/disulfide redox 

biochemistry in blood. 

In the second project, novel ratiometric fluorescence imaging methods for 

surface thiols and disulfides and their applications to studying a range of cellular 

phenomena were described. Membrane-impermeant fluorescent maleimide reagents 

were used throughout, and these new methods can visualize and quantitatively assess 

the status of surface proteins on normal and cancer cells. In addition, a dramatic effect 

of very low concentrations of polystyrene sulfonate (PSS) on cell surface SH/SS redox 

status was investigated. This effect is thiol specific, general to different cell types, and 

reversed, in part, by exogenous QSOX. PSS is also found to increase the endocytosis 

of exofacial thiols and proteins. Finally, we showed that the new ratiometric methods 

can be extended to multicellular organisms and biomaterials. These procedures are 

amenable for future super-resolution studies.
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OXIDATIVE PROTEIN FOLDING AND REDOX REGULATION 

1.1 Introduction to Oxidative Protein Folding 

Oxidative protein folding, the process that involves generation of disulfide 

bonds during the attainment of the native fold, is one of the most widely recognized 

post-translational modifications. After translation from messenger ribonucleic acids 

(mRNA) by ribosomes, the nascent chains undergo folding with the assistance of 

molecular chaperones1. Chemically disulfide bond formation involves a 2-electron 

oxidation reaction between cysteinyl sulfhydryl groups, see Figure 1.1. In the absence 

of catalysts the reaction is slow when molecular oxygen is the oxidant2. After, or 

during, this oxidative phase mispaired disulfide bonds are rearranged by disulfide 

exchange isomerization reactions. 

About 25% of eukaryotic proteins are secreted and most of these contain one 

or more disulfide bonds3. In contrast, most intracellular proteins lack these linkages. A 

common argument for the selective presence of disulfide bond in extracellular proteins 

is that these crosslinks reinforce tertiary or quaternary structures 4. Examples of small 

proteins that are stabilized by structural disulfide bonds are shown in Figure 1.2. 

Additionally, some disulfides serve regulatory roles. These “allosteric” disulfide bonds 

engage in redox reactions acting as switches to control protein functions5. 

 

Chapter 1 



 2 

 

Figure 1.1    The oxidative reaction of oxidative protein folding. Removal of a pair 

of electrons generates a disulfide linkage. 



 3 

 

Figure 1.2    Structure of some disulfide bond-containing proteins. Disulfide bonds 

are shown as yellow sticks. Codes from the Protein Data Base (PDB) are 

listed. 
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1.2 Oxidative Protein Folding in Prokaryotes 

The current understanding of disulfide bond generation in prokaryotes was 

strongly influenced by research in the Gram-negative bacterium Escherichia coli. 

Here, oxidative protein folding occurs in the periplasmic space, driven by a family of 

thiol oxidoreductase known as disulfide bond forming (Dsb) proteins6. Figure 1.3 

shows a simplified scheme of this pathway. The first step involves the generation of 

disulfide bonds in reduced client proteins by DsbA. This monomeric 21 kDa 

oxidoreductase has a highly oxidizing redox-active CxxC motif 7. The reacting 

reduced DsbA then transfers reducing equivalents through disulfide exchange with the 

membrane-bound protein DsbB8. Under aerobic conditions, DsbB then passes the 

electrons to ubiquinone. Reducing equivalents are then passed to cytochrome oxidases 

and finally to molecular oxygen9. Under anaerobic conditions, DsbB transfers 

reducing equivalents to menaquinone and further to anaerobic electron acceptors such 

as fumarate10. Both aerobic and anaerobic processes link oxidative folding to the 

respiratory chain6,11. In those bacteria that lack DsbB, DsbA transfers electrons to 

bacterial homologs of vitamin K epoxide reductase (VKOR) and further to vitamin K 

epoxide, the final electron acceptor12,13. Mispaired disulfide bonds introduced by the 

DsbA/DsbB system are corrected by another periplasmic component, the isomerase 

DsbC14. DsbC is a homodimer of ~25 kDa submits with two redox-active CxxC motifs 

in two thioredoxin domains and a V shaped peptide binding site15. This isomerase is 

maintained in its active, reduced, state by disulfide exchange with DsbD (Figure 

1.3)16.  DsbD is a membrane protein (~60 kDa) that spans cytosolic and periplasmic 

spaces. Thus it receives electron equivalents from reduced cytosolic thioredoxin, 

which is generated by NADPH in the presence of thioredoxin reductase11,14. The 
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reducing equivalents now on DsbD are then delivered at the outer plasma membrane 

surface to DsbC (Figure 1.3). 

The oxidative protein folding pathways in Gram-positive bacteria are still 

cryptic. Ishihara et al.17 discovered a DsbA homolog, BdbD (Bacillus disulfide bond 

formation), in Bacillus brevis. Currently, ComGC is the only identified substrate of 

BdbD in Bacillus brevis18. BdbD is re-oxidized by BdbC, a protein that is 40% 

identical to DsbB sequence19. Thus, the BdbC/ BdbD system appears to be a clear 

counterpart of the DsbA/DsbB system in E. coli. 
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Figure 1.3   The Dsb system in prokaryotes. Figure modified from Cho and Collet20. 
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1.3 Oxidative Protein Folding Systems in Eukaryotes 

In Eukaryotes, the redox potential is tightly controlled in a location-specific 

manner inside cells, and most oxidative protein folding occurs in specialized 

membrane bounded organelles, such as the mitochondrial inner membrane space 

(IMS), the endoplasmic reticulum (ER) and the Golgi apparatus. In contrast to the 

highly reducing environment in the cytoplasm (with a GSH/GSSG ratio ~3300/1, 

corresponding to a redox potential of -290 mV)21, the ER is comparatively oxidizing 

(with a GSH/GSSG ratio reported in the 1.5/1 to 5/1 range, equivalent to a redox 

potential of -180 mV)22,23. The mitochondrial IMS is another relatively oxidizing 

location (with a GSH/GSSG ratio 250/1 and a redox potential of -256 mV). In addition 

to these intracellular locations, disulfide bond generation also takes place in the 

extracellular environment. In the next section, we will discuss the oxidative folding 

system of the mitochondrial IMS, followed by the disulfide bond generation pathways 

in the ER and Golgi apparatus. Disulfide bond generation within the extracellular 

space will be described later. 

 

1.3.1 Mitochondrial IMS 

As a eukaryotic organelle, the mitochondrion is believed to be a consequence 

of the endosymbiosis of an ancient oxygen-metabolizing prokaryote with a primitive 

eukaryotic cell. While the structure of the mitochondrial IMS seems a functional 

equivalent of the prokaryotic periplasmic space, the oxidative protein folding 

machinery in these two compartments are completely different. Figure 1.4 shows a 

scheme of the human mitochondrial oxidative folding machinery. In the first step, 
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reduced and unfolded polypeptides in the cytosol pass through the mitochondrial outer 

membrane via a membrane-bound protein translocase pore. Those peptides are then 

oxidized by Mia40 in the IMS using a small helix-coil-helix oxidoreductase with a 

redox active CxC disulfide motif and a binding site for unfolded substrate proteins24,25. 

Reduced Mia40 transfers reducing equivalents to augmenter of liver regeneration 

(ALR) via thiol-disulfide exchange reactions26,27. 

ALR is a homodimeric flavoenzyme with FAD as the cofactor as well as two 

disulfides for oxidation reactions26-28. While ALR can use molecular oxygen as an 

electron acceptor, our laboratory found that cytochrome C was a better kinetic 

substrate in vitro26,28. In vivo, reduced cytochrome C could deliver electrons to the 

respiratory chain. In yeast, there is a close homolog of ALR named essential for 

respiration and viability 1 (ERV1)29, with 29% identity to ALR30. Reduced ERV1 can 

pass electrons to the fumarate reductase protein (Osm1) so as to regenerate the 

catalyst.  

Research on oxidative protein folding in the mitochondrial IMS has not yet 

identified a dedicated disulfide isomerase. Several proteomic studies identify protein 

substrates of the IMS oxidative folding pathway with complicated patterns of disulfide 

connectively31,32. Our laboratory has clearly shown that Mia40 is a poor isomerase 

towards both native and non-cognate substrates27. Hence mispaired IMS disulfide 

bonds may undergo correction by cycles of reduction using resident reductases 

followed by reoxidation using Mia4033-35. 
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Figure 1.4    Oxidative protein folding within the mammalian mitochondrial inter 

membrane space. The arrows depict the flow of reducing equivalents. 
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1.3.2 Endoplasmic Reticulum (ER) 

Approximately 25% human proteins transit the endoplasmic reticulum (ER) 

before being secreted, and the ER has been long recognized as the main compartment 

for oxidative protein folding. Protein disulfide isomerase (PDI) often acts as the 

immediate oxidant for proteins undergoing oxidative folding in the ER (Figure 1.5). 

To sustain catalysis reduced PDI must then be reoxidized by secondary oxidants 

depicted in the Figure. This scheme has been termed the PDI-first model of oxidative 

folding because PDI intervenes at the initial oxidation step. Figure 1.5 also shows that 

PDI operates in a second capacity to isomerize any mispaired disulfides introduced in 

the first step. Here, PDI associates with mispaired proteins and performs multiple 

rounds of thiol disulfide exchange reaction ultimately leading to the appearance of the 

native fold. The next section will expand in the PDI-first route to oxidative folding. 

An alternate pathway involving QSOX will be described later. 

 

1.3.2.1 Protein Disulfide Isomerase (PDI) 

Protein disulfide isomerase (PDI) is a 57 kDa multidomain enzyme which 

belong to the thioredoxin superfamily.  Figure 1.6 shows a structure of a yeast PDI; it 

is a U-shaped protein that contains four consecutive thioredoxin domains: a, b, b’, and 

a’ 36.  There are catalytically active Cys-Gly-His-Cys motifs on each of a and a’ 

domains. The N-terminal cysteine of the motif is comparatively solvent accessible. In 

contrast the C-terminal cysteine is buried from solvent towards the core of the protein. 

There is a putative hydrophobic protein binding site in the b’ domain that has affinity 

for reduced, unfolded protein substrates37. In the PDI-first model of oxidative folding, 
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PDI oxidizes reduced client peptides and transfers the pair of electrons to other 

proteins, such as Ero1, peroxiredoxin 4, glutathione peroxidase 7/8, VKOR, 

dehydroacorbate, H2O2 and GSSG38,39. 
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Figure 1.5  Scheme of a PDI-first model of oxidative protein folding. 
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Figure 1.6    Yeast Protein Disulfide Isomerase (PDI). PDB code: 2B5E. The CxxC 

motifs in the a and a’ domains are depicted in yellow spheres. 
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1.3.2.2 Endoplasmic Reticulum Oxidoreductin 1 (ERO1) 

The yeast ERO1p was uncovered independently by two groups in 199840,41. 

Two orthologs in mammals, Ero1α and Ero1 β, were discovered later42,43. ERO1p is a 

65 kDa flavin adenine dinucleotide (FAD) bound thiol oxidoreductase that oxidizes 

PDI with an N-terminal shuttle CxxC disulfide and a C-terminal CxxCxxC motif. 

Following a series of disulfide exchange reactions the reducing equivalents are passed 

to the flavin cofactor for the subsequent reduction of molecular oxygen to hydrogen 

peroxide 44,45. ERO1p localizes to the ER, but does not have an ER retention 

sequence41; it is tightly associated with ER membrane via interaction with its C-

terminal tail46.  

The PDI-Ero1 oxidative folding pathway was considered as the major pathway 

for disulfide generation in mammals. However simultaneous knockout of both 

isoforms of Ero1 (α and β) in mouse only caused a very mild diabetic phenotype47. 

This surprising result stimulated the search for other pathway for the oxidative of PDI 

within the ER (see later).  

 

1.3.2.3 Erv2p 

Erv2p (Essential for respiration and viability in yeast29) is a membrane-bound 

ER-resident fungal FAD-dependent sulfhydryl oxidase that catalyzes disulfide bond 

generation in the ER lumen in parallel with ERO148,49. Overexpression of Erv2p in 

yeast suppresses the lethality of a complete deletion of Ero1 strain under aerobic 

conditions49. As a dimeric protein, Erv2p has a CxxC motif on each subunit near the 

flavin ring, and a shuttle disulfide located on the C-terminal flexible loop48,49.  Erv2p 
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receives electrons from reduced PDI using the shuttle disulfide with the ultimate 

reduction of the flavin and the final reoxidation of the enzyme using molecular 

oxygen48,49. 

 

1.3.2.4 Peroxiredoxin IV 

The ER-resident protein Peroxiredoxin IV (PRDX4) reduces H2O2 produced, 

for example, by the PDI-Ero1 oxidative folding pathway50,51. In this way 

peroxiredoxin can use the potentially dangerous hydrogen peroxide generated by ER-

oxidases to generate a second disulfide bond.  

Peroxiredoxin reacts efficiently with hydrogen peroxide because of reaction 

with cysteine 124 that forms a sulfenate (-S-OH). Subsequent nucleophilic cleavage of 

the sulfenate by a second cysteine generates an intersubunit disulfide. This new 

disulfide then can drive further oxidative folding52-54. Iuchi et al55 reported that a 

PRDX4 knockout mouse was viable and fertile, indicating PRDX4 is not an essential 

ER enzyme. However, Zito and colleagues52 performed RNA interference (RNAi) of 

PRDX4 in mice embryo fibroblasts cells that also lack Ero1. They found this 

treatment is lethal, indicating that the two enzymes are partially redundant for 

oxidative folding. 

 

1.3.2.5 Vitamin K Epoxide Reductase (VKOR) 

VKOR is a transmembrane ER resident protein that links dithiol-dependent 

oxidative protein folding to protein γ-carboxylation56,57. In the VKOR pathway, PDI 

donates two pairs of electrons to VKOR through disulfide exchange, and electrons are 
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finally transferred to vitamin K epoxide to form the hydroquinone57,58. This reduced 

form of vitamin K is an essential cofactor for the γ -glutamyl carboxylase that 

catalyzes the glutamate carboxylation reactions. Several Vitamin K-dependent 

proteins, such as blood clotting factors VII, IX and X, are post-translationally 

modified by γ -glutamyl carboxylase in the ER59. 

 

1.3.2.6 L-Ascorbate 

L-Ascorbate (or vitamin C) can serve as an antioxidant in the ER. This 

molecule is oxidized by an unidentified ascorbate oxidase enzyme to generate 

dehydroascorbate (DHA). DHA may contribute to disulfide bond generation60. 

However, although a variety of thiol compounds, including reduced PDI, can be 

oxidized by DHA, Saaranen et al61 reported that the PDI-DHA reaction is kinetically 

too slow to contribute to oxidative folding in the ER. As an alternative they proposed 

that DHA is sufficiently rapidly reduced non-enzymatically by GSH.  

 

 

1.3.3 Disulfide Bond Formation Post ER 

After the oxidative protein folding process in the ER, folded proteins are 

transported to the Golgi apparatus and undergo additional posttranslational 

modifications and sorting. Mispaired proteins are screened out and returned to the ER 

via retrograde transport. Correctly folded secreted proteins are transferred through the 

Golgi apparatus and packaged into vesicles targeted for fusion with the plasma 

membrane62,63. Some of these proteins become incorporated at the cell surface, others 
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are secreted into the bulk extracellular matrix space. An important potential catalyst of 

disulfide bond generation outside the cell is a main focus of our laboratory. In the next 

sections we will introduce the Quiescin Sulfhydryl Oxidase (QSOX). 

 

1.4 Quiescin Sulfhydryl Oxidase (QSOX) 

As previously mentioned, there is another potential oxidative protein folding 

pathway in the ER. Here, QSOX acts as an immediate oxidant and PDI acts only as an 

isomerase (Figure 1.7). Notice that these two enzymes work independently because 

PDI is not a substrate of QSOX22. 

 

1.4.1 History of QSOX 

QSOX is a FAD-bound protein that was first purified in our laboratory from 

chicken egg white by following the yellow color of FAD64. The chicken QSOX was 

later found to be homologous to the human Quiescin Q6 protein which was 

upregulated when human fibroblasts enter quiescence65-67. Quiescin Q6 was then 

shown to have sulfhydryl oxidase activity67. Two earlier studies about sulfhydryl 

oxidases from rabbit skin68 and bovine milk69 were revisited based on the discovery of 

chicken QSOX. Both enzymes were found to be QSOX family members70,71. Another 

flavoprotein sulfhydryl oxidase, discovered in seminal vesicles72, was also found to be 

a QSOX family member73. The kinetic mechanism of avian egg white74 as well as 

recombinant human75 and Trypanosoma brucei76 were also investigated. Crystal 

structures of Trypanosoma brucei QSOX1 and mouse QSOX1 were obtained by Alon 

et al.77. 
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Figure 1.7    A scheme for QSOX mediated oxidative protein folding. The role of 

PDI is restricted to that of an isomerase. 
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1.4.2 Structure and Catalytic Mechanism of QSOX 

QSOX enzymes are multi-domain proteins that represent an ancient fusion of 

two proteins: thioredoxin and Erv165,78 (Figure 1.8). All QSOXs contain an N-terminal 

signal sequence that leads the protein through the secretory pathway. In metazoan 

QSOXs there are four recognizable domains. From the N-terminal the first two 

domains are PDI-like thioredoxin domains and the first one contains a redox-active 

CxxC motif (labeled as CIxxCII in Figure 1.8)79. The second thioredoxin domain does 

not have a redox-active disulfide and its function is still unknown. Plant and protist 

QSOXs lack the second thioredoxin domain78 (Figure 1.8). The third domain is a helix 

rich region (HRR), which appears to be an Erv/ALR like domain without redox 

centers80. The fourth domain is also an Erv/ALR domain but contains FAD as a non-

covalently bound cofactor and a second CxxC motif (labeled as CIIIxxCIV in Figure 

1.8). A third CxxC motif which is catalytically non-essential is in the Erv/ALR 

domain; its function is still unclear75.  

QSOXs are present in metazoans and plants, but not in fungi81. Multicellular 

organisms contain various QSOX paralogs, e.g. Drosophila have four, Caenorhabditis 

elegans have three78, and higher metazoans have two QSOX paralogs. Human QSOX1 

and QSOX2 retain the same domain organization and share 37% overall amino acid 

sequence identity and 68% identity in their functional structures (that is the 

thioredoxin and Erv domains)81. There are two mRNAs encoding human QSOX1. 

