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Abstract 

The objective of this study is to predict road flooding risks based on topographic, hydrologic, and temporal precipita‑
tion features using machine learning models. Existing road inundation studies either lack empirical data for model 
validations or focus mainly on road inundation exposure assessment based on flood maps. This study addresses this 
limitation by using crowdsourced and fine‑grained traffic data as an indicator of road inundation, and topographic, 
hydrologic, and temporal precipitation features as predictor variables. Two tree‑based machine learning models 
(random forest and AdaBoost) were then tested and trained for predicting road inundations in the contexts of 2017 
Hurricane Harvey and 2019 Tropical Storm Imelda in Harris County, Texas. The findings from Hurricane Harvey indi‑
cate that precipitation is the most important feature for predicting road inundation susceptibility, and that topo‑
graphic features are more critical than hydrologic features for predicting road inundations in both storm cases. The 
random forest and AdaBoost models had relatively high AUC scores (0.860 and 0.810 for Harvey respectively and 
0.790 and 0.720 for Imelda respectively) with the random forest model performing better in both cases. The random 
forest model showed stable performance for Harvey, while varying significantly for Imelda. This study advances the 
emerging field of smart flood resilience in terms of predictive flood risk mapping at the road level. In particular, such 
models could help impacted communities and emergency management agencies develop better preparedness and 
response strategies with improved situational awareness of road inundation likelihood as an extreme weather event 
unfolds.
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1 Introduction
Road networks play a critical role in the transportation 
of goods, access to food and healthcare, and economic 
activities (Pregnolato et al. 2017). Road inundations dur-
ing major flood and storm events reduce the access of 
impacted communities to essential facilities such as hos-
pitals (Dong et  al., 2020a) and grocery stores (Podesta 
et al., 2021), and present challenges for emergency man-
agement agencies to prepare, design and implement 
response strategies (Yuan et al., 2021a). In addition, driv-
ers may attempt to navigate flooded urban roads, result-
ing in a loss of life when rescue efforts fail (Drobot et al., 
2007). Therefore, the ability to predict road inundations is 
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significant in enhancing emergency managers’ situational 
awareness regarding the likelihood of flood-disrupted 
access to critical facilities (e.g., hospitals). The objective 
of this study is to create and test machine learning mod-
els for road inundation probabilities prediction based 
on topographic, hydrologic, and temporal precipitation 
features by using crowdsourced Waze reports and fine-
grained traffic data as indications of road inundations. 
The rest of this section will review the relevant literature 
and discuss their limitations in predicting road inunda-
tion probabilities to establish the impetus for this study.

1.1  Hydraulic and hydrologic models for urban flood 
inundations

Various studies have focused on urban flood inunda-
tion with hydraulic and hydrologic (H&H) models (Chen 
et  al., 2018; Jamali et  al., 2018), such as 1-D modeling 
with HEC-RAS (Chaudhry et  al., 2018), and 2-D mod-
eling with an urban inundation model (Chen et al., 2007) 
and LISFLOOD‐FP (Bates & de Roo, 2000). However, 
H&H models, such as an urban inundation model and 
LISFLOOD‐FP need to solve the full shallow water equa-
tions (SWEs) and further require a considerable amount 
of computation resources (Jamali et al., 2019). Given the 
complexity and high computational demands of these 
models, recent studies have attempted to build models 
that do not resolve SWEs. Jamali et  al., (2019) catego-
rized these latter H&H models into two categories based 
on their complexity: models based on cellular automata 
(CA) and models based on topographic depressions. CA-
based models divide flood domains into a set of regular 
grid cells and require small time steps for flood inunda-
tion simulations but are also computationally intensive 
(Liu et  al., 2015). Models based on topographic depres-
sions are referred to as rapid flood models in Jamali et al., 
(2019), and depend mainly on topographic features and 
the continuity equation for urban flood inundation sim-
ulation but lack temporal features such as precipitation 
(Nguyen & Bae, 2020). Studies integrating H&H models 
with machine learning approaches (Hou et al., 2021) use 
the flood depth outputs from hydrodynamic models as 
training datasets and rainfall data as the primary predic-
tor (Hou et  al., 2021), however limited observed urban 
flood inundation data makes validation difficult (Smith 
et al., 2012). For instance, Lyu et al., (2019) used limited 
public reports of flood incidents from websites such as 
Google and Baidu and from literature (Huang et al., 2017; 
Yin et al., 2016b) to validate their simulated urban flood 
inundations in Shanghai. Another limitation for H&H 
models is that outputs refer mainly to the general pattern 
of flood inundations over large metropolitan areas (Lyu 
et al., 2019; Yu et al., 2016), while struggling to accurately 
predict small-scale flooding such as road inundations.

