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ABSTRACT 

High Performance Liquid Chromatography (HPLC) is a high-resolution 

separation technique with applications in medical research and natural mixture 

analysis. This study sought to increase the capacity of current HPLC methods to 

identify and quantify the presence of biomarkers for disease in two ways. First, the 

development of a mass-based method of determining column porosity was proposed to 

better quantify the performance of a column. Second, statistical overlap theory was 

employed in the simulation of synthetic chromatograms to illustrate the impacts of 

noise and peak overlap in chromatographic signals. Both of these aspects sought to 

assess the ability of current methods to detect and identify biomarkers present at low 

concentrations, providing insight into the potential of chromatographic methods to 

analyze biological and natural mixtures.
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Chapter 1 

INTRODUCTION 

1.1 Background and Motivation for Study 

Separation science is one of the branches of the chemical engineering field.  

The continual advances being made in the separation sciences are pushing the frontier 

of modern knowledge and increasing the application of chemical engineering 

principles and processes to a multitude of areas, including analysis of materials to aid 

the study and knowledge of diseases and how they affect the body, a pertinent cause 

being investigated today. 

High performance liquid chromatography, or HPLC, is a widely employed 

analytical method characterized by the fact that moderate to high pressure is used to 

flow solvent through the chromatographic column.  The column itself is packed with a 

stationary phase chemically bound on the surface of supporting particles, while the 

mobile phase is comprised of a mixture of solvents flowing through the column under 

high pressure.  The sample of interest, known as the analyte, is then separated based 

on the interactions of its components with the stationary phase; constituents of the 

mixture interacting the most strongly with the stationary phase take longest to elute 

from the column, and are therefore detected at longer times.  This technique can be 

applied to almost any sample which is soluble in an HPLC-compatible solvent and can 

be detected by a chosen detector.  HPLC is the most common analytical technique in 

use1, with applications in pharmaceuticals, food, cosmetics, industry and basic medical 

research. 
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1.1.1 Goals of the Work 

The search for more selective, specific, and high-resolution separations is 

being aided by the development of porous materials and their integration into 

chromatography systems. Knowledge of porous materials and how they serve to aid 

separations is essential to both the development and analysis of chromatographic 

separations.  The porosity of a column, or portion of a packed column that is “empty 

space,” is made up of the spaces between the support particles, referred to as the 

interstitial space, and the surface-accessible space within the porous particles, referred 

to as the interparticle space.  One of the goals of this thesis is to define a completely 

mass-based method for determining the interstitial and interparticle porosities of a 

packed column. This is especially relevant for providing information on 

chromatographic columns in an effort to design very high performance liquid phase 

separation systems. 

One aspect of fundamental separation science is the development of a means to 

estimate the loss in resolvable chromatographic information due to noise (background 

signals caused by the equipment used) and finite detection limits (the lowest, or 

highest, signals discernable by the method).  The understanding of these aspects could 

clarify the use of separation methods for the identification of biomarkers.  Biomarkers 

are substances present in blood and other fluids that are sought as indicators of disease 

often long before symptoms start.  A number of researchers believe, however, that 

some of these biomarkers may be present at much lower concentrations than 

traditionally distinguished by analyses which almost always employ chromatographic 

methods.  The second goal of this thesis is to employ statistical overlap theory (SOT), 

using simulated chromatograms in MATLAB, to quantify the presence of biomarkers 

below traditional detection limits. 



 

 3 

1.1.2 Significance to the Field 

The ability to understand the packing of a chromatographic column and obtain 

information about the inner contents of the column without relying on elution 

techniques has great implications for high performance separations and column 

manufacture.  This work also contributes to resolution of the resulting 

chromatographic signals, and highlights a need to define and estimate the loss in a 

chromatogram due to peak overlap and signals present below the detection limit.  With 

the capacity to quantify this information, separation science will be better enabled to 

aid the search for biomarkers, and the principles of the chemical engineering field may 

be better applied to biomedical research. 

1.2 High Performance Separations Using Liquid Chromatography 

HPLC enables the separation of complex mixtures by their affinity for the 

stationary phase, which in packed columns is comprised of supportive particles 

chemically coated with molecules that define the separation mode of the column.  

Most commonly for HPLC, the stationary phase used is non-polar (for example, C18 

bonded silica).  The separation performance of the method, commonly called 

chromatographic resolution, depends on both the mechanical separation power, or 

efficiency, and the chemical separation power, or selectivity.  The efficiency is 

dependent on the column length, particle size, and packed-bed uniformity of the 

column, which depend on transport properties, while the selectivity is often 

determined from the nature of the interactions between stationary phase and analyte in 

solution and most often under thermodynamic control from local phase equilibria.  To 

this end, HPLC contributes to both faster analytical times and greater resolving power 
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with higher pressures, shorter columns, smaller particles, and core-shell particle 

technology. 

1.3 Particle Technology for High Performance Liquid Chromatography and 

Ultra-High Performance Liquid Chromatography 

Many advances in HPLC performance and separation quality have come from 

the utilization of particle technology to achieve separations that are faster and possess 

higher resolution.  Monolithic columns, where porous material inside the column 

creates channels for the mobile phase to move through, have encountered difficulties 

with reproducibility, mechanical stability, and column performance.  Packed columns 

have found great success in these areas2. 

The size of the particles used to pack the column has a large impact on the 

column performance; in general, porous silica particles can achieve higher 

performance separations with smaller diameters.  As noted by Hayes and Zhang2, 

although halving the particle diameter may double the number of theoretical plates 

(and therefore roughly double separation performance), this can result in a four-times 

increase in back pressure required as a result of the proportionality between pressure 

drop and the inverse of particle diameter squared3.  At higher pressures, especially 

seen in ultra-high performance liquid chromatography (UPLC), the need for stricter 

(and more expensive) equipment standards arises.  The solution to this issue is found 

in core-shell (superficially porous) particles. 

1.3.1 Fully Porous vs. Superficially Porous Particles 

Superficially porous particles (SPPs) have been shown to provide fast, high 

resolution separations without the need to employ extreme pressures.  These silica 

particles, known as superficially porous, core-shell or fused-core particles, enable 
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better separations at lower pressures and larger particle sizes than both nonporous and 

fully porous particles (FPPs)2.  SPPs offer an advantage over nonporous materials via 

a larger surface area of analyte interaction with the solid phase via pores; in nonporous 

particles, separation can occur only on the particle surface.  SPPs also demonstrate 

superior mass transfer over FPPs; 2.7μm-diameter fused-core particles were shown to 

achieve the efficiency of sub-2μm FPPs at the pressure typically required for 3μm 

particles2,4.  This eliminates the need to employ smaller diameter particles to achieve 

higher resolution, thus enabling more efficient separations without the need for new, 

higher-pressure equipment.  Larger diameter SPPs have also opened the door for 

exploration of a variety of particle pore sizes, to tailor separations based on 

application. 

1.4 Small to Large Pore Materials 

The pore size of SPPs employed in chromatography is extremely influential in 

select separations, and often defines the power of the packing material to successfully 

separate the components of a complex mixture.  Whereas small pore packings 

(typically on the order of 90 Å) may be useful for separating samples containing low-

molecular weight constituents, current work in HPLC is attempting to tackle the 

significant challenge of separating proteins with wider pore materials.  Human cells 

contain at least 20,000 proteins; the implications of an ability to separate mixtures of 

proteins are huge for medical, pharmaceutical and diagnostic applications4,5.  As the 

size of proteins being separated increases, larger pores (e.g. 400 Å and larger) elute 

sharper peaks; smaller pores become increasingly limited by restricted diffusion of 

material6,7. 
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1.4.1 Measuring Porosity 

To understand column mechanics, it is important to be able to measure the 

porosity of a column.  As mentioned previously, porosity depends on the total pore 

volume, also called the “void” or “dead” volume of a column, which can be broken 

down into two main parts: the interstitial volume, or space between the particles in a 

packed column; and the intraparticle volume, the space in the column due to the pores 

of the particles8.  Although several methods exist to determine the interstitial volume 

experimentally, an example of which is inverse size exclusion chromatography 

(ISEC), a significant advantage would be associated with a completely mass-based 

method of determination9–13.  One of the contributions of this work is a means of 

determining the porosity of a column quickly and accurately via measurements of 

mass, thus eliminating the need to rely on void times or tracer transport through a 

column.  Total pore blocking (TPB) is employed in this study to cover the intraparticle 

pores using an immiscible solvent technique introduced previously in the literature. 

1.5 The Search for Biomarkers by Liquid Chromatography and Mass 

Spectrometry 

In analysis of biological mixtures of proteins, it is important to recognize the 

influence of biomarkers on current medical research and separation analyses.  

Biomarkers are typically lower concentration biomolecules present in bodily fluids 

such as blood and urine that can play a vital role in a number of diseases14.  Although 

these components can take the form of a wide variety of natural components, the form 

being investigated most extensively today is protein biomarkers, i.e. those derived 

from the proteome.  Smaller molecules, especially those of environmental origin, are 

still of interest in researching disease states.  However biomarkers, if properly 

separated and detected, could serve as indicators of neurodegeneration in Alzheimer’s, 
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development of cancer, and predictors of cardiovascular disease, among many 

others14–16.  The difficulties posed in detecting these components, however, come from 

the fact that they are often present in concentrations currently undetectable by modern 

methods. 

1.5.1 Statistical Overlap Theory and Limit of Detection 

Low-concentration peaks may be lost in a chromatographic signal as a result of 

peak overlap, the limit of detection of the equipment, or a combination of both.  

Because of this, it is possible that a majority of biomarkers cannot currently be 

distinguished via HPLC with either a single channel ultraviolet detector or some form 

of mass spectrometry detector.  The capacity to estimate this, however, lies in the use 

of statistical overlap theory (SOT) to estimate the resolution of a chromatogram17,18.  

By determining a likely probability density function (PDF) for the resulting peak 

amplitudes, it is possible to model the signals present below the method’s limit of 

detection, quantify the signals being lost due to overlap by neighboring signals, and 

measure the missing information in an existing chromatogram.  This work will employ 

SOT, using simulated chromatograms in MATLAB, to contribute to the identification 

of low-concentration and overlapped peaks, thus aiding the search for detecting and 

identifying biomarkers that may not be currently accessible. 
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Chapter 2 

MEASURING POROSITIES OF CHROMATOGRAPHIC COLUMNS 

UTILIZING MASS-BASED MEASUREMENTS AND THE TOTAL PORE 

BLOCKING TECHNIQUE 

2.1 Introduction 

The experimental determination of porosity, or proportion of pore volume 

within a column, provides a means of predicting and understanding column 

performance.  While methodology exists currently to estimate the different volumes 

present within a chromatographic column, a certain advantage can be gained by 

relying on mass measurements rather than elution measurements.  A better 

understanding of porous materials, and how they can aid more specific and higher-

resolution separations, may then be utilized in both development and real-world 

analysis. In pursuit of the first goal of this thesis, a mass-based method for 

determining the interstitial and intraparticle porosities of a packed column, it is first 

necessary to define the inner contents of a column conceptually. 

The measurement of the total pore volume, V0, has been discussed in 

numerous publications and reviews9–11. The total pore volume, often called the “void 

volume,” is the volume that is accessible in a liquid chromatographic column to low 

molecular weight solvents and solutes. This excludes solids and “inaccessible” pores 

which may be in the packing material. Obtaining values of the total pore volume is 

extremely useful in liquid chromatography when new column materials development, 

packing studies and column performance monitoring are to be performed 
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quantitatively. In this regard, the total porosity, εT, is calculated by dividing the pore 

volume V0 by the volume of an empty column, VT. 

In addition to the total volume and total porosity, the interstitial volume, Vi, 

and interstitial porosity are of great importance in all forms of chromatography. The 

interstitial volume and porosity have been determined traditionally by a number of 

methods, for example by using excluded polymers which are assumed to not enter the 

pores of the particle like blue dextran. In addition, a more complete pore size 

distribution may be obtained by inverse size exclusion chromatography or ISEC12,19–21 

, and by subtractive methods such as taking the total pore volume, obtained by 

measuring an unretained chromatographic peak elution time, and subtracting out the 

intraparticle pore volume, obtained by various methods such as nitrogen adsorption; 

this requires knowing the amount of packing material in the column. 