Caused by an alternative splice site on exon 12, the long form, QSOX1a, has 747 

amino acids and retains a long C-terminal region with a transmembrane region close to 

the C-terminus82. In contrast, the short form, QSOX1b, contains 604 amino acids and 
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lacks the transmembrane domain. The QSOX2 gene encodes a 698 amino acid 

protein83, but this the enzyme remains to be characterized. 

The catalytic mechanism of QSOX is schematically shown in Figure 1.9. A 

thiolate of a protein substrate attacks the first cysteine residue CI of the first CxxC 

motif, generating a mixed disulfide84,85. Another thiolate of the substrate resolves the 

mixed disulfide, leading to a disulfide bond formation in the substrate and releasing 

the Trx1 in its reduced form74,75. The two electrons are then transferred to the second 

CxxC motif in the ERV/ALR domain via a mixed disulfide between CI and CIII. This 

process involves an extensive rotation of the thioredoxin domain and docking with the 

ERV domain surface76,77 (Figure 1.10). This mixed disulfide is resolved, in a rate-

limiting step, by CII
75. The reducing equivalents are then transferred to the flavin ring 

and finally to molecular oxygen75,76. QSOX lacks a significant binding site for protein 

substrates and seems to perform a hit-and-run mode of catalysis86. 

 

Figure 1.8    Domain structure of QSOX proteins. Panel A shows metazoan QSOXs 

which have two thioredoxin domains (Trx1 and Trx2) followed by a 

helix-rich region (HRR) and an ERV domain. Panel B shows QSOXs of 

plants and protists, which lack the Trx2 domain. The redox-active CxxC 

motifs are shown as single solid yellow lines. The flavin cofactor is 

shown as hexagons in yellow. The approximate position of signal 

sequence is shown as the solid red line at left. 
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Figure 1.9    A simplified depiction of the flow of reducing equivalents 

accompanying disulfide bond formation by a metazoan QSOX. 
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Figure 1.10   Crystal structure of Trypanosoma brucei QSOX. Open (panel A, PDB 

file:3QCP) and closed (panel B, PDB file:3QD9) conformations are 

shown. The closed conformation was captured by trapping a mixed-

disulfide between CI of the Trx domain and CIII of the ERV domain. The 

Trx domain is shown in blue, the HRR in grey and the ERV domain in 

green. CI and CIII are shown as yellow spheres. 
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1.4.3 Substrates of QSOX 

The in vitro enzymological properties of QSOX have been studied extensively 

in our laboratory. The kinetic parameters of QSOX with different substrates are shown 

in Table 1.1. QSOX is the most proficient catalyst for disulfide bond generation 

known to date84. The kcat entries are largely dependent on the rate of inter-domain 

electron transfer, the rate-limiting step, thus these values are comparable between 

various substrates79. Km values, however, show a dominant role in catalytic efficiency 

and substrate discrimination. Monothiols (e.g. β-mercaptoethanol, cysteine, and GSH) 

are relatively poor substrates of QSOX, while dithiols such as DTT shows catalytic 

efficiencies similar to that of reduced, unfolded, proteins like RNase75. QSOX strongly 

favors unfolded protein substrates and cannot generate disulfide from cysteine 

residues in folded proteins86.

 

1.4.4 Intracellular and Extracellular Distribution of QSOX 

As mentioned in the previous section, an N-terminal signal sequence of QSOX 

leads this enzyme through the secretory pathway. Intracellularly, QSOX1 has been 

found in the ER87,88 and Golgi87,89,90. Cytochemical studies have shown that QSOX 

expression is particularly high in epithelial tissues with heavy secretory loads, see 

Figure 1.1191.  For this reason we proposed that QSOX serves as an oxidant in 

oxidative protein folding pathways as shown in Figure 1.7. 

QSOX has also been identified at the cell surface92 and in the extracellular 

environment, e.g. including seminal vesicle fluids72,73, chicken egg white64, 

mammalian cell secretions79, bovine serum93,94 and milk71. It has been suggested that 



 24 

QSOX1 plays important roles in modulating the extracellular matrix78. Katchman et 

al.95 proposed that extracellular QSOX1 can activate matrix metalloproteinases 

(MMP-2 and MMP-9) during pancreatic and breast cancer invasion. Ilani et al.88 found 

that QSOX1 plays efficient roles in extracellular matrix formation and modulation, 

including the incorporation of laminin into the matrix. 
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Table 1.1 Catalytic activity of QSOXs towards different substrates (Data taken from 

references in the table). 

 Substrate kcat (min-1) Km (mM) kcat/Km 

(M-1s-1) 

Reference 

Avian QSOX Cysteine 1275 10.9 1.95 x 103  

64 β-Mercaptoethanol 1215 54 3.75 x 102 

Glutathione 1385 20 1.15 x 103 

Dithiothreitol 1033 0.15 1.15 x 105 

N-acetyl-EAQCGTS 1420 1.72 1.4 x 104  

 

 

 

96 

Aldolase 200 0.16 2.1 x 104 

Insulin chain A 1000 0.215 7.8 x 104 

Insulin Chain B 700 0.3 3.9 x 104 

Lysozyme 860 0.11 1.3 x 105 

RfBP 1100 0.23 8.0 x 104 

RNase 610 0.115 8.8 x 104 

Pyruvate kinase 475 1.25 6.3 x 103 

Ovalbumin 565 0.33 2.9 x 104 

 PDI - - <102  

Trypanosoma 

brucei QSOX 

Glutathione - >50 1.35 x 102  

 

76 

Dithiothreitol 1350 0.086 2.6 x 105 

Trypanothione 480 3.23 2.5 x 103 

RNase 660 0.36 3.0 x 104 

RfBP 420 0.3 2.25 x 104 

Bovine 

QSOX 

Glutathione 880 4.9 3.0 x 103  

71 Dithiothreitol 940 0.086 1.83 x 105 

RNase 670 0.060 1.87 x 105 

Human 

QSOX 

Glutathione 740 0.10 1.0 x 103  

75 Dithiothreitol 620 12.4 1.0 x 105 

RNase 2160 0.32 1.1 x 105 

Turnover numbers are expressed in terms of disulfides generated per minute. Proteins 

with disulfide were first reduced before the kinetic measurements. Dashes represent 

undetectable rates. 
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Figure 1.11  High expression of QSOX1in epithelial tissues with heavy secretory 

loads (reprinted from Thorpe & Coppock91). Brown staining represents 

QSOX1 in (A) epidermis; (B) sebaceous gland; (C) hair follicle; (D) 

seminal vesicle; (E) placenta; (F) eccrine gland. 
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1.4.5 QSOX and Diseases 

In humans, QSOX1 expression has been found to be significantly upregulated 

in prostate97,98, pancreas95,99 and breast100,101 cancers. For instance, Song et al. reported 

that mRNA level of QSOX1 are significantly upregulated at early stages of prostate 

tumorigenesis97. Lake et al. identified a C-terminal QSOX1 peptide in plasma that he 

could use as a biomarker for pancreatic ductal carcinoma99. The same group also 

showed that QSOX1 is involved in post-translational modifications in 

metalloproteinases that facilitate pancreatic tumor cell invasion95. Katchman et al. 

found that QSOX1 expression is associated with a highly invasive phenotype and 

correlates with a poor prognosis in Luminal B breast cancer100. Depressing QSOX1 

levels with RNAi or inhibiting its activity using an inhibitory antibody leads to a 

significant decline of invasiveness in cell migration assays88,95,100,102. It should be 

noted that the findings of this study have been challenged by several groups103-105; they 

have indicated that QSOX1 expression may be negatively correlated with cell growth. 

For other diseases, Mebazaa and colleagues identified QSOX1 peptide in plasma as a 

biomarker for acute decompensated heart failure that significantly increases the 

diagnostic accuracy for this condition106. Julian et al. found a 3-fold increase of 

QSOX1 expression in patients with acute mountain sickness107. 

The mechanisms for QSOX expression regulation in diseases have been 

studied. Several studies suggested that QSOX1 in human MCF-7 breast cancer 

cells108, MDA-MB-231 breast cancer cells109, and rat pituitary glands87 is regulated by 

estrogen. Also, autophagy, a pro-oncogenic process during the late stages of tumor 

growth, has been suggested to be linked with QSOX1 expression in MCF-7 breast 

cancer cells110. Another regulatory mechanism for QSOX1 expression was 

demonstrated by Shi et al. They showed that QSOX1 was significantly upregulated 
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during hypoxia in pancreatic tumor cells111. In this study, hypoxia-inducible factor 1 

alpha (HIF-1α) overexpression correlates with a 7-fold QSOX1 upregulation, and the 

QSOX1 gene sequence contains two hypoxia response elements (HREs). It has been 

well established that during carcinogenesis, hypoxia is one limitation slowing 

metastasis of cancer cells112. Hypoxia also correlates with acute heart failure due to 

shortness of breath106 and acute mountain sickness due to the low oxygen 

concentrations at high altitudes107. Since oxygen is a co-substrate for thiol oxidation 

by QSOX1, a response to hypoxia might include elevated levels of the oxidase. 

 

1.5 Extracellular Redox Regulation 

The secretion of a potent thiol-oxidizing catalyst would be expected to 

modulate the thiol/disulfide poise of the extracellular matrix. While the extracellular 

environment is widely regarded as oxidizing, cells also can secrete significant levels of 

small molecular weight thiols and reduced proteins. In the next sections we discuss 

some of these additional components that may impact the extracellular redox status. 

 

1.5.1 Glutathione/glutathione Disulfide Couple 

As mentioned before, the extracellular glutathione/glutathione disulfide 

(GSH/GSSG) couple reflects very small concentrations in the plasma (e.g. ~3 μM of 

GSH and ~0.1 μM of GSSG). There are minimal compared to aggregate intracellular 

levels of glutathione (10 mM)113. In healthy adult individual plasma the redox 

potential of the GSH/GSSG is about -137 mV. Oxidizing GSH/GSSG ratios are 

correlated with disease states, smoking and aging114. One function of GSH involves 
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protecting cells from oxidative damage via reducing peroxides.  Brown et al.115 

showed that decreased glutathione availability results in rat alveolar macrophage 

dysfunction and decreased viability via oxidative stress. Glutathione precursors 

reversed this effect115. GSH/GSSG ratios can also indicate unusual cell conditions 

such as oxidative stress or cell death116. Adams and colleagues117 reported that rats 

with oxidative stress show a 17-fold increase in plasma GSSG concentration but 

almost unchanged GSH level. GSH/GSSG levels function as regulators of the cell 

signaling pathways via the reversible glutathionylation of proteins118. For example, 

extracellular GSH binds specific receptors in brain and stimulates signal cascades in 

astrocytes119.  

Intracellularly synthesized GSH is exported to the extracellular environment by 

multidrug-resistance-associated protein (MRP) and organic anion-transporting 

polypeptide (OATP) families of membrane proteins120. Substantial decrease of plasma 

GSH levels by inhibition of intracellular GSH synthesis suggests the intimate 

relationship between intracellular and extracellular GSH regulation and the importance 

of GSH transport118. Extracellular GSH can undergo several fates118. One is to be 

cleaved by γ-glutamyltransferase and subsequently dipeptidase to glutamate, cysteine 

and glycine, thus providing a systemic source of Cys and keeping a low level of 

plasma GSH. γ-glutamyltransferase deficiency has been shown to lead to high 

circulating levels of GSH and to severe behavioral problems121. A second fate of GSH 

is as a reducing agent to reduce H2O2 and lipid hydroperoxides in a reaction catalyzed 

by glutathione peroxidase (GPx-3) found in extracellular body fluids122. A third way is 

for GSH to be oxidized to GSSG nonenzymatically in a reaction mediated by metal 

ions. S-glutathionylation of proteins represents another mode by which GSH can be 
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consumed. Finally, GSH can also be oxidized by disulfide exchange with cystine 

(CySS) to yield CySSG118. 

 

1.5.2 Cysteine/cystine Couple 

The cysteine/cystine (Cys/CySS) couple is the most abundant small-molecule 

redox-active species in plasma123, where CySS is about 50 µM while Cys is between 8 

to 10 µM. The extracellular Cys/CySS pair plays significant roles in cell behaviors, 

such as adhesion124 and proliferation125-127 through cell signaling. For instance, Go and 

Jones124 have reported that a more oxidizing Cys/CySS redox state causes an increase 

of cell–cell adhesion molecule expression in endothelial cells by stimulating the 

production of H2O2, which activates the NF-kB signaling pathway. Ramirez et al.125 

demonstrated that a more oxidizing Cys/CySS redox state triggers the intracellular 

protein kinase C signaling pathway that stimulate extracellular fibronectin production 

in fibroblasts and facilitates cell proliferation. However, Nkabyo and colleagues126 

showed that in the case of Caco-2 intestinal cell line, a more reducing Cys/CySS redox 

state favors cell proliferation via activation of the p44/p42 MAPK pathway, 

suggesting that the effect of redox state is cell line specific. 

The physiological Cys/CySS redox potential in healthy human plasma is 

approximately −80 mV113, and a higher potential (more oxidizing) is usually 

correlated with various malignancies, such as aging114,128, cardiovascular disease129, 

and cirrhosis130. Studies of animal models also showed that the plasma Cys/CySS 

potential was significantly oxidized in overweight animals while GSH/GSSG potential 

did not change131. Interestingly, a more oxidizing Cys/CySS potential can also occur 
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with diets without any sulfur-containing amino acids, with decreased Cys level but 

constant CySS levels132. 

There is no known dedicated CySS reductase, and the reduction of 

extracellular CySS is assumed to be achieved by GSH or via reduced 

thioredoxin118,133,134. Some cells express an xc- antiporter system that imports CySS 

into cells with concomitant export of glutamate. Internalized CySS is then converted 

to Cys in the reducing environment of cytosol133,135,136. Cys can undergo oxidation to 

CySS or be transported between the intracellular and extracellular environment via 

transporters like alanine-serine-cysteine (ASC) transporter137 and system L (LAT2)118. 

Those cells that lack xc- antiporter system, such as T cells, are dependent on Cys 

supply from antigen-presenting cells, such as dendritic cells138. With these transport 

systems, the extracellular Cys/CySS potential can be regulated. Yan et al.139 

demonstrated that elevated cystine consumption and cysteine release by dendritic cells 

lead to a significant drop in the extracellular Cys/CySS potential, and this reductive 

remodeling is conducive for T cell proliferation as well as a shift of membrane thiols 

to a more reducing status. In spite of the close interrelation between Cys and 

glutathione biosynthesis, the Cys/CySS and GSH/GSSG redox couple appear to 

function independently123,127,140.  

 

1.5.3 Thioredoxin 

Although intracellular thioredoxin (Trx) is considered a critical protein 

disulfide reductant and a key regulator in cell proliferation and survival141, 

extracellular Trx has been found to be secreted by a variety of normal and 

transformed cells such as fibroblasts, airway epithelial cells, and activated B and T 
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lymphocytes even though it lacks a canonical secretion-signal sequence and does not 

follow the classical ER-Golgi route142.  Although in healthy individuals the 

extracellular Trx is in the low nanomolar range, it is released from cells in response to 

oxidative stress-related signals and considered as a biomarker for diseases143,144. For 

example, Nakamura et al.145 reported that thioredoxin protects endothelial F-2 cell 

injury caused by activated neutrophils or hydrogen peroxide. Schwertassek and 

colleagues146 showed that Trx1 catalytically interacts with CD30, a cytokine receptor 

of activated lymphocytes involved in the regulation of inflammation. Trx was also 

found to be involved in HIV infection. Studies have shown that Trx-mediated disulfide 

cleavage of domain 2 of CD4 is essential for HIV entry into T cells147,148. Moreover, 

extracellular Trx has been found to be involved in proliferation149-151, migration144 and 

cell membrane channel function152 of different cell types. Although intracellular Trx 

regeneration involving thioredoxin reductase (TR) and NADPH has been well 

studied153,154, it is still unknown how Trx is regenerated in the extracellular 

environment. TR is generally located in the cytoplasm, but an extracellular TR1 form 

was found to be secreted from multiple blood cell lines and fresh human blood 

plasma155. The exact function of TR1 and how it might reduce Trx in the absence of 

NADPH is still unclear.  

 

1.5.4 PDI 

PDI was long considered an intracellular protein localized exclusively in the 

endoplasmic reticulum until it was found to be expressed on the cell surfaces of 

platelets by Essex et al.156,157. Later it was also found on the surface of  lymphocytes158 

together with cancer cells such as fibrosarcoma cells159 and glioblastoma160. The role 
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of extracellular PDI on platelet thrombus formation and fibrin generation has been 

extensively studied. A significant decrease of thrombus formation was observed after 

inhibition161-163 or knockout164 of platelet surface PDI, and an exogenous addition of 

PDI to blood can recover this formation164. The mechanism of PDI effect on thrombus 

formation was demonstrated to be reduction of disulfide bonds in β-integrins164,165. 

Other PDI family members such as ERp57166-168 and ERp5169 are also involved in the 

process of thrombus formation. Moreover, PDI has been also found to be involved in 

virus fusion. Barbouche et al.158 reported that extracellular PDI is responsible for cell 

recognition and fusion of the HIV virus by mediating the reduction of two disulfide 

bonds of the glycoprotein gp120 on the virus. Wan et al.170 found that endothelial cell 

surface PDI activates β1 and β3 integrins and facilitates dengue virus infection. The 

retention of PDI on the cell surface has been shown to be regulated by binding of 

galectin-9 that subsequently alters the redox status of T cell membranes171.  

 

1.5.5 Extracellular Redox State and Cancer 

Alterations of small-molecule thiols or redox-modulated proteins in the 

extracellular environment may lead to disturbances of the extracellular redox state and 

to impacts on cancer progression172. 

   Chaiswing et al.173 demonstrated that GSH/GSSG ratios in the culture media 

of highly aggressive prostate cancer cells were higher than those in immortalized 

prostate epithelial cells. The same group also found that highly aggressive PC3 

prostate cancer cells show higher extracellular GSH/GSSG ratios compared with those 

in less aggressive LNCaP prostate cancer cells174. These results suggest that in prostate 

cancer cells, a more-reducing state is correlated with more-aggressive phenotypes. The 
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enhanced extracellular GSH level might be in response of hypoxia and to the high 

glycolysis level in tumor growth175.  

