
TAPESTRY:

WEAVING EXECUTION AND SYNCHRONIZATION MODELS

by

Joshua Landwehr

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Master of Engineering in Electrical
& Computer Engineering

Winter 2013

c© 2013 Joshua Landwehr
All Rights Reserved

TAPESTRY:

WEAVING EXECUTION AND SYNCHRONIZATION MODELS

by

Joshua Landwehr

Approved:
Guang R. Gao, Ph.D.
Professor in charge of thesis on behalf of the Advisory Committee

Approved:
Kenneth E. Barner, Ph.D.
Chair of the Department of Electrical & Computer Engineering

Approved:
Babatunde A. Ogunnaike, Ph.D.
Interim Dean of the College of Engineering

Approved:
Charles G. Riordan, Ph.D.
Vice Provost for Graduate and Professional Education

ACKNOWLEDGMENTS

I would like to thank everyone I’ve known at CAPSL that helped me in some

capacity: Robert Pavel, Elkin Garcia, Xiaomi An, Xiaoxuan Meng, Tom St. John,

Kelly Livingston, Souad Koliäı, Stéphane Zuckerman, Jean-Philippe Halimi, Handong

Ye, Yuhei Hayashi, Ge Gan, Wang Xu, Jeremy Pedersen, Joshua Suetterlein, Juergen

Ributzka, Jaime Arteaga, Daniel Orozco, Chen Chen, Yao Wu, Brian Lucas, Mark

Pellegrini, Chris Adamopoulus, Sunil Shrestha, Joseph Manzano, my brother Aaron,

and Peggy Gao.

With special thanks to Peggy for being my friend, Stéphane for editing and

proof reading my thesis, Aaron for editing and proof reading my thesis, and Juergen

for buying me lunch and giving me gifts a few times.

And a very special thanks goes to my mother for wanting me to go to graduate

school and supporting me thusly. Without her I would not have chosen this experience

nor would I be the person I am today.

Thank y’all.

iii

TABLE OF CONTENTS

LIST OF TABLES . xi
LIST OF FIGURES . xii
ABSTRACT . xvii

Chapter

1 INTRODUCTION . 1

1.1 Features . 5
1.2 Challenges . 6
1.3 Problem Statement . 7
1.4 Contributions . 8
1.5 Summary . 11

2 BACKGROUND . 12

2.1 Dataflow . 12

2.1.1 Historical Perspective . 12
2.1.2 Features . 13
2.1.3 Static Dataflow . 15
2.1.4 Dynamic Dataflow . 17
2.1.5 Semi-Dynamic Dataflow . 17
2.1.6 Problems with Dataflow . 18

2.2 Hybrid Von Neumann/ Dataflow Machines 19

2.2.1 The Super Actor Machine . 19

2.3 EARTH Model . 19
2.4 Codelet Model . 20

2.4.1 Inspiration . 20

iv

2.4.2 Features . 22
2.4.3 Parallelism . 23

2.5 Runtime Systems . 24
2.6 Architectures . 26

2.6.1 C66X Processor . 27
2.6.2 AMD Interlagos Processors 27

3 THREADED DEPENDENCY EXECUTION MODEL 31

3.1 Threaded Dependency Model Overview 31
3.2 Actors as Threads . 32

3.2.1 Methods . 33
3.2.2 Merge and Switch Actors . 34
3.2.3 Executing Actors . 35
3.2.4 Special Signals . 35

3.3 States . 35
3.4 Arcs . 37
3.5 Loops . 37

3.5.1 Composable Loops . 39
3.5.2 Loop Nest . 39
3.5.3 Software Pipelining . 41

3.6 Pipelines . 42
3.7 Split-Phase Transactions . 43
3.8 References and Joins . 46
3.9 Comparison to Other CAPSL Models 47
3.10 Scheduling . 47
3.11 Examples . 50

4 TAPESTRY OVERVIEW . 53

4.1 Framework . 53
4.2 Wrapper Design . 56

4.2.1 Optimizations . 59

4.2.1.1 Fine-Grain Optimizations 59

v

4.2.1.2 Other Optimizations 60

4.2.2 Tapestry . 61

4.3 Contributions . 62

5 TAPESTRY THREADS . 64

5.1 Features . 64

5.1.1 C++ Threads . 65

5.1.1.1 Thread Creation, Running, and Joining 65
5.1.1.2 Classes and Contexts 67

5.1.2 Dependencies . 68

5.1.2.1 Dependency Loops and Pipelines 70

5.1.3 Synchronization . 78
5.1.4 General Parallelism . 78
5.1.5 Parallel For . 79
5.1.6 Continuations . 81

5.2 Support for Many Execution Models 82

5.2.1 EARTH and Codelets . 82

5.2.1.1 Comparison to EARTH 87

5.2.2 Fork/Join . 87
5.2.3 Static . 90
5.2.4 Hybrid . 91

5.3 Hints and Metadata . 93

5.3.1 Hints . 93

vi

5.3.2 Metadata . 97

5.4 Modular Components . 97

5.4.1 Scheduling . 97

5.5 Implementation . 98

5.5.1 Tapestry Fibers Shared Memory 98

6 TAPESTRY FIBERS . 99

6.1 Design . 99
6.2 Modularity . 101

6.2.1 Connecting Fibers and the Wrapper 102

6.3 Fine-grain Optimizations . 103
6.4 High Throughput Queue . 104
6.5 Work Stealing via Stack Pushing . 105
6.6 TI C66x Port . 107
6.7 NUMA Considerations . 110

7 EVALUATION . 112

7.1 Benchmarks . 112

7.1.1 Fibonacci . 113
7.1.2 N-Queens . 113
7.1.3 N-Puzzle . 114
7.1.4 Quicksort . 114
7.1.5 Monte-Carlo . 115
7.1.6 Matrix Multiplication . 115

7.2 Platforms . 116

7.2.1 x86-64: Core 2 . 116
7.2.2 x86-64: Core i7 . 116
7.2.3 x86-64: Bulldozer . 116

vii

7.2.4 TI C6678 . 119

7.3 Case Study on Bulldozer . 119

7.3.1 Runtime Micro-benchmarks 119

7.3.1.1 One Thread Overhead 119
7.3.1.2 Parallel Scheduling Overhead 120
7.3.1.3 Dependency Overhead 120

7.3.2 Runtime Benchmarks . 122

7.3.2.1 Fibonacci Scalability 122
7.3.2.2 N-Queens Scalability 123
7.3.2.3 Quicksort Scalability 123
7.3.2.4 Monte Carlo Scalability 124
7.3.2.5 N-Puzzle Iterative Deepening Scalability 126
7.3.2.6 Matrix Multiplication Kernel Static Scalability . . . 126
7.3.2.7 Matrix Multiplication Scalability 129

8 RELATED WORK . 131

8.1 Microsoft Task Parallel Library . 131
8.2 Intel Concurrent Collections . 132
8.3 OpenMP . 133
8.4 Habanero C . 134
8.5 Unified Parallel C . 134
8.6 X10 . 136
8.7 Chapel . 137
8.8 Fortress . 138
8.9 Coarray Fortran & Coarray Fortran 2.0 139
8.10 Global Arrays . 141
8.11 HPX . 142

9 CONCLUSION & FUTURE WORK 144

9.1 Conclusion . 144
9.2 Future Work . 144

9.2.1 Threaded Dependencies . 145

9.2.1.1 Data Pipelining . 145

viii

9.2.1.2 Codelet Pipelining 146

9.2.2 Additional . 147

BIBLIOGRAPHY . 148

Appendix

A ADDITIONAL BENCHMARK RESULTS 154

A.1 Case Study for Core 2 . 154

A.1.1 Runtime Micro-benchmarks 154

A.1.1.1 Serial Overhead for Dependencies 154
A.1.1.2 Fibonacci Overhead for Dependencies 155
A.1.1.3 N-Queens Overhead for Dependencies 155
A.1.1.4 Quicksort Overhead for Dependencies 157
A.1.1.5 Monte Carlo Overhead for Dependencies 157

A.1.2 Runtime Benchmarks . 158

A.1.2.1 Optimizations for Dependencies 159
A.1.2.2 Fibonacci Fork/Join 159
A.1.2.3 N-Queens Fork/Join 160
A.1.2.4 Quicksort Fork/Join 161
A.1.2.5 Monte Carlo Fork/Join 161
A.1.2.6 Monte Carlo Starvation 163
A.1.2.7 Fibonacci Dependencies 163
A.1.2.8 N-Queens Dependencies 163
A.1.2.9 Quicksort Dependencies 165
A.1.2.10 Monte Carlo Dependencies 165

A.1.3 OS Benchmarks . 166

A.1.3.1 Spawn Test . 167
A.1.3.2 Fibonacci . 167
A.1.3.3 N-Queens . 168
A.1.3.4 Quicksort . 169

A.1.4 Tree Reduction Tests . 170

ix

A.1.5 Fibonacci Automatic Tree to Graph Reduction Speedup . . . 171

A.2 Case Study for Core i7 . 171

A.2.1 Runtime Benchmarks . 171

A.2.1.1 Fibonacci Scalability 172
A.2.1.2 N-Queens Scalability 172
A.2.1.3 Quicksort Scalability 173
A.2.1.4 N-Puzzle Scalability 173

B BENCHMARK CODE . 175

B.1 Fork/Join Benchmarks . 175

B.1.1 Thread Spawn . 175
B.1.2 Fibonacci . 175
B.1.3 N-Queens . 176
B.1.4 Quicksort . 179
B.1.5 Monte-Carlo . 180
B.1.6 N-Puzzle . 182
B.1.7 Matrix Multiplication . 186

B.2 Dependency Benchmarks . 202

B.2.1 Thread Spawn . 202
B.2.2 Fibonacci . 203
B.2.3 N-Queens . 203
B.2.4 Quicksort . 206
B.2.5 Monte-Carlo . 207
B.2.6 Fibonacci Dynamic . 209
B.2.7 N-Queens Dynamic . 210

x

LIST OF TABLES

3.1 Summary of Execution Models . 48

7.1 Overhead of One Thread . 120

xi

LIST OF FIGURES

1.1 Frequency Wall . 2

1.2 Future Abstract Machine . 3

2.1 Texas Instruments C66X Architecture 28

2.2 AMD Interlagos 6234 NUMA Node Distances 30

3.1 Tapestry Actor . 33

3.2 Tapestry Finite-State Machine . 36

3.3 Tapestry Actor Loop . 38

3.4 Dataflow Loop Reduction . 40

3.5 Tapestry Loop Nest . 41

3.6 Tapestry Pipeline . 42

3.7 Composable Pipeline . 43

3.8 Loop Limited Parallelism . 44

3.9 Tapestry Pipeline Parallelism . 45

3.10 Split-Phase Transaction in a Loop 46

3.11 Tapestry Features . 48

3.12 Model of Threaded Dependencies 49

3.13 C++ Thread Example . 51

3.14 C++ Thread Dependency Example 52

xii

4.1 Tapestry Framework . 54

4.2 Tapestry Thread Example . 55

4.3 Tapestry Thread Data Driven Example 57

4.4 Tapestry Framework . 58

4.5 Tapestry Argument Template . 59

4.6 Tapestry Partial Arguments . 59

5.1 Tapestry Thread Creation API . 65

5.2 Tapestry Thread Join API . 65

5.3 Tapestry Thread Creation Examples 66

5.4 Tapestry Thread Creation API For Methods 67

5.5 Tapestry Thread Creation API For Methods Without A Context . 67

5.6 Tapestry Dependency API . 68

5.7 Tapestry Dependency Design . 68

5.8 Tapestry Context Inheritance . 69

5.9 Tapestry Creation Via Dependency API 70

5.10 Tapestry Thread Dependencies . 71

5.11 Tapestry Self Loop Example . 73

5.12 Tapestry Nested Loop Example . 74

5.13 Tapestry Do While Example . 75

5.14 Tapestry Pipeline Example . 76

5.15 Tapestry Parallel-Pipeline Example 77

5.16 Tapestry Mutex API . 78

xiii

5.17 Tapestry Async API . 79

5.18 Tapestry Parallel For API . 79

5.19 Tapestry Async Example . 80

5.20 Tapestry Continuation API . 81

5.21 Tapestry Continuation Example . 83

5.22 Tapestry RT Continuation Example 84

5.23 Serial Fib Example . 85

5.24 Tapestry EARTH Fib Example . 88

5.25 Tapestry EARTH Fib Async Example 89

5.26 Tapestry Fork/Join Fib Example 90

5.27 Tapestry Fork/Join Async Fib Example 91

5.28 Tapestry Static Fib Example . 92

5.29 Tapestry Hybrid Serial Fib Example 93

5.30 Tapestry Hybrid Fib Example . 94

5.31 Tapestry Hybrid Fib Diagram . 95

5.32 Tapestry Hint API . 96

5.33 Tapestry Hint Size API . 96

5.34 Tapestry Parallelism Factor API 97

5.35 Tapestry Metadata API . 97

6.1 Tapestry Fibers Framework . 100

6.2 Tapestry Fibers Thread Creation API 102

6.3 Tapestry Fibers Join API . 102

xiv

6.4 Tapestry Fibers Hint API . 102

6.5 Tapestry Warp to Fibers . 103

6.6 Tapestry High Throughput Queue 106

6.7 Tapestry Work Stealing via Stack Pushing 107

6.8 Tapestry TI C66X Port . 109

7.1 Performance Summary Part 1 . 117

7.2 Performance Summary Part 2 . 118

7.3 Parallel Spawn . 121

7.4 Fibonacci Scalability . 122

7.5 N-Queens Scalability . 124

7.6 Quicksort Scalability . 125

7.7 Monte Carlo Scalability . 125

7.8 N-Puzzle Iterative Deepening Scalability 127

7.9 Matrix Multiplication Kernel Static Scalability 127

7.10 Matrix Multiplication Kernel Static FLOP/s 128

7.11 Matrix Multiplication Scalability 129

7.12 Matrix Multiplication with Cache-based Atomic Deque FLOP/s . . 130

A.1 Serial Overhead for Dependencies 155

A.2 Fibonacci Overhead for Dependencies 156

A.3 N-Queens Overhead for Dependencies 156

A.4 Quicksort Overhead for Dependencies 157

A.5 Monte Carlo Overhead for Dependencies 158

xv

A.6 Fibonacci Fork/Join . 159

A.7 N-Queens Fork/Join . 160

A.8 Quicksort Fork/Join . 161

A.9 Monte Carlo Fork/Join . 162

A.10 SLO Starvation Monte Carlo . 162

A.11 Fibonacci Dependencies . 164

A.12 N-Queens Dependencies . 164

A.13 Quicksort Scalability for Dependencies 165

A.14 Monte Carlo Dependencies . 166

A.15 Spawn Test . 167

A.16 Fibonacci . 168

A.17 N-Queens . 169

A.18 Quicksort . 170

A.19 Fibonacci Automatic Tree to Graph Reduction Speedup 171

A.20 Fibonacci Scalability . 172

A.21 N-Queens Scalability . 173

A.22 Quicksort Scalability . 174

A.23 N-Puzzle Scalability . 174

xvi

ABSTRACT

With the advent of the many-core era of computing, finding parallelism has

become a key battleground to the performance of computer algorithms. Traditional

methods focused on providing users with synchronization primitives, standard thread-

ing models, and shared memory models. However, it was clear that these models were

limited in performance. Thus, many new forms of synchronization and parallel models

were designed focusing on the big three types of parallelism: data, task, and dataflow.

Nevertheless, all these models (1) only solve a particular subset of problems, (2)

provide limited extendability for addressing new forms of parallelism, (3) and require

a new languages with poor fine-grain performance.

As an approach to find a unified solution to these problems, Tapestry is an

easily extendable portable compiler-free runtime. It is designed to quickly explore

new or traditional synchronization and execution models for multi-core and many-core

architectures by separating synchronization and threading models.
The main contributions of this thesis are:

1. Design of the Tapestry runtime and model to explore synchronization features
or execution models that supports the mixing of all of the big three types of
parallelism.

2. Proposal of extendable threaded dependency model of execution that expands
traditional threads, and the creation of optimizations to extend traditional models
to support finer-grain parallelism.

3. Implementation of Tapestry runtime library using only C++ 98 for 2 different
platforms and 3 different operating systems with better performance and scala-
bility than OpenMP Tasks and Cilk Plus.

Because of these aspects, my preliminary studies with Tapestry have shown

that the performance and scalability of the three types of parallelism can be improved

xvii

through the use of fine-grain optimizations and careful queue design. And through

other studies, I have shown the benefits of dataflow synchronization to reduce operat-

ing noise caused by thread context switching. Tapestry has been enormously beneficial

in these aspects of study allowing optimizations to be easily applied across all syn-

chronization and threading models showing significant improvements can be made to

industry level parallel software such as OpenMP and Intel Cilk Plus.

xviii

Chapter 1

INTRODUCTION

Within the last decade, CPU speed improvement has slowed drastically (Figure

1.1) due to major physical barriers in design. These are summarized as the following

[1]:

1. Shrinking chip geometry and increasing clock frequency cause transistor leakage
current to increase. This leads to excess power consumption and heat.

2. Higher clock speed advantages are negated in part by memory latency since the
performance gap between the CPU and memory has been increasing at a rate of
50% each year for decades. The memory access time simply cannot keep pace
with increasing clock frequencies.

3. The traditional serial architecture is becoming less efficient as processors became
faster due to the Von Neumann bottleneck: a shared bus between data and
program memory limits the throughput between CPU and memory compared to
memory size.

4. Finally, resistance-capacitance delays in signal transmissions are growing as fea-
ture sizes shrink.

The solution to these problems was to divide and conquer by breaking up work

and distributing it across many smaller processing elements. Thus, the current trend

in computing is increasing core count to add parallelism to tasks. This can be seen

in AMD and Nvidia GPUs[2, 3], Intel processors and accelerators[4, 5], and CPUs by

Tilera, TI, AMD, ARM, and IBM[6, 7, 8, 9, 10].

Moreover, it is clear as core count increases that future machines will be vastly

different than current unified bus systems with shared memory. These new systems

will utilize some hierarchy or mesh like network and will not support unified memory

access among all processors on a chip due to the complexity. This as evidenced in the

1

1

10

100

1000

10000

100000

1975 1980 1985 1990 1995 2000 2005 2010 2015

Year

Clock Rate Wall

MIPS MIPS per Die

Figure 1.1: Frequency Wall: The MIPS per CPU for Intel CPUs (calculated based
on publically available processor data) shows that CPU frequency which is a major
contributor to CPU performance has stopped increasing at around 2005, but the MIPS
per die are still increasing due to core count increasing and other optimizations such
as faster interconnects.

development of Tilera iMesh technology[6], HyperTransport extensions for high node

count[11], and the IBM Cyclops64 crossbar interconnect[12].

One such abstract machine that represents possible future machine design is

presented in Figure 1.2. This abstract machine contrast heavily with Intel QuickPath

Interconnect (QPI)[13] and HyperTransport many-core machines in the fact that it

has a hierarchical interconnects whereas current Intel/AMD machines implement a

hardware level point to point connection between the cores. These technologies cannot

scale due to increasing complexity as core count increase. This is the reason why

HyperTransport provides extensions to support core count greater than 32 on boards

using special routing logic that does not guarantee unified memory access[11].

In addition, fundamental to dividing work to execute on multiple processors is

the parallel execution model for these machines. Traditional models were designed for

2

DDR DDR DDR DDR

Controller

Interconnect

...

...

Chip

Controller

...

I/O

I/O

Chip

Group

In
te

rc
o

n
n

e
c
t

..
.

..
.

Group Group

Group

SU

Interconnect

... SU

...

SU

...

Memory

CUCUCUCU
Simple

Core

Local Memory

 Register File

Memory Bus

Core

Local Memory

 Register File

Interconnect

CU

Map

CU

Map

Rack

Blade

Window

Figure 1.2: Future Abstract Machine: Future machines will most likely contain
blades/nodes that are connected with some sort of switching fabric such as Infiniband.
However, within a blade a central interconnect will only be connected to main mem-
ory with any number of controllers and special synchronizing units (SU) to sidestep
the Von Neumann Bottleneck. These SUs are full featured processors with branching
etc. Their task is to distribute work to the simpler computational cores (CUs) and
synchronize with other SUs. These CUs most likely will not feature branch prediction.

serial execution environments with shared memories that had context switching. Syn-

chronization between threads occurred via mutual exclusion on shared memory regions

or with barriers. Naturally, these models could be easily extended to support systems

with multiple cores and a unified memory. Nonetheless, these models required explicit

synchronization by the programmer on specific memory regions and were designed with

the notion of a unified shared interconnect. It is clear that these models cannot work

as memory access becomes non-uniform and not available to all processors. In addi-

tion, these models do not provide a way for threads to directly synchronize instead of

synchronizing on memory areas. Directly synchronizing on threads is key to providing

performance and power reduction on systems via smart scheduling.

3

To solve these problems, this thesis introduces a C++ runtime known as Tapestry

designed to explore new execution models. From Tapestry’s current feature set, a model

of execution is derived. This model extends traditional threads to support many-core

unified bus systems with traditional memory and new systems without unified buses

or unified memory access guarantees between all cores. Thus, this model of execution

and framework attempts to provide a way to utilize future machines effectively without

compromising performance on currently available systems.

For Tapestry to achieve this, the execution of threads is determined by the

availability of input arguments to those threads. Those inputs can come from other

threads and are explicitly known to the scheduler. Threads thus have inter-thread

dependencies which can be used to schedule threads effectively without guarantees of

uniformed memory access. In addition, for inter-core communication without shared

memory, these dependencies allow for explicit point to point communication of data

through arguments without the need for a separate message passing framework. Fi-

nally, the model supports fork/join parallelism which is the standard used in shared

memory systems. Hence, Tapestry’s model can easily support future machines without

compromising current machine performance.

This is why the model is an expression of the theories of dataflow, and the

framework and execution model provides many of the features of dataflow by adding

them to the threading model and implicitly tying them to the threads themselves.

They provide information to scheduler and allow for point to point communication.

Moreover, Tapestry aims to be a modular compiler free interface for creating and

running threads with many synchronization features. It also aims to fix the shortcom-

ings of previous models such as EARTH[14] by providing a truly portable runtime that

can be executed across all types of architectures with many features. These features

can be used to evaluate various execution models across various architectures.

In addition, Tapestry differentiates itself from other models of computing which

implicitly handle data movement using frames or allocated memory by allowing dataflow

features to be expressed as part of a thread. This means the dataflow features are not

4

just part of the threading model and can be handled by the underlying runtime allowing

for all types of optimizations to apply dynamically. Threads that use these features

become inherently tied to their data; hence, these threads are geared for fine-grain

data-centric execution. Data and the computing thread are tied together in data-

centric approach. Whereas, in traditional models, threads or computations are central

to the execution and data are fed into those computation threads by the programmer’s

design as opposed, to the runtime doing this. This data-centric execution can be varied

at runtime allowing for dynamic, static, or hybrid executions unlike previous runtimes.

Moreover, these threads can be moved near their data and executed as opposed to

moving the data to them.

1.1 Features

The Tapestry models provides a number of key advantages over the existing

model of threading found in conventional operating systems for shared memory sys-

tems (POSIX Threads etc). Firstly, that standard model of threading’s way to handle

dependencies has a number of thorny issues solved by explicit dependencies between

threads. The standard model only allows dependencies to be handled at the pro-

grammer level using either some form of mutual exclusion or by manually scheduling

threads to avoid conflicts. Dependencies met with mutual exclusion require some form

of preemptive scheduling either voluntary or real-time; otherwise, a deadlock can form

when resources run out. Additionally, mutual exclusion of memory is not guaranteed

in the future for many-core chips because keeping memory in sync between cores can

be costly especially with thousands of cores. Moreover, using mutual exclusion or

manually scheduling the threads would conflict with the schedule determined by the

operating system or runtime.

Explicit dependencies do not have these issues. Dependency matching can be

handled by the scheduler using some established protocol to send results to requested

thread’s input. The scheduler can use information about the arguments to determine

how to adapt during runtime. For instance, it could favor locality of dependencies to

5

avoid long latencies. Additionally, the model does not need a preemptive scheduler to

handle dependencies because only threads that have their dependencies met can run.

Finally, the dependency matching occurs in the scheduler. Therefore, the user does not

interfere with the scheduler. This allows the scheduler to find a more optimal schedule.

Allowing dependencies to be handled without manually scheduling simplifies

the work of the programmer. The programmer does not need to handle dependency

matching using explicit mutual exclusive regions nor do they need to manually handle

the scheduling themselves. The programmer just needs to indicate a thread should run

before another using a member function.

1.2 Challenges

A number of challenges exist by placing the dependencies in the scheduler. This

adds additional information to the scheduling and is usually handled by having two

queues, one for tasks waiting for dependencies to be met and another for tasks ready

to execute. The two simplest ways to check the waiting queue is to do so only when a

dependency is met or after a certain amount of time has elapsed. Both have varying

advantages. However, it is more optimal to only touch memory when you need to.

Additionally satisfying dependencies as they come allows for the scheduler to maximize

parallelism by keeping the ready queue as busy as possible. But, waiting to fill tasks

may give the scheduler more information about how to distribute work. Either way,

when a task is ready it is moved from the waiting queue to the ready queue.

Implementing the dependency matching is another key challenge. It needs to be

fast. A simple approach is to use a counter and compare it against the total number

of dependencies known. This can be easily done quickly with intrinsics on current

processors. However, future processors may not guarantee that in-memory atomics

will be available across chips or cores. Potentially these could be available within local

memory which will allow threads to utilize atomics within a certain small block of

processors which in turn forces dependencies to be local. Possibly there will be some

6

implementation within hardware to allow dependency matching. In either case, the

matching needs to be fast and perhaps have access across the whole chip.

1.3 Problem Statement

With the advent of the many-core era of computing approaching, programming

computers is becoming increasingly challenging. These challenges are caused by the

lack of parallelism found in the Von Neumann model of computing. The current trend

of multi-core computing focuses on adding threads to this model and changes the

fundamentals of programming forever. Threads in the context of current multi-core

systems are designed only for task level parallelism and are only suitable for coarse

grain parallelism. They even lack thread-level dependency support as described in this

chapter. Threads themselves are dependency free, but the memory they access can

be shared. This adds complexity to programs. Additional problems arise as threads

make their move to many-core machines. Some such problems include finding enough

parallelism, power efficiency of threaded solutions, speedup of algorithms, and lack of

shared memory. Furthermore, no framework or runtime exists as a transitory step to

move from simple multi-core systems to more complex systems with many more cores.

Key to finding parallelism in these many-core systems is taking tasks and data and

breaking them into finer and finer parts so that it can be run concurrently.

The objective of this thesis is to explore along these ideas, but more specifically

to:

1. Facilitate an integrated solution to many of these problems.

2. Provide a solution/software to move from a shared memory multi-core system to
a many-core system.

3. Expand the current idea of a thread and parallelism to include a more data-centric
fine-grain approach.

4. Facilitate new ideas on thread-level dependencies.

5. Expand ideas on locality and reuse in many-core machines.

6. Explore optimizations for current synchronization and execution models.

7

1.4 Contributions

Runtime systems are important for both many-core systems and current gen-

eration multi-core systems. For current systems they allow expression of new pro-

gramming models on top of existing operating systems. For future systems they allow

for the exploration of new execution models on other systems through simulation and

the evaluation of their programming model. However, current runtime systems are

quite rigid in their design. They couple the features of the programming model with

that of the runtime system and tie their designs tightly to a specific hardware. This

is detrimental to portability and the evaluation of programming models and execu-

tion systems. Furthermore, runtime systems have a number of problems when used

to evaluate specific programming execution model features. In general, programming

models use a source to source compiler to translate simpler code into very complicated

runtime syntax. If the programming changes, code changes must occur in both the

runtime and compiler. Not only that, the programming model requires extensions to

popular languages such as C or the use of pragmas.

The main contribution this thesis makes is an open source compiler free modu-

larized runtime to allow exploration of various programming models:

• Design of the Tapestry runtime and model to explore synchronization features
or execution models that supports the mixing of all of the big three types of
parallelism.

– Separation of threading and synchronization model from the operating sys-
tem or runtime design. I propose a model for runtime design where the
synchronization model is independently designed from the lower level de-
sign. The synchronization model can use independent code or runtime/OS
level synchronization to provide synchronization features. The synchroniza-
tion model can also run on top of various runtimes or operating systems.

– Compiler free voluntary preemptive scheduling. I propose new ideas on how
to handle voluntary-preemptive scheduling at the runtime level without the
use of a compiler that saves stack information. This is independent of the
architecture and does not use low level assembly or the application binary
interface (ABI).

8

– Stackable scheduling. I propose a new scheduling concept that allows new
schedulers to be run on top of old schedulers. This allows the stack infor-
mation and scheduling information of old schedules be saved while a new
scheduler runs on top. The new schedule may favor other things than the old
and run temporarily. The old schedule can resume after the new is finished.

• Proposal of extendable threaded dependency model of execution that expands
traditional threads, and the creation of optimizations to extend traditional models
to support finer-grain parallelism:

– I propose a locality aware optimization that uses a lock-free and synchronization-
free local queue to improve performance of fork/join algorithms with abun-
dant work on multi-core systems.

– I propose a locality aware optimization that directly executes threads in local
stack space to improve performance of fork/join algorithms with abundant
work on multi-core systems.

– I propose a locality aware optimization that directly executes threads in
local stack space and skips the runtime to improve performance of fork/join
algorithms with abundant work multi-core systems.

– I propose a locality aware optimization for fork/join that skips the scheduler
on join operations and directly executes work.

• Proposal and implementation of a new high throughput input-restricted deque
that is lock free and cache-aware with better scalability than locked queues and
Intel Cilk Plus’ queue.

• Proposal and implementation of a new methodology for compiler free work steal-
ing with support for blocking operations that is cache-aware.

• First third party runtime to be ported to the C66X.

• Implementation of the compiler free Tapestry runtime using only C++ 98 for
2 different platforms and 3 different operating systems that is an alternative to
Cilk/Cilk Plus or OpenMP Tasks with better performance and scalability:

– A compiler free Open Source alternative to Intel Cilk Plus with comparable
speed and performance that is faster than MIT Cilk without its limitations
(legacy libraries can be parallelized). My runtime supports all the features
of Cilk divide and conquer parallelism, but is compiler free and up to 15
times faster on x86-64. Furthermore, it has performance up to 3x faster
than Intel Cilk Plus on x86-64 for less than 8 cores. In addition it has
better scalability and performance for 48 cores. Finally, it can parallelize
legacy code unlike Cilk.

9

– New optimizations that bypass the scheduler for Cilk/ Cilk Plus divide
and conquer algorithms (what Cilk is designed for) and increase fine grain
performance of divide and conquer algorithms by up to 3x.

• Created C++ Thread Dependencies that have the features of codelets and EARTH
with optimizations:

– The proposal, implementation, and evaluation of data driven threads. The
idea is tying work units to threads which allows the scheduling of work to
be done dynamically or statically by the scheduler without the need for a
compiler or programmer to handle this.

– C++ methodology/implementation to determine thread dependency count
and type based on the function signature statically. I propose a technique
that uses templates, function pointers, member function pointers, and func-
tion signature information including pointers to allow for representation of
arguments as dependencies or as classical arguments for C++ programs.

– A portable compiler free implementation of codelets that support all the
features of [15]. The runtime supports all the features of the execution
model described by [15] and more.

– Dynamically creating EARTH-like thread continuations to allow for code
optimizations. The runtime supports continuations like EARTH. However,
the runtime expands the idea to allow for threads to create them on the fly.

– Allowing multiple continuations to be spawned from the same thread which
introduces new optimizations.

– A simple and easy way to change locality, parallelism, and load balancing by
utilizing the idea of data driven threads in conjunction with the scheduler.

Using the runtime, I evaluate the idea of data-centric threads. Current thread

models require the programmer to explicitly handle data movement and requires them

to handle task management within a thread. This stems from the fact that threads

can have a number of deficiencies in their design for expressing massive parallelism:

First and foremost, if thread creation time is too large, threads cannot be used to

divide work, but rather work must be divided up within the thread. This means

the programmer will handle the movement of data and the scheduling of work. This

is complicated in current multi-core systems and will be even more complicated as

core counts increase, chip divisions become more complex, and non-uniformed memory

access are taken into account. Second, preemptive scheduling causes OS noise and this

10

is compounded as thread count increases. In current cache based systems, as thread

count increases so does cache thrashing. Furthermore, if the thread count exceeds

the current system memory size, paging (retrieving memory from secondary storage)

also increases. These can exponentially increase the time for algorithms with many

threads to finish. Further, memory size per core on future many-core systems must

likely will be very small and a preemptive schedule does not place a bound on the

number of threads in memory at once. This is a huge problem. Finally, current system

threads have no way to express dependencies at the thread-level. Dependencies must

be handled within the thread manually by the programmer using locks or some other

form of memory. Tying dependencies to the thread would give the runtime or scheduler

more information to be able to better schedule threads.

This thesis proposes coupling threads, dependencies, and data to alleviate the

former problems with thread design. Specifically it introduces the idea that threads are

tasks of work and not just units of computation. These ideas expand on thread-level

dependencies and are wholly unique.

1.5 Summary

The rest of this thesis covers all the all aspects of Tapestry from the execution

model to the runtime:

• Chapter 2 provides relevant background information to help understand the
model.

• Chapter 3 explains the execution model derived from the Tapestry runtime.

• Chapter 4 presents an overview of the Tapestry runtime.

• Chapter 5 provides a detailed explanation of the features of the runtime.

• Chapter 6 explains details on the lower level runtime.

• Chapter 7 contains benchmarks that compare the runtime to other runtimes.

• Chapter 8 describes all work that is related to the current runtime.

• Chapter 9 concludes the work and talks about potential future directions for
research.

11

Chapter 2

BACKGROUND

The model of execution and framework that will be introduced in this thesis

known as Tapestry has features that are the evolution of many concepts of the past.

Its history can be traced to the multi-faceted idea of dataflow and its fusion with the

Hybrid Von Neumann machines of the late 1980s. As the Tapestry framework is an

expression of the ideas in dataflow, its future has become entrenched in dataflow’s

ideals. Thus, it is important to understand dataflow’s history to see why Tapestry’s

future is rich.

2.1 Dataflow

Dataflow was a departure from many of the ideals of Von Neumann architectures

(unified bus assumption with a single processor). In dataflow architectures there is no

program counter, and the execution of instructions is solely determined based on the

availability of input arguments to those instructions. These principles came about

as reaction to the shifting trend toward multitasking in the late 1960s. Dataflow’s

features were primarily designed to provide abundant parallelism for multitasking.

Despite providing many new strengths, dataflow had a number of weaknesses.

2.1.1 Historical Perspective

The theory of dataflow language execution stemmed from the need for paral-

lelism which was fueled by the trend of multitasking in the late 1960s [16]. This need,

coupled with the desire to represent programs in a simplified manner laid the bases

for dataflow’s features [17]. Dataflow in general is a computer architecture model that

is painted as heavily contrasting to the popular and now ubiquitous Von Neumann

12

architecture model. The three main features of dataflow are: 1) no program counter or

global store, 2) the execution of operations is driven only by the availability of input

arguments, and 3) programs are represented by graphs.

The first model of dataflow was known as static dataflow and included only

pipelined parallelism, but overtime the exchange of ideas fortified a model with maxi-

mum parallelism further progressing it into what is known as dynamic dataflow. The

model began its infancy in the late 1960s and grew from the independent, but semi-

nal works of Karp and Miller [18], Rodriguez[19], and Adams[20]. However, the idea

of data-driven computations was first introduced in the original version of Karp and

Miller’s paper in 1964 according to Jack Dennis [21].

In 1972, the first version of the data flow language was introduced by Jack Dennis

[22]. This language brought together the features of many older languages and schemas

that used similar ideas, but was wholly unique in expression of Jack Dennis’ ideas for

parallelism. A subsequent static dataflow architecture model blossomed in 1975 to

execute such a language. As a result, this solidified the static model as fundamental to

the theory of executing of data flow languages [23]. That same year, Arvind introduced

a new way to interpret dataflow languages which was crucial to the development of

dynamic dataflow [24]. The 1980s saw further progression of these ideas. Finally, in

the mid 80s and early 1990s some dataflow machines were produced [25].

But due to the poor performance of dataflow machines in comparison with Von

Neumann ones, only the remnants have lived on in current architectures. However,

with the development of massive many-core machines with thousands of cores, the

idea has been resurrected and fused with traditional Von Neumann architectures.

2.1.2 Features

Although dataflow’s past is checkered, it still is important to understand the

unique benefits of parallelism it provides through its features. Dataflow contrasts

heavily with control flow. Dataflow focuses on the movement of data through a program

and the relations of that data to different components of a program. In general in

13

dataflow, multiple components can be active at once taking in data or producing it.

In contrast, control flow focuses on which component of a program will be executed

at a certain time. Order is important in control flow programs. Whereas, in dataflow

components execute once they are ready and in no particular order.

Dataflow’s concept relies heavily on graphs to represent its features. A dataflow

graph is a direct graph with vertices called actors and edges called arcs. Arcs leaving

a node are called the output arc of that node. Arcs coming into that node are known

as input arcs to that node. At the end and beginning of a program graph there will be

arcs that are not connected to any actors. These are the input and output arcs of the

program graph.

The most fundamental component of dataflow is the actor. The actor is a

single computation which takes in data and produces new data. Actors are similar to

instructions in the Von Neumann architecture. However, actors only have a partial

order determined by their dependencies. An actor can be thought of as the most basic

unit of computation and thus cannot be any smaller. Any number of actors can be

executed at once as long their dependencies are met. Dependencies are created by

connecting outputs of one actor to the inputs of another. Data moves across these

connection arcs and is known as tokens.

Dataflow is a natural, simple, and a generic way to represent a program. Pro-

grams are naturally represented by their dependencies and are not written in a specific

language, but represented by a dataflow graph. This graph is generic to all the various

programs across any dataflow machine and has seven basic actors. These are the:

• N-ary function - Computes a function with N inputs.

• Unary function - Computes a function with 1 input.

• T-gate and F-gate - The input token moves to the output once a T or F token is
present.

• Deterministic Merge - Depending which T or F token is present on the control
line, the token on the T input or F input is correspondingly moved to the output.

• Nondeterministic Merge - Moves inputs non-deterministically to the output.

14

• Split node - Duplicates input tokens to the output.

• Switch node - Moves the input token either to a T output or F output depending
on what token is on the control line.

Dataflow programs can be composed of any number of these actors. To execute

a program, these actors need rules. The rules are simple: as long as an actor instance

has all its inputs and no tokens on its output it can execute. The actor is an enabled

state when this is true. Once the actor instance executes and produces a new output

token, it is said to have fired. These rules are the fundamental two general classes of

dataflow: static and dynamic. In static, two tokens cannot occupy the same arc at the

same time. Thus, when firing in static dataflow, the output arcs of a token must be

empty so they have space for the new tokens. In dynamic dataflow, multiple tokens

can be present per arc and colors are used to differentiate. Each color represents a

different execution of the same instructions. Tokens waiting must have the same color

to allow an actor to fire.

