
IMPROVING EFFICIENCY AND FLEXIBILITY OF

INFORMATION RETRIEVAL SYSTEMS

by

Hao Wu

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and
Computer Engineering

Winter 2016

c© 2016 Hao Wu
All Rights Reserved

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

ProQuest 10055811

Published by ProQuest LLC (2016). Copyright of the Dissertation is held by the Author.

ProQuest Number: 10055811

IMPROVING EFFICIENCY AND FLEXIBILITY OF

INFORMATION RETRIEVAL SYSTEMS

by

Hao Wu

Approved:
Kenneth E. Barner, Ph.D.
Chair of the Department of Electrical and Computer Engineering

Approved:
Babatunde A. Ogunnaike, Ph.D.
Dean of the College of Engineering

Approved:
Ann L. Ardis, Ph.D.
Senior Vice Provost for Graduate and Professional Education

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Hui Fang, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Chengmo Yang, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Stéphane Zuckerman, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Ben Carterette, Ph.D.
Member of dissertation committee

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to my advisor, Hui Fang. who

gave me the opportunity for graduation study and led me into the field of information

retrieval. I had no prior experience in this area and she taught me the knowledge

and skills with great patience. It is a great pleasure to work with her and I learnt

pretty much through the process. Besides, she greatly encouraged and supported my

interests in IR efficiency and IR toolkit development. Without her help I cannot finish

this thesis.

I also thank other members in my thesis committee, Chengmo Yang, Ben

Carterette, Guang R. Gao and Stphane Zuckerman. They gave me a lot of useful

suggestions and helped me to make the thesis more solid and completed.

I would also thank my collaborators. Wei Zheng and Xitong Liu gave me a lot

of help when I first came to the lab and I could not setup and learn so quickly without

their help. I would like to thank Peilin Yang, Yue Wang, Kuang Lv and Wei Zhong as

well, It is a great pleasure to discuss and work with them.

I would like to thank parents for their unconditional love and support through-

out my whole life. Finally I would like to give special thanks to my wife Zhuo Liu,

who encouraged me seek graduation education abroad. It is a great luck that we got

admissions from the same university and we spent a lot of pleasure time in the small

city of Newark. Pursuing Ph.D. degree is a long and lonely journey. Her understanding

and supports is one of the energy which drives me finish this adventure.

iv

TABLE OF CONTENTS

LIST OF TABLES . ix
LIST OF FIGURES . xii
ABSTRACT . xv

Chapter

1 INTRODUCTION . 1

2 BACKGROUND . 6

2.1 Basic Query Processing . 6
2.2 Static Document Pruning . 7
2.3 Top-K Query Processing and Dynamic Pruning 8

2.3.1 Dynamic pruning of DAAT query processing 8
2.3.2 Dynamic pruning of TAAT(SAAT) query processing 10

2.4 Information Retrieval Toolkit . 12

3 VIRTUAL IR LAB: A NOVEL PLATFORM FOR IR TEACHING
AND RESEARCH . 14

3.1 Introduction . 14
3.2 Methodology . 15

3.2.1 Architecture . 15
3.2.2 Life of an index . 17

v

3.2.3 Life of a query . 21

3.3 Discussions . 26

3.3.1 Query processing with dynamical code generation 26

3.4 Experiments . 29

3.4.1 Experimental results . 31

3.5 Conclusion and future work . 32

4 PERFORMANCE MODELING FOR TOP-K QUERY
PROCESSING . 35

4.1 Introduction . 35
4.2 Model Development . 37

4.2.1 Multiple Stages in Query Processing 37
4.2.2 Performance Modeling: the Initialization stage 38
4.2.3 Performance Modeling: the Retrieval stage 39
4.2.4 Performance Modeling: Summary 40

4.3 Model Fitting . 41

4.3.1 Fitting for the exhaustive evaluation method 42
4.3.2 Fitting for the dynamic pruning methods 43

4.4 Feature Approximation . 43

4.4.1 Approximation in the exhaustive evaluation method 44
4.4.2 Approximation in the pruning methods 45

4.4.2.1 Estimating the pruning percentage 46
4.4.2.2 Feature approximation for maximum score method . 47
4.4.2.3 Feature approximation for WAND 49

4.5 Experiments . 51

4.5.1 Experimental design . 51
4.5.2 Results on performance modeling 52
4.5.3 Results on processing time prediction 54
4.5.4 More analysis . 57

vi

4.5.5 Efficiency of the model . 61

4.6 Conclusions . 62

5 IMPROVE EFFICIENCY OF QUERY PROCESSING
THROUGH DOCUMENT PRIORITIZATION 64

5.1 Introduction . 64
5.2 Document Prioritization . 66

5.2.1 Basic idea . 66
5.2.2 Tree-based prioritization . 68
5.2.3 Discussions . 72

5.3 Experiments . 73

5.3.1 Experimental setup . 73
5.3.2 Performance comparison: efficiency 74
5.3.3 Performance comparison: effectiveness 76
5.3.4 Result analysis . 79

5.3.4.1 Efficiency comparison for different query lengths . . . 80
5.3.4.2 Efficiency: the number of evaluated documents . . . 82
5.3.4.3 Impact of the pruning strategy 83

5.4 Conclusions . 84

6 IMPROVE EFFICIENCY OF PSEUDO RELEVANCE
FEEDBACK . 86

6.1 Introduction . 86
6.2 Efficient Pseudo-relevance Feedback for SAAT 89

6.2.1 Overview of existing implementation strategy 89
6.2.2 Analyzing the second round retrieval 92
6.2.3 The proposed incremental approach 93
6.2.4 Discussions . 95

6.3 Experiments . 95

6.3.1 Experiment design . 95

vii

6.3.2 Experimental results . 96

6.3.2.1 Efficiency and effectiveness 97
6.3.2.2 Impact of parameter values 99
6.3.2.3 Scalability . 103

6.4 Conclusion and Future Work . 105

7 OPTIMIZING EFFICIENCY/EFFECTIVENESS TRADE-OFF . 107

7.1 Introduction . 107
7.2 Theory . 108
7.3 Top-k Query Processing at Time Constrained Environment 110

7.3.1 Force termination of query processing 110
7.3.2 Adjusting cut-off threshold rate F through efficiency prediction 111
7.3.3 Simplifying queries . 115
7.3.4 Document prioritization . 118
7.3.5 Summary . 120

7.4 Experiments . 121

7.4.1 Experiment design . 121
7.4.2 Performance at loose time constraints 121
7.4.3 Performance at strict time constraints 123

7.5 Conclusion . 129

8 CONCLUSION AND FUTURE WORK 133

BIBLIOGRAPHY . 136

viii

LIST OF TABLES

3.1 Performance comparison of the three system (MAP@1000) 31

3.2 Efficiency comparison of the three system (ms) 32

4.1 Prediction comparison with real feature values: RMSE (ms) 52

4.2 Percentage of the time spent on each stage 54

4.3 Prediction comparison with estimated feature values: RMSE (ms) . 56

4.4 Prediction results at different query length: RMSE (ms) (Test05) . 57

4.5 Prediction results at different query length: RMSE (ms) (Test06) . 57

4.6 Prediction Results for different K: RMSE(ms) (Test05) 58

4.7 Prediction Results for different K: RMSE(ms) (Test06) 59

4.8 Cross collection prediction results 60

4.9 Space usage for different prediction method (GB) 61

4.10 Average Query Processing time (ms) 62

5.1 Effectiveness Comparison (MAP@K) 79

5.2 Avg. processing time per query (ms) for different query length on
TB05L (K=1000) . 80

5.3 Avg. processing time per query (ms) for different query length on
TB06L (K=1000) . 80

5.4 Avg num. of evaluated docs on TB06L 83

ix

5.5 Avg num. of evaluated docs on TB06L for different query length
(K=1000) . 83

5.6 Avg. query processing time (ms) on TB06L 83

6.1 Efficiency comparison using TREC Terabyte ad hoc queries (i.e.,
average query processing time (ms) to retrieve 1K documents) . . 97

6.2 Comparison of the average size of accumulator lists per query . . . 98

6.3 Effectiveness comparison using TREC Terabyte ad hoc queries
(MAP@1000) . 98

6.4 Impact of the expansion weight (i.e., λ) on the efficiency (the average
execution time (ms) per query) . 99

6.5 Impact of the expansion weight (i.e., λ) on the effectiveness
(MAP@1000) . 100

6.6 Average query execute time (ms) based on different expansion
weights (top 10 documents for each query) 100

6.7 Average query processing time (ms) on different query length (2005
50K queries) . 104

6.8 Average query processing time (ms) on different query length (2006
100K queries) . 104

6.9 Comparison of effectiveness and efficiency of BM25 retrieval method 105

7.1 Performance Comparison on TB04 collection in loose time
constraints. Methods are evaluated by MAP(Mean Average
Precision),AT(Average Processing Time:ms) and LR(Late Rate %) 124

7.2 Performance for different efficiency control methods on TB05
collection . 125

7.3 Performance for different efficiency control methods on TB06
collection . 130

7.4 Performance Comparison on strict time constraints 131

7.5 Statistic Comparison when process is forced terminated at 15 ms . 131

x

7.6 Performance Comparison on strict time constraints for long queries
(≥ 5) . 132

7.7 Performance Comparison on strict time constraints on larger
collection . 132

xi

LIST OF FIGURES

3.1 Code fragment of API based query processing implementation . . . 16

3.2 The architecture of Virtual IR Lab 17

3.3 The process of index building . 18

3.4 The process of invert index building 20

3.5 The process of forward index building 22

3.6 Life of a query . 24

3.7 The process of posting lists locating 25

3.8 The process of document name lookup 26

3.9 Difference between API based query processing and our new approach 27

3.10 API-based BM25 document evaluation function implementation . . 28

3.11 BM25 document evaluation function implementation in IR Virtual
Lab . 29

3.12 The embedded code which is generated by replacing variables with
actual values . 30

3.13 The code which has been optimized by compilers 30

3.14 The interface of IR virtual lab . 33

4.1 Multiple stages in the query processing 38

4.2 Measured Time for Model Fitting 42

xii

4.3 Model Fitting of Exhaustive (up), maximum score (middle) and
WAND (down) on Test05 . 53

4.4 Processing time predicted by Model for Exhaustive on Test05 . . . 55

4.5 Processing time prediction for maximum score on Test05: BL (left)
and Model (right) . 55

4.6 Processing time prediction for WAND on Test05: BL (left) and
Model (right) . 55

4.7 Average predicted query time for different values of K: maximum
score . 59

4.8 Average predicted query time on different values of K: WAND . . . 60

5.1 Difference between conjunctive mode, disjunctive mode and the
proposed method. 66

5.2 An example of the decision tree based query processing 69

5.3 Efficiency comparison on TB05L: average processing time per query
(ms) . 75

5.4 Efficiency comparison on TB06L: average processing time per query
(ms) . 75

5.5 Efficiency comparison on MBL: average processing time per query
(ms) . 76

5.6 Effectiveness Comparison (TB05) 77

5.7 Effectiveness Comparison (TB06) 77

5.8 Effectiveness Comparison (MB11) 78

5.9 Effectiveness Comparison (MB12) 78

5.10 Performance comparison on TB06 : average query processing time per
query (ms) . 81

5.11 Impact of the pruning strategy: the percentage of non-pruned blocks 84

xiii

6.1 Query processing time on different query length 87

6.2 Processing time of the three steps in pseudo-relevance feedback
implementation . 89

6.3 Computational flows for different implementations of
pseudo-relevance feedback methods 90

6.4 The speed-up rate on different expansion weight λ (top 1000
documents returned) . 101

6.5 The speed-up rate on different number of expansion terms 102

6.6 The speed-up rate on different number of retrieved documents per
query . 103

6.7 The speed-up rate on different expansion weight λ (top 10 documents
returned) . 104

7.1 The architecture of Query Early Termination strategy 110

7.2 cut-off threshold curve during query processing 111

7.3 Average Cut-off threshold change during query processing for
different F ′ . 114

7.4 Average of the K-th document score change during query processing
for different F ′ . 114

7.5 The architecture of Query simplifying query processing 116

7.6 The architecture of Document Prioritization query processing . . . 119

7.7 The comparison of difference methods when time constraint is 15ms
for TB04 collection . 123

xiv

ABSTRACT

The development of information retrieval (IR) (the search engine) is one of the

revolutionary techniques of the past century. It changes the way people communicate

and share knowledge, and it frees people up from the hassles of seeking and remember-

ing information, in addition to saving time and energy that can be used more effectively

elsewhere.

As the amount of information grows exponentially, so do the complexities and

the costs. Search-engine efficiency, which is related to user experience and the provider’s

revenue, becomes more and more important. Existing techniques such as dynamic

pruning can help improve the efficiency of IR systems. However they do not solve

the whole puzzle and in many situations (e.g. long queries, large number of returned

documents and etc.) their improvement of efficiency is far from enough.

To improve the efficiency of query processing, we create an analytical model

to explain query processing time of IR systems. This model uses few features and it

is more accurate than previous. Inspired by the model, we try to solve various IR

efficiency problems. First, to improve the query processing time when k (e.g. the num-

ber returned documents) is large, we propose a document prioritizing methods which

can better improve efficiency than state-or-art methods without hurting effectiveness.

Second, we studied a special case of long query processing called pseudo-relevance feed-

back and we improve its efficiency by providing a new incremental approach. Third, we

further explore the trade-off between efficiency and effectiveness and propose several

methods which can improve efficiency at the cost of acceptable effectiveness loss in a

time-constrained environment.

In additional to query processing efficiency, we also explore another kind of

efficiency: how easily people can implement different search-engines. Current toolkits

xv

can help implementing various retrieval functions with their API -based framework.

However their APIs are usually complicated and it is still difficult for inexperienced

users to implement retrieval functions.

To improve this situation, we introduced an information retrieval toolkit called

Virtual IR Lab. When we compared it to existing IR toolkits, it applied a simpler but

more efficient architecture. By applying automatic code-generating techniques, the

toolkit can help users implement various retrieval functions conveniently. Its friendly

and flexible design makes it a good fit for both education and research.

xvi

Chapter 1

INTRODUCTION

Information retrieval (IR) as performed by search engines is one of the revolu-

tionary techniques of the past century. This wonderful achievement was founded on

the improvement of effective communication and knowledge sharing. Across space and

time, even from within a hazardous environment, information can be transmitted in

seconds and connect human minds across the globe. New ideas erupted and disrupted

our lives as never before.

Search engines changed the way people access information [44, 47, 51, 57, 60, 62,

104, 112, 118]. In the past, it was painful, sometimes expensive, and at times even

impossible to search certain information. However, searching has now become so easy

that anyone can get information in seconds by typing a few words in a search box.

New information can be spread around the world in minutes, and people can access

such knowledge at a very low cost. Search engines free people from the hassle of

remembering information and save time and energy to explore new ideas.

However, as the amount of information grows exponentially, the complexity

and cost of IR systems also increase exponentially. A commercial search engine may

involve thousands of machines or more. As a result, query efficiency (i.e., how fast the

IR system can process queries) becomes increasingly important [23,32,87].

First, efficiency is directly related to user experience. Search users usually expect

search engines to display results in a short time in response to their search requests (i.e.,

within seconds). If the query delay is too long, the user may feel inconvenienced and

switch to a different search engine. Fewer query delays also mean more search requests;

users are likely to perform additional search if the IR system displays results more

quickly. More search requests lead to more revenue for search engine providers [87].

1

Second, efficiency is highly related to costs. To handle large amounts of data and

reduce query delay, modern commercial search engines usually employ a distributed

architecture involving thousands of machines. If we can double search efficiency with

other unchanged environmental factors (amount of data, query delay, etc.), a company

can reduce the need for at least half of the hardware as well as energy costs [23]. This

is surely of great importance to the IR industry.

Third, efficiency is also related to search effectiveness. Some techniques, such as

pseudo relevance feedback , have been proven useful for improving search effectiveness

(i.e., how search results meet users’ information needs). However, due to their high

computational costs, their application to industry is limited [25, 42, 63]. Improving

efficiency may help break the limitation and lead to further improvement in search

engine effectiveness. In summary, efficiency is becoming more and more important,

and improving efficiency means cheaper, faster, better communication and knowledge

sharing.

An IR system firstly gathers web pages and documents and builds an index from

them. It then uses the index to serve users by outputting corresponding information

to the queries. The first part can be done offline and is less time sensitive. A few

studies [36] focus on improving efficiency on this part, e.g. reducing indexing delay.

The second part in which IR systems grade and rank candidate documents based users’

input queries and represent the retrieval results to users is known as query processing.

Since query processing must be performed online, its delay is directly present to users

and it has more impacts on users’ satisfaction. Therefore, in this dissertation, we focus

on the efficiency of the online part, i.e. how to reduce the computational costs and

delays of query processing.

The basic query processing is to grade and rank all candidate documents. How-

ever as the data collection becomes large, basic query processing may lead to low

efficiency and long delays. Previous work [10,18,38,40,49,50,78,90,97] explored differ-

ent methods to improve query processing efficiency. The basic idea of these methods is

trying to avoid unnecessary candidate documents grading so that the query processing

2

time can be reduced. Although they are proved to be useful to improve the efficiency

of IR systems query processing, they don’t solve the whole puzzle. In some situations,

query processing time can still be very long (e.g. long queries, large number of returned

documents).

In addition to query processing efficiency, we also try to explore another kind

of IR efficiency which has been rarely studied before: how fast an IR system may

implement and switch different retrieval functions. People are not satisfied with seeing

only the data and search results provided by several centralized general search engines;

they are also seeking methods to manage and share their own data. For example, a

company may need a customized search engine to search for data in its private database.

An electronic merchant may want to provide a search engine that is customized for

a website to help customers find products. As a result, a toolkit that provides a

framework for basic IR functions is needed. Such a toolkit is also important for IR

research and education. Researchers keep introducing new methods and they need

implementations to test their design. Students want to know how retrieval results are

generated and they need opportunities to control and study IR process. To meet these

requirements, a complicated industrial system is usually impractical, whereas a flexible

simple toolkit can work well. Fortunately, there are several IR toolkits, such as Indri [3],

Lucene [7], and Ivory [4], and they have been proven useful in providing search related

functionality. However, even with these toolkits, exploring new retrieval functions

and implementing customized search engines is still complicated. They require users

to understand their mechanisms and to modify or write a great deal of application

programming interface codes to implement basic functions. This process is even more

painful for inexperienced users. To solve this problem, we propose a new framework

for creating IR toolkits that use a very flexible and easy-to-use process to implement

search engines.

To solve these two kinds of efficiency problems, in this thesis we make following

contributions:

(1) First, we show a web service called Virtual IR Lab which is designed to

3

improve IR system development efficiency. Virtual IR Lab is based on a simple frame-

work and uses automatic code generation techniques to help users implement their own

search engines in a very convenient and efficient way. We also provide a platform for

them to test and compare search engines so that they can easily improve the methods.

In additional to these, the architecture of Virtual IR Lab is simple but efficiency. Com-

pared with existed IR toolkits such as Indri [3], it is much faster in the term of query

processing. We describe the architecture of Virtual IR Lab as a good example of how

we can improve query processing efficiency by simplifying and optimizing the design.

It should also help readers to better understand basic concepts and mechanism of IR

systems so that they can understand the following chapters easily. (See Chapter 3)

(2) Second, in order to improve query processing efficiency of IR systems, we

study features affecting efficiency. By figuring out the key features and how they influ-

ence query processing time, we build an analytical model which can more accurately

predict processing time for each query. This model and observations in the chapter are

used to develop methods to improve query processing efficiency in following studies.

(See Chapter 4)

(3) Third, we study how to improve efficiency for IR systems which return a

large number of documents per query. As we know, current dynamic pruning techniques

[49, 50, 90, 97] can help to greatly reduce query processing time when the number of

returned documents is small. As the number of returned documents becomes larger,

the efficiency gain through current dynamic pruning techniques becomes smaller. To

solve this problem, we propose a novel document prioritization strategy which can

out-perform a very strong baseline. (See Chapter 5)

(4) Fourth, we seek methods to reduce processing time of long queries. Specif-

ically, we focus on a well-used technique called pseudo relevance feedback which is

suffering from low efficiency of long query processing. By introducing new incremen-

tal approach, we greatly improve speed of pseudo relevance feedback with almost no

effectiveness loss. (See Chapter 6)

(5) Finally, we explore trading off effectiveness for efficiency in time-constrained

4

environment. Commercial IR systems may set up time-out boundaries for query pro-

cessing. It is for the purpose of improving system stability as well as user experience.

In order to meet such an efficiency requirement, we may need to further sacrifice ef-

fectiveness. To reduce effectiveness loss, we provide some laws to select good trade-off

strategies. We then propose and compare several effectiveness and efficiency trade-off

methods.(See Chapter 7)

5

Chapter 2

BACKGROUND

With the increasing amount of online information and the rapidly growing num-

ber of queries, commercial search engines have leveraged many performance optimiza-

tion techniques, including parallel computing [23, 26, 28, 71, 72], caching [22, 56], index

compression [15, 16, 116, 122], and dynamic pruning [18, 49, 50, 90, 97] to meet strict

performance constraints: high throughput and low latency. We now provide some

background about the topics most relevant to our study.