Despite these limitations, H&H models have been 
extensively used to estimate road inundations (e.g., Vers-
ini, 2012). For example, Coles et  al., (2017) employed 
the hydrodynamic flood inundation model (FloodMap) 
to simulate two pluvial flood events in York, UK and 
then, identified the regions with restricted accessibility 
of emergency responders. Using a road network analy-
sis, their study evaluated emergency service accessibility. 
Yin et al., (2016a) extended this approach by integrating 
a hydrodynamic model (FloodMap HydroInundation 2D) 
and flood depth-dependent measures to assess the road 
inundations in a pluvial flash flood event in Shanghai, 
China. Their hydrodynamic model was based on rain-
fall scenarios from the intensity–duration–frequency 
relationships of a Shanghai rainstorm and the Chicago 
Design Storm. But again, their simulated flood inunda-
tions cannot be validated with observed flood inunda-
tion data. A prior study by Versini (2012) attempted to 
overcome this limitation by using historical road inun-
dation data to define four road inundation risk levels 
(high, medium, low, and safe). These risk levels were then 
evaluated against simulated discharges from a hydro-
logical model and used to establish a real-time flood 
warning system. However, the models in these stud-
ies provide insight only into road inundation exposure 
based on historical road inundations; they do not deter-
mine a continuous road-level inundation probability. 
This limitation is due partly to the dearth of road-level 
inundation data to verify the road exposure insights 
obtained from H&H models (e.g., Hou et  al., 2021; Lyu 
et  al., 2019; Smith  2012). Ground-based observations 
of road-level inundations are essential to validate H&H 
models and further evaluate their performances. On the 
other hand, there is a lack of integration between topo-
graphic features of roads (e.g., elevation), water depth, 
and velocity estimates from H&H models (Versini, 2012). 
Topographic features such as elevation can influence the 
flow directions of flood water and water depth, which 
determines whether vehicles and people can be stuck in 
the flood. Velocity factors such as the roughness of the 
road surface can impact the accumulation of flood water 
on the road segments. Accordingly, models integrating 
these variables are particularly needed for predicting 
road-level inundation probabilities. This limitation could 
be potentially addressed with the use of crowdsourced 
and fine-grained traffic data that provide reliable indi-
cations regarding the inundation status of road sections 
during storm events and with the development of topo-
graphic characterization of roads.

1.2  Point of departure
The motivations of this study are due to the necessity of 
road inundation prediction and the limitation of existing 
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H&H methods. In particular, the limitations of the exist-
ing H&H methods include: (i) requiring high computa-
tional capacity due to their calculation complexity, (ii) 
insufficient road-level flood inundations reports and 
records to validate the developed models, and (iii) lack 
of integration features other than topographic features. 
To address these limitations, similar to the methods 
used by Mobley et  al., (2021) and Lee et  al., (2017), we 
employ three categories of input features for random for-
est and AdaBoost models: (i) topographic features (e.g., 
proximity to streams and coastlines); (ii) hydrologic fea-
tures (e.g., land surface roughness); and (iii) temporal 
precipitation features. Referring to Lyu et al., (2019) and 
Yu et  al., (2016), we use crowdsourced and traffic sen-
sor data to detect road inundation status as a depend-
ent variable for these machine learning models. That is, 
this study aims to predict road inundation probabilities 
based on topographic, hydrologic, and temporal precipi-
tation features by using crowdsourced Waze reports and 
fine-grained traffic data as indications of road inunda-
tions. Using 2017 Hurricane Harvey and 2019 Tropical 
Storm Imelda in Harris County, Texas, as case studies, 
we train and test these two models for predicting road 
inundations.

2  Methods and materials
Ten input variables within three feature categories—
topographic, hydrologic, and precipitation features—
were created using secondary data sources, and the 
output variable, road inundation status, was developed 
using Waze reports and INRIX traffic data. Waze soft-
ware works similarly to Google Maps and provides sat-
ellite navigations. Users can report incidents and traffic 
conditions on the roads through Waze. Compared with 

the literature (Lyu et  al., 2019; Yu et  al., 2016) that uti-
lized limited public reports of flood incidents to identify 
inundation status, the crowdsourced data obtained from 
Waze in this study has significantly more records, which 
can be helpful for model training. In addition, Waze data 
provides inundation information reported by road users 
that are directly related to the objective of this study. 
INRIX is a private company that collects location-based 
traffic speed data from both sensors and vehicles. INRIX 
traffic data includes road names, segment ID, directions, 
geographic locations defined by its head and end coor-
dinates, intersection or not, length and average traffic 
speed at a five-minute interval. Due to limited data avail-
ability including the high costs of INRIX traffic data and 
no Waze data for Hurricane Harvey in 2017 (Waze data 
become available since 2018), we used INRIX traffic data 
for the Harvey and Waze reports for Imelda. In particu-
lar, we compared the model prediction stability for each 
case. Two commonly used tree-based methods, random 
forest and AdaBoost models, were employed for the pre-
diction of road inundation. The framework is illustrated 
in Fig. 1.