There are special firing rules for merge actors. If there is any input and no output

on an nondeterministic merge actor, it can fire. Similarly for the deterministic one,

the actor may fire if there is a boolean token on the switch line and the corresponding

input line has a token. These special rules allow dataflow to support conditionals and

loops.

2.1.3 Static Dataflow

Static dataflow follows all the rules mentioned above: one token per arc and

one instance of the same actor firing, but it has a simple and easy way to interpret a

dataflow graph through its rules about graph instancing. These rules however limit its

potential parallelism because a section of the graph that is executed repeatedly such

as in recursion or with a loop execution cannot execute in parallel.

In the static dataflow interpretation, only one instance of a graph ever exists,

meaning that each node of a graph is unique and cannot have multiple copies of the

same node running. Because of this, recursion and function calls are challenging to

15

implement. In general on most recursion, if the same instance of a graph is used for the

recursive call it can result in a deadlock. However, this is not the case if the algorithm

is implemented with tail recursion. Function calls also have the same problem where

if two calls occur simultaneously it can result in a deadlock.

The limit on instancing of actors (one instance per actor can only be running)

also reduces the amount of parallelism available for loops, recursion, or wherever the

graph needs to be reused. Because parallelism is inherently found in dataflow, it is

essential for these areas to execute fast. Two different solutions have been proposed to

limit these problems:

• Pipelining the execution of the actors.

• Duplicating the graph.

For pipelining, the graph of code needs to be organized so that branches are

the same size. In addition, it must be cycle free. Data should be available and ready

so that the iterations may execute one after another as quickly as possible. This is

called pipelined parallelism. It is the responsibility of the architecture or compiler

of the dataflow language to guarantee a mapping that will result in this. Otherwise,

there will be stalls or bubbles in the program execution which will slow down its total

execution time [26]. Another key aspect essential to fast executions, is to make sure

that graphs are constructed in a pipelined fashion to guarantee the most parallelism

possible [27]. For duplicating, subsequent iterations or recursive calls to a graph would

be duplicated. However, this will work well only if the number of iterations can be

determined at compile time.

These solutions put much emphasis on the compiler and rely heavily on the

compiler optimizing code. Therefore, building an efficient and good compiler is major

challenge of static dataflow.

Even with pipelining, static dataflow still has the major disadvantage of lacking

the ability to reuse the same graphs. Hence, recursive calls cannot be implemented

without duplication on graphs of known size.

16

2.1.4 Dynamic Dataflow

The dynamic dataflow interpretation of graphs builds off the fundamentals of

the static interpretation, but allows for more parallelism. The idea stems from U-

Interpreter interpretation of graphs (Arvind [24]) by associating each token with a

tag or color. Dynamic dataflow creates multiple instances of a graph by allowing each

actor to have many instances. The tokens are linked to each instance of the actor.

These ideas provide the basis and fundamentals to create recursion and function calls.

The implementation details are left to the designer. However, in general on a function

call, a new token is created with a tag or color. Within that function all tokens will

have that color until they are returned.

Because there are multiple instances of nodes, this means maximum parallelism

can occur in loops due to the fact the same node in a loop can execute at the same

time as another iteration without waiting for another instance to finish. This assumes

dependencies do not exist across iterations of a loop. Similarly, recursive calls and

multiple function calls can occur in parallel.

Nevertheless, in actual hardware token matching is difficult to implement be-

cause the scheme can be costly and too complex. Each token has to be matched to

other tokens. This requires storing memory for every token. Furthermore, if matching

is implemented with an associative search, this would require each token to be checked

against all others.

2.1.5 Semi-Dynamic Dataflow

Semi-Dynamic dataflow is the convergence between the features of static and

dynamic dataflow to address the shortcomings of both. Various implementations

exist[28, 29, 30], but in these models the dominant idea is to use static dataflow within

a function and dynamic dataflow to schedule functions. This allows for recursive level

parallelism, but not loop level.

17

2.1.6 Problems with Dataflow

Dataflow provides very fine-grain execution, but synchronizing is not free[31].

As the number of actors synchronizing increases, so does the cost. The cost can be

high for such fine-grain synchronization. Most instructions take two pieces of data,

and that means there is on average two synchronizations per instruction which can be

quite costly.

Another complex issue with dataflow machines is their design for parallelism.

Sequential code must execute in order using dependencies. Each instruction is depen-

dent on the other instruction in the code, which causes them to be issued into the

execution unit one at a time as they wait for their dependencies to be met. If the pro-

cessing pipeline is N length and each takes one cycle, then each instruction will have

to wait a minimum of N cycles before executing. This means the processor utilization

is 1/N and the execution will take around N times as long compared to a conventional

Von Neumann machine.

Lastly, dataflow machines do not exploit locality of data or locality of reference

effectively. In conventional machines, data is short lived. t is consumed then discarded.

So, conventional machines will exploit this by having a few set of registers that are quite

fast because they are stored close to the processor unlike conventional memory. When

the program is executed, most data is stored and used within these registers because

its life is short term. Furthermore, caches are added to aid in the reuse of larger sets

of data and enhance code with temporal (accesses to the same location will occur close

together) or spatial locality (accesses to locations in memory are close). This known

as locality of reference.

In dataflow locality of data occurs between creation of a token and its use by

another actor. The locality is defined by the time between the arrival of the first

token and the final token to execute an actor. In empirical studies it has been shown

this time is small in most cases. Therefore, dataflow would benefit from a way to

do token matching using registers close to the processor and compilers. Yet, this is

hard to exploit because the non-determinate order of tokens can increase their average

18

lifetimes. This makes it hard for the compiler to analyze and predict the lifetime of

the tokens.

2.2 Hybrid Von Neumann/ Dataflow Machines

Hybrid Von Neumann machines add dataflow properties to threads. The two

methodologies of doing such include combining dataflow actors into a thread or adding

dataflow synchronization into the thread model. The first methodology groups dataflow

actors into a more conventional Von Neumann ideology allowing synchronization to

occur on the edge of groups. The actors within the group are ordered sequentially.

The second methodology adds signaling to threads of a Von Neumann machine so they

can synchronize much like a groups of dataflow actors in the first methodology. Both

these methodologies reduce the synchronization of regular dataflow by a factor equal

to the average number of instructions per thread. Also this reduces space used for

these signaling mechanisms. This can be substantial in reducing synchronization costs.

Furthermore, this idea increases locality of dataflow programs allowing for registers to

be used within threads much like they are in Von Neumann machines.

2.2.1 The Super Actor Machine

The Super Actor Machine (SAM) was a hybrid Von Neumann/ Dataflow

execution model and abstract machine. Programs for the model were designed to be

written in a high level language and then translated into a dataflow graph. Actors were

grouped together into super actors using an algorithm to minimize the arcs across the

boundaries of actors using a translator. The actors were then translated into threads to

be loaded on the machine. The machine was very much a dataflow machine and used

an innovative feature called a register cache to reduce stalls in the dataflow scheduling

unit.

2.3 EARTH Model

The Efficient Architecture for Running THreads (EARTH) [14] model of mul-

tithreading as the successor of SAM falls within the class of Hybrid Von Neumann /

19

Dataflow models. The model was designed for off the shelf components and uses a

higher level language called Threaded C to translate code into the EARTH language

specifications. Threads can be spawned in the EARTH model using the invoke keyword

on a function call. These threads’ frames contain signaling information to support some

dataflow properties. These properties are token-like invocation of threads. The main

difference with other hybrid models and EARTH is that EARTH can link function

frames to other threads using a grouping called a threaded procedure. This means

multiple threads under a threaded procedure will share the same function frame.

When a grouping is invoked, the initial function in the frame will always run.

It can do two unique things: spawn new functions to run in parallel using invoke

and setup other functions that is part of its threaded procedure frame to run after

a certain amount synchronizations/signals occur from other threads. However, the

running thread still needs to spawn threads to signal the frame to run the new threads.

The signal information and data to be filled must be passed explicitly to other threads

by the programmer and needs to be called by that thread unless a compiler is used

to mitigate the programmer’s responsibility for making a parallel application. Once

all signals are met, the dependent function can run. Signaling can be reinitialized and

allows for reuse of memory.

2.4 Codelet Model

The Codelet Model of execution [15] extends upon the basic design of EARTH.

The main difference here is it allows for availability of a resource to be part of the

signaling information for a thread.

2.4.1 Inspiration

Codelets draw their ideas from dataflow, EARTH, and previous work in paral-

lelism. The execution model emphasizes a generic representation of code with depen-

dencies via graphs much like in dataflow. These event driven graphs are heavily inspired

by the execution of a generic dataflow language and borrow much terminology from

20

there. The model also proposes the use of various features from EARTH with software

pipelining techniques leveraged from dataflow. However, the techniques described in

the execution model document[15] focus only on software pipelining of instructions in

classical architectures. Lastly, the concept of codelet as a list of instructions has many

roots in traditional computer programs.

The Model for Codelets borrows actors, firing rules, and dependency arcs from

dataflow. The codelet graph can be thought of as a subset of a dataflow graph, but

semantically redefines actors and tokens. Furthermore, the model’s firing rules are

more explicit than dataflow, and are much more realistic because they take into account

resource constraints for the availability of firing. Finally, arcs for dependencies between

codelets also comes from dataflow.

Similarly, codelets borrow the idea of threaded procedures and split-phase con-

tinuations from the EARTH model of execution [14]. In addition, the implementation

of the model would benefit from the features of dataflow pipelining combined with

classical software pipelining. Under the codelet model, threaded procedures may be

split further into codelets. This is similar to threaded procedures containing threads

in EARTH. Each threaded procedure can be thought of as a task which allows for

task level parallelism. Each task can run in parallel and be invoked. Further, sup-

port for suspending and continuing threads later once data is available will come in

the form of split-phase continuations. Such continuations use much less space than

traditional thread suspensions. In addition, the model implementation would benefit

from software pipelining to increase parallelism. In static dataflow, pipelining means

keep data flowing between codelets with minimal stalls in the pipeline and making

sure code graphs are constructed in a pipelined manner [26, 27]. Static dataflow ac-

complishes this via novel compiler techniques to guarantee data is available when it is

needed by actors[27]. The model is looking for inspiration in these ideas to increase

the performance of programs defined in the codelet model.

Lastly, the model’s actors can be thought of as similar to traditional threads,

but with dependencies. These actors are much more coarse-grain than their dataflow

21

brethren, but should be much more fine-grain than traditional operating system threads

at the kernel or user space levels to support finer-grain parallelism.

2.4.2 Features

The codelet model is heavily inspired by dataflow, but in particular dynamic

dataflow. The model can be thought of as a hybrid dataflow model that is intended

to run on many-core Von Neumann systems. Specifically the model takes the concept

of an actor and extends it so the actor can have multiple instructions instead of one

action like in dataflow. The model builds on previous work done on EARTH.

Actors can be run in parallel as long as their dependencies are met and sufficient

resources are available for them to run. Actors are grouped into subgraphs called

Threaded Procedures, and it is best to execute these subgraphs in parallel. Each actor

is intended to run on traditional Von Neumann cores in parallel when possible. These

actors are thought of as the smallest unit of computation a core can do and thus need

to be scheduled appropriately.

The actors are much like traditional operating system threads. However, they

are non-preemptive and have dependencies to indicate when they should run. Depend-

ing on the implementation of the model, threads may voluntarily yield for high latency

applications.

Much like dataflow, programs can be represented by generic graphs with depen-

dencies represented as arcs between the actor nodes. Data flows between these nodes

as tokens. However, the rules for the execution of actors mainly differ with four stages

of execution compared with the two for enabled and fired for dataflow:

• Dormant - Does not have all its input tokens.

• Enabled - Has all its input tokens.

• Ready - Is enabled and resources are available to run it.

• Firing - Has been scheduled to run.

Of these stages, mainly a Ready stage is added to indicate the system has

available resources to execute the codelet. This indicates the codelet model is much

22

closer to a practical implementation compared with dataflow which ignores such details.

The dormant stage is redundant as it just means not enabled. All these stages are

dependent on token inputs and outputs. Unlike in the dataflow model, tokens are not

simply data, and can represent an event. These events may correspond to a system

node going down or other events and do not contain any data. Although the code

within the actors can be much larger than in dataflow, special control actors from

dataflow have been added to allow token level control. Mainly included in the model

are the:

• The decider (the switch node for dataflow)

• The conditional merge

• T-gate and F-gate

These actors allow conditional and loop schemes to occur outside the codelets

and not just inside. Conditionals and loop schemes allow any type of code to be

designed using the graph model and are very important to allow generic representation

of code. Without them, programs would need to be built from within each codelet,

and dependencies would be handled at the graph level.

Finally the model also defines a way to functionalize a graph in similar manner

that a function is defined by a set of instructions in a traditional Von Neumann ar-

chitectures. The model can define a graph as a Threaded Procedure. These threaded

procedures can be called within the code like traditional functions, and their graphs

will be duplicated so they can run in parallel. The model indicates these threaded

procedure graphs can be automatically produced by a compiler through analysis of

traditional functions composed of instructions. In addition to that, these procedures

may require additional constraints to run such as locality of available arguments.

2.4.3 Parallelism

Much of the design and function of the codelet model relies on parallelism.

Hence, a key question for performance of the model should be: how to reduce par-

allelism to favor locality? It is known that dynamic dataflow produces maximum

23

parallelism, but on a machine with limited resources this may be overwhelming even

with many cores. According to the Codelet Model paper, parallelism is a key chal-

lenge. This is very contradictory because dynamic dataflow can execute new instances

of actors as long as there are no dependencies. The codelet model paper claims that

software pipelining will be useful for achieving parallelism. Much like traditional meth-

ods pipelining loops can be achieved through duplication of actors for simple cases, but

may require new methods.

For pipelined loop level schemas on traditional code if each iteration is analogous

to the creation of a codelet, at runtime pipelining would be beneficial. This means

parallelism can be a challenge. This is also a challenge for parallelism versus the

benefit of keeping codelets local.

Many software pipelining papers does not address these specific challenges nor

do they provide an adequate level of parallelism [32, 33, 34, 35]. The compiler frame-

work also needs to be good enough to model accurately the many-core chip so that

software pipelining is possible. The model proposes the use of Single-dimension soft-

ware pipelining (SSP) [36, 37, 38, 39]; specifically the multi-core version with extensions

for many-core machines [40].

Under SSP, the algorithm selects the most profitable loop, simplifies the loop

nest into a 1D loop, performs modulo scheduling, and makes sure resources for par-

allelism are met. Under the parallel version, wherever the schedule was delayed due

to the resource constraints, the delay is executed in parallel using Lamport clocks.

Speedup was good for a shared memory system with on-chip local ram, but the num-

ber of threads run in parallel is only up to 140. This is quite limited compared with

the number of threads available for future many-core systems. Therefore, for massive

many-core systems this idea still needs to be investigated in more depth.

2.5 Runtime Systems

A number of parallel runtimes exist that decouple parallel programming from

the underlying hardware to a certain degrees: Cilk, Cilk Plus, Habanero C, Habanero

24

Java, Intel Thread Building Blocks (TBB), Kernel for Adaptive, Asynchronous Paral-

lel and Interactive programming (KAAPI), and the SWift Adaptive Runtime Machine

(SWARM). All these runtimes use special compilers to support their features of syn-

chronization and spawning semantics except TBB.

Cilk [41], an extension to the C language from MIT, is similar to regular thread-

ing libraries in semantic use. However, the language is much simpler. Threads can be

asynchronously spawned using the special keyword spawn and can be waited on using

the keyword join. The language requires the special keyword cilk to label functions as

spawnable. The major advantage of Cilk is its simplicity and design. The runtime uses

work stealing (which it popularized) [42] with guaranteed space bounds and optimal

load balancing. Furthermore, the runtime cannot execute legacy code nor have fine-

grain synchronization using joins. Much of these problems were later rectified when

Cilk’s technology was bought by Intel and created a closed source derivative known as

Cilk Plus [43]. Cilk Plus adds parallel loop constructs and allows for legacy code, but

at the cost of its space bound requirements.

Habanero Java [44] is a spin-off of X10 semantically and uses the features of X10

in the language with a work stealing runtime. It provides async and finish statements

which are similar to Cilk’s cilk and join, but the finish statements allow a little finer

control. In addition to joining, it supports flexible fine-grain barriers (phasers) and

locality aware constructs (places). Habanero C brings many of these features to C by

extending C semantically. This makes the underlying runtime very similar in concept

to Cilk, but with support for phasers and in the future places.

TBB [45, 46] is a C++ library that provides a task based approach to threading.

In general a number of constructs are provided to make parallelism simpler through

parallel loop constructs and concurrent access containers. If neither of these are profi-

cient for the algorithm, task level creation is possible by inheriting the task class and

overriding methods. This task parallelism allows a spawn and join syntax. For more

advance algorithms, there is a task level continuation available (similar to EARTH’s

) which requires the user to explicitly pass class instance and variable information to

25

child threads so they can fill out the data and signal the other threads. TBB requires

shared memory via the new keyword to achieve these effects. Furthermore, TBB uses

a scalable memory allocator and work-stealing popularized by Cilk [47].

KAAPI [48] is based upon the features of Cilk and extends its basic design for

data dependencies. However, KAAPI is a derivative of C++ with special keywords for

spawning (fork) and a special type qualifier for shared data (share). Its data sharing

is based upon global memory using these share keywords. The lower level API is an

extension of the POSIX Threads API. KAAPI uses a dataflow-like graph to represent

closures. XKAAPI makes KAAPI simpler by making it a C only library. XKAAPI

allows for dataflow like dependencies by using special templates with the KAAPI++

interface in conjunction with overloading a special structure. These templates are

similar to the concept of data-driven futures that are part of the new C++ 11 spec.

Finally SWARM[49], a closed source runtime provided by ET International,

allows for thread spawning, joining, and signaling of other threads like in EARTH. In

addition, it provides a way to continue the execution of a thread like that provided

by TBB. The signaling and data movement management is explicitly done by the

programmer much like that in TBB. The major advantage of SWARM is that it can run

across different computer nodes via communication through TCP/IP. SWARM claims

better performance than OpenMP[50] on certain applications on a shared memory

system.

2.6 Architectures

Tapestry is portable and can run on three different architectures x86-64, x86-

64 with cache coherent Non-Uniform Memory Access(ccNUMA), and Texas Instru-

ments’ C66X processor with three different operating systems Windows, Linux, and

SYS/BIOS. In this section, we will describe the TI architecture and the AMD Interlagos

architectures.

26

2.6.1 C66X Processor

The C66X architecture as seen in Figure 2.1 is multi-core digital signal proces-

sor that allows for general purpose computations and targets industrial automation,

medical imaging, and high performance computing among other things. The 6678 in

particular has eight cores and can achieve 160 GFLOPs operating at 1.25 GHZ per core.

Each core has 32 KB of L1 Data Cache and 32 KB of L1 program cache which can

be configured as SRAM(internal addressable memory) or cache. In addition, each core

has 512KB of L2 memory that can also be configured as SRAM or cache. Moreover,

there is 4MB of shared memory known as Multicore Shared Memory (MSM) separated

from the cores available that can configured as shared L2, L3 cache, or SRAM. Finally,

off-chip DDR3 is available for bigger programs. Only L1D and L2 within the same

core are coherent. If the MSM is configured as shared L2, it is not coherent. In addi-

tion, between cores nothing is coherent. If L2 is configured as shared memory it is not

coherent either. Finally, DRAM is not coherent. It is up to the user to manage the

consistency themselves. The C66X has 128-bit SIMD instructions for fixed or floating

point computations. The processor can execute up to 8 instructions per cycle. Floating

point wise, each core can only compute 1, 2, 3, or 4 per cycle and if using double pre-

cision, 1 every cycle. Power wise it is rated at 10 watts operating at 1GHZ which puts

it in the ultra low range. The system also contains a limited number of locks and has

no atomics. The major challenges with this system are managing memory consistency

issues and handling atomicity for data dependencies across cores.

2.6.2 AMD Interlagos Processors

The Interlagos processor is a NUMA server processor. The 6234 processor used

by this thesis has 12 cores. The particular board utilized by this thesis is the has 48

cores, 4 sockets, and 8 NUMA nodes. The unique feature of the Interlagos processor is

that it decouples the FPU from the cores and shares 1 FPU per 2 cores with two 128 bit

wide fused multiply-add capability (FMAC) pipelines in what is known as a module.

Each NUMA node consists of 3 modules or 6 cores. The advantage here, is that 1

27

C6678

Debug & Trace

Boot ROM

Semaphore

Power Management

EDMA

PLL

E
M

IF
 1

6

G
P

IO

I^
2
C

P
C

Ie

U
A

R
T

T
S

IP

S
R

IO
S

R
IO

S
R

IO
S

R
IO

T
S

IP

P
C

Ie

Memory Subsystem

64-Bit DDR3

EMIF
MSMC

4MB
MSM
SRAM

 Network Coprocessor

Multicore Navigator

Queue

Manager

Packet

DMA

S
G

M I

S
w

it
ch

Security

Accelerator

Packet

Accelerator

E
th

e
rn

e
t

S
w

itc
h

S
G

M
I

32 KB L1

P-Cache

32 KB L1

D-Cache

512 KB L2 Cache

8 cores @ 1.25 GHZ

TeraNetHyperLink

Figure 2.1: Texas Instruments C66X Architecture

28

core can fully utilize both FMACCS with 256 bit instructions or 2 cores both issuing

128 bit instructions. This means, the processor can execute 4 doubles per cycle for

every two cores. In addition, the microarchitecture introduces new FMA4 instructions

to allow for fuse-multiply additions. Using FMA4 allows the processor to execute

8 doubles per every 2 cores. The NUMA nodes on the machine are interconnected

with HyperTransport[51] for a large number of processors with 6 cores per node. The

interconnect configuration can be seen in Figure 2.2. Nodes connect to themselves have

a distance of 1. Each connected node has a distance of 1.6 and nodes not connected

directly have a distance of 2.2. This means the nodes take 1.6 and 2.2 times longer than

connecting to themselves. The main considerations for providing good performance on

this machine are utilizing the bandwidth provided by the 8 memories banks while

balancing the low-latency of inter-node memory. In general, it is better to get more

throughput, by using the 8 memory banks when utilizing all 48 cores instead of pushing

all memory operations into 1 node.

29

Figure 2.2: AMD Interlagos 6234 NUMA Node Distances: Nodes connected in this
picture have a distance of 1.6 and unconnected nodes have a distance of 2.2. Cores are
numbered in consecutive order with 0-5 being on node 0, 6-12 on node 1, and so forth.
Notice, that some cores in the same chip have a longer distance than others. That is
because there are 6 cores per die. So each processor has 2 dies. Those two dies are
connected via HyperTransport.

30

Chapter 3

THREADED DEPENDENCY EXECUTION MODEL

The Threaded Dependency Execution Model (or Tapestry model) was designed

to combine the features of execution on shared memory systems with that of the need

to execute programs on many-core systems that may not share memory. The Tapestry

model specifically allows for fork/join parallelism to be combined with dataflow-like

semantics to achieve a program execution that is fork/join, dataflow-like, or a combi-

nation of the two within or across nodes by modifying the existing notion of threads

to contain dependencies. The model allows programmers to tackle problems using any

combination of programming models to achieve performance on any type of system.

3.1 Threaded Dependency Model Overview

Currently in computing, dependencies are described at the instruction level. If

a dependency exists between two threads, they occur at the instruction level. If one

thread depends on another thread the dependent thread must be manually started up

after the other thread finishes.

Threaded dependencies are a way to automatically describe that a thread’s re-

sults can be the input to other threads, and those threads should start only after that

thread has finished copying its result into their argument list. There are number of ad-

vantages for this. First and foremost, dependencies on a thread allow for programmers

to express complex dependency relationships between threads. Second, this gives the

threads a partial order, and the scheduler can handle the thread scheduling instead of

the programmer. Third, fine-grain parallelism can be easily expressed by breaking a

serial program up in terms of threads and dependencies.

31

To get a better understanding of threaded dependencies, a generic model is

provided in the following sections that summarizes how ideas from previous works are

combined into are more versatile execution model (The Tapestry model). The model

has number of features and introduces many new challenges to computing.

In the model, threads are the smallest unit of processing that can be sched-

uled. They can be thought of as set of instructions that are sequentially-executed

(Instruction-level Parallelism may apply), can voluntarily yield execution, and be

atomically-scheduled. Threads usually contain arguments to do work upon and re-

turn a value. These may be of any type. In addition, the arguments may come from

other threads. Thus, these arguments can represent dependencies between threads.

Furthermore, the dependencies may form loops or self-loops. Threads can also be

waited on for the result of their work.

The Tapestry model combines standard threads with that of dataflow without

losing the traditional semantics incorporated in threading models found in classical

parallel architectures. The idea is that a thread can be thought of as an actor in

dataflow. Its arguments can be thought of as arcs going into that thread or actor. Its

return can be thought of as an arc leaving the thread or actor.

3.2 Actors as Threads

Actors represent a set of serial instructions and are similar in concept to that

of Macro-dataflow[52] and its predecessors, but may be voluntarily suspended, form

loops, may be referenced by other actors, and be joined on like in fork/join parallelism.

These actors can be thought of as threads and are naturally represented by a standard

function or method with inputs into them being represented as arguments. Hence,

actors are represented very simply.

Thus, the basic building block of the Tapestry model is the thread or actor as

seen in Figure 3.1. The thread allows for all sorts of parallelism concepts including

parallel loops found in OpenMP[53], divide and conquer found in Cilk[41], the actors

found in dataflow[54], loops found in TIDeFlow[54], the codelets found in Codelet

32

 int add(int x, y)
 {
 return ;
 }

x y

1 2 n

...

x+y

Figure 3.1: Tapestry Actor: The Tapestry actor represents a thread. Each actor
is described by a function representing serial code with input arguments into that
function. On return that function’s results will be available to its dependent threads.
An actor is enabled once all its inputs are available. However, the actor may not be
scheduled to run until resources are available or if the user defined a specific constraint
such as execute only on X processor.

Model[15], pipeline parallelism, and software pipelining. The state of a Tapestry actor

is defined by the function it executes, the availability of its arguments, the availability

of system resources, user defined constraints, and if the actor is part of a loop.

Actors in Tapestry can be created during runtime by other actors which differs

completely from EARTH and TIDeFlow which are static. Furthermore, multiple graphs

can be executing at once in the Tapestry model.

3.2.1 Methods

An actor represented by a method (not a function) in Tapestry requires a class

stored in memory. Tapestry dictates that threads with a method executing on a specific

class at a certain memory location most be only be executed where that memory

location is available to that method. This means executing two methods using the same

class memory across two separate physical memory locations is not possible unless a

global shared memory is employed. This makes sense because allowing the memory to

exist across separate nodes introduces all types of problems on copying the memory and

how to update the memory copy across multiple nodes. Not only are these challenging

33

problems, allowing this behavior would introduce much inefficiency into method actors.

3.2.2 Merge and Switch Actors

In dataflow and the Codelet model, there are special actors best thought of as

the conditional input (like a multiplexer) and conditional output (like a demultiplexer).

The input actor has multiple inputs with one output. The conditional input actor only

has one operation: to choose an input depending on what is on the its condition line

and place the choice on its output. Similarly, the conditional output actor has one input

and multiple outputs. Depending what is on the actor’s condition line, the actor’s job

is to take the input and choose which output line to place the input on.

The problem with these actors is that they come from dataflow and only perform

a few specialized operations. Most likely in conventional systems, the work they do

is much smaller than the time to start and stop these actors. Hence, they have large

amount of potential overhead.

To remedy this problem, Tapestry allows any actor to be defined as a conditional

input, conditional output, or both. However, the firing rules for a conditional input

actor are still fairly complex compared to any other actor in dataflow and much harder

to represent because its condition is only used during firing (not within the body like

the conditional output).

So, to simplify the work of conditional input for loops et cetera, Tapestry in-

troduces a special conditional input actor, that allows for the condition for the next

input selection to be decided within the body of the actor. Tapestry calls this the

intra-conditional input actor. The actor works by being initialized to select a certain

line initially. It will only fire if that line has a token on it. During firing, the actor

can modify the next line selection depending on whatever conditions the programmer

chooses. In Section 3.5.1, I show how a standard dataflow loop can be simplified with

these notions.

34

3.2.3 Executing Actors

Executing actors is similar to that of dataflow: an actor can be scheduled or

fired when all its input arguments or tokens are available as long as all resources and

constraints are met. When an actor runs, it consumes its input arguments. An actor

without inputs can be immediately scheduled. When an actor finishes execution (on

function return), it will write results to its output arcs if any exist as long as it isn’t

continued on as another thread. The actor is then deallocated unless it is part of a

loop or has references to it. A full list of executing states and conditions is described

in Section 3.3.

3.2.4 Special Signals

During execution of an actor, the user may generate three special signals that

may modify the resulting state of a thread on return: continue, loop end, and exit.

The first signal, called continue will cause the executing actor on return to transform

into new actor retaining any output dependencies. New input dependencies may be

created. Because the actor is transformed into a new actor, it will no longer signal its

dependents (produce tokens). This creates a split-phase transaction. The other signal,

loop end will cause an actor that is part of a loop to stop executing on return. This

signal is used for joining on program loops and allows for the memory of a Tapestry

loop graph to be freed. This signal is generated by default on non-loop threads. Finally,

the user can end the execution of a program with the exit signal.

3.3 States

An actor in Tapestry may be in one of seven states as seen in finite-state machine

in Figure 3.2. These states represent how an actor lives and dies in a program execution.

When an actor is defined by a programmer, it enters the waiting state. In this state,

the actor waits until all it dependencies are met which can include resources and

constraints. Once this information is provided, the actor transfers to the schedule state

and waits to be scheduled. Once scheduled, the actor executes during the running state.

35

Schedule Running

Waiting Alive

D

S

!C

!L

C,D,L,SC,R,S

C,D,L,R D,L,R,S

Signal

C,D,L,R,S

C

DeadR

C,D,L,R,S

(C)ontinue (D)ependencies Filled
(L)oop end
(S)tarted by Runtime

Loop

L
C,D,R,S

(R)eference Count is 0

L

Figure 3.2: Tapestry Finite-State Machine: Tapestry actors can be in seven different
states. These states allow for actors and actor graphs to be reused and decommissioned
if there are no references to them in memory.

36

If the actor did not initiate a split-phase transaction by the time it finishes executing,

the actor will enter the signal state and signal its dependents. Otherwise it enters the

loop state. This state causes the actor to loop again and enter the waiting state if the

actor or runtime did not assert loop end. If loop end is asserted, the actor enters the

alive state which waits for its reference count to go to zero. Once this happens, the

actor enters the dead state and can be deallocated. In the waiting state, the runtime

can cause a waiting actor to end.

3.4 Arcs

Arcs in a Tapestry program represent dependencies between actors. These de-

pendencies can be references, pointers, or any other data type. These types are copied

between output of an actor into the input of other actors. Thus, if the Tapestry model

is used on a non-shared memory system these pointers or references may not be valid.

This is different from EARTH and TIDeFlow which require shared memory[14, 54]. In

addition, the model can allow for multiple tokens per arc. However, this can be costly

to implement. Thus, a simplified version of the model may only support one token per

arc. In the one token per arc version, the stipulation is the actor must wait for each

dependent actor to finish before it signals. For self-loops (Section 3.5), the stipulation

is that it will always signal itself even if not finished because the actor cannot be fin-

ished. However, a race condition can occur if the self signal is not the last signal to be

executed for pipelines (Section 3.6). Thus, for self-loops that initiate a pipeline, the

self-signal must be the last signal executed.

3.5 Loops

Tapestry loops were designed for any type of loop construction: do while, while,

or for loops. In addition, the ending condition of a loop can be determined at runtime

just like in regular loops. This is in contrast to the TIDeFlow model that only allows for

a static number of loop iterations determined at the start of a program. Furthermore,

37

 int loop(int i)
 {
 if(i>50)
 loopExit();

 return ;
 }

i

1

i+1

(a) Self-Loop

 int loop(int i)
 {
 if(i>50)
 loopExit();

 return ;
 }

i

1

i

 int file(int i)
 {
 char a;
 a = read(i);
 write(i);
 return ;
 }

i

1

i+1

(b) Loop

Figure 3.3: Tapestry Actor Loop: The Tapestry model provides two basic loop con-
structs for a program graph. The self-loop in a works by causing the actor execute
50 times if the initial input is 0. This actor can have other code inside it; so, it does
actual work instead of just looping. Figure b shows the a basic two actor for loop that
can be generalized to have more actors.

Tapestry can have multiple loops running and supports split-phase transactions on

loop actors.

The basic two loop constructs are the self-loop and a loop of actors as seen in

Figure 3.3. Self-signaling has a special stipulation for the one token per arc version of

Tapestry as indicated in Section 3.4. To stop a loop from repeating, the actor must

signal the loop will exit. On whichever actor the loop exit signal occurs in the loop, it

is the job of that actor to signal its dependents to stop waiting.

Since each actor in a loop requires input dependencies, this means the body of a

standard loop will only have one actor per loop chain ever executing. Loops like those

in Figure 3.3 most likely are more efficient as serial code. However like in OpenMP

or TIDeFlow, the programmer can create multiple parallel actors that can execute

simultaneously. In addition, the stages of the loop body do not have to barrier like in

TIDeFlow.

38

These loops however cannot be nested with another program graph without

causing them to wait for additional inputs. But, they are simple and useful for outer

program loops. The next section describes how a more composable loop can be formed

with Tapestry.

3.5.1 Composable Loops

The main conditions for a loop to be composable in dataflow is that it must have

a conditional input and conditional output. The problem here is that for one token

inputted into a loop schema from some source must result in that loop to execute

a number of times, and once the loop finishes, it returns one token to that source.

This requires a conditional input into the loop and a conditional output. This means

four actors are needed to achieve a classical dataflow loop as seen in Figure 3.4a.

However, the condition, conditional input, and conditional output are very fine-grain

and not suitable for a modern threaded systems. They have a huge overhead a reduce

processor availability. Furthermore, they needlessly complicate a program graph and

increase program memory requirements.

Tapestry solves these problems by allowing any actor to be a conditional input,

conditional output, or both. In addition, the intra-conditional input actor can be used

to further simplify things. Thus, Tapestry can achieve a composable loop with one

actor as seen in Figure 3.4e. Figure 3.4 explains how a dataflow loop can be merged

into one actor step by step.

The final note here is that Tapestry requires the actor when exiting a loop to use

the loop exit signal. This indicates that the loop is no longer referencing any memory

and may be freed if no other actor has a reference to it. In addition, this allows a

programmer to join on a loop of executions.

3.5.2 Loop Nest

Tapestry supports loop nests like dataflow, but also through the simplified com-

posable loop scheme described in Section 3.5.1. Loop nests only require one actor per

39

x-1

1

x

Conditional

Input

T F

1

Conditional

Output

x

T F

c

x>0

x

1 2

c

2

(a) Dataflow Loop

x-1

1

x

Conditional

Input

T F

1

CO: x>0

x

T F

c

x>0

x

1

2

(b) Output/Cond. Merge

Conditional

Input

T F

1

CO:

 x>0 ? x-1 :

x

x

T F

c

x>0

x

1

2

(c) Output/Subtract Merge

CI:

in>0

T F

1

CO:

 x>0 ? x-1 :

x

x

T F

(d) Input/Cond. Merge

CI: in>0

CO:

 in>0 ? in-1 : in

x

T F

F

(e) Input/Output Merge

Figure 3.4: Dataflow Loop Reduction: Dataflow and the Codelet model require four
actors to achieve a composable loop as seen in Figure a. These states can be reduced
easily into one actor in Tapestry. In figures b, c, d each actor is merged until only one
remains. In b, the x>0 is moved easily moved into the conditional output node since it
can do multiple instructions. In c, the subtract is moved into the output which outputs
x-1 on the T line and x on the F line. In d, the condition is merged into the conditional
input and forms a intra-conditional input. The line F is set as default switch, and
changes on output depending if the input>0. Finally in e, the input/output nodes are
merged. 40

CI: in.i>0

in.j=50

CO: in.i>0 ? in.i-1

: in

T

T F

F

CI: in.j>0

CO:

 in.j>0 ? in.j-1 : in

T

T F

F

Figure 3.5: Tapestry Loop Nest: This is just a basic i/j loop nest. The input stores
two ints i and j. The inner purple loop is ran 50 times for each iteration of the green
outer loop. This loop nest is composable and allows for other programs or loops to
nest it.

nest. In addition, the outer loop does not need to use a composable loop actor. The

most basic loop nest can be seen in Figure 3.5.

Loop nests are important for many scientific applications such as stencils, matrix

multiplication, and LU decomposition. Tapestry can support these within an actor or

outside of one.

In addition, each loop in the nest is required to call a loop exit signal even if

composable to allow memory to be dynamically freed if no references are available.

3.5.3 Software Pipelining

Software pipelining is a technique to optimize loops by reordering instructions

to reduce overall execution time by allowing certain instructions to occur in parallel.

Software pipelining was designed for very long instruction architecture (VLIW), but

is effective in modern architectures that have some form of instruction level parallelism

(ILP). Compilers have techniques to achieve automatic-software pipelining.

Similarly, thread loops in Tapestry can benefit from parallelization by allowing

certain threads to be duplicated and execute in parallel. However, this can be thought

of as more general problem of how to best parallelize a loop with dependencies between

iterations, but applied at the thread level. It is very similar to problem faced by

41

 int loop(int i)
 {
 if(i>50)
 loopExit();

 return ;
 }

i

2

i+1

 void file(int i)
 {
 char a;
 a = read(i-1);
 write(i-1);
 return;
 }

i

1

Figure 3.6: Tapestry Pipeline: This is a modification of the loop in Figure 3.3b to be
a pipeline. In this case the loop actor and file actor can execute simultaneously.

OpenMP programmers when trying to parallelize loops that may contain loop-carried

dependencies. Thus, the Tapestry model can benefit from parallelization of loop bodies

achieved through software pipelining-like techniques.

3.6 Pipelines

An actor that is not part of a loop, but is dependent on a loop creates a nat-

ural pipeline in Tapestry. Figure 3.6 shows a simple two stage pipeline. Pipelines

in Tapestry allow for true pipeline parallelism which is not addressed in the Codelet

Model or TIDeFlow. In the model, pipelines allow for multiple stages of a pipeline to

be active and computing in parallel.

Pipelines in Tapestry are different from the pipeline parallelism described Orozco’s

Thesis [54]. Contrary to TIDeFlow, Tapestry pipelines are true pipelines and do not

require multiple tokens per arc to achieve pipeline parallelism. This is discussed in

great detail in Figures 3.8 and 3.9. In short, the pipeline parallelism in TIDeFlow is

limited by the length of time it takes to execute one loop iteration of a loop. If this time

is long, more tokens need to be initially placed on the input to achieve the required

parallelism.

42

Write(i)

i

CI: in>0

Read(i)

x

1 2

F

Figure 3.7: Composable Pipeline: To make a pipeline composable the input needs to
modified to be a intra-conditional input. The output is duplicated to the loop and the
pipeline.

