Table S1. Co-occurrence of production shocks with component shocks. The value "Y/N" indicates whether a production shock co-occurred with a component shock or not. "all" indicates that shocks occurred in all components in the same year, while "none" indicates that no shocks were detected for all components.

4

	harv	estable	_	_								a					
	fract (HF)	ion	plan (PA)	ted are	a	vield	l	HF &	; PA	vield	& PA	HF & vield	;	all		none	•
production shock	Y	N	Y	N		Y	N	Y	N	Y	N	Y	N	Y	N	Y	N
barley	71	921	139	۲ ۲	290	101	704	10	12	10	11	67	155	6	2	199	36389
corn	195	2775	509	22	267	590	1263	75	98	77	20	435	249	24	5	627	80489
cotton	85	608	81	e e	321	80	349	12	16	12	6	33	35	2	2	204	20643
sorghum	44	871	157	c U	366	61	607	10	20	2	4	42	117	0	0	158	37058
soybeans	93	2630	390	10)33	737	1475	41	53	54	12	175	258	10	2	632	67096
spring																	
wheat	14	356	98]	165	138	487	3	4	17	5	42	44	0	0	137	18786
winter																	
wheat	283	2772	484	11	156	241	1916	91	51	32	42	104	311	13	4	642	87275

6 Table S2. Results of Mann Kendall monotonic trend test for the changing relative

7 contribution of the three components through time. Values measure the monotony of

8 the slope in Figure 3. An asterisk indicates that the trend is statistically significant

9 (P<0.01, two-sided; harvestable fraction of corn: p < 0.001; yield of cotton: p = 0.009).

10

	har planted area frae	vestable yi ction	eld
barley	0.01	-0.07	-0.02
corn	-0.16	0.39 *	-0.05
cotton	0.13	0.17	-0.32 *
sorghum	-0.09	0.01	0.12
soybeans	-0.05	-0.19	0.06
spring wheat	0.15	0.00	-0.16
winter wheat	0.14	-0.02	-0.09

11

Indicator	Variable	Abbreviation	Description			
type	name					
Climate	Mean	tmp	Mean monthly temperature during the			
variability	temperature		growing season			
	Mean	pre	Mean monthly precipitation during the			
	precipitation		growing season			
Climate	Max	TXx	Maximum value of daily maximum			
extremes	temperature		temperature during the growing season			
	Minimum	TNn	Minimum value of daily minimum			
	temperature		temperature during GS			
	Warm day	TX90p	Percentage of days during the growing			
	frequency		season with daily maximum			
			temperature above the 90th percentile			
	Cold night	TN10p	Percentage of days during the growing			
	frequency	Ĩ	season with daily minimum			
			temperature below the 10th percentile			
	Maximum 5-	Rx5day	Maximum 5-day consecutive rainfall			
	day		intensity during the growing season			
	precipitation					
	intensity					
	Diurnal	dtr	Mean diurnal temperature range			
	temperature		during the growing season			
	range	-				
	Frost day	\mathbf{frs}	Mean monthly frost day (daily			
	frequency		minimum temperature <0°C) frequency			
			during the growing season			
	SPI-6	spi-6	Mean SPI-6 (standard precipitation			
			index for 6-month time interval) during			
			the growing season			
	SPEI-6	spei-6	Mean SPEI-6 (standardized			
			precipitation evapotranspiration index			
			for 6-month time interval) during the			
			growing season			

1	13	Table S3.	Description	of climate	variable
1	13	Table S3.	Description	of climate	variable

Table S4. The top-ranked feature in the importance rank for each random forest
model. The features for barley indicate the dominance of climate conditions for spring
barley.

Component factors	Planted area of this year	Harvestable fraction	Yield	Harvested area	Planted area of the next year
barley	TN10p_spr	dtr_spr	TX90p_spr	TN10p_spr	TN10p_spr
corn	TX90p	TX90p	TX90p	TX90p	tmp
cotton	TX90p	TX90p	TX90p	tmp	tmp
sorghum	TNn	TX90p	TX90p	TX90p	TX90p
soybeans	tmp	TXx	TX90p	tmp	tmp
spring wheat	TN10p	tmp	TX90p	TX90p	tmp
winter wheat	tmp	tmp	tmp	TX90p	tmp

22 Table S5. Comparison of explained variance (R²) for all agricultural factors of corn.

23 To test the sensitivity of our results to potential uncertainty in planting and

24 harvesting dates, Random Forest regressions were applied with a shift in growing

25 period (GP) of +/-1 month. GP-1 represents shifting corn's planting/harvesting dates

26~ by 1 month, and GP+1 represents shifting corn's planting/harvesting dates by +1 $\,$

27 month.

	GP	GP-1	GP+1
harvestable fraction	0.18	0.17	0.17
planted area of the next			
year	0.27	0.28	0.29
planted area	0.28	0.29	0.3
harvested area	0.26	0.27	0.28
yield	0.38	0.39	0.38

Fig. S1. Proportion of total production shocks co-occurring with the shocks in each individual component. "PA & HF" represents production shock co-occurrence with the area-related factors (i.e., planted area and harvestable fraction). The numbers can be lower than the sum of "planted area" and "harvestable fraction" as these two can cooccur. Note that the numbers in this plot differ slightly from those in Fig.2, as this figure represents the fraction of total production shocks, whereas Fig. 2 covers only the production shocks that have co-occurring shocks.

38

39 Fig. S2. Comparisons of the percentage of production shocks that coincide with their

40 component shocks between irrigated and rain-fed conditions in corn, soybeans, and

41 winter wheat. "irr" stands for irrigated condition, "nir" represents non-irrigated (i.e.,

42 rainfed) conditions. Shocks in multiple components could happen simultaneously.

43 The solid brackets indicate yield-related shocks, and the dashed brackets include 44 area-related shocks. The fraction of total detected production shocks that did not have

area-related shocks. The fraction of total detected production shocks that did not have
co-occurring shocks with any of the three components are not shown in this figure.

47 Fig. S3. Annual contribution from each component to shock-related production losses.

48 This figure shows the line plot version of Fig. 2. The gap years (e.g., 1979 for cotton)

49 mean that no production shock was detected across all counties for that crop in that50 year.

Fig. S4. Annual contribution of harvested area to shock-related production losses.

60 Fig. S5. Explained variance for all agricultural factors from Random Forest regressions.

Fig. S6. An example of steps¹identifying harvestable fraction¹shoets. For the lowestable fraction in the lowestable fractin the lowestable fraction in the lowestable fraction in t

- 66 smoothed line.

x1 x1

residuals (t) residuals (t)