2.1  Case study region
Harris County, home to Houston, is among the most 
flood-prone counties in the United States due to its 
coastal location, burgeoning urban development, and 
the lack of flood control infrastructure development in 
parallel with the development and population growth 
(Dong et  al., 2020b; Qian, 2010). Hurricane Harvey in 
2017 was one of the most devastating floods experi-
enced by Harris County and led to extensive economic 
and social consequences (NOAA, 2017). Figure  2 
illustrates the flooded areas in Harris County during 

Fig. 1 Road flood risk prediction framework of machine learning models
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Hurricane Harvey. The flood inundation data comes 
from the Federal Emergency Management Agency 
(FEMA 2018). Similarly, Tropical Storm Imelda caused 
one of the most devastating floods in decades experi-
enced in Southeast Texas. After its landfall on Septem-
ber 19, 2019, widespread flooding occurred in Harris 
County, with over 40 inches of rainfall recorded, and 
many of the local rivers and bayous overflowed and 
inundated a vast area in the county. Therefore, Harris 
County is an ideal testbed for this study.

2.2  Data and feature descriptions
2.2.1  Input features
Figure 1 shows the three categories of features used for 
predicting road flood risk: (1) topographic, i.e., eleva-
tion, coastal and stream proximity, and height above 
nearest drainage, (2) hydrologic, i.e., roughness, imper-
viousness of surface, and the saturated hydraulic con-
ductivity, and (3) precipitation features, i.e., total rainfall 
in 1 h, 2 h, and 24 h. The length of the road segments in 
our study areas ranges from 800 to 1,600  m; therefore, 
the features of each road segments are computed based 
on their average values. Table  1 introduces how these 
features were collected and computed, their scales, and 
main references.

2.2.2  Road flood status
2.2.2.1 Waze reports data on  tropical storm 
imelda Tropical Storm Imelda, the fifth-wettest tropi-
cal cyclone on record in the United States, made landfall 
in Harris County on September 19, 2019. Waze, a mobile 
navigation application, collected time-stamped and loca-
tion-specific flood incident reports (i.e., road closures 
due to flooding) during Tropical Storm Imelda. We used 
Waze flood report data for the assessment of proposed 
predictive road flooding during Imelda. A total of 41,501 
weather hazard or road closure related reports were reg-
istered in Harris County during Imelda (5-day), encapsu-
lating flooding alerts in 4,980 road segments (red points 
in Fig. 3a). For the training dataset, we used the random 
sample method for the random selection of equivalent-
size non-flooded roads from county road data.

2.2.2.2 INRIX traffic data on  hurricane harvey We 
acquired traffic data from August 20 to September 11, 
2017 for 19,712 road segments in Harris County from 
INRIX. The INRIX traffic data includes the average traf-
fic speed on individual road segments at 5-min intervals 
and the segments’ corresponding historical average traf-
fic speed. Road segments with null value as average traffic 
speed were assumed to be flooded in Hurricane Harvey 
(Fan et al., 2020; Yuan et al., 2021b, 2021c). Accordingly, 

Fig. 2 Context of Harris County, Texas and flooded areas during Hurricane Harvey

Version of Record at: https://doi.org/10.1007/s43762-023-00082-1



Page 5 of 16Yuan et al. Computational Urban Science            (2023) 3:15  

we recorded a road as flooded when it had a null value for 
average traffic speed. We collected data on 1,063 flooded 
roads during Hurricane Harvey. The remaining 18,649, 
roads were presumed to be non-flooded roads. Identify-
ing flooded and non-flooded roads is based on the aver-
age traffic speed; therefore, a non-flooded road that is 
elevated and not affected by flooding may appear in the 
flooding areas shown in Fig. 2. The distribution of flooded 
and non-flooded roads is illustrated in Fig. 3b. To create 
a balanced dataset for implementing the random forest 

model, we utilized the random sample function to select 
the equivalent-size dataset of non-flooded roads.

2.3  Machine learning models
Based on the concept of ensemble learning, two common 
techniques—bagging and boosting—were proposed for 
the tree-based models (Sutton, 2005). The bagging tech-
nique divides the initial training dataset into several sub-
sets and choses them randomly with replacements to train 
their corresponding decision trees. As a result, the bagging 

Table 1 Summary of input features

Features Description Resolution Data source References

Elevation Elevation of road segments 10 m United States Geological Survey 
3D Elevation

Tehrany et al., (2019); Dodangeh 
et al., (2020); Darabi et al., (2019)

Coastal and stream proximity Euclidean distances to the coast 
and stream

10 m National Hydrography Dataset Brody et al., (2015)

Height above nearest drainage 
(HAND)

The height of a location above 
the nearest stream

10 m University of Texas’ National 
Flood Interoperability Experi‑
ment continental flood inunda‑
tion mapping system

Garousi‑Nejad et al., (2019); Liu 
et al., (2016)

Roughness Manning’s roughness coefficient 
of road surface

30 m 2016 National Land Cover Data‑
base (NLCD) land cover

Kalyanapu et al., (2009); Anderson 
et al., (2006); Thomas and Nisbet, 
(2007); Acrement and Schneider, 
(1984)