As a resource for GSH synthesis, extracellular CySS is often required for 

cancer growth, and starvation of extracellular CySS uptake has been demonstrated as 

potential therapeutic strategies for breast carcinoma176,leukemia177, prostate cancer 

cells178, pancreatic cancer cells179, and triple-negative breast cancer cells180. The 

decrease of CySS uptake results in depletion of intracellular GSH, leading to cancer 

growth arrest. Interestingly, the Chaiswing group172 reported that oxidized CyS/CySS 

enhanced prostate cancer cell growth, whereas reduced CyS/CySS increased prostate 

cancer cell invasion. However, the CyS/CySS ratio didn’t affect normal prostate 

epithelial cell growth or altered invasion behavior. Thus the CyS/CySS modulation of 

cell growth might be cell type or cancer specific. 

The downregulation of GPx-3 in cancer cells might be another mechanism to 

allow extracellular GSH to increase.  Downregulation of GPx-3 expression has been 

reported in renal cell carcinoma181,  thyroid cancer182, colorectal cancer183, and 

prostate cancer184. Moreover, the activity of this enzyme was also found to be reduced 

in blood of individuals with different cancers185. Since GPx-3 can scavenge H2O2 with 

GSH as the reducing agent, it has been considered as a tumor-suppressor protein. Yu 

et al.184 demonstrated that overexpression of GPx-3 in prostate cancer cell lines can 

suppress tumor growth and metastasis both in vitro and in vivo. Thus restoration of 

Gpx3 protein level in tumor cells might be a treatment of cancers. 

Thioredoxin has been detected in serum of patients with hepatocellular 

carcinoma, and these levels decreased significantly after surgical removal of the 

tumor186. This study suggests that thioredoxin is released directly from cancer tissues. 
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In leukemia cells thioredoxin was found to perform significant mitogenic activity but 

only in a reduced extracellular environment149. Elevated secretion of thioredoxin in 

cancer cells might be due to its function in maintaining an appropriate extracellular 

redox state. Reduced extracellular thioredoxin could stimulate the activity of growth 

factors for cancer and protect cancer cells from oxidative stress accompanying 

chemotherapy. Trx1 has been considered to be a biomarker for cancers, and inhibitors 

against Trx1 have been used in clinic187. However, administration of recombinant 

Trx1 did not promote tumor growth nor affect chemosensitivity in a 

xenotransplantation model, suggesting the safety of thioredoxin as an anti-

inflammatory therapy for cancer patients188.  

Highly reducing extracellular tumor microenvironments favors electron flux 

from reductants to oxygen leading to superoxide generation189. Reduced metal ions 

such as Fe2+ or Cu+ are well-known reducing agents for oxygen. Cysteinyl-glycine is a 

potent reductant for Fe3+ and Cu2+, and is synthesized from extracellular GSH via γ-

glutamyltransferase190,191. Thus, the elevated activity of γ-glutamyltransferase and the 

expression of GSH export transporters in cancer cells contributes to a more reducing 

environment for tumors with the extracellular consumption of oxygen. 

In summary much needs to be learnt concerning the interplay between the 

many redox-active species in the extracellular environment. It appears that different 

cell types and stages of cancer progression may show different redox profiles and may 

show differing sensitivities to pharmaceutical intervention with redox-based strategies. 
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QSOX ASSAY DEVELOPMENT AND PURIFICATION OF THE OXIDASE 

FROM SERUM  

2.1 Introduction 

The enzymological properties of QSOX have been studied extensively in our 

laboratory1-4. As we discussed in Chapter 1, QSOX catalyzes the rapid generation of 

disulfides from a wide range of substrates—from small monothiols to large reduced 

proteins5-7. The in vitro substrate specificity of this oxidase has been extensively 

studied, but its contribution to disulfide bond formation in biological contexts is still 

cryptic. 

In humans, QSOX1 expression has been found to be significantly elevated in 

prostate8,9, pancreas10 and breast11,12 cancers, and studies have suggested that higher 

QSOX1 levels are correlated with a poorer prognosis. Depressing QSOX1 levels with 

RNAi or inhibiting its activity using an inhibitory antibody leads to a significant 

decline of invasiveness in cell migration assays11,13-15.  In 2009 Lake et al.10,14 

identified a QSOX1 peptide circulating in plasma that was strongly correlated with 

pancreatic cancer patients. In 2012 Mebazaa and colleagues16 demonstrated that mass 

spectroscopic analysis of QSOX1 peptide levels in plasma significantly increased the 

diagnostic accuracy for acute decompensated heart failure. These studies suggest 

plasma QSOX protein and/or peptides may represent potential diagnostic markers. 

However, it was uncertain whether QSOX in plasma is catalytically active and what 

role(s) it might play in these diseases. 

Chapter 2 
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Although oxygen electrode assays are reliable for QSOX activity 

determination17, they exhibit low sensitivity, require relatively large sample volume, 

and are unsuited for high throughput screening. For this reason, Raje et al., in this 

laboratory, developed an assay in which the hydrogen peroxide generated by QSOX 

catalysis reacts with homovanillic acid (HVA) to yield a fluorescent product in a 

reaction catalyzed by horseradish peroxidase18 (Figure 2.1). This HVA assay has two 

apparent limitations. One is that the HVA dimer fluoresces in the blue region of the 

spectrum (excitation at 320 nm, emission at 420 nm). For this reason the assay is 

particularly prone to interference in media with high absorbance or scattering in the 

near UV. The other problem is that this assay may not be suitable for high-throughput 

screening application because a significant fraction of compounds in many small-

molecule libraries fluoresce in the blue region and would therefore interfere19. 

Here, we describe a simple and sensitive fluorescence-based microplate assay 

for QSOX activity. This method couples hydrogen peroxide formation generated by 

sulfhydryl oxidases to the generation of the strong red fluorescence formed during 

HRP-catalyzed oxidation of Amplex UltraRed20 (AUR; Figure 2.2). This assay was 

first developed by Dr. Benjamin Israel for screening small molecule libraries for 

QSOX inhibitors. After optimization, this assay is suitable for testing small samples of 

serum, plasma, or other biological fluids. While evaluating the performance of this 

assay, we discovered that adult bovine serum contained relatively high levels of 

sulfhydryl oxidase activity. This finding was in apparent conflict with that of Zanata et 

al.21. While reported active QSOX1 in fetal bovine serum, they found the oxidase 

activity and protein levels of QSOX1 in serum declined rapidly after birth and became 

undetectable in 60-day-old animals21. Using the assay we developed, we performed a 
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3-step chromatographic purification of QSOX from adult bovine serum. Peptide 

digests and mass spectrometric analysis confirmed that this disulfide-generating 

activity was indeed due to QSOX1. The presence of a facile oxidase for a wide range 

of thiol-containing peptides and proteins in mammalian plasma suggests a new 

dimension to the study of thiol/disulfide redox biochemistry in blood. 

 

2.2 Experimental Procedures 

2.2.1 Materials and Reagents 

Bovine serum albumin, cysteine, dithiothreitol, glutathione, homovanillic acid, 

horseradish peroxidase type II, hydrogen peroxide, and ribonuclease A were from 

Sigma-Aldrich. Amplex UltraRed (AUR) was from Life Technologies. Tween 80 

(Surfact-Amps, low peroxide) was from Thermo Fisher Scientific. ProBond nickel 

chelating resin was from Invitrogen. Commercial sera were as follows: defined fetal 

bovine serum, newborn bovine serum (less than 10 days of age), and donor adult 

bovine serum were from Hyclone; normal human serum and normal adult mouse 

serum were from Atlanta Biologicals; Balb C, C57BL6, CD-1, and non-Swiss albino 

mouse sera were from Innovative Research. Adult non-heat-treated bovine donor 

serum for chromatographic purification was from Atlanta Biologicals. HiTrap SP HP 

cation-exchange column, HiTrap Butyl HP hydrophobic interaction column and 

HiTrap SP XL cation-exchange column were from GE Healthcare Life Sciences. 

Microcon YM-30 Ultrafiltration device was from Millipore. Sequencing Grade 

modified trypsin was from Promega. 
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Figure 2.1    Horseradish peroxidase-catalyzed oxidation of homovanillic acid by 

hydrogen peroxide. 

 

 

 

 

Figure 2.2   Amplex Red based assays for QSOX. Panel A shows Amplex Red being 

converted to the strongly fluorescent resorufin in the presence of 

horseradish peroxidase and hydrogen peroxide. A proprietary variant of 

Amplex Red, Amplex Ultra Red (AUR), of undisclosed structure is more 

stable and was used throughout this work. Panel B shows the scheme of 

the AUR assay. 
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2.2.2 General Methods 

The buffer used in this work was 50 mM potassium phosphate containing 1 

mM ethylenediaminetetraacetic acid (EDTA), adjusted to pH 7.5, unless otherwise 

stated. Visible and ultraviolet spectra were recorded in self-masking microcells using 

Hewlett-Packard 8452A or Agilent 8453 instruments. Reduced RNase was prepared 

and stored as a lyophilized powder6. Thiols and hydrogen peroxide were standardized 

as described previously6. Recombinant human QSOX1 (hQSOX1) was expressed and 

purified as described previously6 and activity was evaluated with the oxygen 

electrode17. Protein concentrations were determined using the Bradford assay. Western 

blots used rabbit anti chicken QSOX1 primary antibody and anti-rabbit IgG secondary 

antibody. Chromatographic purifications utilized an ÄKTA FPLC operated at room 

temperature. Data were plotted and fit using Microsoft Office Excel and GraphPad 

Prism software. 

 

2.2.3 Sulfhydryl Oxidase Fluorescence Assays 

2.2.3.1 Homovanillic Acid (HVA) Assay 

Homovanillic acid (HVA) fluorescence assays were conducted in an SLM 

Aminco Bowman Series 2 luminescence spectrometer as described previously18. The 

final assay mixture contained 1 mM HVA, 1.4 μM horseradish peroxidase (HRP), and 

50 μM dithiothreitol (DTT). A 100 μL premixed cocktail of buffer, HVA, and HRP 

was added to the cuvette, DTT and water were added to make a total 150 μL and the 

baseline was recorded for 1 min. A 5 μL serum sample was added to start the reaction. 

The increase in fluorescence emission was followed at 420 nm with excitation at 320 

nm at a sensitivity set to correspond to 3% of the full scale.  
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2.2.3.2 Amplex UltraRed (AUR) Assay 

The Amplex UltraRed (AUR) fluorescence assay was conducted in a BMG 

POLARstar OMEGA plate reader with 96-well black flat-bottomed polystyrene plates 

(Corning). The following reagents were used in a total volume of 150 μL in phosphate 

buffer: 10 μM AUR, 50 nM HRP and 0.5% v/v low-peroxide Tween 80 (included for 

serum samples; see Results). Typically for biological samples, 125 μL of a cocktail 

formed by mixing AUR, HRP, and Tween 80 in buffer was delivered to each well, 

followed by 5 μL of the sample. Care was taken throughout this procedure to 

minimize exposure of the AUR reagent to light22 by wrapping AUR solutions with 

aluminum foil, as well as shading the 96-well plate where practical. EDTA (1 mM) 

was included to suppress a background signal generated by nonenzymatic oxidation of 

thiols by traces of copper and iron23. The reaction was started by the addition of 20 μL 

of 0.75 mM thiols (e.g., 0.375 mM DTT or 94 μM reduced RNase) in each well to 

give a final concentration of 100 μM thiols. Thiol solutions were prepared daily either 

from concentrated stocks stored at −20 °C or freshly from solid reagents to minimize 

background signals. Recombinant human QSOX1 (hQSOX1) was used for some 

optimization trials. The measurement started immediately after the addition of thiols. 

Assays were conducted in fluorescence intensity mode (excitation filter 544 nm and 

emission filter 590-10 nm) with measurement every 0.5 min for 10 min. Initial rates 

were typically determined over the first 3 min of data acquisition. Gain adjustment 

was obtained by the addition of excess H2O2 to 10 μM AUR in 150 μL of assay 

solution. The assay was calibrated by adding increasing concentrations of H2O2 (0-1.6 

μM) in the presence of the assay cocktail and thiol substrate. The linear fluorescence 

increase with peroxide enabled conversion of relative fluorescence to micromolar 

hydrogen peroxide. 
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2.2.4 Purification of QSOX1 from Bovine Serum 

2.2.4.1 Cation Exchange Column (Salt Gradient) 

Adult non-heat-treated bovine donor serum (500 mL) was diluted with 2 L of 

distilled water at 4 °C and centrifuged at 13,700 RCF (Sorvall RC-5B) for 8 min to 

remove a small amount of precipitate. Two 5-mL HiTrap SP HP cation-exchange 

columns were connected in series and equilibrated at 1.5 mL/min at 4 °C with a 5-

fold-diluted solution of phosphate-buffered saline (0.2× PBS) containing 1.62 mM 

Na2HPO4, 0.38 mM K2HPO4, and 29.8 mM NaCl. The 2.5 L diluted serum was then 

applied to the connected columns at 2 mL/min using a peristaltic pump at 4 °C. The 

combined columns were then connected to an ÄKTA FPLC operated at room 

temperature and developed at 1 mL/min using a 200-min linear gradient from 100% 

buffer A (0.2× PBS) to 100% buffer B (50 mM potassium phosphate, pH 7.5, 

containing 500 mM NaCl and 1 mM EDTA) followed by a further 20 min of buffer B. 

5 mL fractions were automatically collected. AUR assays, using 5 μL of each fraction, 

were performed. The fractions with peak sulfhydryl oxidase activity were analyzed by 

UV-Vis spectroscopy and by SDS–PAGE.  

 

2.2.4.2 Hydrophobic Interaction Column 

Three fractions from the first cation exchange chromatography, containing 

77% of sulfhydryl oxidase activity, were pooled and brought to 40% saturation with 

ammonium sulfate at room temperature. The solution was centrifuged at 2700 RCF for 

2 min to remove precipitate. The supernatant was applied at 0.3 mL/min to a 1-mL 

HiTrap Butyl HP hydrophobic interaction column (HIC) equilibrated with 40% 

saturated ammonium sulfate in 50 mM phosphate buffer, pH 7.5, containing 1 mM 
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EDTA. The column was developed with a decreasing linear gradient to 50 mM 

phosphate buffer alone at 1 mL/min over a total volume of 20 mL. Fractions (0.5 mL) 

were collected and analyzed for sulfhydryl oxidase activity as before. The peak 

fractions were analyzed by UV-Vis spectroscopy, SDS–PAGE and Western blots. 

 

2.2.4.3 Cation Exchange Column (Eluting with a pH Gradient) 

Three fractions with peak sulfhydryl oxidase activity recovered from the HIC 

chromatography were pooled and dialyzed at 4 °C against 50 mM phosphate buffer, 

pH 7.5, containing 1 mM EDTA. The dialyzed pool was diluted with an equal volume 

of water and then applied at 0.5 mL/min to a 1-mL HiTrap SP XL cation-exchange 

column equilibrated with 25 mM phosphate buffer, pH 7.5, containing 1 mM EDTA. 

The column was then developed at 0.5 mL/min with a 40-min linear gradient starting 

with 100% 25 mM Tris buffer, pH 7.4, containing 1 mM EDTA, and ending with the 

same buffer adjusted to pH 9.4. Sulfhydryl oxidase activity was then eluted with a 4-

mL wash using the pH 9.4 buffer supplemented with 200 mM NaCl and active 

fractions were adjusted to pH 7.5 by the addition of 50 μl of 1 M Tris buffer, pH 7.2. 

Pooled fractions were concentrated and washed into 50 mM phosphate buffer, pH 8.0, 

containing 1 mM EDTA using a Microcon YM-30 Ultrafiltration device. The purified 

material was characterized by UV-Vis spectroscopy and SDS–PAGE. 

 

2.2.4.4 Protein Digestion and Analysis 

Approximately 15 μg of pure sulfhydryl oxidase in 0.1 mL of 50 mM 

phosphate buffer, pH 8.0, in a polypropylene centrifuge tube was incubated in a 
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boiling water bath for 10 min, then cooled on ice and then incubated with 0.75 μg of 

Sequencing Grade modified trypsin for 2 h at 37 °C. The peptide digest was stored 

frozen. Separation and sequencing of peptides was performed by Dr. Shawn Gannon. 

In brief, chromatography used a Waters Acquity UPLC system equipped with a BEH 

C18 100 × 1-mm, 1.7-μm particle size column utilizing a linear gradient composed of 

0.1% formic acid in water (solvent A) and 0.1% formic acid in methanol (solvent B). 

After a 3-min isocratic hold at 5% solvent B, the column was developed with an 

increasing gradient to 65% solvent B over an additional 67 min. Peptides were 

detected using a Thermo Scientific Orbitrap Velos mass spectrometer. The data were 

acquired using the data-dependent analysis mode, which allowed for the collection of 

both full-scan and MS/MS data of the peptides. The MS/MS data were further 

analyzed using the Sequest peptide search algorithm of Thermo Scientific Proteome 

Discoverer (version 1.3.0.339). 

 

2.3 Results and Discussion 

2.3.1 AUR Assay Development with Recombinant Human QSOX1 

In the new plate reader assay presented here hydrogen peroxide generated by 

QSOX is coupled to the horseradish peroxidase-mediated oxidation of Amplex 

UltraRed (AUR) to yield a product fluorescing in the red region of the spectrum. 

Figure 2.3 shows a demonstration of the readout from this assay with recombinant 

human QSOX1 (hQSOX1), together with an indication of the linearity of the assay up 

to 2 nM hQSOX1. This assay is sensitive to 0.1 nM of hQSOX1. 

 



 60 

 

Figure 2.3    AUR assay with increasing concentrations of recombinant human 

QSOX1. The inset shows the linearity of initial rates, corrected for the 

nonenzymatic background oxidation of thiols, as a function of enzyme 

concentration. 