2.1 Basic Query Processing

The main approach to improving information-retrieval-system efficiency is to

reduce data access and computing during query processing. To avoid accessing whole

collections, IR systems perform query processing based on inverted indices [31,66,73,96,

124]. An inverted index is a data structure that enables efficient access to documents

that contain specific terms. In particular, an inverted index consists of an inverted

list for each term in the collection, and each inverted list contains a list of postings

with more detailed information about the occurrences of the corresponding term in the

collection. Typically, a posting of a term provides the information about the terms

occurrence in a document, such as the document ID and the frequency of the term in

the document. Postings of an inverted list can be sorted based on either the document

IDs [124] or their impact, i.e., the terms contribution to the relevance scores of the

corresponding documents [13,14,17,18,90].

With the help of inverted indices, IR systems can access and evaluate a subset

of documents related to the query terms. When processing a query, IR systems must

traverse the inverted lists of all query terms and compute the relevance score of each

6

document with respect to the query based on a retrieval function. The query-processing

strategies can be classified into two classes:

• Term-At-A-Time (TAAT): Sequentially processes the inverted lists of all
query terms and accumulates the partial document scores contributed by each
term [35, 76, 124]. Each document requires an accumulator to record the accu-
mulated relevance score.

• Document-At-A-Time (DAAT): Processes the inverted lists of all query
terms in parallel. The IR system must fully evaluate a document based on the
contribution of all query terms that occur in it before moving to the next docu-
ment. [29,49,50,70,91,97].

DAAT and TAAT have their own advantages. Because TAAT processes in-

verted lists sequentially, it results less cache miss and can process single inverted lists

very quickly. However, to summarize the contributions of all the query terms for the

documents, TAAT must maintain a large hash table that stores all candidate docu-

ments and their accumulated scores . As a result, TAAT may consume a large amount

of additional memory and computational power in maintaining and operating the hash

table.

DAAT on the other hand, requires less memory and only maintains a heap

that stores just the top documents list. However, to localize all the information for

the same documents, DAAT requires synchronization operations over all inverted lists

at significant computational cost. Comparing the two query processing techniques,

DAAT is more widely used simply due to its ability to handle more complex queries

[29,91]. As a result, in the thesis, we will mainly focus on DAAT query processing.

2.2 Static Document Pruning

One thinking to reduce computational cost is not to evaluate postings which are

less likely to affect retrieval results. We can estimate the impacts of postings off-line

and prune low impact ones. Various static pruning methods [10, 38, 40, 78] have been

proposed and their difference are at how they prune postings. Some [40] use term-

based features such as impact score. Some methods [10,38] concentrate on documents

7

and try to keep most representative terms for each documents. While the others [78]

use both term and document features. Static pruning methods can greatly reduce

index size and they can more or less reduce query processing time as well. However

due to the facts that static pruning methods cut postings independently from queries,

they are not always satisfying: On one hand static pruning methods are unsafe, they

might hurt effectiveness and in some situation may be significant due to over-aggressive

pruning. On the other hand, the efficiency improvement of static pruning might not

be significant enough.

2.3 Top-K Query Processing and Dynamic Pruning

Even with the help of inverted indices, the computational cost may still be too

large for the IR system to handle. In a commercial search engine, a common terms

inverted list could contain billions of postings; traversing all the postings and accurately

computing the relevant score for every candidate document in the collection is very

costly and likely impossible. Hence, instead of outputting all candidate documents, a

more practical approach is to find the top-k (e.g., top 1000)-ranked results for a given

query based on a retrieval function [24,59]. Improving top-k query processing efficiency

is one of the most important problems for an IR system.

Various dynamic pruning (i.e., early termination) techniques have been proposed

for both DAAT and TAAT, with the aim of reducing the number of documents that

need to be fully evaluated by avoiding scoring postings that cannot make the top-K

results [18, 49,50,90,97].

2.3.1 Dynamic pruning of DAAT query processing

In recent years, a few pruning methods have been proposed for DAAT-based

processing. The main approach these methods take is to skip unpromising documents

in candidate-document lookup steps. To implement the idea, the pruning methods

must maintain two types of information: (1) a pruning threshold, which records the

minimum score required for documents to make the top-k results; and (2) the maximum

8

expectation score of each candidate document. The pruning threshold is usually easily

accessible by reading the score of the top k-th document, which is the very bottom

document of the top documents heap. The maximum expectation score of a document

is usually estimated as the sum of the maxscores of the query term it contains, where

a term maxscore is the highest impact score of all the postings in the terms inverted

list. It is worth mentioning that maxscores are bound to a special retrieval function

and require pre-processing to get their values.

The Maxscore method [97] first introduces this approach. It dynamically iden-

tifies essential terms based on their maxscores and the threshold and then skips the

scoring of documents that do not contain any essential terms. The WAND method [29]

takes a different approach based on pivoted terms. Specifically, terms are first sorted

based on the current document IDs in their inverted lists, and a pivot term is then

selected so that the sum of this terms maxscores as well as that for each of the terms

ranked in front of it is greater or equal to the pruning threshold. After this, the doc-

ument ID of the pivot term will be used to skip documents with smaller IDs. To seek

for more efficiency improvement, the BMW method [50] stores additional highest im-

pact scores for each blocks. It can estimate the maximum score more accurately for

candidate documents than WAND, and consequently more documents can be pruned

and higher efficiency can be achieved.

It is worth pointing out that the previous pruning methods we have discussed are

rank-safe for top-k results, which means that the results they generate are identical to

those generated by exhaustively evaluating every document. In fact, to achieve higher

efficiency, we can more aggressively prune more documents at the risk of effectiveness

loss. One method for doing so is to artificially change the pruning threshold to a value

higher than that of the minimum score required for a document to make the top-k

results. The higher the artificial threshold, the higher the efficiency, but the more

effectiveness we may lose.

Another way of generating top-k results is to use the conjunctive mode, i.e.,

only evaluating documents that contain all query terms. Previous work has focused

9

on fast-posting list intersection [20, 95]. The conjunctive mode can be considered a

special pruning method that is often more efficient than the disjunctive mode with

regard to pruning, but it would hurt the query processs effectiveness as it may miss

many relevant documents and generate results with lower recall.

2.3.2 Dynamic pruning of TAAT(SAAT) query processing

In order to skip more posting accesses in TAAT, Score-At-A-Time (SAAT) [18],

a variation of TAAT, makes a series of modifications, beginning with Index Organiza-

tions. Instead of sorting postings based on their document IDs, indices for SAAT sort

postings based on their impact, i.e., their contribution to a documents relevance score.

Additionally, indices for SAAT store the impact score, rather than the term frequency,

for each posting. These approaches have two advantages: first, a documents relevance

score D for query Q can be calculated simply by summing up the impact scores of D in

the inverted lists of all the terms in Q. It moves a lot of complex computing (e.g., im-

pact score calculating) offline and reduces delay for query processing systems. Second,

it allows the query processing to access most impacted postings at the beginning and

lets it skip less impacted postings later. One disadvantage of such index architecture

is that indices are bound to specific retrieval functions. If we use a different retrieval

function, the whole index must be rebuilt. To further improve efficiency, the impact

scores are binned into a smaller number of distinct values and only the binned integer

values are stored in the index. This strategy provides two benefits. First, the impact

score can be stored using a very small number of bits (e.g., 6 bits for 64 distinct binned

integers) instead of using 32 or 64 bits for a floating point variable. Second, with the

binned scores, the number of documents with the same score is sufficiently large for

us to separate an inverted list into segments, one for each distinct value of the impact

scores. Within each segment, documents are then ranked based on their document IDs,

and the compression techniques used for document-sorted indexing can be applied here

to achieve a high level of compression. Formally, the retrieval score of document D for

10

query Q is computed as follows,

SQ,D =
∑
w∈Q

Bw,D, (2.1)

where Bw,D is the binned integer score representing the impact of query term w in D.

Previous studies have shown that such a binning strategy would not significantly affect

the retrieval accuracy [17, 90]. Another benefit of binned-score-index organization is

to enable skipping within the postings with the same binned-impact scores. Skips

are forward pointers within an inverted list which make it possible to pass over non-

promising information on the postings with minimal effort. They are often inserted

into the indices and stored as additional information. With the help of the skips, the

system can jump to required records without going through the posting list one record

by one record.

The second modification is at query processing. Instead of processing the in-

verted posting lists one after another for each query term, SAAT processes the postings

in decreasing order of impact value. It fetches all inverted lists first (as in DAAT), but

it determines the most impacted postings and processes them. It does not require

synchronization operations in document lookup; however, the hash-based document

accumulators are still needed to accumulate partial score contributions from the dif-

ferent inverted lists. To skip unpromising postings and reduce accumulator list size,

SAAT query processing usually goes through a four-stage pruning. The four stages

are OR, AND, REFINE and IGNORE. The processing begins with the OR stage by

processing the postings in the inverted lists based on the decreasing order of the im-

pact values. Document accumulators are created whenever necessary, i.e., when a new

document is seen in one of the inverted lists. The processing switches to AND stage

when we can prove that we have created accumulators for all the documents that could

possibly enter the top n. In the AND stage, we ignore all the documents without

accumulators. As the processing continues, and we update the scores for the exist-

ing accumulators with newly-processed information. The processing switches to the

REFINE stage as soon as we know exactly what the top n documents are without

11

knowing their exact ranking. The REFINE stage works with the accumulators of the

top n documents. Finally, once we can determine the rank order of the top n docu-

ments, the process enters the IGNORE stage, which means that we can ignore all the

remaining information from the inverted list. The object of the four-stage design is to

reduce the number of active accumulators gradually when we know more confidently

that other accumulators would not change the final top-k search results. In particular,

the OR stage is the only one that can add accumulators; the AND stage only updates

existing accumulators; the REFINE stage only processes accumulators that can make

the top-k results. Moreover, we further speed up the process by using skipping and

accumulator trimming [90]. Skipping enables long postings to be processed quickly,

while accumulator trimming can reduce the computational cost in the AND stage by

dynamically reducing the number of enabled accumulators.

2.4 Information Retrieval Toolkit

Information retrieval is one of the most important techniques we use in our ev-

eryday life. To help people implement such techniques into various applications, several

open-source toolkits/libraries have been developed. The Lemur project was started in

2000 by the Center for Intelligent Information Retrieval (CIIR) at the University of

Massachusetts at Amherst and the Language Technologies Institute (LTI) at Carnegie

Mellon University. Its products, the Lemur toolkit and, later, the Indri [3] toolkit, are

widely used in academia. They provide implementations of various language-model

approaches and allow people to implement new retrieval methods by using APIs or

modifying the core codes of these methods.

Lucene [7] is more popular than either Lemur or Indri. Lucene (or Apache

Lucene) is a free open-source information-retrieval-software library supported by Apache

Software Foundation. Originally written in Java by Doug Cutting in 1999, Lucene has

been well developed and has achieved great success in both academia and industry. It

is widely recognized for its utility in implementing Internet search engines and local,

12

single-site searching. The IT industry has made wide use of the enterprise search server

applications Apache Solr and Elasticsearch.

Other information retrieval toolkits, for example, include Terrier (University of

Glasgow) [8], Ivory (University of Maryland) [4], etc. However, none of the toolkits

or platforms, including Indri and Lucene, provide user-friendly interfaces that enable

one to implement and try different retrieval methods. In particular, to implement

new retrieval functions in addition to those provided by the toolkits, a user must

either modify their core code or write API programs. Modifying core code usually

requires a user to have a deep understanding of the toolkits architecture. Re-compiling

and debugging is also required, complicating the process. While API programming

is preferred to core-code modification, before being able to write usable API code

a user is required to read a lot of API documents to use the toolkit-provided API

functions. Obviously, neither solution is convenient, especially for beginners who have

little knowledge and experience in using such toolkits.

13

Chapter 3

VIRTUAL IR LAB: A NOVEL PLATFORM FOR IR TEACHING AND
RESEARCH

3.1 Introduction

A modern information retrieval (IR) system not only returns to users the doc-

uments containing their query terms; most importantly, it ranks the candidate doc-

uments and presents users with the most relevant results. Consequently, the scoring

mechanism used to determine how the documents are ranked, called the retrieval func-

tion (or IR model) [11,53,58,61,82,88,102,108,109,121,125] becomes the soul of search

accuracy. Many retrieval functions have emerged in the past several years; however,

no single winner exists. In most situations, people have to implement and process

experiments to see which one is best for which kind of data collection. Throughout the

development of customized search, the importance of different retrieval methods has

become evident in the effort to cover different situations and meet various data and

goals. On the other hand, teaching IR requires students to implement and try different

retrieval functions to enable them to understand IR techniques well. Both situations

require a tool that can facilitate the development and testing of different IR models.

IR toolkits such as Indri 1, Terrier 2, and Lucene 3 have achieved significant

success by providing ways to transfer IR models to industry and various applications

. People can implement their IR models by either modifying the core code of the

toolkits or using the API function the toolkit provides . Although this represents

1 http://www.lemurproject.org/indri/

2 http://terrier.org

3 http://lucene.apache.org

14

major progress from letting users implement IR systems from scratch, either solution

has its own weakness: to modify the original code, users need a basic understanding

of the toolkits to figure out where and how to insert their codes; to use the API, users

require knowledge not only about how to extract term and document statistics from

the index but also about how to deal with trivial issues (e.g. importing queries, ranking

documents, and presenting results). Consequently, such API programming is a little

complicated and requires the user to have certain knowledge of information retrieval

and skills in programming. Figure 3.1 shows a small part of a typical Indri query

processing API program. This code fragment looks for the next candidate document

by going through the posting list of each query term. However, it is just a small part

of the whole query processing program. Therefore it is obvious that implementing

retrieval functions through API is not easy either.

Both modifying the core code or using API to implement retrieval functions are

complicated and time-consuming, especially for beginning users. The complexity could

discourage people from using the programs to test more functions over more collections.

This study introduces a new IR framework. It is different from previous IR toolk-

its in that people can implement different retrieval functions within minutes. However,

its implementation of efficient top-k query processing functionality is even faster than

that of mainstream IR toolkits. More important, by applying a novel architecture and

dynamic code generation techniques, it allows users to implement and test customized

retrieval functions with minimal effort (e.g. a few lines of C/C++ coding). We will

introduce the design in the rest of the chapter.

3.2 Methodology

3.2.1 Architecture

The basic functionality of typical IR systems is usually divided into two parts:

index building and query processing. The purpose of index building is to organize the

documents so that the information can be accessed efficiently. The Virtual IR Lab

follows the paradigm, but it introduces several novel designs to fit its purpose. Figure

15

Figure 3.1: Code fragment of API based query processing implementation

16

User Interface

Retrieval
FunctionsDatabase

Search
Engines

Query

Index
Documents

Query Sets

Judgement

Index
Builder

Top-k Query
Processing

Results

User Files

Data Collection

Figure 3.2: The architecture of Virtual IR Lab

3.2 shows the architecture of the Virtual IR Lab system. Virtual IR Lab has a user

interface that connects both database and file system. It allows users to log in and

customize retrieval functions and search engines. When a query comes into the system,

Virtual IR Lab automatically generates code based on both retrieval function definition

and query term statistics. The automatically generated code is used to perform top-k

query processing through the index. The results are then returned to the user interface

for further operations (e.g. display and evaluation). To better explain the design, we

will show more details in the following subsections.

3.2.2 Life of an index

Virtual IR Lab is based on a simple but efficient index design. The index in

Virtual IR lab has the following features: first, the index architecture is simple and easy

to understand and maintain, making it ideal for both education and research. Second,

the index is especially efficient for query processing. Experimental results show that

top-k query processing can be even faster than other toolkits query processes (e.g. Indri

17

Documents Parser Stemmer Term Lookup

Inver Index
Builder

Forward
Index

Builder

Document
Meta Builder

Document
Lookup
Builder

Other
Builders

Parsed
Document

Document
Vector

Invert Index Forward Index Metadata Document
Lookup

Other Term lookup

Term Lookup
Builder

Index

Figure 3.3: The process of index building

and Lemur). Finally, the index is extendable, which enables more data and statistics to

be added. The idea of dynamic pruning methods is to using pre-computing information

such as maximum impact scores of each posting lists. Virtual IR Lab’s index can be

easily extended to compute and store such extra data. As a result, it can also support

dynamic pruning such as WAND and maximum score as well. In this subsection, we

explain how documents are pre-processed and used to build an index in Virtual IR

Lab.

We summarize the process in figure 3.3. At the beginning, documents go through

a parser, where the punctuation is removed and documents are tokenized into terms.

The terms are then further stemmed [80] and transferred into their original forms. For

example, the term ”does” will be stemmed as ”do”. The stemmed terms are then

passed to the next stage, where they are translated into interval term IDs.

The idea of interval terms is also used in mainstream IR toolkit such as Indri

and Lucene. Using interval term IDs instead of text strings gives us several advantages

in efficiency. First, the interval term IDs are integers, which use less space than text

18

strings. Using interval IDs greatly reduces the cost of data storage and transfer. Sec-

ond, the interval IDs are allocated continually and can naturally help the system to

locate the data associated with the terms. Therefore, the interval term ID translation

process, called ”term lookup”, is one of the most important steps in index building.

Multiple methods are available for such translation, such as hash tables [45,74]. A hash

table is a frequently-used data structure that maps text strings to integer numbers and

can be used to build such a dictionary. However, as the vocabulary size becomes large

(e.g. millions of terms), a hash table might not be able to store the entire dictionary

in memory, making maintaining and accessing the hash table less efficient. Hence, in

Virtual IR Lab, we use prefix trees for term lookup. Compared with hash tables, prefix

trees [27, 103] can be more easily stored on disk and efficiently accessed. Most impor-

tant, using prefix trees can help the system locate terms similar to searched terms and

is useful for query suggestion and query correction.

After the term lookup stage, a document is translated into a vector of integers.

It is then passed to various builders to build indices that store different data and serve

different functionalities in query processing. One important index is the inverted index,

which stores the posting list and helps the system quickly locate documents containing

given query terms. Figure 3.4 shows how the inverted index is built through documents.

Based on their term IDs, the terms are passed to corresponding posting list builders.

One posting list builder handles one single term and consists of two parts: a temporary

posting list and metadata. A temporary posting list is an array that contains the most

recent postings of the term. In the current design, the temporary posting list capacity

is 64. When the array is full, the temporary posting list will be cleared and the 64

postings will be compressed and stored on disk as data blocks. Because all the posting

list builders share the same compressed data block space, we need to store the positions

of the blocks that correspond to each term. Additionally, we must also store other

metadata, such as number of postings and sum of term frequency. After processing all

documents, we further sort the blocks based on termID, then document ID, in order

from lowest to highest. The advantage of sorting is obvious: because sorting merges

19

Posting
List

Builder 3

Posting
List

Builder 4

Posting
List

Builder 52
Metadata

Temp
Postings

Compressed Data
Blocks Term 3

Term 4

Term 52

Other Term

Unused

Completed Data
Blocks

PForDelta Compressor

3 52 4 ...

Term
Summary

Document Vector

Invert Index

64 postings

... ...

Figure 3.4: The process of invert index building

postings corresponding to the same term, the system can read the posting lists easily,

thus greatly reducing the cost of index access during query processing. After all the

blocks are sorted, the metadata of each posting list build are also optimized into a new

data structure, called a term summary, which contains only the position information

to help the system quickly locate the data for each term during query processing. The

term summary and completed compressed data block form an inverted index of Virtual

IR Lab, and we will show how to read posting lists from the inverted index in the next

subsection.

Compared with inverted indexing, the process of forward index building is sim-

pler. In Virtual IR Lab, the forward index stores the term order of each document

20

and proves useful for recovering document content. Forward indexing can also be used

for advanced searches such as those using term proximity. Figure 3.5 shows how a

forward index is built in Virtual IR Lab. A forward index builder handles the docu-

ment vector one after another. Term ID fills the temporary lists in order. When the

temporary lists are full (i.g. 64), the term IDs are compressed using the PFD com-

pression technique [116], and the compressed block is then stored on disk. At the same

time, we store the position of the start block of each document in an array, which is

finally converted into a document summary that helps us locate the forward lists of

each document. A forward index is easy to build and maintain because information is

stored based on document order and the compressed blocks need not be reorganized.

Both the document metadata index, which stores document-based features such

as document length, and document lookup, which recovers internal document IDs into

the original documents, are of a design similar to the forward index. Because all

information is ordered by document, these indices are similarly easy to build and

maintain. The term lookup index differs from other indices in that it optimizes the

prefix tree used for term lookup and stores it on disk in depth-first traversal order.

Unlike width-first traversal, depth-first traversal can help locate the search path in the

same disk segment or one that is adjacent . As a result, it may help reduce the disk

seek time for term lookup.

3.2.3 Life of a query

In the previous subsection, we discussed how we can build indices in Virtual IR

Lab. In this subsection, we will describe how a query is processed. Figure 3.6 sum-

marizes the process. A query can come from either user direct input or the database;

the former is for user-customized search engines and the latter for retrieval function

evaluation, which uses official queries and judgment. At the beginning, a query is tok-

enized into terms, which are then stemmed, passed to the prefix tree-based dictionary,

and converted into internal term IDs. At this point, we get a query vector which is

consistent with a serial of integer term IDs. Based on the query vector, Virtual IR

21

3 52 4 ...

Document Vector

DocID
Block

Position

Doc 1 0

Doc 2 3

Doc 3 8

... ...