Imperviousness Percent impervious of road 
surface

30 m 2016 NLCD land cover Gori et al., (2019); Sebastian et al., 
(2019); Lee and Gharaibeh, (2020)

Saturated hydraulic conductivity Soil water transmission capabil‑
ity

30 m Natural Resources Conservation 
Service’s Soil Service Geographic 
Database

Janizadeh et al., (2019); Bui et al., 
(2019); Hosseini et al., (2020); 
Rawls et al. (1983)

Precipitation in 1 h, 2 h, 24 h Total rainfall at one‑hour 
intervals for periods of 1 h, 2 h, 
and 24 h prior to detection of a 
flooded road

30 m National Weather Service Gauge 
Corrected Quantitative Precipi‑
tation Estimate dataset

National Oceanic and Atmos‑
pheric Administration

Fig. 3 Geographic distributions of flooded and non‑flooded roads from Waze reports for Tropical Storm Imelda (3a) and from INRIX for Hurricane 
Harvey (3b). Each point represents the location of a road segment
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technique produces an ensemble of different tree models. 
The random forest introduces the random selection of 
features within the training dataset (Prasad et  al., 2006). 
We implemented the random forest model to predict the 
road flooding risk. In contrast to the subset replacement 
method of the random forest model, boosting uses the 
same dataset to build decision trees for all iterations and 
revises the weights of inputs in each iteration. The boost-
ing technique analyzes the data of a simple decision tree 
for errors. Consecutive trees increase the weight of an 
input misclassified by the previous tree and are more likely 
to classify it correctly. As a result, the boosting technique 
output is an ensemble of different tree models. As the 
first successful implementation of boosting technique for 
binary classification, AdaBoost (Schapire, 2013), the most 
popular forest-based boosting method, has demonstrated 
strong predictive power for flood risk (Coltin et al., 2016; 
Liu et al., 2017). We compared the performances of Ada-
Boost with that of the random forest model for predicting 
road flood risks with our defined features.

In particular, to properly use the random forest, we 
tuned two critical parameters to reduce error rates, the 

number of trees and tree depth. The number of trees 
defines forest size. Increasing forest size can reduce errors 
and involve more features for decisions (Liaw & Wiener, 

2002); however, such an increase requires a greater com-
putational demand. Tree depth refers to the longest path 
between the root node and the leaf node. The greater the 
tree depth, the more splits are expected, which captures 
more information from the feature data; however, a very 
deep tree could result in overfitting. Referring to Mobley 
et  al. (2021), we initially set the number of trees to 200 
and the tree depth to 90 in our model.

To enable variable selection for enhancing the gener-
alizability of models for predicting road inundation, we 
used the aggregated decrease in Gini impurity to evaluate 
feature importance. A greater aggregated decrease in the 
Gini impurity signifies a more important role of the fea-
ture (prediction variables).

This research implemented the 10-iteration fivefold 
cross-validation process to evaluate the performances 
of random forest and AdaBoost models for predicting 
road flooding risk in both Hurricane Harvey and Tropi-
cal Storm Imelda. We used 80% of our initial datasets for 

model training and validation and 20% for model test-
ing in both cases. To maintain the high-level random-
ness for each fold split of training and test datasets, we 
employed the train_test_split function from the scikit-
learn library. To evaluate the performances of random 
forest and AdaBoost models, we used average accuracy, 
and average area under the curve (AUC) of the receiver 
operating characteristic (ROC) in the 10-iteration five-
fold cross-validation process. We used the flooded roads 
as a positive class for the probability predictions. Accu-
racy reflects the percentage of correctly predicted roads 
with flood risks and those with non-flood risks (Eq. (1)). 
Precision indicates the percentage of correctly predicted 
roads with flood risks over roads predicted with flood 
risks (Eq. (2)). Sensitivity, as known as Recall, denotes the 
percentage of correctly predicted roads with flood risks 
over roads indeed with flood risks (Eq. (3)). The AUC of 
the ROC reveals the estimates of the probability that the 
models will correctly predict flooded roads as roads with 
flood risks. With the prediction results, the ROC curve 
could be defined by the relationship between true posi-
tive and false positive rates (Eq. (3) through (5)).

where true positive denotes the situation where models 
correctly predicted the road flooding risk, while true neg-
ative is for the result of correct prediction of non-flood 
risks of roads; false positive refers to the outcome where 
models incorrectly predicted the road flooding risk, while 
false negative is for the result that models incorrectly pre-
dicted the non-flooded status of roads.