2.1.1 Current Methods 

Two types of measurements are usually associated with the determination of 

both V0 and Vi. These are dynamic methods, usually based on some form of elution 

measurement, and static methods, usually based on pycnometric (density) and/or mass 

measurements. The static measurement has a long history8,13,22–24 and was one of the 

first methods used to probe the porosity of packed columns. In early studies it was 

determined that the dynamic methods gave results that differed from the static 

measurements and a good deal of effort was made to explain these differences9–11,13. 

Nonetheless, both types of measurements continue to be utilized. 

One of the most interesting methods for excluding solutes from pores is to use 

the Donnan exclusion principle11,25–29, whereby electrostatic repulsion of charged 

solutes from pores which possess some charge can be utilized to measure the 
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interstitial pore volume. This exclusion process requires that the pore chemistry be 

suitable for this type of analysis and that the solvent conditions be suitable for 

promoting charge-charge interactions between test solutes and pores. This dynamic 

method works well when the conditions support the electrostatic mechanism but 

appears to fail under non-suitable conditions, apparently with wide-pore materials29. 

A recent addition to the dynamic methods are the so-called “Total Pore 

Blocking” (TPB) methods. These techniques utilize a fluid which is held in the pores 

to block a solute from entering and thus enable the measurement of the interstitial 

volume30–33. This technology has been applied to both hydrophobic materials (i.e. 

reversed-phase materials)30,31 and to hydrophilic materials (i.e. “normal phase” 

materials)32. Additional applications using the TPB method include determining 

interstitial porosity when studying the pressure drop characteristics of reversed-phase 

(RPLC) materials33 and studying the differences between hydrophilic interaction 

chromatography (HILIC) and RPLC with the same packing34. The TPB methods can 

also be used as aids in studying mass transport effects35,36 when it is desired to run 

experiments which probe both the interstitial transport and pore transport mechanisms 

of zone broadening by shutting off the particle porosity in situ. Note that all of the 

pore blocking studies mentioned here use the static pycnometric method to determine 

the total column porosity. A review of previous work using the TPB method is shown 

here in Table 1.



 

 

1
1

 

Table 1: Summary of TPB methods in the literature. The tracers and pore blockers listed are those tested and do not 

necessarily correspond to pairs. 
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2.1.2 Focus of the Work 

What is needed for the TPB method is to find liquids that can be held in place 

in the particle pores because they are soluble with the pore surface chemistry and be 

cleared out in excess because they are insoluble in the solvent. Typical pairs of fluids 

used in these studies include a long-chain hydrocarbon and water, which are insoluble 

and can be used as solvent and pore blocker depending on the particle surface 

chemistry. One of the difficulties with pore blocking implemented with a dynamic 

method is that the solutes which are used as void time markers will interact with the 

pore blocking fluid. This pore blocking fluid will act as a stationary phase even if the 

solute does not enter the particle pore. This will affect the accuracy of the void 

measurement for Vi. Other problems exist for the dynamic method and will be 

discussed in detail below. 

In this paper we focus on utilizing a static measurement based on simple but 

precise mass measurements that rely on the TPB method but do not require a transport 

determination of the void time through the channel. There will still be an interaction 

between the interstitial solvent and pore blocking fluid, but static measurements 

should minimize transport artefacts. In addition, we sample a wide range of materials 

from small pore reversed-phase materials to wide-pore materials based on a host of 

stationary phase chemistries. These will be compared to previous literature 

measurements and an assessment made with respect to ease of use, accuracy and 

precision. Comparison of these results with HPLC elution times are made and 

differences noted. A critical assessment of the generality of the TPB technology is 

made with respect to the phase chemistry and pore sizes used in this study and 
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contrasted with a theory of pore blocking stability based on the Young and Laplace 

equation. 

2.2 Experimental 

For measuring the total pore volume in the C4 and C18 column experiments, 

methanol was from Honeywell (Morris Plains, NJ), methylene chloride was from 

MilliporeSigma, and tetrahydrofuran with added stabilizer was from J.T. Baker, a part 

of Avantor (Center Valley, PA). Isopropyl alcohol (2-propanol) was used as the 

flushing solvent and octane served as the pore blocker, both purchased from 

MilliporeSigma.  Laboratory deionized water was used as an interstitial solvent along 

with methanol from Honeywell (Morris Plains, NJ) and propanol (1-propanol) from 

MilliporeSigma. 

Total pore volume for the normal phase columns was obtained using the same 

solvents as were used for the reversed phase columns.  Isopropyl alcohol from 

MilliporeSigma was again used as the flushing solvent before pore blocking in these 

columns.  Laboratory deionized water served as the pore blocker for the normal phase 

columns.  Octane, methylene chloride, and cyclohexane were used as interstitial 

solvents, and came from MilliporeSigma.  Supplemental methylene chloride was 

obtained from J.T. Baker.  Ethyl acetate was also used as an interstitial solvent and 

was purchased from MilliporeSigma. 

Uracil, naphthalene and acetonitrile (HPLC grade) were obtained from 

MilliporeSigma. Carboxylate-modified polystyrene latex microspheres, 0.1 µm, were 

obtained from Bangs Laboratory (Fishers, IN) and used as exclusion markers. This 

particle size is clearly a compromise intended to minimize hydrodynamic effects with 

small size, yet large enough to be excluded by most of the pores. Potassium Chloride 
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was obtained from MilliporeSigma. The columns used in this study were all from 

Advanced Materials Technology and are listed in Table 2. These columns are all 

packed with superficially porous particles. Particles were packed into standard column 

hardware using a proprietary column packing process. 

Table 2: Column specifications where the abbreviations ID, HILIC are inner diameter 

and hydrophilic interaction liquid chromatography, respectively. 

Column    ID Length Bonded Pore size

number (mm) (mm) phase (Å)

1 2.1 50 C18 90

2 2.1 50 C18 160

3 2.1 50 C18 400

4 2.1 50 HILIC 90

5 4.6 50 HILIC 160

6 4.6 50 HILIC 1000

7 2.1 50 C4 1000

8 2.1 50 C4 1000  

 

 

Chromatographic void times were determined using a Shimadzu Nexera HPLC 

instrument (Columbia, MD). The mobile phase was 50/50 water/acetonitrile with 50 

mM KCl and contained a 180 µL incorporated mixer. Total extra column volume 

included connections between the injector and column (6.3 µL), column and detector 

(6.7 µL), and detector cell (1 µL) for a total of 14 µL. This additional dwell volume 

was subtracted from the chromatographically determined column volumes and 

porosities. Uracil and naphthalene were used as dead time markers for hydrophobic 

and hydrophilic phases respectively and detected at 254 nm. Modified microspheres 
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were used to determine interstitial porosity and were detected at 210 nm. Data was 

analyzed using integrated LabSolutions software (Shimadzu). 

All mass-based measurements were performed using a 5 -digit balance 

(Sartorius model CP225D, Bohemia, NY). An HPLC pump (Shimadzu Scientific 

Instruments, model LC-30AD, Columbia, Maryland) was used for all filling and 

blocking experiments. 

2.2.1 Total Pore Volume Experiments 

To establish the procedure of obtaining the total pore volume within a 

chromatographic column, we must first establish an analysis of the contents of a 

column, and then distinguish which variables will be determined experimentally. The 

ultimate goal in these analyses is to obtain numerical values for total pore volume, V0, 

the particle pore volume, Vp, and the interstitial volume, Vi, described below. These 

will then be converted to porosities. 

Let VT denote the total internal volume of the column: 

𝑉𝑇 =  𝜋 𝑟2𝑙 2.1 

where l is the length of column and r is the internal radius.  We can break down VT 

into two components: 

𝑉𝑇 =  𝑉𝑆 +  𝑉0 2.2 

where VS is the volume of solid material in the column and V0 represents the total pore 

volume of the column which is the portion of the column that is not silica, bonded 

phase, or inaccessible pores. In this way, the total pore volume can be viewed as the 

empty space in the column that can be occupied by solvent. 

The total pore volume within a chromatographic column can be further broken 

down into two constituents: the interstitial space, or space between the packed 
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particles, and the intraparticle space due to the pores in the particle. There is no clear 

delineation surface between the interstitial and intraparticle space, and this will be 

discussed below. In these terms, 

𝑉0 =  𝑉𝑖 + 𝑉𝑝 2.3 

where Vi is the interstitial volume of the column and Vp is the intraparticle or pore 

volume. 

Once V0 is known and VT is calculated from the column specifications, VS (volume of 

solid material in the column) can be found by subtraction in Equation 2.2.  The pore 

blocking experiments, detailed in the next section, will seek to determine Vi, and 

subsequently Vp by subtraction in Equation 2.3. 

To determine V0 experimentally, the chromatographic column was wetted with 

various solvents to provide a basis of comparison for their total masses.  Because of 

the possibility of pore exclusion, the solvents used were chosen based on low 

molecular weights and their ability to fully wet all of the pores of the column.  A 

variety of solvents were used in these experiments with the goal of obtaining the 

highest accuracy of an average value for V0. 

The following equation, adapted from Alhedai, Martire, and Scott8, can be 

used: 

V0 =
𝑚1−𝑚2

𝜌1−𝜌2
 2.4 

where 𝑚1is the mass of the column wetted with solvent 1, 𝑚2 is the mass of the 

column wetted with solvent 2, 𝜌1 is the density of solvent 1 and ρ2 is the density of 

solvent 2. 

From Equation 2.3 to find V0, we note two areas of potential uncertainty: mass 

and density measurements/values. Since the densities were obtained from the solvent 



 

 17 

manufacturers, we may neglect the contributions of the density values to the 

uncertainty of the calculations. 

It is also important to note the choice of solvents 1 and 2 used in calculating 

𝑉0.  Due to the large value of error associated with small differences in solvent mass, 

solvent pairs for calculation of 𝑉0 from Equation 2.4 were chosen to maximize the 

difference in density between the two.  In fact, theoretical calculations made using 

Equation 2.4 determined that for two solvents with a density difference of about 0.01 

g/cm3, as in the case of methanol and acetonitrile, the uncertainty associated with the 

calculation of 𝑉0 is greater than 𝑉0 itself, and therefore not a significant result. 

2.2.2 Pore Blocking Experiments 

The next step is to find what proportion of the total pore volume in the column, 

𝑉0, is due to the interstitial space, 𝑉𝑖, and the pore volume of the particles, 𝑉𝑝.  

Adapting the procedure for TPB used by Cabooter et al.30 with the condition that this 

applies for an RPLC column, steps are as follows: 

1. Rinse the column with a solvent to dissolve both the hydrophilic and 

hydrophobic liquids it contains (Cabooter et. al.30 used isopropanol at 

0.2 mL/min for 60 min.). 

2. Fill the column pores with a hydrophobic solvent to replace the 

isopropanol (or other initial solvent) – the hydrophobicity of this 

solvent will allow it to pass through and be retained in the intraparticle 

pores because of its affinity for the C4 or C18 layer covering their walls. 

3. Flush the column with a hydrophilic buffer to fill the interstitial space 

without displacing the hydrophobic solvent contained in the pores (the 

two substances are immiscible). 

4. Record the mass of the column and repeat the procedure for various 

hydrophilic buffers. 
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Similarly to the method for calculating 𝑉0, 𝑉𝑖, the volume of the interstitial space in 

the column, can be obtained by: 

Vi =
𝑚1−𝑚2

𝜌1−𝜌2
 2.5 

Data were collected for several hydrophilic buffers to compute an average value for 𝑉𝑖 

of each column. The same procedure is applied in reverse for a hydrophilic stationary 

phase and pore blocking solvent and a hydrophobic fluid to flush excess pore blocking 

fluid. The particle pore volume was determined by manipulating Equation 2.3 to yield 

an explicit expression for 𝑉𝑝: 

𝑉𝑃 =  𝑉0 −  𝑉𝑖 2.6 

The total porosity, εT, interstitial porosity, εi, and the intraparticle porosity, εp, are 

calculated from the total pore volume, interstitial pore volume and intraparticle pore 

volume divided by the empty column volume respectively. Note that there are two 

interparticle porosity systems used in practice37. The system most often used in 

chromatography has the total porosity, εT, as the sum of the interstitial porosity, εi, and 

the intraparticle or particle porosity, εp. In some of the papers referenced here, the 

interparticle porosity is expressed as those use by chemical engineers, εp
CE, and is 

computed using the relationship εp
CE

=(εT-εi)/(1- εi). These particle porosities can be 

converted back to the additive intraparticle porosity used in chromatography through 

the relationship εp=(1-εi) εp
CE. 