Finally, pipelines in Tapestry can be made composable by using the intra-

conditional input for the producer loop as seen in Figure 3.7.

3.7 Split-Phase Transactions

Tapestry supports thread-level continuations from the EARTH model. These

continuations are similar in concept to a join operation. A join operation on a thread

causes a thread to suspend execution until the resulting thread has finished execution.

To achieve this, the thread’s stack information must be preserved. However, this can

increase program memory requirements. A continuation allows the executing thread

finish execution and continue on as a new thread with conditions to start that contin-

uation (such as being dependent on a thread). This allows for join operations to be

broken up into a phase of before and after a join without the need of suspending the

thread and preserving its stack space.

A continuation in Tapestry however has special issue to address because these

continuations occur on actors that can be within a loop. So a question arises if those

actors when continued will be forever continued on subsequent iterations or should the

continuations be treated as a temporary phase that is part of the current executing

actor? The Tapestry model takes the latter stance. Tapestry says that a split-phase

continuation of an actor should be seen as one actor that has multiple temporary

43

LOAD COMPUTE OFFLOAD

COMPUTE

COMPUTE

LOAD OFFLOAD

(a) Loop

C

L

L

C

C

O

O

C

L

L

C

C

O

O

C

L

L

C

C

O

O

Time

P
ro

c
e
s

s
o

rs

(b) 1 Token Trace

Time

P
ro

c
e
s

s
o

rs

C

L

L

C

C

O

L

L

L

L

C

C

C

O

C

C

C

C

C

C

C

C

C

C

C

C

O

O

O

O

O

O

O

O

O

O

L

L

L

L

L

L

(c) 3 Token Trace

Figure 3.8: Loop Limited Parallelism: This example is taken and modified from
Orozco’s Thesis on Page 58 [54]. This program works in both TIDeFlow and Tapestry.
The program loads some tiles, computes them, and stores their result. Notice, that the
arrows represent a full barrier of dependencies between each stage. Assuming one token
is inputted the parallelism of this example is quite limited as seen in the program trace
in Figure b. Orozco points out this can be remedied by placing three tokens on the
input (off-load to load edge) and leads to a form of pipelined parallelism as seen in the
trace in Figure c. However, this requires multiple tokens per arc which are more costly
to implement. In addition, the amount of tokens one needs to initialize is dependent
on the total length of one full loop execution. If too little tokens are used it will lead to
stalls. Thus, a programmer or compiler would have to use some heuristic to determine
the number of tokens to input initially. Both current implementations of TIDeFlow or
Tapestry do not support placing multiple tokens. However in Tapestry, the loop can
be modified as seen in Figure 3.9 to be a pipeline and achieve true pipeline parallelism
without a compiler, user intervention, or multiple tokens per arc.

44

LOAD COMPUTE OFFLOAD

COMPUTE

COMPUTE

LOAD OFFLOAD

(a) Pipeline

Time

P
ro

c
e
s

s
o

rs

C

L

L

C

C

O

L

L

L

L

C

C

C

O

C

C

C

C

C

C

C

C

C

C

C

C

O

O

O

O

O

O

O

O

O

O

L

L

L

L

L

L

(b) 1 Token Trace

Figure 3.9: Tapestry Pipeline Parallelism: In Tapestry the loop from Figure 3.8a was
modified to remove the back-edge because it limited the parallelism. Notice in Figure
a, a self-loop is used to create a pipeline. The dependencies in this figure are spelled
out more clearly also. Unlike in the loop in 3.8a, once the load stage completes it can
immediately begin work again. In Figure b, the trace shows the overlapping of each
stage of the program to achieve classical pipeline parallelism which does not contain
the stalls seen between the loads in the 3 token loop version (Figure 3.8c). To achieve
this parallelism, only one token per load is initially needed. In addition, this can
be done with the one token per arc version of Tapestry and has been in the current
implementation.

45

 int into(int i)
 {
 if(i%2!=0)
 cont(&odd,i);

 return ;
 }

i

i+1

 int odd(int i)
 {
 if(i>50)
 loopExit();

 return ;
 }

i+1

1

(a) Split-Phase Loop

 int into(int i)
 {
 if(i%2!=0)
 cont(&odd,i);

 return ;
 }

i

i+1

1

(b) Even Iteration

 int into(int i)
 {
 if(i%2!=0)
 cont(&odd,i);

 return ;
 }

i

i+1

 int odd(int i)
 {
 if(i>50)
 loopExit();

 return ;
 }

i+1

1

(c) Odd Iteration

Figure 3.10: Split-Phase Transaction in a Loop: The split-phase transaction occurs
depending on if the current iteration is even of odd. On a even iteration as seen in
figure b, the loop operates normally. Yet, when the iteration is odd like in figure c,
the into actor initiates a continuation as the odd actor and no longer signals. The odd
actor completes the signaling.

phases. These phases are invoked within the actor depending on certain conditions.

Figure 3.10 shows how an actor behaves during continuations during a loop.

3.8 References and Joins

The final piece of the Tapestry model is that it supports references to other

threads within threads. These references may be used to read the result of an execut-

ing thread. Thus, Tapestry supports tryJoins, joins, and timed joins on these references

to receive the results from a thread. These joins can be used to implement futures. Fu-

tures may be used to form an EARTH-like execution and the Tapestry model provides

46

that model should support continuations on EARTH-like executions with futures. In

addition, joins can be used in conjunction with other operations. Finally, these threads

can start other threads.

3.9 Comparison to Other CAPSL Models

The Tapestry model is more general and less vague compared to the other models

introduced by the Computer Architecture Parallel Systems Laboratory (CAPSL) and

its predecessors. Figure 3.11 shows the interrelationship of the models introduced by

CAPSL. The Tapestry model supports traditional threading concepts unlike EARTH,

TIDeFlow, or the Codelet model. These are very important concepts to achieve per-

formance for shared memory systems. Moreover, Tapestry allows the programmer to

intermix the concepts to achieve performance on any type of system. A simplified ver-

sion of Tapestry is also available that does not support loops since loop dependencies

can add complexity to a program and runtime. A full comparison is provided in Table

3.1.

Tapestry introduces many new concepts: such as methods, method class mem-

ory grouping, single-actor composable loops, pipelines, any-actor conditional input/out-

put nodes, and defines how split-phase transactions work in loops. In addition, a full

finite-state machine is provided that shows how the execution model can be easily

implemented.

3.10 Scheduling

For the Tapestry model, the scheduler can be thought as a very abstract and

general concept with one key idea: it will issue threads to each available processor.

The schedule can be any schedule as long as the threads maintain a partial order as

dictated by their dependencies and are suspended when data is not available from a

join request. The implementation can use a centralized queue, distributed queues, or

a hierarchal queues, et cetera. Figure 3.12 shows a diagram for this model.

47

EARTH TIDeFlow Codelets Sim. Tapestry Tapestry
Dependencies E X E X X
Split-Phase Trans. X X X X
Groupings (Memory) E E X X
Loops X X X
Composable Loops X X
Split-phase in Loops ? X
Pipelines ? X
Any-actor cond. I/O X
Methods X X
References X X
Join Operations X X
Memory Model Shared Shared LC[C] N/C++ N/C++

Table 3.1: Summary of Execution Models: The first thing to note here is that depen-
dencies are coupled to threads or actors in TIDeFlow and Tapestry and signaling is
part of the execution. Whereas, the other models have explicit signaling (E). In addi-
tion, the groupings in Tapestry are based on method memory and execute in a shared
memory environment, but EARTH and codelets have threaded procedures that are
more explicit. How split-phase transactions work in loops or if they do is not specified
in the Codelet Model (?). Furthermore, the Codelet Model seems like it can support
pipelines, but it is not specified. Finally, Tapestry only requires memory consistency
within a shared memory environment. It utilizes the C++ memory model.

Tapestry

Codelets

 EARTHTIDeFlow
Fork/Join
(Pthreads,
Cilk, etc)

Figure 3.11: Tapestry Features: The Tapestry model subsumes all the features of the
Codelet model and fork/join parallelism.

48

Scheduler

A

B C

E D

H

G

F

I

J

1

2

(a) Model Abstract Machine

Time

P
ro

c
e
s

s
o

rs
H2

JJC

GE11

IIIFA B D

A

B C

E D

H

G

F

I

J

1

2

(b) Model Scheduling

Figure 3.12: Model of Threaded Dependencies: In figure a, threads may form depen-
dencies as indicated by the solid lines, spawn other threads as indicated by dash lines,
and join on other threads as indicated by the dash/dot lines. This information can be
used by some abstract scheduler that exists in some form across machines that may
not share memory to form a schedule such as that in figure b. This schedule must
maintain ordering of threads in respect to dependencies that come in the form of joins
or arguments.

49

3.11 Examples

Figure 3.13 shows an example of three threads working on data without the use

of dependencies. Each thread can execute concurrently as long as it is issued to the

scheduler before another thread finishes. It is the job of the scheduler to determine

on which CPU and when a thread is executed. A C++ API is provided to better

understand: the member function start issues a thread to the scheduler and join

waits for the thread to complete work. The keyword Thread is used to declare a

variable as part of the thread class. The member variable argument is used to specify

an argument to the thread and the member variable function is used to specify the

function the thread will execute.

In the model, dependencies can be easily added and simplify code for the pro-

grammer. See Figure 3.14 for an example. The member function dependsOn is used

to indicate that a variable depends on argument thread. The scheduler will handle

verifying if the thread can run or not after it is issued with the start command. Once

the thread finishes that dependency depends on, the dependency will execute.

50

1 void ThreadFunction (int∗ argument)
2 {
3 ∗argument ∗= 5 ;
4 }
5
6 int main (void)
7 {
8 Thread a , b , c ;
9 int l o ca t i on1 , l o c a t i on2 ;
10
11 a . f unc t i on = b . func t i on = c . func t i on = &ThreadFunction ;
12 c . argument = a . argument = &lo c a t i on1 ;
13 b . argument = &lo c a t i on2 ;
14
15 //Run the threads
16 a . s t a r t () ;
17 b . s t a r t () ;
18
19 //C needs to wait for a
20 a . j o i n () ;
21
22 c . s t a r t () ;
23
24 b . j o i n () ;
25 c . j o i n () ;
26
27 cout << ”Resu l t s : ” << ∗ l o c a t i on1 << ” ” << ∗ l o c a t i on2 << endl ;
28
29 return 0 ;
30 }

Figure 3.13: C++ Thread Example: Notice thread c must wait for thread a to finish
before working on the data at the same location. This means thread a and b or b

and c can execute concurrently, but not a and c. The programmer has to explicitly
handle the dependency themselves by correctly scheduling the functions.

51

1 void ThreadFunction (int∗ argument)
2 {
3 ∗argument ∗= 5 ;
4 }
5
6 int main (void)
7 {
8 Thread a , b , c ;
9 int l o ca t i on1 , l o c a t i on2 ;
10
11 a . f unc t i on = b . func t i on = c . func t i on = &ThreadFunction ;
12 c . argument = a . argument = &lo c a t i on1 ;
13 b . argument = &lo c a t i on2 ;
14 c . dependsOn (a) ;
15
16 a . s t a r t () ;
17 b . s t a r t () ;
18 c . s t a r t () ;
19
20 a . j o i n () ;
21 b . j o i n () ;
22 c . j o i n () ;
23
24 cout << ”Resu l t s : ” << ∗ l o c a t i on1 << ” ” << ∗ l o c a t i on2 << endl ;
25
26 return 0 ;
27 }

Figure 3.14: C++ Thread Dependency Example: Code from Figure 3.13 is simplified
using dependencies.

52

Chapter 4

TAPESTRY OVERVIEW

Tapestry is a framework for designing new execution models, synchronization

features, or runtimes. The current major component of Tapestry is its framework

for threading and synchronization. However, I plan to add a graphical language and

simulation components to test new execution models.

4.1 Framework

The framework is divided into two components namedWaft and Warp. Tapestry

Waft is glue to allow for thread creation using runtimes, libraries, or low level OS system

components. Tapestry Warp is the model that allows for low level or library supported

synchronization features to be used in conjunction with thread level synchronizations.

See Figure 4.1 for an overview of the Framework.

The aim of Waft is to use libraries or runtimes to facilitate thread creation,

running, and support the features of C++ style threads. Waft can run on top of

any library for threading even if the library is in user or kernel space. Waft has

been successfully run on top of Pthreads, Windows Threads, Cilk Plus, OpenMP, and

my user created runtime Tapestry Fibers. Waft Threads have a number of features

over standard C threads including groupings, inheritance, thread context passing, and

variable argument length and type.

The aim of Warp is to support threaded dependencies, asyncs, split-phase trans-

actions, joins, futures, promises, and mutexes. Threaded dependencies are dependen-

cies expressed at the thread level. Threaded dependencies and asyncs are used in

conjunction with thread creation to support thread level synchronization. Ayncs are

function calls that occur asynchronously of the executing thread. Joins are way to

53

OS

OS Threads

Cilk Plus
Tapestry

Fibers
OpenMP +OS Mutex

Tapestry

Fibers

Tapestry Waft Tapestry Warp

Tapestry Threads

Tapestry Threads Interface

Figure 4.1: Tapestry Framework: The two major components of the framework are
Waft and Warp which make up the interface for the user. Waft is for thread creation
and can run on top the lower level threading libraries. Warp uses lower level mutex
libraries together with Tapestry Fibers to provide new synchronization concepts such
as thread level dependencies.

wait for another thread to finish execution. Split-phase transactions allow a thread to

continue work after a specified condition is met. Futures are way to indicate the data

will be filled in the future. If the data is used before it is filled, the thread will wait

for it to be filled. A promise is way to fill a future value and indicate it can be read.

Mutexes are just the standard way to synchronize access to memory which includes

locks and barriers.

Extending upon the design of dependencies in Chapter 3, the framework in-

terface is very simple. Referencing Figure 4.2b, threads are created using the Thread

class. The constructor takes a function, context, and any number of arguments in those

orders. Contexts are optional, but can be used for sharing data or to create a closure.

They provide a way for memory management within threads. Contexts are created

using classes as seen in Figure 4.2a. These contexts are a simple and effective way to

do data management compared to Figure 3.14. They can be created in shared memory

or if they are not passed to a thread, they will be constructed when the thread is run

using local memory. They can be shared using the class this pointer.

54

1 class Storage
2 {
3 private :
4 int s t o rage ;
5
6 public :
7
8 Storage (int s t o r e I n i t)
9 {
10 s to rage = s t o r e I n i t ;
11 }
12
13 void up (int amount)
14 {
15 s to rage ∗= amount ;
16 }
17
18 int get ()
19 {
20 return s t o rage ;
21 }
22
23 }

(a) Shared Data Class

1 int main (void)
2 {
3 Storage shared (7) , unShared (8) ;
4
5 Thread a(&Storage : : up , &shared , 5) ;
6 Thread b(&Storage : : up , &unShared ,

2) ;
7 Thread c(&Storage : : up , &shared , 4) ;
8
9 c . dependsOn (a) ;

10
11 a . s t a r t () ;
12 b . s t a r t () ;
13
14 b . j o i n () ;
15 c . j o i n () ;
16
17 cout << ”Resu l t s : ” << shared . get ()
18 << ” ” << unShared . get ()
19 << endl ;
20
21 return 0 ;
22 }

(b) Tapestry Code

Figure 4.2: Tapestry Thread Example: The class Storage provides encapsulation or
data hiding as a context for any Thread. This includes members to modify the internal
data of the class. In the code, context shared is shared by threads a and c. In the
running of the program, the shared context is initialized to 7. When thread a finishes
running, the shared context will have a value of 35. At this point, the scheduler will
signal c to run and it will use the shared context and update it to 140. Notice c doesn’t
need to wait on a, but a must run for c to start. Thread b only ever uses unShared
which is initialized to 8 and becomes 16 by the time b is joined.

55

Lastly, the most important feature is the addition of data driven dependencies.

The example in Figure 4.2 is expanded to use data driven dependencies as seen in Figure

4.3. On thread construction if all the arguments are not filled out for a function, then

the remaining values will be filled in the future by another thread. Once a thread

dependency is created using the dependsOn member function, the dependent threads

argument will be filled by the thread it depends on. The value returned by the thread

it depends on will be the value that fills that argument. This is one of the main features

needed for data-centric threads. Of course these are just the basic extensions to the

dependency scheme presented in Chapter 3. Chapter 5 describes all the features of the

Tapestry Threads.

The framework is very modular and portable which will be important to future

exascale design. It quickly allows programmers to explore future designs or use current

features with future systems. It only requires a C++98 compiler and does not need any

unique language compilers nor does it extend the C++ language. On the modular side,

it separates synchronization features from thread level creation and can be connected

to lower level libraries.

4.2 Wrapper Design

Tapestry employs a simple wrapper method to allow for C++ style threads,

asyncs, dependencies, information hiding, et cetera. To accomplish this Tapestry cre-

ates a wrapper callback function void * ThreadRunner(void * argument) as in

Figure 4.4 that wraps a virtual callback function on the ThreadData class. This virtual

callback function is implemented by various templates which inherent the ThreadData

class allowing for any type and combination of arguments for a thread. Tapestry al-

locates memory for a templated inherited thread. Then, it creates a tuple using a

void pointer to that memory and the ThreadRunner function. This tuple is eventually

passed to a thread handler class that invokes the lower level threading library such as

the operating system library or some runtime.

56

1 int up (int amount , int s t o rage)
2 {
3 s to rage ∗= amount ;
4
5 return s t o rage ;
6 }
7
8 int main (void)
9 {
10 Thread a(&up , 5 , 4) ;
11 Thread b(&up , 2 , 4) ;
12 Thread c(&up , 4) ;
13
14 c . dependsOn (a) ;
15
16 a . s t a r t () ;
17 b . s t a r t () ;
18
19 cout << ”Resu l t s : ” << c . jo inValue <int> () << ” ”
20 << c . jo inValue <int> () << endl ;
21
22 return 0 ;
23 }

Figure 4.3: Tapestry Thread Data Driven Example: Expanding upon Figure 4.2, this
code uses pass by value to update the value that lives across threads. The first thing
to note, is the up thread function takes two arguments. When creating threads such
as a, b, or c, if the argument passed is less than the arguments of the function, the
framework assumes those arguments are met by a thread dependency. In this example,
a and b both do not have dependencies because all their arguments are filled when
created, but c will get the value of storage at later time since it is empty. c using the
dependsOn member function indicates this thread will be filled by a. Finally, the return
value is what value will be passed by the function to any dependent threads. Note:
the joinValue function just joins and returns the value returned from the thread.

57

invoke function

start thread

unpacks

void * arg wrapper function

function

arg1

...

argn

passed to

dependency counter

external
thread library

invokes

Local Memory

Shared Memory

Wrapper Function

function runs

update dependencies

dependency list

thread cleanup

Figure 4.4: Tapestry Wrapper View: Here we see the thread memory is stored in some
location such as the heap with a dependency list. Once a wrapper thread gets invoked
by the external library, it will statically cast the void * into the ThreadData * class.
Using inheritance, it will invoke the thread start function which will run the inherited
templated class’s implemented run method. Once a thread completes, Tapestry will
copy the return argument from the thread into any dependencies in the dependency
list and decrement their dependency counter.

Tapestry’s wrapper thread allows for the implementation of all of Tapestry’s

features without the use of a lower level runtime. The wrapper thread will unpack and

run a thread using the thread’s most parent class pointer to invoke a Thread callback

as an implemented virtual method. This method will run and return a result into the

memory location of the thread. Tapestry will then copy the return into the resulting

threads and decrement the dependency count.

Tapestry allows arguments to a thread to be filled by other threads using a

dependencies as explained above. Because Tapestry allows arguments to be filled

by value in combination to other threads filling them it needs a special design. To

accomplish this, templates allow for partial filling of arguments at construction or

58

1 template<class R, class C, class A1 , class A2>
2 Thread (R (C: : ∗ funct) (A1 , A2) , C ∗ i n s t)
3 {
4 //Code here . . .
5 }

Figure 4.5: Tapestry Argument Template: In this example we see how Tapestry deter-
mines argument, class, and return types from the partial specialization of the member
types on the member function pointer. Furthermore, we see that the class type from
the member function pointer must match the class pointer type passed in.

1 template<class R, class C, class A1 , class A2>
2 Thread (R (C: : ∗ funct) (A1 , A2) , C ∗ i n s t , A1 arg1)
3 {
4 //Code here . . .
5 }

Figure 4.6: Tapestry Partial Arguments: In this example we see that Tapestry through
specialization on the function member pointer knows there are two arguments, but
argument one is already met and thus it should set up the thread so there is only one
signal needed and that signal will store data at argument two.

the user can fill them in with the special fill function. Additionally, Tapestry uses

specialization on the function pointer or member function pointers passed into the

Thread constructor to determine the argument information it needs to store and how

many arguments will be met by threads as seen in Figure 4.5. If the function pointer

has two arguments, but only one is passed to the Thread constructor Tapestry knows

that one argument needs to be met by another thread as seen in Figure 4.6.

4.2.1 Optimizations

4.2.1.1 Fine-Grain Optimizations

Tapestry allows for locality optimizations when parallelism is overly abundant,

and it is advantageous to begin executing the work locally. If a thread has dependencies

Tapestry can skip the local queue and begin working on a thread immediately and meet

its dependencies without the extra overhead of pushing and pulling from a queue. This

is called Locality Optimized (LO). Furthermore, if the thread has only fork/join style

dependencies like a regular recursive function call, Tapestry can bypass its wrapper

59

layer and begin executing the functions on the stack. This allows for even more locality

and is known as Super Locality Optimized (SLO). The user can turn this at anytime

or allow a lower level runtime or thread system turn this on.

For instance, Tapestry Fibers have the ability to monitor the amount of paral-

lelism available by checking the amount of items in a thread’s local queue. It then can

turn on SLO or LO optimizations at runtime and significantly speedup code if a certain

amount of parallelism is achieved. In addition to these locality aware optimizations,

we know on fork/join parallelism that the join should be at the top of the stack. Be-

cause of this, Tapestry can pop the thread directly off the stack and execute it directly

without requiring the scheduler to do this. This optimization is called Fast-Join (FJ).

Tapestry was specifically designed so that a thread regardless of dependency

information could be called with the runtime or serially by a user. This allows for the

user to be able to optimize their code and allows for the LO and SLO optimizations

being possible including the Dynamic Continuation feature that is a contribution of

this thesis. The Dynamic Continuation feature will be explained in more detail in the

Chapter 5.

4.2.1.2 Other Optimizations

In addition to parallelism optimizations, Tapestry, when allocating threads, can

use a built in memory manager. For recursive parallelism like in regular recursive code,

Tapestry can employ a stack based memory manager with ultra low overhead and no

locking due to guarantee that a thread executing will not swap out onto another core.

For other types of parallelism, a random table based lock memory manager is available

with various level block sizes for memory locations.

Finally Tapestry can employ thread level caching or completion. Tapestry can

cache or store thread states, so when a redundant thread state is encountered Tapestry

can just use the results stored. This optimization will turn tree search algorithms into

a graph search by default and reduce redundant computations. This caching can occur

at the thread level or throughout the whole system.

60

4.2.2 Tapestry

Tapestry’s implementation on shared memory systems spans multiple layers.

The first layer is Tapestry Warp and Waft. In Waft, Tapestry Threads are implemented

using a combination of the heap and stack. The main difference compared with regular

threads are:

1. Storage

2. Invocation

Storage:

Each Tapestry Thread has two layers: the data of the residing thread and

context to invoke, join, and refer to a thread. Contexts or interface, are up to the user

to decide where to store using the Thread keyword, but once a thread is created, its

arguments, function pointer, class context pointer, and dependency information are

allocated on the heap or via a memory manager. A reference to this data is stored in

the thread interface. If the interface context is copied, the thread data stays in memory

wherever it is allocated and only will ever have one copy. Threads also keep a reference

count to the data to determine if the data is being used. If the reference count falls to

0, then the thread will be deallocated and returned to the heap or memory manager.

The thread data is passed to the lower level thread library to run, and the thread frame

is most likely allocated to the heap and has a limited stack size. The arguments for a

thread are copied to on the return from another dependent thread, and the reference

count is decremented during this time.

When a thread is created, memory is allocated for the thread using either a

resource manager or the heap. Once allocated, the data is initialized. Variable size

arguments are handled statically using templates which guarantees up to nine argu-

ments can be passed of any size or type at the current time. Structures can be used to

pack multiple arguments coming from one thread or for greater size inputs. Informa-

tion about argument type are gathered from the function pointer. If dependencies are

involved, space is allocated for a integer counter and another integer variable to store

61

the number of dependencies. Because Tapestry uses function pointers and no special

syntax, legacy or library code is easily supported, and thus serial function calls are

allocated using the conventional stack or thread stack. Legacy or library code, can be

easily parallelized because of these feature also. The semantics for calling a function to

be executed as a thread is determined by the lower layer. Usually this just means, the

function is executed on that threads stack, and it returns to that thread after executing

that function.

Invocation:

Tapestry only uses the lower level thread runtime such as Pthread, Win32

Threads, or a runtime to execute the threads as specified by Tapestry. Tapestry in

itself is decentralized on shared memory systems and each thread contains the infor-

mation about which thread they should signal and where. Signaling occurs through a

special counter that is atomically updated when dependencies are met. Once, all the

dependencies are met, the thread will be run using the lower layer. If the thread has

no dependencies, it will be immediately run. Depending on the lower layer implemen-

tation, it may be immediately run such as in Pthreads, but it could also be placed into

a scheduling queue. If a thread is invoked with the start member before dependencies

are met, the thread will not run.

4.3 Contributions

The two main contributions introduced in this chapter, are the framework de-

signed for exploring synchronization and threading features that is independent of the

lower level libraries provided and the data-centric approach to threads.

The portable framework that uses only C++ is essential for exploring new exe-

cution models and providing a transitory step for future system designers. The modular

nature is essential for system level design.

Note, the importance of this idea for data-centric threads. It is essential for

dependencies to be passed easily as part of the threading model to allow for the runtime

62

to determine how data needs to be moved to arrive to that thread. In shared memory

this can be easily done. However, in future many-core systems without shared memory,

the runtime may need to copy the data from local memory to other memory. This idea

combined in unison with fast thread creation and keeping data local is essential for fine

grain parallelism in future exascale machines. And, fine grain parallelism is essential

to finding parallelism.

63

Chapter 5

TAPESTRY THREADS

Tapestry Threads is a framework for developing execution models and runtimes

using only C++98. Threads is a C++ interface with glue that allows for the use

of various synchronization and threading primitives. The interface also combines the

features of Waft and Warp to allow for data-centric threads. It has many features, is

modularly designed, and contains a number of contributions. In the design of Tapestry

Threads, three separate components were created to build an integrated system:

1. Tapestry Waft: a threading model that provides glue to support C++ style
threads including classes, inheritance, modularity, encapsulation, thread creation,
joining, asynchronous function calls, and continuations.

2. Tapestry Warp: a synchronization model to provide mutexes, barriers, and thread
level dependencies.

3. Tapestry Fibers: A heavily optimized runtime written for shared memory systems
that uses work stealing/sharing to support fast thread creation.

5.1 Features

Tapestry features a number of important ideas to create a simple programming

environment. These include full support for all of C++ features with threads, syn-

chronization constructs, thread level dependencies, dynamic continuations, and simple

general parallelism. Tapestry threads are much simpler and more flexible than stan-

dard C threads because they are created with C++ and include the synchronization

features within the thread. Furthermore, Tapestry Threads support thread level de-

pendencies with dynamic continuations which adds even more flexibility to the model.

Lastly, function level parallelism can easily be achieved with general parallelism applied

through the async keyword.

64

5.1.1 C++ Threads

Threading in Tapestry uses all the features of C++ for thread creation. This

allows for thread creation using either function pointers or member function pointers.

5.1.1.1 Thread Creation, Running, and Joining

Thread creation is different from standard C libraries and is akin to the thread-

ing feature in the yet to be supported C++ 11 standard. Thread creation occurs via

the Thread class. The API for Thread creation can be somewhat complicated to un-

derstand because it uses advance template features, but this provides many advantages

compared to the standard C thread creation:

template < class R, class A1 , . . . class AN>

void Thread (R (∗ functPtr) (A1 , . . . AN) , A1 arg1 , . . . AN argN) ;

Figure 5.1: Tapestry Thread Creation API

The constructor first takes a function pointer (functPtr) with a return type of

R that has argument types up to AN. Next, the constructor takes a list of arguments

(arg1 to argN) to pass to that function when the thread is running. Note the argument

types passed are in the same order as function pointer signature and must match those

of the function pointer signature otherwise a compile time error will result. An example

of thread creation with and without arguments is shown in Figure 5.3. Calling start()

will cause the current thread to be declared as ready to run. In addition, start(int

core) will suggest for the thread to run on a certain core. Threads can return any

type of value which is different from the standard C threads. The value can be obtained

using the joinValue member function:

template < class R >

R Thread : : j o inValue (void) ;

Figure 5.2: Tapestry Thread Join API

65

1 void th1 (void)
2 {
3 cout << ”Hi” << endl ;
4 return ;
5 }
6
7 int main (void)
8 {
9 Thread thread (&th1) ;
10
11 thread . s t a r t () ;
12 thread . j o i n () ;
13
14 return 0 ;
15 }

(a) Creation

1
2 int th2 (void)
3 {
4 return 5 ;
5 }
6
7
8 int main (void)
9 {

10 Thread thread (&th2) ;
11
12 thread . s t a r t () ;
13
14 return thread . jo inValue <int> () ;
15 }

(b) Returns

1 int th3 (int arg1 , f loat arg2)
2 {
3 int temp = stat ic cast <int> (arg2) ;
4
5 return arg1 + temp ;
6 }
7
8 int main (void)
9 {
10 Thread thread (&th3 , 1 , 2 . 1) ;
11
12 thread . s t a r t () ;
13
14 return thread . jo inValue <int> () ;
15 }

(c) Arguments

Figure 5.3: Tapestry Thread Creation Examples: In Figure a, a thread is easily declared
using the class type Thread and passing a function pointer to it. Threads can be
declared ready to execute with start member function, and users can wait for a thread
to finish with the join member function. In Figure b, the value of returned by a thread
can be returned using the joinValue member function which will wait for a thread to
finish running to get the value. Finally, Figure c shows how values for thread arguments
can be easily passed into a thread on declaration. arg1 will be 1. and arg2 will be 2.1.

66

The value returned is statically cast to the type R. If the thread hasn’t finished

running, the current thread will wait. An example of this is shown in 5.3b and 5.3c.

Finally, calling the member function join(void) on the thread variable will

cause the current thread to wait for it to finish as seen in 5.3a. Joins will cause the

current executing thread to yield the CPU if the thread they are waiting on hasn’t

finished.

5.1.1.2 Classes and Contexts

Unlike traditional C, thread creation can occur using member function pointers:

template < class R, Class C, class A1 , . . . class AN>

void Thread (R (C: : ∗ functPtr) (A1 , . . . AN) , C∗ context ,

A1 arg1 , . . . AN argN) ;

Figure 5.4: Tapestry Thread API For Methods

It takes similar arguments to thread creation using normal function pointers,

except it takes a class C context reference which will be used to call the member

function. The class context must have that member function and match the class of

the member function pointer. Additionally, the context to use is an optional argument

to the thread creation:

template < class R, Class C, class A1 , . . . class AN>

void Thread (R (C: : ∗ functPtr) (A1 , . . . AN) , A1 arg1 , . . . AN argN) ;

Figure 5.5: Tapestry Thread API For Methods Without A Context

If the context argument isn’t passed to the thread, it will be created when the

thread begins running on the local core or it will be placed in shared memory depending

on the architecture.

67

Contexts, because they are classes, have all the same features as C++ classes.

Information hiding, encapsulation, inheritance, polymorphism, et cetera are all sup-

ported. This allows for C++’s multi-paradigm approaches to be applied to threads.

Figure 5.8 shows an example that applies information hiding and encapsulation to up-

date shared memory values via threads and contexts. This important because it allows

programmers to choose various paradigms or an inter-mixture of them to solve the

problems. This flexibility lets them use the best tool for a job, since no one paradigm

solves all problems in the easiest or most efficient way.

5.1.2 Dependencies

Tapestry supports thread level dependencies. Dependencies are expressed through

the dependsOn member function:

void Thread : : dependsOn (Thread& threadMaster) ;

Figure 5.6: Tapestry Dependency API

This function indicates that the calling thread is dependent on threadMaster.

This means threadMaster needs to finish before the caller can begin executing. Passing

information to dependent threads can occur in four different ways: via sharing contexts,

shared variables, during thread creation, or by using the dependency passing design

that occurs by having a function pointer with more arguments than get filled in during

thread creation:

template < class R, class A1 , . . . class AN1>

void Thread (R (∗ functPtr) (A1 , . . . AN1) , A1 arg1 , . . . AN2 argN2) ;

Figure 5.7: Tapestry Dependency Design: The prototype R (*functPtr)(A1, ...

AN1) is matched to arg1 to argN2. If an argument exists in the prototype, but isn’t

passed into the constructor it is assumed to be met by another thread.

68

1 class Base
2 {
3 private :
4 int x , y ;
5
6 public :
7
8
9 Base () :
10 x (0) ,
11 y (0)
12 {
13
14 }
15
16 void runX(int x1)
17 {
18 x += x1 ;
19 }
20
21 void runY(int y1)
22 {
23 y += y1 ;
24 }
25
26 void pr in t ()
27 {
28 cout << ”X: ” << x
29 << ” Y: ” <<

30 y << endl ;
31 }
32 } ;

(a) Base

1 class Derived :
2 public Base
3 {
4 private :
5 int z ;
6
7 public :
8 void run ()
9 {

10 z = 7 ;
11 Thread base1 (&Base : : run , this ,
12 5) ;
13 Thread base2 (&Base : : run , this ,
14 4) ;
15
16 base1 . s t a r t () ;
17 base2 . s t a r t () ;
18
19 base1 . j o i n () ;
20 base2 . j o i n () ;
21
22 d i sp l ay () ;
23 }
24
25 void d i sp l ay ()
26 {
27 p r i n t () ;
28 cout << ”Z : ” << z << endl ;
29
30 return 0 ;
31 }
32 } ;

(b) Derived

Derived Context

Base Context

runX

run

runY

display

print

(c) Diagram

Figure 5.8: Tapestry Context Inheritance: This example shows how contexts can be
used to create information hiding with threads. Base1 and base2 threads run in
parallel and update the x and y values hidden from the derived class. The derived
class uses the member function print to display their values.

69

If the number of arguments passed is less than the number of arguments in the

function pointer, then the remaining arguments need to be filled by another thread.

The signal information for this is stored in the class. Whatever value is returned by

the dependency thread will be passed to the dependent thread. Using the dependsOn

method will cause the dependencies to be filled in order. If the dependsOn is called

more than the argument count, then the thread will wait for those additional threads,

but not get any data from them. If the thread is started before the dependencies are

filled, the thread will wait until the dependencies are added and run. When a thread

is run and it has dependencies, the signaling is taken care of implicitly by the Thread

class.

However, during thread creation there is a far more simple way to add depen-

dencies if values are being passed to arguments:

template < class R, Class C, class A1 , . . . class AN >

void Thread (R (C: : ∗ functPtr) (A1 , . . . AN) , Thread& arg1 , . . . Thread

& argN) ;

Figure 5.9: Tapestry Creation Via Dependency API

Threads the dependent thread need, are passed in during threads creation. Each

argument in the function pointer A1 to AN will be filled by the subsequent thread

argument with the same number. This methodology can be mixed with the dependsOn

method.

Example code of thread level dependencies is shown in Figure 5.10 that uses

both methodologies described.

5.1.2.1 Dependency Loops and Pipelines

Tapestry supports dependency loops (Figure 5.12) and self loops (Figure 5.11

) of any kind including while and do while (Figure 5.13) . A dependency loop occurs

when a dependency say A depends on another dependency say B that in some form

70

1
2
3
4
5
6
7
8
9
10 int add (int x , int y)
11 {
12 return x + y ;
13 }
14
15 int main ()
16 {
17 Thread t1 (&add , 1 , 2) ;
18 Thread t2 (&add , 1 , t1) ;
19 Thread t3 (&add , t1 , t2) ;
20
21 t1 . s t a r t () ;
22
23 return t3 . jo inValue <int> () ;
24 }

(a) During Creation

1 int add (int x , int y)
2 {
3 return x + y ;
4 }
5
6 int main ()
7 {
8 Thread t1 (&add , 1 , 2) ;
9 Thread t2 (&add , 1) ;
10 Thread t3 (&add) ;
11
12 //F i l l s y
13 t2 . dependsOn (t1) ;
14
15 //F i l l s x
16 t3 . dependsOn (t1) ;
17
18 //F i l l s y
19 t3 . dependsOn (t2) ;
20
21 t1 . s t a r t () ;
22
23 return t3 . jo inValue <int> () ;
24 }

(b) Using dependsOn

Figure 5.10: Tapestry Thread Dependencies: These two different codes use thread level
dependencies and are equivalent returning the value 7.

71

depends on the results of A. This could occur further up the chain of dependencies

from B. Loops allow the same thread to execute multiple times.

Using a loop, data can be continuously passed to a thread that is dependent on

that loop effectively creating a pipeline (see Figure 5.14). Results will not be written

to a thread if it is still executing. Thus, Tapestry acts like static dataflow in this regard

and allows for pipeline parallelism.

To create a loop, the dependsOn member function is used to cause dependencies

between threads to form a loop of dependencies like in Figure 5.11 where thread a

depends on itself.

Loops need an initial value to start, but also have a dependency. Tapestry

understands that if a thread has N arguments and 0 dependencies when created that

those arguments may be just be initial inputs that can over written. Thus, if a user

calls dependsOn after all the arguments are filled, Tapestry will cycle its slot to the

first argument slot and use subsequent slots for each call to dependsOn. In this way

users can create initial values on the input lines.

Because a loop thread is not seen as different from a regular thread, users

need to indicate that the cyclic dependency is initially filled and met for the starting

loop thread. This accomplished on start via the startLoop member function which

will begin executing a thread regardless of any dependencies it may have. To stop

executing the cycling loop, Tapestry provides the Thread::exitLoop to end a loop’s

execution from within the loop. Furthermore, any thread that calls Thread::exitLoop

can be joined on with the joinLoop and the joinValueLoop which work like their non-

loop counter parts, but will only stop blocking on a Thread::exitLoop call. Regular

joining is also possible on the threads, but will stop blocking on the first time a thread

is called. Allowing the programmer control over the exit condition means they can

build any type of loop.

Finally, loops can have multiple parallel executing components. This can be used

to build parallel pipelines as seen in Figure 5.15. These pipelines allow for classical

pipeline parallelism.

72

1 int a (int i)
2 {
3 i f (i >= 0)
4 return i −1;
5 else
6 {
7 Thread : : l oopExi t () ;
8 return i ;
9 }
10 }

(a) Tapestry Self Loop Code

1 int main ()
2 {
3 Thread t1 (&a , 50) ;
4
5 t1 . dependsOn (t1) ;
6
7 t1 . s tartLoop () ;
8
9 return t1 . joinValueLoop<int>() ;
10 }

(b) Tapestry Self Loop Code

a

(c) Tapestry Self Loop Diagram

Figure 5.11: Tapestry Self Loop Example: In this example, a depends on itself. The
user initially passes 50 to the a thread. The thread will continue signal itself to run
until loopExit is called.