 61 

It is important to note that although this microplate assay is a sensitive and convenient 

way to measure sulfhydryl oxidase activity levels, it cannot be used to determine Km 

values for thiol substrates. This reason is that thiols depress fluorophore generation 

(Figure 2.4), probably by intercepting the radical intermediates in the generation of the 

resorufin-like fluorophore18. The concentration of substrate thiols (100 μM) used in 

these assays represents a suitable compromise between sufficient linearity of hydrogen 

peroxide production and avoiding excessive nonenzymatic metal-catalyzed thiol 

oxidation. 

During the development of the AUR assay, a variety of pH values were tested. 

Figure 2.5 shows AUR assays in phosphate buffers with various pH, and at pH 7.5 the 

assay provides sufficient enzyme activity while maintaining a workable nonenzymatic 

trace metal-catalyzed thiol oxidation of the reagents. Figure 2.6 shows the presence of 

the metal chelating agent EDTA proved critical in minimizing nonenzymatic 

background at pH 7.5. 

 

2.3.2 Optimization of AUR Assay for Serum 

Initial experiments using serum suggested that the activity of QSOX was being 

suppressed. Serum contains high concentration of serum albumin and we found that 1 

or 2 mg of bovine serum albumin strongly interfered with the AUR assay using 

recombinant hQSOX1 (Figure 2.7). Presumably this attenuation reflects the well-

known ability of albumin to bind a range of aromatic ligands24 including, perhaps, the 

AUR substrate or its fluorescent product. Inclusion of Tween 80 (at 0.5% v/v) 

significantly reversed this apparent inhibition (Figure 2.7). Tween 80 at 0.5% v/v also 

proved suitable for analyzing QSOX in serum, as shown in Figure 2.8.  
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Figure 2.4     Thiol-dependent attenuation of the development of fluorescence 

using AUR, horseradish peroxidase and hydrogen peroxide.  The 

plate-reader was implemented as described in Methods using 10 μM 

AUR, 50 nM HRP and the indicated thiol concentrations contributed 

from DTT, reduced RNase, GSH or cysteine (panels A-D, respectively).  

A single aliquot of 0.8 µM H2O2 was then added to generate the 

fluorescent product and the fluorescence was recorded at 1.5 and 2 min 

and averaged.  The observed intensities were subtracted from the signal 

in the absence of hydrogen peroxide and the data were normalized to 

100% for the zero thiol control. The data are the average of 2 

independent determinations.   
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Figure 2.5    AUR assay in phosphate buffers with various pH values. At pH 7.5 

the assay provides sufficient enzyme activity while maintaining a 

workably low nonenzymatic rate of metal catalyzed thiol oxidation 

(indicated by intercepts in the vertical axis). 
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Figure 2.6    EDTA decreases the nonenzymatic background at pH 7.5. The plate-

reader method was implemented using 10 μM AUR, 50 nM HRP and 100 

μM thiols from DTT in phosphate buffers with or without 1 mM EDTA 

(5 mM EDTA shows a comparable minimizing effect (data not shown). 
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Figure 2.7    Bovine serum albumin-mediated inhibition of the AUR assay using 

recombinant human QSOX1.  The AUR assay was conducted using 1 

nM human QSOX1 with the inclusion of 1 or 2 mg/mL of bovine serum 

albumin and 0.5% Tween 80 as indicated.  Detergent largely reversed the 

apparent inhibition of the AUR assay by serum albumin. 

no BSA

+1 mg/mL BSA

+2 mg/mL BSA

0

50

100

150

1 nM hQSOX1

F
lu

o
re

s
c
e
n

c
e
 U

n
it
s
 /
 m

in
 (
%

)
Tween 80 -

Tween 80 +



 66 

 

Figure 2.8     Effect of Tween 80 on AUR assays of adult bovine serum.  Panel A 

shows representative traces from the plate reader.  Panel B depicts the 

initial rates with increasing volumes of added serum. 
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2.3.3 Bovine Serum from Animals of Different Ages Show Comparable 

Sulfhydryl Oxidase Activities 

With optimization described above, Figure 2.9 shows AUR assays of bovine 

sera. We found that bovine fetal, newborn, and adult commercial sera revealed 

approximately the same levels of sulfhydryl oxidase activities irrespective of age when 

the samples are normalized for protein content. Since this result differed from that of 

Zanata21 we also employed the assay technique used in that work. Figure 2.10 shows 

that when the older HVA assay is employed we again found that the sulfhydryl 

oxidase activity does not decline significantly in adult bovine serum. 

 

2.3.4 A Survey of Mammalian Sera  

A survey of sera from different mammals (Table 2.1) show that sulfhydryl 

oxidase activities are generally rather comparable between bovine and human samples. 

A concentration of ~25 nM QSOX in human serum is deduced by comparing the 

activity of human blood serum with that of the recombinant human enzyme under 

standard assay conditions using DTT. Mouse sera reproducibly show an almost 10-

fold higher level of activity. 

 

2.3.5 Modest QSOX Activity at Low Levels of Monothiol Substrates 

The confirmation of QSOX1 activity in mammalian sera raises questions about 

the potential of QSOX to oxidize the low concentrations of the monothiols cysteine 

and glutathione that are normally present in blood plasma25,26. With Km and kcat values 

for vertebrate QSOX1 enzymes toward these thiols of about 10 mM and about 2000 

thiols/min, respectively27,28, a concentration of ~25 nM QSOX1 in human serum  



 68 

 

Figure 2.9     Amplex UltraRed assay of bovine serum. Amplex UltraRed assay 

using 5 µL of fetal (FBS), newborn (NBS), or adult bovine serum (DBS) 

in a total assay volume of 150 µL in phosphate buffer, pH 7.5, containing 

1 mM EDTA in the presence of 0.5% Tween 80 (see Experimental 

procedures). Control assays without added serum are represented by 

CON. Two additional controls, lacking either DTT or both DTT and 

serum, showed no detectable increase in fluorescence over the 

measurement period (data not shown). The inset presents initial rates 

normalized to the protein concentration of the serum samples. 
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Figure 2.10   Homovanillic acid assay of bovine serum. Homovanillic acid assay in 

phosphate buffer, pH 7.5, containing 1 mM EDTA using 5 µL of fetal 

(FBS), newborn (NBS), or adult bovine serum (DBS) in a total assay 

volume of 150 µL (see Experimental procedures). The inset provides 

rates corrected for the protein content of the samples. 
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Table 2.1         Sulfhydryl oxidase activity levels toward DTT in bovine, human, and 

mouse commercial sera. 

Serum type H2O2 production (nmol/min.mg) 

Human normal 0.082±0.011 

Mousea 0.687±0.056 

Fetal bovine 0.099±0.002 

Newborn bovine 0.070±0.003 

Adult donor bovine 0.119±0.011 

 

Assays were conducted as described under Experimental procedures. Errors represent 

standard deviations of three determinations. 

 
a Normal mouse serum; sera from four additional mouse strains (see Experimental 

procedures) yielded an average of 0.893±0.197 nmol/min/mg. 

https://www.sciencedirect.com/science/article/pii/S0891584914000331?via%3Dihub#tbl2fna
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would seem to imply a significant generation of low-molecular-weight disulfides and 

H2O2 by this circulating oxidase. This is not the case; Figure 2.11 reveals the behavior 

of recombinant human QSOX1 at low thiol concentrations with the new assay. Here, 

the activity of QSOX with GSH and cysteine is barely detectable but becomes 

significant as the thiol concentration is raised into the millimolar range. This type of 

upward curvature of enzyme activity has also been observed during the oxidation of β-

mercaptoethanol by another flavin-linked sulfhydryl oxidase, augmenter of liver 

regeneration29, and in the oxidation of glutathione by protein disulfide isomerase30. 

Panel C of Figure 2.11 presents a probable explanation. The hit-and-run mode of 

QSOX catalysis6 requires that a monothiol substrate first reversibly generate a mixed-

disulfide intermediate followed by capture of this species with a second monothiol. 

This sequential intervention of two thiols leads to the observed upward curvature and 

to the unexpectedly low reactivity of QSOX at low micromolar levels of monothiol 

substrates. Hence circulating soluble QSOX1 is unlikely to significantly influence the 

cysteine or glutathione redox pools in blood directly, although it could contribute to 

the accumulation of hydrogen peroxide in stored plasma31. 

 

2.3.6 The Activity in Serum is due to Bovine QSOX1 

In order to ascertain whether the sulfhydryl oxidase activity detected in the 

AUR assay reflected the presence of QSOX or other unrecognized hydrogen peroxide-

generating catalyst, we then tried to purify the activity from bovine serum. The initial 

step is to separate the oxidase activity from the albumin and globulins that are present 

at an aggregate concentration of about 70 mg/mL in mammalian sera. At pH 7.5 

QSOX1 is positively charged, while albumin and globulins are negatively charged, so 
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cation-exchange column was applied. Table 2.2 shows that the initial cation-exchange 

chromatography resulted in a dramatic (~1200-fold) purification of activity. Figure 

2.12 A shows a single peak of enzyme activity as judged by the plate-reader assay 

emerging during a salt gradient. At this stage several bands on SDS-PAGE were 

evident (Figure 2.13 A). The pooled pale-yellow fractions were then applied to a 

hydrophobic-interaction column with recovery of a single peak of enzyme activity 

(Figure 2.12 B), SDS-PAGE have shown only two main bands and Western blot using 

chicken QSOX1 antibody suggested the band at 63kD is QSOX1 (Figure 2.13 A, B). 

A second cation-exchange step, in which the protein was eluted from the column using 

Tris buffer/NaCl at pH 9.4, led to an overall three-step purification of ~5300-fold 

(Table 2.2). The progress of the purification is shown in the Figure 2.13 C. The 

resulting preparation was ~90% pure protein and showed a visible spectrum with 

absorbance peaks at 365 and 456 nm consistent with that of mammalian flavin-linked 

QSOX enzymes28,32 (Figure 2.14).  

Trypsin digest of the purified activity (Figure 2.15) followed by MS/MS (see 

Experimental procedures) led to the identification of bovine QSOX1. The sequence 

coverage was 59% and the peptides were confined to the short form of the enzyme 

lacking the ~150-residue C-terminal extension that terminates in a transmembrane 

helix1,3. This conclusion is also supported by the apparent molecular weight deduced 

from SDS–PAGE analysis (~63 kDa estimated from Figure 2.15 compared to >82 kDa 

expected for the full-length form of the oxidase32). Since only one peak of sulfhydryl 

oxidase was evident in the chromatographic profiles shown in Figure 2.12, our data 

show that the sulfhydryl oxidase activity observed in serum is substantially to almost 

completely due to QSOX1. 

 



 73 

 

Figure 2.11  Comparison of the rates of hydrogen peroxide generation by 

recombinant human QSOX1 in the presence of submillimolar 

concentrations of glutathione and cysteine. The data were corrected for 

background nonenzymatic peroxide generation and for the attenuation of 

fluorescence signal that is observed in the presence of increasing thiol 

concentration (Figure 2.4). Panel A and B show data for GSH and 

cysteine, respectively. Panel C shows that reduction of QSOX by 

monothiols involves capture of the mixed disulfide intermediate formed 

in Equilibrium (1), with a second molecule of monothiol depicted in 

Reaction (2). 
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Table 2.2    Purification of sulfhydryl oxidase from adult bovine serum. 

Step 

Total 

protein 

(mg) 

A280/A456 

Total activity 

(nmol 

H2O2/min) 

Yield 

(%) 

Specific activity 

nmol/min.mg) 

Fold 

purification 

Serum (500 ml 

diluted 5-fold) 
31,350 140 4148 100 0.132 1 

Cation exchange 

(salt gradient) 
10.3 31 1686 41a 164 1240 

Hydrophobic 

interaction 
1.52 22 560 13.5 369 2793 

Cation exchange 

(pH gradient) 
0.57 12 402 10 706 5345 

 
a During loading of the 2.5 L of diluted serum, the cation-exchange column was 

intentionally overloaded as described under Experimental Procedures. Without such 

overloading 82% of the sulfhydryl oxidase applied to the column could be recovered 

from the salt gradient in a single peak of enzyme activity. 

 

https://www.sciencedirect.com/science/article/pii/S0891584914000331?via%3Dihub#tbl1fna
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Figure 2.12  Elution of sulfhydryl oxidase activity on the first cation-exchange 

column and the HIC column.  The cation-exchange column (Panel A) 

was developed with an increasing gradient of NaCl and 5 μL from each 5 

mL fraction were assayed as described in Experimental procedures. Panel 

B shows the HIC column. The offset is due to a lag between the flow cell 

record and the collection of material in the fraction collector. 
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Figure 2.13  SDS-PAGE of fractions. Panel A shows an SDS–PAGE analysis of 

fractions from the first cation-exchange (CE) column and HIC. There are 

two main bands in HIC. The Western blot analysis of pooled HIC 

fractions with activity using chicken QSOX1 antibody in panel B 

suggests the band at 63kD is QSOX1. Panel C shows the SDS–PAGE 

analysis of the purified protein after the second cation-exchange column. 
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Figure 2.14   UV-Vis spectrum of the sulfhydryl oxidase purified from adult 

bovine serum. The spectrum of the oxidase recorded in 50 mM 

phosphate buffer, pH 7.5, containing 1 mM EDTA is shown. The dashed 

line highlights the flavin region of the spectrum. 
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Figure 2.15   Bovine QSOX1 sequence. The amino acid sequence of the quiescin 

sulfhydryl oxidase 1 precursor is shown. Peptides identified by MS/MS 

are underlined, yielding a total coverage of 59% over the 537 residues 

remaining after cleavage of the signal sequence (shown boxed). The 

cysteine residues from the two redox-active CxxC motifs are indicated in 

inverse font. 
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2.4 Conclusions  

This work shows that murine, bovine, and human sera contain significant 

levels of sulfhydryl oxidase activity. We found similar levels of enzymatic activity 

between fetal and adult bovine sera. A three-step purification protocol using adult 

bovine serum showed that this activity reflects circulating, soluble QSOX1. Although 

the levels of QSOX1 in blood are unlikely to significantly contribute to the oxidation 

of circulating cysteine and glutathione, there is a wealth of data showing that the redox 

poise of thiols and disulfides located in exofacial protein domains on a range of blood 

cells, including platelets and lymphocytes, is a key modulator of biological function33-

42. For example, protein secretion, adhesion, and integrin-mediated association in 

platelets are regulated by the thiol/disulfide exchange and redox transformations that 

are modulated by membrane-bound thiol/disulfide oxidoreductases/isomerases33-35,42. 

Because QSOX is a direct and facile oxidant of conformationally mobile protein 

thiols, some of these proteins may be effective substrates of QSOX1 and the activities 

of this oxidase may oppose those of circulating or membrane-bound reductants. 

The finding from mass spectroscopic analyses that the levels of QSOX1 

peptides and/or protein in serum have diagnostic applications in pancreatic cancer10 

and in acute decompensated heart failure16 suggests that these approaches may be 

complemented by the simple and cost-effective QSOX assay described here. More 

generally, the observation that QSOX1 enzyme activity is found in blood plasma of all 

developmental stages suggests that renewed consideration should be directed toward 

the origins, substrate specificity, and physiological roles of this catalytically most 

proficient stand-alone oxidant of protein and peptide thiols. 
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VISUALIZATION OF THE THIOL/DISULFIDE REDOX STATE OF THE 

MAMMALIAN CELL SURFACE USING CONFOCAL MICROSCOPY: 

METHODS AND APPLICATIONS 

3.1 Introduction 

As we discussed in previous chapters, the thiol/disulfide (SH/SS) redox state of 

the mammalian cell surface plays critical roles in modulation of different cell 

behaviors including cell adhesion1, migration2, proliferation3, metastasis4,5, and viral 

fusion6-8.  Extending from the cell surface, the extracellular matrix (ECM) is an 

additional locus for potentially interacting SH/SS redox couples that impact cellular 

behavior. To better understand the extracellular SH/SS redox states, we hope to 

develop a global method to independently visualize protein thiols and disulfides.  

Several earlier methods have been used for the detection of free SH groups on 

the cell surface. The most widely used is the DTNB assay9-12. Figure 3.1 shows the 

scheme. Briefly, washed cells are incubated in solution containing DTNB for a time 

interval and the yellow color is recorded. However, this method is not exclusive to the 

cell surface; it reflects both exofacial thiol and thiol containing molecules secreted 

from cells13 (also data from our lab, not shown).  A variety of alternate methods 

involve covalently labeling of free thiols with maleimides or other alkylating agents. 

Commercially available impermeable fluorescent thiol-reactive probes, such as Alexa 

Fluor dyes, followed by fluorescence-activated cell sorting (FACS) were used in 

several investigations14-16. While this approach is sensitive and rapid, it is important to 

Chapter 3 
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note that this assay does not give spatial information about the labeling. In particular, 

FACS analysis could not distinguish surface labeling from dye internalization. In an 

interesting study Laragione et al.9 examined redox-sensitive thiols at the surface of 

Chinese Hamster Ovary (CHO) cells. They used Oregon green as an impermeant 

maleimide visualizing the cells with confocal microscopy. However under the 

conditions of their experiment (40 µM maleimide incubated for 20 min at 37 ℃) 

significant internalization of the label will likely occur by endocytic trafficking (see 

later). The study was further unable to quantitate SH labeling at the cell surface. 

Another strategy to examine thiols on the cell surface is to use a non-fluorescent SH 

alkylating agent, e.g. biotinylated iodoacetamide (BIAM), and then isolate the plasma 

membrane fraction of cells. Laragione et al.9 used the BIAM-labeling method 

followed by ELISA and proteomics to examine the effects of oxidants and 

antioxidants on the SH groups at the surface of CHO cells. Skalska et al.16 also utilized 

this approach in their investigations of the anticancer effects of parthenolide during the 

targeting of exofacial SH groups in Granta mantal lymphoma cells. Again, cellular 

location and ratiometric data are not accessible in this study.  