2.3 Results 

The raw data for the total pore volume mass measurements are given in Table 

A1 in Appendix A. Table A2 gives the mass measurements found during the pore 

blocking experiments. In addition, Table A3, also in Appendix A, gives the total pore 
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volume and the interstitial volumes. These data are then combined to give the porosity 

results shown in Table 3. 



 

 

2
0

 

Table 3: Total, interstitial and particle porosity measurements from pore blocking experiments.  The interstitial porosities 

obtained by elution of the 0.1 μm particle are given in red, except for column 6 which was not performed. 

Column Type Total Porosity (εT) Interstitial Porosity (εi) Particle Porosity (εp)

1 2.1x50 90A C18 0.522 ± 0.022 0.220 ± 0.127  0.39 0.301 ± 0.129

2 2.1x50 160A C18 0.598 ± 0.005 0.387 ± 0.014  0.35 0.210 ± 0.014

3 2.1x50 400A C18 0.542 ± 0.004 0.400 ± 0.009  0.43 0.142 ± 0.010

4 2.1x50 90A HILIC 0.628 ± 0.003 0.597 ± 0.007  0.42 0.0317 ± 0.0074

5 4.6x50 160A HILIC 0.652 ± 0.006 0.604 ± 0.007  0.37 0.0481 ± 0.0072

6 4.6x50 1000A HILIC 0.594 ± 0.004 0.589 ± 0.013     __ 0.0048 ± 0.0140

7 2.1x50 1000A C4 0.577 ± 0.056 0.257 ± 0.016   0.40 0.319 ± 0.058

8 2.1x50 1000A C4 0.598 ± 0.027 0.337 ± 0.027   0.40 0.261 ± 0.038  
 

Note: standard deviations for the total and interstitial porosities in this table were calculated from duplicate or 

triplicate measurements. 
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These results indicate a number of important points. First, the total porosity 

numbers are very reproducible in each set of experiments; these are shown in 

Appendix B in Table B1 and are performed in duplicate or triplicate. The interstitial 

porosities, which are performed as TPB measurements, show larger variations in 

results per each set of experiments. 

The numbers in Table 3 for columns 1 and 4, which are 90 Å SPPs with C18 

and HILIC surfaces, can be contrasted with previous studies38–43 where columns of 

these particles were also measured. In the case of the C18 material for this particle, the 

total porosity averaged is in the range 0.49840 to 0.54038 with the exception of 0.4543. 

This is in contrast to the average of 0.522 obtained via the mass-based measurement, 

albeit they are all not the same columns. The average interstitial porosity of the C18 

material in the literature38–44 is in the range of 0.3843 to 0.432 as compared with the 

0.220 average determined in this work. However, considering the variability in the 

interstitial measurement, this would be comparable if one standard deviation is added 

to the interstitial value – i.e. 0.39, which is within the range of values reported by 

others37–42,44. The interstitial porosity obtained by the elution measurement of the 0.1 

μm particle is exactly this value and provides a consistency check between the elution 

technique and the mass-based TPB method.  

For column 4, which contains the same basic particle as column 1 without the 

bonded phase, the average total porosity from mass-based measurements is 0.628 as 

compared to 0.614 from other literature39. These results are in quite good agreement. 

In addition, the interstitial porosity of the HILIC (unbonded silica) material is 0.597 

from mass-based measurements, in agreement with 0.61439. It is surprising that the 

presence of a stationary phase makes a difference in both the total and the interstitial 
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porosities between the bonded and unbonded particle columns. However, these 

columns are packed with a different solvent and the packing protocol is different, so 

this may explain the difference between these values. For this column the exclusion 

marker porosity is low and this may possibly be due to charge-charge repulsion of the 

exclusion marker and porous particle. If the exclusion marker cannot sample all of the 

available interstitial space, the exclusion volume and interstitial porosity would be 

underestimated. 

Two other columns listed in Tables 2 and 3 have C18 bonded phases; these are 

columns 2 and 3 with average pore diameters of 160 Å and 400 Å respectively. Again, 

the total porosities from two separate measurements give reasonably good total 

porosity self-agreement, as judged by their standard deviations, and appear to be 

reasonable values. The literature value for the total porosity of the 160 Å particle 

column is 0.56339 compared with the value of 0.598 from Table 3. The interstitial 

porosity is 0.40239 compared to 0.387, the TPB method result from Table 3 – a 

difference of ≈3.87%. The exclusion marker for this column gives an interstitial 

porosity of 0.35, a value deviating from the mass-based TPB method by 10%. 

The 160 Å HILIC column (column 5) result has a higher total porosity than the 

bonded result, consistent with the 90 Å bonded and unbonded column values. 

However, the interstitial porosity for the unbonded column appears to be unreasonably 

high, noting there are no other literature values for this column. The exclusion marker 

for this column is 0.37, probably closer to the actual interstitial porosity, but this is 

unfortunately hard to ascertain. 

In the case of the 400 Å C18 column, both the total porosity and interstitial 

porosity (0.542 and 0.400) appear reasonable because this particle has a very thin shell 
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and one would expect that the intraparticle porosity would be particularly small. 

Unfortunately there are no literature values to compare these to, however, the 

exclusion marker gives a value of 0.43, a difference of  2.2% with the TPB mass-

based measurement showing consistency for these results. 

In the case of column 6, the 1000 Å silica (HILIC) particle, the total porosity 

appears reasonable but the intraparticle porosity is very low. Although this particle 

type can be compared with the two C4 1000 Å particle columns which have very 

similar total porosities, the 1000 Å HILIC column has almost no pore volume. This is 

surprising, but may be explained by the sensitivity of pressure and flow velocity when 

clearing out the excess pore blocking solvent, as explained in section 2.3.1 below. 

The columns listed as 7 and 8 in Table 3 are two columns from the same lot. 

As can be seen, the total porosities are close, ≈3.6% different. However the interstitial 

values and intraparticle porosities are clearly different, and this difference may also be 

explained by the sensitivity of large pore materials to the clearing of excess pore 

blocking solvent as discussed below. Interestingly, the exclusion marker consistently 

gives an interstitial porosity of 0.40 between the two columns which are packed with 

particles from the same lot. 

In contrast to using mass-based measurements, we compare the results of using 

void measurements with HPLC to the porosities determined in Table 3. For two 

columns, the total porosities were determined by injection of 1 μL of uracil and 

naphthalene with 50 mM KCl added to the mobile phase to avoid any Donnan 

exclusion effects with the charged uracil solute. The flow rate was varied in these 

cases from 0.05 mL/min to 0.5 mL/min. Two cases were examined in some detail, 

column 1, the 90 Å C18 column, and column 7, the 1000 Å C4 column. The results of 
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these experiments are shown in Figures 1 and 2 respectively, plotted as total porosity 

obtained by measuring the void time and converting it to total porosity by multiplying 

by the flow rate and dividing by the column volume. 

 

Figure 1: The total porosity of unretained zones of uracil and naphthalene for column 

1. Conditions as given in the text. 
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Figure 2: The total porosity of unretained zones of uracil and naphthalene for column 

7. Conditions as given in the text. 

The dependence on flow rate is interesting as it suggests that there are 

diffusion limitations and/or residual charge effects for these two columns. Although 

these are small effects, they are present nonetheless and account for approximately 3% 

variation in the 90 Å pore diameter particle and the 1000 Å pore diameter particle. 

Nonetheless, the total porosity for the 90 Å pore diameter particle was determined in 

Table 3 by mass as 0.522 and by elution as 0.675, a surprisingly large difference of  

20%. The precision of the elution measurements are typically a few percent, so this is 

not the source of the discrepancy. For the 1000 Å pore diameter particle, the total 

porosity was measured by mass as 0.577 and the elution experiment gave  0.864, 

approximately 33% in disagreement. The physical mechanism to explain this 

discrepancy is discussed further in the discussion section. 
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2.3.1 Mechanism 

The fluid mechanics of the pore blocking method closely resembles the 

displacement and replacement of a wetting fluid by a non-wetting fluid in porous 

media45–49. Applications related to fluid replacement in a porous medium include soil 

remediation50 and oil recovery with pumped fluids51,52. The petrochemical applications 

of this displacement process are obviously of great importance. A closely related 

problem of chromatographic significance is the loss of retention when pure water 

solvent is utilized with a reversed-phase column after depressurization53. 

A nonwetting fluid can invade a pore filled with a wetting fluid when the 

driving pressure exceeds the capillary pressure pc, also called the “threshold 

pressure”45–49,54,55: 

pc = pnw - pw 2.7 

where pnw and pw are the pressures needed to drive the non-wetting and wetting fluids 

into a pore, respectively. In the petroleum literature, it is customary to define an oil-

wet pore with a negative capillary pressure48. The capillary pressure is a measure of 

the porous media’s ability to fill with the wetting fluid or to expel the non-wetting 

phase45. These two fluids are considered to be immiscible in this treatment. 

The capillary pressure may be expressed using the Young and Laplace 

equation45,47,48,52,56,57: 

pc = γ (1/r1 + 1/r2) 2.8 

where γ is the interfacial tension between wetting and non-wetting fluids and r1 and r2 

are principle radii of curvature of the interface. Replacing the radii of curvature in 

Equation 2.8 with a mean radius of curvature, rc,
48 and assuming a spherical interface 

between two fluids with a finite contact angle gives the usual form of the capillary 

pressure: 
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pc = 2 γ cos  rc
-1 2.9 

where   is the contact angle between immiscible fluids. Different forms of Equation 

2.9 are available for different geometries, although these forms are more complicated. 

A more accurate geometry for this problem is that of intersecting and neighboring 

spheres58, however this would greatly complicate the simple form of Equation 2.9. 

The contact angle for a wetting fluid is < 90°, and is 0° for a fully wetting 

fluid59. Spontaneous pore filling occurs with wetting fluids unless a non-wetting fluid 

is held in the pores above the capillary pressure for the non-wetting fluid. Notice that 

cos   is positive for  < 90°. The pressure with which the pore blocking fluid will be 

displaced by the (immiscible) solvent is the capillary pressure. For a non-wetting fluid, 

the contact angle at the pore surface is typically > 90°, with extreme values being   

120° for water contacting a fluorinated surface60. In this case cos   is negative. Note 

that pc can be positive or negative depending on the curvature of the interface. 

The two pertinent cases of interest here include the forced filling of a pure 

silica pore by hydrophobic alkane solvents for HILIC phases where water is used as 

the pore blocker and the wetting of alkyl chain bonded-phases with pure water when a 

hydrophobic species is used as the pore blocking fluid. The interfacial tension of an 

octane/water interface is reported as 51.16 mN m-1 61 at 25.0 °C and 52.5 mN m-1 62 at 

22.0 °C. The values for the decane/water interfacial tension are similar within a few 

percent61,62. The contact angles relevant for understanding water adsorbing on a 

hydrophobic surface include water on a paraffin surface of   = 110.6° 63 and water on 

an octadecyl trichlorosilane-modified Si wafer giving   = 109° 64 although a host of 

surfaces used in water adsorption studies64 show a variety of contact angles with water 

that are highly dependent on the surface material. 
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For a hydrophilic pore wall like bare silica, the wetting of the pore by 

hydrophobic fluids like octane is a somewhat different story. This is because for a 

freshly prepared silica, which has been cleaned by elevated temperature and 

outgassing, a hydrocarbon will adsorb on the surface65 to some small degree. 