73

1 int a (int i)
2 {
3 i f (i >= 0)
4 return i −1;
5 else
6 {
7 Thread : : l oopExi t () ;
8 return i ;
9 }
10 }
11
12 int b(int i , int j)
13 {
14 return i−j /2 ;
15 }

(a) Tapestry Nested Loop Code

1
2
3 int main ()
4 {
5 Thread t1 (&a , 50) ;
6 Thread t2 (&b , 25) ;
7
8 t1 . dependsOn (t2) ;
9 t2 . dependsOn (t1) ;
10 t2 . dependsOn (t2) ;
11
12 t1 . s tartLoop () ;
13
14 return t1 . joinValueLoop<int>() ;
15 }

(b) Tapestry Nested Loop Code

a

b

(c) Tapestry Nested Loop Diagram

Figure 5.12: Tapestry Nested Loop Example: Tapestry fully supports any type of loops
and loops within loops. It is not restricted to the classical while or do while loops.
This example creates a nested loop that depends on results from an outer loop.

74

1
2
3 struct s enso r ;
4
5 s enso r read (int i)
6 {
7 return readSensor (i) ;
8 }
9
10 bool wr i t e (char ∗ y , s enso r x)
11 {
12 return wr i t eSensor (y , x) ;
13 }
14
15 int end (int i , bool r e s u l t)
16 {
17 i f (i < 0)
18 Thread : : l oopExi t () ;
19
20 return i ;
21 }

(a) Tapestry Do While Code

1 int loop (int i)
2 {
3 return i −1;
4 }
5
6 int main ()
7 {
8 Thread t1 (&loop , 50) ;
9 Thread t2 (&read) ;
10 Thread t3 (&write , ” t e s t ”) ;
11 Thread t4 (&end) ;
12
13 t2 . dependsOn (t1) ;
14 t1 . dependsOn (t4) ;
15 t3 . dependsOn (t2) ;
16 t4 . dependsOn (t1 , t3)
17
18 t1 . s tartLoop () ;
19
20 return t4 . jo inLoop () ;
21 }

(b) Tapestry Do While Code

loop

read write

end

(c) Tapestry Do While Diagram

Figure 5.13: Tapestry Do While Example: Here Tapestry creates a sensor application
do while loop that reads a sensor value and writes it to a file 50 times. Notice, one
stage of the application can only be running at a time. This code is modified to allow
for Pipeline Parallelism in Figure 5.14.

75

1 struct s enso r ;
2 {
3 int i ;
4 //Other stuf f
5 } ;
6
7 int loop (int i)
8 {
9 i f (i < 0)
10 Thread : : l oopExi t () ;
11
12 return i −1;
13 }
14
15 senso r read (int i)
16 {
17 return readSensor (i) ;
18 }
19
20 bool wr i t e (char ∗ y , s enso r x)
21 {
22 wr i t eSensor (y , x) ;
23
24 i f (x . i < 0)
25 return true ;
26 else
27 return fa l se ;
28 }

(a) Tapestry Pipeline Code

1
2
3
4
5
6 void end (bool r e s u l t)
7 {
8 i f (r e s u l t)
9 Thread : : l oopExi t () ;
10 }
11
12 int main ()
13 {
14 Thread t1 (&loop , 50) ;
15 Thread t2 (&read) ;
16 Thread t3 (&write , ” t e s t ”) ;
17 Thread t4 (&end) ;
18
19 t2 . dependsOn (t1) ;
20 t4 . dependsOn (t1) ;
21 t1 . dependsOn (t1) ;
22 t3 . dependsOn (t2) ;
23 t4 . dependsOn (t3) ;
24
25 t1 . s tartLoop () ;
26
27 return t4 . jo inLoop () ;
28 }

(b) Tapestry Pipeline Code

loop

read write

end

(c) Tapestry Pipeline Diagram

Figure 5.14: Tapestry Pipeline Example: In this example all 4 stages of the pipeline
can be alive because loop will write its next increment into read as long as the last
read is done. Thus, at time T: a T loop, a T-1 read, T-2 write, and T-3 end can be
executing.

76

1 int a (int i , int j)
2 {
3 i f (i < 0 && j < 0)
4 Thread : : l oopExi t () ;
5
6 return i−j ;
7 }
8
9 int b(int i)
10 {
11 return i −1;
12 }
13
14 int c (int i)
15 {
16 return i −2;
17 }
18
19 void d(int i)
20 {
21 i f (i < 0)
22 Thread : : l oopExi t () ;
23 else
24 std : : cout << ” I : ”
25 << std : : endl ;
26 }

(a) Tapestry Parallel-Loop Code

1
2
3
4
5 int main ()
6 {
7 Thread t1 (&a , 50 , 1) ;
8 Thread t2 (&b) ;
9 Thread t3 (&c) ;
10 Thread t4 (&d) ;
11 Thread t5 (&d) ;
12
13 t4 . dependsOn (t2) ;
14 t5 . dependsOn (t3) ;
15 t1 . dependsOn (t2) ;
16 t1 . dependsOn (t3) ;
17 t2 . dependsOn (t1) ;
18 t3 . dependsOn (t1) ;
19
20 t1 . s tartLoop () ;
21
22 t4 . jo inLoop () ;
23 t5 . jo inLoop () ;
24
25 return 0 ;
26 }

(b) Tapestry Parallel-Loop Code

c

a

b

d d

(c) Tapestry Parallel-Loop Diagram

Figure 5.15: Tapestry Parallel-Pipeline Example: In this example Tapestry creates a
parallel pipeline with a parallel loop execution.

77

5.1.3 Synchronization

Tapestry provides a few basic synchronization features: mutexes, timed mu-

texes, and atomics. These just wrap available OS api calls and add glue where needed

to provide better functionality.

Mutexes are the basic mutual exclusion and synchronization feature that comes

standard with all threading libraries. They provide protection to shared data using

locking mechanism provided by the mutex:

void Mutex(void) ;

void Mutex : : l o ck () ;

void Mutex : : unlock () ;

bool Mutex : : tryLock () ;

Figure 5.16: Tapestry Mutex API

Prior to accessing data that needs to be synchronized between threads protected

by a mutex, the lock or tryLock methods need to be called. Only one thread will

hold the lock at a time. The tryLock method will return false if the lock is currently

locked by another thread and will not block. Once a thread is done accessing the

shared data, it needs to call the unlock method to allow other threads acquire the lock

and subsequently access to the shared data. These can be wrappers to underlying OS

libraries or user implemented. On x86-64, these use the lower level libraries provided

by Linux and Windows.

Lastly, the atomic interface provides an interface to low-level atomic operations

such as fetch-and-add.

5.1.4 General Parallelism

General parallelism can be expressed at the function level. Functions can be

executed asynchronously using the async keyword:

78

template<class R, class A1 , . . . class AN>

stat ic Future < R > Thread : : async (R (∗ funct) (A1 , . . . AN) , A1 arg1

. . . AN argN)

template<class R, class C, class A1 , . . . class AN>

stat ic Future < R > Thread : : async (R (C: : ∗ funct) (A1 , . . . AN) , C∗

context , A1 arg1 . . . AN argN)

Figure 5.17: Tapestry Async API

Async supports both function pointers and function member pointers and will

begin execution of the function immediately. The future value returned is the same type

as the return value of the function pointer. The value returned will voluntarily yield

until the result is available if accessed. The important feature of async is that it allows

free parallelism by giving the programmer a one line replacement to asynchronously

execute function calls. This can be seen in Figure 5.19.

5.1.5 Parallel For

Tapestry supports embarrassingly parallel for statements:

template<class A1 , . . . class AN>

Thread : : p a r a l l e l F o r (int s t a r t , int end , int s t r i d e , int threadCount ,

void (∗ funct) (A1 , . . . AN) , A1 ∗ arg1 . . . AN argN) ;

Thread : : p a r a l l e l F o r (int s t a r t , int end , int s t r i d e , int threadCount ,

void (∗ funct) (int)) ;

Thread : : p a r a l l e l F o r (int s t a r t , int end , int s t r i d e , int threadCount ,

void (∗ funct) ()) ;

Figure 5.18: Tapestry Parallel For API

79

1 int square (int x)
2 {
3 return x ∗ x ;
4 }
5
6 int main ()
7 {
8
9 int x [5 0] ;
10 int checksum = 0 ;
11
12 for (int i =0; i <50; i++)
13 x [i] = square (i) ;
14
15 for (int i =0; i <50; i++)
16 checksum += x [i] ;
17
18 return checksum ;
19 }

(a) Serial Code

1 int square (int x)
2 {
3 return x ∗ x ;
4 }
5
6 int main ()
7 {
8
9 Future <int> x [5 0] ;
10 int checksum = 0 ;
11
12 for (int i =0; i <50; i++)
13 x [i] = async (&square , i) ;
14
15 for (int i =0; i <50; i++)
16 checksum += x [i] ;
17
18 return checksum ;
19 }

(b) Async Code

Figure 5.19: Tapestry Async Example: In Figure a, a simple checksum algorithm is
performed in serial. In Figure b, the code is parallelized using async. First, the x array
values are now declared as Futures. Then, the square values are computed in parallel
with the async keyword. The values are added back to the checksum. Note, how little
the code changes between the parallel and serial versions.

80

The first argument is assumed to be i-addressable. If no arguments are passed

into the loop construct and the first argument to the loop function is an int, Tapestry

will place consecutive iterations of i into the each parallel invocation of funct’s first

argument. The loop construct supports up to 9 arguments. Stride determines how

much each loop value moves forward. A negative stride will move backwards. Setting

the threadCount to Thread::coreCount will produce a completely static schedule with

the work distributed as evenly as possible over the cores. Setting the threadCount to

the absolute value of end−start

stride
will produce a completely dynamic schedule with 1

iteration per thread. Anywhere in between those values and the schedule will be a

hybrid.

5.1.6 Continuations

Threading usually applies at the function level with one stack per thread and

no sharing between threads, but the use of classes and the this pointer facilitates a

methodology to allow threads to share key variables which allows for a simple and

efficient way to break a thread into multiple executions. These classes are an easy

way for programmer to create a closure. Furthermore, continuations are an effective

way to make a serial function more fine-grain by splitting the function. Additionally,

non-stack information and signaling information will be copied by the scheduler when

using the continue statement.

The statements are:

template<class R, class C, class A1 , . . . class AN>

void Thread : : cont (Thread& arg1 , . . . Thread& argN)

Figure 5.20: Tapestry Continuation API

Using continue(cont) will make the current thread continue as the threads in

the list. Continued threads can have new dependencies the current thread did not

have. Continuing a currently executing thread multiple times is known as a Dynamic

Continuation.

81

The cont statement will copy the current executing threads signaling informa-

tion to a new thread that will be invoked with the function, context, and arguments

given. Additionally, the continue statement will cause the current thread not to signal

its dependents. This effectively causes the current thread to continue as a new thread

with different information which includes a new context. If the context wishes to be

preserved, use the this pointer. The continue statement will spawn any dependent

threads of the continuing thread. An example of threads using continuations can be

seen in Figure 5.21. Using the Dynamic Continuation can lead to interesting execution

time optimizations.

Calling cont again after it has already been called causes another continuation to

occur, but no signaling information will be copied because the signaling information was

cleared on the first call to continue. Programmers can add more signaling information

by using the dependsOnThis statement to add signaling information to the currently

executing thread. I call this real time signaling. See Figure 5.22 for an example of

an optimization that uses real time signaling with dynamic continuations to create a

locality optimization. Additionally, because Tapestry’s thread model allows threads to

be a function, this means a programmer or runtime can decide if they want to execute

a thread locally at execution time.

5.2 Support for Many Execution Models

The Tapestry model supports the programming models of EARTH and Codelets

described in [15], fork/join using general threading, and static graphs. This section

uses the basic serial Fibonacci code (Figure 5.23) and parallelizes it with various

programming models and describes the advantages and disadvantages of each approach.

5.2.1 EARTH and Codelets

The EARTH threading model is data driven as described by Theobald[14] and

has four unique attributes:

1. Multiple program counters.

82

1 int b (int x)
2 {
3 return x + x ;
4 }
5
6 int a (int x)
7 {
8 i f (x < 2)
9 return x ;
10 else
11 {
12 Thread t1 (&a , x − 1) ;
13 Thread t2 (&b) ;
14 t2 . dependsOn (t1) ;
15 Thread : : cont (t2) ;
16 t2 . s t a r t () ;
17 return 0 ;
18 }
19 }
20
21 int main ()
22 {
23 Thread t1 (&a , 3) ;
24
25 t1 . s t a r t () ;
26
27 return t1 . jo inValue <int> () ;
28 }

(a) Continuation Code

b(2)

b(1)

2

3

a(3)

a(2)

a(1)

1

(b) Continuation Diagram

Figure 5.21: Tapestry Continuation Example: Thread b(1) and b(2) are the contin-
uations of a(1) and a(2) respectively. Dashed lines represent continuations, dotted
represent signals, and solid represent creations. a(2) and a(1) are spawned because
they are dependencies of the b continuation. Notice a(2) and a(1)’s signals are copied
to b(2) and b(1) respectively.

83

1 int b (int x)
2 {
3 return x + x ;
4 }
5
6 int a (int x)
7 {
8 i f (x < 2)
9 return x ;
10 else
11 {
12 Thread t1 (&b) ;
13 Thread : : cont (t1) ;
14 t1 . dependsOnThis () ;
15 t1 . s t a r t () ;
16 return a (x − 1) ;
17 }
18 }
19
20 int main ()
21 {
22 Thread t1 (&a , 3) ;
23
24 t1 . s t a r t () ;
25
26 return t1 . jo inValue <int> () ;
27 }

(a) Dynamic Continuation Code

b(2)

b(1)

2

3

a(3)

a(2)

a(1)

1

(b) Dynamic Continuation Diagram

Figure 5.22: Tapestry RT Continuation Example: Thread b(1) and b(2) are the
continuation of a(1) and a(2) respectively. Dashed lines represent continuations,
dotted represent signals, and solid represent creations. Notice unlike in Figure 5.21
a(2) and a(1) are recursively called from the same thread. Thus, a(1), a(2), and a(3)

reside in the same thread. This means the a thread is spawning multiple continuations
and linking them together. a(2) and a(1) are recursively called because they are
dependencies of the b continuation. Notice a(2) and a(1)’s signals are copied to b(2)

and b(1) respectively.

84

1 int f i b (int n)
2 {
3 i f (n < 2)
4 return n ;
5 else
6 {
7 int x = f i b (n − 1) ;
8 int y = f i b (n − 2) ;
9
10 return x + y ;
11 }
12 }

(a) Serial Fib Code

fib(1)

fib(0)

fib(3)

fib(2)

fib(1)

(b) Serial Fib Diagram

Figure 5.23: Serial Fib Example: In this example we recursively compute the Fibonacci
sequence. Assuming the value of n is passed into the fib function, the algorithm will
recursively call n-2 and n-1 until n <2. At which point it will return. The diagram
shows a call graph for fib(3) which should return a final value of 2.

2. Programs are divided into small sequences of instructions in a two-level hierarchy
of threads: Threaded Procedures and Fibers.

3. Execution order among threads is determined by data and control dependencies
specified in the program.

4. The local context for functions is allocated on the heap rather than the stack.

The second attribute just means that functions are broken up into multiple

threads. These threads are like tasks in the fact they are distributed and executed on

CPUs that are available. More threads will not be executing than cores available. The

first thread is always invoked and the other thread needs to be invoked via a signal.

The signal is stored in the local context. The primary difference between Tapestry

and EARTH is that Tapestry allows signaling to occur at the thread level invocation.

There is a one to one mapping between threads and functions.

The thread level dependency mapping Tapestry provides is much more powerful

and has all the features of EARTH in conjunction with the use of classes for contexts if

needed. In EARTH, context sharing is required to achieve passing of results of a fiber

85

to the next, but this is not the case in Tapestry. Tapestry doesn’t need contexts for

such a simple example.

Codelets extend upon the ideas of EARTH and add resources and signaling that

can be introduced as dependencies. This information could be power requirements or

other information such as system failure. Tapestry fully supports this by allowing any

data type to be passed into the model.

The last idea to note, is that continuations are dynamic unlike in the EARTH

model or Codelet model and allow for far more powerful expressions and optimizations

not capable with these two models. Tapestry’s continuations are more dynamic because

they allow a user to create multiple continuations from the same thread. This allows

for a thread to serially execute threads when beneficial instead of using the runtime.

According to Theobald the advantages of EARTH model comes from:

• The splitting of functions into multiple threads and assuming they are non-
preemptive, which allows for long latency operations to be placed in a separate
thread from other operations and thus allowing the operations to run concurrently
without blocking the processor.

• Using thread level dependencies encourages movement of data in blocks, removes
data from the critical path, and encourages locality.

• Using this model reduces context-switching.

However, the model has the disadvantage of creating more tasks(fibers) in the

scheduling queue compared with the use of fork/join because the fork/join model would

suspend the operation of execution and re-enable it for execution. In general, most of

the claims by the EARTH model are unsubstantiated: long latency operations can be

done by fork/join easily, fork/join encourages locality based on the stack and arguments

passed to a thread can be easily blocked, and fork/join using a voluntary-preemptive

scheduler has minimal context switching. Compare Fibonacci in the EARTH model

(Figure 5.24) to the fork/join (Figure 5.26) and you will see the EARTH version

produces roughly 2x the amount of threads. An async version of the EARTH model is

also available for Tapestry which uses data driven futures to do a partial evaluation of

86

thread arguments during runtime. This excludes the EARTH non-preemption property

(Figure 5.25) .

5.2.1.1 Comparison to EARTH

The difference between EARTH in Tapestry is seen in the design. For the

EARTH model, all signaling infrastructure is setup by the programmer or an external

compiler. It must be explicit in the Threaded-C language. In addition, for EARTH

signals are stored in the frame of the Threaded Procedure function, must be manually

met, and shared amongst all fibers. This is different from Tapestry which is designed

for simplicity for the programmer and designed for a more distributed environment. For

Tapestry, the signal is stored directly in the class that creates the thread. Implicitly,

a thread stores all its dependencies it must signal and does so when it finishes. The

thread doesn’t share the signal space among other threads nor does it explicitly pass the

signal address around. In addition, Tapestry provides basic shared memory through

the usage of methods and classes. Classes naturally group threads in a shared memory

environment.

5.2.2 Fork/Join

The fork/join model of parallelism means you create a number of worker threads

in parallel from a central location and then join them back to central location to get a

result. Tapestry supports fork/join parallelism through the use of threads or asyncs.

Fork/join in the threading model uses synchronization interface built into Tapestry.

This interface uses the lower level thread joining mechanisms if available. Whereas,

the async synchronization will use a synchronization mechanism separate from the

thread. Fork/join does not provide data dependencies classically. Thus, thread level

dependencies are not part of the model described here.

The advantage of Fork/join is seen in its simplicity and familiarity. Seen in

the fact, that there is a regular convention for calling a function and getting its result

returned to a central location. Furthermore, compared with the EARTH model it has

87

1 int fibAdd (int x , int y)
2 {
3 return x + y ;
4 }
5
6 int f i b (int n)
7 {
8 i f (n < 2)
9 return n ;
10 else
11 {
12 Thread t1 (&f ib , n − 1) ;
13 Thread t2 (&f ib , n − 2) ;
14
15 Thread : : cont (&fibAdd , t1 ,
16 t2) ;
17
18 return 0 ;
19 }
20 }
21
22 int f i bF in (int f i b , int s o l)
23 {
24 std : : cout << ” Fib ” << f i b
25 << ” i s ” << s o l << std : : endl ;
26
27 return 0 ;
28 }
29
30 int main ()
31 {
32 int FIB = 30 ;
33 Thread t1 (& f ib , FIB) ;
34 Thread t2 (&f ibFin , FIB , t1) ;
35
36 t1 . s t a r t () ;
37
38 return 0 ;
39 }

(a) Tapestry EARTH Fib Code

fib(3)

fib(1)

fib(1)

fib(0)

fib(2)

fibAdd

fibAdd

1

1

0

1

fibFin

2

(b) Tapestry EARTH Fib Diagram

Figure 5.24: Tapestry EARTH Fib Example: For the EARTH Fibonacci (page 138
of [14]), each recursive call for the fib function is mapped to a thread: t1 and t2.
Furthermore, the addition of the values has been separated into its own function and
thread using the Thread::cont to create a continuation of the current executing fib.
The continuation is dependent on the recursively spawned threads, t1 and t2. Remem-
ber when a continuation is called, the signaling information is copied from the current
thread to the continuation, and the current threads signaling is canceled. The solid
lines represent thread spawns and the dotted orange represent signaling. For Tapestry
the signaling information is stored directly in the Thread class. In addition, signals are
met implicitly by the runtime.

88

1 int fibAdd (Future <int> x , Future <int> y)
2 {
3 return x + y ;
4 }
5
6 int f i b (int n)
7 {
8 i f (n < 2)
9 return 1 ;
10 else
11 {
12 Future <int> x = async (&f ib , n − 1) ;
13 Future <int> y = async (&f ib , n − 2) ;
14
15 Thread : : cont (&fibAdd , x , y) ;
16
17 return 0 ;
18 }
19 }

Figure 5.25: Tapestry EARTH Async Fib Example: Another way to do an EARTH
style separation of components as opposed to Figure 5.24 is to wait on a future values
passed into a thread from asynchronous functions. The difference here is that the
fibAdd function will begin execution before all the future values are available. Whereas,
with dependencies the thread waits for all the values. The Thread:cont function here
is analogous to spawning an new thread since no signal information is needed.

89

1 int f i b (int n)
2 {
3 i f (n < 2)
4 return n ;
5 else
6 {
7 Thread t1 (&f ib , n − 1) ;
8 Thread t2 (&f ib , n − 2) ;
9
10 t1 . s t a r t () ;
11 t2 . s t a r t () ;
12
13 r e s u l t = t1 . jo inValue<int>()
14 + t2 . jo inValue<int>() ;
15
16 return r e s u l t ;
17 }
18 }

(a) Tapestry Fork/Join Fib Code

fib(1)

fib(0)

fib(3)

fib(2)

fib(1)

fib(2)

(b) Tapestry Fork/Join Fib Diagram

Figure 5.26: Tapestry Fork/Join Fib Example: In this example we map the recursive
calls of fib to threads and wait on and the return values for those threads before
adding the results. The solid yellow lines represent thread spawns.

a reduced amount of threads and because the model uses voluntary preemption, the

context switching is minimized to only when necessary. An example for Fibonacci is

provided in Figure 5.26 and using asyncs in Figure 5.27.

5.2.3 Static

The Tapestry model supports full chaining of dependencies allowing dependent

threads to be added as dependencies to other threads. This means a static graph of

threads can be built in memory and run using the model. The leaf threads at the

bottom of the graph just need to be started and the runtime will discover all the

dependencies and run them. A sample example is provided for Fibonacci in Figure

5.28. The example chains together a simple addition thread using a recursive function

to compute Fibonacci. The programmer just needs to start the final thread returned

and the code can run. The static version has large initialization time and memory

requirements compared to the other models, but the run time should be significantly

90

1 int f i b (int n)
2 {
3 i f (n < 2)
4 return n ;
5 else
6 {
7 Future <int> x = async (&f ib , n − 1) ;
8 Future <int> y = async (&f ib , n − 2) ;
9
10 r e s u l t = x + y ;
11
12 return r e s u l t ;
13 }
14 }

Figure 5.27: Tapestry Fork/ Join Async Fib Example: This example is similar to the
that of Figure 5.26 except it uses asynchronous functions and future values to produce
a fork/join style of parallelism.

faster because new threads are not being added during that time. Cache locality

should also be increased for the threads since new work isn’t be added. Lastly, context

switching is non-existent.

The static graph could also be produced by higher level language such as the

Tapestry Weave graphical language proposed and work in a similar manner as static

dataflow. The static model doesn’t seem too useful otherwise, but it could be combined

with other approaches to create partial graphs so memory requirements do not become

too large or the creation of a graph does not become too costly.

5.2.4 Hybrid

Because Tapestry allows for many different models of execution, these models

and features can be combined to produce more efficient designs than one model could

produce alone. The programmer can tackle the job in any way they desire. Figure

5.30 shows a hybrid example that combines both static and fork/join to reduce context

switching by 1/2 and is more efficient by looking ahead at a depth of one.

In addition to mixing of models, Tapestry allows serial code to be easily mixed

with parallel code by having functions as the base unit of code unlike EARTH and Cilk.

91

1 int f i b (int x , int y)
2 {
3 return x + y ;
4 }
5
6 Thread l i n k (int n)
7 {
8 i f (f i b > 1)
9 {
10 Thread t1 = l i n k (n − 2) ;
11 Thread t2 = l i n k (n − 1) ;
12
13 Thread t3 (&f ib , t1 , t2) ;
14
15 return t3 ;
16 }
17 else
18 return Thread (&f ib , n , 0) ;
19
20 }

(a) Tapestry Static Fib Code

fib(1)

fib(0)

fib(3)

fib(2)

1

fib(1)

fib(2)

1

01

(b) Tapestry Static Fib Diagram

Figure 5.28: Tapestry Static Fib Example: This link function will return a graph of
Fibonacci threads linked together in a dataflow-like graph manner. This means the
values of the each fib call will be signaled to their parent thread. The parent thread
will only start once it has all its arguments.

92

1 int f i b (int n)
2 {
3 i f (n < 2)
4 return n ;
5 else
6 {
7 Thread t2 (&f ib , n − 2) ;
8 t2 . s t a r t () ;
9
10 r e s u l t = f i b (n − 1)
11 + t2 . jo inValue <int> () ;
12
13 return r e s u l t ;
14 }
15 }

(a) Tapestry Hybrid Serial Fib Code

fib(1)

fib(0)

fib(3)

fib(2)

fib(1)

(b) Tapestry Hybrid Serial Fib Diagram

Figure 5.29: Tapestry Hybrid Serial Fib Example: Because Tapestry relies only on
function or member function to represent a Thread, the user can mix serial and parallel
calls to the same function. In this example, the left branch of fib recursive calls are
computed serially to keep the thread continuing work while it is alive and the left calls
are spawned as threads for others to work on in parallel.

This allows for code level optimizations that favor reusing a thread with locality instead

of just killing its execution off and promoting parallelism. An example Fibonacci

fork/join using this is provided for in Figure 5.29. This a key concept that needs to be

explored in future exascale machines.

5.3 Hints and Metadata

Tapestry utilizes an extensive hint and meta system to allow for programmers

to provide hints to the lower runtime to change the behavior of algorithms to favor

various goals.

5.3.1 Hints

Programmers can optimize using the Tapestry framework to provide fine-grain

or coarse-grain execution with any style of threading or synchronization. In particular,

the model allows the programmer to choose how they wish to optimize their work-

load. They can use a fast dynamic fine-grain approach or a traditional static approach

93

1 int f i b (int x , int y)
2 {
3 return x + y ;
4 }
5
6 int f i b (int n)
7 {
8 i f (n < 2)
9 return n ;
10 else
11 {
12 int r e s u l t = 0 ;
13 Thread t2 (&f ib , n − 2) ;
14
15 i f (n > 2)
16 {
17
18 Thread t1a (&f ib , n −1 −1) ;
19 Thread t1b (&f ib , n −1 −2) ;
20 Thread t1 (&f ib , t1a , t1b) ;
21 t1 . s t a r t () ;
22 i f (n > 3)
23 {
24 Thread t2a (n −2 −1) ;
25 Thread t2b (n −2 −2) ;
26 Thread t2 (&f ib , t2a , t2b) ;
27 t2 . s t a r t () ;
28 r e s u l t += t2 . jo inValue <int> () ;
29 }
30 else
31 {
32 Thread t2 (&f ib , n − 2) ;
33 t2 . s t a r t () ;
34 r e s u l t += t2 . jo inValue <int> () ;
35 }
36 r e s u l t += t1 . jo inValue <int> () ;
37 }
38 else
39 {
40 Thread t1 (&f ib , n − 1) ;
41 Thread t2 (&f ib , n − 2) ;
42 t1 . s t a r t () ;
43 t2 . s t a r t () ;
44 r e s u l t += t1 . jo inValue <int> () ;
45 r e s u l t += t2 . jo inValue <int> () ;
46 }
47
48 return r e s u l t ;
49 }
50 }

Figure 5.30: Tapestry Hybrid Fib Example: This builds a partial static graph for n >1
fib calls with a join on the result of that graph. See Figure 5.31 for more information.

94

fib(1)

fib(0)

fib(3)

fib(2)

fib(1)

fib(2)

01

Figure 5.31: Tapestry Hybrid Fib Diagram: Notice that fib(2)’s leaf nodes are stati-
cally signaling it. This is because fib(3) created a subgraph of all 3 nodes and linked
them together. Then, fib(3) joins on that subgraph. Thus, this example mixes static
and fork/join models.

via sharing of work without changing the program. In addition, the model does not

preclude optimizations for favoring locality vs parallelism. And, the model supports

optimizations by mixing programming paradigms and extending them. The approach

of how the underlying layer supports these optimizations varies. For instance, in shared

memory systems locality enhances caching effects whereas in many-core chips it reduces

system wide traffic. At the moment these features can be dynamically varied during

runtime.

The runtime hint system allows switching on or off features during runtime.

By default, the system will favor locality and dynamic load balancing (work stealing).

However, a number of hints are available to change how the system works:

95

//Favors local i ty over parallelism

Runtime : : Hint (Hint : :LOCAL) ;

//Favors parallelism over local i ty

Runtime : : Hint (Hint : :PARALLEL) ;

//Favors dynamic load balancing over stat ic scheduling

Runtime : : Hint (Hint : :BALANCE) ;

//Favors stat ic scheduling over load balancing

Runtime : : Hint (Hint : : STATIC) ;

Figure 5.32: Tapestry Hint API

During the execution you can also set the total number of threads for the current

problem or block size of threads during the current execution using the special hint

interface:

//Current Problem Size

Runtime : : Hint (Hint : : SIZE , int s i z e) ;

//Size of thread chunks

Runtime : : Hint (Hint : :BLOCK, int s i z e) ;

Figure 5.33: Tapestry Hint Size API

For static scheduling, block size specifies how you wish to chunk the threads

to other processors and allows a combination of dynamic and static scheduling. If no

block size is given the scheduler will set the block size equal to the Hint::Size divided

by the processor size. This will produce a completely static schedule. If neither are

given, scheduler will set the size of blocks to two times the core count.

For dynamic load balancing (work stealing), changing the block size will change

the number of threads stolen by other processors at a time, but varying the problem

size will not affect the scheduler.

Further, for more fine-grain control to parallelism, the programmer can change

the parallelism factor:

96

Runtime : : Hint (Hint : :PFACTOR, int amount) ;

Figure 5.34: Tapestry Parallelism Factor API

A higher parallelism factor means more parallelism with zero being the lowest

and one hundred the highest. You can think of it as a percentage.

Furthermore, because these features can be dynamically varied, the programmer

can easily build algorithms that varies these features during execution and build even

more optimal solutions.

Depending on the lower level runtime these keywords may not do anything. For

instance, if the lower layer uses Pthread or Windows threads these hints will not do

anything since neither can utilize the information.

5.3.2 Metadata

The system also employs simple metadata wrappers to describe threads and

data more extensively to the scheduler. The scheduler can use this information to

determine how the system will handle the data passed into threads.

Thread : : Metadata (Thread & threadToWrap , std : : S t r ing data , std : : S t r ing

data1 , . . . s td : : S t r ing dataN) ;

Metadata : : s t a r t (Metadata& dataToStart) ;

Figure 5.35: Tapestry Metadata API

5.4 Modular Components

Tapestry is modularized with an extensive interface layer built on top of Warp

and Fibers that is flexible and allows hint information to be passed to the lower layer.

5.4.1 Scheduling

Scheduling is implemented within the lower layer runtime.

97

5.5 Implementation

Tapestry has been implemented in C++ using the current standard and is

portable to all major operating systems including Windows, Linux, and SYS/BIOS.

Tapestry’s current runtime supports the dominant shared memory systems, but its

modular nature allows it to be ported to other systems with optional ability to turn

off features of the model not easily supported by other architectures. The interfaces

provided by Tapestry just need to be implemented on other architectures to support

these features.

5.5.1 Tapestry Fibers Shared Memory

Tapestry Fibers is a very bare shared memory implementation of basic threads

that is designed for speed and efficiency, with minimal interfaces, simple and fast

queues, and simple scheduling. Tapestry Fibers threads support a void argument

pointer, joining, and voluntary preemption.

Tapestry Fibers provide interfaces to add a thread, join on a thread using a

join value passed in the corresponds to a thread, or wait on a thread using your own

variable to signal that waiting should end. These interfaces are simple. Both the join

and wait interfaces simply take a pointer to a boolean value. The join interface will

free the boolean as it is assumed it came from the scheduler and the wait will not.

Adding the thread just takes in a reference to the thread which contains a function

pointer and argument pointer.

In addition the implementation utilizes work stealing in conjunction with work

sharing using a two level queue system allowing for many types of scheduling. More

details will be further explained in Chapter 6.

98

Chapter 6

TAPESTRY FIBERS

Tapestry’s lower level runtime is designed to be a portable and a configurable

implementation of scheduling for threaded work. It doesn’t use any external libraries

except the standard threading packages available for Linux or Windows operating sys-

tems. Its design uses a number of features to allow for configuration between dynamic

work stealing and static scheduling with block level granularity being allowed to change.

The runtime is modular allowing for various schedulers or queues implemented by users.

Furthermore, the design proposes the use of pushing a new scheduler on the stack to

allow for work stealing via voluntary preemption without the need for a compiler.

6.1 Design

Tapestry Fibers employs a two level queue system if desired with interfaces to

push threads into the queue as seen in Figure 6.1. The queue system implemented

employs a fixed size local queue on each core that can only be accessed by the local

core and a secondary queue that shares work with other cores. The local queue is lock

free and does not use any lock-free algorithms since only the core it is on can access it.

A minimal overhead lock-free queue is important for fine-grain execution. The other

queue uses a locking mechanism or some algorithm to guarantee it can be stolen from

by multiple other cores. This locking mechanism only occurs on pops, because writes

are ordered on X86-64. The scheduler can be tuned to share some amount of initial

work. Primarily it utilizes work stealing to load balance the system. The local queues

are much faster to access than the shared queues and promote locality. However, the

local queue can be turned off if parallelism is more important than locality. Such as in

the case of many-core architectures where locality could create starvation.

99

Local Thread Pop Local Thread Pop Local Thread Pop

Stealing

...

functionvoid *

Figure 6.1: Tapestry Fibers Framework: Each core contains a sharing and local queue.
Both queues together can be thought of as a one contiguous queue. The top is locked
and the bottom is free of any synchronization. Local threads take work from the
bottom and work stealing at the top.

Initially, the runtime will push work into the share queue until it becomes full,

and then it will push work into its local queue. The size of the share queue was

empirically decided to be two times the number of cores. As long as work is available

in the local queue the local core scheduler will use work from there otherwise it will

get work from the share queue, and if no work is available the local scheduler will steal

work from another queue.

Queues are designed as simple stacks to promote locality and reduce overhead

associated with deque maintenance. However, deques are available to be used to allow

for better divide and conquer parallelism a la Cilk style. Work is pushed into the share

queue until the share size is reached. Then, work is pushed into the local queue. If the

share queue ever drops below the share size, the local core will push new threads into

the share queue. In the deque version, both queues are a deque, but the other cores

steal from the top. In addition, the local core will push its local top deque data onto the

share queue when the share size falls below the minimum requirement. Local threads

push and pull from the bottom, and other cores pull from the top. This allows other

cores to steal larger workloads near the top of the tree. Stealing from the top enhances

100

efficiency for divide and conquer algorithms. Starvation is not a problem because tasks

apply only to one application and are not scheduled with a time quantum.

In the shared memory system the optimizations flags and hints change how the

implementation occurs or what happens during runtime. If locality is favored, the

system will share data equal two times the local processor count before storing the

data in its local queue. If the share queue ever falls below this amount, the scheduler

will put new work from its stack into the local queue. On the other hand, if sharing

is favored, the processor will only place work in its share queue and never use its local

queue. The parallelism factor is used to override these settings, and set the share

percentage of work equal to the PFACTOR. E.G., if 50 is used, every other thread

added will go into the share queue. If 100 is used, all the threads will go into the share

queue.

If dynamic scheduling is favored, the runtime will not divide work and share it

to others, but let them steal. Stealing load balances the system; however, if a static

schedule is favored, the system will share its work evenly to others by using a simple

procedure of giving each processor a chunk of two times the core count of threads. The

block size design follows that described in Chapter 5.

Finally each queue item is designed to be small as possible. So, the system

employs an argument void* and a void (void *) function pointer to allow for minimal

space and overhead using a partial direct queue without a free list.

6.2 Modularity

Tapestry Fibers is divided into interfaces for executing, stealing, waiting on

threads, and hint systems. Each of these interfaces executes work on the queue using

a standardized interface. This means queue types can be easily swapped out without

recoding the implementations of the Fibers’ interfaces. Furthermore, they do not have

any external library dependencies except the standard operating system thread libraries

such as Pthreads. Tapestry Fibers’ interfaces use the underlying modular components

and interfaces to interact with queues and wait for threads to finish.

101

Fibers has a few basic interfaces for passing hints, creating threads, and waiting

on threads. Most of the work for Tapestry is done in the thread wrapper layer. These

interfaces provide standard level thread creation seen in typical C style thread libraries.

To add a simple thread use the following api:

struct ThreadItem

{

void∗ (∗ f unc t i on) (void ∗) ;

void ∗ argument ;

} ;

addThread (struct ThreadItem & thread)

Figure 6.2: Tapestry Fibers Thread Creation API

The following will wait on bool value to be true before it returns. It will cause

a new scheduler to be pushed on the stack until join is true.

void jo inThread (volat i le bool ∗ j o i n)

Figure 6.3: Tapestry Fibers Join API

Hints can be simple passed to the runtime using the hint system built in:

void addHint (h int : : HintType h int)

Figure 6.4: Tapestry Fibers Hint API

6.2.1 Connecting Fibers and the Wrapper

Tapestry’s uses a SystemThread level class to implement various interfaces for

varying thread libraries. This SystemThread class is abstract, so each implementation

can inherent it and implement their features. In theory Tapestry could switch between

runtime libraries on the fly and use the best features of all the libraries. However it is

102

invoke function

start thread

unpacks

void * arg wrapper function

function

arg1

...

argn

dependency counter

Local Memory

Shared Memory

Wrapper Function

function runs

update dependencies

dependency list

thread cleanup

invokes
passed to

L
o
ca

l F
ib

e
r

C
o
re

Figure 6.5: Tapestry Warp to Fibers: Using the interfaces provided by Fibers, Tapestry
warp pushes the wrapper thread into Fiber’s queue at the bottom. If the thread is not
stolen by another worker, the wrapper will eventually execute and start the thread.

configured to only run one library at once currently. The top most layer in Tapestry

just uses void * (void*) wrapper thread and passes that to the SystemThread class.