TermID

3
52
4
...

Metadata Temp TermID Vector

Compressed Data
Blocks

Doc 1

Doc 2

Doc 3

Other Docs

Unused

PForDelta Compressor

64 TermIDs

Doc
Summary

Forward Index

Forward Index Builder

Figure 3.5: The process of forward index building

22

Lab collects statistics from both the statistics index and the inverted index and uses

the statistics index and a user-defined retrieval function to automatically generate a

code segment for use in document grading. At the same time, the internal term IDs

are used to locate the posting lists in the inverted index. Because the posting lists are

sorted by term ID, the process is easy and efficient.

Figure 3.7 demonstrates how to locate the posting list of term 103 which is

stored in the position of 5080. First, we go through the term summary, which is

essentially a sorted table storing the position of each terms posting list block. In this

example, Virtual IR Lab reads row 103 of the term summary and gets the achieved

position of 5080. It further directs into position 5080 and fetches metadata specifically

for the posting list iteration. This metadata includes the number of postings, which

is essentially the number of documents containing the term; the terms total number

of occurrences; and, most important, the information needed to decompress the data

blocks. As previously mentioned, Virtual IR lab uses the PFD compression technique.

To decompress such a block requires the following information: data block position,

data block size, parameter A, and parameter B, which are set specifically for the data

block. In query processing, Virtual IR Lab first reads block decompression information

and stores it in memory; it then uses the information to fetch the compressed blocks

from disk and decompress them into posting lists if they are not skipped.

Another optional step is to prepare document skip information, which is only for

dynamical pruning methods, such as maximum score, WAND, and BMW, which decide

whether to prune documents by comparing documents’ maximum score estimation

with the cut-off threshold. In order to estimate a document’s maximum score, we

need to know the maximum impact of each terms postings. To skip more documents,

some dynamic pruning methods such as BMW provide even more accurate maximum

score estimation by using the maximum score of each compressed block. Obviously,

such maximum impacts information needs to be pre-computed and indexed and is

binding to retrieval functions. In other words, the maximum impacts information

pre-computed from a retrieval function cannot be used to direct the dynamic pruning

23

Database

Query

Stemmer
and Parser

Query
Vector

Customized
Retrieval
Function

Invert Index

Docs Evaluation
Code Segments

Posting
Lists

Doc. Skip
info

Top K Query
Processing

Top Doc
Lists

Cache

User Interface

Retrieval
results

Evaluation
results

Stat Index

Doc Meta
Index

Term lookup

Doc Lookup

Forward Index

Figure 3.6: Life of a query

process of other retrieval functions; therefore, Virtual IR Lab will try to look for the

pre-computed information for the retrieval function. If no pre-computed information is

found, the query will be processed using exhaustive methods that grade every document

containing at least one query term.

When grading function, posting lists, and document skip information are ready,

the top-k query processing begins. Virtual IR Lab applies a typical document-at-a-time

(DAAT) query processing mode, which consists of multiple iterations. Each iteration

identifies a candidate document through the posting lists and collects information re-

lated to that document, such as query term frequency, document length, etc. The

24

Term
103

TermID Position
1 0
2 80
... ...

103 5080
104 5120
... ...

0 1 2 3 3 4 5 6

5080 5081 ... 5119 5120

Term Summary
Inverted Index Achieve

of
docs Total TF Compression

Information

Compressed Data Blocks

Content of data 5080 ~ 5120

Figure 3.7: The process of posting lists locating

document-related information is then input into the document grading function. If

the resulting grade is high enough (i.e. higher than the cut-off threshold), both the

document and its grade will be stored in a heap that stores the top-k documents, and

the cut-off threshold is modified. The previous chapter, which describes the analytical

model of top-k query processing, provides more details about the process. Information

such as document length is not stored in the inverted index but instead in the docu-

ment metadata index. Therefore, in top-k query processing, Virtual IR Lab needs to

fetch data from the document metadata index as well.

The output of top-k query processing is a list containing the internal IDs of top-

k documents. To present the retrieval results to users, we must convert the internal

document IDs into their original titles. The document lookup index handles the task

and applies a two-layer architecture. The first layer is Document ID lookup, essentially

a table that stores the record position and the length. Based on position and length,

we can easily locate and fetch the document name string. Figure 3.8 demonstrates how

Virtual IR Lab converts DocID 123 to its original form, first reading row 123 of the

summary table and getting the position of 1988 and length of 21, then locating and

fetching the record titled ”An Introduction of IR”. It is also worth mentioning that

other indices such as term ID lookup apply a similar design.

After the document ID lookup stage, we finally get the retrieval results. Re-

trieval results are going to two directions: on one branch, retrieval results are evaluated

25

Doc 123

Doc ID Postion Length
1 0 20
2 20 14
...

123 1988 21
...

A n i n t r o d u c t i
o n t o I R

DocID Summary Doc Name Achieve

Figure 3.8: The process of document name lookup

by human judgment, and the evaluation score (e.g. mean average precise (MAP) and

precision@30) can be used to compare different retrieval functions on the leading board.

On the other branch, results are displayed on customized search engines if the query

is from the search box. To accomplish this, the retrieval results are first stored in the

cache while the retrieval document IDs are sent to the forward index to get snippets.

The process of fetching document content from the forward index is similar to that

of document ID lookup, and we can easily get the document content vector from the

archive. By organizing the terms around the query terms, Virtual IR Lab creates a

snippet for each document, and the information is also stored in cache. Finally, the UI

fetches the information in cache and displays it to the user, thus completing the query

process.

3.3 Discussions

3.3.1 Query processing with dynamical code generation

One special feature of Virtual IR Lab is that it can apply dynamical code gen-

eration technique to implement different retrieval function definitions. Mainstream IR

toolkits usually implement customized retrieval functions through their APIs. There-

fore, it is interesting to compare the two approaches, and we show the difference in

their architectures in figure 3.9.

Unlike traditional API-based implementations that use the same program to

process all queries, Virtual IR Lab generates embedded programs to deal with different

26

!"#$%&'($

)&&*+,-$!"#$

.,/0102$

"0&3014$

#5'(6$

78(02$

9(:8*-:$!"#$/1:('$

78(02$

"0&%(::,53$

;4/(''('$

<0&3014$

78(02$ #5'(6$

=85%>&5$

?(@5,>&5$
9(:8*-:$

9(-0,(A1*$

=014(B&0+$

78(02$

"0&%(::,53$

#5$&80$

C014(B&0+$

Figure 3.9: Difference between API based query processing and our new approach

27

Figure 3.10: API-based BM25 document evaluation function implementation

queries. Figure 3.10 displays sample code for implementing the evaluation function

of BM25. Obviously, the code is not optimized for efficiency in that some parts are

unnecessarily computed repeatedly. For example, in each document evaluation the

program will look for the document frequency (DF) of each term and compute its

inverted document frequency. Considering that there are usually millions of candidate

documents to be evaluated, these IDF computations must be redone millions of times.

However it is worth noticing that IDFs do not change during query processing and

need be computed only once.

Our design hand can automatically optimize users’ code. In its statistics-

centered mechanism, user-defined code is translated into ”embedded code” by replacing

statistics names with real values. The compiler further optimizes the embedded code,

thus naturally avoiding redundant computation. Figure 3.11 shows how BM25s re-

trieval function is implemented for document evaluation: it is similar to but more

concise than the process shown in figure 3.10. When processing a query with two

query terms whose respective DFs are 100 and 1000, given collection size N = 5000

and average document length avgl = 500, the corresponding embedded code will look

28

Figure 3.11: BM25 document evaluation function implementation in IR Virtual Lab

like figure 3.12. The compiler will optimize the code in the manner of figure 3.13, where

3.89 and 1.39 are the computational results of log((5000− 100 + 0.5)/(100 + 0.5)) and

log((5000 − 1000 + 0.5)/(1000 + 0.5)), accordingly. Thus we avoid redundant IDF

computing without user effort.

This design is advantageous not only because it is efficient but also because it is

more convenient and more flexible. On one hand, users can define retrieval functions

in more convenient ways. They do not need to look for API functions and remember

their usage; instead, they can direct use feature names. On the other hand, this design

allows Virtual IR Lab to explain and implement feature accessing methods separately.

Consequently, to deal with additional features Virtual IR Lab can easily introduce new

indices or additional computations on existing indices to fetch the statistics.

3.4 Experiments

We have shown the design of Virtual IR Lab in the previous section. The frame-

work is more concise and more convenient for users to implement retrieval functions.

In the section, we’d like to compare the Virtual IR Lab with other toolkit (i.e. Indri)

to check Virtual IR Lab can produce effective and efficient results. we conduct experi-

ments on the TREC Gov2 collection, which consists of 25.2 million web pages from the

.gov domain. We use the queries from the TREC official terabyte track 2004-2006 [37],

29

Figure 3.12: The embedded code which is generated by replacing variables with
actual values

Figure 3.13: The code which has been optimized by compilers

30

Table 3.1: Performance comparison of the three system (MAP@1000)

TB04 TB05 TB06
Indri 0.250 0.324 0.285

Virtual-d 0.250 0.324 0.285
Virtual-a 0.250 0.324 0.285

denoting them as TB04, TB05, and TB06. Each query set contains 50 queries, and for

each query we return 1000 documents.

As in other chapters, all experiments were conducted on a single machine with

dual AMD Lisbon Opteron 4122 2.2GHz processors and 32GB DDR3-1333 memory.

And we used okapi BM25 [82] as the retrieval function to rank documents. Since

Indri has no dynamical mechanism and to maintain the flexibility, we did not apply

dynamical pruning techniques for Virtual IR Lab as well and we exhaustively evaluate

all the documents which contain at least one query term.

We compare three systems: original Indri runquery application and we use ver-

sion 5.1. which is denoted as Indri [3], Virtual IR Lab with dynamical code generation

which is denoted as Virtual-d and query processing system implemented by Virtual

IR Lab API without dynamical code generation which is denoted as Virtual-a. We

compare the two Virtual IR Lab system in order to check the affects of dynamical code

generation.

3.4.1 Experimental results

First we compare the results generated from the three systems, table 3.1 sum-

maries the effectiveness comparison between the results generated from the three sys-

tems on different query sets. It shows that there are no effectiveness difference between

the three systems. It indicates that Virtual IR Lab can provide comparable results with

Indri.

We then compare the efficiency of the three systems. We compare their efficiency

by using the average processing time of queries. Table 3.2 summaries the comparison on

31

Table 3.2: Efficiency comparison of the three system (ms)

TB04 TB05 TB06
Indri 2,446 2,074 1,960

Virtual-d 534 460 448
Virtual-a 789 671 624

different query sets. It shows that on each query set, Virtual IR Lab is much faster than

Indri [3] implementation. By using Virtual IR Lab API, the average query processing

time is less than one third as those of Indri application. By applying dynamical code

generation, the code is further optimized and the system is far more efficiency (i.e.

more than four times faster than Indri). The large efficiency gain is due to our concise

and optimized design which has been shown in the previous sections.

3.5 Conclusion and future work

Virtual IR Lab is a novel IR toolkit that has some advantages over traditional

IR toolkits such as Indri: (1) Simplicity. The architecture of Virtual IR Lab is simple

and easy to understand, making it ideal for education and research. Moreover, it is

installation-free; users need not install the toolkit and can remotely access it anywhere

at any time. (2) A friendly user interface. Instead of referring to complicated documen-

tation and typing commands with all kinds of parameters, users can process queries

and build search engines simply by clicking the mouse. (3) Efficiency and extendability.

Automcatical code generation and an optimized I/O framework make Virtual IR Lab

efficient, and it is easy to add new features. Virtual IR Lab has other useful features,

such as allowing users to compare their retrieval functions on a leaderboard and find

the best ones. Finally, we show the screenshot of the toolkit in figure 3.14 and hope

you can try it and give us some feedback [54].

Although Virtual IR Lab has shown some good potential in usability and ef-

ficiency, it is still not perfect. One of the main problems of the current version is

the index builder. Virtual IR Lab can ingest raw documents and build indices without

32

Figure 3.14: The interface of IR virtual lab

33

help from external sources, however this function is not well-optimized. In particularly,

when dealing large collection (e.g. over 10GB), Virtual IR Lab’s index building can be

very slow and it consumes considerable memory. As a temperate solution, currently for

large collection, instead of building index from its own index builder, we recommend

to convert Indri [3]’s index to Virtual IR Lab’s index. We hope the problem can be

improved in future updates.

Virtual IR Lab is one of the many implementations of information retrieval

system. What is the common query processing behaviors of these systems? What

features affect query processing time? How can improve query processing efficiency?

We will try to answer these questions in the following chapters.

34

Chapter 4

PERFORMANCE MODELING FOR TOP-K QUERY PROCESSING

4.1 Introduction

In the previous chapter, we have shown Virtual IR Lab which contains a good

example of DAAT query processing systems. We will try to study the common behavior

of DAAT query processing systems and try to improve their efficiency in the following

chapters.

A lot of studies have been done for DAAT about how to improve efficiency

[29,49,50,91,97]. The common idea of them is trying to reduce computational cost by

dynamically skip documents which cannot be ranked into the final results. Although

the methods can improve efficiency in certain situation, they are not good enough. In

particularly, when k (i.e. the number of returned document) becomes larger, the cut-

off threshold may decrease and less documents will be pruned, which leads to longer

query processing time. What is more, dynamic pruning methods are not stable and

they cannot guarantee that every query finish on time. To solve this problem, we first

need to understand top-k query processing: What are the features which can affect the

efficiency of top-k query processing? How do the features influence efficiency? How do

we estimate the features of each query before we actually processing it? How do we

adjust such features to achieve better efficiency? The questions will be answered in the

next sections.

The most related work is the model from Macdonald [70]. They introduce

run-time performance prediction framework which can predict top-k query processing

time with 42 features. The prediction system was proven to be very useful. First,

it can facilitate online query scheduling. To improve the throughput, Web search

35

engines often replicate the indices so that independent queries can be processed at the

same time [23, 28]. Since the execution time varies for different queries, an accurate

prediction of query processing time can lead to better load balancing and minimize the

query wait time. Second, knowing the query processing time in advance enables us to

select retrieval strategies accordingly. For example, if the query processing time would

be longer than the necessary response time, a simple yet efficient retrieval strategy,

such as the conjunctive mode [92, 95], could be chosen to satisfy the requirement on

the response time. But if the query processing time would be shorter, a more expensive

but effective retrieval strategy, such as learning to rank [21, 69, 98, 99], could be used.

Finally, run-time performance prediction could also be useful in automatically detecting

problems in a large-scaled IR system. For example, if a node’s actual query processing

time is much longer than the predicted value, it could indicate that some faults have

happened and the query scheduler might need to assign the task to other nodes.

However the method proposed by Macdonald is still not good enough. First of

all, the method is complicated and it requires 42 features. These features are not only

hard to pre-compute, but also require a lot of memory and disk space to be stored. The

huge resource consumption limits the utilization of the method on large data collec-

tions. Second, the prediction result of their method is not accurate enough especially

for dynamic pruning methods. Although some features (e.g. total number of postings)

can explain the executing time of exhaustive query processing well, the features can-

not explain the complicated mechanism of dynamic pruning methods. Therefore the

prediction results have very large error comparing to the actual query processing time.

Finally, the method does not provide explanation about how the features influence the

query processing and interact with each other. With their model, it is still hard to tell

how we can improve efficiency or reduce query processing time to meet certain time

constraint.

To improve the situation, we propose a novel general performance modeling

36

framework for top-k query processing methods, including both the exhaustive evalua-

tion and dynamic pruning methods. Specifically, we first conduct a comparative analy-

sis of a few representative top-k query processing methods, identify their commonality

and differences, and develop a general model to estimate their run-time performance

based on a few identified features. With the developed model, we fit the parameters

using a step-by-step method and compute the approximated feature values based on

a small set of easily obtained statistics about each query term such as the number of

postings, the maximum score of the postings and the minimum score of the postings.

4.2 Model Development

We describe how to develop a general model to estimate top-k query processing

time in this section. In particular, we first divide the query processing pipeline into

multiple stages, identify the most useful features for cost estimation at each important

stage, and then develop the model based on these features accordingly.

4.2.1 Multiple Stages in Query Processing

Despite the differences among various top-K query processing methods, all of

them can be divided into three stages: Initialization, Retrieval and Result generation.

The basic idea is illustrated in Figure 4.1.

In the Initialization stage, a query is pre-processed and parsed into one or mul-

tiple query terms. For each query term, its corresponding inverted list is then located

in the index and loaded to the memory. We also need to initialize the variables such

as the pointer to the current document IDs in each inverted list for all methods and

the maxscore of each list for the pruning methods.

In the Retrieval stage, we first traverse the inverted indices to find documents

that need to be evaluated, and then compute the relevance score of each document

and return the top-K ranked results. It is clear that this stage can be further divided

to three steps for each iteration: document lookup, document evaluation and heap

update.

37

Figure 4.1: Multiple stages in the query processing

Query Initial Output

Document
Lookup

Document
Evaluation

Heap
Update

Retrieval

Query Processing

In the Result generation stage, the top-K ranked results could be either displayed

to search users or passed to another more complex retrieval methods as input for re-

ranking [21]. Since the processing time of this stage is much smaller than the other

two stages and it depends on the architecture design of the IR systems (e.g., how to

render the search results etc.), we focus on estimating the query processing time for

only the first two stages in this study.

4.2.2 Performance Modeling: the Initialization stage

The computational cost of the Initialization stage is determined by the following

two tasks.

The first task is to locate the inverted list of a term based on its numerical

ID and load the data to the memory. The process of locating the inverted list can

be very efficient with a look-up table, and the time is mainly spent on seeking the

posting lists in the disk. Since we need to do it for each query, the time complexity

is O(L(q)), where L(q) is the number of unique terms in query q. The second task is

to initialize variables for the retrieval step. For each query term, we need to initialize

the pointer to the current document ID in its inverted list, and then fetch its maxscore

when necessary. Thus, the time complexity is also O(L(q)). In summary, the time

38

complexity of the Initialization stage is O(L(q)).

Thus, we propose to model the processing time Ti of a query q in the initializa-

tion stage as follows:

Ti(q) = α× L(q) (4.1)

where α is a parameter. As shown later, the query processing time of this stage is

much smaller than that of the retrieval stage.

4.2.3 Performance Modeling: the Retrieval stage

The Retrieval stage is consisted of three steps: document lookup, document

evaluation and heap update. We now discuss the processing time for each step.

In the document lookup, we need to traverse the indices and locate candidates

documents that need to be evaluated. Since indices are often compressed to reduce the

disk space and transferring time [12,115], the first thing we need to do is to decompress

the postings in the inverted lists. We denote the time spent on this decompression

process as Td. It is clear that Td is determined by the amount of data that need to be

accessed and how the postings are compressed. In our implementation, we compressed

the inverted lists in blocks of 64 postings so that each block can be accessed and

decompressed individually [115]. Thus, we can estimate the decompression time Td of

a query q as follows:

Td(q) = βd ×B(q), (4.2)

where B(q) is the number of blocks that need to be accessed and decompressed in the

query processing for q and βd is a parameter measuring how fast the system can read

from the disk and execute the decompression algorithm.

After decompressing the postings, we need to traverse the indices to locate

documents that need to be evaluated. Since we focus on the DAAT-based methods,

the pointers to the current document IDs in all inverted indices need to be synchronized

so that a document can be fully evaluated before moving to the next one. This process

suggests that the query processing time of this step is related to the number of inverted

lists, i.e., L(q). Moreover, it is also related to the number of document IDs that need

39

to be synchronized, which is denoted as Ds(q). The time Tl spent on locating the

documents of a query q can be estimated as:

Tl(q) = βl × L(q)×Ds(q) (4.3)

where βl is a parameter which reflects the machine speed and the complexity of the re-

trieval function used for the query evaluation. It is worth noting that, in the exhaustive

evaluation and maximum score [97] methods, Ds(q) is essentially the number of docu-

ments that need to be evaluated. However, in the WAND [29] method, Ds(q) could be

much larger than the number of evaluated documents due to the pivot mechanism.

Thus, the processing time of query q in the document lookup step can then be

estimated as Td(q) + Tl(q).

Moreover, the computational cost of the document evaluation step is related to

the number of documents that need to be evaluated as well as the cost of computing the

relevance score of a document for the query. Since the cost of computing the relevance

score of a document is related to the number of query terms in the document, we can

model the processing time of query q in the document evaluation step using:

Te(q) = βe × P (q), (4.4)

where P (q) is the number of postings that need to be evaluated and βe is a parameter

related to the complexity of the retrieval function.

Finally, for top-k query processing, a minimum heap with the size of k can be

used to store the information about the top-k documents. With the minimum heap, the

update cost can be greatly reduced. In our preliminary experiments in the previous

chapter, we find that the time spent on the heap update is usually much smaller

compared with other stages unless k is extremely large (e.g., more than 100,000).

Thus, in this paper, we ignore the time spent on heap update.

4.2.4 Performance Modeling: Summary

We now summarize the developed model for estimating the query processing
time for query q. As described earlier, the model is related to four important features:

40

• L(q): the number of unique terms in q;

• B(q): the number of blocks that need to be accessed and decompressed when
processing q;

• Ds(q): the number of documents whose ID needs to be synchronized when pro-
cessing q;

• P (q): the number of postings that need to be evaluated when processing q.