However, under chromatographic conditions, silica is well known to maintain a tightly 

held water layer at the surface66–69 and this will cause a non-wetting surface to develop 

for medium to large alkanes under normal aqueous solvent conditions. 

Some examples using Equation 2.9 are shown in Figure 3 to illustrate the 

effect of pore diameter on the capillary pressure needed to replace the pore-wetting 

blocking fluid with the solvent for both hydrophobic and hydrophilic cases discussed 

above. The interfacial tension mentioned above is held constant and the contact angle 

varied with   = 110° in the middle. In addition, contact angles of lower (  = 100) and 

higher (  = 120°) hydrophobicity are shown. Two other curves are also shown with 

higher and lower interfacial tension. 
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Figure 3: The effect of pore diameter on the capillary pressure needed to force the 

non-wetting fluid into the pore. The conditions for each curve are shown 

in the legend. The pore diameters of 90 Å, 160 Å, 400 Å and 1000 Å are 

delineated. 

This plot shows that substantially higher pressure needs to be applied to 

displace the pore blocking fluid with 90 Å particles than with larger pore size 

particles. This suggests that the TPB method is more reliable for smaller pore 

materials; if larger pressures are utilized, the pore-blocking fluid may be displaced. 

An important and practical aspect of this plot is that the velocity of the clearing 

process, where a non-wetting fluid removes the excess pore blocking solvent, is 

critical because it determines the capillary pressure in the column given in Equation 

2.9. Too high a velocity and the pore blocker will be displaced, thereby washing it out. 

The pressure is related to flow velocity (and flow rate) using Darcy’s law45,48 for 

single-phase fluid transport: 

�̅�  = - (k / μ) ∇p 2.10 
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where k is the column permeability, μ is the viscosity, �̅� is the average velocity in the 

packed bed and ∇p is the pressure gradient driving force for fluid flow in the column. 

This equation shows that the fluid velocity and pressure gradient are linearly related so 

that higher velocity will require higher pressure. Conversely, Equation 2.10 can be 

rearranged to express the pressure as a function of the velocity. Hence, the pressure at 

the column head, which is measured by the HPLC pump and associated transducer, is 

adjustable through the flow rate and the average velocity. Thus, it should be possible 

with these equations to optimize the minimum velocity necessary to ensure the 

capillary pressure is not exceeded, although pressure is easily monitored and may be 

directly viewed so that it is not exceeded as flow rates are adjusted. Figure 3 also 

shows the critical nature of using larger pore materials with the TPB method. It 

doesn’t take much pressure with large pore materials to displace the pore blocking 

fluid. Hence, these must be run with the lowest pressures possible and consequently 

very small flow rates (and velocities). This will dictate the time necessary to clear the 

excess pore blocking solvent from a large pore particle; this can be very long as the 

pressure must be exceedingly small or else the method will fail due to disturbing the 

pore blocking fluid in the pore. 

Further insight into the TPB method can be obtained through calculation of the 

nondimensional capillary number, C, which is the ratio of viscous to capillary 

force48,54,56,57: 

C = μ vp γ
-1 2.11 

where μ is the viscosity and vp is the velocity of a fluid in a capillary pore. For C 

values approximately less than 1, the fluid movement is dominated by capillary forces, 

and for C approximately greater than 1, fluid movement is due to viscous forces. In a 
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recent study of the computational fluid mechanics of SPPs with 1000 Å pores58, the 

mean pore velocity vp is  0.01 �̅�. Assuming a viscosity of water of 8.90 x 10-4 Pa. s, 

the surface tension of the octane /water interface is 52 mN m-1 and �̅� is 10-3 meters per 

second (v is then 10-5 m s-1), such that C = 1.71 x 10-6. This shows that for the largest 

pore material, capillary force dominates the flow of fluid. The capillary number will 

be even smaller for smaller pore materials, showing for the TPB method, capillary 

forces will dominate over viscous forces for most all chromatographic pore diameters 

of interest. 

These equations are simplistic for a number of reasons now discussed but 

overall show the magnitudes of numbers used in the TPB process. First, when a less 

viscous fluid displaces a more viscous fluid, such as when water displaces octane (the 

viscosity of octane is 5.195 x 10-5 Pa.s70) the liquid-liquid interfacial region becomes 

unstable and produces viscous fingering71,72. In addition, “Haines jumps”48,49 occur 

due to kinetic effects where droplets are ejected in almost random collections as a 

result of  interfacial instability and nonuniform pore effects. Furthermore, “snap off” 

effects48 occur when a nonwetting fluid loses contact with the wall. These effects 

occur due to flow; using a mass-based approach to interstitial pore volume 

measurement can minimize these extra effects, but not eliminate them, since the pore 

filling occurs under flow. Hysteresis effects45–49 are also known to occur where the 

repeated cycling between pore wetting and dewetting gives changing results. 

Hysteresis is thought to occur due to surface contamination, surface roughness and 

surface liquid immobility48,56. 
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2.4 Discussion 

The use of TPB techniques for porosity measurements is wrought with 

difficulties but can return potentially valuable information if a number of variables are 

recognized and controlled.  The results of the mechanism study show that wide pore 

materials will be the most difficult because even a small pressure will purge the pore 

blocker out of the particle with the displacement fluid. The displacement process of 

the excess pore blocking fluid is the critical step in all of the samples that were run 

here. For pores in excess of 400 Å, the fluid pressure will probably be too high to 

leave the pore blocking fluid intact when clearing out the residual amount of pore 

blocking fluid. One way to access this is to utilize an extremely small flow rate (and 

accompanying pressure) for samples of this nature. Another way to do this is to 

monitor the effluent for any signs of the pore blocking fluid. In other TPB studies 

utilizing HPLC-based measurements, the detector signal indicated when the flushing 

step was complete. 

The HPLC data show systematic variation, and it is well-known that this 

method is not a reliable method for determining total porosities. However, it is 

interesting to see that a huge overestimation of the wide pore material studied here is 

probably due to flow through the particle58 which has been calculated from models 

and would explain how the elution measurement would so overestimate the total pore 

volume and total porosity. Other problems with determining total, interstitial and 

intraparticle porosity for large pore particles are unique: the dividing surface between 

what is a pore and what is interstitial space is not defined for any porous particle 

system. This is discussed in the modeling paper referred to previously58. The physical 

manifestation of a dividing surface in the TPB method is the meniscus at the interface 

between immiscible fluids, and the geometry of this is highly dependent on contact 
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angle and the pore shape. This is an interesting area of research as characterization of 

very small pore and very wide pore materials is a challenging area that still offers 

room for innovation. There is room for innovation with the TPB method, but its 

limitations become clear with the physical insight discussed above on the mechanism 

of pore filling with respect to pressure and pore size. 

The exclusion marker results agree in most cases with the interstitial porosities 

determined by the mass-based TPB method. This appears to be a good consistency 

check with the TPB method in general. However, the results for the widest pore 

particle columns may be questionable because the pore size distribution is wide 

enough for these particles that some penetration of the exclusion particle is possible.  

The ISEC method, although time consuming and not free of problems, seems 

to be the most readily adopted to making accurate measurements of porosity. 

However, its use, although amenable to automation with an autosampler, may still 

have problems with wide pore materials because finding excluded materials may be 

difficult if not impossible; many high molecular weight solutes have non-ideal 

behavior in the vicinity of particles like hydrodynamic and slalom chromatographic 

modes, and these can complicate the ISEC data interpretation. 
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Chapter 3 

A STATISTICAL OVERLAP MODEL OF CHROMATOGRAPHY WITH 

FINITE DETECTION LIMIT: REQUIREMENTS FOR BIOMARKER 

DETECTION 

3.1 Introduction 

A clearer understanding of the capacities of the proposed mass-based method 

of determining porosity provides insight into the physical potential of a 

chromatographic column; the search for biomarkers, however, also necessitates an 

investigation of the resulting chromatographic data.  Biomarkers, especially those 

substances present at extremely low concentrations in bodily fluids, have the potential 

to be used universally as a medical diagnostic tool to indicate trauma and disease in 

the body before the first onset of symptoms.  The potentials of biomarker detection 

require a thorough analysis of the resolution of chromatographic signals, and an 

understanding of how, and to what extent, individual peaks may be lost in a 

chromatogram due to noise and finite detection limits.  The quantification of these 

losses using theoretical methods has the potential to frame the practical considerations 

of missing analytes and provide further insight into the nature of experimental 

chromatography.  The application of statistical overlap theory to simulated 

chromatograms defines the second goal of this thesis, with the target of quantifying 

peak loss in the context of biomarkers present below traditional detection limits. 

The search for biomarkers indicative of diseases is one of the most intensively 

investigated aspects of modern biomedical research. For example, cardiovascular 
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disease biomarkers73,74 are sought that can distinguish healthy individuals and those 

with early developing disease. Cancer biomarkers derived from the plasma 

proteome75,76 can be very diverse and may be found in exceedingly smaller 

concentration, specifically in the picogram per milliliter basis76. However, as is well-

known, the concentration range of proteins often exceeds 11 orders of magnitude76 and 

this poses great problems in analytical detection methods when the analysis scheme is 

examined in detail. Many of these molecules may be present in less than a picogram 

per milliliter, i.e. parts per trillion (ppt), and these can offer exceeding difficulty in 

analysis. Furthermore, dynamic range limitations inherent in the detection process 

affect the useful concentration range that can be studied77 although high concentration 

proteins can be removed by affinity chromatographic methods. 

This large dynamic range poses a great problem in identifying cancer 

biomarkers in the proteome, especially when analyzing intact proteins using the so-

called “top-down” methods78,79. These methods employ very high resolution detection 

by mass spectrometry (MS), often with tandem mass spectrometry stages (i.e. 

MS/MS) of detection.  

Although these methods can be very powerful, the selectivity of liquid 

chromatography (LC) is insufficient to separate these species due to limited peak 

capacity; the possibility of tens of thousands of compounds pose a nearly-impossible 

separation task for both 1D and 2D chromatography. Even with a four-dimensional 

separation79, the human proteome has far too many components to be utilized directly 

for biomarker detection, let alone at the concentration levels that are thought to be 

present. Many options exist to supplement the separation selectivity, such as using 
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affinity chromatography for retaining very specific compounds for further analysis or 

as a rejection of specific compounds or compound types. 

In the “bottom-up” approach to proteomics, proteins are digested so that 

specific peptide fragments can be selectively detected. This also eases the difficulties 

of limited peak capacity in LC column methodology, although this problem is still 

extremely complex. One of the most selective approaches appears to use the analysis 

of the carbohydrate component of the glycoproteins, which appear to offer a number 

of possibilities for cancer detection80,81. This is due to specific cellular processes 

which are often associated with the carbohydrate part of the protein. Hence, glycomic 

analysis of proteins is becoming a very active part of the biomarker discovery 

process16,80–82 and mass spectrometry detection methods have been driven by the 

requirements needed for selective and sensitive detection of these glycans. Towards 

this end a great deal of study has gone into understanding the noise characteristics of 

high performance mass spectrometers83–88 used in biomarker detection. 

As is the case for top-down (intact) protein studies, bottom-up proteomics also 

requires unraveling of the complex mixture that defines the sample. This is most often 

accomplished using liquid chromatography (LC) with MS or MS/MS detection89–92. 

Both bottom-up and top-down analysis place severe demands on the separation stage. 

In many cases, capillary techniques93 are utilized due to the common case of limited 

sample volume, less dilution for higher sensitivity and very high resolution in spite of 

long run times.  

Resolution is extremely important as these samples have characteristically 

large overlapping of peaks and this can mask very low-level signals. For example, if a 

low concentration peak is partially overlapped with a high concentration peak, then the 
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low concentration peak will essentially be indistinguishable when mass spectrometry 

cannot resolve these on separate mass channels. This overlap also causes problems in 

quantitation due to ion suppression94. 2D chromatography has also been tried on 

numerous occasions95 but will not be discussed further; this study is focused on 1D 

LC. 