It runs the system thread which causes the wrapper to be passed to Fibers as seen

in Figure 6.5. When a Thread joins another thread, Tapestry will invoke join on the

system thread which just invokes the lower level layer to wait on the current threads

return value.

6.3 Fine-grain Optimizations

To provide a fast execution of fine-grain tasks, the spawn and synchronization

features must have minimal overhead. For Tapestry Fibers spawning into local or share

queue requires no locking mechanism because X86-64 does not reorder writes and the

last write is used to indicate the item is available in the queue. Furthermore, pulling

data from the local queue for execution does not require locking either. Removal of

103

locks is essential for performance when the task execution is so small that locking

takes longer than executing the task. Another optimization is that Tapestry Fibers

employs a partial direct task queue where there is only zero levels of indirection to the

arguments and function pointers instead of the normal one. This allows for caching

effects to occur on stealing because arguments and function to the thread are stored

in the task. However, further arguments implemented in the upper level thread layer

to implement the variable arguments requires a level of indirection. We hope to move

this into the task queue to find further benefits.

Another important implementation is that Tapestry only runs one thread per

core to maximize cache benefits. This guarantees tasks will not be switched out by

the runtime during execution unless they are waiting which means they will stay in

the cache will executing. Additionally, it is guaranteed that if a thread begins on a

certain core it will finish executing on that core thus minimizing memory movement

and maximizing cache effects. To accomplish this, the thread is kept in the stack and

when stored it is pushed onto the last suspended task from that core. This means the

execution benefits from temporal locality when restoring tasks.

6.4 High Throughput Queue

Tapestry allows you to swap in a high throughput input-restricted deque (algo-

rithm seen in Figure 6.6) that has been designed for promoting locality on cache-based

systems. The deque uses the well known principles that make spin locks fast on X86-64

in addition to provided new ideas about promoting locality. The algorithm stores a

value to synchronize on at the location of every element in the deque. The queue will

perform an atomic swap on this values when popping from either side. This leaves

the front and back pointers not being locked on, but the local items in the queue. In

principle reading these locks from memory will cause pulling the values stored nearby

into the queue into memory. And in principle because x86-64 locks the cache-line we

will only be locking on the value stored in the line which includes the local data we

want to execute. Thus, this data is inactive and doesn’t matter if it is locked on. This

104

is contradictory to known information that says to make the lock wide enough to fit in

the cache-line to reduce false sharing and locking on unrelated data causing unintended

blocks and serialization of code.

Because this queue is designed for dynamic work stealing systems you can only

push data into one side only for the local core. The deque is lock and synchronization

free for pushing due to write ordering on X86-64. In addition, reads on the local lock

values use dirty reads before atomically swapping to increase performance. On failure

the queue will back off and check other queues.

6.5 Work Stealing via Stack Pushing

Work stealing without a cactus stack and a compiler requires various imple-

mentations. In general, runtimes without compilers will use leap frogging or switch to

a new thread when it suspends. However, Tapestry implements a new methodology

without the drawbacks of leap frogging or spawning a new thread. Tapestry when it

encounters a join point will cause the system to stop executing the current scheduler,

by pushing a new scheduler on the execution stack as seen in Figure 6.5. The scheduler

accesses the same queues as the original and will stop executing once the thread that

it is waiting to join on is ready. If a scheduler waits on a join that waits on other joins

this creates a problem where the scheduler stops working and does not do any useful

work because it waits for the buried joins to complete. Thus, Tapestry does not suffer

from the buried join problem because a new scheduler is placed on the stack that steals

work and begins executing that work. This means Tapestry can steal from any exe-

cuting core unlike leap frogging which is limited to stealing from it is stealer of a join.

Furthermore, Tapestry won’t incur any overhead by context switching between multi-

ple threads: i.e. the waiting threads and the currently executing one. The drawback

of Tapestry’s stack pushing implementation is that it increases space requirements by

having multiple schedulers stored on the stack in addition to the thread stack. How-

ever, this is limited for fork/join parallelism that the thread we want to join on will be

105

void push f ront (ExecutionItem & value)
{

while (∗ ((volat i le int ∗)&front−>l o ck) !=0U) ;
∗ f r on t = value ;
f ront−>l o ck=1U;
++f r on t ;
i f (f r on t == top)

f r on t = bottom ;
}

bool pop f ront (ExecutionItem & item)
{

temp = front −1;
i f (∗ ((volat i le int ∗)&temp−>l o ck)==1U)
{

item = ∗temp ;
o ld = OS : : Atomics : : swap(&temp−>lock , 0U) ;
i f (o ld == 1U)
{

i f (f r on t != bottom)
−−f r on t ;

else
f r on t=top ;

return true ;
}

}
return fa l se ;

}

bool pop back (ExecutionItem & item)
{

while (1)
{

temp = back ;
i f (∗ ((volat i le int ∗)&temp−>l o ck)==1U)
{

item = ∗temp ;
o ld = OS : : Atomics : : swap(&temp−>lock , 0U) ;
i f (o ld == 1U)
{

i f (temp != top)
++back ;

else
back=bottom ;

return true ;
}

}
else

//Break and back of f check other queues or do other work . . .
}
return fa l se ;

}

Figure 6.6: Tapestry High Throughput Queue

106

New scheduler

New thread Thread finished

Unblocks

scheduler stack scheduler stack scheduler stack scheduler stack scheduler stack

void * arg void * arg void * arg void * arg void * arg

wrapper stack wrapper stack wrapper stack wrapper stack wrapper stack

arg1 arg2 ... arg1 arg2 ... arg1 arg2 ... arg1 arg2 ... arg1 arg2 ...

thread stack thread stack thread stack thread stack thread stack

scheduler stack scheduler stack scheduler stack

void * arg

wrapper stack

arg1 arg2 ...

thread stack

Figure 6.7: Tapestry Work Stealing via Stack Pushing: During a join operation
Tapestry Fiber’s will block using voluntary blocking. This picture shows how stack
pushing works to resolve work stealing with blocking operations. On blocking, a new
scheduler is pushed on the stack. The scheduler with access to the original thread
queues will begin working on the work. Once a thread completes that the scheduler is
waiting on, the scheduler will be pulled off the stack.

at the top of the stack. If it is stolen this means that the thread’s queue is empty and

needs to steal work.

6.6 TI C66x Port

The Texas Instruments’ C66X DSP has a number of issues to consider when

porting Tapestry to it. First and foremost is that there is no shared memory by

default. Second, the DSP does not have cache consistency model and the programmer

most invoke calls to a special API to maintain consistency. Third and finally, the DSP

has no atomic operations and a limited set of locks available.

To handle shared memory allocation on the TI DSP, Tapestry configures the

DSP on boot to use 4MB of L2 MSM SRAM as a shared region. Any structures that

need to be shared will use the shared SRAM such as queues and Tapestry threads. In

general we can swap in the 512 MB of off chip DDR3 to be used as shared memory if

needed for bigger problem sizes. To further complicate matters, the TI DSP can use

107

various memory managers for allocating memory. The four managers provided by the

SYS/BIOS operating system are:

• HeapMem: allocates various size blocks.

• HeapBuf: allocates fixed size blocks.

• HeapMultiBuf: internally uses fixed size blocks to allocate, but has variable size
allocation.

• HeapTrack: for detecting memory allocation and deallocation errors.

For Tapestry Fibers HeapBuf would perform the best with little internal frag-

mentation because each item in the queue is a fixed size. However, because Tapestry’s

threads can be various sizes or a fixed size that is bigger than the queue this would

cause a high level of internal fragmentation. HeapMem allows for various size blocks,

but causes a high level of external fragmentation after blocks become free and as the

link list is traversed the allocation time becomes non-deterministic. HeapMultiBuf uses

multiple HeapBufs internally with various block sizes for each. It combines the speed

of HeapBuf with the flexibility of HeapMem. This is good for Tapestry when using

one thread size coupled with a different size for each queue item. So Tapestry employs

HeapMultiBuf for fixed applications where only one type of thread is used. It uses two

HeapBufs with sizes set to the local queue and the thread size.

Another problem, is that the TI chip only has cache coherency between L1D

and L2 cache within the same core. There is no coherency between L1P and L2 within

the same core or L1 and L2 across cores. Nor any coherency between L1, L2, and L2

Shared or external DDR3. Because of this the users most manually control cache line

write-backs, invalidations, and write-back invalidations when using shared memory.

Tapestry Fibers manages this by only write-back invalidating the cache line for other

cores’ shared queues on steals. It does a write-back on its own shared queue when

pushing or popping from it. For the upper layer, a dependent thread’s memory only

needs to be invalidated when dependencies need to be met after a thread runs. The

current running thread needs to be write-back invalidated to indicate it has run and

returned a value.

108

invoke function

start thread

unpacks

void * arg wrapper function

function

arg1

...

argn

dependency counter

Local Memory

Shared Memory

Wrapper Function

function runs

read dependencies
dependency list

update depends

passed to

invokes

Dependency Core handler

thread cleanupCore Message
Handler

message handler

send
packets

Figure 6.8: Tapestry TI C66X Port: Tapestry employs a messaging system for TI C66X.
In the system, because of a limitation on locks, and the need to meet dependencies,
Tapestry randomly assigns a core to handle dependency filling for each thread. In the
figure, you can see how Tapestry will read which core will handle dependencies for
said thread and send packets to each core that needs dependencies updated. Once all
dependencies are met, the core will push the thread into its queue.

109

Finally, because dependencies need to be met by Tapestry and there are not

any atomics and a limited number of locks, Tapestry employs a messaging system to

send dependency updates to a managing core for a given thread. When a thread is

created, the managing core is chosen at random. The dependency handling is handled

within the wrapper layer whenever any thread runs. Tapestry will send messages to

the handling core for any given thread that is dependent on currently finished thread.

After which, it will check to see if there are any messages waiting in its message pump to

handle. At which point, it meets the dependency information for that thread using the

message pump. Figure 6.8 shows this. We chose this methodology primarily because

the other solution we designed would virtualize the locks for each thread mapping it

to a limited number of hardware threads. However, this would cause lots of contention

on the locks for fine-grain parallelize tasks with a large number of dependencies being

pushed through.

6.7 NUMA Considerations

When running Tapestry Fibers on a NUMA system, there are number of con-

siderations that need to be met. First, what is the type of algorithm running on this

machine? If we store our queues in a local node memory for each core, this will benefit

algorithms with good load distribution. Fork/join parallelism works well with this type

of configuration because most of the work is done by the local core and cores who steal

choose cores closer before moving further away. However, for highly imbalanced work

where only one thread is spawning the work, interleaving the queue memory across

the nodes provides increased throughput because of more memory controllers. This in

turn provides better access to the thread queues. Furthermore, certain data structures

benefit from sharing them whereas others need only be local. Tapestry Fibers in this

sense is NUMA aware. It can be setup to use local memory for the queues with in-

terleaved memory for the rest of the data structures, just interleaved memory for the

whole system, or just preferably local memory if possible.

Another consideration, his how to pin the cores to the machine. Tapestry was

110

designed for consecutive pinning, but this makes all the threads reside in only a few

nodes when the system only uses a few cores. This limits the bandwidth available to

these threads, but improves locality. Thus, Tapestry is NUMA aware in this sense also.

It can be configured to pin threads consecutively, every other node in a round-robin

fashion, or not all.

111

Chapter 7

EVALUATION

This section presents results for the performance of Tapestry on x86-64 on three

different x86-64 architectures when it is configured to use the Fiber runtime. I perform

micro-benchmarks and specific applications comparing against Intel OpenMP and Cilk

Plus.

For my methodology, I average each point on each graph 10 times unless other-

wise noted. I do not warm up programs before benchmarking because this introduces

caching effects and produces false results. Furthermore, for each run I unload and

reload programs to stop runtimes or compilers from caching subsequent results to the

same call. For runtimes, I start them up before collecting data because I am interested

in their performance on algorithms not startup costs. Finally, it is noted that I choose

random data wherever applicable.

All benchmark code can be found in Appendix B. In addition, more case studies

other than Bulldozer one presented here are provided in Appendix A. They provide

more details and analysis on Tapestry dependencies, performance of Tapestry depen-

dencies when used as glue for OS threads, performance of Tapestry in a hyper-threading

environment, and redundant graph elimination performance benefits.

7.1 Benchmarks

Tapestry was evaluated with six different benchmarks. Most of the benchmarks

are very fine-grain. It is compared against Cilk Plus and Intel OpenMP. The memory

requirements are given for Help-First and Work-First thread spawning.

112

7.1.1 Fibonacci

Fibonacci numbers are integers given by the following series: 1, 1, 2, 3, 5, 8, 13, ...

This can be modeled with the recurrence relation: Fn = Fn−1 + Fn−2, and seed values

occur at F1 = 1 and F2 = 1. Naturally, this recurrence relationship can be easily

calculated with a recursive function call. The branch factor is 2. To parallelize the

benchmark, recursive calls to Fn−2 are asynchronously parallelized while calls to Fn−1

are recursively called.

The maximum memory requirements for the serial program are given by n ×

stack frame where stack frame is the size of Fibonacci function stack frame. When

parallelized, the requirements are the same if the asynchronous calls are immediately

done by the current thread (Work-First) or left to be completed by other threads (Help-

First). For these cases the requirements are (thread space×cores×n)+(stack frame×

cores×n) because traveling to a leaf node will need stack space while spawning threads

at each recursive call. This benchmark is very regular.

7.1.2 N-Queens

For the N-Queens benchmark, the goal is to place n queens on a n × n board

without having two queens attack each other. The goal of this problem is to find

every possible solution for a given board size. The benchmark utilizes recursion to

place queens in position on the board. The benchmark has been heavily optimized

with bit-fields to reduce the memory requirements and to know which positions have

already been visited. Furthermore, it only calculates half the board and mirrors the

rest. In the worst case the branching factor is n, but this is never reached because

our benchmark marks off places where the queen cannot be placed. To parallelize the

benchmark, the recursion for the first branch of each node is done recursively, but all

other branches are done asynchronously.

The maximum memory requirements for the serial program are given as n ×

stack frame. If the program immediately executes a thread the memory require-

ments are (thread space × cores × n) + (stack frame × cores × n) otherwise it will

113

be (thread space× cores× (n2 − n)) + (stack frame× cores× n).

7.1.3 N-Puzzle

N-Puzzle is a benchmark that is a classical search problem. For the problem,

there exists a n × n board with n − 1 pieces on the board that represent a picture

if placed in the correct order. These pieces can only be moved by sliding them into

the empty slot on the board. The goal of the game is to form a picture by ordering

the pieces correctly through sliding. This problem can be solved in a number of ways,

but for the benchmark we find the optimal solution (least number slides) from a given

state using iterative deepening depth-first search (IDDFS). IDDFS visits nodes in each

level of a tree iteratively, but in a depth-first manner. First, it visits level 0 using

depth first, then level 1, so forth up to level n. This benchmark does a tree search, but

can be easily turned into a graph search with Tapestry’s redundant graph elimination

optimization. At most the branching factor is 4 and at least it is 2. To parallelize the

benchmark, the recursion for the first branch of each puzzle node is done recursively,

but all other branches are done asynchronously.

The maximum memory requirements for the serial program are given as d ×

stack frame. If the program immediately executes a thread the memory require-

ments are (thread space × cores × d) + (stack frame × cores × d) otherwise it will

be (thread space× cores× d× 3) + (stack frame× cores× d) where d is the depth of

the solution in the graph.

7.1.4 Quicksort

Quicksort is a divide and conquer sorting algorithm. Given a random array of

integers of size n, the algorithm chooses a random pivot point in the array. It swaps

the numbers greater than or equal to the pivot point to the right with those on the left

effectively creating two lists. Then, it recursively sorts each list on the left and right

with same idea until it reaches the leaf nodes. This algorithm can be easily parallelized

by allowing one branch each node to be done in parallel.

114

This leads to an effective memory requirement of the serial program to be:

(n× stack frame)+ (n× integer size). The parallel version has a memory requirements

are (thread space× cores× n) + (stack frame× cores× n) + (n× integer size)

7.1.5 Monte-Carlo

Monte-Carlo simulation is an embarrassingly parallel algorithm to produce a

distribution of possible outcomes for use in risk analysis. It works by using a probability

distribution for each factor that is uncertain. It then calculates results with different

random variables from the probability function. Each iteration of these outcomes are

typically calculated with a loop. Thus, each outcome value because it is independent

of previous calculations can be calculated in parallel. Hence, the parallel version can

easily break up each calculation to be done in parallel.

The memory requirements for the serial version is just stack frame size since it

only expands one iteration at a time. The parallel version requires cores×stack frame size+

thread space for Work-First, but requires for Help-First: cores × stack frame size +

thread space× n where n is the number of steps in the algorithm.

7.1.6 Matrix Multiplication

Matrix multiplication is a standard mathematical computation that is done

which takes two matrices and produces a resulting matrix. This computation is used

in a number of various scientific applications. The standard parallelization technique

for this is to break the matrix into smaller blocks and compute each block in parallel.

This can be done by griding the matrix in memory or by breaking each matrix into small

blocks of memory and storing consecutively block by block. The latter will increase

inter-block locality; whereas, the former increase intra-block locality. In addition, the

block size should be chosen to increase caching effects. Furthermore, multiple levels

of blocks or grids can be used for each cache level to enhance performance. Finally, a

register tile with vectorization enhances performance significantly.

115

The memory requirements for the program are 3×n×n+cores×stack frame size+

thread size× block count for all the matrices and the execution of the threads.

7.2 Platforms

Tapestry was compared on three x86-64 platforms: Core 2, Core i7, and Bull-

dozer for various applications. In addition, it was ported to C6678 and verified for

correctness.

Three different application suites for x86-64 machines are summarized in Figure

7.1 and Figure 7.2. The benchmarks show that its performance is generalizable to any

x86 machine independent of application or machine and better or on par to Cilk Plus.

7.2.1 x86-64: Core 2

The particular model used in the benchmarks is the Core 2 Duo E6600. The

architecture has 2 cores clocked at 2.4 GHz, contains a 32 KB L1 data and program

cache per core, a 4 MB shared L2 cache, and a front-side bus that is clocked at 1066

MHz. The machine contains 6GB of memory and has a peak performance of 19.2

GFLOPS and Composite Theoretical Performance (CTP) of 37600 Millions of Theo-

retical Operations Per Second (MTOPS)[55].

7.2.2 x86-64: Core i7

The particular model used in the benchmarks is the Core i7-2600k. The archi-

tecture has 4 Hyper-threaded cores clocked at 3.4 (3.8 Max) GHz, contains a 32 KB L1

data and a 32 KB L1 instruction cache per core, a 256 KB L2 cache per core for data

and instructions, and a 8 MB of shared L3 cache. The machine contains 8GB of mem-

ory and has a peak performance of 108.8 GFLOPS and CTP of 136000 MTOPS[56].

With turbo, the max peak is 122 GFLOPS and the CTP is 152000 MTOPS.

7.2.3 x86-64: Bulldozer

The processor is the 6234 with 12 cores clocked at 2.4 (3.0 Max) GHz, 16 KB

L1 data cache per core, 64 KB L1 instruction caches shared by every two cores, 2 MB

116

0
.0

5

0
.0

9

0
.4

3

0
.2

1

0
.3

4

3
.2

0

0
.3

1

0
.2

6

4
.0

2

0
.9

3

1
.2

3

8
.5

6

C O R E 2 C O R E I 7 B U L L D O Z E R

FIB SPEEDUP SUMMARY

OpenMP Cilk Plus Tapestry Tapestry SLO

0
.1

6

0
.4

0 1
.8

8

0
.4

7

1
.1

7

8
.2

7

0
.7

1

1
.3

5

1
0
.9

8

1
.2

4 2
.6

7

1
1

.6
5

C O R E 2 C O R E I 7 B U L L D O Z E R

N-QUEENS SPEEDUP SUMMARY

OpenMP Cilk Plus Tapestry Tapestry SLO

Figure 7.1: Performance Summary Part 1: The baseline is the sequential kernel. Two
threads were used on Core 2. Eight threads were used on the Core i7. Forty-eight
threads were used on Bulldozer.

117

0
.9

4 1
.5

8

3
.7

2

1
.1

6

2
.9

7

6
.4

6

1
.1

0

3
.2

0

6
.6

9

1
.7

2

4
.0

3

6
.7

2

C O R E 2 C O R E I 7 B U L L D O Z E R

QUICKSORT SPEEDUP SUMMARY

OpenMP Cilk Plus Tapestry Tapestry SLO

0
.1

5

0
.3

3

2
.7

1

0
.3

9

1
.2

1

1
2
.8

7

0
.5

7

0
.7

1

1
3
.0

3

0
.9

9

1
.8

6

1
5

.3
9

C O R E 2 C O R E I 7 B U L L D O Z E R

N-PUZZLE SPEEDUP SUMMARY

OpenMP Cilk Plus Tapestry Tapestry SLO

Figure 7.2: Performance Summary Part 2: The baseline is the sequential kernel. Two
threads were used on Core 2. Eight threads were used on the Core i7. Forty-eight
threads were used on Bulldozer.

118

of L2 caches shared by every two cores, and 8MB of L3 caches shared by every 6 cores.

The board I use has 4 6234 for 48 cores and 8 NUMA nodes with 128 GB of memory.

The CTP per processor is 217866 MTOPS and I calculated the peak performance to

be 2.4X8X24 = 460.8 GFLOPS. With turbo, this is 576 GFLOPS. The architecture is

described in more detail in Section 2.6.2.

7.2.4 TI C6678

The TI processor has 8 cores and was configured to be clocked at 1.25 GHz,

have 32 KB L1 data and a 32 KB L1 instruction cache per core, 512 KB of L2 cache

per core, 4 MB of shared memory on chip, and 512 MB of off-chip memory. It has

a peak performance of 160 GFLOPS. The architecture is described in more detail in

Section 2.6.1.

7.3 Case Study on Bulldozer

These tests compare the various components of the Tapestry High Throughput

Input-Restricted deque in addition to that Cilk Plus’ scalability on a 48 core AMD

Opteron 64-bit 6234 machine at 2.4 GHz with 128 gigabytes of ram. The machine is

unique in the fact it has cache-coherent Non-Uniform Memory Access (ccNUMA) with

4 sockets and 8 NUMA nodes. The system uses Scientific Linux 6. For all the test I

use Parallel Studio XE 2011 with O3 optimizations on.

7.3.1 Runtime Micro-benchmarks

Tapestry when configured using a runtime could be less efficient than compiler-

based runtimes because those runtimes can use static optimizations. Furthermore,

Tapestry’s decoupling of layers could also introduce overhead in the execution of tasks.

7.3.1.1 One Thread Overhead

In the first test, I compute the overhead of spawning and finishing a thread. I

compare this to Cilk Plus and OpenMP. The test spawns an empty thread individually

119

Spawn Join Total
Tapestry 31.73 ns 10.86 ns 42.59 ns
Intel Cilk Plus 41.46 ns 02.31 ns 43.77 ns
Intel OpenMP 29.39 ns 14.70 ns 44.10 ns

Table 7.1: Overhead of One Thread: In this test I spawn empty threads on one core
using task parallelism and calculate the overhead spawning and joining on 1 thread.
Cilk Plus most likely executes the spawned thread immediately and executes the con-
tinuation later. Whereas Tapestry spawns the thread and executes during the join.
These numbers were averaged over 100 million iterations.

and joins on it. I compute this 100 million times and average the results. It is worth

noting I use OpenMP’s task framework and not data parallel for loops for this test.

Tapestry’s overhead is on par to both OpenMP and Cilk Plus as seen in Table

7.1. From this information, I can extrapolate Tapestry has about three times as much

overhead to create a task as executing it.

7.3.1.2 Parallel Scheduling Overhead

In this test I spawn a number of empty threads in a loop and join on all of

those. I look at the serial execution vs using all the cores on the machine. This test

shows the overhead of load balancing work from one core across all cores on Tapestry,

Cilk Plus, and OpenMP. The results are shown in Figure 7.3. Tapestry and OpenMP

provide parallel for constructs to provide better load balancing for this type of work.

The results show that Cilk Plus performs significantly better. Perhaps, Cilk

Plus is using a back-off on stealing which results in less movement of the work which

improves performance for fine-grain workloads that are less balanced.

7.3.1.3 Dependency Overhead

The final two benchmarks, test the performance creating 100 million parallel

tasks with dependency logic and the time it takes to execute 100 million threads that

form a chain of dependencies in serial. The results show that I can spawn one depen-

dency task in 163.75 ns and execute a dependent thread every 523.09 ns. This means

I can spawn dependency tasks 3 times faster than I can execute them.

120

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

48 480 4800 48000 480000

N
a

n
o

se
co

n
d

s

Threads

Parallel Scheduling Overhead

Tapestry 48 Tapestry 1 Cilk 48 Cilk 1 OpenMP 48 OpenMP 1

Figure 7.3: Parallel Spawn: This test differs from Table 7.1 by spawning the number of
threads on the x-axis all before joining on them. Whereas, the other test only spawns
1 thread at a time and joins it. The much higher overhead on Tapestry for 48 cores vs
Cilk Plus is most likely due to Cilk Plus doing a back-off on steals.

121

0

1

2

3

4

5

6

7

8

9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

S
P

E
E

D
U

P

CORES

Fib Absolute

Intel Cilk Plus Tapestry Intel OpenMP

Tapestry SLO Tapestry SP Tapestry SP LO

Figure 7.4: Fibonacci Scalability: A Fibonacci number of 44 was calculated.

7.3.2 Runtime Benchmarks

In these benchmarks I test the performance of the runtime using various appli-

cations.

7.3.2.1 Fibonacci Scalability

I compute Fibonacci of 44 on this test. The results seen in Figure 7.4 show

that Tapestry’s performance exceeds that of Cilk Plus. It appears Tapestry’s speedup

is function of a line whereas Cilk Plus’ speedup is only a function of a line up to 16

cores and starts to fall off. The fall off appears to get worse as cores are added and be

asymptotic. OpenMP is also linear up to around 16 cores and falls off like Cilk Plus.

In addition, the linear property of Tapestry’s deque does not appear to fall off up to

48 cores. Fibonacci is very fine-grain which bods well for fine-grain applications.

I note that Tapestry’s results appear to have two outliers toward the upper

core count. Finally, Tapestry’s SLO implementation achieves pretty good performance

in this test, but the performance is not linear and appears to fall off as core count

122

increases. This is expected because SLO limits parallelism in favor of locality and

should create more starvation as core count increases if the problem size is not big

enough. In addition, I note the performance of using split-phase transactions on the

code produces results that are much slower than the fork/join model. This is most likely

caused by the combination of the overhead of more memory to represent dependency

logic and overhead caused by the smaller size of tasks when split into finer-grain parts.

7.3.2.2 N-Queens Scalability

I use a board size of 16 for these tests. Like the Fibonacci test, the results in

Figure 7.5 show that Tapestry’s performance exceeds that of Cilk Plus. Like before,

Tapestry’s speedup is linear whereas Cilk Plus’ speedup is only linear up to 16 cores

and starts to fall off. The fall off appears to get worse as cores are added and be

asymptotic. OpenMP is also linear up to around 16 cores and falls off like Cilk Plus.

In addition, the linear property of Tapestry’s deque does not appear to fall off up to 48

cores for this coarser task. Here SLO scales well again, but falls off. In addition, the

performance difference between the two is much smaller. N-Queens is pretty fine-grain

and less balanced than Fibonacci. However, comparatively N-Queens is more coarse

than Fibonacci. The split-phase transaction versions appear to be about half the speed

of Cilk Plus. Once again, the difference in performance is most likely due to additional

memory overhead and overhead caused by having finer tasks.

7.3.2.3 Quicksort Scalability

I sort on a size of 55 million for these tests. Figure 7.6 shows that the scalability

of quicksort is pretty limited. This is due to the fact that quicksort has to reach a

depth of 7 before 48 cores can work on it. Another limiting factor is that the amount

of work grows finer and finer the deeper the graph is traversed. Which means that

the amount of work for the first thread at the top is equal to the amount of work

divided among its children at a depth of seven. This creates a sequential bottleneck

and multiple bottlenecks till a depth of 7 is reached. Here the results indicate that Cilk

123

0

2

4

6

8

10

12

14

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

S
P

E
E

D
U

P

CORES

N-Queens Absolute

Intel Cilk Plus Tapestry SLO Tapestry

Intel OpenMP Tapestry SP Tapestry SP LO

Figure 7.5: N-Queens Scalability: A board size of 16 was used.

Plus’ performance is worse than Tapestry. SLO performs well, but falls off as more

cores are added. Our implementation for dependencies requires a barrier thread to

indicate all threads are finished which require 55 million threads register to the barrier.

This has significant overhead due to contention on the dependency met variable. So

our results took too long too finish. Results indicated it appeared to be around 20X

slower than the fork/join version. Performance most likely improve if I utilized a split-

phase transactions to create a tree-like barrier that is very similar to the Fibonacci and

N-Queens split-phase addition operation, but does no useful work.

7.3.2.4 Monte Carlo Scalability

Here our number of paths is 192. Like the other two tests, for this embarrassingly

parallel algorithm with very coarse thread work, Tapestry begins off slow, but it is linear

whereas Cilk Plus starts to fall off at 16 cores. Tapestry’s performance exceeds that

of Cilk at 38 cores. Tapestry again is slower initially due to the fact its threads are

pinned. See Figure 7.7.

124

0

1

2

3

4

5

6

7

8

9

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

S
P

E
E

D
U

P

CORES

Quicksort Absolute

Intel Cilk Plus Tapestry SLO Tapestry Intel OpenMP

Figure 7.6: Quicksort Scalability: 55 million integer numbers were sorted.

0

5

10

15

20

25

30

35

40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

S
P

E
E

D
U

P

CORES

Monte-Carlo Absolute

Intel Cilk Plus Tapestry Intel OpenMP Tapestry Dep

Figure 7.7: Monte Carlo Scalability: 192 paths were calculated. The Tapestry depen-
dency version uses a barrier thread to end the program. Whereas, regular Tapestry
joins on each thread.

125

7.3.2.5 N-Puzzle Iterative Deepening Scalability

The solution to the puzzle is at a depth of 20 for a 3x3 board. The N-Puzzle

test (Figure 7.8) uses Iterative Deepening Depth-First search to expand a graph and

search for the solution to a N-Puzzle. Iterative Deepening effectively visits the nodes

in breadth-first order, but with space bounds equal to that of depth-first search. In

this search I am building a graph and searching it together in one step. The test is

pretty fine-grain since the nodes for the N-Puzzle do not do much work. In the best

case, each node has two synchronizations. Similarly, in the worst case there are four

synchronizations.

The test shows that Tapestry and Cilk Plus’ performance is much more scalable

that of Intel OpenMP. The jagging in the graph is caused by the fact the test will

cancel the search once a solution is found and more threads does not guarantee at a

depth of 20 that a solution will be found quicker. In terms of performance SLO does

well. For this test we did not produce a threaded dependency version. It would require

a split-phase transaction or barrier thread.

7.3.2.6 Matrix Multiplication Kernel Static Scalability

The problem size for this test is 16640x16640 double precision matrices. This

allows the machine to gain caching effects due to alignment and is big enough to

guarantee enough work across 48 cores. For my matrix multiplication tests on the AMD

machine, I choose a custom kernel after evaluating the scalability and performance of

it compared with the Intel Math Kernel Library (MKL) BLAS dgemm and the AMD

Math Core Library (ACML) dgemm using FMA4 instructions. My kernel on one core

gets around 10 GFLOP/s, the MKL library produces only around 5 GFLOP/s, and

AMCL does about 16 GFLOP/s. Both are linked to serial libraries. In addition, my

kernel with Pthreads gets better scalability than MKL using a static schedule up to 24

cores, but worse than AMCL. Whereas, the MKL library flat lines when linked with

OpenMP at 24 cores and the results for AMCL become inconsistent. I note here that

the scalability of my kernel is better initially if I don’t pin the threads to cores instead

126

0

2

4

6

8

10

12

14

16

18

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

S
P

E
E

D
U

P

CORES

Iterative Deepening N-Puzzle Absolute

Intel Cilk Plus Tapestry Intel OpenMP Tapestry SLO

Figure 7.8: N-Puzzle Iterative Deepening Scalability: Solution was at a depth of 18 for
a 3x3 puzzle.

0

5

10

15

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

S
P

E
E

D
U

P

CORES

Matrix Multiplication

Intel MKL My Kernel My Kernel Unbound AMD AMCL

Figure 7.9: Matrix Multiplication Kernel Static Scalability: 16640x16640 matrices were
used.

127

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

G
F

LO
P

/S

CORES

Matrix Multiplication

Intel MKL My Kernel My Kernel Unbound AMD AMCL

Figure 7.10: Matrix Multiplication Kernel Static FLOP/s: 16640x16640 matrices were
used.

of pinning to consecutive cores. This is due to the NUMA layout of the node which

allows greater bandwidth when not pinning. The baseline for the scalability graph seen

in Figure 7.9 is the 16 GFLOP/s AMCL sequential version. In these tests my kernel

utilizes the 128-bit wide FMA4 instructions is compiled with PGI’s pgcc 12.9 with O3

and fastsse optimizations on.

My kernel performs griding with a size set 256x256 doubles for the grid width

and height. In addition, I register tile each grid block. I chose a tile size of 2x4

empirically. It was the best performing. Furthermore, the tiled multiplication is vec-

torized with FMA4 instructions. Figure 7.10 shows the GFLOP/s per core. My kernel

achieves a performance of 267 GFLOP/s on 48 cores whereas MKL only achieves 95

GFLOP/s. AMD’s reaches 302 GLOP/s but only at 35 cores and inconsistently. The

max scalability of these tests is around 24X due to the machine having only one FPU

per 2 cores and AMD achieving near peak on 1 core because it utilizes the 256-bit wide

instructions.

128

0

2

4

6

8

10

12

14

16

18

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

S
P

E
E

D
U

P

CORES

Matrix Multiplication

Intel Cilk Plus Tapestry Intel OpenMP Tapestry Unpin

Figure 7.11: Matrix Multiplication Scalability: 16640x16640 matrices were used.

7.3.2.7 Matrix Multiplication Scalability

Using my matrix multiplication kernel presented in the last section, I took the

kernel and applied it to Intel OpenMP, Cilk Plus, and Tapestry using the same problem

size. Here I am using a fully dynamic schedule with Cilk Plus and Tapestry, but

OpenMp uses a completely static schedule. The first thing to note is the scalability

of Tapestry when compared with Cilk Plus, OpenMP, and Tapestry when not pinned

as seen in Figure 7.11. Tapestry has linear speedup. However, Cilk Plus, OpenMP,

Tapestry Unpin have almost perfect speedup till 24 cores where they take a significant

dive in performance. This is because none of these libraries pin threads to cores; so,

the threads can be scheduled by the every other core by the OS. The performance hit

is probably due to sharing a FPU and the L1 instruction cache by every two cores.

Tapestry when pinned is doing so to every other core to achieve a similar speedup.

Cilk Plus gets around 263 GFLOP/s and Tapestry gets around 272 GFLOP/s as seen

in Figure 7.12. Finally, OpenMP only achieves about 250 GLOP/s.

129

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

G
F

LO
P

/S

CORES

Matrix Multiplication

Intel Cilk Plus Tapestry Intel OpenMP Tapestry Unpin

Figure 7.12: Matrix Multiplication with Cache-based Atomic Deque FLOP/s:
16640x16640 matrices were used.

130

Chapter 8

RELATED WORK

8.1 Microsoft Task Parallel Library

The Task Parallel Library (TPL) [57] is a library to provide APIs and parallel

types (such as a concurrent stack) to Microsoft .NET Framework 4 System Threading

and System Threading Tasks namespace to simplify adding parallelism and concurrency

to applications. These are much in the same vein as Intel’s TBB for C or C++, but for

Microsoft .NET. TPL’s underlying runtime will scale the concurrent work dynamically

striving for the most efficient use of processors and resources. To accomplish this the

TPL handles work partition, thread scheduling, state management, and other low-

level details. However, it is noted that the TPL, like all .NET code is run in a virtual

machine akin to Java’s. Language support includes VB.NET, C#, and F#.

Microsoft is advocating that TPL is much better way to write parallel code in-

stead of using their standard System Threading and System Threading Tasks interfaces

to manually handle things. Furthermore, to effectively use the TPL they recommend

that users have a basic understanding of locks, deadlocks, and race conditions. The

TPL is divided into three areas: Data Parallelism, Task Parallelism, and Dataflow.

Data Parallelism is similar to the type of parallelism traditional OpenMP ex-

ploits where the same operation is performed on different data. To accomplish this,

TPL provide parallel for and foreach statements that can be overloaded to control/-

monitor loop states, maintain thread-local state, control the degree of concurrency, et

cetera. The data of these loops are partitioned so multiple threads can operate on

different segments concurrently.

Task parallelism is similar to OpenMP’s task framework or Cilk and is designed

for more independent tasks that are running concurrently. Tasks run on top of regular

131

threads. The framework uses work stealing [57] for load balancing of threads and hill

climbing[58] to adjust the number of threads to maximize throughput of the tasks.

Furthermore, the framework supports nesting or creating of children tasks as well as

continuing tasks a la EARTH style as opposed to the use of callbacks to accomplish

this.

Lastly, the Dataflow Library promotes an actor based programming model with

coarse-grained dataflow or pipelined tasks. The model allows for the linking of op-

eration blocks together to communicate asynchronously and perform tasks as data

becomes available. For instance, they could be used to process images frame by frame

as they come in from a camera using a pipeline to increase throughput.

Tapestry differs from this because Tapestry does not use a virtual machine,

works for more fine-grain tasks, utilizes C++, and aims to work on distributed ma-

chines.

8.2 Intel Concurrent Collections

Intel Concurrent Collections (CNC) [59] is a library for C++ programs where

semantic dependencies of an algorithm are defined to give an order. This is akin to

dataflow, where the user expresses high-level computational steps including inputs and

output, but not where these steps should be executed. These dependencies indicate

what steps can be done in parallel. The underlying runtime and tuning layer will

handle where and when these steps will be completed.

Code within each computational step is written with C++ standard constructs.

Data is local to a computational step or is explicitly produced, received, and consumed.

The CNC model supports the big three levels of parallelism: data, task, and pipeline.

The point of CNC is to keep the interface the same across many different architectures

such as shared memory and distributed systems while the underlying runtime may

change or support various scheduling dynamics such as static or dynamic.

Like the TPL, the point of CNC is to ease the transition to parallel architectures

for programmers not familiar with parallelism. This is seen in the fact that the user

132

does not worry about parallelism, but just expressing their codes dependencies through

separation of the application and the optimization of said application.

CNC uses three constructs to achieve algorithmic construction: tag-collections,

steps, and item-collections. Tags indicate what items are needed for a step to begin.

Steps are the actual computation. And items are what are produced or taken in for

each step. Dependency information between steps is gleamed by tag prescriptions.