Thus, the processing time T of a query q can be estimated as:

T (q) = Ti(q) + Td(q) + Tl(q) + Te(q)

= α · L(q) + βd ·B(q) + βl · L(q) ·Ds(q) + βe · P (q) (4.5)

where α, βd, βl, βe are parameters which depends on the machine speed and the retrieval

method used for ranking.

We will discuss how to train the parameter values and how to approximate the

feature values based on easily obtained statistics in the following sections.

4.3 Model Fitting

Since the model parameters (i.e., α, βd, βl and βe in Equation (4.5)) depend on

the machine configuration and retrieval method used for ranking, we now discuss how

to train their values to fit the model based on a training query set.

Here we assume that we have a set of N training queries, i.e., q1,...,qN . For each

query qi, we know their actual query processing time T3(qi) (refer to figure 4.2) and the

corresponding features values, i.e., L(qi), B(qi), Ds(qi) and P (qi). One simple strategy

is to train the values of all the parameters at the same time based on the fitting of

Equation (4.5). However, this strategy would not work well since the parameters are

not independent. For example, both βl and βe are related to the machine speed. Thus,

we propose to estimate the parameter values using a step-by-step method so that the

parameters can be estimated individually based on Equations (4.1-4.4). This strategy

can increase the estimation accuracy, reduce the estimation cost, and enable us to gain

a better understanding about what happens at each stage.

41

Figure 4.2: Measured Time for Model Fitting

Ti Td Tl Te

Initialization Decompression Doc. lookup Doc. evaluation

T0
T1
T2
T3

Measured time for model fitting

4.3.1 Fitting for the exhaustive evaluation method

We start with a discussion on fitting the exhaustive evaluation method since its

feature values do not change with the query processing progress. Thus, we can safely

divide the entire query processing into a few independent parts and use the actual time

used for each part to estimate parameters independently. Figure 4.2 shows the basic

idea.

To estimate the parameter α related to the initialization stage, we can get the

actual initialization time for each query, denoted as T0(qi), and then use linear regres-

sion to estimate the value of α based on Equation (4.1). We then conduct experiments

to get the time taken for initialization and reading the inverted lists of all query terms,

say T1(qi). It is clear that the actual decompression time can then be computed using

T1(qi) − T0(qi). With this time, we can then apply linear regression and estimate the

value of βd based on Equation (4.2). Next, we conduct another set of experiments to

measure the time taken for the first three steps, i.e., T2(qi). In particular, for each

query, we initialize the process and go through the query document lookup stage to

get all the candidate documents without computing the relevance scores. Thus, we

can get the actual document lookup time using T2(qi)− T1(qi), and then estimate the

value of βl in Equation (4.3) using linear regression. Finally, we can the get the actual

document evaluation time using T3(qi)−T2(qi) and then estimate the value of βe based

on Equation (4.4) using linear regression.

42

4.3.2 Fitting for the dynamic pruning methods

For the dynamic pruning methods such as maximum score [97] and WAND [29],

we cannot apply the same strategy as the exhaustive evaluation method because the

stages are not independent. For example, it is impossible to separate the document

lookup step from the evaluation since the pruning threshold used in the lookup stage

needs to be adjusted by the relevance scores computed in the evaluation stage.

Fortunately, the operations involved in the posting list decompression and doc-

ument evaluation are identical to the exhaustive evaluation method. Thus, it is rea-

sonable to assume that βd and βe are the same as those in the exhaustive evaluation

method. And we only need to estimate the value of α and βl.

In the initialization step, the dynamic pruning method needs more operations

than the exhaustive evaluation method. For example, they need to find the maxscores

for each query term. Thus, the α value would be different, but we can use the similar

strategy as described in the previous subsection to estimate its value. For βl, we can

first compute the actual time used for document lookup using

T3(qi)− T0(qi)− βd ×B(qi)− βe × P (qi),

and then apply linear regression to learn the value of βl accordingly.

4.4 Feature Approximation

We have developed the performance model based on four features and discussed

how to estimate the parameters in the previous sections. In order to predict a query’s

processing time before executing the query, we need to know the values of these four

features without traversing the indices. Among the four features, L(q) is easier to

obtain while the other three features are impossible to directly obtain from the indices.

To tackle this challenge, we propose to approximate the real feature values based on

easily obtained statistics information and then predict the run-time performance based

on the developed model as shown in Equation (4.5).
The statistics information used for the approximation is summarized as follows:

• N , the number of documents in the collection;

43

• Pi(q), the number of postings in the inverted list of the i-th term in query q;

• Mi(q), the maxscore (i.e., the highest relevance score contribution) of the inverted
list of the i-th term in query q;

• mi(q), the minscore (i.e., the lowest relevance score contribution) of the inverted
list of the i-th term in query q.

All these statistics here are either accessible from the indices or can be computed

with the minimal cost. For example, Mi(q) and mi(q) can be computed while building

the indices and it only takes less than 20MB space for the GOV2 collection [2]. It

is certainly possible to use other statistics information such as the distribution of the

postings. However, the more statistics we use, the more space and time will be spent

in the prediction. This study focuses on predicting the run-time performance with

minimum cost, it should be more accurately prediction if we use more statistics.

4.4.1 Approximation in the exhaustive evaluation method

The exhaustive evaluation method would essentially traverse the postings of all

the query terms and compute the relevance score for each document in the postings.

Thus, we can easily compute the values of P (q) and B(q) as follows:

P (q) =
L(q)∑
i=1

Pi(q), B(q) =
L(q)∑
i=1

Pi(q)

Bsize
.

Bsize is the number of postings in each compressed block, and it is set to 64 in our

implementation.

Now the remaining challenge is to approximate the value of Ds(q), which is

equal to the number of evaluated documents in the exhaustive evaluation method.

Since it is essentially the number of documents containing at least one query term

in the collection, its value would be between max(Pi(q)) (when query terms always

co-occur in the documents) and
∑
Pi(q)) (when query terms never co-occur in the

documents).

Let us start with a simple case when a query has only two terms. It is trivial to

show that Ds(q) can be estimated using P1(q) + P2(q)− Con(q), where Con(q) is the

44

number of documents that contain both query terms. Thus, the challenge is converted

to the problem of estimating the number of documents containing two terms. Assuming

query terms follow the binomial distribution, the probability of observing a query term

in a document can be estimated as Pi(q)
N

. If we assume that the two query terms are

independent, the expected number of documents that containing both terms can be

estimated as P1(q)
N
× P2(q)

N
× N . To make it more generalized, when the two terms are

not independent and P1(q) < P2(q), we propose to estimate the number of documents

containing both terms as follows:

Con(q) =
P1(q)

N
× (

P2(q)

N
)γ ×N, (4.6)

where γ is a parameter which controls how the two terms are related. When γ is equal

to 1, the two terms are independent. And when γ is equal to 0, the two terms are

closely related (i.e., P1(q) ∈ P2(q)). In this paper, we set γ = 0.5 since query terms are

related and tend to occur in the same documents.

The estimation can be easily generated to the queries with more terms, and the

algorithm is described in Algorithm 1.

Algorithm 1 Estimation of Ds(q) for the exhaustive evaluation method

D = 0
for i = 1 to L(q) do

if D ≤ Pi(q) then
Con = D ∗ (Pi(q)/N)γ

else
Con = (D/N)γ ∗ Pi(q)

end if
D+ = Pi(q)− Con

end for

4.4.2 Approximation in the pruning methods

The feature approximation for pruning methods are much more complicated

since the query processing is controlled by a pruning threshold, θ, whose value keeps

changing in the process. Indeed, θ plays a critical role in the query processing method

45

since it determines when the pruning begins and how much pruning is needed for each

inverted list. Thus, we will start with the estimation of θ and then move on to discuss

how to approximate the feature values in the maxScore and WAND methods.

4.4.2.1 Estimating the pruning percentage

The basic idea of dynamic pruning methods is to skip the scoring of documents

that can not make to the final top-k results. The selection of these documents is

controlled by θ, the smallest relevance score in the intermediate top-K results. The

value of θ will monotonously increase during the query processing. To model the

pruning behavior, we have to trace the change of θ. Not every possible value of θ could

change the pruning behavior, i.e., how much to prune for each inverted list. Instead,

the pruning behavior would only change at a few critical values.

Let us consider the maximum score method first. The pruning would start

when θ is equal to or greater than the smallest maxScore value of all the inverted lists.

The pruning behavior will change (i.e., prune more postings) again when θ is equal or

greater than the sum of the smallest maxScore values. In fact, given a query q, the

number of critical values for θ in maxScore is L(q). The pruning process in the WAND

method is similar but with different number of critical values, i.e., 2L(q) − 1, since it

considers the combinations of the inverted lists in the pruning process.

Clearly, the key challenge is to understand the pruning behavior for each critical

value in a pruning method. Specifically, we need to estimate the percentage of the

postings that will be pruned in each inverted list for every critical value of θ. Algorithm

2 provides a method that can estimate the pruning percentage of a critical value of

C when retrieving top-K documents for query q. The basic idea of the algorithm is

to estimate the number of the documents D(C) whose score is higher than C. If the

estimated number (i.e., D(C))is smaller than K, there is no pruning is necessary and

0 is returned. Otherwise, we know around K out of D(C) documents are not pruned,

so the pruning percentage can be computed as 1− K
D(C)

.

46

Algorithm 2 The estimation of pruning percentage of a critical value C when retriev-
ing top K documents for q

Function{getPrunePercentage}{C,K,q}
D(C) = 0
for g ∈ G(q) do
D(C)+ = Dg ∗ (1− normalCP (µg, σ

2
g , C))

end for
if D(C) < K then

return 0
else

return 1- K
D(C)

end if
EndFunction

We now explain how to estimate D(C). The basic idea is to divide docu-

ments into multiple groups based on the occurrences of query terms. For example, if

q = {A,B}, there would be three document groups corresponding to the ones covering

only A, covering only B and covering both terms. A set of these document groups is

denoted as G(q). We assume that the number of documents in each group g follow a

normal distribution N(µg, σ
2
g). normalCP (µ, σ2, C) denotes the percentage of docu-

ments whose value is smaller than C and Dg is the number of documents in the group

g. For each group g, we can estimate D(g) following the similar method described

in Algorithm 1 and estimate µg and σ2
g based on the maxscores and minscores of the

corresponding query terms for document group g.

4.4.2.2 Feature approximation for maximum score method

For the simplicity, we assume that M1(q) ≥ M2(q) ≥ ... ≥ ML(q)(q) for any

query q. Algorithm 3 describes how to estimate the features (i.e., B(q), Ds(q) and

P (q)) in the maxScore method.

We first compute all the critical values, i.e., Ci(q), for the maxScore method.

Note that each critical value corresponds to a query term. After that we go through

each terms to calculate its contributions to all the features.

For each term, we first try to estimate the number of documents that contain

47

Algorithm 3 The approximation of features for maxScore

FUNCTION getmaxScoreFeatures {K,q}
sort(query)
B(q) = 0
Ds(q) = 0
P (q) = 0
for i = L(q) to 1 do
Ci(q) = Ci+1(q) +Mi(q)

end for
for i = 1 to L(q) do

if Ds(q) ≤ Pi(q) then
Con = Ds(q) ∗ (Pi(q)/N)γ

else
Con = (Ds(q)/N)γ ∗ Pi(q)

end if
Bi(q) = dPi(q)/64e
Per = getPrunePercentage(Ci(q), K, q)
RBi(q) = Bi(q) ∗ Per
B(q) = B(q)+Bi(q)∗ (1−Per)+RBi(q)∗ (1− ((RBi(q)−1)/RBi(q))

Con∗(1−Per))
Ds(q) = Ds(q) + (Pi(q)− Con) ∗ (1− Per)
P (q) = P (q) + Pi(q) ∗ (1− Per) + Con ∗ Per

end for
return B(q),Ds(q),P (q)
ENDFUNCTION

48

both the current term and the terms we have already evaluated, i.e., Con. Con is

important since these documents will always be accessed no matter whether pruning

is applied or not. Bi(q) is the number of blocks in the inverted list of the current term

and the block size used in our implementation is 64. After that, we get the pruning

percentage based on the corresponding critical value and figure out the percentage of

the pruned postings in the inverted list of current term. The contribution to each

feature is calculated as two parts: before θ reaches the critical value and after. For

example, before reaching the critical value, the contribution to P (q) is Pi(q) ∗ (1 −

Per) (where Per is the pruned percentage) since every non-pruned postings will be

exhaustively evaluated. After reaching the critical value, the contribution to P (q) is

Con ∗ Per since we only access the postings that contain other terms (i.e., Con) after

pruning. Moreover, before reaching the critical value, the contribution to Ds(q) is

related to the number of postings that do not contain previously evaluated terms and

can be computed as (Pi(q) − Con) ∗ (1 − Per), but after reaching the critical value,

the corresponding query term will not be eligible to contribute new documents, so its

contribution to Ds(q) is 0.

RBi(q) is the number of remaining blocks after reaching to the critical value.

We can then estimate the number of decompressed blocks within them using binomial

model. If the pruning happened, not every posting in the posting list will be accessed.

And if none of the 64 postings within a block is accessed. The block will be skipped

and it will not be decompressed. If we have RB blocks and we accessed p postings

from them. For each block, the probability that none of the p postings is from the

block can be estimated by the binomial model as (RB−1
RB

)p. So for all the RB blocks,

the expected number of decompressed blocks can be estimated as RB× (1− (RB−1
RB

)p).

4.4.2.3 Feature approximation for WAND

Different from maxScore, WAND applies a pivot-based pruning strategy to

prune more documents. As described earlier, given a query, we can divide documents

49

into different groups based on the query term occurrences. These documents are de-

noted as G(q). For each g ∈ G(q), we denote Mg as the sum of the maxscores of all

query terms corresponding to the group g. In fact, each Mg can be considered as a

critical value for the WAND method. For example, if θ is higher than Mg, documents

from the group g will be pruned. Thus, if we know getPrunePercentage(Mg, K, q) is

equal to 0.7, we expect the first 30% documents from group g will be evaluated while

the remaining 70% will be pruned. Algorithm 4 shows the method used to compute

the approximated features values in WAND.

Algorithm 4 The approximation of features for WAND

FUNCTION getWANDFeatures {K,q}
B(q) = 0
Ds(q) = 0
P (q) = 0
for i = 1 to L(q) do
Ei(q) = 0

end for
for g ∈ G(q) do
Per = getPrunePercentage(Mg, K, q)
for i = 1 to L(q) do

if qi ∈ g then
Ei(q) = Ei(q) +Dg ∗ (1− Per)

end if
end for

end for
for i = 1 to L(q) do
P (q) = P (q) + Ei(q)
Di
s(q) = (Ei(q)

λ ∗ Pi(q))1/(1+λ)
Ds(q) = Ds(q) +Di

s(q)
Bi(q) = dPi(q)/64e
B(q) = B(q) +Bi(q) ∗ (1− ((Bi(q)− 1)/Bi(q))

Di
s(q)

end for
return B(q),Ds(q),P (q)
ENDFUNCTION

The basic idea is to estimate the number of the evaluated postings for each

query term (i.e., Ei(q)) and then use it to estimate Ds(q) and B(q). Since the pruning

of WAND is based on combinations of posting lists, each combination corresponds to

50

a document group g ∈ G(q). For each document group, we can then get the pruning

percentage based on getPrunePercentage(Mg, K, q), so the number of evaluated doc-

uments in each group can be estimated as Dg ∗ (1− Per). As mentioned earlier, Dg is

the number of documents in group g. After iterating through all the document groups,

we can get the value Ei(q) for each query term. We can then compute the value of

P (q) by summing all the value of Ei(q) together.

The remaining question is how to estimate Di
s(q). We know that its upper bound

is the posting list length (i.e., Pi(q)) and its lower bound is the number of evaluated

postings for the term (i.e., Ei(q)). In this paper, we use a heuristic way to estimate a

value between these two bounds, i.e., Di
s(q) = (Ei(q)

λ ∗Pi(q))1/(1+λ). It uses parameter

λ to control which bound to approach more. When λ = 1, it is geometric mean. After

we get the number of access postings for each term, we can the estimate the number

of decompressed block using the binomial model described earlier.

4.5 Experiments

4.5.1 Experimental design

We evaluate how well the proposed performance model can predict the query

processing time for the exhaustive evaluation method using DAAT, denoted as Exhaus-

tive, as well as two dynamic pruning methods, i.e., maximum score [97] and WAND [29].

Regarding the data collection, we use the TREC Gov2 collection [2], which con-

sists of 25.2 million web pages crawled from the .gov domain. For queries, we randomly

select 1,000 queries from the efficiency queries used in the TREC 2005 Terabyte track

as the training set to fit the proposed model. This data set is denoted as Train05.

Moreover, we randomly select a different set of 4,000 queries from the same track as

the first test collection, denoted as Test05, and randomly select 5,000 queries from the

efficiency queries used in the TREC 2006 Terabyte track as the second test collection,

denoted as Test06.

Similar to other sections, all experiments were conducted on a single machine

51

Table 4.1: Prediction comparison with real feature values: RMSE (ms)

Exhaustive maximum score WAND
Test05 Test06 Test05 Test06 Test05 Test06

Postings 56.41 25.13 16.46 19.12 38.82 36.37
Model-l 36.05 14.16 6.52 7.42 7.11 5.69
Model-s 39.95 23.93 7.67 9.28 10.01 6.03

with dual AMD Lisbon Opteron 4122 2.2GHz processors and 32GB DDR3-1333 mem-

ory. And we use Okapi BM25 [82] as the retrieval function to rank documents. To

evaluate the performance of the prediction, we use the RMSE (Root Mean Square

Error) as the evaluation measure. A smaller RMSE means the prediction is more ac-

curate. The query processing system is implemented similar to Virtual IR Lab which

is described in previous chapter.

4.5.2 Results on performance modeling

The first set of experiments is to examine whether the proposed model fitting

method can capture the actual run-time performance well. We use the 1,000 queries

from Train05 as training queries with K, i.e., the number of retrieved documents, is

set to 10.

We use two ways to estimate the parameters: (1) Linear regression and (2)

the method described in Section 4.3. We denotes them as Model-l and model-s

accordingly. To make a comparison, we trained simple models using the number of

evaluated postings which denotes as Postings. table 4.1 summarize the results of the

comparisons.

Figure 4.3 shows the comparison between the predicted and actual processing

time of each query for all the three query processing methods on Test05 collection. It

is clear that the proposed model fitting method is effective, and the predicted query

processing time correlates well with the actual query processing time for both the ex-

haustive evaluation and dynamic pruning methods. The trend on the Test06 collection

52

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Actual Query Processing Time (ms)

E
st

im
at

ed
 P

ro
ce

ss
in

g
 T

im
e

(m
s)

Actual Processing Time
Estimated Processing Time

0 200 400 600 800 1000 1200 1400 1600 1800
0

200

400

600

800

1000

1200

1400

1600

1800

Actual Query Processing Time (ms)

E
st

im
at

ed
 P

ro
ce

ss
in

g
 T

im
e

(m
s)

Actual Processing Time
Estimated Processing Time

0 200 400 600 800 1000 1200 1400 1600
0

200

400

600

800

1000

1200

1400

1600

1800

Actual Processing Time (ms)

E
st

im
at

ed
 P

ro
ce

ss
in

g
 T

im
e

(m
s)

Actual Processing Time
Estimated Processing Time

Figure 4.3: Model Fitting of Exhaustive (up), maximum score (middle) and WAND
(down) on Test05

53

Table 4.2: Percentage of the time spent on each stage

Init. Decompress. Lookup Evaluation
Exhaustive 0.13% 5.45% 13.33% 81.08%

maximum score 2.38% 9.80% 16.68% 71.13%
WAND 2.46% 25.87% 25.92% 45.76%

is similar.

The results show that our model can accurately estimate query processing time

by using real features. Using linear regression can lead to better performance than

training parameters separately. It may due to the inaccurate time measurements at

each stage.

Finally, we conduct experiments to understand why the number of evaluated

posting lists is not a good performance indicator for dynamic pruning methods. Table

4.2 shows the average percentage of the time spent on each stage of the query processing

over the Train05 collection. When using the Exhaustive method, more than 80% of time

are spent on the evaluation, which is related to the number of evaluated postings. The

Postings method can capture the query processing time in the document evaluation

stage well. Thus, if a query processing method spent most time on the evaluation step,

the Postings method might give a reasonable performance prediction. However, for

other methods (such as WAND), which spend less time on the evaluation stage, the

Postings method would not be a good performance indicator.

4.5.3 Results on processing time prediction

In this section, we conduct experiments to evaluate how well the developed

model can predict the query processing time in the real-world scenarios, when the real

feature values are unknown.