3.1.1 Statistical Overlap Theory and Natural Datasets 

A number of years ago, a statistical model of chromatography was developed 

by Davis and Giddings17 which examined chromatographic elution profiles and 

expressed the fraction of peaks resolved as a function of the ratio of the component 

number m to peak capacity nc; this was deemed the saturation, α. A simple Poisson 

model of random retention times was utilized.  Their results showed for a typical case, 

a random chromatogram will never resolve more than 37% of its potential peaks and 

only 18% of its potential peaks are single component peaks (SCPs). This theory also 

predicts that in order for a 90% probability of detecting an isolated SCP, the 

chromatogram must be 95% vacant. In theory, this would give decent detection, 

however in applications where thousands of components are present, such as in 

proteomics research, this is improbable, impractical, time consuming, and costly. 

This research was continued by Davis and coworkers; these models were 

collectively known as “Statistical Overlap Theory” (SOT).  A review of SOT has been 

given96 and explored for a number of different peak spacing models using different 

probability density functions (pdfs), different peak amplitude pdfs, etc. In all of these 

previous SOT models, there is an assumption present: a single detector is utilized that 

can detect all components and no noise is present on this single idealized channel. 
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Allowance for a threshold below which detection is impossible was introduced into 

SOT97 and subsequently refined18. 

Nagels and coworkers98 have looked at sample concentrations of plant extracts 

and concluded that the relative peak areas are exponentially distributed. Enke and 

Nagels99 have examined model sample datasets of natural materials and concluded 

these systems adhere to a log -normal distribution in signal intensities. Further work 

on this problem100 examined the response factors of the signals in an attempt to 

statistically correlate concentration and signal intensity factors. The exponential 

distribution suggests that most sample components are found at very low 

concentrations whereas the log-normal distribution suggests that at low 

concentrations, the number of components decreases after a maximum number of 

components which exist near the center of the distribution. These observations may be 

very sample dependent, but it is impossible to describe the statistical distribution of 

components below the limit of detection (LOD) when one can’t measure the 

concentration of these components. This suggests a more general approach to 

understanding this problem is needed. 

3.1.2 Focus of the Work 

In the work reported here, we impose a finite signal-to-noise ratio (SNR) into 

the SOT to see what signal requirements are necessary to avoid missing low 

concentration signals that might represent useful biomarkers. A finite LOD is imposed 

on the signal to be measured. Although the detector is still assumed to be a single 

channel detector, some statistical statements can be made about multiple detection 

channels common to MS and MS/MS. A number of amplitude (concentration) pdfs are 

investigated here including the log-normal, exponential and Weibull functions. The 
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latter, in particular, can be varied with two parameters so that the basis pdf changes 

between an exponential signal distribution and one looking almost like that of a log -

normal distribution. This is necessary to see what effect the loss in detectable signals 

appears to have, depending on which model is chosen. 

The effect of chromatographic efficiency on the detection of these low-level   

components is included in this SOT model via the saturation parameter. We will show 

that the detectability of these trace components places severe demands on 

chromatographic efficiency which affects peak heights and peak overlaps. When 

neighboring peaks have much different peak heights the smallest signal is often 

undetectable due to swamping out by the neighboring signal(s). Estimates of the 

fraction of components lost due to finite SNR and LOD as a function of column 

efficiency are given in detail to provide insight into the potential loss of components 

relevant to biomarker research. 

3.2 Theory 

The peak is the fundamental unit of measure here and all peaks in this 

treatment are Gaussian within any chromatogram. Chromatograms are formed by 

summing Gaussian single component peaks (SCPs). The SCP of the jth peak is defined 

as being composed of discrete data points of length n with index i for the peak 

amplitude, gi, which is a function of the time ti: 
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noting the peak maxima hj occurs at retention time tR,j with standard deviation σj. The 

vector index of these quantities j ε [1,m] where m is the number of SCPs with p 

observable peaks in a chromatogram noting that p ≤ m due to peak overlap. The peak 
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area Aj can be equated with the peak amplitude hj for a Gaussian peak with standard 

deviation σj so that: 

2j j jA h  
 3.2 

Noiseless, pure signal chromatograms HS (ti) are composed of the superposition of m 

peaks: 
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 3.3 

3.2.1 Amplitude Distributions and Concentration Model 

The amplitude distributions used here are idealized systems guided by previous 

models of the exponential pdf98 and a log-normal model99,100 of signal strengths 

derived from experimental data of complex mixtures. To capture a more general 

model, the Weibull pdf101 is utilized. A comparison of these pdfs is shown in Figure 4 

and the parameters used to derive these were curve fit from the data discussed below 

with the exception of the Weibull 2 model. The functional form of these models is 

given in Table 4. 
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Figure 4: The 4 probability density functions (pdfs) used in this study. The 

independent variable is signal amplitude x and P(x) is the probability of 

finding that signal amplitude. The mean and variance used in the 

exponential, log-normal and Weibull 1 cases are from the curve fits of 

the natural product data described in the text with parameters mean 2.77 

and standard deviation of 4.5. The parameters for the Weibull 2 curve are 

mean 0.9027 and standard deviation of 0.6129.  
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Table 4: The amplitude pdfs used in this study. ξu is a uniform random variable between 0 and 1. 

Name pdf form Mean Variance Random deviate 

Exponential xe    1/   21/   1
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Additional notes:  

1. For the log-normal density: 𝜇 = ln (
𝑚2

√𝜐+ 𝑚2
) and 𝜎 = √ln(1 +

𝜐

𝑚2) where the mean is m and the variance is υ. 

2. For the Weibull distributions k is the shape factor and λ is the scale parameter. 

3. The random number generators listed as Matlab are available in the Matlab Statistics and Machine Learning toolbox. 
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The Weibull pdf varies in shape from exponential (k=1, equal to an 

exponential pdf) to an almost Gaussian-like density at higher k values. Both of these 

shapes are apparent in Figure 4 for the Weibull distribution. The relationships between 

the Weibull and log-normal distributions have been discussed102. 

In these examples, highlighted in Figure 4, two primary cases of interest 

emerge. Case 1 is where there is a larger probability of trace components relative to 

the mean. Case 2 is where a smaller probability of trace components relative to the 

mean exists. The exponential pdf is an example of case 1, while the log-normal 

distribution clearly represents a case 2 amplitude distribution. The Weibull pdf, 

depending on the parameters chosen, can mimic both case 1 and case 2; and this is 

shown for the Weibull 1 and Weibull 2 pdfs respectively in Figure 4.  

The signal amplitude dictated by the vector of random peak values, hj, can be 

equated to the peak maximum in concentration units. To accomplish this, it must be 

realized that the signal amplitude is dependent on chromatographic efficiency103 and 

the instrument response factor100. The duality between the signal amplitude and the 

concentration profile of chromatographic peaks is illustrated in Figure 5, along with 

the noise amplitude discussed below. 



 

 44 

 

Figure 5: The relationship between the concentration and signal amplitudes illustrating 

the limit of detection LODS for signals and C≠
max for concentration, the 

concentration of the jth peak at the peak maximum, Cmax,j, and the signal 

amplitude hj. The blue labels apply to concentration and the black labels 

apply to signal strength. The signal to noise ratio (SNR) is 500. Inset: 

The range illustrated above the noise standard deviation, σN, is 1 standard 

deviation wide. The limit of detection (LOD) is shown with both 3σN and 

5σN height. 

The concentration present in the detector at the peak maximum for component 

j, Cmax,j is
103: 
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 3.4 

where minj,j is the mass of injected component j and Vdil,j is the dilution volume for 

component j103. The dilution volume has been derived for single dimension103 and 

multidimensional104 separation systems. For single dimension separation systems, it 

takes the simple form of: 
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where the retention volume is given as VR,j and Nj is the number of plates for 

component j. The number of plates is equal to (tj / σj)
2, however we will use a constant 

σj model as this is much closer to the experimental results seen in gradient elution 

liquid chromatography.  Hence, σj = t1 / √N, where t1 is the retention time of the first 

peak. 

The response factor of each component j, Rj, equates the component 

concentration in the detector with the instrument amplitude response: 

max,j j jh C R
 3.6 

noting that for this study all Rj are assumed unknown and with units of signal 

amplitude per unit concentration. In one study100 it was reported that these response 

factors may follow the same distribution (log-normal) as the amplitude function that 

was being studied. The response factor Rj includes contributions from detectors, 

electronics and other parts of the signal chain. Although the response factor remains 

unknown, in this treatment we only need to specify the distribution of peak heights hj. 

3.2.2 Signal-to-Noise Ratio and Limit of Detection 

The SNR can be defined in a number of ways and these are discussed in the 

detector and signal processing literature83–88,105,106. Most differences exist in defining 

the signal. The first of the two most common approaches is to take an amplitude, 

usually a voltage, and square this voltage to make a power by assuming a certain load 

resistance (1 Ω) and dividing by the noise variance104. The other way, and the 

approach used in mass spectrometry-based investigations of noise83–88 is to record a 

peak amplitude from a known injected compound, usually one with a large response 
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factor. Then the background signal is sampled and the noise standard deviation 

determined. The SNR is then defined as the ratio of peak signal amplitude to noise 

standard deviation. Deviations from this scheme are known. 

In this work we use the average peak amplitude, ℎ̅, which is a priori 

determined when setting the amplitude distribution. The corresponding noise variance 

is then scaled to this peak level. Hence, the SNR is defined as the ratio of the mean 

peak signal amplitude to noise signal standard deviation: 

N

h
SNR




 3.7 

Rearranging Eq 7 gives the noise standard deviation as: 

N

h

SNR
 

 3.8 

As shown in Eq 8, given ℎ̅ and the SNR one can obtain 𝜎𝑁. In the development of the 

threshold cutoff18 for SOT, the symbol hn was used as the normalized (to the mean) 

threshold value so that: 

/nh h 
 3.9 

This threshold represents a signal buried within the noise; relative signal heights 

greater than γ are assumed to be detectable, but may not be resolvable if a SCP is next 

to a large peak that makes the smaller signal difficult or impossible to detect. This last 

case defines signals lost to peak overlap. 

Noise can be explicitly added to the signal by producing a vector of random 

Poisson, Gaussian or mixed noise deviates 𝜉𝑖 with mean zero and standard deviation 

σN. By adding the signal vector Hs (ti) to this noise vector the total signal is calculated: 
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( ) ( )i S i iH t H t  
 3.10 

The addition of uncorrelated, random Gaussian deviates is often referred to as additive 

white Gaussian noise (AWGN) and its power spectrum is flat. This form of noise is 

often used as a model for noise in electronic circuits. However, Poisson noise is more 

characteristic of the random arrival of ions88 and this contribution may also be 

important. An illustration of how noise appears for low level signals is shown in the 

inset to Figure 5. 

The addition of Gaussian noise to the signal impacts the resulting 

chromatograms; an example of chromatograms generated at varying SNR can be seen 

visually in Figure 6.  This effect is shown for a log-normal amplitude distribution with 

100 SCPs, and an expansion of the baseline highlighted to further illustrate the effect 

of noise on the signal. 
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Figure 6: Four synthetic chromatograms showing the various signal to noise ratios 

(SNRs) when Gaussian noise is added at various levels. The conditions 

for these chromatograms are α=0.16, m=100 SCPs, the amplitude 

distribution is log-normal with mean and standard deviation equal to 0.5. 

The standard deviation of the Gaussian peaks is constant and equal to 

𝜎𝑗 =  𝑡1 √𝑁⁄   where t1 is the retention time of the first peak noting that 

the efficiency of the first peak is 100,000 theoretical plates. A: Total 

chromatogram B: Amplitudes multiplied by time and clipped at a signal 

level to further show the noise amplitude in detail. 
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The SNR can also be specified in units of decibels (dBs) as: 

1010log ( )dBSNR SNR
 3.11 

In this paper we don’t explicitly add noise to the signal, as in Equation 3.10, but rather 

designate a level above which signals are considered detectable, and below which 

signals are assumed lost in the noise. 

The LOD in signal terms107,108 is given as: 

3S NLOD 
 3.12 

when the baseline or offset signal is essentially zero or nulled to zero. This states that 

the minimum detectable signal LODS that can be detected with a certain reliability is 

three times the noise standard deviation, assuming the noise has zero mean. Other 

treatments have used a constant of 5 instead of 3107,108. We will contrast results for 

SCPs at the LOD with the 3σN criteria below, realizing that given the SNR and ℎ̅, the 

LOD can be calculated. 