3  Results
3.1  Model performances of random forest and AdaBoost
With the 10-iteration fivefold cross-validations, we com-
puted the average of accuracy and AUC for the model 

(1)Accuracy =
Truepositive + Truenegative

Truepositive + Truenegative + Falsepositive + Falsenegative

(2)Precision =
Truepositive

Truepositive + Falsepositive

(3)Sensitivity(Recall) = Truepositiverate =
Truepositive

Truepositive + Falsenegative

(4)Specificity =
Truenegative

Truenegative + Falsepositive

(5)

Falsepositiverate = 1 − Specificity =
Falsepositive

Truenegative + Falsepositive
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performance (Table  2). We also recorded the variations 
of each evaluation matrix (accuracy and AUC ranges in 
Table 2). The random forest model showed better perfor-
mance for predicting road flooding risks for both storm 
events than the AdaBoost model in terms of accuracy. 
The random forest model demonstrated higher accuracy 
(0.900 versus 0.764) for predicting road inundation in 
Hurricane Harvey than that for Tropical Storm Imelda, 
which is the same as observed in the AdaBoost model. In 
terms of AUCs, both random forest and AdaBoost mod-
els also performed better for predicting road inundation 
for Hurricane Harvey than for Tropical Storm Imelda. 
This can be explained by the differences between Waze 
reports and INRIX traffic data. Waze reports were col-
lected from Waze users, while INRIX traffic data was 
collected mainly by sensors. Humans are more sensitive 
to floods than are sensors, and as such, they may report 
flood risks on Waze when shallow water was found on 
the roads. Using roads with null values for average traffic 
speed to denote roads with flood risks in Hurricane Har-
vey is a more stringent standard (as most traffic data was 
collected by sensors) than the voluntary and subjective 
Waze reports, because roads identified with flood risks 
derived from Waze reports during Tropical Storm Imelda 
might still be available for traffic use.

Using the average of the calculated results of true posi-
tive and false positive rates from the 10-iteration fivefold 
cross-validation process, we created ROC curves from ran-
dom forest and AdaBoost models for both events (Fig. 4). 
The random forest and AdaBoost average AUC were 0. 
790 ± 0.040 and 0.720 ± 0.060 respectively for Tropical 
Storm Imelda, and 0.860 ± 0.100 and 0.810 ± 0.140 respec-
tively for Hurricane Harvey (Table 2). In other words, the 
chance of the random forest model correctly predicting a 
road with a high probability of being inundated in Hurri-
cane Harvey is 86.0%, while that of the AdaBoost model is 
81.0%. Meanwhile, the random forest model had a prob-
ability of 79.0% to accurately predict road flooding risk 
in Tropical Storm Imelda; the AdaBoost model had only 
72.0%.

Furthermore, our results demonstrate better perfor-
mance than existing studies, which shows the capabil-
ity of our models to predict road flooding risk. Lee et al., 

(2017) used both random forest and boosted tree models 
to predict the spatial distribution of flood risks in the Seoul 
metropolitan area. They used the input features such as 
distance from the river (m), slope length factor (SLF), topo-
graphic wetness index (TWI), stream power index, and 
digital elevation model (DEM). Their regression computa-
tions of random forest and boosted tree models showed 
AUCs of 0.7878 and 0.7755, respectively. Compared with 
Lee et  al., (2017), our random forest models had higher 
AUCs for both Hurricane Harvey (0.860) and Tropical 
Storm Imelda (0.790). For comparison of boosted tree and 
AdaBoost models, the AUC for Hurricane Harvey (0.810) 
is greater, while that of Tropical Storm Imelda (0.720) is 
less than that in Lee et al. (2017). The better performances 
of the same (random forest) and similar (AdaBoost versus 
boosting tree) models in this study may be owing to the 
improved selection of input features such as the temporal 
precipitation features.

3.2  Model stability of random forest
Given that the random forest model demonstrated better 
performance than the AdaBoost model, we further tested 
its stability with varying probability thresholds for detect-
ing road inundation. The default probability threshold 
is 0.50: if the predicted flood probability of a road is less 
than 0.50, the random forest model denotes this road 
as the non-flooded class (i.e., negative class); otherwise, 
that road is categorized as flooded (i.e., positive class). 
False negative prediction refers to the result that roads 
with flood risks are incorrectly predicted as non-flooded 
roads, which could falsely inform residents to shelter in 
place or travel through high-flood-risk roads. There-
fore, we tested the stability of the random forest model 
by adjusting the probability thresholds from 0.40 to 0.60 
with a step of 0.01 and observing the variations of false 
negative percentages for both storm events. The false 
negative percentage was computed using the Eq. (6). For 
each probability threshold, the fivefold cross-validation 
process was implemented and the average false negative 
rate was calculated. With computed false negative rates, 
we plot their curves for Tropical Storm Imelda (green 
curve) and Hurricane Harvey (blue curve) in Fig. 5.