In this chapter we describe ratiometric fluorescence imaging methods for 

surface thiols and disulfides and their applications to studying a range of cellular 

phenomena. In the last chapter we briefly show that these ratiometric confocal 

microscopy methods can be extended to multicellular organisms and biomaterials. All 

these procedures are amenable for future super-resolution studies. 
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Figure 3.1    Scheme of the reaction between DTNB (5,5’-Dithiobis[2-nitrobenzoic 

acid]) and a thiolate. P represents a protein. TNB (2-nitro-5-

mercaptobenzoic acid) is a yellow compound, λmax=412 nm at neutral pH 

values. 
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3.2 Experimental Procedures 

3.2.1 Materials and Reagents 

Sulfo-Cy3B-maleimide was obtained from GE Healthcare and sulfo-Cy5-

maleimide and sulfo-Cy5-NHS ester was from Lumiprobe. Stock solutions of 

maleimide were prepared in water and stored at -80 ℃. Concentration of dyes were 

measured spectrophotometrically using the following extinction coefficient: sulfo-

Cy3B-maleimide ɛ558=130,000 M-1cm-1, sulfo-Cy5-maleimide ɛ646=271,000 M-1cm-1. 

Methyl-PEG24-maleimide was from Thermo Scientific; Hoechst 33342 was from 

Molecular Probes; Fluoromount-G mounting media was purchased from 

SouthernBiotech. Poly-D-lysine (molecular wright 70,000-150,000) was obtained 

from Sigma, and methanol-free paraformaldehyde (PFA) was from Pierce. The 

following cell lines were generous gifts from colleagues at the University of 

Delaware: human embryonic kidney cell line (HEK293T) and human prostate 

adenocarcinoma cells (LNCaP) from Dr. John Koh; human cervix epithelial cell line 

(HeLa) from Dr. Jeff Caplan from Delaware Biotech Institute; human glioblastoma 

cell line (U-118) from Dr. Deni Galileo; mouse macrophage (J774A.1) from Dr. 

Catherine Grimes. The mycoplasma Detection Kit was from Lonza. Activated thiol 

Sepharose 4B was obtained from GE Healthcare. High performance glass coverslips 

(22 mm x 22 mm, D=0.17 mm) were from Zeiss. Cell culture consumables were 

obtained from Stellar Scientific.  
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3.2.2 Mammalian Cell Culture 

HEK293T, HeLa cells were cultured in Eagle’s Minimum Essential Medium 

from Corning containing 1.5 g/L sodium bicarbonate, 2 mM L-glutamine, and sodium 

pyruvate. The media was further supplemented with 10% fetal bovine serum (FBS, 

from Atlanta Biologicals) and 100 U penicillin-streptomycin (Sigma). Cells were 

grown at 37 ℃ in a 5% CO2 humidified incubator. U-118 and J774A cells were 

maintained in high-glucose Dulbecco's modified Eagle medium (DMEM, from 

Sigma). LNCaP cells were cultured in RPMI media (Corning).  

 

3.2.3 Chemical Staining  

Cells were seeded on Poly-D-lysine coated sterile high-performance glass 

coverslips in 6-well plates at 2x105 cells per chamber. After 24 or 48 hours 

(approaching ~70% confluency) cells were washed 3 times with Dulbecco's 

Phosphate-Buffered Salt Solution (DPBS, from Corning) and fixed with 2% methanol-

free PFA at 4 ℃ for 20 min. For SH/SS staining, after 3 washes in DPBS, cells were 

incubated in the dark with 1 µM sulfo-Cy3B-maleimide and 10 µM methyl-PEG24-

maleimide in DPBS at room temperature for 10 min. After 3 washes in DPBS, 5 mM 

tris (2-carboxyethyl) phosphine (TCEP) in DPBS (adjusted to pH 7.4) was applied on 

cells at room temperature for 10 min. After 3 washes the released SH groups were 

stained with 1 μM sulfo-Cy5-maleimide and 10 μM methyl-PEG24-maleimide 

treatment again for 10 min at room temperature in the dark. Following 3 washes, cell 

nuclei were stained with DAPI or Hoechst 33342 and the slides were mounted with 

Fluoromount-G sealing the edges of the slide with nail polish. For SH/NH2 staining, 

after 3 washes in DPBS, cells were incubated in the dark at room temperature with 1 
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μM sulfo-Cy3B-maleimide mixed with 10 μM methyl-PEG24-maleimide and 1 μM 

sulfo-Cy5-NHS ester. Procedures for cell nuclei staining and mounting were as above. 

 

3.2.4 Fluorescent Beads Construction 

Activated thiol sepharose 4B beads (0.2 g freeze dried powder) were 

suspended in distilled water to give a 0.8 mL slurry.  Following swelling the slurry 

was loaded into a small empty column and washed with 5 times of 2 mL aliquots of 

PBS. The solution phase was then replaced with 10 mM DTT in PBS and incubated 

for 1 h at room temperature. The treated beads were then washed by applying PBS to 

the column until the eluates were thiol free (as judged by DTNB). The beads were 

resuspended in PBS and evenly aliquoted into 5 tubes, so that each contains 0.16 mL 

beads (equivalent to ~0.16 μmole thiols). Then, 16, 32, 64, 128, 256 pmoles of a 1:1 

ratio Cy3B-maleimide and Cy5-maleimide in PBS was quickly added into each tube, 

amounting to 16, 32, 64, 128, 256 pmoles of the maleimides. After 30 min of 

incubation with occasional vortex, all the dye-maleimides were captured on the beads. 

The large excess of unreacted bead -SH groups were then alkylated with 10 mM 

NEM, followed by washing in Eppendorf tubes with PBS. Beads with ratios of 4:0, 

3:1, 2:2, 1:3, 0:4 of Cy3B to Cy5 were also prepared using a total of 1.6 nmoles of 

maleimides. 

 

3.2.5 Treatment with Macromolecular Crowding Agents  

Cells were seeded on sterile high-performance glass coverslips in 6-well plates 

at 2x105 cells per chamber. After 24 h incubation at 37 ℃ and 5% CO2, growth media 
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were replaced with media supplemented, where indicated, with the following 

individual reagents serving as macromolecular crowding agents (100 µg/mL DxS 500 

kD, 25 mg/mL Ficol 400 kD, 80 mg/mL BSA, 0-50 µg/mL polystyrene sulfonate 

(PSS) 200 kD, or 75 µg/mL carrageenan). Cells were then cultured for another 24 h. In 

some trials, cells were seeded on glass coverslips for 48 h, fixed with 2% 

paraformaldehyde, and then treated with PBS with or without macromolecular 

crowders.  

 

3.2.6 Surface Dye Internalization 

Cells were seeded on glass coverslips for 48 hours (to 70-80% confluence) 

then washed 3 times with DPBS. Cells were then exposed to treatments described later 

and incubated with 1 μM impermeant fluorescent probes conjugated with maleimide 

or NHS ester probes at 37 ℃ in a 5% CO2 humidified incubator. Some cells were 

washed to remove unbound maleimide and then returned to the incubator. At the 

indicated time intervals cells were fixed with 2% paraformaldehyde. 

 

3.2.7 DTNB Assay 

Cells were seeded on sterile dishes, after incubated in growth media for 48 h 

(achieving 80% confluence). After 3 rinses with phenol red free DMEM, cells were 

incubated with 2 mL DMEM at room temperature for 5, 15, and 60 min. At these 

times 100 µL media were taken and mixed with DTNB to give a final concentration of 

200 µM. The released 2-nitro-5-thiobenzoic acid was measured at 412 nm using an 

extinction coefficient of 14,150 M-1cm-1. 
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3.2.8 Membrane Fraction Collection, Sodium Dodecyl Sulfate Polyacrylamide 

Gel Electrophoresis (SDS-PAGE) 

Cells were seeded in 10 mm dishes for 48 h (achieving 80% confluence) and 

treated with or without 2 mL of 25 µg/mL PSS in PBS at room temperature for 10 

min. After washing with 12 mL of ice cold PBS, a 2 mL volume of 1 μM sulfo-Cy5-

maleimide in cold PBS was applied for 10 min incubation. Washed cells were then 

scraped from the dishes and the suspension (2 mL) was centrifuged at 200 g. The cells 

were resuspended in 1 mL of cold homogenization buffer (10 mM HEPES, 250 mM 

sucrose, pH 7.4) with protease inhibitor and homogenized using 30 strokes of a 

Dounce homogenizer. The extracts were centrifuged at 1000 g for 10 min to sediment 

nuclei and the supernatants were recentrifuged at 16,000 g for 10 min to remove 

mitochondria, lysosome and peroxisomes. Supernatants were finally in a Beckman 

centrifuge subject to ultracentrifugation for 3 h at 100,000 g at 4 ℃. Sedimented 

plasma membrane pellets were collected and washed with PBS, and then solubilized in 

PBS containing 30 mM CHAPS or 6 mM SDS. After 1 h dissolved membrane 

solutions were boiled for 10 min in Laemmli buffer containing 5% β-mercaptoethanol 

and analysed by 10% acrylamide SDS-PAGE at 120 V using a Bio-Rad mini gel 

system. The gel was fixed with 7% acetic acid in 40% methanol for 1 h and the 

labelled band was visualized using a FluorChem Q Imaging System (Excitation 

632/22 nm, Emission filter 699/62 nm). Subsequently, the gel was stained with 

Coomassie blue for 30 min and destained overnight. 

  

3.2.9 Microscope Imaging and Image Analysis 

Fluorescence images were acquired using a Zeiss LSM 780 upright confocal 

microscope in the Biological Department at the University of Delaware. The laser and 
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filter sets are as follows: for Cy3B fluorophore, excitation at 561 nm, emission at 560-

630 nm. For Cy5 fluorophore, excitation at 633 nm, emission at 637-758 nm. A 40x 

oil objective was used. Zeiss Zen software was used for image acquisition.  

To estimate the level of labeled thiols and proteins on cell surface, images 

were analyzed using ImageJ (National Institutes of Health, USA), the green channel of 

a 16-bit RBG image was used. For each scanned section, three representative images 

were selected. Obvious artifacts in each image were discarded. In each image, 4-5 cell 

membrane areas of interest were picked using selection tools, and the area-integrated 

intensity was calculated for both channels. Then a background region was selected to 

yield a mean grey value. The following formula was used to calculate the corrected 

cell membrane area fluorescence (CTCF). Notice that each CTCF is area dependent, 

but the ratio of the two channels normalizes for this. 

 

CTCF = Integrated Density of selection – (Area of selection x Mean fluorescence of 

background readings) 

 

3.2.10 Platereader Experiments Proving the Effects of PSS or β-ME on Cy3B 

Dye 

Different combination of PBS, Cy3B-maleimide and β-ME were added in each 

well in a black 96-well plate and mixed well. The plate was then read by the plate 

reader (BMG POLARstar OMEGA) at excitation 544 nm and emission 590-10 nm for 

30 min, and the first 2 min data were calculated. 
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3.3 Results and Discussion 

3.3.1 Cell Surface SH/SS and SH/NH2 Labeling 

Figure 3.2 shows the structure of four membrane impermeable protein-labeling 

reagents used in this work. The three maleimides target thiol groups. When 

normalization to total protein at the surface is needed, the NHS ester was used. All 

fluorophores are sulfonated and they are found to label the cell surface and the 

extracellular matrix (see below). 

Two-color strategies for evaluating surface SH/SS or SH/NH2 ratios are shown 

in Figure 3.3.  In panel A is the SH/SS labeling scheme. Two cell membrane 

impermeant fluorescent maleimides (e.g. sulfo-cyanine3B (Cy3B) and sulfo-cyanine5 

(Cy5), or their equivalents) were used. Figure 3.3 B shows the SH/NH2 labeling 

scheme; in this case the sulfo-Cy3B-maleimide and sulfo-Cy5-NHS ester were 

routinely used. It should be noted that in most cases the cells were fixed with 2% 

paraformaldehyde (PFA) before staining. These lightly-fixed cells are still able to 

exclude the sulfonated fluorescent dyes as shown later. 
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Figure 3.2    Structures of the fluorescent reagents used in this work. These 

sulfonated reagents are membrane impermeant and therefore exclusively 

label the cell surface and extracellular matrix components. 
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Figure 3.3    Schemes of cell surface labeling. Panel A shows the SH/SS labeling. 

Single yellow spheres represent free thiols while double yellow spheres 

represent disulfide bonds. Panel B shows the SH/NH2 staining (see 

Experimental procedures). 
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These methods are applicable to all cell types investigated. Figure 3.4 

demonstrates SH/SS labeling on three cell lines (HeLa, LNCaP and J774A.1). Here, 

the green channel shows Cy3B-maleimide labeling of free SH, and the red channel 

shows Cy5-maleimide labeling of liberated thiols after reduction of surface disulfides 

with 5 mM of the membrane-impermeant tris(carboxyethyl)phosphine (TCEP). Note 

that the cell surface is cleanly delineated in these images. In contrast compromised 

cells, that have lost plasma membrane integrity, allow the maleimide access to the 

enormous intracellular content of -SH residues. This is shown in Figure 3.5. To avoid 

proximity-based self-quenching of fluorescence, a non-permeant methyl-PEG24-

maleimide conjugate was applied to “dilute” each fluorescent maleimide with a 10-

fold molar ratio. However, we found that the effect of this “dilution” is not significant 

at low ratio (data not shown). Images of SH/NH2 labeled (scheme in Figure 3.3 B) 

cells will be shown in later sections. 

 

3.3.2 The Maleimide Dye Staining is Thiol Specific 

Several approaches were taken to show the SH specificity of the labeling. 

Figure 3.6 shows one experiment. The maleimide function of Cy3B was first reacted 

with a stoichiometric amount of β-mercaptoethanol (see Experimental procedures and 

the schematic structure in Fig 3.6 A). This pre-deactivated dye failed to stain the cells 

significantly (Figure 3.6 B). We have also used plate reader assay to show that β-

mercaptoethanol treatment does not inhibit the Cy3B fluorescence (data not shown). 

We also used N-ethylmaleimide (NEM) pretreatment to first label cell surface SH 

groups (see Experimental procedures). No subsequent staining of the surface with the 

fluorescent maleimide was evident (Figure 3.7). A third strategy to verify that the 
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method is responsive to surface SH status is to use DTNB pretreatment. DTNB 

oxidizes free thiols, making them unavailable for subsequent staining. Figure 3.8 

shows that after the DTNB treatment the cell surface labeling is prevented. Thus, 

staining is not due to a non-specific binding of the dye to the cell surface. 
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Figure 3.4    SH/SS redox state of the cell surface of 3 cell lines. The green channel 

indicates surface thiol staining and the red channel shows the surface 

disulfide staining. The nuclei are visualized with DAPI (blue). The 

differential interference contrast (DIC) channel shows the cell outlines at 

the left of the Figure. The intensities of green and red signals are adjusted 

here for ease of visualization. 
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Figure 3.5    Cells lacking a functional plasma membrane stain uniformly with 

sulfo-Cy3B-maleimide. The white arrows show compromised cells that 

are permeant to fluorescent dyes. The nuclei are visualized with DAPI 

(blue). 
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Figure 3.6    Inactivated maleimide dyes cannot label cell surface thiols. Panel A 

shows a schematic depiction of β-mercaptoethanol treated maleimide-dye 

conjugate. The maleimide dyes were pre-incubated with β-

mercaptoethanol in a 1:1 molar ratio. Panel B shows the unmodified 

maleimide dye leads to clear cell surface staining while the β-

mercaptoethanol-treated dyes cannot label the cells. Each laser intensity 

was maintained constant for comparison between non-treated and β-

mercaptoethanol images. Signal intensities are increased uniformly for 

ease of visualization. 
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Figure 3.7    Pretreatment with N-ethylmaleimide (NEM) prevents subsequent SH 

labeling on cell surfaces using either Cy3B or Cy5 maleimides. NEM 

(1 mM) in DPBS was applied to the fixed cells for 10 min before the 

maleimide dyes were added. The NEM pretreatment significantly 

decrease the thiol labeling of the cell surface. Each laser intensity was 

maintained constant for comparison.  
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Figure 3.8    DTNB pretreatment ablates cell surface thiol labeling. HeLa cells 

were treated with DPBS only (control) or DPBS containing 1 mM DTNB 

for 10 min. Then the Cy3B-maleimide dye was applied to label the cell 

surface. The green channel shows the Cy3B fluorescence and the DIC 

channel shows the cell outlines. The laser intensity was maintained 

constant for comparison.  
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3.3.3 Quantitation Calibration Using Fluorescent Beads 

Since fluorescent signals are all relative, the fluorescence in two channels 

cannot be compared without standards. We note that the much lower SH (green) signal 

necessitates the use of much higher laser power for effective visualization. For this 

reason, we have developed double labeled fluorescent beads as internal standards. Fig 

3.9 shows a scheme of the bead preparation procedure. Beads loaded with different 

concentration of dyes will give proportional fluorescence signals (Figure 3.10 A, B). 

Because beads have a size distribution (~50 to ~150 µm), the loading and integrated 

fluorescence signals is not consistent between beads at each concentration, but the 

ratios shows linearity (see below). When beads were loaded with equal amount of two 

fluorophores, the integrated fluorescent intensity of each channel show linearity 

against the laser power, Figure 3.10 C shows the signal of one bead under different 

laser powers. In another batch, when beads were loaded with certain ratio of the two 

fluorophores, the fluorescence intensity is proportional to the ratio of dye. Figure 3.10 

D shows the data of 4 beads at each concentration ratio. Although the beads examined 

have different sizes and thus carry different total amounts of dye, the green/red ratio of 

each bead is almost identical, as shown by the minimal error bars obscured by the 

symbols in Figure 3.10 D.  