By applying the approximation methods proposed in Section 4.4, we are able to

compute the estimated feature values based on a few easily obtained statistics. We can

then plug the estimated feature values together with the learned parameter values (as

54

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Actual Processing Time (ms)

P
re

d
ic

te
d

 P
ro

ce
ss

in
g

 T
im

e
(m

s)

Actual Processing Time
Predicted Processing Time

Figure 4.4: Processing time predicted by Model for Exhaustive on Test05

0 200 400 600 800 1000 1200 1400 1600 1800
0

200

400

600

800

1000

1200

1400

1600

1800

Actual Processing TIme (ms)

P
re

d
ic

te
d

 P
ro

ce
ss

in
g

 T
im

e
(m

s)

Actual Processing Time
Posting Only Prediction

0 200 400 600 800 1000 1200 1400 1600 1800
0

200

400

600

800

1000

1200

1400

1600

1800

Actual Processing Time (ms)

P
re

d
ic

te
d

 P
ro

ce
ss

in
g

 T
im

e
(m

s)

Actual Processing Time
Predicted Processing Time

Figure 4.5: Processing time prediction for maximum score on Test05: BL (left) and
Model (right)

0 200 400 600 800 1000 1200 1400 1600
0

200

400

600

800

1000

1200

1400

1600

Actual Processing Time(ms)

P
re

d
ic

te
d

 P
ro

ce
ss

in
g

 T
im

e
(m

s)

Actual Processing Time
Posting Only Prediction

0 200 400 600 800 1000 1200 1400 1600
0

200

400

600

800

1000

1200

1400

1600

1800

Actual Processing Time (ms)

P
re

d
ic

te
d

 P
ro

ce
ss

in
g

 T
im

e
(m

s)

Actual Processing Time
Predicted Processing Time

Figure 4.6: Processing time prediction for WAND on Test05: BL (left) and Model
(right)

55

Table 4.3: Prediction comparison with estimated feature values: RMSE (ms)

Exhaustive maximum score WAND
Test05 Test06 Test05 Test06 Test05 Test06

Postings 56.41 25.13 88.52 81.26 82.97 57.69
42 features 37.41 22.54 78.29 66.28 74.66 56.91

Model-l 37.3 13.71 74.44 43.43 31.84 26.9
Model-s 40.97 22.85 50.24 29.57 31.76 28.23
combine 29.36 14.66 63.13 38.33 31.07 26.44

described in the previous subsection) into the proposed performance model as shown

in Equation (4.5) and compute the predicted query processing time for each query.

In addition to using the sum of the posting list length of each query terms which

denotes as Postings, we also text the linear regression model suggested in [70] which

denotes as 42 Features. We also try to combine the 42 features with our model’s 4

features and use linear regression to train models of the 46 features which denotes as

Combine.

Table 4.3 shows the results of the comparisons. The linear model with 42 fea-

tures is more accurate than using the number of postings alone. The observation is

similar to the those by Macdonald [70]. However, our model can more accurately pre-

dict query processing time especially for dynamic pruning methods such as maximum

score and WAND. The reason behind these results is that our model can better esti-

mate the pruning behaviour of these dynamic pruning methods. In some tests, training

parameters separately can perform better than that using linear regression. Although

training parameters separately can suffer from inaccurate time measurement for each

stages in parameters estimation, the trained parameters are more stable and they are

less sensitive to errors between predicted features and real ones. Combined with the

42 features, the performance can increase a little for most of the test. It is because the

42 features provide some information that our model ignored (e.g. heap behaviour).

However the increase is not significant which indicate that our model has captured the

main part of query processing cost.

56

Table 4.4: Prediction results at different query length: RMSE (ms) (Test05)

1 2 3 4 5 > 5
model-s

Exhaustive 7.26 20.44 33.42 52.69 82.81 162.49
maximum score 6.89 50.06 51.28 66.03 72.71 112.22

WAND 5.67 28.30 32.47 25.18 47.47 66.02
42 feature

Exhaustive 16.96 19.33 27.00 39.14 72.36 161.80
maximum score 82.12 73.61 60.87 77.04 116.92 136.48

WAND 72.80 76.21 58.66 71.80 110.88 116.68

Table 4.5: Prediction results at different query length: RMSE (ms) (Test06)

1 2 3 4 5 > 5
model-s

Exhaustive 11.56 19.04 23.09 27.47 35.09 52.87
maximum score 12.57 15.54 28.13 40.34 62.52 80.43

WAND 6.44 21.68 26.84 41.30 41.97 57.32
42 feature

Exhaustive 35.29 20.11 16.01 22.83 30.60 36.78
maximum score 43.44 48.77 70.48 74.16 112.39 164.31

WAND 39.79 42.81 58.80 63.65 95.62 148.59

We further show the prediction results at different query length at table 4.4 and

table 4.5. From the table we see that the prediction is stable at different query length.

For longer query, the query processing time is longer and as a result, the prediction

error is also increased.

4.5.4 More analysis

One of the most important usage of our model is to help people understand

query processing time. For example, what would the query processing time be if we

applied the same retrieval strategy to another data collection? How will the query

processing time change if we use different query processing functions? How will the

query processing time be reduced if we return fewer documents?

57

Table 4.6: Prediction Results for different K: RMSE(ms) (Test05)

10 100 1000 10000
maximum score

Postings 88.52 108.30 151.20 233.17
42 Features 78.29 104.32 154.32 238.64

Model-l 74.44 78.32 83.00 81.72
Model-s 50.24 52.65 60.06 64.04

WAND
Postings 82.97 93.86 120.96 188.55

42 Features 74.66 91.73 126.30 196.77
Model-l 31.84 37.10 47.67 59.32
Model-s 31.76 36.65 47.84 58.31

To prove these usages and test the robustness of our model, We conduct the

following experiments which use the model we trained in previous subsection to apply

on different environment.

If we change K, the number of retrieval documents, the pruning behaviour of

dynamic pruning method may change and more/less postings will be pruned. To see

whether our model can capture these changes, we apply the model trained on K = 10

to predict the query processing time at different K value. Since the change of K

has little influence for non-pruning method, we only report the prediction results for

dynamic pruning methods.

Table 4.6 and table 4.7 summarizes the comparisons on prediction on different

K. For two baseline methods, Postings and 42 Features cannot monitor the change

of different K and their error become bigger as K increases. Our model on the other

hand can capture the change of K very well. Training parameters separately performs

a little better since the its parameters are more robust.

The encouraging high accuracy of the cross-K prediction may suggest one in-

teresting application of our model is that we can control the query processing time by

changing the number of returned documents based on the model prediction results.

We would like to explore the direction in our future work.

58

Table 4.7: Prediction Results for different K: RMSE(ms) (Test06)

10 100 1000 10000
maximum score

Postings 81.26 110.21 149.29 238.91
42 Features 66.28 96.22 141.39 230.40

Model-l 43.43 44.34 49.92 54.53
Model-s 29.57 38.11 48.70 57.03

WAND
Postings 57.69 63.39 90.46 158.20

42 Features 56.91 67.56 95.84 161.71
Model-l 26.90 31.39 41.21 57.67
Model-s 28.23 32.35 40.47 53.25

Figure 4.7: Average predicted query time for different values of K: maximum score

10
1

10
2

10
3

10
4

20

40

60

80

100

120

140

160

180

K

A
ve

ra
g

e
T

im
e

(m
s)

Actual
Predicted
Posting only

59

Figure 4.8: Average predicted query time on different values of K: WAND

10
1

10
2

10
3

10
4

20

40

60

80

100

120

140

160

K

A
ve

ra
g

e
P

ro
ce

ss
in

g
 T

im
e

(m
s)

Actual Processing Time
Model Predicted Time
Posting only Predicted Time

Table 4.8: Cross collection prediction results

Robust04 Clueweb09B
maximum score WAND maximum score WAND

Postings 8.83 5.12 323.26 259.72
42 Features 902.82 835.49 407.67 389.78

42 Features op 1.49 1.17 94.05 85.92
model-l 5.01 4.29 119.70 85.96
model-s 1.86 2.39 72.91 63.86

To further test the robustness of our model, we apply the models trained on

TREC Gov2 [2] collection to test on other two TREC collections: (1) Robust04 [5]

collection: a much smaller collection which contains only 528K documents and (2)

Clueweb09 [1] category B collection: a larger collection which contains about 50 million

documents. We test the collections with 249 official robust 2004 track queries and 200

official 2009-2012 web track queries accordingly. Table 4.8 summarize the comparison

results of the two collections.

It is obvious that the model for 42 featured trained on Gov2 collection totally

60

Table 4.9: Space usage for different prediction method (GB)

Index postings 42-feature model
10.8 0 1.8 0.2

fails in the cross collection test. The reason behind this large error is that their param-

eters are highly collection-dependent. So when we switch to a very different collection

(25.2 million to 0.5 million documents), the parameters trained on original collection

will hardly apply again. Using the number of total postings may product a fair re-

sults especially for small collection, because dynamic pruning plays little role in small

collections and number of postings dominate most of the performance.

It is encouraging to see our model performs quite well in the cross-collection

test, especially for training parameters separately. Not influenced by the dependence

between features, the trained parameters are more robust and collection independent.

This encouraging result may suggest one advantage of our prediction model: it can

adjust to rapid data collection changes which is important for real time search. It can

also help in modern multiple layer index environment since you only need one rather

than multiple models to predict query processing time at each ties.

4.5.5 Efficiency of the model

Most of the features in our model can directly access the indices which support

a dynamic pruning retrieval method (e.g. posting list length and maximum score of

each query term). The only additional feature we need to compute is the minimum

score of each query term. We summarize the original index and additional space usage

for gov2 collection as table 4.9.

Compared to prediction by 42 features, our model is more space efficient and it

uses less than 2% of the original index which may be ignored in most of the applications.

The computational cost of our model is O(2L(q)) where L(q) is the number of

unique query terms. For most of the queries which are less than 10 terms, the cost

61

Table 4.10: Average Query Processing time (ms)

Test05 Test06
maximum score WAND maximum score WAND

no-prediction 42.73 39.05 59.89 44.53
prediction 42.96 39.21 60.22 44.56

is still ignored compared to the query processing cost which may involve millions or

even billions of operations. To test the efficiency of our prediction method, we conduct

two experiments: 1. The first experiment is a simulation of the real situation that we

built two similar query processing system. The only difference between them is that

one predicts processing time before executing the query while the other does not. We

test whether doing prediction will slow down the system.

We do both experiments on Test05 and Test06 queries on Gov2 collection with

the top 10 documents returned for each query which is the same as the previous ex-

periments. We repeat each experiments 5 times and reports the average time as table

4.10.

Compared to query processing time with no-prediction, prediction introduces an

insignificant additional cost (e.g. less than 0.6%). Notice that the cost of our prediction

method is independent to collection size, we expect the percentage to become smaller

for larger collections.

4.6 Conclusions

Modeling the time consuming of top-k query processing system can help us

to understand why some queries take longer time than others. It is an important

step for us to develop strategies to further improve efficiency of information retrieval

systems. Although it is relative easy to predict the performance of the exhaustive

evaluation method, it is rather challenging to accurately model and predict the run-

time performance for the dynamic pruning methods. Previous studies have attempted

to address the problem by either use one feature to approximate the performance or

62

apply machine learning methods to combine more than 40 loosely related features

without conducting deep analysis on the query processing pipeline.

We provide a simpler but more accurate analytic performance model to better

explain executing time of top-k query processing systems. In particular, we analyze

each query processing step, identify important features related to the query processing

time and propose to use a small set of easily obtained statistic information to estimate

the features. Experiment results show that the proposed model can predict the query

processing more accurately than the state of the art method. In particular, the model

is capable of capturing the relation between the value of K and the processing time.

Finally, the model can generate fairly accurate prediction for the average processing

time of a group of queries.

The model and some observations in this chapter are useful for our following

studies which try to improve query processing efficiency. In algorithm 2, algorithm 3

and algorithm 4 we show that how some features such as K (i.e. the number of returned

documents) will influence the query processing time for a query when dynamic pruning

techniques are applied. It is obvious that the query processing time of a query will

increase greatly as K increase and it explains the reason why dynamic pruning methods

may become less effective when K is large. In addition to that, the model also shows

that the computational cost may increase exponentially as the query becomes longer.

So how can we improve the query processing efficiency when K is large? How can we

reduce query processing time for long queries? We will try to answer these questions

in the next chapter.

63

Chapter 5

IMPROVE EFFICIENCY OF QUERY PROCESSING THROUGH
DOCUMENT PRIORITIZATION

5.1 Introduction

In the previous section, we built an analytical model which can explain query

processing time and provide accurate prediction for it. In the model, it is shown that

query processing time is related to some features such as query length, number of

iterations in document lookup, number of evaluations and etc. The next question is,

how can we use the model to improve the efficiency of DAAT query processing.

In order to improve the efficiency of query processing, several dynamic pruning

methods have been proposed [29,43,49,50,84,90,97]. Instead of exhaustively evaluating

every document that matches at least one query term, dynamic pruning techniques

evaluate only a smaller set of documents that have greater potential to make to top

K results and bypass the evaluation for the rest of the documents. However all of the

techniques share a weakness that when k (e.g. the number of returned document) is

large, their improvement of efficiency becomes less significant. By using our analytical

model, this phenomenon can be explained more clearly: as more documents need

to be returned for each query, the cut-off threshold may decrease. Therefore during

query processing, more iterations and document evaluations are required and the query

processing increases. This weakness seems unavoidable for all the dynamic pruning

methods who uses the cut-off threshold to determine whether to skip documents or not.

And this problem may become more serious for advanced dynamic pruning methods

such as BMW [50] and Live block [49] which require more efforts in document iterations.

64

IR system usually applies multi-layer architecture and it requires the number

of returned document at top-k query processing to be large enough so that the re-

sults quality of later re-ranking stages can be guaranteed. As a result, the weakness

of dynamic pruning methods hinders their application on commercial IR system. Al-

ternatively, people uses conjunctive or ”AND” query processing technique [21, 92, 95].

Comparing to disjunctive query processing which considers all the documents contain-

ing at least one query terms, conjunctive query processing evaluates only documents

which contain all the query terms. Conjunctive query processing does not suffer from

efficiency loss when k becomes large. However it hurts effectiveness. Not all the rele-

vant documents will contain all the query terms. In reality, some documents may use

different terms from the query to describe a same concept. Conjunctive query process-

ing will certainly miss such documents and its results may not be as good as those

from disjunctive query processing.

In another word, when the number of retrieval results is large, either conjunctive

mode or disjunctive mode can produce both effective and efficient query processing re-

sults. To solve this problem, we present a novel and scalable query processing method

based on document prioritization. The basic idea is to reduce the number of docu-

ments that need to be fully evaluated by prioritizing documents based on the number

of matched query terms as well as their importance. To implement this idea, we build a

decision tree to quickly classify documents into different buckets based on the matched

query terms, and these buckets, together with the documents in the buckets, are then

ranked based on the importance of the matched query terms. On one hand, the pro-

posed method includes more documents in the evaluation process than the conjunctive

mode, which leads to more effective results. On the other hand, it use a simple strategy

to prioritize all the documents matching at least one query term so that the number of

documents that need to be fully evaluated is smaller than the disjunctive mode, which

means more efficient query processing.

65

1 32
4

Conjunctive mode: consider only documents from 1
Disjunctive mode: consider documents from 1 and 2 and 3
Our proposed method (Priority): Assume IDF(A)>IDF(B).
 We select documents from 1 first, and then 2, and then 3.

documents
containing term A

documents
containing term B

Figure 5.1: Difference between conjunctive mode, disjunctive mode and the proposed
method.

5.2 Document Prioritization

5.2.1 Basic idea

Query processing time is closely related to the number of documents that need

to be fully evaluated for a given retrieval function, such as Okapi BM25 [82]. The

disjunctive mode without pruning evaluates all documents matching at least one query

term. All these documents are treated equally, and their relevance scores with respect

to the retrieval function are then fully computed.

Intuitively, not every document passing the Boolean OR filter has the same

likelihood of being relevant. The basic idea of document prioritization is to prioritize

documents based on an approximation of the relevance likelihood and then compute

the accurate relevance scores for the top-K highly prioritized documents instead of

accurately computing the relevance scores for all of the documents. Clearly, the key

challenge is how to efficiently and effectively prioritize the documents.

Dynamic pruning methods in the disjunctive mode can be regarded as one spe-

cific method of document prioritization. They try to prioritize documents based on

66

their fully or partially computed relevance score for the given retrieval function. They

can produce the exact top-K results, but are not very efficient due to the fact that the

relevance scores are costly to compute. Conjunctive mode can be regarded as another

specific method of document prioritization. It essentially splits all documents passing

the Boolean OR filter into two categories, i.e., whether they contain all query terms

or not, and focuses on only on the documents passing the Boolean AND filter. This

method is efficient but not very effective.

To overcome the limitations of existing methods, we propose a new way of

document prioritization with the goal of using a simple yet effective retrieval function

to approximate the results generated by the given retrieval function. It is well known

that the retrieval effectiveness is related to the use of multiple retrieval signals such

as TF (term frequency) and IDF (inverse document frequency) [53]. Existing retrieval

functions such as Okapi BM25 often combine these retrieval signals in a complicated

way, which requires the traverse of inverted lists of all query terms and the combination

of statistics obtained from the lists. To simplify the cost of such evaluation cost, we

proposed the a new ranking strategy called ”tie-breaking”. The main idea of ”tie-

breaking” is to rank documents first using a single strong signal such as IDF and then

use other signals or ranking methods to break the ties. (i.e., re-rank the documents

with the same scores computed using the previous signals) In our previous study, we

found that ”tie-breaking” can lead to comparable or even more effective results.

Therefore, based on the similar idea, we propose to prioritize documents based

on the sum of the IDF values of all distinct query terms that occur in the documents.

Formally, the priority score of document D for query Q is computed as follows:

SP (Q,D) =
∑

t∈Q∩D
IDF (t), (5.1)

where t is a query term. IDF (t) is the inverse document frequency of t and can be

computed as logN+1
df(t)

, where N is the number of documents in the collection and df(t)

is the number of documents containing term t. It is clear that the documents are

prioritized based on the number of distinct query terms that they contain and the

67

importance of the terms. Figure 5.1 shows an example scenario with a two-term query.

If the IDF value of A is larger, documents from the area 1 (i.e., those with both terms)

would have higher priority than those from area 2 (i.e., documents with only term A),

which have higher priority than those from area 3 (i.e., documents with only term B).

This function is chosen to strike a better balance between the efficiency and

effectiveness. First, IDF has been shown to be the stronger retrieval signal than others

such as TF, since it has higher upper bound performance in our previous study of tie-

breaking. Second, the number of distinct values of the priority scores is small, which

makes it possible to efficiently process documents using the tree-structure that will be

described in the following subsection.

After the document are prioritized based Equation (5.1), we can then take at

least K documents with higher priorities and re-rank them with more accurate relevance

scores computed based on the given retrieval function. We will explain how to efficiently

implement this idea in subsection 5.2.2 and discuss its efficiency, effectiveness and space

usage in subsection 5.2.3.

5.2.2 Tree-based prioritization

We have explained the basic idea of document prioritization for query processing

in the previous subsection. We now explain how to implement it efficiently based on a

tree-based structure.

Recall that the basic idea is to prioritize documents based on the number of

distinct query terms that they contain and the importance of the matched terms.

Thus, if a query contains N terms, the priority scores computed from Equation (5.1)

would have only 2N different values. Since a collection may contain millions or even

billions of documents, it means that many documents would have the same priority

scores.

This observation motivates us to use a decision-tree based data structure that

can quickly classify documents into different buckets based on the matched query terms

68

Entrance

d1, d20 d2,d3,
d100 d4, … Empty

A not A

B not B B not B

IDF(A)+IDF(B) IDF(A) IDF(B)

Level A

Level B

Posting Lists: A: d1, d2, d3, d20, d100
 B: d1, d4, d20, d30, …

1

Figure 5.2: An example of the decision tree based query processing

69

and then prioritize the document buckets (i.e., documents with the same priority score)

accordingly.

Constructing a decision tree: Given a query, the decision tree can be con-

structed as follows. All query terms are first ranked based on their IDF values, and

their ranks determine which levels of the decision tree they will correspond to. We put

terms with higher IDFs at the higher levels because this enables the fast pruning of

nodes corresponding to the non-essential terms, which will be discussed soon. Each

non-leaf node will have two children. One child includes the documents containing the

corresponding term, while the other child includes the documents that do not contain

the corresponding term. Each node is associated with a priority score, which is deter-

mined by the priority score of the documents belonging to the node. Each leaf node

contains a document bucket, in which all the documents have the same priority scores

as computed using Equation (5.1). Figure 5.2 shows an example decision tree for a

query with two terms A and B. Since IDF (A) is larger than IDF (B), the nodes at

the first level corresponds to A and those at the second level correspond to B. Node

“A” in the first level has a priority score of IDF (A), and “not A” has a priority score

of 0. Moreover, the first leaf node has a priority score of IDF (A) + IDF (B) since this

node corresponds to the documents matching both terms.

Tree-based query processing: After building a decision tree for a query, we

traverse the indices in a similar way as DAAT. The inverted lists of all query terms

are processed in parallel, and the documents are processed in the order based on their

document IDs. For each document, instead of directly computing its priority score,

we leverage the decision tree and put the document into the corresponding bucket.

The priority of a document is the same as that of its corresponding bucket, which is

computed when building the tree. The last bucket (the one with the lowest priority

score) will always be empty since it corresponds to the documents that do not match

any query terms and these documents would not occur in the inverted lists of query

terms. As shown in Figure 5.2, when processing d1, we would put it to the first bucket

based on the constructed decision tree. After processing all the documents, we can

70

then return all the documents in the first M buckets so that they are the smallest

set of buckets that can cover K documents. For example, if K = 3, we would return

the first two buckets as shown in the Figure 5.2. When putting a document into a

bucket, the term statistic information related to the document will also be stored in

the decision tree. Thus, after identifying the top M buckets, we will then compute

the relevance score of all the documents in the buckets based on the given retrieval

function and return top K results.