Tapestry differs from CNC because Tapestry is a true actor based model that

works for more than just consumer/producer style applications.

8.3 OpenMP

OpenMP [53] is extension to the C language using only preprocessor directives

to parallelize code. Specifically, pragmas are used to instruct the compiler to generate

parallel regions. Specifically, the parallelism uses fork/join concept or parallelism where

the master thread forks a number of slave threads to complete work. The slave threads

will join back into a master thread once the work completes. Then, the master will

create more slave threads. It requires a special library and compiler to achieve these

effects otherwise the code will run in serial. OpenMP is especially known for its data

parallelism constructs to achieve good performance on shared memory machines. These

allow for parallel loop constructs, parallel blocks, sharing data, expressing if conditions,

reductions, critical sections, locks, barriers, atomic operations, scheduling, et cetera.

Some of these constructs are only available when using the runtime library routines

and types instead of the compiler directives. These include locks, timing functions,

scheduling, and setting up the environment.

OpenMP 3.0 introduced task level parallelism to its model. In general, tasks

can be spawned and joined on using the pragmas OpenMP is popular for. This style

of parallelism is similar to Cilk.

OpenMP has number of well-known drawbacks that include the requirement of

a compiler, no compare and swap, lack of mechanisms to the map threads to processors,

and a large startup time.

133

Tapestry differs from OpenMP because it does not require a compiler and sup-

ports dependencies.

8.4 Habanero C

Habanero-C (HC) is a language developed by Rice University the follows closely

to the design of Habanero-Java. The language is very similar to Cilk except it adds a

flexible barrier called phasers, Data-Driven Futures, and Hierarchical Place Trees. The

futures are very similar to those provided in C++ and Tapestry. They can be used to

simulate dataflow-like dependencies by indicating that a thread should wait to start

based on those futures; However, those futures are not part of the thread and require

explicit signaling. This means the signaling could be aliased, is dependent on branch

conditions, and could be met anywhere at any time by any thread. In addition, these

futures require waiting.

Tapestry is different from HC because Tapestry doesn’t require a compiler and

supports dependencies on threads without the need for preemption. I addition, because

the dependencies are tied to the thread the scheduler can best choose how to run the

thread. Tapestry does not require the runtime to wait for the threads to be met, but

utilizes direct signaling to start a thread.

8.5 Unified Parallel C

Unified Parallel C (UPC) [60, 61] is an extension of ANSI C to allow for par-

allelism that is based on the partitioned global address space (PGAS) programming

model [62] (distributed shared memory programming model). UPC extends the fea-

tures of C to include parallelism using SPMD with global memory access that can be

local and remote. To accomplish this UPC virtualizes the address space across proces-

sors into one space. Writing and reading to memory is done with simple statements

like in C, but the shared keyword must be used to indicate that the variable resides

in or points to the global address space. UPC uses a simple parallel loop construct

to parallelize workloads and allows for synchronization control via barriers, locks, and

134

memory consistency control. It builds upon the experiences of Split-C, AC, and PCP.

Because UPC is pretty simple and the performance has shown to be good, vendors

have developed UPC compilers for commercial purposes.

Specifically, HP, SGI, Sun, and Cray platforms have compilers. Also, an open-

source implementation and compiler known as MuPC is available from Michigan Tech-

nological University for X86 Intel Architecture. Additionally, BUPC for various plat-

forms including X86-64 Intel Architecture are available from the University of Califor-

nia Berkley. Furthermore, GNU UPC (open-source) is available and supports various

architectures including the Cray T3E.

UPC key features include efficient mapping from language to machine architec-

ture, minimization of thread communication overhead by exploiting data locality, and

simplified remote memory access.

UPC has a distributed shared memory programming model that is similar to a

regular shared memory model, but also has the ability to make use of data locality.

Specifically, the distributed shared memory model divides its address space into various

partitions where each memory partition has an affinity to a certain thread. This means,

that a shared object that has an affinity for a certain thread will reside in that thread’s

local shared memory space.

The UPC view of memory is partitioned into private and shared spaces. Each

thread has its own private space, as well as a portion of the shared space. The shared

space is divided into a number of partitions per thread of which each has an affinity to

a particular thread i.e. the partition is located in the thread’s logical memory space.

The use of the new share keyword for shared data allows for easy blocking of shared

data and arrays across these threads.

A UPC shared pointer can reference any location in the shared address space.

Whereas a private pointer may reference only addresses in its local portion of the

shared space or its private space. Both static and dynamic memory allocations occur

via mallocs or by using special keywords in the compiler. Both are supported for shared

and private memory.

135

Data distribution in UPC is pretty simple. Because of the distributed shared

memory programming model, UPC can share data among its threads using simple

typing information. For instance, to share an array of size N equally among the threads,

the user simply defines the array as shared using the share keyword, and UPC will

distribute the array elements in a round robin fashion.

Finally, because shared memory is accessible by all threads, synchronization

features are present in UPC to give a sequence or order to the access of memory. UPC

allows the user to switch between strict or relaxed memory consistency models at the

variable level, in code sections, or for the scope of the entire program. In addition to

this, users can use locks to guarantee access of certain data by only one thread. Lastly,

barrier are available to synchronize all threads at certain points in the program before

new steps can be done.

Tapestry differs from UPC because it does not require a compiler and supports

dependencies.

8.6 X10

The X10 programming language [63] designed for parallelism using a PGAS

similar to UPC, but is far more complex and unique allowing for multiple styles of

programming. It came from out of the DARPA-led High Productivity Computing

Systems program (HPCS). In general, X10 borrows its style from a number of lan-

guages, but focuses on asynchrony, locality, atomicity, and order. Specifically, order

is created through type-safe, class-based, and object oriented design. Furthermore,

it supports fork-join programming, GPU programming, SPMD computations, phased

computations, MPI-style communication, active messaging, and cluster programming

[63]. X10 implementations are available for Power and x86 based architectures as well

as all major operating systems including Linux, AIX, MacOS, Cygwin, and Windows.

X10 couples a more abstract version of the PGAS model with parallel program-

ming. In X10, a computation is divided among a set of places. Each place holds a part

of the data and contains one or more operations that act on that data. The type system

136

is constrained in the form of dependent types [64] for object-oriented programming.

A dependent type depends on a value. These dependent types come in the form of

parent and child relationships for operations. These relationships are used to prevent

deadlocks that can occur when two or more process wait for each other to finish before

they can complete. Operations can spawn children operations who themselves may

have children. Parents can wait on children, but children cannot wait on their parents.

Thus, waiting is cycle free. X10 also features global distributed arrays, ways to do

unstructured and structured parallelism, and user defined primitive structure types.

Tapestry differs from X10 because it does not require a compiler and supports

dependencies.

8.7 Chapel

Chapel [65] is parallel programming language developed by Cray Inc. as part

of HPCS. Chapel was designed to improve the programmability of large-scale parallel

computers while matching or exceeding the performance and portability of current pro-

gramming models. It is open-source with contributions from academia, industry, and

scientific computing centers. Chapel is designed to improve the productivity of high-

end programmers while also being a portable parallel programming model. That means

Chapel can be used on desktop multi-core machines as well as commodity clusters.

Chapel supports using high-level abstraction for task parallelism, data paral-

lelism, and nested parallelism to create a multithreaded execution model. Like X10,

Chapel allows for reasoning and specifying placement of data and tasks on architectures

using local types in order to tune for locality. Chapel, like other parallel programming

models, has a global-view of data with user defined aggregate implementation opera-

tions on distributed data structures allowing them to be expressed in a natural manner.

Chapel has a multi-resolution code allowing users to write very abstract code, and they

then can add more detail incrementally until the code is as close to the machine as

they need. To help facilitate rapid prototyping and code reuse, Chapel supports object-

oriented design, type inference, and features for generic programming.

137

Cray Inc. designed Chapel from the ground up rather than extending an existing

language. Chapel was made to be easy to learn for users of C, C++, Fortran, Java,

Perl, Matlab, and other popular languages because it is an imperative block-structured

language. However, Chapel’s parallel features are most directly influenced by ZPL,

High-Performance Fortran (HPF), and the Cray MTA/Cray XMT extensions to C and

Fortran.

Tapestry differs from Chapel because it does not require a compiler and supports

dependencies.

8.8 Fortress

Fortress [66] like X10 and Chapel was designed for HPCS and is a programming

language for high-performance computing designed with for high programmability like

all programming languages. Like Chapel, Fortress has been designed from scratch

without ties to legacy language semantics or syntax. Like other HPC languages, par-

allelism is built into the core of the language as well as the ability to specify locality

and do transactions. Fortress also enables compiler optimizations across library bound-

aries with a component system and a test framework that facilitate program assembly

and testing. Fortress has a small core language with much of the language encoded

(e.g. arrays and other basic types) in libraries atop the core for extendibility and fu-

ture proofing. That means future additions to the language can be easily supported.

Additionally, Fortress supports mathematical notation, static checking of properties

including physical dimensions or properties, static type checking of multidimensional

arrays and matrices, and definitions of domain specific libraries.

Fortress is a general-purpose programming language. Its support for large-scale

parallelism and management of data locality, its use of mathematical notation for

syntax, and its static checking of units and dimensions (among other things) make it

particularly well suited to high-performance computing. Fortress is also designed to be

both highly parallel and have rich functionality contained within libraries, drawing from

Java but taken to a higher degree. For example, the for loop is a parallel operation,

138

which will not always iterate in a strictly linear manner depending on the underlying

software and hardware. However, the for loop is a library function and can be replaced

by another for loop of the programmer’s liking rather than being built into the language.

Fortress’ syntax emulates mathematical notation as closely as possible. It has a

novel type system to better integrate functional and object-oriented programming. It

allows for specification of data distribution through the use of special data structures,

it supports static checking of physical units and dimensions, it supports embedding of

domain-specific language syntax in programs, and it includes a component system to

facilitate the process of compiling, linking, and deploying programs. Syntactically, it

most resembles Scala, Standard ML, and Haskell. Fortress is being designed from the

outset to have multiple syntactic stylesheets. Source code can be rendered as ASCII

text, in Unicode, or as a prettied image. This will allow for support of mathematical

symbols and other symbols in the rendered output for easier reading.

Tapestry differs from Fortress because it does not require a compiler and sup-

ports dependencies.

8.9 Coarray Fortran & Coarray Fortran 2.0

Co-array Fortran [67, 68] (CAF) extends Fortran 95 for Single Program Multiple

Data (SPMD) parallel processing. It adds architecture-independent syntax that can

be used for distributed memory, shared memory, and cluster machines. It is an explicit

notation for data decomposition that strives to be Fortran-like.

Specifically, the CAF SPMD parallel programming model uses a small set of ex-

tensions to Fortran 90 to support access to non-local data using lightweight and flexible

synchronization primitives, pointers, and dynamic allocation of shared data. Executing

CAF programs because they are SPMD are a static collection of asynchronous process

images. CAF programs explicitly manage locality, data and computation distribu-

tion like MPI programs, but it is a shared-memory programming model based upon

one-sided communication. The idea is that, CAF programs can directly reference

off-processor values using extensions for subscripted references rather than explicitly

139

coding messages to exchange off-processor data. Because remote data access and syn-

chronization are part of language, communication and synchronization are amenable to

compiler-based optimizing transformations. The model has the following shortcomings

according to Rice: there is no support for processor subsets, coarrays must be declared

as global variables, the coarray extensions lack any notion of global pointers, reliance

on named critical sections for mutual exclusion hinders scalable parallelism, Fortran

2008’s sync images statement doesn’t provide a safe synchronization space, there are

no mechanisms to avoid or tolerate latency when manipulating data on remote images,

and there is no support for collective communication [69].

To address the shortcomings of the model, Rice University is developing a clean-

slate redesign of the Coarray Fortran programming model [69]. Rice’s design for Coar-

ray Fortran, which they call Coarray Fortran 2.0, is an expressive set of coarray-based

extensions to Fortran designed to provide a productive parallel programming model.

Compared to the emerging Fortran 2008, Rice’s new coarray-based language extensions

include some additional features:

• The ability to process subsets known as teams, which support coarrays, collective
communication, and relative indexing of process images for pair-wise operations.

• Support for topologies, which augment teams with a logical communication struc-
ture.

• Allow for dynamic allocation/deallocation of coarrays and other shared data.

• It allows for local variables within subroutines: declaration and allocation of
coarrays within the scope of a procedure is critical for library based-code.

• Team-based coarray allocation and deallocation is added.

• Global pointers are added in support of dynamic data structures.

• There is enhanced support for synchronization for fine control over program ex-
ecution.

• Safe and scalable support for mutual exclusion, including locks and lock sets.

• Addition of events, which provide a safe space for point-to-point synchronization.

Tapestry differs from CAF because it does not require a compiler, supports

dependencies, and utilizes C++.

140

8.10 Global Arrays

The Global Arrays (GA) [70] toolkit is designed to be an efficient and portable

shared-memory programming interface for distributed-memory computers. Each MIMD

program consists of a number of processes distributed across any number of comput-

ers. Each process can asynchronously access logical blocks of distributed dense multi-

dimensional arrays without explicit cooperation or communication. The GA model

exposes programmers to the non-uniform (NUMA) characteristics of high performance

computers indicating local shared data is faster to access than remote. The primary

target architectures for which GA was developed are massively-parallel distributed-

memory and scalable shared-memory systems.

GA can complement the message-passing programming model rather than ex-

plicitly replacing it (i.e. the strengths of both can be utilized to enhance performance),

and GA supports legacy libraries which means existing message passing libraries can be

taken advantage for use in GA programs. This includes the Message Passing Interface

(MPI).

The GA toolkit provides the typical shared memory style programming environ-

ment with a distributed array data structure known as a global array. A global array

can be used as if it was stored in shared memory. The global array object encapsulates

all the details of data distribution, addressing, and data access from the programmer.

However, users can obtain information about the data distribution and locality if data

locality is important.

The basic shared memory operations supported include the typical get, put,

scatter, and gather. These operations are complemented by atomic read-and-increment,

accumulate (reduction operation that combines data in local memory with data in the

shared memory location), and lock operations. These operations are only supported

when access data in global arrays rather than arbitrary memory locations. Thus, at

least one global array has to be created before data transfer operations can be used.

These GA operations are one-sided and will complete regardless of actions taken by

the remote processes or processor that own the referenced data. In particular, GA does

141

not offer or rely on a polling operation or require inserting any other GA library calls

to assure communication progress on the remote side. The GA library supports two

different programming styles: task-parallel and data-parallel.

Tapestry differs from UPC because it adds dependencies to threads these de-

pendencies do not need global memory to communicate. However, Tapestry can be

complemented by the model.

8.11 HPX

The HPX runtime system is a modular, feature-complete, and performance-

oriented representation of the ParalleX execution model. The model is targeted at con-

ventional parallel computing architectures such as SMP nodes and commodity clusters.

HPX incorporates routines to manage lightweight user-threads in addition to providing

an Active Global Address Space (AGAS). HPX is implemented in C++11 and utilizes

over 20 Boost and candidate Boost libraries.

The four principal properties exhibited by ParalleX are:

• Exposure of intrinsic parallelism, especially from meta-data, to meet the concur-
rency needs of scalability by systems in the next decade.

• Intrinsic system-wide latency hiding for superior time and power efficiency.

• Dynamic adaptive resource management for greater efficiency by exploiting run-
time information.

• Global name space to reduce the semantic gap between application requirements
and system functionality both to enhance programmability and to improve overall
system utilization and efficiency.

HPX provides an experimental conceptual framework to explore the goals of

ParallelX. The evolution of ParalleX has been, in part, motivated and driven by the

needs of the emerging class of applications based on dynamic directed graphs. Such

applications include scientific algorithms like adaptive mesh refinement, particle mesh

methods, multi-scale finite element models and informatics related applications such

as graph explorations. They also include knowledge-oriented applications for future

web search engines, declarative user interfaces, and machine intelligence.

142

Tapestry differs from HPX because it does not need a global address space, and

it does not need external libraries.

143

Chapter 9

CONCLUSION & FUTURE WORK

9.1 Conclusion

Overall Tapestry provides many contributions to software runtime design. Using

it as a standard thread runtime without considering its plethora of features, Tapestry’s

performance and scalability are on par or exceed that of industry level software. In

addition, Tapestry provides an intuitive simple extension to the standard C threading

model allowing for data driven threads and synchronization of work at many differ-

ent levels. These features include the control of the runtime and all the features of

codelets. Tapestry also allows for a new features called dynamic split-phase trans-

actions and multiple continuations on these codelets. Lastly, Tapestry is modular,

portable, compiler free, and can be run on top of any type of threading model using

any type of synchronization features.

Additionally, Tapestry’s design allows for extension and exploration of new mod-

els of execution that are not limited to traditional thread, work stealing, or Codelet

Model of execution. This means Tapestry can adapt and change where other inflexible

models of execution will break as new architectures are introduced in the future.

9.2 Future Work

For the future, I would like to provide a simulation framework to run Tapestry on

to explore various future exascale architectures effects on features provided by Tapestry.

Furthermore, I would like to provide a graphical language so users can build codelet

graphs within their programs without the use of language semantics. I would like

to perform more fine-grain optimizations to Tapestry Fibers, provide a framework to

pipeline Threaded Dependencies, explore using Tapestry to run on top other models,

144

allow for dynamically switching between runtimes in real time, provide a tool to analyze

sequential program performance to provide information of candidate functions that can

benefit from Tapestry’s fork/join fine-grain performance, and another tool translate

sequential programs automatically into Tapestry using the Fork/Join model.

9.2.1 Threaded Dependencies

Although much of the framework for codelets comes from meshing dataflow

with EARTH, more concepts are still need to be explored more thoroughly to further

differentiate the model. These are: how to ensure dataflow pipelining (token level),

codelet pipelining, and finally how these two optimizations interact.

9.2.1.1 Data Pipelining

The movement of tokens through the execution of loops, for merging, and in

many other cases will benefit execution time immensely if pipelined correctly. A simple

but interesting question arises, how should the model handle pipelining of data to

benefit the overall execution of program assuming no codelet duplication?

Previous work in static dataflow pipelining shows pipelining loops in data-driven

architectures does not need a scheduler for operations. It can be simply achieved by

creating a structure connecting the operations of the loop body and the hardware

structures responsible for the loop iterations [26, 71, 72]. In the codelet model a

similar scheme should allow efficient execution of parallel loops that are data-driven.

Such a structure would in theory even allow for dynamic pipelining of loops. For the

codelet model consideration, codelets connected together in a loop need to be mapped

to a module that would facilitate the reuse of codelets without duplication and allow

the connection mapping to be pipelined ideally. A simple and easy way to avoid this

problem however, is by duplicating codelets for consecutive iterations. But this doesn’t

facilitate the reuse of data structures between iterations and could be costly for loops

with many codelets by resulting in too much parallelism. This solution would only allow

145

for static software pipelining because special signaling instructions would be needed to

indicate another codelet can run and would require scheduling.

Another possible solution would require the use of centralized module wherever

each codelet is executing. This does not need scheduling to be achieved. In this scheme

the module would be a special hardware structure used to map addresses of codelets to

executing units, but it could be created in the executing software. This model would

allow within a close area of processors to dynamically execute each iteration of a loop

with data reuse. This would facilitate software pipelining similar to ones found in

static dataflow schema. The module would most likely need to map dependency arcs

to special FIFO queues to be able to enable these features. As long as there were

enough modules per area of processors the communication costs would be small and

not congested. Overall this solution has the benefit of only needing to be implemented

at the system code level. This means it does not require compiler support. However,

the downside is the use of a specific module of code in the system may be slower than

a static solution due to the overhead of the module.

9.2.1.2 Codelet Pipelining

Pipelining can be also tackled at the codelet level without thinking about how

to meet the data-driven demands, but at a scheduling level to facilitate codelet parallel

execution as opposed to data reuse. Such solutions would reuse traditional instruction

level software pipelining and expand their concepts to many-core. These solutions are

static only and would require duplicating actors and would not have reuse of signaling

slots. When codelets execute in a loop schema, if the number of codelets per iteration

is increased and reordered, the number of codelets per iteration execution increases.

Thus, parallelism increases in theory. However, codelets should work like dataflow, and

thus each iteration of codelets should be able to execute as long as dependencies are

met.

It is important for a many-core system to have much parallelism, and we advo-

cate that parallelism could be increased with these techniques. And these technique

146

should help traditional code loops that create codelets. The main idea being explored

here is Single-dimension software pipelining at the multi-core level as done by Douillet

[40]. In general these ideas require Lamport clocks and should run well across many

cores. Basically the pipeline schedule produced by SSP is broken up and scheduled

across many cores with the synchronization being done by the Lamport clocks. It ap-

pears this idea can be generalized to other software pipelining algorithms other than

SSP. This is the only known multi-core software pipelining solution at the time and is

very coarse grain. So a very important question to answer is, will this solution provide

a benefit when instructions are coarsened in size like in codelets? I.E. will enough

parallelism exist for benefits? Or is locality more important?

Perhaps a hybrid solution the combines Douillet’s ideas with the features of dy-

namic data-driven pipeline will prove even more beneficial. Code could be reorganized

statically using an SSP-like algorithm and given a schedule. Then, we chunk the itera-

tions to be run in parallel. However, instead of using the Lamport clocks to synchronize

we could establish a centralized module to execute N amount of chunks at a time on

N number of cores that are connected in pipelined loop. This would allow the benefits

of parallelism with the locality and reuse of data-driven pipelining. This would reduce

parallelism amount of a maximum parallel schedule though. It’s my personal belief

that data should be kept local as much as possible and parallelism should be focus on

using processors close to data as possible.

9.2.2 Additional

Finally, I would like to provide a detailed analysis of performance per optimiza-

tion to detail how each optimization contributes to performance.

147

BIBLIOGRAPHY

[1] S. Y. Borkar, P. Dubey, K. C. Kahn, D. J. Kuck, H. Mulder, E. R. M.
Ramanathan, V. Thomas, I. Corporation, and S. S. Pawlowski, “Intel
Processor and Platform Evolution for the Next Decade Executive Sum-
mary,” 2005. [Online]. Available: http://epic.hpi.uni-potsdam.de/pub/Home/
TrendsAndConceptsII2010/HW Trends borkar 2015.pdf

[2] Nvidia, “NVIDIA’s Next Generation CUDA Compute Architecture: Kepler
GK110,” 2012. [Online]. Available: http://www.nvidia.com/content/PDF/
kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

[3] ——, “NVIDIA’s Next Generation CUDA Compute Architecture: Fermi,” 2009.
[Online]. Available: http://www.nvidia.com/content/PDF/fermi white papers/
NVIDIA Fermi Compute Architecture Whitepaper.pdf

[4] Intel, “The Intel Xeon Phi Coprocessor 5110P,” 2012. [Online].
Available: http://www.intel.com/content/dam/www/public/us/en/documents/
solution-briefs/high-performance-xeon-phi-coprocessor-brief-2.pdf

[5] ——, “Transforming Mission-Critical Computing,” 2011. [On-
line]. Available: http://www.intel.com/content/dam/doc/product-brief/
xeon-e7-transforming-mission-critical-computing-brief.pdf

[6] Tilera, “TILE64 Processor Product Brief,” 2008. [Online]. Available: http://www.
tilera.com/sites/default/files/productbriefs/PB010 TILE64 Processor A v4.pdf

[7] Texas Instruments, “TMS320C66x Multicore DSPs for High-Performance
Computing,” 2011. [Online]. Available: http://www.ti.com/lit/ml/sprt619/
sprt619.pdf

[8] AMD, “AMD Opteron 6000 Series Platform,” 2012. [Online]. Available:
http://www.amd.com/us/Documents/AMD Opteron 6000 Comparison.pdf

[9] ARM, “ARM11MPCore Processor,” 2012. [Online]. Available: http://www.arm.
com/products/processors/classic/arm11/arm11-mpcore.php

[10] B. Sinharoy, R. Kalla, W. J. Starke, H. Q. Le, R. Cargnoni, J. A. Van Norstrand,
B. J. Ronchetti, J. Stuecheli, J. Leenstra, G. L. Guthrie, D. Q. Nguyen, B. Blaner,
C. F. Marino, E. Retter, and P. Williams, “Ibm power7 multicore server proces-
sor,” IBM Journal of Research and Development, vol. 55, no. 3, pp. 1:1 –1:29,
may-june 2011.

148

http://epic.hpi.uni-potsdam.de/pub/Home/TrendsAndConceptsII2010/HW_Trends_borkar_2015.pdf
http://epic.hpi.uni-potsdam.de/pub/Home/TrendsAndConceptsII2010/HW_Trends_borkar_2015.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/high-performance-xeon-phi-coprocessor-brief-2.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/high-performance-xeon-phi-coprocessor-brief-2.pdf
http://www.intel.com/content/dam/doc/product-brief/xeon-e7-transforming-mission-critical-computing-brief.pdf
http://www.intel.com/content/dam/doc/product-brief/xeon-e7-transforming-mission-critical-computing-brief.pdf
http://www.tilera.com/sites/default/files/productbriefs/PB010_TILE64_Processor_A_v4.pdf
http://www.tilera.com/sites/default/files/productbriefs/PB010_TILE64_Processor_A_v4.pdf
http://www.ti.com/lit/ml/sprt619/sprt619.pdf
http://www.ti.com/lit/ml/sprt619/sprt619.pdf
http://www.amd.com/us/Documents/AMD_Opteron_6000_Comparison.pdf
http://www.arm.com/products/processors/classic/arm11/arm11-mpcore.php
http://www.arm.com/products/processors/classic/arm11/arm11-mpcore.php

[11] J. Duato, F. Silla, B. Holden, P. Miranda, J. Underhill, M. Cavalli,
S. Yalamanchili, U. Bruning, and H. Froning, “Scalable Computing: Why and
How,” 2010. [Online]. Available: http://www.hypertransport.org/docs/uploads/
HNC WP 33976512.pdf

[12] Y. P. Zhang, T. Jeong, F. Chen, H. Wu, R. Nitzsche, and G. Gao, “A Study of
the On-Chip Interconnection Network for the IBM Cyclops64 Multi-Core Archi-
tecture,” in Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.
20th International, april 2006, p. 10 pp.

[13] Intel, “An Introduction to the Intel QuickPath Interconnect,” 2009.
[Online]. Available: http://www.intel.com/content/dam/doc/white-paper/
quick-path-interconnect-introduction-paper.pdf

[14] K. B. Theobald, “Definition of the EARTH Model,” 1999, technical Memo.

[15] G. R. Gao, J. Suetterlein, and S. Zuckerman, “Toward an Execution Model for
Extreme-Scale Systems - Runnemede and Beyond,” April 2011, technical Memo.

[16] J. B. Dennis, J. B. Fosseen, and J. P. Linderman, “Data flow schemas,” pp. 187–
216, 1974. [Online]. Available: http://dl.acm.org/citation.cfm?id=646795.704865

[17] J. B. Dennis, “Programming Generality, Parallelism, and Computer Architecture,”
pp. 484–492, 1969.

[18] R. M. Karp and R. E. Miller, “Properties of a Model for Parallel
Computations: Determinacy, Termination, Queueing,” SIAM Journal on
Applied Mathematics, vol. 14, no. 6, pp. 1390–1411, 1966. [Online]. Available:
http://link.aip.org/link/?SMM/14/1390/1

[19] J. E. Rodrigues and J. E. Rodriguez Bezos, “A Graph Model for Parallel Compu-
tations,” Cambridge, MA, USA, Tech. Rep., 1969.

[20] D. A. Adams, “A Computation Model with Data Flow Sequencing,” Ph.D. dis-
sertation, Stanford, CA, USA, 1969, aAI6913919.

[21] P. Whiting and R. Pascoe, “A history of data-flow languages,” Annals of the
History of Computing, IEEE, vol. 16, no. 4, pp. 38 –59, winter 1994.

[22] J. M. P. Cardoso, “Dynamic Loop Pipelining in Data-Driven Architectures,” pp.
106–115, 2005. [Online]. Available: http://doi.acm.org/10.1145/1062261.1062283

[23] J. B. Dennis and D. P. Misunas, “A Preliminary Architecture for a Basic
Data-Flow Processor,” SIGARCH Comput. Archit. News, vol. 3, pp. 126–132,
December 1974. [Online]. Available: http://doi.acm.org/10.1145/641675.642111

149

http://www.hypertransport.org/docs/uploads/HNC_WP_33976512.pdf
http://www.hypertransport.org/docs/uploads/HNC_WP_33976512.pdf
http://www.intel.com/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
http://www.intel.com/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
http://dl.acm.org/citation.cfm?id=646795.704865
http://link.aip.org/link/?SMM/14/1390/1
http://doi.acm.org/10.1145/1062261.1062283
http://doi.acm.org/10.1145/641675.642111

[24] A. Arvind and K. P. Gostelow, “The U-Interpreter,” Computer, vol. 15, pp.
42–49, February 1982. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1318726.1319193

[25] G. M. Papadopoulos, “Monsoon: an Explicit Token-Store Architecture,” pp. 82–
91, 1990.

[26] Z. Paraskevas, “Code Generation for Dataflow Software Pipelining,” Master’s the-
sis, Montreal, Quebec, Canada, 1989.

[27] G. R. Gao, “A Pipelined Code Mapping Scheme for Static Data Flow Computers,”
Ph.D. dissertation, Cambridge, MA, USA, 1986.

[28] G. Gao, H. Hum, and Y.-B. Wong, “Parallel Function Invocation in a Dynamic
Argument-Fetching Dataflow Architecture,” in Databases, Parallel Architectures
and Their Applications,. PARBASE-90, International Conference on, mar 1990,
pp. 112 –116.

[29] J. Rumbaugh, “A Data Flow Multiprocessor,” Computers, IEEE Transactions on,
vol. C-26, no. 2, pp. 138 –146, feb. 1977.

[30] G. M. Papadopoulos, Implementation of a General-Purpose Dataflow Multiproces-
sor. Cambridge, MA, USA: MIT Press, 1991.

[31] D. E. Culler, K. E. Schauser, and T. v. Eicken, “Two Fundamental
Limits on Dataflow Multiprocessing,” in Proceedings of the IFIP WG10.3.
Working Conference on Architectures and Compilation Techniques for Fine and
Medium Grain Parallelism, ser. PACT ’93. Amsterdam, The Netherlands,
The Netherlands: North-Holland Publishing Co., 1993, pp. 153–164. [Online].
Available: http://dl.acm.org/citation.cfm?id=647025.714362

[32] J. Ramanujam, “Optimal Software Pipelining of Nested Loops,” pp. 335–342,
1994.

[33] B. R. Rau and J. A. Fisher, “ Instruction-Level Parallel Processing: History,
Overview and Perspective,” 1992.

[34] B. R. Rau, “Iterative Modulo Scheduling: An Algorithm for Software Pipelining
Loops,” pp. 63–74, 1994.

[35] V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan, “Software Pipelining,” 1995.

[36] H. Rong, Z. Tang, R. Govindarajan, A. Douillet, and G. R. Gao,
“Single-dimension Software Pipelining for Multidimensional Loops,” ACM
Trans. Archit. Code Optim., vol. 4, March 2007. [Online]. Available:
http://doi.acm.org/10.1145/1216544.1216550

150

http://dl.acm.org/citation.cfm?id=1318726.1319193
http://dl.acm.org/citation.cfm?id=1318726.1319193
http://dl.acm.org/citation.cfm?id=647025.714362
http://doi.acm.org/10.1145/1216544.1216550

[37] H. Rong, A. Douillet, R. Govindarajan, and G. R. Gao, “Code Generation for
Single-Dimension Software Pipelining of Multi-dimensional Loops,” pp. 175–186,
2004.

[38] H. Rong, A. Douillet, and G. R. Gao, “Register Allocation for Software
Pipelined Multi-Dimensional Loops,” pp. 154–167, 2005. [Online]. Available:
http://doi.acm.org/10.1145/1065010.1065030

[39] A. Douillet and G. R. Gao, “Register Pressure in Software-Pipelined Loop Nests:
Fast Computation and Impact on Architecture Design,” 2005.

[40] ——, “Software-Pipelining on Multi-Core Architectures,” pp. 39–48, 2007.
[Online]. Available: http://dx.doi.org/10.1109/PACT.2007.64

[41] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
Y. Zhou, “Cilk: An Efficient Multithreaded Runtime System,” in Principles and
Practice of Parallel Programming, 1995, pp. 207–216.

[42] R. D. Blumofe and C. E. Leiserson, “Scheduling Multithreaded Computations by
Work Stealing,” in IEEE Symposium on Foundations of Computer Science, 1994,
pp. 356–368.

[43] Intel, “Intel Cilk Plus Language Extension Specification Version 1.1,” 2011.
[Online]. Available: http://software.intel.com/sites/default/files/m/4/e/7/3/1/
40297-Intel Cilk plus lang spec 2.htm

[44] “Habanero Java,” 2009. [Online]. Available: http://habanero.rice.edu/hj

[45] Intel, “Intel Thread Building Blocks Reference Manual,” 2012. [Online].
Available: http://threadingbuildingblocks.org/uploads/81/91/Latest%20Open%
20Source%20Documentation/Reference.pdf

[46] J. Reinders, Intel Threading Building Blocks - Outfitting C++ for Multi-Core
Processor Parallelism, 2007.

[47] A. Kukanov, “The Foundations for Scalable Multicore Software in Intel Threading
Building Blocks,” Intel Technology Journal, vol. 11, 2007.

[48] T. Gautier, X. Besseron, and L. Pigeon, “KAAPI: A Thread Scheduling Runtime
System for Data Flow Computations on Cluster of Multi-processors,” in Interna-
tional Symposium on Symbolic and Algebraic Computation, 2007, pp. 15–23.

[49] “SWARM Beta.” [Online]. Available: http://www.etinternational.com/index.
php/products/swarmbeta/

[50] “SWARM Case Studies.” [Online]. Available: http://www.etinternational.com/
index.php/products/swarmbeta/swarm-case-studies/

151

http://doi.acm.org/10.1145/1065010.1065030
http://dx.doi.org/10.1109/PACT.2007.64
http://software.intel.com/sites/default/files/m/4/e/7/3/1/40297-Intel_Cilk_plus_lang_spec_2.htm
http://software.intel.com/sites/default/files/m/4/e/7/3/1/40297-Intel_Cilk_plus_lang_spec_2.htm
http://habanero.rice.edu/hj
http://threadingbuildingblocks.org/uploads/81/91/Latest%20Open%20Source%20Documentation/Reference.pdf
http://threadingbuildingblocks.org/uploads/81/91/Latest%20Open%20Source%20Documentation/Reference.pdf
http://www.etinternational.com/index.php/products/swarmbeta/
http://www.etinternational.com/index.php/products/swarmbeta/
http://www.etinternational.com/index.php/products/swarmbeta/swarm-case-studies/
http://www.etinternational.com/index.php/products/swarmbeta/swarm-case-studies/

[51] C. Keltcher, K. McGrath, A. Ahmed, and P. Conway, “The AMD Opteron Proces-
sor for Multiprocessor Servers,” Micro, IEEE, vol. 23, no. 2, pp. 66 – 76, march-
april 2003.

[52] V. Sarkar and J. Hennessy, “Partitioning Parallel Programs for Macro-Dataflow,”
in Proceedings of the 1986 ACM conference on LISP and functional programming,
ser. LFP ’86. New York, NY, USA: ACM, 1986, pp. 202–211. [Online]. Available:
http://doi.acm.org/10.1145/319838.319863

[53] OpenMP Architecture Review Board, “OpenMP Application Program Interface
Version 3.1,” May 2011. [Online]. Available: http://www.openmp.org/
mp-documents/OpenMP3.1.pdf

[54] D. Orozco, “TIDeFlow: A Dataflow-Inspired Execution Model for High Perfor-
mance Computing Programs,” Ph.D. dissertation, 2012.

[55] Intel, “Intel Core2 Duo Processor E6000 Series,” 2011. [Online]. Available:
http://download.intel.com/support/processors/core2duo/sb/core E6000.pdf

[56] ——, “Intel Core i7-2600 Desktop Processor Series,” 2012. [Online]. Available:
http://download.intel.com/support/processors/corei7/sb/core i7-2600 d.pdf

[57] D. Leijen, W. Schulte, and S. Burckhardt, “The Design of a Task Parallel Library,”
in 24th ACM SIGPLAN conference on Object oriented programming systems lan-
guages and applications (OOPSLA’09), Orlando, FL, Oct. 2009, also appeared in
Sigplan Not., 44(10) 227–242, 2009.

[58] Microsoft, “Task Parallelism (Task Parallel Library), year = 2011, url =
http://msdn.microsoft.com/en-us/library/vstudio/dd537609(v=vs.100).aspx.”

[59] Frank Schlimbach, “Intel Concurrent Collections for C++ 0.8 for Windows
and Linux,” 2012. [Online]. Available: http://software.intel.com/en-us/articles/
intel-concurrent-collections-for-cc

[60] UPC Consortium, “UPC Language Specications V 1.2,” 2005. [Online]. Available:
http://upc.gwu.edu/docs/upc specs 1.2.pdf

[61] W. W. Carlson, J. M. Draper, and D. E. Culler, “S-246, 187 Introduction to UPC
and Language Specification.”

[62] “Partitioned Global Address Space,” 2012. [Online]. Available: http:
//www.pgas.org/

[63] Vijay Saraswat and Bard Bloom and Igor Peshansky and Olivier Tardieu and
David Grove, “X10 Language Specication Version 2.2,” 2012. [Online]. Available:
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf

152

http://doi.acm.org/10.1145/319838.319863
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://download.intel.com/support/processors/core2duo/sb/core_E6000.pdf
http://download.intel.com/support/processors/corei7/sb/core_i7-2600_d.pdf
http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc
http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc
http://upc.gwu.edu/docs/upc_specs_1.2.pdf
http://www.pgas.org/
http://www.pgas.org/
http://x10.sourceforge.net/documentation/languagespec/x10-latest.pdf

[64] T. Altenkirch, C. Mcbride, and J. Mckinna, “Why Dependent Types Matter,” in
In preparation, http://www.e-pig.org/downloads/ydtm.pdf, 2005.

[65] Cray Inc, “Chapel Language Specication Version 0.9.1,” 2012. [Online]. Available:
http://chapel.cray.com/spec/spec-0.91.pdf

[66] Eric Allen et al., “The Fortress Language Specication,” 2007. [Online]. Available:
http://labs.oracle.com/projects/plrg/Publications/fortress1.0beta.pdf

[67] International Organization for Standardization, “Fortran 2008 Draft International
Standard,” 2010. [Online]. Available: ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/
N1830.pdf

[68] R. W. Numrich and J. Reid, “Co-Array Fortran for parallel programming,” ACM
FORTRAN FORUM, vol. 17, no. 2, pp. 1–31, 1998.

[69] J. Mellor-Crummey, L. Adhianto, and W. N. S. III, “A new vision for coarray
Fortran,” pp. 1–9, 2009.

[70] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and E. Apr,
“Advances, Applications and Performance of the Global Arrays Shared Memory
Programming Toolkit,” International Journal of High Performance Computing
Applications, vol. 20, pp. 203–231, 2006.