3.2.3 Statistical Overlap Theory 

Two important results from SOT are the definition of the effective saturation, 

𝛼𝑒, and the simplest result of SOT, which is establishing the fraction of observable 

peaks given the saturation.  The peak capacity, nc, is commonly defined as109,110: 
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where tm is the last SCP and t1 is the first SCP in a chromatogram. In Equation 3.13 σ 

is the temporal Gaussian standard deviation of all SCPs and Rs is the resolution 
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between two neighboring peaks; we will use Rs = 1 for this study. In addition, the 

effective saturation is given as111–113: 

e

c s

m

n R
 

 3.14 

where m is the number of SCPs and nc is the peak capacity. Rs = 1 is utilized in 

Equation 3.14. Of additional interest is the primary result from SOT studies which 

equates the saturation to the fraction of observable peaks in a chromatogram17,113: 

e
p
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 3.15 

3.2.4 Simulations 

The synthesis and analysis of synthetic chromatograms is written in MATLAB 

(Mathworks, Natick, Massachusetts). The program makes extensive use of 

spreadsheets for parameter input and calculated output and provides most of the 

graphs calculated in this chapter. The amplitude distributions are generated with 

functions inherent in MATLAB, as shown in Table 4, except for the exponential 

distribution which is generated explicitly with the inverse transform sampling 

method114,115. In addition, the Minitab statistical software system (Minitab, Inc. State 

College, Pennsylvania) was used for some of the analysis of the data reported by Enke 

and Nagels99. 

Given the input parameters contained in the spreadsheet: peak width σ, the 

number of components m, the start and stop time of the chromatogram, t1 and tm, and 

the mean and standard deviation of the peak height function, the chromatograms are 

calculated and then analyzed. The pdf parameters of the peak height function are 
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calculated from the inputs of function mean and standard deviation.  The 

chromatograms in this work are generated from t1 = 60s to tm = 7200s, at m = 3000 

with 25 points per peak. The analysis consists of detecting peaks using the zero-

crossing of the derivative signal, which is calculated by the finite difference of the 

signal Hs (ti). In addition, the two points used for zero-crossing determination must 

exceed a certain noise threshold of 10-6 to prevent roundoff error from triggering a 

false peak.    

The detected peak retention times are then compared to the SCPs originally 

calculated from a uniformly random density of components between t1 and tm and 

sorted prior to generation. Because summation of the peaks using Equation 3.3 can 

slightly alter the peak maxima retention times, a range window of 1.00% is used to 

identify if the peak is matched with the component. All SCPs that can’t be identified 

with a unique peak are considered to be undetectable due to summation, i.e. SCP 

overlap. Identifiable peaks are coded green in the map of SCPs which accompany the 

chromatograms and unidentifiable SCPs are coded red in this map; we refer to these 

diagrams as “loss diagrams.” The peak capacity and saturation are stored in a separate 

row of the output worksheet contained within the spreadsheet. The SCPs that did not 

have a peak within the window were stored as time-amplitude pairs, and the pdf of 

these SCPs was determined using histogram analysis. This facilitates determining 

what quantities of signals get obliterated by peak overlap and what peaks get taken out 

because they are below a threshold in amplitude. The synthesized chromatograms, loss 

diagrams and lost component densities produced via these procedures are shown 

below. 
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3.3 Results 

3.3.1 Analysis of the Natural Mixtures Datasets 

Enke and Nagels99 have proposed that the components present in a complex 

natural mixture follow a “natural law” in terms of their response.  If this response 

could be modeled and fit to a known function, more information could be realized 

regarding the presence of materials in a mixture below traditional detection limits, 

predicting characteristics of that portion of the mixture that may be hidden.  These 

authors suggest that the natural concentration law of biological and natural mixtures is 

a log-normal pdf.  Their paper attempts to show that analytical responses of 

compounds in three natural mixtures: 1) extracellular metabolites, 2) light crude oil 

and 3) plant extracts obey the log-normal pdf. By seeking to model the responses and 

thus determine the log-normal parameters of the distribution, it is theoretically 

possible to predict the “degree of analytical selectivity and dynamic range that would 

be required to detect any additional fraction of the components present”99.  Here, we 

will examine the data reported for two of the natural mixtures discussed: light crude 

oil and plant extracts, as catalogued by Nagels et al.98. Data for the extracellular 

metabolites mixture was not readily available from the publication. 

Although there has been a significant focus on the log-normal distribution to 

describe the response of natural mixtures18,97,99,100, a significant limitation to this 

approach lies in its lack of specificity. Despite significant evidence to support the log-

normal fit, it remains possible that this distribution is only one of several that can be 

considered.  An analysis of two of the natural mixtures considered by Enke and 

Nagels99 in the context of the Weibull pdf, in addition to the log-normal pdf, follows.   
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The first data set considered was a sample of light crude oil analyzed by high 

resolution mass spectrometry; the compounds identified were arranged in equally-

spaced groupings of response intensity, as reported by these authors in Table 299.  One 

of the quantifying assumptions made by Enke and Nagels, following analysis of a log-

log parabolic plot they generated, was that the number of undetected components 

would be the same as the number of detected components; from the values reported, 

this would mean roughly 16,000 components of the mixture were not detected by the 

method.   

In Minitab (State College, PA, USA), which was used by Enke and Nagels99, 

least squares (LSXY) estimates with arbitrary censoring were employed to fit the 

proposed distributions (Stat  Reliability/Survival  Distribution Analysis (Arbitrary 

Censoring), and 16,135 missing data points were specified as per the assumption made 

in the work99. 

It is important to note that this is a result of the postulation that the data follow 

a log-normal distribution.  In removing this assumption, the data were also fit without 

explicitly specifying the number of missing points.  The results of this analysis are 

below.  

The second data set considered was a sample of plant extract data obtained by 

HPLC and UV detection, initially from work by Nagels et al.98.  The relative 

abundance of peak areas observed in the raw data was smoothed by the author to 

estimate the frequency distribution of all component peaks; here, we consider only the 

data on observed peaks to fit to potential pdfs, again with Arbitrary Censoring in 

Minitab.  These results are included in the table below. 
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Table 5: Fits of crude oil and plant extract data to the pdfs.  Data 1 includes the 

assumption that 50% of the components are undetected. In Data 2 no 

assumption is specified for undetected components. 

  Mean Std Dev Correlation Coeff. 

Crude Oil - MS Data 1 Data 2 Data 1 Data 2 Data 1 Data 2 

Log-normal 0.1629 0.0861 0.0677 0.1551 0.983 0.984 

Weibull 0.1547 0.0481 0.0717 0.0313 0.991 0.963 

Normal   

   

0.992 0.904 

Plant Extracts - HPLC/UV Vis 

  Log-normal 2.7276 4.127 0.997 

Weibull 2.9411 3.4837 0.966 

Normal 

  

0.851 

 

Although the work by Enke and Nagels provides evidence to consider the log-

normal pdf to describe the mixtures considered, examination of the Weibull pdf 

suggests that this distribution may also fit the data well for both the crude oil and plant 

extracts datasets, as shown in Table 5.  Without specifying a number of undetected 

components, the log-normal and Weibull distributions both provide fits notably better 

than a simple normal distribution, as judged by the correlation coefficients. However, 

this also identifies the influence of assumptions made regarding undetected and 

unresolved signals, and highlights a difficulty in ensuring the accuracy of the fitting 

procedure.  It is well recognized that fitting data over a limited range of a pdf may 

result in false extrapolation. In the fitting process used for the Enke and Nagels 

datasets, no data below the detection limit was or can be fit because it cannot be 

detected, and this tends to make the argument of a unique pdf less plausible. 

Data from both natural mixtures were also analyzed via MATLAB parameter 

estimates for the exponential, Weibull and log-normal pdfs using the MATLAB 

functions expfit, wblfit, and lognfit respectively.  A comparison of these parameter 

values with those obtained by Minitab for the exponential, Weibull and log-normal 
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pdfs are shown below in Table 6. Although the parameters estimated from the plant 

extract data are comparable between the two methods, these results suggest there is a 

justification for using other pdfs than log-normal as models for the natural mixture 

data, including the Weibull pdf. 

Table 6: Comparison of curve fitting for the Enke and Nagels crude oil and plant 

extract datasets with Minitab and MATLAB. 

Crude Oil Mean 

  

 

Minitab MATLAB 

  Exponential 0.062 0.004 

  

 

Shape Parameter Scale Parameter 

 

Minitab MATLAB Minitab MATLAB 

Weibull 1.569 0.910 0.054 0.004 

Log-normal -3.176 -6.031 1.203 0.807 

     Plant Extracts Mean 

  

 

Minitab MATLAB 

  Exponential 5.247 2.765 

  

 

Shape Parameter Scale Parameter 

 

Minitab MATLAB Minitab MATLAB 

Weibull 0.848 0.926 2.699 2.640 

Log-normal 0.408 0.469 1.091 0.956 

 

One important area of note is the difference observed between the parameters 

determined from Minitab software and those determined using MATLAB.  We may 

offer some insight into the differences between the algorithms behind these programs, 

while the exact estimation processes are property of Minitab, Inc. and MathWorks, 

Inc. respectively.  The Arbitrary Censoring distribution analysis in Minitab employed 

least squares estimates to the data provided, fitting a regression curve to the points via 

a minimum of the average squared difference between the observed and predicted 
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values, or the least square error.  The parameter estimates in MATLAB, however, use 

the principle of maximum likelihood to search over all possible parameter values for 

the most likely model fit.  While this subtle difference in regression tactic is likely 

responsible for the differences between the parameter estimates, we again note that 

underlying assumptions and models are not readily available for these programs. A 

significant conclusion from this work remains a justification for probability 

distribution functions other than log-normal to be examined as potential models for 

natural mixture data. 

We note the potential that several pdfs may be considered to describe signals 

associated with natural mixtures.  A thorough analysis, however, necessitates more 

readily-available data and a means of estimating undetected and unresolved signals.  

Since this problem itself arises from an inability to find these signals in real data, we 

instead turn to simulated results to better quantify signal loss.  For the Weibull pdf, it 

can be adjusted so that all scenarios can be covered from an exponential-like behavior 

(a Weibull pdf can be exactly equivalent to an exponential pdf with the proper 

parameters) to log-normal-like behavior.  Hence, modeling can mimic the case from 

an excess of the lowest concentration components, as embodied in the exponential pdf, 

to a distribution like log-normal where the lowest concentration components appear 

with almost zero probability. 