Dynamic pruning: Since we focus on top-K query processing, it would be

more efficient it we could skip some documents that will not make the final top K

results. We propose a dynamic pruning strategy that can be combined with the above

tree-based query processing. After placing a document into a bucket of the decision

tree, we will check whether this bucket together with the buckets with higher priority

are big enough to cover top K documents. If so, we will disable all the nodes with

buckets that have lower priority. If all the children of a node are disabled, this node

will also be disabled. If a disable node corresponds to the occurrence of a term, we

can refer to this term as a non-essential term. All the documents that contain only

non-essential terms will not make the final top K results. Thus, for the inverted list of

non-essential term, we can then skip the documents that do not contain any essential

terms by moving the current document pointers in the inverted lists of the non-essential

terms to the smallest document IDs in the inverted lists of the essential terms, i.e., those

corresponding nodes in the tree are not disabled. Note that this idea is similar to the

MaxScore method [97] since we also try to exclude non-essential terms from the query

processing.

Let us go back to the example shown in Figure 5.2. Assume we focus on retriev-

ing top 2 results. According to DAAT, d1 is the first one to be processed, and it will

be put into the first bucket since it contains both query terms. d2 and d3 are the next,

and will be put into the second bucket. Since K = 2 and the first two buckets already

cover 3 documents, we can now disable the last buckets and associated nodes, i.e., all

the nodes from the sub-tree of “not A”. It means that B is a non-essential term since

71

the documents containing only document B will not make to the final top K results.

Based on our dynamic pruning method, the current document ID in the inverted list

of B will be moved to d100 since it is the smallest document ID in the inverted lists of

essential terms. After processing d100, we can put it into the first bucket and return

only the documents from the first bucket. Finally, the two documents from the first

bucket will be evaluated with the given retrieval function such as Okapi BM25. It is

clear that the dynamic pruning makes it possible to skip many documents that can

not make to the top K results, i.e., d4, d6, ..etc.

5.2.3 Discussions

Efficiency: The efficiency of any query processing method is closely related

to the number of documents that need to be fully evaluated with the given retrieval

function. The main advantage of our approach is to first prioritize the documents using

an efficient tree-based query processing technique to reduce the number of documents

that need to be evaluated with the given retrieval function. In particular, the number

of evaluated documents in the proposed approach is determined by the size of the

first M buckets. When the size of the first M buckets is smaller than the number

of documents that need to be fully evaluated by existing query processing methods,

the proposed method is expected to be more efficient. Since the number of evaluated

documents in any query processing method would grow with the value of K and the

bucket size in the proposed decision tree would shrink when a query has more terms,

we expect that the proposed method could improve the efficiency better when K is

larger or the queries are longer.

Effectiveness: The proposed method is similar to the conjunctive mode since

both of them try to use a simple method to select a small set of documents that need

to be evaluated. However, our method is more effective since it can include more

potentially relevant documents than in the conjunctive mode. Since IDF is a very

strong retrieval signal, the number of missed relevant documents in our method would

be small.

72

Space Usage: The proposed method requires a decision tree for query pro-

cessing. Although the number of the nodes in the tree grows exponentially with the

number of terms in a query, the entire tree would not take much memory since the

information stored for each node is limited - including the corresponding term and the

priority score. In addition to the nodes in the tree, we also need to keep the record

of all the documents from the top M buckets. These buckets store basic information

about the documents including document ID, document length and term statistics.

Overall, the space usage of the proposed method is small (a few megabytes for GOV2

collection).

5.3 Experiments

5.3.1 Experimental setup

We compare the proposed method with a couple of the state of the art query

processing techniques on two large-scale search domains, i.e., Web search and Microblog

search. Due to the high cost associated with creating relevance judgments, there is no

single collection that has a large number of queries with relevance judgments. Thus, for

each search domain, we have to use different collections for evaluating the effectiveness

and efficiency. All experiments are conducted via a single machine with dual AMD

Lisbon Opteron 4122 2.2GHz processors and 16GB memory. We use the Okapi BM25

[82] as the retrieval function and retrieve top-K results. The query processing system

is implemented similar to VIrtual IR Lab.

Data sets for Web search: We use the TREC Gov2 collection [2] as the data

set. The collection contains 25.2 million web pages crawled from the .gov domain.

To evaluate the retrieval effectiveness, we use two sets of 50 queries from the TREC

2005-2006 Terabyte tracks [37], which are denoted as TB05 and TB06. To evaluate

the efficiency, we randomly choose 1000 queries from the efficiency queries used in the

same tracks. They are denoted as TB05L and TB06L.

Data sets for Microblog search: To evaluate the retrieval effectiveness, we

use the TREC Tweets2011 collection as the data set. The collection contains 16 million

73

tweets posted from 01/23/2011 to 02/08/2011. Two query sets from TREC 2011 and

2012 Microblog tracks [79] are used and denoted as MB11 and MB12. To evaluate the

efficiency, we use a larger collection, i.e., a subset of the twitter7 [117] collection, as

the data set. The data set contains 253 million tweets from 06/07/2009 to 10/21/2009.

We crawled trending queries for each date in the corresponding period from Google

Trends and randomly pick 1000 queries to use for our experiments. Although they are

not queries submitted to Twitter, they can represents user information needs for the

corresponding period. This collection is denoted as MBL.

Methods: The proposed tree-based document prioritization method with prun-

ing describe in the previous section is denoted as Priority. Specially, to retrieval top-K

results, the Priority method would first use the proposed prioritization method to

identify top ranked blocks covering at least K documents, grade the documents from

these blocks using the Okapi BM25 method, and the retrieval top-K documents as

the final results. The Priority method will be compared with three baseline methods:

(1) BMW [50]: the state of the art dynamic pruning method for disjunctive mode,

which has been shown to be more efficient than the WAND [29] and Maxscore meth-

ods [97]; (2) LB [49]: an improved version of BMW using live blocks, which has been

shown to achieve a speed-up of 2 over BMW for top-10 query processing; (3) AND:

the conjunctive mode implemented using the WAND method [21,29].

5.3.2 Performance comparison: efficiency

The first set of experiments is to compare the average query processing time per

query for both domains. Figure 5.3 and figure 5.4 show the comparison results over

different values of K (i.e. the number of retrieval documents per query) on the two web

collections, i.e., TB05L and TB06L. Note that the performance of AND varies with

different values of K due to the different cost of heap update, but the differences are

too small to see in the figures.

There are a few interesting observations. First, the proposed Priority method

clearly has a constant factor speed improvement over the state of the art dynamic

74

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

m
s

K

Top-K Query Processing Time (TB05L)
BMW

LB
AND

Priority

Figure 5.3: Efficiency comparison on TB05L: average processing time per query (ms)

 0

 50

 100

 150

 200

 250

 300

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

m
s

K

Top-K Query Processing Time (TB06L)
BMW

LB
AND

Priority

Figure 5.4: Efficiency comparison on TB06L: average processing time per query (ms)

75

 0

 100

 200

 300

 400

 500

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

m
s

K

Top-K Query Processing Time (MBL)
BMW

LB
AND

Priority

Figure 5.5: Efficiency comparison on MBL: average processing time per query (ms)

pruning methods (i.e., BMW and LB) on both collections. In particular, the speed up

of the Priority method is around 2 when K is large. Second, the Priority method does

not perform as well as BMW when the value of K is smaller. Finally, although LB

is able to achieve a speed-up of 2 over BMW when K is smaller, which is consistent

with the previous study [49], it does not always have a clear advantage over BMW for

larger K.

Similar experiments is done for Microblog search. Figure 5.5 compares the aver-

age query processing time of the four methods. It is interesting to see that the Priority

method is consistently more efficiency than BMW and LB methods for different re-

trieval cut-offs, although the speedup is not as large as we observe in the Web domain

search.

5.3.3 Performance comparison: effectiveness

The proposed Priority method is not rank safe for top K results, since the

priority function we used is a simple approximation of the original retrieval function.

Thus, it would be interesting to compare it with the two baseline methods in terms of

76

 0

 0.2

 0.4

 0.6

 0.8

 1

K=100
K=1000

K=10000

R
ec

al
l@

K

Effectiveness Comparison (TB05)
BMW/LB

Priority
AND

Figure 5.6: Effectiveness Comparison (TB05)

 0

 0.2

 0.4

 0.6

 0.8

 1

K=100
K=1000

K=10000

R
ec

al
l@

K

Effectiveness Comparison (TB06)
BMW/LB

Priority
AND

Figure 5.7: Effectiveness Comparison (TB06)

77

 0

 0.2

 0.4

 0.6

 0.8

 1

K=100
K=1000

K=10000

R
ec

al
l@

K

Effectiveness Comparison (MB11)
BMW/LB

Priority
AND

Figure 5.8: Effectiveness Comparison (MB11)

 0

 0.2

 0.4

 0.6

 0.8

 1

K=100
K=1000

K=10000

R
ec

al
l@

K

Effectiveness Comparison (MB12)
BMW/LB

Priority
AND

Figure 5.9: Effectiveness Comparison (MB12)

78

Table 5.1: Effectiveness Comparison (MAP@K)

K 100 1000 10000

BMW/LB 0.167 0.324 0.343
TB05 AND 0.132 0.236 0.245

Priority 0.165 0.306 0.322

BMW 0.188 0.285 0.293
TB06 AND 0.163 0.247 0.252

Priority 0.187 0.281 0.290
BMW/LB 0.206 0.245 0.247

MB11 AND 0.077 0.079 0.079
Priority 0.221 0.265 0.268

BMW 0.137 0.193 0.203
MB12 AND 0.086 0.094 0.095

Priority 0.148 0.208 0.217

the retrieval effectiveness. Note that BMW and LB have the same effectiveness since

both of them are rank-safe. Figure 5.6, 5.7, 5.8 and 5.9 show the recall at different

retrieval cut-offs on the four web search and microblog search collections. And the

performance measures with MAP is also shown in table 5.1.

It is clear that the effectiveness of the Priority method is slightly worse than

that of BMW and LB for Web search, but the effectiveness loss is much smaller than

that caused by the AND method. And such an observation is consistent for different

retrieval cut-offs, different effectiveness measures and different collections. Moreover,

for the Microblog search, it is interesting to see that the Priority method is more

effective than the other two methods. The observation suggests that IDF is a very

strong retrieval signal for microblog search since the short of length of tweets makes

other signals such as TF and document length normalization less effective.

5.3.4 Result analysis

As shown earlier, the proposed method can strike a better balance between the

effectiveness and efficiency than the baseline methods by significantly reducing the

79

Table 5.2: Avg. processing time per query (ms) for different query length on TB05L
(K=1000)

Query length 2 3 4 5 6 > 6
BMW 36.13 75.01 110.27 133.93 184.17 290.37

Priority 90.93 59.62 64.81 56.41 83.48 122.35

Speed-up 0.4 1.3 1.7 2.4 2.2 2.37

Table 5.3: Avg. processing time per query (ms) for different query length on TB06L
(K=1000)

Query length 2 3 4 5 6 7 > 7
BMW 52.41 107.01 146.54 238.06 344.94 383.38 531.81

Priority 82.01 86.95 93.93 126.85 153.17 206.87 268.07

Speed-up 0.64 1.2 1.6 1.9 2.3 1.9 2.0

query processing time without sacrificing too much on the quality of search results.

Here we conduct more analysis to better understand the performance differences.

5.3.4.1 Efficiency comparison for different query lengths

To further understand the performance behavior, we report the average query

processing time for different query lengths. Table 5.2 shows the average query process-

ing time when retrieval top 1,000 documents on TB05L collection. It is interesting to

see that the Priority method is more efficient than BMW when the queries have more

than two terms. Moreover, it can achieve a speed-up around 2 when the number of

query term is larger than 4. We can make consistent observation on TB06L collection

as well, as shown in table 5.3. Similar observations can be made on different K values,

we show average query processing on different cut-offs in figure 5.10.

In summary, the proposed Priority method is more salable than the BMW

method and it is more efficient for longer queries and larges values of K. This trend

can be clearly seen in figure 5.10. Note the trend is similar on the other data set and

for the other method (i.e. LB).

80

 0

 200

 400

 600

 800

 1000

|Q|=2
|Q|=3

|Q|=4
|Q|=5

|Q|=6
|Q|=7

|Q|>7

m
s

K

Top-100 Query Processing Time for different query lengths
BMW

Priority

 0

 200

 400

 600

 800

 1000

|Q|=2
|Q|=3

|Q|=4
|Q|=5

|Q|=6
|Q|=7

|Q|>7

m
s

K

Top-1000 Query Processing Time for different query lengths
BMW

Priority

 0

 200

 400

 600

 800

 1000

|Q|=2
|Q|=3

|Q|=4
|Q|=5

|Q|=6
|Q|=7

|Q|>7

m
s

K

Top-10000 Query Processing Time for different query lengths
BMW

Priority

Figure 5.10: Performance comparison on TB06 : average query processing time per
query (ms)

81

5.3.4.2 Efficiency: the number of evaluated documents

The query processing time is closely related to the number of documents that

need to be fully evaluated, the performance gain of Priority probably comes from its

ability to quickly prune many documents with lower priorities. To verify the hypothesis,

we report the number of evaluated documents for TB06L as shown in table 5.4. It

is clear that the query processing time is indeed related to the number of evaluated

documents. When more documents need to be fully evaluated, it would take more time

for query processing. It is clear that the number of evaluated documents of Priority is

much smaller than that of BMW when K is larger.

We now discuss how the number of evaluated documents in the Priority can

be affected by K. The number of evaluated documents is determined by the sizes of

all the documents blocks with the highest priority from the decision tree. The size of

these blocks varies for different collections. For example, the size of the first block is

the number of documents that containing all the query terms in the collection (they

are also the very documents will be evaluated with the conjunctive mod). When K is

larger than the size of the first block, the number of evaluated documents in Priority

would often be smaller than those in BMW since the documents are prioritized using a

simple priority function. However, when K is much smaller, the number of documents

from the first block might be already much bigger than the value of K, which means

that we need to unnecessarily evaluate many more documents than BMW.

When a query has more terms, the size of the blocks with higher priorities is

smaller since these blocks require documents with more terms. As a result, these smaller

blocks may lead to fewer documents that need to be evaluated by the Priority method.

Table 5.5 shows the number of evaluated documents for different query lengths, the

results are consist with what we observed in table 5.3. Clearly, the results are consist

with our analysis, which provides a justification on why our method is more efficient

for longer queries.

82

Table 5.4: Avg num. of evaluated docs on TB06L

K 100 1000 5000 10000

BMW 35,104 105,277 246,089 357,357
Priority 66,409 83,506 112,996 140,688

Table 5.5: Avg num. of evaluated docs on TB06L for different query length (K=1000)
Query length 2 3 4 5 6 7 > 7

BMW 111,947 109,859 93,399 107,984 113,466 96,659 100,398
Priority 229,752 73,535 25,242 13,967 5,270 5,822 3,547

5.3.4.3 Impact of the pruning strategy

Finally, we conduct experiments to examine how much the proposed pruning

method in the previous section can improve the efficiency. The results are shown

in Table 5.6. The Exhaustive method refers to the query processing method that

exhaustively computes the relevant score for every document which contains at least

one query term. It is clear that the prioritization method can improve the query

processing significantly, and the proposed pruning method is able to further reduce

the query processing time by a factor of at least 2. We also study how the percentage

of pruned blocks changes as the query processing continues. The results are shown

in Figure 5.11, where y-axis is the percentage of the non-pruned blocks and x-axis

is the percentage of the posting lists that have been processed. We can see that the

percentage of non-pruned blocks keeps decreasing in the whole process, and around

eighty percent blocks are pruned at the end.

Table 5.6: Avg. query processing time (ms) on TB06L

K 100 1000 5000 10000

Priority 85.61 100.40 129.34 153.36
Priority + No pruning 275.69 284.90 301.54 318.97

Exhaustive 1135.1 1141 1143.3 1154.4

83

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

th
e

pe
rc

en
ta

ge
 o

f n
on

-p
ru

ne
d

bu
ck

et
s

the percentage of processed posting lists

Impact of Pruning Strategy (TB06L,K=1000)
Priority

Figure 5.11: Impact of the pruning strategy: the percentage of non-pruned blocks

5.4 Conclusions

Although dynamic pruning techniques can help to reduce query processing time,

when the systems need to return more documents for each query, the efficiency improve-

ment of dynamic pruning becomes less significant. On the other hand, conjunctive or

AND query processing does not suffer from the problem but it may hurt effectiveness

very much.

To solve this problem, we propose a novel tree-based document prioritization

method for query processing. The basic idea is to first prioritize documents using a

simple yet efficient method and then pick only a small set of documents with higher

priority for full evaluation. We propose to implement this idea using a tree-based

structure. Experimental results show that the proposed method is more scalable than

one of the state of the art dynamic pruning method for disjunctive mode. In particular,

when the number of retrieved documents is larger than 1000 or the number of query

terms is larger than 2, the proposed method can achieve a speed up around 2 over

TREC Web collections with marginal loss in terms of the effectiveness. We also find

that it can improve the retrieval efficiency for Twitter collection with close-to-zero

effectiveness loss. Overall, the proposed method has been shown to achieve a better

trade-off between the efficiency and effectiveness.

We have got a better solution for query processing when the number of returned

84

documents is large. So how about long query processing?

85

Chapter 6

IMPROVE EFFICIENCY OF PSEUDO RELEVANCE FEEDBACK

6.1 Introduction

Query processing time may become longer as the query becomes longer (i.e.

containing more unique query terms). It is due to two reasons: on one hand, more

query terms may introduce more postings to be evaluated. On the other hand, longer

query also increases the maximum score a document can get and as a result dynamic

pruning methods may become less effective and the IR system needs to evaluate more

documents as well. Figure 6.1 shows how the average query processing time change at

different query length for both DAAT and SAAT query processing. For DAAT we apply

WAND dynamic pruning strategy [29] while for SAAT we apply the four-stage pruning

method [18]. When query is very short (i.e. query length ≤ 2), both DAAT and SAAT

can perform very well (i.e. less than 20 ms). However as the query becomes longer, it is

obvious that average query processing time increases exponentially. This trend is even

more obvious for SAAT query processing. The low efficiency of long query processing

affects the utilization of some useful techniques such as pseudo-relevance feedback.

Pseudo-relevance feedback [9, 55, 86, 93, 100, 101, 109] is an important technique

that can be used to improve the effectiveness of IR systems. There exists vocabulary

gaps between queries and relevant documents. It is may due to the fact that users

cannot speak out all the important aspects of their information needs, or simply those

relevant documents may use different terms to describe the same things. The vocabu-

lary gaps keep some relevant documents from being retrieval to top lists and as a result

it affects effectiveness of information retrieval systems. Pseudo-relevant feedback is one

of the most important technique to improve effectiveness by crossing vocabulary gaps.

86

Figure 6.1: Query processing time on different query length

1 2 3 4 5 6
0

50

100

150

200

Query Length

A
vg

 P
ro

ce
ss

in
g

T
im

e
(m

s)

SAAT
DAAT

The main idea of Pseudo-relevant feedback is trying to expand original queries with

useful terms to help the system better seeking for relevant documents. Particularly,

these relevant documents are selected from top-ranked documents from an initial re-

trieval run and it assumes that the these top ranked documents are likely to be relevant

and their content can help the system to understand users’ information needs better.

Different pseudo-relevance feedback methods have been proposed and studied

for various retrieval models [33,64,81,83,85,113,120], but they all boil down to a two

round retrieval process. In the first round, the original query is used to retrieval an

initial set of documents. And the several most representative terms are selected to

expand the original query and a second round retrieval is processed with respect to the

new expanded query.

Although pseudo-relevance feedback methods can lead to large performance gain

in terms of effectiveness, there is one major downside that limits their usability in real

retrieval application: its low efficiency [25, 42, 63]. In particular, the second round

of retrieval could significantly slow down the performance due to the time spent on

87

selecting terms for expansion and on executing the expanded query that are often

much longer than the original one [42, 63]. It is clear that such drastically increased

execution cost limits the applicability of pseudo-relevance feedback methods in real IR

applications.

Compared with continual efforts on improving the effectiveness and robustness

of pseudo feedback methods in the past decades [33, 34, 39, 46, 48, 64, 65, 67, 67, 68, 75,

81, 83, 85, 94, 113, 114, 120], less attention has been paid to make these methods more

efficient [25, 42, 63]. Billerbeck and Zobel [25] proposed a summary based method for

efficient term selection from the feedback methods. Lavrenko and Allan [63] proposed

a fast relevance model, and Cartright et. al. [42] studied approximation methods

to reduce the storage and computational cost for the fast relevance model. These

proposed methods were designed for either a specific feedback method [42, 63] or a

bottleneck in the feedback implementation, i.e., how to efficiently select expansion

terms from the feedback documents [25]. However, it remains unclear whether there is

a general solution to address other bottlenecks for efficient pseudo-relevance feedback

implementation.