 

3.3.4 Quantitation of SH/SS Ratio for Mammalian Cell Surfaces 

Several mammalian cell lines were investigated using the ratiometric two-color 

staining methods. The data for Figure 3.11 was collected staining all the cells on the 

same day using common reagents and conditions. Using the calibration procedure 
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outlined earlier, the ratio of cell surface SH/SS can be calculated. Notably the thiols 

released on treatment with 5 mM TCEP add to the pre-reduced surface SH by ~16 to 

30-fold. The cell surface SH/SS ratio of these 4 cell lines show similarity. 
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Figure 3.9    Scheme for double labeling of thiopropyl bead with green and red 

fluorescent maleimides. Activated thiol Sepharose 4B beads were 

treated with 10 mM DTT in PBS to expose free thiols (Panel A). The 

beads were incubated with limiting concentrations of mixture of Cy3B- 

and Cy5-maleimides (see Experimental procedures). Upon completion, 

the large excess of unreacted bead -SH groups were alkylated with 10 

mM NEM (Panel B). Panel C shows two channels of one bead stained 

with two maleimides.   
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Figure 3.10   Fluorescent beads can be used for ratiometric calculations. Panel A, 

B show proportional fluorescence signals against increasing 

concentration of Cy3B and Cy5 loaded on the beads, respectively. The x-

axis represents the dye concentration of the solution incubating the beads, 

the y-axis represents the integrated fluorescent signals of 1-3 beads at 

each concentration. Panel C shows the data of one bead loaded with 

equal amount of two fluorophores. The integrated fluorescent intensity of 

each channel is proportional with increasing laser power. Panel D shows 

the data of another batch of beads. Here beads were loaded with green 

and red maleimides at the three ratios shown. The fluorescence intensity 

is proportional to the ratio of dye (n=4 at each concentration ratio). 
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Figure 3.11   Quantitation of SH/SS ratio for mammalian cell surfaces. Panel A 

shows some representative cells under confocal microscopy. The green 

channel (with 10-fold higher laser power compared to the red channel) 

shows the free thiol staining while red channel shows the disulfide 

staining. Panel B shows the bar graph of SH/SS ratio of each cell lines 

calculated as before. Images were analyzed using ImageJ. Four 

representative images of each cell line were selected and 4-6 cell 

membrane areas of interest were picked in each image using ImageJ 

selection tools and calculated for fluorescence intensity (see 

Experimental procedures. U-118, n=20; HeLa, n=20; HEK293T, n=23; 

J774A.1, n=23). 
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3.3.5 SH/SS Ratio Depends on the Reductants 

Considering Figure 3.3 A it would be expected that the ratio of SH/SS 

determined as above would depend on the stringency of the reducing protocol. The 

ratios presented in the Figure 3.11 may overestimate of the SH/SS ratio because it is 

unlikely that any reductant would capture SS in all exofacial proteins. Clearly the SS 

content will be the aggregate of redox active SS (as in regulatory SH/SS pairs) and 

more routine structural SS. Figure 3.12 shows the SS/SH ratio of HeLa cells using two 

different reducing agents: TCEP and glutathione (GSH).  Because TCEP is a more 

potent reductant than GSH17, it results in significantly higher amount of SS reduced to 

free SH and labeled with red dye. Figure 3.12 A shows that the SS/SH ratio 

approaches an apparent limit above ~20.  Figure 3.12 B shows that GSH at 10 mM is 

almost 25-fold less effective reductant of the aggregate SS bonds in exofacial proteins. 

Low concentrations of GSH are particularly ineffective at generating de novo SH 

groups. This may reflect the fraction of kinetically unreactive glutathionylated proteins 

as noted in Chapter 2 (see Figure 2.11). 

 

3.3.6 Quantitation of SH/NH2 Ratio for Mammalian Cell Surfaces 

As a complementary method we have normalized the SH signal to protein 

using an NHS ester to label the lysine NH2 groups that represent the total proteins on 

the cell surface (see Figure 3.3 B). One advantage of this method is that maleimide 

and NHS ester could be applied together. With the help of the standard beads, we 

could also calculate the normalized SH level on cell surface (see Figure 3.13). 
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Figure 3.12  SH/SS ratio depends on the reductants. Panel A shows the HeLa cell 

surface SS/SH ratio with TCEP as the reductant. After labeling the free 

thiols with Cy3B-maleimide, a variety of concentrations of TCEP were 

applied to reduce the disulfide on the cell surface (at room temperature 

for 15 min) and then Cy5-maleimide was used for liberated SH labeling. 

Two representative images of each cell line were selected and 6 cell 

membrane areas of interest were picked in each image using ImageJ 

selection tools and calculated for fluorescence intensity (see 

Experimental procedures). For each concentration n=12. Panel B shows a 

comparable experiment using GSH as the reductant (here n=10). 
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Figure 3.13  Quantitation of SH/NH2 ratio for mammalian cell surfaces. Panel A 

shows some representative cells under confocal microscopy. The green 

channel shows the free thiol staining while the red channel shows the 

amino group staining. Panel B shows a bar graph of SH/ NH2 ratio for 

each cell line. Images were analyzed using ImageJ. Three representative 

images of each cell line were selected and 5 cell membrane areas of 

interest were picked using ImageJ selection tools and calculated for 

fluorescence intensity (see Experimental procedures). The errors reflect 

the following measurements: U-118, n=15; HeLa, n=15; HEK293T, 

n=15; and J774A.1, n=15. 
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3.3.7 QSOX Activates on Cell Surface SH Oxidation 

We have applied the SH/NH2 labeling method on several researches, one is to 

visualize the QSOX activity on cell surface SH oxidation. Figure 3.14 shows the 

recombinant human QSOX1 works on GSH reduced surface of J774A.1. After GSH 

treatment the cell surface thiol level increased significantly, and QSOX1 reverse this 

effect. QSOX1 effect is also shown in HEK293T cells (data not shown). 

 

3.3.8 Footprints of Cells on Cover Slides 

In previous sections we have shown SH staining of cell surfaces. Additional 

cells may be secreting extracellular protein components carrying disulfides and some 

free SH groups13. Figure 3.15 A shows the strong staining of SH around the J774A.1 

cells. Cells were incubated in DPBS containing 1 µM Cy3B-MAL and 1 µM Cy5-

NHS ester for 30 min at 37 ℃ before fixation. The intensity of green staining may 

represent the higher local concentration of SH particularly around cells. The location 

underneath the cells is not stained with Cy3B. This lack of staining is not due to the 

steric exclusion of dye since these areas stain strongly for protein (Cy5), but not for 

Cy3B. Figure 3.15 B provides complementary information using a different cell type. 

HeLa cells are readily detached from glass coverslips using treatment with metal 

chelators (see Experimental procedures). Figure 3.15 B shows that after dislodging 

live HeLa cells the resulting footprint stain comparably to the surrounding surface 

protein. However, the area previously occluded by the HeLa cell stains weakly for 

protein thiols. These data then consolidate those found with mouse macrophage cells 

and show that in two cell types the SH signal is deepened immediately at the cell-glass 

contact site. 
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Figure 3.14  QSOX catalyzes cell surface SH oxidation. Panel A shows the staining 

of J774A.1 cells. Cells were incubated in media with or without 20 mM 

GSH at 37 ℃ for 20 min. Then 30 nM recombinant human QSOX1, or a 

DPBS control, was added and the cells were incubated for 40 min. 

Finally the cells were fixed using 2% PFA and stained with the regular 

SH/NH2 procedure. Panel B shows the data, n=4. T-test ** P<0.01. The 

laser intensity was maintained constant within each cell type for 

comparison. Signal intensity was increased with the same level to show 

better view.  
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Figure 3.15   Cells leave footprints on coverslips. In these images green represents 

Cy3B-maleimide staining for thiols while red represents Cy5-NHS ester 

staining for protein as before. Nuclei are shown by DAPI (blue). Panel A 

shows the J774A.1 cells. The image focuses on the coverslip surface 

(coincident with the base of the macrophage cells). J774A.1 macrophage 

cells remain very tightly bound to the glass coverslip and it is clear that 

while the base of the cells and the substrate they occlude contain protein 

NH2 group (staining red), thiol staining is notably absent within the 

margins of the cell. Thiol green staining covers the coverslip and is 

concentrated in the surrounding of certain cells.  Panel B shows the 

stained coverslips that previously supported HeLa cells. Cells were 

dislodged by chelators before the regular SH/NH2 staining procedure. 
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3.3.9 Macromolecular Crowding Agents Increase Cell Surface SH Levels 

We were interested in evaluating the consequences of including agents to 

deepen the ECM.  Macromolecular crowding agent have been used in bio-engineering 

research to deepen the deposition of the extracellular matrix18-21. Figure 3.16 shows 

the principle of crowding agents utilization. In standard 2-D cell cultures, cells 

anchored to the bottom of vessels bathe in a large volume of medium. This condition 

is hardly representative of the in vivo microenvironment that is highly crowded thus 

facilitating the interactions between of enzymes and their protein substrates22,23. Figure 

3.16 B shows chemical structures of several crowding agents. After 24 h growth in 

media supplemented with individual crowding agents, HeLa cells were washed and 

stained with the general thiol staining procedure. We found that polystyrene sulfonate 

(PSS) has a dramatic effect on cell surface SH staining (Figure 3.17). The PSS levels 

in this experiment is 50 µg/mL but this reagent is effective at much lower 

concentration (see later). The PSS effect observed here with HeLa cells is common to 

multiple cell types (Figure 3.18).  

 At first we thought that the PSS increases the expression and secretion of 

thiols on the cell surface. However, only 5 min incubation of PSS leads to significant 

effect on cell surface thiol labeling in all cell types examined (Figure 3.18). More 

surprisingly, experiments show that PSS treatment on cells pre-fixed with 2% 

paraformaldehyde also causes significant enhancement of surface labeling (Figure 

3.18; right column). In this study, we have tried PSS with different average molecular 

weights (70 kD and 200 kD); both types have comparable effects on cell surface 

labeling (data not shown). In the studies presented here we used PSS 200 kD. We also 

surveyed the minimum concentration of PSS that promotes significant cell surface 
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labeling. Figure 3.19 shows that PSS down to 200 ng/mL also causes a significant 

increase in labeling. The corresponding SH/NH2 ratio is shown in panel B. 
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Figure 3.16   Crowding agent utilization. Under traditional 2-D cell culture 

conditions, the concentrations of extracellular matrix precursors and 

enzymes are low. The addition of polydispersed macromolecules 

(presented as spheres with different sizes) leads to a higher effective 

concentration of ECM precursors and enzymes that are involved in ECM 

generation, leading to increases in ECM deposition. Panel B shows 

several standard macromolecular crowding agents. Among these Ficoll is 

a neutral polysaccharide while CR, DxS and PSS are negatively charged 

sulfonated polymers. 
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Figure 3.17  PSS exerts a particular dramatic effect on HeLa cell surface SH 

staining. The green channel shows the Cy3B-MAL labeled cell surface. 

The DIC channel shows the cell outlines. The laser intensity was 

maintained constant for comparison of SH staining.  
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Figure 3.18  PSS effect on cell surface thiol labeling is found in a range of cell 

lines. Cells were washed and treated with DPBS (control) or DPBS 

containing 25 µg/mL PSS (PSS) for 5 min at room temperature, in the 

control and PSS column, respectively. For the third column, cells were 

fixed with 2% PFA first and then treated with 25 µg/mL of PSS. All the 

cells were labeled with 1 µM Cy3B-MAL for 10 min at room 

temperature. Laser power was maintained constant for each cell type. The 

12 panels were then uniformly brightened for better visualization of the 

PSS effects.  
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Figure 3.19  Low concentration of PSS increases cell surface thiol labeling. 

J774A.1 cells were fixed first for 15 min with 2% PFA, and then 

incubated with DPBS containing different concentrations of PSS. After 

washing the standard SH/NH2 staining procedure was applied. Panel A 

shows the images of cells. The green channel shows the thiol labeling by 

Cy3B-MAL while the red channel shows the NH2 labeling by Cy5-NHS 

ester. The laser intensity was maintained constant for comparison. All 

images were brightened by the same factor for presentation purposes. 

Panel B shows the calculation of SH labeling normalized with NH2 levels. 
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3.3.10 PSS Effect is SH Specific  

To investigate the mechanism of the PSS effect we conducted several control 

experiments. Figure 3.20 shows that the maleimide treatment after PSS decreases the 

labeling. In addition the maleimide dye pre-inactivated by β-mercaptoethanol (see 

Experimental procedures) will also not label the cell surface thiols, shows that the PSS 

effect is not due to a non-specific absorption of the Cy3B dye. In addition we also 

tried other dyes (Cy5-MAL and Alexa568-MAL) for PSS effect investigation, and 

found that these dyes also show significant enhanced labeling after PSS treatment 

(Figure 3.21). Thus the PSS effect on surface fluorescent labeling is not dye specific. 

 Figure 3.22 shows that pre-treatment of cells with DTNB oxidize surface SH 

groups abolishes subsequent staining with the maleimide. Figure 3.23 show that the 

PSS effect on J774A.1 cells is also attenuated by QSOX1, which can oxidize 

extracellular matrix thiols (see Chapter 1)24. QSOX1 was also found to reverse the 

PSS effect on other cell types, and control cells incubated with QSOX1 did not show 

significant change on cell surface thiol level (data not shown). 

Finally we evaluated whether PSS itself could increase the intrinsic 

fluorescence of Cy3B, thus possibly contributing to the enhancement of fluorescence 

seen here. However PSS, at 23 µg/mL, has no significant effect on the Cy3B 

fluorescence (Figure 3.24) 
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Figure 3.20  PSS effect involves labeling of cell surface thiols by Cy3B-MAL. 

J774A.1 cells were treated with or without 20 µg/mL PSS for 10 min. 

The PSS treated cells were then incubated with or without 100 µM 

methyl-PEG24-maleimide. The cells were labeled with the original 

maleimide dye or with β-mercaptoethanol inactivated dye (Cy3B-MAL-

2-ME; see Experimental procedures). The green channel shows the SH 

labeling and the blue channel shows nuclei (DAPI). 
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Figure 3.21  PSS effect on cell surface thiol labeling is not a dye-specific effect. 

J774A.1 cells were stained with 1 µM Alexa 568-maleimide or 1 µM 

Cy5-maleimide after treatment for 10 min with or without 25 µg/mL PSS 

in DPBS at room temperature. The green channel shows the Alexa 568 

fluorescence. The red channel shows the Cy5 fluorescence. In both cases 

nuclei are shown by DAPI. The laser intensity of each channel was 

maintained constant for comparison of the thiol levels for each dye set.  
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Figure 3.22  PSS effect on cell surface thiol labeling is abolished by pretreatment 

with DTNB. HEK293T cells were treated with DPBS (control) or DPBS 

containing 20 µg/mL PSS for 10 min. The PSS treated cells were then 

incubated with or without 1 mM DTNB for 10 min. The green channel 

shows the SH labeling using Cy3B-MAL and the blue channel shows 

nuclei (Hoechst 33342). 
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Figure 3.23  PSS effect on cell surface thiol labeling can be reversed by 

recombinant human QSOX1. J774A.1 cells were fixed with 2% PFA 

first and incubated with or without 20 µg/mL PSS for 5 min. After 

washing with DPBS, the cells were treated for 15 min at 37 ℃ and then 

10 min at room temperature with or without 50 nM recombinant human 

QSOX1. The green channel shows the SH staining with Cy3B-MAL. 

Nuclei are shown as blue (DAPI). The red channel (Cy5-NHS ester 

labeling NH2) is not shown.   
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Figure 3.24  PSS does not increase the fluorescence signal of Cy3B. A variety of 

concentrations of Cy3B-MAL were added into a 96-well plate containing 

DPBS with (close squares) or without (open diamonds) 23 µg/mL PSS.  
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3.3.11 Further Experiments to Investigate the PSS Effect 

The previous sections have shown definitively that PSS increases the exposure 

of surface -SH groups. We considered that the effect of PSS was related in some way 

to the polyanion recruiting the dye maleimide to the surface by same unknown 

mechanism. The enhanced dye concentration might then lead to PSS mediated staining 

of thiols. This section presents experiments to suggest that PSS exerts its effects by 

interacting directly or indirectly with proteins at the cell surface leading to increased 

exposure of surface thiols. 

To investigate the possibility that PSS binds directly to sulfonated dyes in vitro, 

we performed the experiments described below. A PD-10 column (size exclusion) was 

used to analyze the interaction between Cy5-maleimide and PSS. DPBS (1 mL) 

containing 12 µM Cy5-maleimide, 3.4 mg/mL PSS or the combination of both were 

loaded on three columns, respectively, and DPBS was used to elute. The elutions were 

analyzed by UV-vis to record the absorbance at 255 nm (PSS) and 645 nm (Cy5). 

Figure 3.25 shows the absorbance of each elution fraction. These data show that the 

Cy5-maleimide and PSS are eluting from column independently, indicating that the 

Cy5-maleimide dye is not binding the PSS in solution. 

As mentioned before, both PSS molecular weight 70 kDa and 200 kDa 

increase the thiol labeling with maleimide dyes on cell surface. We then explored 

whether the monomeric unit can cause the same effect. J774A.1 cells were incubated 

in DPBS with either 25 µg/mL sodium 4-vinylbenzenesulfonate (monomer) or 25 

µg/mL PSS (polymer) for 5 min, followed with the typical thiol labeling procedure 

with Cy3B-maleimide. Figure 3.26 shows the same concentration of monomer did not 

lead to increased thiol labeling on the cell surface. The PSS effect is thus not simply 

due to the monomeric unit. 
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During the investigation of macromolecular crowding agents (Figure 3.16) we 

found that the macromolecular crowders with negative charges (i.e. DxS, CR) show a 

mild effect on cell surface thiol labeling. We investigated one more synthetic anion 

polymer polyacrylic acid (PAA). Fixed HeLa cells were incubated in DPBS with 25 

µg/mL PAA and 25 µg/mL PSS for 5 min, then underwent the typical thiol labeling 

with Cy3B-maleimide. Figure 3.27 shows that the PAA does not have comparable 

effect with PSS to increase the exofacial thiol labeling. 
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Figure 3.25  PSS does not bind Cy5-maleimide dyes. Panel A shows the two PD-10 

columns with Cy5-MAL only (left column) and Cy5-MAL with PSS 

(right column). The numbers on the left hand presents the elution 

volume. Panel B shows the elution of Cy5-MAL (absorbance at 645 nm 

in UV-vis). Panel C shows the elution of PSS (absorbance at 255 nm in 

UV-vis). 