Table 2 Results of evaluation matrix for the model performances

Evaluation matrix Random forest AdaBoost

Tropical Storm Imelda Hurricane Harvey Tropical Storm Imelda Hurricane Harvey

Accuracy 0.764 0.900 0.689 0.857

Accuracy (range) 0.755 ± 0.015 0.895 ± 0.015 0.690 ± 0.020 0.855 ± 0.025

AUC 0.790 0.860 0.720 0.810

AUC (range) 0. 790 ± 0.040 0.860 ± 0.100 0.720 ± 0.060 0.810 ± 0.140
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Figure  5 reveals that the random forest model had a 
stable performance for predicting road inundations 
during Hurricane Harvey. With a probability thresh-
old ranging from 0.40 to 0.60, we observed the false 

(6)Falsenegativepercentage =
falsenegative

truepositive + falsepositive + falsenegative + truenegative

negative percentage changes from 0.16 to 0.19. For 
Tropical Storm Imelda, we discerned a significant vari-
ation of false negative percentage (from 0.08 to 0.28) 
when adjusting the probability threshold. When the 

Fig. 4 Part 1: Receiver operating characteristic (ROC) curves for 10‑ iteration fivefold cross‑validation with random forest model for Tropical Storm 
Imelda (a) and Hurricane Harvey (b); Part 2: Receiver operating characteristic (ROC) curves for tenfold cross‑validation with AdaBoost model for 
Tropical Storm Imelda (c) and Hurricane Harvey (d)
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probability threshold is 0.50, the false negative per-
centage is 0.16 which is the lower boundary of the false 
negative percentage range of Hurricane Harvey. There-
fore, setting the probability threshold as 0.50 is reason-
able for the random forest model for Hurricane Harvey, 
while selecting the probability threshold from 0.40 to 
0.50 would yield a lower false negative percentage for 
Tropical Storm Imelda. In addition to the considera-
tion of false negative percentage, precision (Eq. (2)) and 
recall (Eq. (4)) could also be considerations when select-
ing the probability threshold for Tropical Storm Imelda. 
For example, a threshold leading to higher recall identi-
fies more roads with flood risks correctly without con-
sidering false-positive predictions; thus, it’s a relatively 
conservative threshold.

3.3  Feature importance for random forest
This section illustrates the rank of feature importance by 
random forest model for Tropical Storm Imelda (Fig. 6a) 
and Hurricane Harvey (Fig. 6b). A significant difference 
between these ranks is the rank of precipitation features. 
The precipitation features are a stronger indicator of road 
flooding risk during Hurricane Harvey than that in Trop-
ical Storm Imelda. National Hurricane Center reports 
(Blake & Zelinsky, 2018; Latto & Berg, 2020) indicate 
that the rainfall volume brought by Hurricane Harvey is 
much larger than that of Tropical Storm Imelda (60.58 
inches vs. 44.49 inches). Accordingly, rainfall could have 
resulted in more severe flood risks in Hurricane Harvey. 
Consequently, precipitation features have higher ranks 
of importance during Hurricane Harvey than Tropical 
Storm Imelda.

In addition to precipitation features, ranks of topo-
graphic and hydrologic features remain almost constant 
for both storm cases, excluding the ranks of stream prox-
imity (i.e., Distance2Stream) and height above nearest 
drainage (HAND). The general trend is that topographic 
features are stronger predictors of road inundation than 
hydrologic features for both events using the random 
forest model. Specifically, factors influencing the infil-
tration of stormwater into the ground, such as saturated 
hydraulic conductivity of soil (AverageKSAT), impervi-
ous surface (impervious), and roughness (AverageRough-
ness), were poor predictors of road inundation in both 
storms, whereas factors influencing where water tends to 
accumulate such as Elevation, HAND, Distance2Coast, 
Distance2Stream, were all strong predictors of road inun-
dation. This finding is consistent with existing studies, as 
elevation is one of the frequently used factors for flood 
hazard simulations (Mobley et  al., 2019), and proximity 
to coast was found to be a strong indicator of flood dam-
age (Brody et al., 2015).

3.4  Prediction results
With 20% of the test dataset used for both cases, we pre-
dicted the flooding probabilities of these roads using the 
random forest model (Fig. 7). Points with varying colors 
from blue to red represent roads with low to high prob-
abilities of getting flooded. Figure  7a (Tropical Storm 
Imelda) illustrates that roads at high risk of being flooded 
are mainly in the center of Houston, while Fig. 7b (Hur-
ricane Harvey) shows those with high flood-risk levels 
mainly surround the boundary of Harris County. As we 
can see in Fig. 7, red-shaded roads present a very high risk 

Fig. 5 False negative percentages from fivefold cross‑validation with random forest model by varying probability thresholds for Tropical Storm 
Imelda (green curve) and Hurricane Harvey (blue curve). FN means false negative
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of flooding, suggesting communities should avoid these 
roads for traveling or evacuation, while the blue ones are 
relatively safe as they are less likely to be flooded. Meyer-
land neighborhood (the green-shaded region in Fig. 7b) 
is almost entirely located within the 100-year floodplain 
and was inundated in Hurricane Harvey. From the pre-
dicted probability in Fig. 7b, we can see one road within 
this region has a probability of 57.30% being inundated.