This problem may become more serious for Score-at-a-time SAAT query pro-

cessing [13,14,17,18] which uses the accumulated list to store the candidate documents

and their scores. As the query becomes longer, more postings will be accessed and more

more candidate documents may need to be stored in the accumulated list. Therefore

the query processing time as well as memory usage may grow exponentially as the query

becomes longer. The feature obviously does not fit to pseudo-relevance feedback since

the expanded query is usually very long. The shortage actually limits the application

of PRF on SAAT query processing.

To overcome this problem, in the following section, we propose a general solution

that can improve the efficiency of pseudo-relevance feedback in SAAT query processing.

The basic idea is to reduce the executing cost for the expaned query by using the query

processing status of the the original query. Existing IR systems often implement the

pseudo-feedback methods as a two-round retrieval, where the second round is processed

88

Figure 6.2: Processing time of the three steps in pseudo-relevance feedback imple-
mentation

Initial
Round,
29.6ms

Term
Selection,
43.2 ms

Second
Round,

2624 ms

independently to the first round. However, since the query used in the second round

retrieval is an expanded version of the original query used in the first round, it would

be beneficial to leverage the results of the first round of retrieval to reduce the query

processing time for the second round.

6.2 Efficient Pseudo-relevance Feedback for SAAT

6.2.1 Overview of existing implementation strategy

As described in previous section, many pseudo-relevance feedback methods have
been proposed and studied. Despite the differences on how to exploit feedback infor-
mation, they all require the following three-step implementation:

1. Initial retrieval: finding documents relevant to an original query;

2. Term selection: identifying useful expansion terms (i.e., relevant information
in language modeling framework) from the feedback documents;

3. Second-round retrieval: returning documents relevant to the expanded query
(i.e., updated query model in the language modeling framework).

89

F
ig

u
re

6
.3

:
C

om
p
u
ta

ti
on

al
fl
ow

s
fo

r
d
iff

er
en

t
im

p
le

m
en

ta
ti

on
s

of
p
se

u
d
o-

re
le

va
n
ce

fe
ed

b
ac

k
m

et
h
o
d
s

O
R

A

N
D

R

E
F

IN
E

N

ew

Q
u

er
y

O
R

A

N
D

R

E
F

IN
E

T

o
p

D

o
cs

R

E
S

U
L

T

O
R

A

N
D

R

E
F

IN
E

T
o

p

D
o

cs

A
d

d

T
er

m
s

A
N

D

R
E

F
IN

E

R
E

S
U

L
T

In
it

ia
l R

o
u

n
d

Q

u
er

y
E

xp
an

si
o

n

S
ec

o
n

d
 R

o
u

n
d

O

u
tp

u
t

R
ec

o
ve

ry

C
o

n
ve

n
ti

o
n

al

In
cr

em
en

ta
l

O
R

A

N
D

R

E
F

IN
E

T
o

p

D
o

cs

A
d

d

T
er

m
s

R
E

F
IN

E

R
E

S
U

L
T

T

o
p

-K
 R

e-
R

an
k

IG
N

O
R

E

IG
N

O
R

E

IG
N

O
R

E

IG
N

O
R

E

E
ff

ec
ti

ve
 b

u
t

n
o

t
E

ff
ic

ie
n

t

E
ff

ic
ie

n
t

b
u

t
n

o
t

E
ff

ec
ti

ve

E
ff

ic
ie

n
t

an
d

E

ff
ec

ti
ve

90

We’d like to show the details of implementations of the three steps as following:

The initial retrieval step can be implemented with any existing top-k query

processing techniques as described in the previous chapter. There have been significant

efforts on optimizing the efficiency for this step [13,14,17,18,29,35,52,76,89,90,124].

The term selection step is to select important terms from the feedback docu-

ments with the expectation that the selected terms can bring more relevant documents

in the second round of retrieval. Traditionally, these terms are selected directly from

the top ranked documents. However, this step could takes lots of time when the doc-

uments are long and the information about the documents need to be read from the

disk. To solve this problem, Billerbeck and Zobel [25] proposed to generate a short tf-

idf based summary for each document and select expansion terms from the summaries

of the feedback documents. These summaries are small enough to be pre-loaded into

the memory, and can lead to more efficient term selection. Their experimental results

showed that this strategy is efficient with ignorable loss in terms of the effectiveness.

Following their study, we use a similar strategy for term selection. One difference is

that we use term probability p(t|D) instead of tf-idf weighting to generate document

summaries because the retrieval function used is based on language modeling approach.

And we set the length of document summary to 20 terms.

The second round retrieval step aims to retrieve final retrieval results with the

expanded query. The expanded query is often formulated as a linear interpolation

of the original query and the expansion terms selected from the second step. As an

example, in the relevance model [64], this step is to retrieve documents with an updated

query model (i.e., θnewQ) by linearly combining the original query model (i.e., θQ) with

the relevance model estimated from the feedback documents (i.e., θF) as follows:

θnewQ = λ · θQ + (1− λ) · θF , (6.1)

where the original query model θQ is estimated using the maximum likelihood estima-

tion of query Q, the relevance model θF estimated from the feedback documents F

91

using the methods described in previous study [64], and λ is to control the amount of

feedback.

In the second round of retrieval, existing IR systems such as Indri would process

the expanded query in the same way as a newly submitted query. In other words, the

two rounds of retrieval are processed independently.

Figure 6.2 shows how much time each step takes when using the existing im-

plementation methods described above for the relevance feedback method with 20

expansion terms. It is clear that the third step takes the most of computational time

while the other two stages share a very small part the time usage. Thus, the key to

efficient pseudo-relevance feedback methods is to reduce the execution time for the

second-round retrieval, which is the focus of this study.

6.2.2 Analyzing the second round retrieval

Compared with the initial retrieval, the expanded query processed in the second

round is often much longer than the original query because it has much larger number

of query terms to be processed. For example, the average length of Web queries is

around 3, while the number of expansion terms is often set to 20. As a result, the

computational cost for expanded query is significantly higher than that for the basic

retrieval.

One limitation of existing implementation for feedback methods is that the two

rounds of retrieval are processed independently. Each round starts with an empty set of

accumulators and gradually adds new accumulators in the OR stage. When switched

to AND stage, accumulators can be updated but no new accumulated can be added.

When switched to REFINE stage, only top k accumulators are processes. And in the

final IGNORE stage, all the information from the inverted lists can be ignored. Note

that the accumulators used the two rounds of retrieval are computed from the scratch

separately. This implementation is illustrated in the upper part of Figure 6.3

However, unlike processing a new query, the expanded query in the second round

retrieval is related to the query used in the initial retrieval. In particular, the query

92

terms in the initial retrieval is a subset of those in the second round of retrieval, and

these terms will be processed twice in this two rounds of retrieval process. Moreover,

the results of these two rounds of retrieval might have a great overlap. Thus, it would be

interesting to study how to leverage the results of the first round of retrieval to reduce

the computational cost. But how to leverage them? This is not a simple problem

without significant challenges.

The idea of exploiting the results of initial retrieval to improve the efficiency

of the second round retrieval was discussed in previous study [25], but was not found

useful. In the next subsection, we re-visit this basic idea and propose an incremental

approach that is shown to be both efficient and effective based on the experimental

results.

6.2.3 The proposed incremental approach

The basic idea to improve efficiency of pseudo-relevant relevant feedback is that

the initial retrieval process should be treated as part of the query processing for the

second round retrieval. Instead of processing the expanded query in the second round

from the scratch, we should be able to resume the query processing results of the initial

query, and continue the processing for the expanded query terms. But how to resume

the results?

One possible strategy is to resume the last ranking-related stage, i.e., REFINE,

in the query processing results of the initial retrieval. Recall that REFINE stage is

designed to process only the accumulators of top K ranked documents. Thus, if we

resume the status from the REFINE stage in the second round retrieval, it is equivalent

to re-ranking those top K ranked documents using the expanded query. This strategy is

illustrated in the middle part of Figure 6.3. Since the number of accumulators used in

REFINE stage is very small, this re-ranking method would be quite efficient. However,

it would suffer significant loss in terms of the effectiveness because one of the major

benefits of feedback methods is to find relevant documents that were not among top

93

ranked results for the initial retrieval and the re-ranking strategy seems to disable this

nice benefit. Clearly, this is not an optimal solution. Can we do better?

Intuitively, if more document accumulators can be included in re-ranking pro-

cess, the retrieval effectiveness could be improved. On the extreme case, when all the

documents are considered for the re-ranking, the cost would be the same as submitting

a new query. Thus, the main challenge here is how to select a set of documents to be

re-ranked so that we can increase the efficiency without sacrificing the effectiveness.

Recall that the pruning technique consists of four stages: OR, AND, REFINE

and IGNORE. The number of active accumulators becomes smaller as the system

switches from one stage to the other. As discussed earlier, resuming from the REFINE

stage is equivalent to re-ranking only top k documents, which hurts the effectiveness.

On the contrary, resuming from the OR stage would not hurt the effectiveness. How-

ever, since the number of expanded terms is much larger than the number of original

query terms, we might not be able to reduce the number of accumulators significantly.

Thus, we propose to resume from the AND stage.

The main idea of our incremental approach is shown in the lower part in Figure

6.3. REFINE is the last ranking-related stage in the initial retrieval. Thus, in order to

resume from the AND stage of the initial retrieval, we have to first rewind the query

processing results from the end of REFINE stage back to the end of the AND stage.

This new stage is referred to as RECOVERY stage in our system. The RECOVERY

stage has two tasks: (1) re-enable the accumulators that were disabled at the REFINE

stage; and (2) turn back the inverted list pointers to the positions where they were

at the end of AND mode. Our experimental results show that this stage takes a very

short ignorable time. After the RECOVERY stage, we will switch to the new AND

stage to update the accumulators based on the expanded terms, and then continue to

the other two stages as usual.

94

6.2.4 Discussions

The proposed incremental approach can improve the efficiency because of the

following two reasons.

First, query processing results of the original query terms can provide useful

information for effective pruning in the second round retrieval. Specifically, accumu-

lator trimming is used in the AND stage to dynamically reduce the number of active

accumulators, and a threshold is used to decide whether an accumulator should be

kept active or not. The threshold is to estimate a lower bound of the relevance scores

for the top K ranked documents. This threshold is set to −inf at the beginning of the

retrieval process, and will be updated at the later stage of the retrieval when more in-

formation is gathered. Since initial value of the threshold is rather small, little pruning

is applied at the early stage of the retrieval process. If the system could be informed

with the range of the threshold, more pruning can be done, which would lead to shorter

processing time. Since resuming the process of the initial retrieval can provide a much

larger initial value for the pruning threshold, the proposed approach can reduce the

query processing time.

Second, the efficiency is closely related to the number of accumulators that need

to be processed. Long queries usually lead to a huge number of accumulators, which

significantly hurt the efficiency. However, when resuming the query processing results

of the initial query, we are able to start with a much smaller set of accumulators. Note

that this strategy is not ranking safe when the expanded query is significantly different

from the initial query (i.e., when λ in Equation 6.1 is very small). However, as shown

in next section, the optimal value of λ is often large and this strategy does not affect

the effectiveness significantly.

6.3 Experiments

6.3.1 Experiment design

In this study, we use tree standard TREC data sets which were created for

TREC Terabyte tracks in 2004 to 2006. These three sets are denoted as TB04, TB05

95

and TB06 in this section. All the data sets use Gov2 collection as the document set,

and the collection consists of 25.2 million web pages crawled from the .gov domain.

In additional to that, we also use another data set which were created for TREC

web tracks from 2009 to 2012 which contains 200 queries. We denote it as CW09-12.

Different from the previous TB data sets, CW09-12 is tested on Clueweb category B

collection which contains 50 millions English web pages. The same for other part of

the thesis, all experiments were conducted on a single machine with dual AMD Lisbon

Opteron 4122 2.2GHz processors, 32GB DDR3-1333 memory and four 2TB SATA2

disks.

The basic retrieval model used in our experiments is the Dirichlet Prior smooth-

ing method [119], where the parameter µ was set empirically to 2500. This method is

labeled as NoFB. We use the relevance model [64] as the pseudo-relevance feedback

method. This model is chosen because of the following two reasons. First, it is a state-

of-the-art pseudo-relevance feedback method that has been shown to be both effective

and robust. This method is labeled as FB.

The implementation of our basic retrieval system (i.e., NoFB) is described in

previous section. Based on the basic retrieval system, we implemented two pseudo-

relevance feedback systems: (1) FB-BL: traditional method of implementing pseudo-

relevance feedback methods, i.e., the expanded query is processed independently to the

original query; (2) FB-Incremental: our proposed approach that exploits the query

processing results of the original query to speed up the processing of the expanded

query.

6.3.2 Experimental results

The first two sets of experiments were conducted with the ad hoc queries used

in TREC Terabyte tracks [2]. We use title only field to formulate queries. The third

set of experiments was conducted with the efficiency queries used in TREC Terabyte

tracks. One data set has 50K queries while the other has 100K queries.

96

Table 6.1: Efficiency comparison using TREC Terabyte ad hoc queries (i.e., average
query processing time (ms) to retrieve 1K documents)

Data sets NoFB FB-BL FB-Incremental
TB04 105 5,522 3,023
TB05 77 4,502 2,462
TB06 71 4,542 2,082

CW09-12 103 6,823 2,123

6.3.2.1 Efficiency and effectiveness

Firstly, let us explore whether the new methods can improve the efficiency. In

particular, we set the number of feedback documents to 10, the number of expansion

terms to 20 and the expansion weight λ is set to 0.6. These parameters are chosen

because they can lead to near-optimal performance in terms of the effectiveness. Table

6.1 shows the average processing time (ms) for each query when 1000 documents are

retrieved. The trends on the three collections are similar. Both FB systems are slower

than the NoFB system. For three terabyte query sets, it takes around 5 seconds for

FB-BL to process a query, and takes around 2.5 seconds for FB-Incremental to do

so. Clearly, FB-Incremental can achieve a speed up of 2 compared with FB-BL. For

Clueweb data set, FB-BL takes average 6.8 seconds for a query while FB-Incremental

takes average 2.1 seconds which is more than 3 times faster than the baseline. All the

results show that the proposed incremental approach can improve the efficiency. Note

that we also evaluate the efficiency of the Indri toolkit, a widely used open source IR

system. It takes around 1 minute for the Indri toolkit to process a query on the same

collection. This suggests that the baseline system we implemented, i.e., FB-BL, is very

efficient.

As discussed earlier, the speed up of FB-Incremental is achieved for two reasons.

First, FB-Incremental leverages the query processing results of the initial retrieval,

which avoids processing the original query terms twice. Second, the accumulator list

inherited from the initial retrieval by FB-Incremental is much smaller. Table 6.2 shows

the comparison of the accumulator list size between the two methods. Our incremental

97

Table 6.2: Comparison of the average size of accumulator lists per query

FB-BL FB-Incremental
TB04 2,368K 370K
TB05 1,805K 252K
TB06 1,901K 240K

CW09-12 3,857K 364K

Table 6.3: Effectiveness comparison using TREC Terabyte ad hoc queries
(MAP@1000)

Data sets NoFB FB-BL FB-Incremental
TB04 0.246 0.256 0.255
TB05 0.309 0.334 0.334
TB06 0.275 0.285 0.284

CW09-12 0.161 0.157 0.158

method creates only about 1/7 (1/10 for clueweb collection) accumulators as those of

baseline method. As a result, the new method avoids a lot of unnecessary index access

and computing for those accumulators it does not include. Note that our baseline

system, i.e., FB-BL, is a very strong baseline since it applied the accumulator trimming

techniques which can reduce unnecessary accumulators during the process.

We also conduct experiments to examine whether the proposed approach would

hurt the performance. Since our incremental approach leverages the accumulators used

in the AND stage of the initial retrieval, it is possible that we may miss some rele-

vant documents because they were not relevant to the original query and thus were

not included in its accumulator lists. As a result, it is possible that the incremental

approach might hurt the effectiveness, but it only happens when the expanded query

is very different from the original query. First we look at the results of three terabyte

collections. Recall that the optimal value of λ is 0.6 which indeed indicates that the

original query and expanded query are similar. Table 6.3 shows the results measured

with MAP@1000. To ensure the correct implementation of our system, we compare the

baseline performance with the ones reported in the previous study [89] and find that

98

Table 6.4: Impact of the expansion weight (i.e., λ) on the efficiency (the average
execution time (ms) per query)

Data sets Methods λ
0.5 0.6 0.7 0.8 0.9

TB04 FB-BL 6,125 5,522 4,435 2,723 1,597
FB-Incremental 3,798 3,023 2,130 1,221 826

TB05 FB-BL 5,146 4,502 3,577 2,466 1,323
FB-Incremental 3,071 2,462 1,762 1,113 845

TB06 FB-BL 5,281 4,542 3,571 2,412 1,114
FB-Incremental 2,664 2,082 1,406 778 560

CW09-12 FB-BL 8,579 6,823 5,229 3,844 2,202
FB-Incremental 2,579 2,136 1,657 1,166 974

the results are similar, which confirms our implementation of NoFB is correct. More-

over, we find that both FB methods can improve the retrieval accuracy about 4% to

8%, which is also similar to the performance improvement of the feedback method im-

plemented in Indri. One interesting observation is that the effectiveness of the two FB

systems are similar, which indicates that our proposed approach improve the efficiency

without sacrificing the effectiveness. The same conclusion can be got from the web

track collection. The only difference is that pseudo-relevance feedback cannot improve

retrieval accuracy over the original retrieval. We think it is due to the characteristics

of the queries. In spite of this, the trend is same that the two FB systems can output

results with almost the same accuracy.

6.3.2.2 Impact of parameter values

There are multiple parameters in the pseudo-relevance feedback methods such as

the number of expansion terms, the number of feedback documents and the expansion

weight (i.e., λ in Equation (6.1)). Since we use impact based document summary for

term select, the impact of the number of feedback documents on efficiency is not very

significant. Thus, we only focus on the other two parameters.

As discussed earlier, the expansion weight is an important parameter and we

should examine the impact of its value on both efficiency and effectiveness. The results

99

Table 6.5: Impact of the expansion weight (i.e., λ) on the effectiveness (MAP@1000)

Data sets Methods λ
0.5 0.6 0.7 0.8 0.9

TB04 FB-BL 0.254 0.256 0.257 0.255 0.252
FB-Incremental 0.252 0.255 0.256 0.255 0.252

TB05 FB-BL 0.333 0.334 0.332 0.328 0.321
FB-Incremental 0.333 0.334 0.332 0.327 0.321

TB06 FB-BL 0.284 0.285 0.285 0.284 0.281
FB-incremental 0.282 0.284 0.283 0.282 0.280

CW09-12 FB-BL 0.153 0.157 0.162 0.163 0.164
FB-incremental 0.152 0.158 0.161 0.163 0.164

Table 6.6: Average query execute time (ms) based on different expansion weights
(top 10 documents for each query)

NoFB FB Methods λ
0.5 0.6 0.7 0.8 0.9

TB04 69 FB-BL 4,731 4,016 2,786 1,756 933
FB-Incremental 1,295 915 578 437 403

TB05 53 FB-BL 3730 2,923 1,999 1,131 547
FB-Incremental 983 709 451 341 310

TB06 46 FB-BL 3909 3,060 2,167 1,317 573
FB-Incremental 921 669 447 319 284

CW09-12 67 FB-BL 5,567 4,313 3,222 1,903 884
FB-Incremental 841 692 550 471 433

100

Figure 6.4: The speed-up rate on different expansion weight λ (top 1000 documents
returned)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Expansion Weight (Lamda)

S
pe

ed
−

U
p

TB04
TB05
TB06

are shown in Table 6.4 and Table 6.5. We see that the optimal value of λ is around 0.6,

which means that we should put more weights to the original query terms. According to

Equation (6.1), the higher value of λ means that we put more trust on the original query

and less weights to the expansion terms. Given the characteristics of SAAT pruning

technique, postings of terms with smaller weights are more likely to be pruned. As a

result, we can observe a clear trend that both methods can improve the efficiency more

when the value λ is larger.

Figure 6.4 shows how the speed-up rate of FB−Incremental compared with FB

changes with the expansion weight. The higher expansion weight we choose, the more

the original query determines the final ranking list and the more time the incremental

method can save. However when the expansion weight is too high (e.g. 0.9), SAAT

pruning technique is rather efficient and leave small room for further improvement. As

a result, the speed-up rate at high expansion weight decreases.

We further test the impact of number of expansion terms on efficiency. Table

6.5 shows the speed up rate of FB− Incremental compared with FB−BL. It shows

that our new method benefits more when the system adds more expansion terms into

101

Figure 6.5: The speed-up rate on different number of expansion terms

5 10 15 20
1

1.5

2

2.5

Number of Expansion Terms

S
pe

ed
 U

p

2004 Track
2005 Track
2006 Track

the original query. The main reason of this trend is that our method efficiently controls

the grows of accumulator list size when the query becomes longer.

Another important factor that could affect the retrieval speed is the number

of documents retrieved for each query. Figure 6.6 shows how the number of retrieved

documents affect the speed up of FB−Incremental over FB−BL. The results indicate

that the new method can achieve more speed-up when the system returns fewer results

to users. We believe it is due to the reason that returning fewer documents brings higher

cut-off threshold. And in our method, the high cut-off threshold which is got from the

initial run provides a strong and efficient guidance on the accumulator selections in

the resumed retrieval. As a result, the pool of candidate documents/accumulators is

kept in a very small size and final result is generated soon. In opposite, the baseline

method which does the second round retrieval independently cannot get the benefit

from the high cut-off threshold and it still generates large number of accumulators in

which most of them are unnecessary.