 



 129 

 

Figure 3.26  The PSS monomeric unit, 4-vinylbenzenesulfonate, does not induce 

surface labeling. Panel A illustrates the structure of the monomer of 

PSS. Panel B shows the effect of both compounds on surface thiols of 

J774A.1 cells. Cells were treated with DPBS containing 25 µg/mL PSS 

or 25 µg/mL monomer for 5 min, followed with the typical thiol staining 

procedure. The green channel shows the thiols labeled with Cy3B-MAL. 
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Figure 3.27  Polyacrylic acid is unable to mimic the effects of polystyrene 

sulfonate. Panel A shows the structure of PAA. Panel B shows the effect 

of PSS and PAA on HeLa surface thiols levels. The green channel shows 

the thiols labeled with Cy3B-MAL.    
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3.3.12 Surface Thiols Exposed with PSS Can be Internalized by Live Cells  

During this project we have found that labeled thiols on cell surface can be 

internalized into cells, and the amount of internalized thiols is decreased with lowered 

temperature and shorter incubation times (data not shown). This phenomenon is 

consistent with thiols on the cell surface undergoing endocytic trafficking. Treatment 

with PSS significantly increases the cell surface labeling using maleimide dye, and 

almost all the surface Cy3B is internalized into mouse macrophages. However most of 

Cy5 (representing total proteins) still stays on the cell surface (Figure 3.28). Also we 

note the internalized proteins are increased in PSS group, possibly indicating an 

enhanced endocytic trafficking. This result indicates that cells are not killed by PSS 

treatment, but the dynamics of surface thiol transportation is changed. 

We also tried to investigate the path of this internalization using Lysotracker to 

show the locations of lysosomes. Figure 3.29 shows that the internalized labeled thiols 

do not co-localize with lysosomes over 30 min of this experiments. Thus, the 

internalized thiols may not rapidly go to lysosomes for degradation. 
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Figure 3.28  PSS increased thiol labeling are internalized into cells. J774A.1 cells 

were treated with DPBS or DPBS containing 20 µg/mL PSS. Then cells 

were incubated with 1 µM Cy3B-MAL and 1 µM Cy5-NHS ester for 30 

min at 37 ℃. The blue channel shows the nuclei, the green channel 

shows the Cy3B-MAL labeled thiols, the red channel shows the Cy5-

NHS ester labeled proteins. 
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Figure 3.29  Thiols internalized into cells do not co-localized with lysosomes. 

J774A.1 cells were first incubated in complete DMEM media with 75 nM 

of Lysotracker Deep Red for 1 h at 37 ℃. Then cells were washed and 

treated with or without 20 µg/mL PSS for 5 min, and then followed with 

1 µM Cy3B-MAL and 1 µM Cy5-NHS ester incubation for 30 min at 37 

℃. The green channel shows the thiols labeled with Cy3B-MAL, the red 

channel shows the lysosomes labeled by Lysotracker Deep Red. 
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3.3.13 Investigation of Protein Targets of PSS Effect 

We would like to know what proteins are involved in the PSS effect on cell 

surface thiol levels. After PSS treatment, cell surface proteins were extracted and 

analyzed with SDS-PAGE (see Experimental procedures). Figure 3.28 shows this 

experiment. Panel A shows the flow of the experiment. Panel B shows the SDS-PAGE 

results of three cell types: HEK293T, U-118 and J774A.1. The left 2-3 lanes in the gel 

of each cell type shows the Cy5 fluorescent channel, and the right 2-3 lanes shows the 

Coomassie channel. The Cy5 channel and Coomassie channel are imaging the same 

gel. Note that in the Cy5 channel, PSS treated cells show significant higher level of 

labeling in several bands in gel than that in control cells. However, the same gel 

stained with Coomassie blue shows same intensity of bands in control lane and PSS 

lane, indicating comparable total protein levels in these two groups. This result is 

consistent with the confocal observations. Also, the harsh experimental procedure of 

SDS-PAGE preserves the fluorescent labelled proteins showing that the interaction is 

covalent. 
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Figure 3.30  SDS-PAGE shows higher thiol labeling on cell surface but same total 

protein levels after PSS treatment. Panel A shows the flow of the 

experiment (see Experimental procedure). Panel B shows the SDS-PAGE 

results of three cell lines. The left 3 (HEK293T and J774A.1) or 2 (U-118) 

lanes show the Cy5 fluorescent channel, while the right lanes show the 

Coomassie channel. M, marker; C, control; P, PSS. 
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3.4 Conclusion and Discussion 

The thiol/disulfide (SH/SS) redox state of the mammalian cell surface plays 

critical roles in modulation of different cell behaviors including cell adhesion1, 

migration2, proliferation3, metastasis4,5, and viral fusion6-8.  For example, the redox 

poise of thiols and disulfides located in exofacial protein domains on a range of blood 

cells are key modulator of biological functions25-34. In this chapter we describe 

confocal ratiometric fluorescence imaging methods specifically for cell surface thiols 

and disulfides and their applications to studying different cell types. These methods 

can be used not only on fixed cells but also on live cells for the analysis of endocytic 

trafficking. These procedures are also amenable for future super-resolution studies.  

One interesting phenomenon was observed during this project. When cells 

were treated with crowding agents, especially the polystyrene sulfonate (PSS), the 

extracellular and cell surface thiol levels are significantly enhanced. PSS is in a class 

of medications called potassium-removing agents used to treat hyperkalemia 

(increased amounts of potassium in the body). There are several brand names on the 

market: Kalexate®, Kayexalate®, Kionex® and SPS®. As a cation-binding 

compound, PSS resin were also used to remove excessive K+ level in supernatants of 

stored red blood cells35. PSS has also been investigated as a grafted coating for 

biomaterial science36-39. For example, Felgueiras et al.39 showed that PSS grafted onto 

titanium alloy (Ti6Al4V) surfaces in the early stages of osteoblastic cultures increases 

cell viability, supports cell structure and morphology, and also facilitates adhesion 

strength of cells on biomaterial in serum-free conditions. PSS has also been 

demonstrated as an inhibitor of HIV-1 entry40, although the inhibition effect decreases 

significantly in the presence of seminal plasma. Possibly, the positively charged 
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proteins in seminal plasma binds the negatively charged PSS in plasma, and limiting 

efficacy in vivo41.  Voigt et al.42 discovered that nanoparticles modified with PSS 

exhibit specific affinity for caveolae of endothelial cells, and enhance particle uptake 

by cells. 

The functional concentration of PSS as crowding agent is very low, much 

lower than the neutral crowder Ficoll. One explanation is that for negatively charged 

crowders the electrostatic forces amplifying steric exclusion effects are dependent on 

the charge distribution on the surface of the macromolecule21. Thus smaller 

concentrations of negatively charged crowders are needed to exert similar exclusion 

effects as their neutral counterparts. Several researches have demonstrated that PSS 

leads to denaturation of proteins. Saburova et al.43 showed that low concentration of 

PSS disrupts the native structure of horse heart hemoglobin (Hb) and spermwhale 

muscle myoglobin (Mb). Kowalczynska et al.44 showed that the efficiency of bovine 

serum albumin (BSA) adsorption became markedly higher on polystyrene surfaces 

that had been sulfonated. Cells interacted differently with the polystyrene and 

sulfonated surfaces depending on the arrangement of adsorbed albumin. The same 

group also demonstrated that sulfonated polystyrene increases fibronectin adsorption, 

which involves conformational changes induced by the surface polarity45. In an 

interesting report, Ahn et al.46 demonstrated that PSS deposited on glass not only 

recruits but also stabilizes fibrillar ECM proteins, facilitating spontaneous and highly 

ordered large-scale ECM network formation. The hypothesized mechanism involves 

fibronectin unfolding due to a strong electrostatic interaction with the sulfonic groups 

exposed from the PSS.  
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In the present study, the PSS treatment significantly increases the cell surface 

thiol labeling, which might be due to conformational changes to exofacial proteins 

with enhanced exposure of thiols. Several experiments have shown that the PSS effect 

is thiol specific. Experiments with live cells show very substantial internalization of 

PSS-induced thiol labeling. In extensions of this work the targets of this labeling will 

be identified by traditional proteomics approaches. 
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THE APPLICATION OF THIOL/DISULFIDE AND THIOL/NH2 IMAGING 

TO A MULTICELLULAR ORGANISM AND A DISULFIDE-RICH 

BIOMATERIAL 

4.1 General Introduction  

In Chapter 3 of this dissertation we applied ratiometric imaging to address the 

redox status of the outer surface of a range of cells. In this final chapter we illustrate 

the broad applicability of these general methods using two entirely different examples.   

In the first, we use redox imaging to examine the cuticle of the worm, Caenorhabditis 

elegans. In the second, we apply the methods developed in Chapter 3 to probe the 

disulfide-rich fibers that are found in avian eggshell membranes.  In the first part of 

the following sections we introduce aspects of C. elegans that are most relevant to the 

redox imaging that follows later in the Chapter. 

 

4.2 C. elegans – an Introduction to Relevant Aspects 

4.2.1 General 

C. elegans has been central to many aspects of biological and biomedical 

research1.  The nematode has about a thousand cells enclosed in a largely 

proteinaceous cuticle (Figure 4.1).  C. elegans develops rapidly - from egg to adult in 

3 days (Figure 4.2) and is exceptionally easy to cultivate and maintain.  The worm is a 

filter feeder receiving a suspension of bacteria through its mouth parts driven by 

Chapter 4 



 144 

opening of the lumen formed from the corpus and isthmus regions (Figure 4.1)1.  In a 

complex series of events, the bacteria collected adjacent to the grinder are fragmented 

and passed to the intestine while contraction of the lumen forces the spent liquid back 

through the mouthparts1. Following disruption of the microbial cells, digestion 

proceeds via an array of glycosidases, lipases and proteases2. 

 

Figure 4.1 Schematic Depiction of a male C. elegans nematode. Figure is from 

Wikipedia. 
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Figure 4.2  Life cycle of C. elegans. Figure is adapted from Clark and Hodgkin3. 
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4.2.2 Cuticle Structure  

The C. elegans cuticle is a flexible exoskeleton that serves to protect and 

insulate the worm from environmental stress. Starting with the embryonic cuticle, 

worms synthesize 5 iterations of this complex multilayered structure1,4,5.  Proceeding 

inwards, the cuticle has a negatively-charged glycoprotein surface coat, a lipid 

epicuticle, and then two mainly proteinaceous layers1,4,5 (see Figure 4.3 A). Collagens 

comprise about 80% of the total cuticular proteins, and are distinguished from their 

mammalian counterparts by being smaller and having several regions in which the 

canonical -GXY- repeat are replaced by non-triple-helical regions5,6.  Proteolytic 

processing of C. elegans collagens typically generates products which retain at least 2 

disulfides6.   

The second major protein component, the cuticulins, contain zona-pellucida 

domains that are widely distributed within structural proteins of the extracellular 

matrix7.  These domains are of about 260 amino acids and contain 4 conserved 

disulfide bonds6.  During the assembly of the cuticle, cuticulins are extensively 

crosslinked by peroxidase-mediated tyrosine coupling.  This leads to critical 

stabilization of this outer protein layer1,5 (see Figure 4.3 A). 

 

4.2.3 Moulting  

Moulting in C. elegans begins with a period of relative physical inactivity 

(lethargus) during which a new cuticle is assembled under the old one1,4,5.  

Immediately prior to lethargus, secretory cargo is accumulated in seam cells ready to 

be used in the layered assembly of the new cuticle.  Lethargus begins with the 

breakage of the connections between the old cuticle and the underlying hypodermis 
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(apolysis)1,4,5 (see Figure 4.3 B).  This critical event is initiated by reduction of 

cuticular disulfides using reduced thioredoxin and glutathione generated via the 

worm’s selenoprotein thioredoxin reductase and glutathione reductase8.  This key 

observation led us to test our redox imaging method with C. elegans.  This work is not 

intended to be a comprehensive study of the details of nematode moulting.  Instead, 

we just wish to showcase the quality of thiol/disulfide visualization that can be 

achieved in a multicellular organism.   

 

Figure 4.3   The organization and structure of the C. elegans cuticle. This figure is 

reprinted from Page & Johnstone6. Panel A is depicting a cross-section of the adult 

cuticle with distinct structural layers. Panel B depicts the synthesis of a new cuticle 

and the associated detachment of the old cuticle.   
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4.2.4 Experimental Procedures  

4.2.4.1 Worm Preparation 

The worms were prepared by Michael Clupper from Dr. Jessica Tanis’ Lab in 

the Department of Biological Science. Briefly, Caenorhabditis elegans strains were 

maintained using standard conditions at 20°C on nematode growth medium (NGM) 

plates seeded with Escherichia coli OP50 9. The wild-type N2 strain was used for all 

experiments.  

The synchronization procedure is as follows. 3-4 plates of gravid adult 

hermaphrodites were washed off plates with M9 solution and pelleted at 350 x g for 1 

minute. Pellets were resuspended in 10 mL of bleach solution (20% bleach, 5% 10 M 

NaOH in water) for 5 minutes with shaking, resulting in isolation of eggs. Eggs were 

rinsed 3 times by pelleting, discarding supernatant, and resuspending in 15 mL of M9 

solution. Following a final rinse, the eggs were resuspended in 10 mL of M9 solution 

and allowed to incubate at 20°C on a rotary shaker overnight. This results in a 

synchronized population of larvae arrested at the L1 phase. Animals were then 

pelleted, and the supernatant was removed to allow approximately 1 mL of medium. 

Approximately 40-50 synchronized animals were plated onto a single OP50-seeded 

NGM plate. 

 

4.2.4.2 Redox Staining of Worms 

Worms were washed 3 times with Dulbecco's Phosphate-Buffered Salt 

Solution (DPBS, from Corning) and fixed with 4% methanol-free PFA at room 

temperature for 10 min. After 3 washes in DPBS, worms were incubated in the dark 

with 1 µM sulfo-Cy3B-maleimide and 10 µM methyl-PEG24-maleimide in DPBS at 
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room temperature for 10 min. After 3 washes in DPBS, 5 mM tris (2-carboxyethyl) 

phosphine (TCEP) in DPBS was applied to cells at room temperature for 10 min, 

followed by 1 μM sulfo-Cy5-maleimide and 10 μM methyl-PEG24-maleimide 

treatment again for 10 min at room temperature in the dark. Following 3 washes, 

worms were mounted with Fluoromount-G sealing the coverslip with clear nail polish. 

During each staining or wash step, bench top centrifuges were applied to spin 

down the worms. In some later trials, a nylon mesh (Sefar) with 1 µm holes 

immobilized between two pipet tips was used to filter the worms to avoid a large 

number of centrifugations. After the staining procedure, the mesh was recovered and 

worms were rinsed off and mounted. 

 

4.2.4.3 Microscope Imaging and Image Analysis 

Fluorescence images were acquired using a Zeiss LSM 780 upright confocal 

microscope in the Biological Department at the University of Delaware. The laser and 

filter sets were as follows: for Cy3B fluorophore, excitation at 561 nm, emission at 

560-630 nm. For Cy5 fluorophore, excitation at 633 nm, emission at 637-758 nm. A 

40x oil objective was used. Zeiss Zen software was used for image acquisition.  

 

4.2.5 Results and Discussion 

4.2.5.1 Redox Staining in Esophagus and Grinder 

Figure 4.4 shows staining in esophagus and grinder of worms. Panel A and B 

show two representative adult worms, with the whole esophagus stained with green 

(representing SH) and the mouth part highly stained with red (representing SS). Panel 
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C shows a 3D reconstruction of the stained esophagus. The cross-like structure at the 

end of the esophagus is the grinder and it can be found strongly stained in almost all 

the worms (Figure 4.4, and later), no further area of the digestion track is stained. This 

SH staining might represent the high level of thiols of ground bacteria that are 

concentrated in the grinder. Note that the surface of adult worm is not stained. This 

might be due to the lipid layer on the cuticle (the epicuticle, Figure 4.3) that precludes 

staining. 
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Figure 4.4    Redox staining in esophagus and grinder of adult worms. Panel A and 

B shows the two representative adult worms, the green channel shows SH 

staining and the red channel shows SS staining. Panel C shows a 3D 

reconstruction of a stained esophagus. The white arrows show the cross-

like grinder structure at the end of the esophagus. 
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4.2.5.2 Level 1 Worms Show Strong Surface Staining  

Unlike the adult worms, the young worms such as level 1 can be highly stained 

on the cuticle. Figure 4.5 shows images from two of the level 1 worms.  

 

Figure 4.5    Redox staining of two of the level 1 worms. The green channel indicates 

the SH staining and the red channel shows the SS staining. Nuclei are 

shown in blue (DAPI). Panel A shows one section of a z-stack imaging of 

a level 1 worm. Panel B is the 3D reconstruction of the same worm. 

Panel C shows another worm with the esophagus and grinder (white 

arrow) stained as green. 
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4.2.5.3 Redox Staining on Molting Worms 

Worms in lethargus were obtained and stained with the typical SH/SS staining 

procedure. Figure 4.6 shows one worm that is molting. The wrinkled surface indicates 

the formation of a new layer of cuticle. The red staining (representing SS) is all 

through the whole worm while the green staining (representing SH) is only from a 

certain point near the grinder to the tail. We can also find a shed old cuticle at the tail, 

indicating the half-way molting was captured in this image. As mentioned in the 

introduction, the breakage of the connections between the old cuticle and the new 

cuticle involves reduction of cuticular disulfides using reduced thioredoxin and 

glutathione. The green staining indicates the reduced environment between the old and 

new cuticles, while the red staining indicates the newly formed cuticle that contains 

high level of disulfides (the epicuticle lipid layer might have not yet formed so the 

cuticle can be stained).  

Figure 4.7 shows another worm undergoing the molting process. Interestingly, 

this worm maintains a smooth outlook during molting. The outer (old) cuticle is 

stained as red, indicating disulfides on the surface. The esophagus and mouth are not 

stained at all, indicating a seeming protection of old cuticle to the worm inside.   