[71] J. B. Dennis, “First vVrsion of a Data Flow Procedure Language,” pp. 362–376,
1974. [Online]. Available: http://dl.acm.org/citation.cfm?id=647323.721501

[72] G. R. Gao, H. H. J. Hum, and Y.-B. Wong, “Towards Efficient Fine-Grain
Software Pipelining,” SIGARCH Comput. Archit. News, vol. 18, pp. 369–379,
June 1990. [Online]. Available: http://doi.acm.org/10.1145/255129.255177

153

http://chapel.cray.com/spec/spec-0.91.pdf
http://labs.oracle.com/projects/plrg/Publications/fortress1.0beta.pdf
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1830.pdf
ftp://ftp.nag.co.uk/sc22wg5/N1801-N1850/N1830.pdf
http://dl.acm.org/citation.cfm?id=647323.721501
http://doi.acm.org/10.1145/255129.255177

Appendix A

ADDITIONAL BENCHMARK RESULTS

This section benchmarks Tapestry with many different configurations. It pro-

vides more details and analysis on Tapestry dependencies, performance of Tapestry

dependencies when used as glue for OS threads, performance of Tapestry in a hyper-

threading environment, and redundant graph elimination performance benefits.

For all these tests I benchmark only on X86-64. Initially, I compare Tapestry

dependencies when it is configured to use the Tapestry Fibers runtime for Core 2

and Core i7. During the Core 2 tests, I compare Tapestry Runtime System using

dependencies to the fork/join model. I vary for Tapestry thread count and core count

showing that Tapestry is fully scalable. Lastly, I evaluate Tapestry dependencies when

used with operating system threads compared to just operating system threads

A.1 Case Study for Core 2

These benchmarks are run using Core 2 platform and test every optimization

available to Tapestry instead of just he best to see how these optimizations affect

performance.

A.1.1 Runtime Micro-benchmarks

In this section we compare the performance of dependencies to that of threads

for the same code. We note the performance of the dependency version to that of the

none dependency version and show its slowdown based on work relativity.

A.1.1.1 Serial Overhead for Dependencies

In this figure we show that slowdown compared to the none dependency ver-

sion comparing Locality Overdrive to Locality Overdrive dependencies and regular to

154

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

O
V

E
R

H
E

A
D

 P
E

R
C

E
N

T
A

G
E

NUMBER OF THREADS (HUNDRED THOUSANDS)

Dependency Overhead

Overhead Overhead LO

Figure A.1: Serial Overhead for Dependencies

regular dependencies with memory optimizations on. In this test, I do thread creation

where recursion is used to create dependent threads vs using dependencies to do the

same. This test is designed to compare only the overhead without the extra work fac-

tors due to split-phase transactions. We can see the overhead of dependencies is very

low for LO and not terribly bad without any optimizations.

A.1.1.2 Fibonacci Overhead for Dependencies

In this Fibonacci test we expand upon the recursive algorithm by breaking each

operation into two which makes the work even finer. As expected, the dependency

version is about 1.5 to 2.5x slower (Figure A.2) due to having to execute two times the

amount of threads at a even finer scale than the recursive version.

A.1.1.3 N-Queens Overhead for Dependencies

Similar to the Fibonacci test, we break the recursive algorithm into finer parts

and do about double the amount of work. We note that N-Queens is much coarser

155

0

50

100

150

200

250

300

350

400

450

30 31 32 33 34 35 36 37 38 39 40

O
V

E
R

H
E

A
D

 P
E

R
C

E
N

T
A

G
E

FIBONACCI NUMBER

Fibonacci Split-Phase Overhead

Overhead LO Overhead

Figure A.2: Fibonacci Overhead for Dependencies

0

50

100

150

200

10 11 12 13 14 15 16

O
V

E
R

H
E

A
D

 P
E

R
C

E
N

T
A

G
E

BOARD SIZE

N-Queens Split-Phase Overhead

Overhead LO Overhead

Figure A.3: N-Queens Overhead for Dependencies

156

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

O
V

E
R

H
E

A
D

 P
E

R
C

E
N

T
A

G
E

SORT SIZE (10 MILLIONS)

Quicksort Dependency Overhead

Overhead LO Overhead

Figure A.4: Quicksort Overhead for Dependencies

compared to Fibonacci. As expected the results show that N-Queens performs around

1.5 to 2x slower as indicated in Figure A.3.

A.1.1.4 Quicksort Overhead for Dependencies

For this test, the Quicksort is 1.3 to 1.5x slower using the aggregate thread

as shown in Figure A.4. Each thread has to signal the thread which creates lots of

contention on the aggregate thread. If we switched the implementation into a tree

barrier, the performance probably would be much better.

A.1.1.5 Monte Carlo Overhead for Dependencies

In Figure A.5, the results show that overhead is minimal and in some cases

dependencies out perform threads. This is because when finishing, the first available

core can execute the finish thread to report the results whereas in the non-dependency

version, the core that created the threads waits to be woken and told everyone is done.

157

-4

-3

-2

-1

0

1

2

3

1 2 3 4 5 6 7 8 9 10

O
V

E
R

H
E

A
D

 P
E

R
C

E
N

T
A

G
E

NUMBER OF PATHS (HUNDRED THOUSANDS)

Monte Carlo Dependency Overhead

Dependency Dep. For Static Dep. For Hybrid

Figure A.5: Monte Carlo Overhead for Dependencies

Furthermore, the Monte-Carlo test is very macro scaled so the overhead of the signaling

is minimized to the amount of work.

A.1.2 Runtime Benchmarks

In this section we benchmark the Super Locality Optimization (SLO) and Local-

ity Optimization (LO) for fork/join algorithms on a dual core and quad core machines

to show the advantage of our optimizations for multi-core machines. We compare well

known runtime systems against Tapestry when it is configured with the Tapestry Fibers

runtime system. The two runtime systems we compare against are Intel Cilk Plus and

Intel OpenMP. These tests only use the Fork/Join model here. All the algorithms are

exactly the same across all three runtime systems. All these test use the fast stack

based memory optimizations. All the test in this section run Windows 8 using a Core

2 Duo at 2.4 GHz with 6GB of ram except the scalability tests near the end of the

section which use a Core I7. For both systems, I use the Parallel Studio XE 2011

compiler for Windows on these tests with O2 optimizations.

158

0

0.2

0.4

0.6

0.8

1

1.2

30 31 32 33 34 35 36 37 38 39 40

S
P

E
E

D
U

P

FIBONACCI NUMBER

Fibonacci

Cilk Plus Tapestry Deque Tapestry Deque LO

Tapestry Deque SLO OpenMP

Figure A.6: Fibonacci Fork/Join

A.1.2.1 Optimizations for Dependencies

Memory optimizations refer to the use of a memory manager instead of the

system memory manager to allocate memory for the dependencies. A dynamic split-

phase transaction means that one branch is completed recursively for the operation

using dynamic continuations, and the other is spawned as a thread.

A.1.2.2 Fibonacci Fork/Join

The Fibonacci test is a recursive very fine grain test with little data passed

between threads. Here the results show that Tapestry and Cilk Plus are significantly

faster than OpenMP’s task framework for recursive tasks. We can see that by bypassing

the lower runtime and binding the current threads to running core with a Locality

Optimization (LO), we are able to achieve significant relative speedup compared to

Cilk Plus and OpenMP. Additionally, when forcibly binding even further and skip the

Tapestry Thread creation using a recursive call to implement the function with Super

159

0

0.2

0.4

0.6

0.8

1

1.2

8 9 10 11 12 13 14 15 16

S
P

E
E

D
U

P

BOARD SIZE

N-queens

Cilk Plus Tapestry Deque Tapestry Deque LO

Tapestry Deque SLO OpenMP

Figure A.7: N-Queens Fork/Join

Locality Optimization (SLO) we nearly double the speed again and achieve a nearly

5% gain over the sequential implementation.

The results seen in Figure A.6 show that Tapestry’s performance is on par with

Cilk Plus for fork/join Parallelism for just a small task. The results indicate that

skipping the scheduler using LO increases performance over Cilk Plus and skipping

memory management using SLO increases further performance. Since our model of

parallelism is similar to Cilk Plus’ these optimizations could be employed to improve

Cilk Plus’ performance for very fine grain tasks.

A.1.2.3 N-Queens Fork/Join

Here the benchmarks as seen in Figure A.7 indicate that for coarser tasks

OpenMP is still significantly slower than Tapestry and Cilk Plus for a natural di-

vide and conquer algorithm. Furthermore, Tapestry is still able to achieve around a

10% speedup over the sequential for relatively small and large problem sizes.

160

0.9

1.1

1.3

1.5

1.7

1.9

1 2 3 4 5 6 7 8 9 10

S
P

E
E

D
U

P

SORT SIZE (10 MILLIONS)

Quicksort

Cilk Plus Tapestry Deque Tapestry Deque LO

Tapestry Deque SLO Intel OpenMP

Figure A.8: Quicksort Fork/Join

A.1.2.4 Quicksort Fork/Join

Quicksort, with its natural mixture of coarse and fine-grain tasks, interestingly

shows that OpenMP, Cilk Plus, and Tapestry works as well as a sequential implemen-

tation. However, Tapestry’s performance with optimizations is impressive with around

1.7 speedup over the sequential task for all problem sizes as seen in Figure A.8.

Tapestry out performs Cilk Plus on a mix of coarse and fine grain tasks using

the SLO and LO optimizations.

A.1.2.5 Monte Carlo Fork/Join

Our static scheduler for OpenMP already performs on par with Cilk Plus as

indicated in Figure A.9, but the Hybrid scheduler that uses macro threads with various

sizes for loop work per thread outperforms all the schedulers.

161

1.92

1.94

1.96

1.98

2

2.02

2.04

1 2 3 4 5 6 7 8 9 10

S
P

E
E

D
U

P

NUMBER OF PATHS (HUNDRED THOUSANDS)

Monte Carlo

Intel OpenMP Cilk Plus For

Tapestry For Static Tapestry For Hybrid

Figure A.9: Monte Carlo Fork/Join

1.82

1.84

1.86

1.88

1.9

1.92

1.94

1 2 3 4 5 6 7 8 9 10

S
P

E
E

D
U

P

NUMBER OF PATHS (HUNDRED THOUSANDS)

Monte Carlo Starvation

Tapestry Fork Tapestry Fork LO Tapestry Fork SLO

Figure A.10: SLO Starvation Monte Carlo

162

A.1.2.6 Monte Carlo Starvation

As referenced in Figure A.10, Tapestry LO and SLO performs well in this task

taking 2-5% hit over Tapestry for these embarrassingly parallel large tasks despite the

potential for starvation introduced by the optimizations. Tapestry dependencies also

perform well. For this task we see a 5-8% slowdown over our for loop versions.

In the following sections, we compare dependencies in runtime threads to the

slowest runtime (OpenMP). We note that runtime threads are much faster than operat-

ing system threads. In all these algorithms we are compare fork/join to a dependency

divide a conquer approach that uses split phase transactions or a special aggregate

threads. We can apply three static optimizations to dependencies: LO, Memory, and

Dynamic Split Phases. SLO is not applicable because it is implemented by replacing

thread glue with recursive calls which is not possible when dependencies need to be

met.

A.1.2.7 Fibonacci Dependencies

As seen in Figure A.11, the two most important optimization here are the Dy-

namic Split Phase which reduces the amount of work significantly and LO which reduces

scheduler overhead. If memory management is not used, the optimizations have little

affect on the performance alone. However, they increase the performance by 2x. We

are producing about two times the amount of threads as the thread only version which

speaks volumes on the performance.

A.1.2.8 N-Queens Dependencies

Figure A.12 shows the performance is still very good for a more coarse grain task

like N-Queens with a board size of 16. We see a similar pattern to which optimizations

are the best compared with the Fibonacci. In this benchmark, we are still producing

about double the amount of work due to the Dynamic Split Phase transaction compared

with the thread only version.

163

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

30 31 32 33 34 35 36 37 38 39 40

S
P

E
E

D
U

P

FIBONACCI NUMBER

Fibonacci Split-Phase

Tapestry Dynamic Split Phase LO MEM Tapestry Dynamic Split Phase MEM

Tapestry Split Phase LO MEM Tapestry Split Phase MEM

Tapestry Dynamic Split Phase LO Tapestry Dynamic Split Phase

Tapestry Split Phase LO Tapestry Split Phase

Figure A.11: Fibonacci Dependencies

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

10 11 12 13 14 15 16

S
P

E
E

D
U

P

BOARD SIZE

N-Queens Codelets

Tapestry Dynamic Split Phase LO MEM Tapestry Dynamic Split Phase MEM

Tapestry Split Phase LO MEM Tapestry Split Phase MEM

Tapestry Dynamic Split Phase LO Tapestry Dynamic Split Phase

Tapestry Split Phase LO Tapestry Split Phase

Figure A.12: N-Queens Dependencies

164

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1 2 3 4 5 6 7 8 9 10

S
P

E
E

D
U

P

SORT SIZE (10 MILLIONS)

Quicksort

Tapestry Dep. LO MEM Tapestry Dep. MEM

Tapestry Dep. LO Tapestry Dep.

Figure A.13: Quicksort Scalability for Dependencies

A.1.2.9 Quicksort Dependencies

The dependency quicksort uses an aggregate thread to indicate the work is

finished. It produces the same amount of work as the threaded version, but with less

memory requirements because the threads do not need to stick around unless we use the

stack based memory management with hints. The performance shown in Figure A.13

is on par with the sequential version and OpenMP. It is within 10% the performance

of Cilk Plus and 70% of Tapestry Threads only.

A.1.2.10 Monte Carlo Dependencies

In the Monte Carlo test we compare an embarrassingly parallel task using de-

pendencies. The Tapestry dependencies are created in a loop and use an aggregate

thread to indicate the work is finished. The Static Dependencies For version creates

a number of macro threads equal to the number of cores with the for work evenly

split between cores. The Hybrid Dependencies For version creates more dependencies

with less work allowing for some to be stolen. A completely dynamic version would

165

1.89

1.94

1.99

2.04

1 2 3 4 5 6 7 8 9 10

S
P

E
E

D
U

P

NUMBER OF PATHS (HUNDRED THOUSANDS)

Monte Carlo

Intel OpenMP Cilk Plus For

Tapestry Dep. For Static Tapestry Dep. For Hybrid

Tapestry Dep.

Figure A.14: Monte Carlo Dependencies

equivalent to the Tapestry dependency version. The results are good as seen in Figure

A.14.

A.1.3 OS Benchmarks

These tests are configured to use Tapestry as an over all layer to operating

system threads. Tapestry’s layer provides new features to the strict C style threads

including the use of dependencies. We evaluate the performance of using fork/join

synchronization in comparison of using dependencies. These unique tests are designed

to show the advantage of using dependencies in a context switching environment for a

large number of threads. The baseline is fork/join for all the operating system tests. I

run these tests in Windows 8 64-bit using an Intel Core 2 Duo at 2.4 GHz with 6GB

of ram. I use the Parallel Studio XE 2011 compiler for Windows on these tests with

\O2 optimizations.

166

0

50

100

150

200

250

40 80 120 160 200

S
P

E
E

D
U

P

THREAD COUNT

Thread Create Fork/Join vs Dependencies

Dependency Speedup

Figure A.15: Spawn Test: The baseline is fork/join.

A.1.3.1 Spawn Test

This test spawns threads from a loop. Each thread computes a random number,

then spawns an additional worker thread that updates the value. The random number

threads wait for its results back from the worker, updates it, and print the result. For

the dependency version of the test, we create three threads: the random number thread,

the update thread, and the print thread. A print thread depends on a update thread

which depends on a random number thread. For this dependency synchronization

pattern the dependency version produces 33% more threads, but guarantees it will

have at most only half the number of threads alive at once. This reduces the memory

requirements in a half. The results for this test are seen in Figure A.15.

A.1.3.2 Fibonacci

This test performs a recursive Fibonacci with each thread being a separate

recursive call. So for fib = N, there will be two threads spawned with fib=N-1 and

N-2. However, we optimize here and call one thread using recursion without spawning.

167

0

20

40

60

80

100

120

140

4 5 6 7 8 9 10 11 12

S
P

E
E

D
U

P

FIBONACCI NUMBER

Fibonacci

Split-Phase Speedup

Figure A.16: Fibonacci: The baseline is fork/join.

For the dependency version, the addition and spawning are split into two separate

threads. The addition thread is dependent on the two spawned threads. The addition

thread can be thought of as a continuation of the spawning thread. Because of this,

the thread signaling information needs to be copied over via the dynamic split-phase

transaction. Additionally, the dynamic split-phase transaction allows for one recursive

call to be done without spawning. Due to this fact, the dependency version is spawning

twice the number of threads, but at most requires one half the memory. This test is

very fine grain, with barely any operations performed. The results for this test are seen

in Figure A.16.

A.1.3.3 N-Queens

The N-Queens benchmark is similar to Fibonacci. It is a recursive back off

algorithm. We only do half the board to take care of rotations and reflections. For

each position we mark off where a queen is and has already been placed and recursively

place more queens until we find a solution or not. When a solution is found: a 1 or 0

168

0

50

100

150

200

5 6 7 8

S
P

E
E

D
U

P

BOARD SIZE

N-Queens

Dependency Speedup

Figure A.17: N-Queens: The baseline is fork/join.

is returned, and those values are added up similar to the Fibonacci application. The

difference here is that N-Queens can spawn a variable and larger number of threads for

each thread which reduces in size as you move toward the leaf nodes. Furthermore, the

test is less balanced meaning certain threads can produce more work than the other

threads. Also the implementation uses bit-fields and is far more coarse grain than

Fibonacci due to the thread spawning work and board updating. The results for this

test are seen in Figure A.17.

A.1.3.4 Quicksort

The last test done is a quicksort recursively. Each block of the sort is done by

a thread. So initially the work is very coarse, but as the algorithm proceeds toward

the leaf nodes, it becomes much finer. Each thread waits for their child to finish using

a join. The dependency version uses an aggregate thread which all threads signal to

indicate their work is finished; thus, they do not need to wait. The results for this test

are seen in Figure A.18.

169

0

50

100

150

200

250

300

350

400

450

10 20 30 40 50 60 70 80 90 100

S
P

E
E

D
U

P

SORT SIZE

Quicksort

Dependency Speedup

Figure A.18: Quicksort: The baseline is fork/join.

All the results show a superior advantage for using dependencies vs the fork/join

model for finer-grain parallelism in preemptive operating system environment with

speedups in the range of 80 to 400 times with much less memory requirements. Analysis

indicates, the advantage comes from the fact that the fork/join model keeps parent

threads alive while children work thus increasing the overall number of threads alive at

any given one time which increases the amount of time spent context switching between

threads. However, in the dependency mode parent threads will exit after completing

all useful work leaving the operating system to context switch only on threads doing

useful work. In general, the fork/join models are much easier to code because one

doesn’t need to split threads to handle end states.

A.1.4 Tree Reduction Tests

These tests show the benefit of reducing a tree based search into a graph one

automatically by the Tapestry runtime.

170

0

20000

40000

60000

80000

100000

30 31 32 33 34 35 36 37 38 39 40

S
P

E
E

D
U

P

FIBONACCI NUMBER

Fibonacci Thread Caching

Tapestry Optimal Tapestry Graph

Figure A.19: Fibonacci Automatic Tree to Graph Reduction Speedup

A.1.5 Fibonacci Automatic Tree to Graph Reduction Speedup

Using Tapestry’s redundant graph elimination optimization so that calls to the

same thread with same data are only called once and connected to other states i.e.

redundant states are eliminated, we see significant reduction in Fibonacci’s workload

over the sequential and thus a significant improvement in speed as shown in Figure

A.19. Optimal is speedup achieved by the user employing manual reduction of states

by creating a manual graph vs the Tapestry runtime doing this for them.

A.2 Case Study for Core i7

These were benchmarks run on the Core i7 using hyper-threading. We only run

application specific tests on these machines.

A.2.1 Runtime Benchmarks

The next scalability tests use a Core i7 using up to 8 threads on the 4 core

machine because the machine has hyper threading support.

171

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8

S
P

E
E

D
U

P

THREADS

Fibonacci Absolute Scalability

Tapestry Tapestry SLO Intel Cilk Plus Intel OpenMP

Figure A.20: Fibonacci Scalability: A Fibonacci number of 40 was calculated.

A.2.1.1 Fibonacci Scalability

Here we see that Tapestry’s performance is not much different from Cilk Plus

until we add in the Super Locality Optimization (Figure A.20). We are 5 to 6 times

faster than Cilk Plus with this locality aware optimizations. This indicates very regular

fine-grain tasks benefit much from these optimizations.

A.2.1.2 N-Queens Scalability

This application is more coarse-grain and less regular. As seen in Figure A.21,

for this application we see that Tapestry still does well. In particular, it scales well

with or without optimizations and is on par with Cilk Plus. The speedup relative to

the recursive version is very good with both Tapestry and Cilk Plus almost meeting the

sequential performance. However with optimizations turned on, Tapestry out performs

the sequential at 2 cores and achieves a 2.5x speed up over the sequential when all cores

are utilized.

172

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8

S
P

E
E

D
U

P

THREADS

N-Queens Absolute Scalability

Tapestry Tapestry SLO Intel Cilk Plus Intel OpenMP

Figure A.21: N-Queens Scalability: A board size of 16 was used.

A.2.1.3 Quicksort Scalability

Here the relative scalability is lower for SLO which can be referenced in seen in

Figure A.22 based on the initial performance on one node. Tapestry hits a speedup of

4.03x on this 4 core machine. I note the work begins coarse and in low quantity and

becomes much more available over time but more fine. The coarse work makes up the

bulk of the work performed which affects performance by limiting the overall speedup

gain within the bounds of the first couple of iterations. In addition, the overhead as

tasks become finer also attributes to slowdown.

A.2.1.4 N-Puzzle Scalability

The benchmark as seen in Figure A.23 shows the performance is not very regular.

However, Tapestry SLO still outperforms in all cases.

173

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8

S
P

E
E

D
U

P

THREADS

Quicksort Absolute Scalability

Tapestry Tapestry SLO Intel Cilk Plus Intel OpenMP

Figure A.22: Quicksort Scalability: 55 million integer numbers were sorted.

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8

S
P

E
E

D
U

P

THREADS

N-Puzzle Absolute Scalability

Tapestry Tapestry SLO Intel Cilk Plus Intel OpenMP

Figure A.23: N-Puzzle Scalability: Solution was at a depth of 18 for a 3x3 puzzle.

174

Appendix B

BENCHMARK CODE

B.1 Fork/Join Benchmarks

B.1.1 Thread Spawn

1 int threadSpawnB (int v)

2 {

3 return v+1;

4 }

5

6 int threadSpawnA (int v)

7 {

8 int r e s u l t = spawn threadSpawnB (v) ;

9

10 sync ;

11

12 return r e s u l t ;

13 }

14

15 void threadSpawnTest (void)

16 {

17 for (int i = 0 ; i < COUNT; i++)

18 {

19 spawn threadSpawnA (1) ;

20 }

21

22 sync ;

23 }

B.1.2 Fibonacci

175

1 int

2 f i b (int in)

3 {

4 i f (f i b < 2)

5 return f i b ;

6 else

7 {

8 int x = spawn f i b (in − 2)

9 int y = f i b (in − 1) ;

10

11 sync ;

12

13 return x + y ;

14

15 }

16 }

B.1.3 N-Queens

1 int nqueens (unsigned int RowsToBeFilled , unsigned int ColsToBeFil led ,

2 unsigned int LeftDiag , unsigned int RightDiag , unsigned int row)

3 {

4 unsigned int r , c ;

5 int found = 0 ;

6 int i = 0 ;

7

8 int r e s u l t s [BOARD−1] ;

9

10 unsigned int copyRowsToBeFilled ;

11 unsigned int copyColsToBeFi l led1 ;

12 unsigned int copyLeftDiag1 ;

13 unsigned int copyRightDiag1 ;

14 unsigned int copyRowsToBeFilled1 ;

15

16 copyRowsToBeFilled = RowsToBeFilled ;

17 i f (copyRowsToBeFilled != 0)

176

18 {

19 r = (−((signed) RowsToBeFilled) & RowsToBeFilled) ;

20 RowsToBeFilled &= ˜(r) ;

21 i f (row < MAX−1)

22 {

23 copyColsToBeFi l led1 = ColsToBeFi l led | r ;

24 copyLeftDiag1 = (LeftDiag | r) >> 1 ;

25 copyRightDiag1 = (RightDiag | r) << 1 ;

26 copyRowsToBeFilled1 = MASK & ˜(copyColsToBeFi l led1 | copyLeftDiag1

27 | copyRightDiag1) ;

28 }

29 }

30

31 while (RowsToBeFilled != 0)

32 {

33 r = (−((signed) RowsToBeFilled) & RowsToBeFilled) ;

34 RowsToBeFilled &= ˜(r) ;

35

36 i f (row < MAX−1)

37 {

38

39 unsigned int copyColsToBeFi l led = ColsToBeFi l led | r ;

40 unsigned int copyLeftDiag = (LeftDiag | r) >> 1 ;

41 unsigned int copyRightDiag = (RightDiag | r) << 1 ;

42 unsigned int copyRowsToBeFilled = MASK & ˜(copyColsToBeFi l led |

43 copyLeftDiag | copyRightDiag) ;

44

45 r e s u l t s [i] = spawn nqueens (copyRowsToBeFilled ,

46 copyColsToBeFil led , copyLeftDiag , copyRightDiag , row+1) ;

47

48 i++;

49 }

50 else

51 {

52 found += 1 ;

177

53 }

54 }

55 int s i z e = i ;

56 i f (copyRowsToBeFilled != 0)

57 {

58 i f (row < MAX−1)

59 {

60 found += nqueens (copyRowsToBeFilled1 , copyColsToBeFil led1 ,

61 copyLeftDiag1 , copyRightDiag1 , row+1) ;

62 }

63 else

64 {

65 found += 1 ;

66 }

67 }

68

69 sync

70

71 for (i=s i z e −1; i >= 0 ; i−−)

72 {

73 found += r e s u l t s [i] ;

74 }

75

76 return found ;

77 }

78

79 void nqueensTop ()

80 {

81 unsigned int RowsToBeFilled , ColsToBeFil led , LeftDiag , RightDiag , rows ;

82

83 unsigned int s o l u t i on s , so lut ionsOdd = 0 ;

84

85 rows = ColsToBeFi l led = LeftDiag = RightDiag = 0 ;

86

87 int ha l f = BOARD>>1;

178

88 RowsToBeFilled = (1 << ha l f) − 1 ;

89

90 t imer . s t a r t () ;

91

92 s o l u t i o n s = spawn 2∗nqueens (RowsToBeFilled , ColsToBeFil led ,

93 LeftDiag , RightDiag , rows) ;

94

95 i f (MAX & 1) //half of middle column for odd

96 {

97 RowsToBeFilled = 1 << (MAX >> 1) ;

98 rows = 1 ;

99

100 ColsToBeFi l led = RowsToBeFilled ;

101 LeftDiag = (RowsToBeFilled >> 1) ;

102 RightDiag = (RowsToBeFilled << 1) ;

103 RowsToBeFilled = (RowsToBeFilled − 1) >> 1 ;

104

105 so lut ionsOdd = 2∗ nque en s c i l k (RowsToBeFilled , ColsToBeFil led ,

106 LeftDiag , RightDiag , rows) ;

107 }

108

109 sync ;

110

111 s o l u t i o n s+=solut ionsOdd ;

112 }

B.1.4 Quicksort

1 void qSort (int ∗ begin , int ∗ end)

2 {

3 i f (begin != end) {

4 −−end ; // Exclude last element (pivot) from partition

5 int ∗ middle = std : : p a r t i t i o n (begin , end ,

6 std : : bind2nd (std : : l e s s<int>() , ∗end)) ;

7 using std : : swap ;

8 swap (∗ end , ∗middle) ; // move pivot to middle

179

9 spawn qSort (begin , middle) ;

10 qSort(++middle , ++end) ; // Exclude pivot and restore end

11 sync ;

12 }

13 }

B.1.5 Monte-Carlo

1 stat ic const int nopt=30;

2 stat ic const int matu r i t i e s [] = { 4 , 4 , 4 , 8 , 8 , 8 , 20 , 20 , 20 , 28 , 28 ,

3 28 , 40 , 40 , 40 , 48 , 48 , 48 , 60 , 60 , 60 ,

4 68 , 68 , 68 , 80 , 80 , 80 , 88 , 88 , 88 } ;

5 stat ic const int nmat=5700;

6

7 stat ic const int n=nmat+1;

8

9 stat ic const double de l t a = 0 . 2 5 ; /∗ LIBOR interval ∗/

10 stat ic const double swaprates [] = { . 0 45 , . 0 5 , . 055 , . 045 , . 0 5 , . 055 ,

11 . 045 , . 0 5 , . 055 , . 045 , . 0 5 , . 055 ,

12 . 045 , . 0 5 , . 055 , . 045 , . 0 5 , . 055 ,

13 . 045 , . 0 5 , . 055 , . 045 , . 0 5 , . 045 ,

14 . 0 5 , . 055 , . 045 , . 0 5 , . 055 , . 045 ,

15 . 0 5 } ;

16

17 void s c a l a rKe rne l (double ∗ L0 , double ∗ z , double ∗ lambda , double ∗ v)

18 {

19 double b , s , swapval ;

20 double sqez , lam , con1 , v s ca l , vrat ;

21 int i , j ;

22 double B[nmat] , S [nmat] , L [n] ;

23

24 for (i =0; i<n ; i++) {

25 L [i] = L0 [i] ;

26 }

27

28 for (j =0; j<nmat ; j++)

180

29 {

30 sqez = sq r t (d e l t a) ∗z [j] ;

31 v s c a l = 0 . 0 ;

32

33 for (i=j +1; i<n ; i++) {

34 lam = lambda [i−j −1] ;

35 con1 = de l t a ∗ lam ;

36 v s c a l += con1∗L [i]/ (1 .0+ de l t a ∗L [i]) ;

37 vrat = exp (con1∗ v s c a l + lam ∗(sqez −0.5∗ con1)) ;

38 L [i] = L [i]∗ vrat ;

39 }

40 }

41

42 b = 1 . 0 ;

43 s = 0 . 0 ;

44

45 for (j=nmat ; j<n ; j++) {

46 b = b/(1.0+ de l t a ∗L [j]) ;

47 s = s + de l t a ∗b ;

48 B[j−nmat] = b ;

49 S [j−nmat] = s ;

50 }

51

52 v s c a l = 0 . 0 ;

53

54 for (i =0; i<nopt ; i++){

55 int k = matu r i t i e s [i] −1;

56 swapval = B[k] + swaprates [i]∗S [k] − 1 . 0 ;

57 i f (swapval < 0 . 0)

58 v s c a l += −100.0∗ swapval ;

59 }

60

61 // apply discount

62

63 for (j =0; j<nmat ; j++){

181

64 v s c a l = v s c a l /(0.0+ de l t a ∗L [j]) ;

65 }

66

67 v [0]= v s c a l ;

68 }

69

70 void monteSpawn(double ∗ z , double ∗ v , double ∗ L0 , double ∗ lambda ,

71 int npath)

72 {

73 int path ;

74

75 for (path=0; path<npath ; path++)

76 {

77 spawn sca l a rKe rne l (L0 , &z [path∗nmat] , lambda , &v [path]) ;

78 }

79 sync ;

80

81 }

B.1.6 N-Puzzle

1 class nPuzzle

2 {

3 int empty ;

4 char board [SIZE∗SIZE] ;

5 unsigned int row ;

6 unsigned int c o l ;

7 bool up , down , l e f t , r i g h t ;

8

9 public :

10 nPuzzle (int newEmpty , char newBoard [SIZE∗SIZE]) :

11 empty (newEmpty) ,

12 row (newEmpty / SIZE) ,

13 c o l (newEmpty − row ∗ SIZE) ,

14 up (true) ,

15 down (true) ,

182

16 l e f t (true) ,

17 r i g h t (true)

18 {

19 memcpy(board , newBoard , s izeof (char) ∗SIZE∗SIZE) ;

20 }

21

22 nPuzzle (int newEmpty , int swap , char newBoard [SIZE∗SIZE]) :

23 empty (swap) ,

24 row (swap / SIZE) ,

25 c o l (swap − row ∗ SIZE) ,

26 up (true) ,

27 down (true) ,

28 l e f t (true) ,

29 r i g h t (true)

30 {

31 memcpy(board , newBoard , s izeof (char) ∗SIZE∗SIZE) ;

32

33 std : : swap (board [newEmpty] , board [swap]) ;

34 }

35

36 bool s o l u t i o n ()

37 {

38 return strncmp (board , goal , SIZE∗SIZE) == 0 ;

39 }

40

41 nPuzzle s l i d e L e f t ()

42 {

43 return nPuzzle (empty , empty−1, board) ;

44 }

45

46 nPuzzle s l i d eR i gh t ()

47 {

48 return nPuzzle (empty , empty+1, board) ;

49 }

50

183

51 nPuzzle s l ideUp ()

52 {

53 return nPuzzle (empty , empty − SIZE , board) ;

54 }

55

56 nPuzzle slideDown ()

57 {

58 return nPuzzle (empty , empty + SIZE , board) ;

59 }

60

61 bool canSlideUp () { return row > 0 && up ; }

62 bool canSlideDown () { return row < (SIZE−1) && down ; }

63 bool canS l ideRight () { return c o l < (SIZE−1) && r i gh t ; }

64 bool canS l i d eLe f t () { return c o l > 0 && l e f t ; }

65

66

67 } ;

68

69 bool search (nPuzzle puzzle , unsigned int depth)

70 {

71 i f (cance l)

72 return fa l se ;

73 i f (puzz l e . s o l u t i o n ())

74 {

75 cance l = true ;

76 return true ;

77 }

78

79 bool up = false , down = false , l e f t = false , r i g h t= fa l se ;

80

81 i f (depth != l im i t)

82 {

83 depth++;

84

85 i f (puzz l e . canSlideUp ())

184

86 up = spawn search (puzz l e . s l ideUp () , depth) ;

87 i f (puzz l e . canSlideDown ())

88 down = spawn search (puzz l e . sl ideDown () , depth) ;

89 i f (puzz l e . c anS l i d eLe f t ())

90 {

91

92 i f (puzz l e . canS l ideRight ())

93 {

94 l e f t = spawn search (puzz l e . s l i d e L e f t () , depth) ;

95 r i g h t = spawn search (puzz l e . s l i d eR i gh t () , depth) ;

96 }

97 else

98 l e f t = search (puzz l e . s l i d e L e f t () , depth) ;

99 }

100 else

101 r i g h t = search (puzz l e . s l i d eR i gh t () , depth) ;

102

103 sync ;

104

105 return up | | down | | l e f t | | r i g h t ;

106 }

107

108 return fa l se ;

109 }

110

111 void nPuzzleTop ()

112 {

113

114 int i = i t e r s ;

115 char t e s t S t a r t [] = ”310628457” ;

116

117 nPuzzle t e s tPuzz l e (2 , t e s t S t a r t) ;

118

119 double r e s u l t =0;

120

185

121 for (i ; i >0; i−−)

122 {

123 l im i t = 0 ;

124 cance l = fa l se ;

125 t imer . s t a r t () ;

126 while (! s earch (t e s tPuzz l e , 0))

127 l im i t++;

128 }

129

130 }

B.1.7 Matrix Multiplication

1 //

2 //Title : Pthread Matrix Multiplication Block

3 //

4 //File : pthread matmul grid . c

5 //

6 //Description :

7 //This program performs matrix multiplication on a randomly generated

8 //matrix .The size of the matrix i s passed in via command line . We

9 //create a grid based on BLOCK size and divide up each of the blocks

10 //among threads as evenly as possible so at most any thread wil l

11 //have to compute 1 extra block . Block size should be chosen to

12 //maxamize cache performance and works well at 256x256 . We do a

13 //whole slew of optimizations to improve performance .We do register

14 // t i l e using loop unrolling at 2x4 block increments , which also should

15 //be vectorized by the compiler . We do a zig−zag access pattern to

16 //improve local i ty and reduce cache conf l icts among threads . We do

17 //minimim address computations when multiplying . We set each thread to

18 //only be used on 1 processor to improve local i ty .

19 //

20 //Joshua Landwehr 4/09/2010 (snapcore@gmail .com)

21

22 //−−

23 //Group: Includes −−

186

24 //−−

25

26 #define GNU SOURCE

27

28 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

29 Include : ”stdio .h”

30

31 Description :

32 Standard C I/O operations . We use the printf , fprintf , and

33 perror functions .

34 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

35 #include <s t d i o . h>

36

37 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

38 Include : ”stdlib .h”

39

40 Description :

41 Standard C library . We use the exit function and the

42 EXITFAILURE constant .

43 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

44 #include <s t d l i b . h>

45

46 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

47 Include : ”l imits .h”

48

49 Description :

50 Characteristics of common variables . We use the LONGMAX and

51 LONGMIN constants .

52 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

53 #include < l im i t s . h>

54

55 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

56 Include : ”errno .h”

57

58 Description :

187

59 Used for reporting errors . We use errno global variable and

60 RANGE constant .

61 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

62 #include <errno . h>

63

64 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

65 Include : ”time .h”

66

67 Description :

68 Standard C time and data . We use the time , gettimeofday function .

69 We also use the timeval struct .

70 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

71 #include <time . h>

72

73 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

74 Include : ”pthread .h”

75

76 Description :

77 Includes functions for thread creation . We use pthread create

78 and pthread join functions . We also use the pthread t struct .

79 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

80 #include <pthread . h>

81

82 #include <sched . h>

83

84 #include <math . h>

85

86 //Constants : PRINT SIZE

87 //The biggest s ize of NxN matrix we wil l print

88 #define PRINT SIZE 5

89

90 /∗

91 Constants : Random Bounds

92

93 RANMAX − Defines the maximum bound of our random numbers .

188

94 RANMIN − Defines the minimium bound of our random numbers .

95 ∗/

96 #define RANMAX 1.0

97 #define RAN MIN −1.0

98

99 #define BLOCK 256

100

101 #define ERRORTOL 0.00001

102

103 #define matmul matmul block

104

105 double∗ matr ix a ;

106 double∗ matrix b ;

107 double∗ matr ix a1 ;

108 double∗ matrix b1 ;

109 double∗ matr ix c ;

110 int r e qu e s t e d ma t r i x s i z e ;

111 int num blocks p ;

112

113 //−−

114 //Group: Implementation −−

115 //−−

116

117 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

118 Function : init matrix block

119

120 Description :

121 Fi l l s a matrix with random numbers between RANMAX and RANMIN.

122

123 Parameters :

124 requested matrix size − Total s ize of matrix

125 matrix − location of matrix to in i t .

126

127 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

128 i n i t ma t r i x b l o c k (int r e que s t ed mat r i x s i z e , double∗ matrix)

189

129 {

130 int i , j ;

131 double range = RANMAX − RAN MIN;

132 for (i = 0 ; i < r e qu e s t e d ma t r i x s i z e ; i++)

133 {

134 matrix [i] = rand () ∗ range / RANDMAX + RAN MIN;

135 }

136 }

137

138 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

139 Function : matmul simple

140

141 Description :

142 Performs vanil la matrix multiplication on a contigous memory

143 location . Used for veri f icat ion .