According to the predicted probabilities (Fig. 7), we can 
denote the predictive flooding status of roads with proper 
probability thresholds. Referring to Fig. 5, we used prob-
ability thresholds of 0.45 and 0.50 to detect inundated 
roads (i.e., positive class) during Tropical Storm Imelda 
and Hurricane Harvey, respectively. Then, we showed 
examples of the prediction results for both cases in Fig. 8, 
where the green links represent roads with true positive 
predictions, red for false negative predictions, brown 
for false positive predictions, and blue for true negative 
predictions.

4  Discussions
This study demonstrates that roads with high flood-risk 
potential can be accurately predicted using topographic, 
hydrologic, and temporal precipitation features in the 
context of two storm cases in Harris County. For pre-
dicting road flooding probability, precipitation features 
for extreme storm events (Hurricane Harvey) are more 
important predictors than topographic and hydrologic 
features. In addition, topographic features (elevation, 
coastal and stream proximity and height above nearest 
drainage) generally have greater influence than hydro-
logic features (roughness, imperviousness, and saturated 
hydraulic conductivity) for predicting road inundations, 
which is generally consistent with the results reported 
by Mobley et al., (2021) and Lee et al., (2017). Compared 
with existing studies using random forest and boosted 
tree models for flood risk predictions (Lee et  al., 2017), 
our corresponding models demonstrate higher AUC 
values. This difference is likely to be explained by the 

Fig. 6 Feature importance results for Tropical Storm Imelda (a) and Hurricane Harvey (b) with random forest. A larger value of feature importance 
indicates a more important role of that feature

Version of Record at: https://doi.org/10.1007/s43762-023-00082-1
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addition of temporal precipitation features as inputs for 
predicting flooded roads in our study, particularly for 
storm events with extreme precipitation such as Hur-
ricane Harvey. In addition, this study contributes to 
demonstrating that the two commonly used tree-based 

models have solid predictive capabilities for detecting 
roads at risk for flooding based on two novel and emerg-
ing datasets, road user-reported inundation information 
and traffic speed data. The random forest model demon-
strates better performance than the AdaBoost model.

Fig. 7 Examples of predictions of probabilities for roads becoming flooded in Tropical Storm Imelda (a) and Hurricane Harvey (b)

Version of Record at: https://doi.org/10.1007/s43762-023-00082-1
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As we are concerned with reducing false negative pre-
dictions, we use the false negative percentage with vary-
ing probability thresholds to test model stability. The 
results show that the random forest model has stable 

performances for Hurricane Harvey with minor varia-
tions of false negative percentage when adjusting prob-
ability thresholds but present significant variations across 
false negative percentage for Tropical Storm Imelda. 

Fig. 8 Examples of prediction results for roads with and without flood risks for Tropical Storm Imelda (a) and Hurricane Harvey (b) according to the 
predicted probabilities in Figs. 7a and 7b, respectively. Each link represents the road with road point used for model test. For better presentations, 
we show only the roads used in our test dataset

Version of Record at: https://doi.org/10.1007/s43762-023-00082-1
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This discrepancy could be attributed to the difference 
between crowdsourced data (Waze report) and sensor 
data (INRIX traffic). Since users of crowdsourced data 
were more sensitive to road flooding than were traffic 
sensors, roads that may not be severely inundated (still 
passable) during Tropical Storm Imelda were more likely 
to be labeled as flooded roads, which can further impact 
the model’s stability.

There exist limitations in the proposed models. A 
proper selection method for identifying non-flooded 
roads plays a critical role in improving model perfor-
mances (Darabi et al., 2019). In this study, we randomly 
selected equivalent-size of roads without flood warnings 
for Imelda based on the Waze report and roads with traf-
fic speed values for Hurricane Harvey based on INRIX 
traffic data as non-flooded roads. In addition, we used 
two different datasets for two different storm cases due to 
limited data availability. We cannot collect Waze data for 
Hurricane Harvey in 2017 as Waze reports data became 
available after 2018. INRIX traffic data for Tropical Storm 
Imelda was not available to the research team due to its 
high costs. Using different datasets could impact the 
model performance due to their different natures as men-
tioned earlier in this section; however, our results dem-
onstrate that different datasets could be used for training 
machine learning models for predicting road flooding 
risk, and future users can choose their datasets and fea-
tures based on availability and characteristics of flood-
ing events and impact areas. Future work will focus on 
investigating the impacts of methods for identifying non-
flooded roads and random selections on model perfor-
mance. Also, although the Waze report and fine-grained 
traffic data can provide information to validate road 
inundation models, the length of each road segments is 
much longer than the resolution of input features, which 
may bring in aggregation biases. The models may require 
further validation when finer road inundation informa-
tion is available. Another limitation comes from our use 
of points to represent locations of road segments as their 
lengths vary and so do their topographic, hydrologic and 
precipitation features, which may bring in uncertainties 
in the predictions of their inundation probabilities. Our 
future work will consider using integrated values of the 
three categories of features as predictor variables for 
these road segments.