3.3.2 Theoretical Chromatograms and Fraction of Peaks Lost 

Figure 7 shows a comparison of synthetic chromatograms from the log-normal, 

exponential and Weibull amplitude pdfs shown in Figure 4. The mean and standard 

deviation used for the log-normal, exponential and Weibull pdfs are from the raw data 

on plant extract signals reported by Enke and Nagels.  The mean and standard 
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deviation for the Weibull 2 pdf were chosen to encompass a case with a smaller 

probability of trace components relative to the mean. The saturation, α, is 0.1 in all 

four cases. Also shown in these figures is the location where SCPs are missing due to 

loss by peak overlap. It is easy to see that these peaks and the corresponding amplitude 

distributions look different by inspection. For example, the log-normal distribution 

appears to have a number of high amplitude peaks among the mean amplitude heights; 

this is due to the power law behavior of both log-normal and Weibull distributions116 

which are both called “heavy-tailed” distributions due to the persistence at higher 

values of the independent variable. In the case of the Weibull 1 distribution, there is a 

high probability of low amplitude peaks, and these are hard to see in the 

chromatogram. In the case of the Weibull 2 distribution, the parameters were chosen 

(referring to Figure 4) so that the tail is suppressed and more low amplitude peaks is 

favored. In the case of the exponential distribution, the raw data parameters favor 

almost a uniform distribution of SCP heights (shown in Figure 4) and this uniformity 

reveals itself as shown in Figure 7. The loss in specific SCPs, shown as red bars below 

these graphs, is discussed below for a number of α values. 
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Figure 7: A comparison of the chromatograms generated with the different peak 

amplitude probability density functions (pdfs) and the loss of resolved 

peaks shown as red lines. The green lines are single component peaks 

(SCPs) that have recognizable maxima. The amplitude scale for all but 

the Weibull 2 result is the same. The Weibull 2 amplitude scale is 

expanded to show comparison. The bottom two are expanded scale. 
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A comparison of these case 1 and case 2 results utilizing the two Weibull pdfs 

with different saturation values is shown in Figure 8. As can be seen from the loss 

diagrams given here at different saturation values α, as saturation increases, the loss of 

SCPs increases as expected. The loss diagram, although visually useful, does not give 

a quantitative estimate of the loss of SCPs as a function of SCP amplitude. That loss 

of peaks is given in Table 7 and will be discussed shortly. However, Table 7 does 

show the fraction of visible peaks p/m from both the simulation results and from 

Equation 3.15 given α. These numbers indicate a slight loss of SCPs for all amplitudes 

at α=0.10 and shows approximately 10% and 8% loss of SCPs for the Weibull 1 and 2 

cases, respectively. Higher saturations show more severe loss of SCPs with about 50% 

loss of SCPs at α=1.00. Note that the simple theory from SOT given in Equation 3.15 

works well at low α, but underestimates p/m values for higher saturations.
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Figure 8: The loss of peaks for the Weibull 1 and Weibull 2 models. The chromatograms are calculated at α=0.10. The loss 

diagrams are shown for α=0.10, 0.25, 0.50, 0.75 and 1.00 for both models. The loss in SCPs due to peak 

overlap are tabulated in the figure caption to Figure 9A and 9B. The percent loss of SCPs is given in Table 7 at 

the different signal-to-noise ratios at the limit of detection (LOD). 
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Table 7: The fraction of peaks lost as a function of the signal-to-noise ratio (SNR). The α=0 results are obtained from the 

cumulative distributions. The fraction of SCPs found, p/m, are from the simulation and from Equation 3.15. 

SNR 100 500 1000 5000 p/m p/m

LOD 8.31E-02 1.66E-02 8.31E-03 1.66E-03 simulation exp(-αe)

α = 0.00 12.30% 4.56% 2.95% 1.05% 1 1

α = 0.10 1.17% ± 0.16% 0.483% ± 0.227% 0.342% ± 0.166% 0.0667% ± 0.0272% 0.908 ± 0.005 0.905

α = 0.50 3.61% ± 0.16% 1.33% ± 0.21% 0.817% ± 0.164% 0.250% ± 0.155% 0.696 ± 0.007 0.607

α = 1.00 5.91% ± 0.59% 2.22% ± 0.24% 1.46% ± 0.20% 0.633% ± 0.136% 0.515 ± 0.002 0.368

α = 1.50 7.18% ± 0.62% 2.67% ± 0.38% 1.78% ± 0.30% 0.700% ± 0.181% 0.400 ± 0.006 0.223

Weibull 1

 

SNR 100 500 1000 5000 p/m p/m

LOD 2.71E-02 5.42E-03 2.71E-03 5.42E-04 simulation exp(-αe)

α = 0.00 0.444% 0.0397% 0.0140% 0.00120% 1 1

α = 0.10 0.0250% ± 0.0319% 0.00% ± 0.00% 0.00% ± 0.00% 0.00% ± 0.00% 0.925 ± 0.006 0.905

α = 0.50 0.142% ± 0.032% 0.00833% ± 0.01667% 0.00% ± 0.00% 0.00% ± 0.00% 0.728 ± 0.001 0.607

α = 1.00 0.175% ± 0.050% 0.00833% ± 0.01667% 0.00% ± 0.00% 0.00% ± 0.00% 0.549 ± 0.008 0.368

α = 1.50 0.233% ± 0.067% 0.00833% ± 0.01667% 0.00% ± 0.00% 0.00% ± 0.00% 0.436 ± 0.006 0.223

Weibull 2
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These previous results lump together the total number of SCPs lost due to peak 

overlap regardless of SCP amplitude. The distribution of lost amplitudes is shown in 

Figures 9A and 9B for four different α values used in the study. As shown in both 

Weibull 1 and 2 cases, the largest number of lost peaks due to overlap is from the 

smallest amplitudes. These figures also show the cumulative percent loss. For both 

Weibull 1 and 2 cases, it appears that the shapes of the frequency of peaks lost stays 

relatively constant as α increases. Obviously, more total peaks are lost as α is 

increased, but the shapes of the distributions, as a function of peak heights, are similar. 
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Figure 9A: Lost peaks as a function of peak heights for the Weibull 1 distribution at 4 different α values. 
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Figure 9B: Lost peaks as a function of peak heights for the Weibull 2 distribution at 4 different α values. 
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Closer inspection between the Weibull case 1 and case 2 plots in Figure 9A 

and 9B show that more total peaks are lost with the Weibull 1 case. This is most likely 

due to having more low amplitude peak heights for the Weibull 1 case, shown clearly 

in the nature of the pdfs given in Figure 4. For the Weibull 2 peak profiles in Figure 

9B, few higher amplitude peak heights are eliminated and this is tied to the basic 

shape of the Weibull 2 pdf shown in Figure 4. Although both Weibull amplitude 

models appear different, the plots of number of SCPs lost versus peak heights all 

appear exponential in nature. This may be due to the loss mechanism as a 

superposition effect where smaller amplitudes are much more susceptible to loss of 

uniqueness from the overlap of neighboring SCPs. This underlying mechanism is the 

heart of the problem; both case 1 and case 2 pdfs lose small amplitude SCPs due to 

superposition overlap and lose the peak characteristic when surrounded by larger 

neighbors. 

The peak heights lost due to overlap can be further expanded to a finer scale 

and the LOD superimposed on this scale, as shown in Figure 10. These results show 

that for the Weibull 1 model, different amounts of SCP loss are experienced over the 

SNR range from SNR=100 to SNR=5000 and it appears that approximately 5-fold 

more SCPs are lost for the highest SNR considered here to the lowest SNR. This is 

surprising but not unexpected due to the exponential-like behavior inherent in the data 

shown in Figure 10. A much smaller number of peaks are lost at the same SNRs and 

LODs for the Weibull 2 model. This is again due to the shape of the Weibull 2 

amplitude pdf, and demonstrates the sensitivity of this loss to the shape of the 

amplitude pdf. 
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Figure 10: The distribution of lost signal amplitudes for the Weibull 1 and Weibull 2 amplitude distributions for α=1.00. 
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These results highlight the very nature of this study. In the case 1 scenario for 

the Weibull 1 amplitude pdf, SCPs are lost at the rate of a few percent, at the stated 

SNRs. For the case 2 distribution, much less loss is shown at the stated SNRs.  In both 

cases, the overlap superposition mechanism is causing peak loss.  

An infinite resolution model (α=0.00) can be derived from the cumulative 

density function (cdf) of the Weibull model101. This model, in principle, can be used to 

probe what fraction of SCPs would be masked by noise below the LOD when peak 

overlap is not present. This model assumes that all peaks are resolvable, i.e. the peaks 

are non-overlapping, and in the extreme would be represented as Dirac delta 

functions117 at each retention time. The results of these calculations are given in Table 

7 for the Weibull 1 and 2 models at zero saturation and the cumulative densities are 

shown in Figure 11 for these models. 
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Figure 11: The loss of total SCPs due to gating the amplitude of potential peaks in the 

α = 0 limit of infinitely thin peaks. The two plots are for the Weibull 1 

(top) and Weibull 2 (bottom) amplitude pdfs. The blue curves are the 

probability density function and the tan curves are the cumulative density 

functions. The dashed lines are the corresponding limit of detection to the 

SNR noise amplitude shown in vertical solid colors. 
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A few things stand out here. First, without overlap the fraction of lost SCPs 

would appear much higher than that for finite resolution (finite α) models given also in 

Table 7. However, this model has no overlap, so it has no influence on adjacent, 

neighboring SCPs. Hence, this is strictly valid for only the height distribution and says 

nothing about the superposition loss. In the limit this suggests a much larger effect, 

based on pure amplitudes, rather than due to overlap superposition. However, the 

comparison is interesting because partial additivity of neighboring zones can boost an 

SCP over the LOD and artificially lower the number of lost SCPs. Hence, the 

comparison of the infinite resolution model is not a good comparison but does 

emphasize some important points. The superposition models at finite α most likely do 

not sample the complete amplitude density, and that would suggest numbers in Table 

7 for finite α are lower estimates than for an exhaustively sampled density function. 

Nonetheless, having low-side estimates still shows that a significant number of SCPs 

can still be lost under these conditions. 

3.4 Discussion 

This work clearly suggests that the loss of detectable components in single 

channel detection systems is highly dependent on the shape of the amplitude density 

function and that for the two cases examined here the results are different, with one 

model being sensitive to the low signal level components and the other not sensitive to 

these components. The problem here is that models can be ambiguous because one 

can’t get at the underlying distribution; its shape and form is hidden below the LOD. 

Another set of problems are also present. We have used the assumption that the 

response factor is not explicitly determined here because we are using a signal-based 

assumption about the distribution and not asking questions about the concentration 
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distribution. To relate the concentration model to the signal model, additional 

information is needed. This includes the sensitivity distribution inherent in the 

response factor, given in Equation 3.6. However, this factor is extremely difficult to 

ascertain and is dependent on a multitude of instrument factors, perhaps too many to 

accurately predict. These may be dependent on the amplitude distribution itself so that 

the response is a function of concentration. 

Many detection systems are well-filtered to mask baseline noise, an effect  

known in chromatography118,119 to add an additional zone broadening-like contribution 

which increases peak width. In this regard, the noise is masked and visually makes the 

signal look better, but doesn’t change the SNR because both signal and noise are 

typically reduced. This affects the signal chain, and thus careful use of filters must be 

applied when working near the LOD.  

Finally, mass spectrometry should be effective in reducing the saturation α 

when used as a multichannel detector. This is because detection on separate mass 

channels should drastically reduce the crowding of signals seen on a single channel 

detector. This strategy should effectively distribute the signal across lower occupancy 

detection channels. However, in many scenarios pertinent to biomarkers, such as top-

down proteomics, the chromatography is run under such high saturation conditions, 

even with long columns and very long run times120, that the mass spectra at specific 

masses is too crowded and strategies like MS/MS are needed. That increases the 

complexity and is not immune to other SNR limitations such as chemical noise when 

electrospray interfaces are used. Additionally, two-dimensional LC (2DLC) can help 

sort out the components in these highly complex samples and help reduce the 

crowding in the MS or MS/MS detection system. However, this places even more 
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burden on the detector because dilution will lower the signals proportionally104, as is 

well-known in 2DLC. Nonetheless, these techniques will help in the future in the 

ability to sort out the separation and create a demand for more sensitive and lower 

noise detection systems to aid in the search for low-abundance biomarkers. 
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Chapter 4 

CONCLUSION 

HPLC and separation science hold endless potential in the investigations of the 

modern medical community.  The study of bodily samples and other biological 

constituents for the identification, prevention and treatment of diseases relies on an 

ability to accurately analyze these materials.  Chromatography provides a method of 

mixture analysis that is highly specific and tailorable, and HPLC in particular offers 

the advantage of faster, higher resolution separations of complex mixtures.  This work 

sought to increase the capacity of current methods in HPLC to identify and quantify 

the presence of biomarkers for disease in two ways.  First, a method for the 

determination of column porosity using mass-based measurements was proposed to 

better realize the physical capability of a chromatographic column for separations.  

Second, synthetic chromatograms were generated in order to estimate the loss in the 

resultant signals due to noise and peak overlap.  In all, the work of this thesis sought to 

improve upon current chromatographic methods to enable better biological separations 

and diagnostics. 

This research contributed valuable findings to the overall knowledge of HPLC 

and chromatographic signals.  The mass-based method for determination of column 

porosity has the potential to provide information on the performance of a column 

based solely on its physical contents.  Despite the issues encountered for larger pore 

materials using this method, a great deal of success was observed in replicating 

measurements for the total pore volume of smaller pore materials.  Static column mass 
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measurements made using total pore blocking remove the dependence on void time 

determination seen in dynamic methods, and thus offer an advantage over current 

techniques. This method highlights the possibility of improving upon current 

separation techniques with a better estimation of column physical performance. 