144

145 Parameters :

146 requested matrix size − Size of matrix in 1 dimension

147 matrix a − location of matrix A.

148 matrix b − location of matrix B.

149 matrix c − location of matrix C.

150

151 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

152 void matmul simple (int r e que s t ed mat r i x s i z e , double∗ matrix a ,

153 double∗ matrix b , double∗ matr ix c)

154 {

155 int i , j , k ;

156 for (i = 0 ; i < r e qu e s t e d ma t r i x s i z e ; i++)

157 {

158 register double ∗a temp = matr ix a + i ∗ r e qu e s t e d ma t r i x s i z e ;

159 for (j = 0 ; j < r e qu e s t e d ma t r i x s i z e ; j++)

160 {

161 register double ∗b temp = matrix b + j ∗ r e qu e s t e d ma t r i x s i z e ;

162 register double c i j = ∗(matr ix c + j + i ∗ r e qu e s t e d ma t r i x s i z e) ;

163 for (k = 0 ; k < r e qu e s t e d ma t r i x s i z e ; k++)

190

164 {

165 c i j += ∗(a temp + k) ∗ ∗(b temp+k) ;

166 }

167 ∗(matr ix c + j + i ∗ r e qu e s t e d ma t r i x s i z e) = c i j ;

168 }

169 }

170 }

171

172 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

173 Function : perform block matmul fin

174

175 Description :

176 Performs matrix multiplication on remaining elements of blocks

177 that could not be f i t in our register t i l e s ize .

178

179 Parameters :

180 requested matrix size − Size of matrix in 1 dimension

181 z − number of C elements across to calculate

182 x − number of C elements down to calculate

183 c − number of elements from A, B to use for C element .

184 matrix a − location of our starting fringe in A.

185 matrix b − location of our starting fringe in B.

186 matrix c − location of our starting fringe in c .

187

188 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

189 void per form block matmul f in (int r e que s t ed mat r i x s i z e , int z , int x ,

190 int c , double∗ matrix a , double∗ matrix b ,

191 double∗ matr ix c)

192 {

193 int i , j , k ;

194

195 for (i = 0 ; i<z ; i++)

196 {

197 register double ∗a temp = matr ix a + i ∗ BLOCK;

198 for (j = 0 ; j<x ; j++)

191

199 {

200 register double ∗b temp = matrix b + j ∗ BLOCK;

201 register double c i j = ∗(matr ix c + j + i ∗ BLOCK) ;

202 for (k = 0 ; k<c ; k++)

203 {

204 c i j += ∗(a temp + k) ∗ ∗(b temp+k) ;

205 }

206 ∗(matr ix c + j + i ∗ BLOCK) = c i j ;

207 }

208

209 }

210 }

211

212 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗8

213 Function : perform block matmul unroll 8

214

215 Description :

216 Performs matrix multiplication on blocks using a 2x4 register

217 t i l e .

218

219 Parameters :

220 requested matrix size − Size of matrix in 1 dimension

221 matrix a − location of matrix A.

222 matrix b − location of matrix B.

223 matrix c − location of matrix C.

224 i − starting i element for this block

225 j − starting j element for this block

226 k − starting k element for this block

227 bl i − starting i block for this bock

228 bl j − starting j block for this bock

229 bl k − starting k block for this bock

230 num blocks p − blocks per row

231

232 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

233 void per fo rm block matmul unro l l 8 (int r e que s t ed mat r i x s i z e ,

192

234 double∗ matrix a , double∗ matrix b ,

235 double∗ matrix c , int i , int j , int k ,

236 int b l i , int b l j , int bl k ,

237 int num blocks p)

238 {

239 //z − number of C elements across to calculate

240 //x − number of C elements down to calculate

241 //c − number of elements from A, B to use for C element .

242 int z , x , c ;

243

244 // I f any of these are true our block i s bigger than elements to use

245 //in that dimension : i , j ,k

246 i f (i+BLOCK > r e qu e s t e d ma t r i x s i z e)

247 z = r eque s t ed mat r i x s i z e−i ;

248 else

249 z = BLOCK;

250

251 i f (j+BLOCK > r e qu e s t e d ma t r i x s i z e)

252 x = reque s t ed mat r i x s i z e−j ;

253 else

254 x = BLOCK;

255

256 i f (k+BLOCK > r e qu e s t e d ma t r i x s i z e)

257 c = r eque s t ed mat r i x s i z e−k ;

258 else

259 c = BLOCK;

260

261 //Offset a ,b, c into the correct blocks

262 matr ix a += bl k ∗ BLOCK∗BLOCK + b l i ∗ BLOCK∗BLOCK∗num blocks p ;

263 matr ix b += b l k ∗ BLOCK∗BLOCK + b l j ∗ BLOCK∗BLOCK∗num blocks p ;

264 matr ix c += b l j ∗ BLOCK∗BLOCK + b l i ∗ BLOCK∗BLOCK∗num blocks p ;

265

266 //Loop movement

267 int u i=i ;

268 int u j=j ;

193

269

270 //Stride of our t i l e s

271 int j s t r i d e = 2 ;

272 int i s t r i d e = 4 ;

273

274 //Number of elements in i and j dimensions

275 int num i = z/ i s t r i d e ;

276 int num j = x/ j s t r i d e ;

277

278 //Move one C down

279 for (u i = 0 ; u i<num i ; u i++)

280 {

281 i=u i ∗ i s t r i d e ;

282 register double ∗a temp = matr ix a + i ∗ BLOCK;

283 //Move one C across

284 for (u j = 0 ; u j<num j ; u j++)

285 {

286 //Find real j

287 j=u j ∗ j s t r i d e ;

288 register double ∗b temp = matrix b + j ∗ BLOCK;

289

290 //Compute 2 Across and 2 Down thus 2x2 = 4

291 register double c i j 1 = ∗(matr ix c + (j + 0) + (i + 0) ∗ BLOCK) ;

292 register double c i j 2 = ∗(matr ix c + (j + 0) + (i + 1) ∗ BLOCK) ;

293 register double c i j 3 = ∗(matr ix c + (j + 0) + (i + 2) ∗ BLOCK) ;

294 register double c i j 4 = ∗(matr ix c + (j + 0) + (i + 3) ∗ BLOCK) ;

295 register double c i j 5 = ∗(matr ix c + (j + 1) + (i + 0) ∗ BLOCK) ;

296 register double c i j 6 = ∗(matr ix c + (j + 1) + (i + 1) ∗ BLOCK) ;

297 register double c i j 7 = ∗(matr ix c + (j + 1) + (i + 2) ∗ BLOCK) ;

298 register double c i j 8 = ∗(matr ix c + (j + 1) + (i + 3) ∗ BLOCK) ;

299

300 //Accumulate t i l e s

301 for (k = 0 ; k<c ; k++)

302 {

303 c i j 1 +=∗(a temp + k + (0) ∗ BLOCK) ∗ ∗(b temp + k + (0) ∗ BLOCK) ;

194

304 c i j 2 +=∗(a temp + k + (1) ∗ BLOCK) ∗ ∗(b temp + k + (0) ∗ BLOCK) ;

305 c i j 3 +=∗(a temp + k + (2) ∗ BLOCK) ∗ ∗(b temp + k + (0) ∗ BLOCK) ;

306 c i j 4 +=∗(a temp + k + (3) ∗ BLOCK) ∗ ∗(b temp + k + (0) ∗ BLOCK) ;

307 c i j 5 +=∗(a temp + k + (0) ∗ BLOCK) ∗ ∗(b temp + k + (1) ∗ BLOCK) ;

308 c i j 6 +=∗(a temp + k + (1) ∗ BLOCK) ∗ ∗(b temp + k + (1) ∗ BLOCK) ;

309 c i j 7 +=∗(a temp + k + (2) ∗ BLOCK) ∗ ∗(b temp + k + (1) ∗ BLOCK) ;

310 c i j 8 +=∗(a temp + k + (3) ∗ BLOCK) ∗ ∗(b temp + k + (1) ∗ BLOCK) ;

311 }

312

313 //Save results

314 ∗(matr ix c + (j + 0) + (i + 0) ∗ BLOCK) = c i j 1 ;

315 ∗(matr ix c + (j + 0) + (i + 1) ∗ BLOCK) = c i j 2 ;

316 ∗(matr ix c + (j + 0) + (i + 2) ∗ BLOCK) = c i j 3 ;

317 ∗(matr ix c + (j + 0) + (i + 3) ∗ BLOCK) = c i j 4 ;

318 ∗(matr ix c + (j + 1) + (i + 0) ∗ BLOCK) = c i j 5 ;

319 ∗(matr ix c + (j + 1) + (i + 1) ∗ BLOCK) = c i j 6 ;

320 ∗(matr ix c + (j + 1) + (i + 2) ∗ BLOCK) = c i j 7 ;

321 ∗(matr ix c + (j + 1) + (i + 3) ∗ BLOCK) = c i j 8 ;

322 }

323

324 }

325 //We could not compute a elements as they did not f i t in our stride

326 i f (z%i s t r i d e != 0 | | x%j s t r i d e !=0)

327 {

328 //Finish missing elements wide (j) downward fringes

329 per form block matmul f in (r eque s t ed mat r i x s i z e , z ,

330 x − num j ∗ j s t r i d e , c ,

331 matrix a ,

332 matr ix b+num j∗ j s t r i d e ∗BLOCK,

333 matr ix c+num j∗ j s t r i d e) ;

334

335 //Finish missing elements down (i) rightward fringes

336 per form block matmul f in (r eque s t ed mat r i x s i z e ,

337 z − num i ∗ i s t r i d e ,

338 num j∗ j s t r i d e , c ,

195

339 matr ix a+num i∗ i s t r i d e ∗BLOCK,

340 matrix b ,

341 matr ix c+num i∗ i s t r i d e ∗BLOCK) ;

342 }

343 }

344

345 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

346 Function : matmul block

347

348 Description :

349 Divides matrices into blocks and allocates work based on the

350 start id . Then i t iterates through the blocks cal l ing a lower

351 function to perform the actual matrix multiplication per block .

352

353 Parameters :

354 requested matrix size − Size of matrix in 1 dimension

355 matrix a − location of matrix A.

356 matrix b − location of matrix B.

357 matrix c − location of matrix C.

358 start id − id of thread to perform this matrix multiplication .

359

360 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

361 void matmul block (int b l o c k i)

362 {

363 //Local loop block versions are used to indicate i and j for that block

364 int i , j , k , b l o ck j , b lock k ;

365

366 //b l i i s the col and bl j i s the row

367 int b l i = b l o c k i /(num blocks p) ;

368 int b l j = b l o c k i%(num blocks p) ;

369

370 //Element in real f u l l matrix

371 i = b l i ∗BLOCK;

372 j = b l j ∗BLOCK;

373

196

374 for (b lock k = 0 ; b lock k < num blocks p ; b lock k++)

375 {

376 //Element in real f u l l matrix

377 k = block k ∗BLOCK;

378 per fo rm block matmul unro l l 8 (r e que s t ed mat r i x s i z e , matrix a ,

379 matrix b , matr ix c , i , j , k ,

380 b l i , b l j , b lock k , num blocks p) ;

381 }

382 }

383

384 //Converts normal contigous matrix X passed into block version Y

385 //passed out

386 int map standard to block (int row s i ze , int x)

387 {

388 int num blocks = (row s i z e) /(BLOCK) ;

389 i f ((r ow s i z e)%(BLOCK))

390 num blocks++;

391 int y ;

392 int row = (x) / r ow s i z e ;

393

394 int c o l = (x)%row s i z e ;

395

396 int block row = (row)%BLOCK;

397

398 int b l o c k c o l = (co l)%BLOCK;

399

400 y = row/BLOCK∗num blocks+co l /BLOCK;

401

402 y = y∗BLOCK∗BLOCK+b l o c k c o l+block row ∗BLOCK;

403

404 return y ;

405 }

406

407 //Just do malloc and cal loc for us

408 void ∗ mal l o c b l o ck s (int num blocks)

197

409 {

410 return malloc (s izeof (double) ∗ num blocks) ;

411 }

412

413 //Just do malloc and cal loc for us

414 void ∗ c a l l o c b l o c k s (int num blocks)

415 {

416

417 return c a l l o c (num blocks , s izeof (double)) ;

418 }

419

420

421 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

422 Function : main

423

424 Description :

425 Performs paral le l matrix multiplication where data i s randomly

426 generated . Argv[1] should contain the NxN size of the matrix .

427

428 Parameters :

429 argc − number of arguments passed to program.

430 argv − an array of the arguments as char∗ (c strings) .

431

432 Return :

433 0 − on success .

434 not 0 − on fa i lure .

435 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

436 int main (int argc , char∗ argv [])

437 {

438

439 struct t imeva l s t a r t t ime ;

440 struct t imeva l i n t s t op t ime ;

441 struct t imeva l com stop time ;

442 f loat i n t t ime ;

443 f loat com time ;

198

444 f loat t o t t ime ;

445 f loat g f l op s , ptime , rt ime ;

446 long long f l o p s ;

447 //Used for error checking in strto l .

448 char∗ input end ;

449 pthread t ∗ th r ead s de s c ;

450 //Row and column size

451

452

453 //AxB=C

454 double∗ matrix d ;

455 unsigned int mat r i x s i z e ;

456

457 //Local loop vars

458 int i , j , k ;

459

460 i f (argc == 2)

461 {

462 int r e t v a l ;

463

464 /∗ In i t i a l i z e the library ∗/

465 r e qu e s t e d ma t r i x s i z e = s t r t o l (argv [1] , &input end , 10) ;

466

467 //Error checking .

468 i f ((er rno == ERANGE && (r equ e s t e d ma t r i x s i z e == LONGMAX | |

469 r e qu e s t e d ma t r i x s i z e == LONGMIN)) | |

470 errno != 0 && requ e s t e d ma t r i x s i z e == 0)

471 {

472 pe r ro r (” s t r t o l ”) ;

473 e x i t (EXIT FAILURE) ;

474 }

475

476 i f (input end == argv [1])

477 {

478 f p r i n t f (s tde r r , ”No d i g i t s were found\n”) ;

199

479 e x i t (EXIT FAILURE) ;

480 }

481

482 i f (∗ input end != ’ \0 ’)

483 {

484 f p r i n t f

485 (

486 s tde r r ,

487 ”Further cha ra c t e r s a f t e r number : %s \n” ,

488 input end

489) ;

490 e x i t (EXIT FAILURE) ;

491 }

492

493 i f (r e qu e s t e d ma t r i x s i z e < 1)

494 {

495 f p r i n t f (s tde r r , ”Matrix S i z e < 1\n”) ;

496 e x i t (EXIT FAILURE) ;

497 }

498

499 ma t r i x s i z e = s izeof (double) ∗ r e qu e s t e d ma t r i x s i z e ∗

500 r e qu e s t e d ma t r i x s i z e ;

501

502 int num blocks = (r e qu e s t e d ma t r i x s i z e) /(BLOCK) ;

503

504

505 num blocks p = (r e qu e s t e d ma t r i x s i z e) /(BLOCK) ;

506

507 i f (r e qu e s t e d ma t r i x s i z e%BLOCK)

508 {

509 num blocks++;

510 num blocks p++;

511 }

512 int t o t a l b l o c k s = num blocks∗num blocks ;

513

200

514 matr ix a = ma l l o c b l o ck s (num blocks∗num blocks∗BLOCK∗BLOCK) ;

515 matr ix b = ma l l o c b l o ck s (num blocks∗num blocks∗BLOCK∗BLOCK) ;

516 matr ix c = c a l l o c b l o c k s (num blocks∗num blocks∗BLOCK∗BLOCK) ;

517 th r ead s de s c = mal loc (T∗ s izeof (pthread t)) ;

518

519 srand (time (NULL)) ;

520

521 //Measure In i t ia l iazt ion Time

522 gett imeofday(&s ta r t t ime , NULL) ;

523

524 i n i t ma t r i x b l o c k (num blocks∗num blocks∗BLOCK∗BLOCK, matr ix a) ;

525 i n i t ma t r i x b l o c k (num blocks∗num blocks∗BLOCK∗BLOCK, matr ix b) ;

526

527 gett imeofday(& in t s t op t ime , NULL) ;

528

529

530 //Total Blocks

531

532 for (i = 0 ; i < t o t a l b l o c k s ; i++)

533 spawn matmul block (i) ;

534

535 sync ;

536

537 gett imeofday(&com stop time , NULL) ;

538

539 i n t t ime = (i n t s t op t ime . t v s e c +

540 (f loat) i n t s t op t ime . tv u s e c /1000000 .0) − (s t a r t t ime . t v s e c +

541 (f loat) s t a r t t ime . tv u s e c /1000000 .0) ;

542

543 com time = (com stop t ime . t v s e c +

544 (f loat) com stop time . tv u s e c /1000000 .0) −

545 (i n t s t op t ime . t v s e c + (f loat) i n t s t op t ime . tv u s e c /1000000 .0) ;

546

547 to t t ime = in t t ime + com time ;

548

201

549 g f l o p s = ((2∗pow(r eque s t ed mat r i x s i z e , 3)−

550 pow(r eque s t ed mat r i x s i z e , 2)) /(com time)) /pow(10 ,9) ;

551 p r i n t f

552 (

553 ” I n t i a l i z a t i o n Time : %.3 f \n” \

554 ”Computation Time : %.3 f \n” \

555 ”Total Time : %.3 f \n” \

556 ”GFLOPs: %.3 f \n” ,

557 int t ime ,

558 com time ,

559 tot t ime ,

560 g f l o p s

561) ;

562

563 return 0 ;

564 }

B.2 Dependency Benchmarks

B.2.1 Thread Spawn

1 int threadSpawnB (int v)

2 {

3 return v+1;

4 }

5

6 int threadSpawnA (int v)

7 {

8

9 return v ;

10 }

11

12 void threadSpawnTest (void)

13 {

14 for (int i = 0 ; i < COUNT; i++)

15 {

202

16 int r e s u l t = spawn threadSpawnB (1) ;

17 spawn threadSpawnA (r e s u l t) ;

18 }

19

20 sync ; //Wait for threads to f in ish

21 }

B.2.2 Fibonacci

1 int fibAdd (int x , int y)

2 {

3 return x + y ;

4 }

5

6 int f i b (int n)

7 {

8 i f (n < 2)

9 return n ;

10 else

11 {

12 int x = spawn f i b (n − 1) ;

13 int y = spawn f i b (n − 2) ;

14

15 con t i nue fibAdd (x , y) ;

16

17 return 0 ;

18 }

19 }

B.2.3 N-Queens

1 int NumberOfSetBits (int i)

2 {

3 i = i − ((i >> 1) & 0x55555555) ;

4 i = (i & 0x33333333) + ((i >> 2) & 0x33333333) ;

5 return (((i + (i >> 4)) & 0x0F0F0F0F) ∗ 0x01010101) >> 24 ;

203

6 }

7

8 unsigned int aggregate nqueens (unsigned int value)

9 {

10 return value ;

11 }

12

13 int nqueens (unsigned int RowsToBeFilled , unsigned int ColsToBeFil led ,

14 unsigned int LeftDiag , unsigned int RightDiag , unsigned int row)

15 {

16 unsigned int r , c ;

17 int found = 0 ;

18 int i = 0 ;

19

20 int r e s u l t s [BOARD−1] ;

21

22 unsigned int copyRowsToBeFilled ;

23

24 int nCodelets = NumberOfSetBits (RowsToBeFilled) ;

25 ThreadAggregate aggregate

26 i f (nCodelets−1 > 0)

27 {

28 //Create a codelet that aggregates nCodelets values

29 aggregate = ThreadAggregate (&aggregate nqueens , nCodelets) ;

30 con t i nue (aggregate) ;

31 aggregate . dependsOn (this) ;

32 }

33

34 while (RowsToBeFilled != 0)

35 {

36 r = (−((signed) RowsToBeFilled) & RowsToBeFilled) ;

37 RowsToBeFilled &= ˜(r) ;

38

39 i f (row < MAX−1)

40 {

204

41

42 unsigned int copyColsToBeFi l led = ColsToBeFi l led | r ;

43 unsigned int copyLeftDiag = (LeftDiag | r) >> 1 ;

44 unsigned int copyRightDiag = (RightDiag | r) << 1 ;

45 unsigned int copyRowsToBeFilled = MASK & ˜(copyColsToBeFi l led |

46 copyLeftDiag | copyRightDiag) ;

47

48 r e s u l t s [i] = spawn nqueens (copyRowsToBeFilled ,

49 copyColsToBeFil led , copyLeftDiag , copyRightDiag , row+1) ;

50

51 aggregate . dependsOn (r e s u l t s [i]) ;

52

53 i++;

54 }

55 else

56 {

57 found += 1 ;

58 }

59 }

60

61 return found ;

62 }

63

64 void nqueensTop ()

65 {

66 unsigned int RowsToBeFilled , ColsToBeFil led , LeftDiag , RightDiag , rows ;

67

68 unsigned int s o l u t i on s , so lut ionsOdd = 0 ;

69

70 rows = ColsToBeFi l led = LeftDiag = RightDiag = 0 ;

71

72 int ha l f = BOARD>>1;

73 RowsToBeFilled = (1 << ha l f) − 1 ;

74

75 ThreadAggregate threadEnd(&aggregate nqueens , 2) ;

205

76

77 i f (MAX & 1)

78 threadEnd . s e t S i g n a l S i z e (2) ;

79 else

80 threadEnd . s e t S i g n a l S i z e (1) ;

81

82 s o l u t i o n s = spawn 2∗nqueens (RowsToBeFilled , ColsToBeFil led ,

83 LeftDiag , RightDiag , rows) ;

84

85 threadEnd . dependsOn (s o l u t i o n s) ;

86 i f (MAX & 1) //half of middle column for odd

87 {

88 RowsToBeFilled = 1 << (MAX >> 1) ;

89 rows = 1 ;

90

91 ColsToBeFi l led = RowsToBeFilled ;

92 LeftDiag = (RowsToBeFilled >> 1) ;

93 RightDiag = (RowsToBeFilled << 1) ;

94 RowsToBeFilled = (RowsToBeFilled − 1) >> 1 ;

95

96 so lut ionsOdd = 2∗nqueens (RowsToBeFilled , ColsToBeFil led ,

97 LeftDiag , RightDiag , rows) ;

98

99 threadEnd . dependsOn (so lut ionsOdd) ;

100 }

101

102 }

B.2.4 Quicksort

1 void qSort (int ∗ begin , int ∗ end , Thread ∗ threadEnd)

2 {

3 i f (begin != end) {

4 −−end ; // Exclude last element (pivot) from partition

5 int ∗ middle = std : : p a r t i t i o n (begin , end ,

6 std : : bind2nd (std : : l e s s<int>() , ∗end)) ;

206

7 using std : : swap ;

8 swap (∗ end , ∗middle) ; // move pivot to middle

9

10 threadEnd−>dependsOnSignalOnly (spawn qSort (begin , middle)) ;

11

12 qSort(++middle , ++end) ; // Exclude pivot and restore end

13 }

14 }

B.2.5 Monte-Carlo

1 stat ic const int nopt=30;

2 stat ic const int matu r i t i e s [] = { 4 , 4 , 4 , 8 , 8 , 8 , 20 , 20 , 20 , 28 , 28 ,

3 28 , 40 , 40 , 40 , 48 , 48 , 48 , 60 , 60 , 60 ,

4 68 , 68 , 68 , 80 , 80 , 80 , 88 , 88 , 88 } ;

5 stat ic const int nmat=5700;

6

7 stat ic const int n=nmat+1;

8

9 stat ic const double de l t a = 0 . 2 5 ; /∗ LIBOR interval ∗/

10 stat ic const double swaprates [] = { . 0 45 , . 0 5 , . 055 , . 045 , . 0 5 , . 055 ,

11 . 045 , . 0 5 , . 055 , . 045 , . 0 5 , . 055 ,

12 . 045 , . 0 5 , . 055 , . 045 , . 0 5 , . 055 ,

13 . 045 , . 0 5 , . 055 , . 045 , . 0 5 , . 045 ,

14 . 0 5 , . 055 , . 045 , . 0 5 , . 055 , . 045 ,

15 . 0 5 } ;

16

17 void s c a l a rKe rne l (double ∗ L0 , double ∗ z , double ∗ lambda , double ∗ v)

18 {

19 double b , s , swapval ;

20 double sqez , lam , con1 , v s ca l , vrat ;

21 int i , j ;

22 double B[nmat] , S [nmat] , L [n] ;

23

24 for (i =0; i<n ; i++) {

25 L [i] = L0 [i] ;

207

26 }

27

28 for (j =0; j<nmat ; j++)

29 {

30 sqez = sq r t (d e l t a) ∗z [j] ;

31 v s c a l = 0 . 0 ;

32

33 for (i=j +1; i<n ; i++) {

34 lam = lambda [i−j −1] ;

35 con1 = de l t a ∗ lam ;

36 v s c a l += con1∗L [i]/ (1 .0+ de l t a ∗L [i]) ;

37 vrat = exp (con1∗ v s c a l + lam ∗(sqez −0.5∗ con1)) ;

38 L [i] = L [i]∗ vrat ;

39 }

40 }

41

42 b = 1 . 0 ;

43 s = 0 . 0 ;

44

45 for (j=nmat ; j<n ; j++) {

46 b = b/(1.0+ de l t a ∗L [j]) ;

47 s = s + de l t a ∗b ;

48 B[j−nmat] = b ;

49 S [j−nmat] = s ;

50 }

51

52 v s c a l = 0 . 0 ;

53

54 for (i =0; i<nopt ; i++){

55 int k = matu r i t i e s [i] −1;

56 swapval = B[k] + swaprates [i]∗S [k] − 1 . 0 ;

57 i f (swapval < 0 . 0)

58 v s c a l += −100.0∗ swapval ;

59 }

60

208

61 // apply discount

62

63 for (j =0; j<nmat ; j++){

64 v s c a l = v s c a l /(0.0+ de l t a ∗L [j]) ;

65 }

66

67 v [0]= v s c a l ;

68 }

69

70 void endFunc ()

71 {

72 //print results

73 }

74

75 void monteSpawn(double ∗ z , double ∗ v , double ∗ L0 , double ∗ lambda ,

76 int npath)

77 {

78 int path ;

79 Thread end(&endFunc) ;

80

81 end . s e t S i g n a l S i z e (path) ;

82

83

84 for (path=0; path<npath ; path++)

85 {

86 end . dependsOnSignalOnly (spawn sca l a rKe rne l (L0 ,

87 &z [path∗nmat] , lambda , &v [path])) ;

88 }

89 sync ;

90

91 }

B.2.6 Fibonacci Dynamic

1 int fibAdd (int x , int y)

2 {

209

3 return x + y ;

4 }

5

6 int f i b (int n)

7 {

8 i f (n < 2)

9 return n ;

10 else

11 {

12 int x = spawn f i b (n − 2) ;

13

14 con t i nue fibAdd (x , this) ;

15

16 return f i b (n − 1) ;

17 }

18 }

B.2.7 N-Queens Dynamic

1 int NumberOfSetBits (int i)

2 {

3 i = i − ((i >> 1) & 0x55555555) ;

4 i = (i & 0x33333333) + ((i >> 2) & 0x33333333) ;

5 return (((i + (i >> 4)) & 0x0F0F0F0F) ∗ 0x01010101) >> 24 ;

6 }

7

8 unsigned int aggregate nqueens (unsigned int value)

9 {

10 return value ;

11 }

12

13 int nqueens (unsigned int RowsToBeFilled , unsigned int ColsToBeFil led ,

14 unsigned int LeftDiag , unsigned int RightDiag , unsigned int row)

15 {

16 unsigned int r , c ;

17 int found = 0 ;

210

18 int i = 0 ;

19

20 int r e s u l t s [BOARD−1] ;

21

22 unsigned int copyRowsToBeFilled ;

23 unsigned int copyColsToBeFi l led1 ;

24 unsigned int copyLeftDiag1 ;

25 unsigned int copyRightDiag1 ;

26 unsigned int copyRowsToBeFilled1 ;

27

28 int nCodelets = NumberOfSetBits (RowsToBeFilled) ;

29 ThreadAggregate aggregate

30 i f (nCodelets−1 > 0)

31 {

32 //Create a codelet that aggregates nCodelets values

33 aggregate = ThreadAggregate (&aggregate nqueens , nCodelets) ;

34 con t i nue (aggregate) ;

35 aggregate . dependsOn (this) ;

36 }

37

38 copyRowsToBeFilled = RowsToBeFilled ;

39 i f (copyRowsToBeFilled != 0)

40 {

41 r = (−((signed) RowsToBeFilled) & RowsToBeFilled) ;

42 RowsToBeFilled &= ˜(r) ;

43 i f (row < MAX−1)

44 {

45 copyColsToBeFi l led1 = ColsToBeFi l led | r ;

46 copyLeftDiag1 = (LeftDiag | r) >> 1 ;

47 copyRightDiag1 = (RightDiag | r) << 1 ;

48 copyRowsToBeFilled1 = MASK & ˜(copyColsToBeFi l led1 | copyLeftDiag1

49 | copyRightDiag1) ;

50 }

51 }

52

211

53 while (RowsToBeFilled != 0)

54 {

55 r = (−((signed) RowsToBeFilled) & RowsToBeFilled) ;

56 RowsToBeFilled &= ˜(r) ;

57

58 i f (row < MAX−1)

59 {

60

61 unsigned int copyColsToBeFi l led = ColsToBeFi l led | r ;

62 unsigned int copyLeftDiag = (LeftDiag | r) >> 1 ;

63 unsigned int copyRightDiag = (RightDiag | r) << 1 ;

64 unsigned int copyRowsToBeFilled = MASK & ˜(copyColsToBeFi l led |

65 copyLeftDiag | copyRightDiag) ;

66

67 r e s u l t s [i] = spawn nqueens (copyRowsToBeFilled ,

68 copyColsToBeFil led , copyLeftDiag , copyRightDiag , row+1) ;

69

70 aggregate . dependsOn (r e s u l t s [i]) ;

71

72 i++;

73 }

74 else

75 {

76 found += 1 ;

77 }

78 }

79 int s i z e = i ;

80 i f (copyRowsToBeFilled != 0)

81 {

82 i f (row < MAX−1)

83 {

84 found += nqueens (copyRowsToBeFilled1 , copyColsToBeFil led1 ,

85 copyLeftDiag1 , copyRightDiag1 , row+1) ;

86 }

87 else

212

88 {

89 found += 1 ;

90 }

91 }

92

93 return found ;

94 }

95

96 void nqueensTop ()

97 {

98 unsigned int RowsToBeFilled , ColsToBeFil led , LeftDiag , RightDiag , rows ;

99

100 unsigned int s o l u t i on s , so lut ionsOdd = 0 ;

101

102 rows = ColsToBeFi l led = LeftDiag = RightDiag = 0 ;

103

104 int ha l f = BOARD>>1;

105 RowsToBeFilled = (1 << ha l f) − 1 ;

106

107 ThreadAggregate threadEnd(&aggregate nqueens , 2) ;

108

109 i f (MAX & 1)

110 threadEnd . s e t S i g n a l S i z e (2) ;

111 else

112 threadEnd . s e t S i g n a l S i z e (1) ;

113

114 s o l u t i o n s = spawn 2∗nqueens (RowsToBeFilled , ColsToBeFil led ,

115 LeftDiag , RightDiag , rows) ;

116

117 threadEnd . dependsOn (s o l u t i o n s) ;

118 i f (MAX & 1) //half of middle column for odd

119 {

120 RowsToBeFilled = 1 << (MAX >> 1) ;

121 rows = 1 ;

122

213

123 ColsToBeFi l led = RowsToBeFilled ;

124 LeftDiag = (RowsToBeFilled >> 1) ;

125 RightDiag = (RowsToBeFilled << 1) ;

126 RowsToBeFilled = (RowsToBeFilled − 1) >> 1 ;

127

128 so lut ionsOdd = 2∗nqueens (RowsToBeFilled , ColsToBeFil led ,

129 LeftDiag , RightDiag , rows) ;

130

131 threadEnd . dependsOn (so lut ionsOdd) ;

132 }

133

134 sync ;

135

136 s o l u t i o n s+=solut ionsOdd ;

137 }

214

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	1.1 Features
	1.2 Challenges
	1.3 Problem Statement
	1.4 Contributions
	1.5 Summary

	2 Background
	2.1 Dataflow
	2.1.1 Historical Perspective
	2.1.2 Features
	2.1.3 Static Dataflow
	2.1.4 Dynamic Dataflow
	2.1.5 Semi-Dynamic Dataflow
	2.1.6 Problems with Dataflow

	2.2 Hybrid Von Neumann/ Dataflow Machines
	2.2.1 The Super Actor Machine

	2.3 EARTH Model
	2.4 Codelet Model
	2.4.1 Inspiration
	2.4.2 Features
	2.4.3 Parallelism

	2.5 Runtime Systems
	2.6 Architectures
	2.6.1 C66X Processor
	2.6.2 AMD Interlagos Processors

	3 Threaded Dependency Execution Model
	3.1 Threaded Dependency Model Overview
	3.2 Actors as Threads
	3.2.1 Methods
	3.2.2 Merge and Switch Actors
	3.2.3 Executing Actors
	3.2.4 Special Signals

	3.3 States
	3.4 Arcs
	3.5 Loops
	3.5.1 Composable Loops
	3.5.2 Loop Nest
	3.5.3 Software Pipelining

	3.6 Pipelines
	3.7 Split-Phase Transactions
	3.8 References and Joins
	3.9 Comparison to Other CAPSL Models
	3.10 Scheduling
	3.11 Examples

	4 Tapestry Overview
	4.1 Framework
	4.2 Wrapper Design
	4.2.1 Optimizations
	4.2.1.1 Fine-Grain Optimizations
	4.2.1.2 Other Optimizations

	4.2.2 Tapestry

	4.3 Contributions

	5 Tapestry Threads
	5.1 Features
	5.1.1 C++ Threads
	5.1.1.1 Thread Creation, Running, and Joining
	5.1.1.2 Classes and Contexts

	5.1.2 Dependencies
	5.1.2.1 Dependency Loops and Pipelines

	5.1.3 Synchronization
	5.1.4 General Parallelism
	5.1.5 Parallel For
	5.1.6 Continuations

	5.2 Support for Many Execution Models
	5.2.1 EARTH and Codelets
	5.2.1.1 Comparison to EARTH

	5.2.2 Fork/Join
	5.2.3 Static
	5.2.4 Hybrid

	5.3 Hints and Metadata
	5.3.1 Hints
	5.3.2 Metadata

	5.4 Modular Components
	5.4.1 Scheduling

	5.5 Implementation
	5.5.1 Tapestry Fibers Shared Memory

	6 Tapestry Fibers
	6.1 Design
	6.2 Modularity
	6.2.1 Connecting Fibers and the Wrapper

	6.3 Fine-grain Optimizations
	6.4 High Throughput Queue
	6.5 Work Stealing via Stack Pushing
	6.6 TI C66x Port
	6.7 NUMA Considerations

	7 Evaluation
	7.1 Benchmarks
	7.1.1 Fibonacci
	7.1.2 N-Queens
	7.1.3 N-Puzzle
	7.1.4 Quicksort
	7.1.5 Monte-Carlo
	7.1.6 Matrix Multiplication

	7.2 Platforms
	7.2.1 x86-64: Core 2
	7.2.2 x86-64: Core i7
	7.2.3 x86-64: Bulldozer
	7.2.4 TI C6678

	7.3 Case Study on Bulldozer
	7.3.1 Runtime Micro-benchmarks
	7.3.1.1 One Thread Overhead
	7.3.1.2 Parallel Scheduling Overhead
	7.3.1.3 Dependency Overhead

	7.3.2 Runtime Benchmarks
	7.3.2.1 Fibonacci Scalability
	7.3.2.2 N-Queens Scalability
	7.3.2.3 Quicksort Scalability
	7.3.2.4 Monte Carlo Scalability
	7.3.2.5 N-Puzzle Iterative Deepening Scalability
	7.3.2.6 Matrix Multiplication Kernel Static Scalability
	7.3.2.7 Matrix Multiplication Scalability

	8 Related Work
	8.1 Microsoft Task Parallel Library
	8.2 Intel Concurrent Collections
	8.3 OpenMP
	8.4 Habanero C
	8.5 Unified Parallel C
	8.6 X10
	8.7 Chapel
	8.8 Fortress
	8.9 Coarray Fortran & Coarray Fortran 2.0
	8.10 Global Arrays
	8.11 HPX

	9 Conclusion & Future Work
	9.1 Conclusion
	9.2 Future Work
	9.2.1 Threaded Dependencies
	9.2.1.1 Data Pipelining
	9.2.1.2 Codelet Pipelining

	9.2.2 Additional

	Bibliography
	A Additional Benchmark Results
	A.1 Case Study for Core 2
	A.1.1 Runtime Micro-benchmarks
	A.1.1.1 Serial Overhead for Dependencies
	A.1.1.2 Fibonacci Overhead for Dependencies
	A.1.1.3 N-Queens Overhead for Dependencies
	A.1.1.4 Quicksort Overhead for Dependencies
	A.1.1.5 Monte Carlo Overhead for Dependencies

	A.1.2 Runtime Benchmarks
	A.1.2.1 Optimizations for Dependencies
	A.1.2.2 Fibonacci Fork/Join
	A.1.2.3 N-Queens Fork/Join
	A.1.2.4 Quicksort Fork/Join
	A.1.2.5 Monte Carlo Fork/Join
	A.1.2.6 Monte Carlo Starvation
	A.1.2.7 Fibonacci Dependencies
	A.1.2.8 N-Queens Dependencies
	A.1.2.9 Quicksort Dependencies
	A.1.2.10 Monte Carlo Dependencies

	A.1.3 OS Benchmarks
	A.1.3.1 Spawn Test
	A.1.3.2 Fibonacci
	A.1.3.3 N-Queens
	A.1.3.4 Quicksort

	A.1.4 Tree Reduction Tests
	A.1.5 Fibonacci Automatic Tree to Graph Reduction Speedup

	A.2 Case Study for Core i7
	A.2.1 Runtime Benchmarks
	A.2.1.1 Fibonacci Scalability
	A.2.1.2 N-Queens Scalability
	A.2.1.3 Quicksort Scalability
	A.2.1.4 N-Puzzle Scalability

	B Benchmark Code
	B.1 Fork/Join Benchmarks
	B.1.1 Thread Spawn
	B.1.2 Fibonacci
	B.1.3 N-Queens
	B.1.4 Quicksort
	B.1.5 Monte-Carlo
	B.1.6 N-Puzzle
	B.1.7 Matrix Multiplication

	B.2 Dependency Benchmarks
	B.2.1 Thread Spawn
	B.2.2 Fibonacci
	B.2.3 N-Queens
	B.2.4 Quicksort
	B.2.5 Monte-Carlo
	B.2.6 Fibonacci Dynamic
	B.2.7 N-Queens Dynamic