In addition, the assignment of topographic and hydro-
logic features to roads can also affect the model perfor-
mance. We used roughness and imperviousness from 
the 2016 National Land Cover Database for both flood-
ing cases. However, these variables can be impacted by 
large-scale changes in urbanization over time. The conse-
quence is that the roughness and imperviousness are less 
representative of actual hydrologic conditions in 2017 

and 2019, which may explain the low-level rank of their 
importance for predicting roads with flood risks (Fig. 4). 
Upon the availability of data for topographic and hydro-
logic features, future work could consider the impact of 
urban development by including proper features which 
are not available in the study periods.

5  Concluding Remarks
The study and findings contribute to the emerging field 
of smart flood resilience focusing on harnessing com-
munity-scale big data and machine learning approach 
to enhance disaster resilience capabilities, such as pre-
dictive flood risk mapping at the road level (Dong et al., 
2020c). This study addressed two limitations in the exist-
ing studies, lack of inundation data for validation and 
data integration by implementing the crowdsourced and 
traffic data as indications of road flooding status and by 
incorporating topographic, hydrologic, and temporal 
precipitation features for risk predictions. The main con-
tribution of this study is to demonstrate the capability of 
the two commonly used machine learning methods to 
predict road flooding risk based on emerging datasets 
and various features. In addition, this study provides a 
potential tool to detect roads with varying flood risk lev-
els using topographic, hydrologic, and precipitation fea-
tures (Fig. 7). This potential tool can be integrated with 
a percolation analysis of the road network (Dong et  al., 
2020c, 2021) so that the removal of roads can refer to 
the roads with a higher predicted probability of getting 
flooded (Li et al., 2015), which is a more precise method 
than relying on floodplain maps. We also show that the 
random forest model (trained on Tropical Storm Imelda) 
performs better prediction for flood events without 
abrupt severe rainfalls and the model trained on Hur-
ricane Harvey is better for floods with slow-moving 
extreme rainfalls. The AUCs of random forest models for 
Imelda and Harvey are 0.790 and 0.860 respectively, and 
rainfall volumes and periods caused by Harvey are more 
severe than those due to Imelda (Blake & Zelinsky, 2018; 
Latto & Berg, 2020).

Our findings can help potentially impacted communi-
ties identify roads that are more likely to be inundated by 
floods. This foresight could be incorporated into naviga-
tion applications to help drivers avoid roads with high 
flooding probability when accessing essential facilities (e.g., 
hospitals). Incidents from past events indicate that driving 
through flooded roads is among the leading cause of deaths 
during urban floods (Jonkman & Kelman, 2005); our model 
could help affected residents avoid driving into flooded 
roads. Through collaborations with local officials and disas-
ter managers, we can share our model and predicted results 
with them. The officials can deliver our model prediction 
results to the affected residents through their public social 
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media account and weather report TV channels. This study 
also provides a tool for emergency management agencies 
(EMAs) to design response strategies. For instance, EMAs 
could evacuate communities that are likely to lose access to 
critical facilities due to inundated roads. Also, EMAs can 
inform road infrastructure operators and maintainers to 
take protective actions, such as putting sandbags, to ensure 
the functionality of the critical roads that connect commu-
nities and resources. Furthermore, our model could help 
EMAs update floodplain maps with more specific infra-
structure risk information, which could guide the urban 
plan strategies for future flood hazard mitigation. Current 
100- and 500-year floodplain maps of Harris County (Har-
ris County Flood Control District) indicate the regions 
with potential flood risk. Through a comparison of flood-
plain maps with flood maps of Hurricane Harvey, we have 
found many regions in the northwest of Harris County 
were flooded in Harvey which are not in the 100- and 500-
year floodplain maps. Floodplain maps do not indicate the 
flood risks (e.g., risk levels and probabilities to be flooded) 
of infrastructures such as road segments, electricity, and 
utility. Our models can be easily produced and maintained 
with updated topographic, hydraulic and precipitation 
features. As a result, infrastructure risk insights from our 
models could better reflect the updated topographic and 
hydraulic features and the changes to infrastructure risks 
could be incorporated into floodplain maps.

In summary, this study provides models to predict road 
flooding risk with topographic, hydrologic, and precipita-
tion features. This modeling cannot only be generalized to 
other flood events and regions with proper topographic, 
hydrologic, and precipitation features for predicting 
flooded roads, but also be used as a tool to design road 
failure scenarios (roads with a predictive probability of 
getting flooded) for percolation analysis of road network. 
Our model can also benefit potentially impacted com-
munities and emergency management agencies’ prepar-
edness and response actions to hurricanes and floods. 
The model and results contribute to the emerging field of 
smart flood resilience (Fan et al., 2021) aiming to harness 
heterogeneous datasets to improve situational awareness 
and predictive monitoring during disasters.
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