The work of this thesis in employing statistical overlap theory to generate 

synthetic chromatograms contributes to a means of estimating the resolution of 

resulting signals.  A better understanding of the impacts of noise and peak overlap in a 

chromatogram provides another possibility for improving separations, and seeks to 

define where low-level biomarkers could be found.  This investigation into the 

underlying distribution of natural mixtures identified several possibilities, each with 

their own implications for unidentified components.  While some cases suggested 

higher quantities of low-level signals than others, many of the simulations run 

demonstrated a commonality in the relative spread of peaks lost due to overlap.  By 

using simulated chromatograms to identify low-level signals, this work was able to 

draw conclusions about the portion of a natural mixture that cannot be seen with 

current methods. 

Through this work, further insight was provided into the ability of current 

methods to analyze natural mixtures.  The development of a method to easily quantify 

the inner contents of a column using mass-based measurements demonstrated promise 

for small-pore materials, and highlighted phenomena in larger-pore materials, 

increasing knowledge of the physical nature of chromatographic separations.  A series 

of computer simulations shed light on the underlying distribution of a resulting 

chromatographic signal and its lost components, providing the possibility of 

quantifying part of a mixture that cannot currently be observed. Despite these 



 

 74 

successes, this work has only begun to explore the opportunities in the area of 

chromatography and the search for biomarkers.  The findings presented here will 

hopefully inspire future work to improve upon current methods in chromatography for 

biological separations. 
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Appendix A 

POROSITY MEASUREMENTS 

This Appendix contains three tables: the total pore volume obtained through 

mass measurements, the interstitial volume measurements made with pore blocking 

experiments and the volume determination results leading to the porosity values used 

in Table 3.  Numbers shown here were read off of the scale itself and do not 

necessarily account for significant digits. 

Table A1: Total pore volume mass measurements. 

Column  

Mass 

CH3OH 

Mass 

CH2Cl2 

Mass 

(CH2)4O 

Mass 

CH3CN Vo (cm3) 

Reversed Phase 

     1 A 28.3286 28.3741 28.3347 28.3240 0.08951 

 

B 28.3254 28.3738 28.3347 28.3245 0.09038 

 

C 28.3181 28.3664 28.3272 28.3168 0.09139 

2 A 28.2739 28.3291 28.2837 28.2728 0.10396 

 

B 28.2761 28.3309 28.2859 28.2750 0.10306 

3 A 28.3235 28.3732 28.3327 28.3228 0.09314 

 

B 28.3263 28.3766 28.3353 28.3254 0.09456 

7 A 28.1965 28.2475 28.2046 28.1902 0.09987 

8 A 28.4925 28.5477 28.5013 28.4934 0.10353 

       Normal Phase 

     4 A 28.3144 28.3730 28.3257 28.3132 0.11028 

 

B 28.3076 28.3651 28.3208 28.3051 0.10738 

5 A 29.9731 30.2588 30.0255 29.9670 0.54016 

 

B 29.9697 30.2569 30.0221 29.9638 0.54291 

6 A 30.1440 30.4049 30.1918 30.1386 0.49324 

 

B 29.9013 30.1627 29.9480 29.8979 0.49374 



 

 

8
7

 

Table A2: Interstitial volume measurements (pore blocking experiment). 

Column Mass H2O Mass CH3OH Mass C3H8O Vi (cm3) 

  Reversed Phase 

     1 A 28.3359 28.3253 28.3298 0.04132 

  

 

B 28.3379 28.3266 28.3268 0.05574 

  

 

C 28.3221 28.3181 28.3191 0.01739 

  2 A 28.2925 28.2754 28.2756 0.08414 

  

 

B 28.2870 28.2766 28.2772 0.04998 

 

 

3 A 28.3378 28.3248 28.3259 0.06143 

  

 

B 28.3424 28.3264 28.3272 0.07717 

  7 A 28.2007 28.1916 28.1919 0.04457 

  8 A 28.5043 28.4924 28.4925 0.05835 

  

 

 

 

 

 

      

  

Mass C8H18 Mass CH2Cl2 Mass C4H8O2 Mass C6H12 Mass C4H8O Vi (cm3) 

Normal Phase 

     4 A 28.3094 28.3701 28.3273 28.3132 

 

0.10100 

 

B 28.3070 28.3647 28.3176 

 

28.3070 0.10568 

5 A 29.9521 30.2488 30.0341 

  

0.49230 

 

B 29.9833 30.2588 30.0310 

 

29.9769 0.51087 

6 A 30.1110 30.1988 30.4081 30.1384 

 

0.48891 

 

B 29.8608 30.1628 29.9577 

 

29.9074 0.49016 
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Table A3: Volume determination results 

Col Trial 

V0  

(cm3, avg) Std Dev V0 Rel Std Dev 

Vi  

(cm3, avg.) Std Dev Vi Rel Std Dev 

1 a 0.08951 0.00383 4.27% 0.04132 0.00976 23.62% 

 

b 0.09038 0.00102 1.13% 0.05574 0.00128 2.30% 

 

c 0.09139 0.00114 1.25% 0.01739 0.00214 12.28% 

2 a 0.10396 0.00047 0.45% 0.08414 0.00211 2.51% 

 

b 0.10306 0.00048 0.46% 0.04998 0.00011 0.22% 

3 a 0.09314 0.00040 0.42% 0.06143 0.00067 1.09% 

 

b 0.09456 0.00035 0.37% 0.07717 0.00051 0.66% 

4 a 0.11028 0.00133 1.21% 0.10100 0.00333 3.30% 

 

b 0.10738 0.00500 4.65% 0.10568 0.01078 10.20% 

5 a 0.54016 0.00369 0.68% 0.49230 0.01526 3.10% 

 

b 0.54291 0.00326 0.60% 0.51087 0.05707 11.17% 

6 a 0.49324 0.00322 0.65% 0.48891 0.00968 1.98% 

 

b 0.49374 0.00114 0.23% 0.49016 0.00333 0.68% 

7 a 0.09987 0.00558 5.59% 0.04457 0.00071 1.59% 

8 a 0.10353 0.00277 2.68% 0.05835 0.00155 2.65% 

Note: Standard deviations in this table were calculated from duplicate measurements.
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Appendix B 

PROPAGATION OF ERROR FOR THE POROSITY CALCULATIONS 

For the interstitial volume formula, assuming that the masses of columns filled 

with solvents 1 and 2 were uncorrelated, we may use propagation of error methods as 

specified in Bevington, et al.121 to determine: 

𝑉0 =  
𝑚1 − 𝑚2

𝜌1 − 𝜌2
 

 

𝜎𝑉0

2

𝑉0
2 =

𝜎𝑚1
2 +  𝜎𝑚2

2

(𝑚1 − 𝑚2)2
+

𝜎𝜌1
2 + 𝜎𝜌2

2

(𝜌1 − 𝜌2)2
 

Which can also be expressed to yield 𝜎𝑉0
directly, given values of V0 and errors 

associated with mass and density measurements: 

 

𝜎𝑉0
= 𝑉0√

𝜎𝑚1
2 +  𝜎𝑚2

2

(𝑚1 − 𝑚2)2
+

𝜎𝜌1
2 + 𝜎𝜌2

2

(𝜌1 − 𝜌2)2
 

However, since values for density were obtained from the solvent 

manufacturers, we may neglect the contributions of the density values to the 

systematic uncertainty, and eliminate the second term under the radical to yield the 

final formula for 𝜎𝑉0
: 

𝜎𝑉0

2

𝑉0
2 =

𝜎𝑚1
2 + 𝜎𝑚2

2

(𝑚1 − 𝑚2)2
 

 

𝜎𝑉0
= 𝑉0√

𝜎𝑚1
2 +  𝜎𝑚2

2

(𝑚1 − 𝑚2)2
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By the same manipulations, we can also obtain expressions for Vi, the 

interstitial pore volume of the column, noting that the values of 𝑚1, 𝑚2, 𝜌1, and 𝜌2 in 

the below expression correspond to measurements taken to determine 𝑉𝑖 rather than 

𝑉0: 

𝑉𝑖 =  
𝑚1 − 𝑚2

𝜌1 − 𝜌2
 

 

𝜎𝑉𝑖

2

𝑉𝑖
2 =

𝜎𝑚1
2 +  𝜎𝑚2

2

(𝑚1 − 𝑚2)2
 

And explicitly for 𝜎𝑉𝑖
, 

𝜎𝑉𝑖
= 𝑉𝑖√

𝜎𝑚1
2 +  𝜎𝑚2

2

(𝑚1 − 𝑚2)2
 

 

In estimating the error associated with solving for pore volume, identified as 

𝑉𝑝, we recall the relation established in Equation 3, which can be manipulated 

explicitly for 𝑉𝑝: 

𝑉𝑝 = 𝑉0 −  𝑉𝑖 

Recalling the expression for error propagation through terms being added or 

subtracted (in a case with no multiplicative constants), we see that 

𝜎𝑉𝑝

2 =  𝜎𝑉0

2 +  𝜎𝑉𝑖

2 + 2𝜎𝑉0𝑉𝑖

2  

And again assuming that fluctuations in each of the volume calculations are 

uncorrelated, the error equation becomes: 

𝜎𝑉𝑝

2 =  𝜎𝑉0

2 +  𝜎𝑉𝑖

2  

Solving explicitly for 𝜎𝑉𝑝
and plugging in the values obtained for errors of 𝑉0 

and 𝑉𝑖: 

𝜎𝑉𝑝

2 =  𝑉0
2  (

𝜎𝑚1
2 +  𝜎𝑚2

2

(𝑚1 − 𝑚2)2
) + 𝑉𝑖

2  (
𝜎𝑚1

2 +  𝜎𝑚2
2

(𝑚1 − 𝑚2)2
) 



 

 91 

𝜎𝑉𝑝
=  √𝑉0

2  (
𝜎𝑚1

2 +  𝜎𝑚2
2

(𝑚1 − 𝑚2)2
) +  𝑉𝑖

2  (
𝜎𝑚1

2 +  𝜎𝑚2
2

(𝑚1 − 𝑚2)2
)  

Where the references to 𝑚1 and 𝑚2 are for the measurements associated for 𝑉0 

and 𝑉𝑖 and will not be the same in both terms of error associated with 𝑉𝑝. 
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Table B1: Volume determination results with propagation of error calculations. 

Col Trial V0 

(cm3, avg) 

Error 

(σV0, avg) 

Relative SD 

(%) 

Vi 

(cm3, avg.) 

Error 

(σVi) 

Relative SD 

(%) 

1 a 0.08951 0.000502222 0.56% 0.04132 0.0003435 0.83% 

 

b 0.09038 0.000034630 0.04% 0.05574 0.0001105 0.20% 

 

c 0.09139 0.000281555 0.31% 0.01739 0.0003705 2.13% 

2 a 0.10396 0.000092260 0.09% 0.08414 0.0000749 0.09% 

 

b 0.10306 0.000205732 0.20% 0.04998 0.0002007 0.40% 

3 a 0.09314 0.000088160 0.09% 0.06143 0.0000699 0.11% 

 

b 0.09456 0.000047084 0.05% 0.07717 0.0001596 0.21% 

4 a 0.11028 0.000034630 0.03% 0.10100 0.0000464 0.05% 

 

b 0.10738 0.000208949 0.19% 0.10568 0.0001223 0.12% 

5 a 0.54016 0.000049024 0.01% 0.49230 0.0000444 0.01% 

 

b 0.54291 0.000316029 0.06% 0.51087 0.0001532 0.03% 

6 a 0.49324 0.000044302 0.01% 0.48891 0.0000260 0.01% 

 

b 0.49374 0.000141487 0.03% 0.49016 0.0003361 0.07% 

7 a 0.09987 0.006624896 6.63% 0.04457 0.0056116 12.59% 

8 a 0.10353 0.003621220 3.50% 0.05835 0.0053513 9.17% 
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