 

4.2.5.4 Conclusion 

With the SH/SS staining protocol we have visualized the redox state of specific 

stage of C. elegans worms for the first time. Although this work is not a 

comprehensive study of the details of nematode molting, it presents some information 

of redox state in certain structures of worms at different stages.  Also, we have shown 
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the high quality of SH/SS visualization that can be achieved in a multicellular 

organism.   
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Figure 4.6  Redox staining on a molting worm. The green channel indicates the SH 

and the red channel shows the SS. Panel A shows the head part of the 

worm. Panel B shows the tail of the same worm. 
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Figure 4.7   Redox staining on a molting worm. The red channel shows the SS, 

nuclei are stained with DAPI (blue). The green channel was not shown 

here because there is not signals. 
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4.3 Egg Shell Membrane 

4.3.1 General Introduction 

Bird eggs are formed in a series of discrete steps.  The process is initiated by 

deposition of a yolk cell (the “yolk”) into the oviduct via a funnel–shaped structure 

called the infundibulum10.  The massive secretion event that deposits the egg white 

around the yolk requires a 2-3 hour residence in the magnum region of the chicken 

oviduct.  While egg white deposition has received a lot of attention10, the molecular 

details of the next three stages of egg construction remain cryptic.  First, in the isthmus 

region of the oviduct, a thin membranous layer of uncertain composition (the “limiting 

membrane”), is deposited over the egg white10-14.  Hincke and coworkers15 have found 

notable lysozyme immunoreactivity associated with this structure using immunogold 

staining.  This limiting membrane (not shown in Figure 4.8) subsequently serves as a 

platform for the inner membrane.  The inner membrane is an approximately 20 µm 

layer of adherent fibers (of typically less than 2 µm diameter).  These fibers are 

extruded from tubular gland cells lining the isthmus16 and the layer deepens as the egg 

rotates within the oviduct.  Further down the isthmus, a second ~ 60 µm deep layer of 

generally thicker fibers is deposited by a comparable mechanism10.  Inner and outer 

layers remain in contact except in the area of the air sac (Figure 4.8).  It has been 

suggested, on the basis of structural similarities12, that inner and outer membranes 

share a common protein composition. Electron microscopy of stained and dehydrated 

cross sections of ESM fibers reveal an electron dense (medullary) core believed to be 

protein surrounded by a mantle (cortical) region of carbohydrate11,12,17,18.  Deposition 

of the calcium carbonate is the last major step in the synthesis of a bird's egg. 
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Calcification occurs within the shell gland of the oviduct and requires about 20 h for 

completion in the chicken10. 

 

Figure 4.8    Key components of a bird’s egg. The detail is not drawn to scale.  The 

external cuticle layer is largely formed from protein, and may serve as a 

barrier to microbial attack and water loss.  The calcified cell is a 

composite material consisting of calcium carbonate and small amounts of 

proteins that form a fibrous network.  Outer and inner eggshell 

membranes are formed largely from protein fibers (see the Text).  Not 

shown in this illustration is the limiting membrane.  It lies between the 

egg white and the inner membrane.  Illustration taken from: 

https://commons.wikimedia.org/wiki/File:Anatomy_of_an_egg_labeled.j

pg 



 159 

Eggshell membranes are largely proteinaceous.  Both the inner and outer layers 

share similar amino composition, reinforcing the idea that they may be constructed 

from the same ratio of protein types10,19.  One persistent misconception is that the 

ESM fibers are largely made up of collagen.  While collagens have been reported by 

immunochemical staining and by proteomic studies14,18,20-23, our laboratory has shown 

that the presence of collagens as a major fraction of the total protein content of ESM is 

a mathematical impossibility19.  Thus chicken collagens contain less than 1% cysteine, 

whereas amino acid analysis of total ESM show more than 10% cysteine19.  In fact the 

composition of the fibrous layers coincides more closely to a novel disulfide-rich 

structural protein (CREMP) discovered by Kodali et al.19.   CREMP proteins are 

composed of large numbers of very similar 2-disulfide containing modules arranged 

end to end to form structural proteins that are incorporated into the fibers.  

Dissociation of intact ESM proteins from mature fibers proves impossible 

because the components are extensively and irreversibly crosslinked at lysine 

residues24,25.  This oxidative posttranslational modification is initiated by lysyl oxidase 

and leads to the coupling of 4 lysine residues to generate desmosine and isodesmosine 

derivatives10.  The fibers are then resistant to dissolution with standard biochemical 

strategies including exposure to disulfide reducants such as dithiothreitol and 

TCEP19,24,25.   

Since the fibers are not destroyed by disulfide reductants, we attempted to 

visualize ESM fibers via selectively labeling of the reduced ESM with a fluorescent 

maleimide.  However, in preparatory experiments for the paper by Kodali et al.19 these 

workers found that both fluorescein- and rhodamine-maleimides gave unacceptable 

background staining of the native oxidized ESM.  Monobromobimane provided a 
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workable interim solution19 although the fluorescence was modest, and this dye is not 

optimal for modern confocal techniques.  In the next section, we show that the bright 

sulfonated dyes we have used in Chapter 3 are well suited for fluorescence imaging of 

the disulfide rich ESM. Not only do these new findings lay the groundwork for future 

studies intended to use super-resolution confocal methods to probe fiber compositions, 

but these methods provide an additional way to visualize the limiting membrane 

without using electron microscopy. 

 

4.3.2 Experimental Procedures  

4.3.2.1 Preparation of ESM 

Chicken eggs were purchased from a local grocery store. The eggs were 

cracked and the egg shell membrane was peeled away from the shell using gloved 

fingers. Care was taken to maintain the orientation of the membrane so that the side of 

the ESM facing the egg white was uppermost. Pieces were placed on thick plastic 

sheet in this orientation and then cut in rectangles of about 1.5 cm wide and 0.7 cm 

deep. A diagonal notch was cut in the top right of the pieces to allow for the 

orientation of the ESM pieces to be known following washing steps. Care was also 

taken to make sure that the pieces of ESM contained inner and outer layers of fibers 

by avoiding the area around the air sac (Figure 4.8). Membrane rectangles could be 

stored at 4 ℃ for several days. The pieces were then incubated in a range of 

conditions with or without denaturants and reductants (see later) with gentle rocking.  

In some trials the ESM was first sectioned by Ms. Jean Ross at the Delaware 

Biotechnology Institute. Briefly, membranes were taken through a dehydration series 
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starting with 50% ethanol, then 75% and ending with 95%.  Then samples were 

embedded in LR White resin and sectioned with a vibratome. 

 

4.3.2.2 Redox Labeling of ESM 

The membrane pieces in water were first washed with DPBS, and then treated 

with DPBS with or without 5 mM TCEP. Membranes were then washed and incubated 

in DPBS containing 0.5 µM Cy5-maleimide dye diluted with 100 µM NEM for 10 

min. After washing in DPBS, the membranes were mounted on slides and imaged 

using confocal microscopy. In some trials Cy3B-maleimide was used instead of the 

Cy5 dye. It should be noted that ESM contains no free thiols19. 

 

4.3.2.3 Microscope Imaging and Image Analysis 

Fluorescence images were acquired using a Zeiss LSM 780 upright confocal 

microscope in the Biological Department at the University of Delaware. The laser and 

filter sets are as follows: for Cy3B fluorophore, excitation at 561 nm, emission at 560-

630 nm. For Cy5 fluorophore, excitation at 633 nm, emission at 637-758 nm. A 40x 

oil objective was used. Zeiss Zen software was used for image acquisition.  

 

4.3.3 Results and Discussion 

4.3.3.1 Disulfide Staining on Both Sides of Membrane 

ESM was treated with 5 mM TCEP in DPBS for 2 min at room temperature, 

and stained with 0.5 µM Cy5-maleimide and 100 µM NEM for 10 min. Figure 4.9 
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shows the staining of both sides of the membranes. Panel A shows the side facing the 

egg white (inner membrane). There is a layer of granule-like structures on this side 

with some fibers among them. Panel B shows the side facing the egg shell (outer 

membrane). The fibers are the main structures here, with some granules attaching on 

them.  

According to preliminary experiments for the paper by Kodali et al.19, both 

fluorescein- and rhodamine-maleimides gave unacceptable background staining of the 

native oxidized ESM.  However, the sulfo-Cy5-maleimide dye used in the current 

work does not show this problem. Figure 4.10 shows that the labeling is completely 

dependent on the reduction of disulfides using TCEP, thus the signals are not due to 

non-specific binding of dye but a selective labeling of liberated thiols from disulfides 

on the ESM. This is critical to future studies of the distribution of disulfide within the 

fiber cross sections using super-resolution studies. 
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Figure 4.9   Disulfide staining on both sides of egg shell membrane. The red 

channel shows the Cy5-maleimide labeling disulfides, the grey channel is 

the DIC channel. Panel A shows the side facing the egg white. Panel B 

shows the side facing the egg shell. These two images are with the same 

magnification. 
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Figure 4.10  The labeling of ESM by Cy5-maleimide is dependent on pre-

reduction of protein disulfides. The ESM was treated with or without 5 

mM TCEP and stained with 1 µM Cy5-maleimide diluted with 10 µM 

PEG24-maleimide.  

 



 165 

4.3.3.2 GnCl and Reductants Disrupt the Thiol Distribution on the Membrane 

Membranes were then treated with 4 M guanidine HCL (GnCl) with or without 

the disulfide reductant DTT to assess their effect on the structure of ESM. Membranes 

treated with or without protein denaturants and reductants overnight were 

subsequently treated with 5 mM TCEP followed with Cy5-maleimide labeling as 

before. Figure 4.11 shows that 4 M GnCl does not appear to change the structure of 

the inner membrane (the side facing the egg white), but GnCl together with 10 mM 

DTT leads to a major morphological change to the inner face of ESM. Here, there is 

an apparent loss of granules and the appearance of plate-like pieces. Figure 4.12 shows 

the results of another trial, in which sulfo-Cy3B-maleimide was used for SS staining, 

and Cy5-NHS ester was used to label the amino groups. The membrane treated with 

only DPBS shows granule structures in both channel (green for SS, red for NH2), but 

on the membrane treated with GnCl and DTT, the red channel shows regular structure 

while the green channel shows an apparently degraded structure. Treatment with the 

combination of other denaturants (such as SDS) and other reductants (such as THP) 

show similar results (data not shown), indicating that the denaturants and reductants 

together impact the granular structures containing thiols.  
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Figure 4.11  GnCl and reductant disrupts the structure on ESM. ESM pieces were 

treated with DPBS, 4 M GnCl, and 4 M GnCl with 10 mM DTT for 14 h 

with rocking. The treated membranes were reduced by TCEP and stained 

with Cy5-maleimide. 
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Figure 4.12 GnCl and reductant disrupts the morphology of the inner layer of the 

ESM. The green channel shows the SS labeling, the red channel shows 

the NH2 labeling. 



 168 

4.3.3.3 The Limiting Membrane is Disulfide Rich and Proteinaceous 

The dehydrated ESM was embedded in LR White and cut using a vibratome to 

give 1 µM sections (see Experimental procedure). After mounting on glass slides, the 

fixed membranes were treated with or without 5 mM TCEP and stained with Cy5-

maleimide. As before, the staining is selective to thiols since the control does not show 

fluorescence under the confocal microscope (data not shown). Figure 4.13 shows 

several sections of the ESM. Panel A shows a typical section, the white arrow shows 

the limiting membrane next to small granules that are observed previously. The 

organization of the cross section observed here is consistent with what we observed 

before, one side of the ESM contains a layer of small granules embedded in fibers 

while the other side contains thicker fibers with many fewer granules. Panel B 

presents a broken limiting membrane (the white arrows show the broken locations) 

and panel C shows a double layer of limiting membrane (white arrow). This surprising 

feature is shown in an enlargement in Panel D. Panel E shows several 3D 

reconstructions of the ESM sections. This experiment indicates that the limiting 

membrane is a disulfide rich structure next to inner membrane. While the dehydration 

step makes it difficult to know the natural structure of the limiting membrane, the 

staining gives some indication of the organization and features of this interesting 

structure. 
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Figure 4.13  The limiting membrane is a thiol rich structure. The red channel 

shows the SS labeling of the cross sections of ESM. Panel A shows a 

typical cross section of ESM, the white arrow shows the limiting 

membrane. Panel B shows the limiting membrane that is broken (white 

arrows). Panel C shows a double layer of limiting membrane (white 

arrow). Panel D shows a magnification of the double layer area. Panel E  

shows three of the 3D reconstruction of z-stack ESM images. 
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4.3.4 Conclusion 

We show that the bright sulfonated dyes conjugated with maleimide are well 

suited for fluorescence imaging of the disulfide rich ESM. This method can selectively 

label the thiols without the problem of non-specific binding that was encountered 

before and can be a potential way for future studies intended to use super-resolution 

methods to probe fiber compositions. We believe that our studies represent the first 

time that the limiting membrane has been visualized by traditional confocal 

microscopy instead of electron microscopy. 

 

 

 

 



 172 

REFERENCES 

 

1 Riddle, D. L. C. elegans II.  (Cold Spring Harbor Laboratory Press, 1997). 

2 McGhee, J. D. The Caenorhabditis elegans intestine. Wiley interdisciplinary 

reviews. Developmental biology 2 (2013). 

3 Clark, L. & Hodgkin, J. Caenorhabditis microbiota: Worm guts get populated. 

Vol. 14 (2016). 

4 Page, A. The nematode cuticle: Synthesis, modification and mutants.  (2001). 

5 Page, A. P., Stepek, G., Winter, A. D. & Pertab, D. Enzymology of the 

nematode cuticle: A potential drug target? International journal for 

parasitology. Drugs and drug resistance 4, 133-141, 

doi:10.1016/j.ijpddr.2014.05.003 (2014). 

6 Page, Antony P. & Johnstone, Iain L., The cuticle (March 19, 2007), 

WormBook, ed. The C. elegans Research Community, WormBook, 

doi/10.1895/wormbook.1.138.1, http://www.wormbook.org. 

7 Jovine, L., Darie, C. C., Litscher, E. S. & Wassarman, P. M. Zona pellucida 

domain proteins. Annual review of biochemistry 74, 83-114, 

doi:10.1146/annurev.biochem.74.082803.133039 (2005). 

8 Stenvall, J. et al. Selenoprotein TRXR-1 and GSR-1 are essential for removal 

of old cuticle during molting in Caenorhabditis elegans. Proceedings of the 

National Academy of Sciences of the United States of America 108, 1064-1069, 

doi:10.1073/pnas.1006328108 (2011). 

9 Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71-94 (1974). 

10 Burley, R. W. & Vadehra, D. V. The avian egg : chemistry and biology.  

(Wiley, 1989). 

11 Hoffer, A. P. The ultrastructure and cytochemistry of the shell membrane-

secreting region of the Japanese quail oviduct. The American journal of 

anatomy 131, 253-287, doi:10.1002/aja.1001310302 (1971). 

12 Bellairs, R. & Boyde, A. Scanning electron microscopy of the shell membranes 

of the hen's egg. Zeitschrift fur Zellforschung und mikroskopische Anatomie 

(Vienna, Austria : 1948) 96, 237-249 (1969). 

13 Candlish, J. K. The outer membrane of the avian egg shell as a reticular 

structure. British Poultry Science 11, 341-344, 

doi:10.1080/00071667008415824 (1970). 

14 Hamilton, R. M. G. The Microstructure of the Hen's Egg Shell - A Short 

Review. Food Structure 5 (1986). 

15 Hincke, M. T. et al. Identification and localization of lysozyme as a component 

of eggshell membranes and eggshell matrix. Matrix biology : journal of the 

International Society for Matrix Biology 19, 443-453 (2000). 

16 Draper, M. H., Davidson, M. F., Wyburn, G. M. & Johnston, H. S. The fine 

structure of the fibrous membrane forming region of the isthmus of the oviduct 



 173 

of Gallus domesticus. Quarterly journal of experimental physiology and 

cognate medical sciences 57, 297-310 (1972). 

17 A., T. M. & F., R. J. ULTRASTRUCTURE OF THE HEN'S EGG SHELL 

MEMBRANES BY ELECTRON MICROSCOPY. Journal of Food Science 

37, 277-281, doi:doi:10.1111/j.1365-2621.1972.tb05835.x (1972). 

18 Wong, M., Hendrix, M. J., von der Mark, K., Little, C. & Stern, R. Collagen in 

the egg shell membranes of the hen. Developmental biology 104, 28-36 (1984). 

19 Kodali, V. K. et al. A novel disulfide-rich protein motif from avian eggshell 

membranes. PloS one 6, e18187, doi:10.1371/journal.pone.0018187 (2011). 

20 Arias, J. L., Fernandez, M. S., Dennis, J. E. & Caplan, A. I. Collagens of the 

chicken eggshell membranes. Connective tissue research 26, 37-45 (1991). 

21 Arias, J. L. et al. Role of type X collagen on experimental mineralization of 

eggshell membranes. Connective tissue research 36, 21-33 (1997). 

22 Torres, F. G., Troncoso, O. P., Piaggio, F. & Hijar, A. Structure-property 

relationships of a biopolymer network: the eggshell membrane. Acta 

biomaterialia 6, 3687-3693, doi:10.1016/j.actbio.2010.03.014 (2010). 

23 Du, J. et al. Identifying specific proteins involved in eggshell membrane 

formation using gene expression analysis and bioinformatics. BMC genomics 

16, 792, doi:10.1186/s12864-015-2013-3 (2015). 

24 Leach, J. R. M. Biochemistry of the Organic Matrix of the Eggshell1. Poultry 

Science 61, 2040-2047, doi:10.3382/ps.0612040 (1982). 

25 Leach, R. M., Jr., Rucker, R. B. & Van Dyke, G. P. Egg shell membrane 

protein: a nonelastin desmosine/isodesmosine-containing protein. Arch 

Biochem Biophys 207, 353-359 (1981). 

 

 



 174 

 

COPYRIGHTS 

Chapter 1 

Figure 1.11 is reprinted from: 

Thorpe, C. & Coppock, D. L. Generating disulfides in multicellular organisms: 

emerging roles for a new flavoprotein family. J Biol Chem 282, 13929-13933, 

doi:10.1074/jbc.R600037200 (2007). 

 

Chapter 2 

Figures and text are largely adapted from: 

Israel BA, Jiang L, Gannon SA, & Thorpe C. Disulfide bond generation in mammalian 

blood serum: detection and purification of quiescin-sulfhydryl oxidase. Free Radic 

Biol Med 69: 129–135 (2014). 

 

Chapter 4 

Figure 4.2 is adapted from: 

Clark, L. & Hodgkin, J. Caenorhabditis microbiota: Worm guts get populated. Vol. 14 

(2016). 

Figure 4.3 is reprinted from: 

Appendix A 



 175 

Page, Antony P. & Johnstone, Iain L., The cuticle (March 19, 2007), WormBook, ed. 

The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.138.1, 

http://www.wormbook.org. 

 

http://www.wormbook.org/


 176 

 

 

 

 

 

 

 

 