We also report the efficiency when retrieving only 10 documents for each query

in Table 6.6. It is clear that when retrieving fewer documents, FB-Incremental can

achieve a higher speed up, i.e., around four. This indicates that this method could be

102

Figure 6.6: The speed-up rate on different number of retrieved documents per query

10
1

10
2

10
3

1.5

2

2.5

3

3.5

4

4.5

5

Number of return documents per query

S
pe

ed
 U

p
R

at
e

2004 Track
2005 Track
2006 Track

very useful for Web search domain since search users only need to look at 10 results

per page. Finally, Figure 6.7 shows impact of the expansion weight on the speed-up

when only 10 documents are retrieved. The trend is very similar to Figure 6.4.

6.3.2.3 Scalability

To further test the scalability of the incremental method and study how original

query length affects the pseudo feedback system speed, we test both methods on 50k

2005 efficiency queries and 100k 2006 efficiency queries. For each query, 5 expansion

terms are added and it only returns top 10 documents. The results show that the

incremental method can stably improve the efficiency at a rate more than 2 at different

original query length. For short queries, the baseline is fast and it leaves less space

for further improvement. For long queries, the processing time is dominated by the

original query terms and the optimizations in pseudo feedback part will not affect the

total time too much. As a result, it is reasonable to observe a speed up rate summit

at medium length query (i.e., 3-4 terms).

Another interesting discussion is how this incremental approach can work with

different retrieval function other than language modeling approach (i.e. Dirichlet Prior

103

Figure 6.7: The speed-up rate on different expansion weight λ (top 10 documents
returned)

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
1.5

2

2.5

3

3.5

4

4.5

5

Expansion Weight (Lamda)

S
pe

ed
 U

p

TB04
TB05
TB06

Table 6.7: Average query processing time (ms) on different query length (2005 50K
queries)

Avg 1 2 3 4 5 ¿5
NoFB 35 4 10 26 55 91 175
FB-BL 297 38 94 302 526 749 1,102

FB-Incremental 124 18 43 97 204 316 540
Speed-up 2.4 2.1 2.2 3.1 2.6 2.4 2.0

Table 6.8: Average query processing time (ms) on different query length (2006 100K
queries)

Avg 1 2 3 4 5 ¿ 5
NoFB 103 3 12 39 81 132 275
FB-BL 739 39 99 357 690 1,030 1,642

FB-Incremental 300 26 43 110 248 441 797
Speed-up 2.5 1.5 2.3 3.2 2.8 2.3 2.0

104

Table 6.9: Comparison of effectiveness and efficiency of BM25 retrieval method

TB04 TB05 TB06
MAP@1000

FB-BL 0.259 0.339 0.302
FB-Incremental 0.258 0.338 0.301

Efficiency (ms)
FB-BL 6,296 5,649 5,071

FB-Incremental 3,211 2,744 2,114

smoothing method). To resolve this concern, we conduct similar experiments on Okapi

BM25 [82] retrieval method. For each query, we select 20 terms from top 10 documents

from the initial run with λ = 0.8 and return 1000 documents for the second run. The

results are reported in table 6.9. It is obvious that the results on BM25 retrieval method

is similar to Dirichlet Prior smoothing method: on one hand, the incremental approach

can provide comparable results as the baseline and it does not affect effectiveness. On

the other hand, it reduces query processing time for more than two times. It proves

that this incremental approach is salable across different retrieval methods.

6.4 Conclusion and Future Work

Long query processing can be slow due to more postings to be evaluated and

less effective dynamic pruning. To speed up SAAT pseudo-relevance feedback as one

special case of long query processing, we propose an incremental approach which uses

the results from the initial round retrieval to leverage the query processing in the

second round. The method is proved to be useful and comparing to strong baseline it

can increase query processing speed by 2 to 4 times without hurting effectiveness.

One direction of the future work is to apply similar strategy for DAAT query

processing. However we expect it might not be as significant as SAAT: First DAAT’s

query processing time increases slower than SAAT as query becomes longer. Second

and most important, DAAT does not use accumulated lists to store intermediate results

which makes it harder for the second round retrieval to get benefit from the results of

105

initial round retrieval.

Another interesting direction may be expanding this incremental method to

general long query processing. We may first identify several key terms of the original

query and process such key terms as the initial round. We then use the results of

the initial round retrieval to speed up the process of the rest terms. We leave the

exploration as the future work.

So far we have successfully proposed two new methods which help to improve

query process efficiency in various situations. However they are still not enough. In

general, how can we further improve efficiency? If we can scarify effectiveness of the

results to exchange shorter query process time in extreme situations, how should we

look for good strategies? In the following chapter, we will more details about it.

106

Chapter 7

OPTIMIZING EFFICIENCY/EFFECTIVENESS TRADE-OFF

7.1 Introduction

In the previous chapters, we developed an analytical model. Based on this

model, we propose a new retrieval method called document prioritization. Compared

with dynamic pruning methods, it can significantly increase efficiency when k is large

with insignificant effectiveness loss. We also use a new incremental approach to improve

the speed of pseudo-relevance feedback as a partly solution for long query processing.

However, an IR systems efficiency is not only about average query processing

time; more importantly, it depends on whether every query can finish in time. Pre-

vious studies [23, 32, 87] have shown that query latency directly affects users’ search

satisfaction. Users usually expect to see results shortly after they submit their queries.

If a query’s response time is too long (i.e. more than 1 second), users may lose their

patience and move to another faster search engine, even if the slower one can pro-

vide more accurate results. Hence, maintaining certain efficiency is a ”must-do” for

a general search engine, and in some situations we can even sacrifice effectiveness for

efficiency if necessary. In general, efficiency and effectiveness are at odds with each

other. A highly efficient system may suffer from effectiveness loss because it relies on

overskipping documents or an oversimplified mechanism. On the other hand, a highly

effective system may be slowed by its complicated ranking functions and additional

features. Therefore, maintaining a balance between efficiency and effectiveness and

making smart tradeoffs between them is very important for designing an IR system.

Many IR systems apply fixed efficiency/effectiveness strategies on all queries.

The typical design can be found on WAND [30], which sets a higher cut-off threshold

107

and skips more documents, reducing query processing at the risk of losing highly scored

relevant documents. These fixed systems may have some problems. Imagine two

queries: query A is difficult and requires highly complex computations, while query

B is easy and requires low computational complexity. If a system uses a safe or less

aggressive document pruning strategy, both queries can have high effectiveness results,

but query As result may be delayed. However, if a system uses an aggressive document

pruning strategy, both queries can be answered in time, but query B may perform

worse in terms of effectiveness. Obviously, the best strategy is to process query A

aggressively and process query B safely so that both queries can be answered with

maximal effectiveness while meeting certain efficiency requirements. A similar idea is

proposed by Tonellotto [77], who tried to predict query processing time and applied an

aggressive pruning strategy to queries predicted to have a long query processing time.

However, Tonellottos work still does not address core questions: How can we adjust

strategy so that every query processing time falls within certain time constraints? How

can we make smart tradeoffs to maximize effectiveness while maintaining the efficiency

requirement?

In this chapter, we attempt to answer such questions by proposing a new frame-

work. First, we provide a theoretical analysis to help find good trade-off strategies.

Based on our theoretical foundation, we then propose several efficiency/effectiveness

trade methods and compare them with experimental results to check whether the re-

sults meet our theory.

7.2 Theory

Top-k query processing under strict time constraints is different from that with-

out time constraints. For some queries, we do not have time to go through all the

candidate documents, which causes effectiveness to suffer if some relevant documents

are therefore not evaluated. The results of time-constrained top-k query processing can

somehow be judged by their similarity to the results from those in which all candidate

documents are evaluated. Usually, the closer the result is to the exhaustive approach,

108

the more effective it is. In the ideal case, a time-constrained method should at least

evaluate the k documents from the exhaustive approachs results to ensure exactly the

same output. To help identify good efficiency and effectiveness trade-off strategies in

the time constraint environment, we provide the following theories:

Theorem 1 (High score document keeping property) A good time-constrained top-k

query processing strategy should not miss the documents with the highest evaluation

scores.

Documents with the highest evaluation scores are most likely to be relevant.

Skipping such documents or not having enough time to evaluate them risks a significant

loss of effectiveness.

Theorem 2 (law score document avoid property) A good time-constrained top-k query

processing strategy should avoid evaluating low-score documents.

The strict time constraint limits the number of documents that can be evaluated

before the deadline. Hence, if an IR system evaluates too many low-score documents,

it may not have time to evaluate high-score documents, thus hurting its effectiveness.

Theorem 3 (fast document evaluation property) A good time-constrained top-k query

processing strategy should evaluate documents quickly.

Fast documents evaluation can help a system to evaluate more documents. The

more documents evaluated before the deadline, the less the IR system risks missing

relevant documents.

Imagine that we are in a house on fire. The fire is so large that we cannot

extinguish it. To reduce loss, we should try to save assets before the fire destroys

everything. Obviously, we should pick valuable things and ignore those worth less. We

should also do it quickly so that we can pick up more things. Time-constrained top-k

query processing operates in a similar way. A good top-k query processing method

109

Figure 7.1: The architecture of Query Early Termination strategy

Query

Initialization
Document

Lookup

Document
Evaluation

Heap
Update

Finishe
d?

Output
Result

Time
Exceed

?

Yes

Yes

No
No

should be simple in order to evaluate more documents. It should avoid evaluating low-

score documents and keep high-score documents. We will use this theory to analyze

the methods in the next section.

7.3 Top-k Query Processing at Time Constrained Environment

In the previous section, we have shown the theorems that help to identify good

top-k query processing strategies for time-constrained environments. In this section,

we will propose five different methods and use the theorems to analyze them.

7.3.1 Force termination of query processing

To make sure that every query’s processing time meets certain time constraints,

the native thinking is that we can process documents with a ranking-safe dynamic

pruning framework (e.g. WAND) until the deadline expires. We then force the query

processing to terminate and output the results. This designs implementation is shown

in figure 7.1. In contrast to a typical query processing system without time limitations,

we add a stage to check whether it exceeds the time deadline. The strategy is quite

simple but very useful for controlling the processing time for every query. As output

results from the top-k heap take almost no time, the top-k query processing time with

this strategy can be guaranteed to meet the time constraint strictly. But how effective

is this method?

110

Figure 7.2: cut-off threshold curve during query processing

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

Process

T
he

ta

Exhaustive
WAND

First, as figure 7.2 shows, the cut-off threshold of traditional rank-safe WAND

query processing is set to zero at the beginning and gradually increases later. Hence,

at the beginning, by using the original dynamic pruning framework, no document skip-

ping occurs, and every document, including those with low scores, is evaluated, which

obviously miss the ”low score document avoidance” property. Most importantly, forc-

ing a termination improves efficiency by cutting off the documents at the tails of the

posting lists. For the DAAT docID-sorted inverted index , a document position does

not represent the documents score or relevance. Rather, high-score documents are

more likely to be distributed throughout the posting list: head, tail, or middle. Simply

cutting off documents at the tail results in a high risk of missing high-score docu-

ments and obviously misses the ”high score document keeping” property. Therefore,

the forced termination technique should not provide very good results with regard to

effectiveness.

7.3.2 Adjusting cut-off threshold rate F through efficiency prediction

Similar to the idea of [30,77], we can also control queries’ top-k processing time

by adjusting the cut-off threshold rate F in WAND. As we know, F controls how

111

aggressively the IR system prunes documents. When F = 1, the cut-off threshold

equals the score of the kth document in the top-rank lists, and the results will be

rank-safe. If we set F > 1, the cut-off threshold will be larger than the score of the

kth document, and hence more documents will be pruned. Based on this feature,

we develop separate strategies for easy and hard queries. The design is shown in

algorithm 5 where Q is a query, K is the number of returned documents, TC is the

time constraint for each query, PT is the predicted query processing time, and F ′ is

a parameter representing the cut-off threshold rate to be set for queries predicted to

exceed the time constraint. The main idea is to predict a query’s processing time and

compare the predicted result with the time constraint. If the predicted time falls within

the time constraint, the query should be finished on time, and the original rank-safe

framework will be applied. However, if the predicted time is longer, a more aggressive

strategy (i.e. F = F ′ > 1) will be applied to reduce the query processing time.

Algorithm 5 Binary selection of cut-off threshold rate based on query processing
prediction

Function{GetCutoffThresholdRate}{Q,K, TC}
PT = TimePrediction(Q,K)
if PT > TC then

return F ′

else
return 1

end if
EndFunction

By pruning more documents, this method can reduce the time consumption of

top-k query processes that may exceed the processing deadline of the original rank-

safe approach. However, in contrast to the previously mentioned forced termination

method, this strategy cannot guarantee that every query will meet the time constraint,

for two reasons. First, the efficiency prediction is not 100% percent accurate. For ex-

ample, a hard query may be falsely predicted to finish on time; applying a conservative

strategy to it will generate overdue results. Second, the parameter F ′ does not fit all

overdue queries. For some extremely hard queries requiring very long query processing

112

times, a moderate threshold rate is still not aggressive enough to force their query

processing times into the range. Alternatively, if we set F ′ to be very large, some

easier queries requiring a query processing time slightly longer than the deadline may

lose considerable effectiveness to the too-aggressive pruning strategy. This dilemma is

shown more clearly in the experimental section.

This methods effectiveness depends largely on the parameter F ′. The higher F ′

is, the more likely the queries are to meet the time constraints, but the less effective

the results may be. Additionally, we would like to analyze the method with the rules

we provided in the previous section. Figure 7.4 and figure 7.3 show how the K-th

document score (τ) and cut-off threshold change during query processing for different

F ′; we generate the results using the average of the TREC 2006 terabyte collection.

The two figures yield some interesting observations. First, even if we apply large F ′,

a buildup process occurs for the cut-off threshold, and at the beginning, low-score

documents are not pruned, thus not meeting the ”low score document avoid” property.

However as F ′ becomes larger, the cut-off threshold grows faster and the number of low-

score document evaluations becomes smaller. In other words, we expect the low-score

document evaluations to influence the term of effectiveness less than during the previous

forced termination approach. Second, although increasing F ′ can surely increase both

efficiency and the cut-off threshold, the score of the k-th document obviously decreases.

This means that as F ′ increases in size, some high-score documents that should be

ranked in the top-k are skipped, and their absence from the top list leads to a lower

score for the k-th documents. In fact, for some queries, the absent documents even

include top high-score documents containing all the query terms and should be ranked

at the very top of the results if F ′ is large enough. Obviously, the larger F ′ is, the

more likely it is to miss the ”high score documents keeping” property.

Another approach is to adjust the cut-off threshold rate F through linear func-

tion. Applying the binary strategy we discussed before may still be arbitrary and does

not distinguish the very hard queries that are processed much longer than the deadline

with those easier ones that require just a little more time than the constraint. To

113

Figure 7.3: Average Cut-off threshold change during query processing for different
F ′

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Process

C
ut

 o
f T

hr
es

ho
ld

F=1
F=1.5
F=2
F=2.5
F=3
F=5

Figure 7.4: Average of the K-th document score change during query processing for
different F ′

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

Process

S
co

re
 o

f K
−

th
 D

oc
um

en
t

F = 1
F = 1.5
F = 2
F = 2.5
F = 3
F = 5

114

solve this problem, we propose a new method, shown in algorithm 6. The main idea

is to use the difference between the prediction time (PT) and time constraint (TC)

to determine the cut-off threshold F . The larger the gap (PT − TC), the larger F

is, and the more aggressive strategy will be applied to prune more documents. α is a

parameter that connects the time difference and F value. This method may perform

better when query processing times vary. However, it does not overcome all difficulties.

In fact, either adjusting the cut-off threshold binarily or linearly creates a dilemma:

queries that use conservative parameters (i.e., small F ′ or α) suffer a slow start and

miss the ”low score document avoid” property. However, queries that use aggressive

parameters miss high-score documents and miss the ”high score document keeping”

property. As a result, we do not expect these two methods to perform the best in

terms of effectiveness.

Algorithm 6 Linearly selection of cut-off threshold rate based on query processing
time prediction

Function{GetCutoffThresholdRate}{Q,K, TC}
PT = TimePrediction(Q,K)
if PT > TC then

return α ∗ (PT − TC) + 1
else

return 1
end if
EndFunction

7.3.3 Simplifying queries

In the previous chapter, we have shown that query-processing time is related

to query length (i.e., the number of unique query terms). A longer query not only

means evaluating more documents and postings but also indicates more computational

burden in candidate document lookup. Consequently, if we can replace the original

long query with a shorter query, we can greatly reduce the top-k query processing

time. What is more, because a long querys result is usually dominated by several main

high IDF terms, removing the low IDF terms should not significantly influence the

115

Figure 7.5: The architecture of Query simplifying query processing

Query

Time
Predictor

Select
Optimized

Query Length
Shorten
Query

Remain
Terms

Top-k
Query

Process

Intermedia
Results

Reranking
Final

Results

Time
Constraint

result [105–107, 123]. Following this idea, we propose the query simplification method

and the architecture shown in figure 7.5. First, we use the analytical model discussed

in the previous chapter to predict the query processing time at different query lengths

for a given query Q. Based on the prediction results and time constraints, we then

select a subquery to generate an intermediate result through typical dynamic pruning

query processing (e.g., WAND). Finally, we re-rank the intermediate result using the

remaining lower-impact terms to generate the final result.

Algorithm 7 shows the optimized subquery selection process. Q is the original

query, K is the number of returned documents, TC is the time constraint, L(Q) is

the original query length, and Qi is the ith term of the sorted query terms. The

query terms are sorted by their impacts (i.e., the maximum score of their postings).

At the beginning, the subquery is empty, and we then try to add query terms to

it, one by one, from highest-impact term to lowest-impact term, until the subquery’s

predicted processing time exceeds the time constraint. Obviously, the length of the

subquery is closely related to the time constraint. When the time constraint is very

tight, the subquery includes just a few high-impact terms. On the contrary, if the time

constraint is relaxed , the subquery will include more terms; in the most extreme case,

the subquery is identical to the original query.

Algorithm 8 shows how we use the remaining lower-impact query terms to re-

rank the intermediate results, where D and S are the document IDs and scores of the

intermediate results, Dj and Sj are the document ID and score of the jth document,

116

Algorithm 7 Select optimized sub-query based on query processing time prediction

Function{GetSubQuery}{Q,K, TC}
sort(Q) % Sort by maximum score
SQ = Q1

for i = 2 to L(Q) do
PT = TimePrediction({SQ,Qi}, K)
if PT > TC then
BREAK

else
SQ = {SQ,Qi}

end if
end for
return SQ
EndFunction

QR is the set of remaining terms, and L(D) is the number of remaining terms. The

algorithm includes three functions: MoveToDoc(i,Dj) simply moves the pointer of

the ith term’s posting list to a document whose ID is at least Dj; CurDoc(i) simply

returns the current document of the ith term, and Grade(i,Dj) returns the evaluation

score (e.g., BM25) of document Dj from the ith term. First, we sort the candidate

documents based on their document IDs for the convenience of matching the posting

lists of remaining terms. We then go through the documents from the lowest document

ID to the highest. If it also contains a remaining term, we update its score by adding the

additional evaluation score from the remaining term. Finally we sort the documents

based on their scores from the highest to lowest and output the results as the final

results.

By applying the similar strategy as [49,50] to the intermediate results re-ranking

process, we can skip most of the postings without decompressing or evaluating them.

Consequently, the time consumed by re-ranking is quite small and negligible. Hence, if

the time prediction is accurate, the query should finish on time. However, this strategy

is still not as reliable as the forced termination method because accurately predicting

the query processing time is impossible [70,110].

Query simplification greatly reduces the complexity and time for document

117

Algorithm 8 Re-rank intermediate results with remain query terms

Function{ReRankIntermediateResults}{D,S,QR}
sort(D,S) % sort based on document IDs
for i = 1 to L(QR) do

for j = 1 to L(D) do
MoveToDoc(i,Dj)
if CurDoc(i) == Dj then
Sj+ = Grade(i,Dj)

end if
end for

end for
sort(D,S) % sort based on score.
return (D,S)
EndFunction

lookup and evaluation. Hence, it meets the ”fast document evaluating” requirement

very well. However as query simplification applies the original dynamic document

pruning framework to intermediate result generation in a manner similar to that of the

forced termination method, it still suffers from the slow start as the cut-off threshold

increases, and it may somehow miss the ”low score document avoid” property. More-

over, for some queries in which query terms are equally important, cutting off terms

may shift the original meanings and lead the system to miss the high-score relevant

documents, hurting effectiveness and missing the ”high score documents keeping” prop-

erty. Therefore, we don’t expect that query simplification can output good results for

every query, although it might be a good solution for some (e.g., long queries).

7.3.4 Document prioritization

The previous four methods do have weaknesses. They all waste time by evalu-

ating low-score documents, and they are all at risk of losing high-score documents. Is

there any way to evaluate only high-score documents? Following the previous chap-

ters analysis, all candidate documents can be classified into document sets based on

the query terms they contain. Dynamic document pruning techniques (e.g., WAND)

are implemented by gradually disabling the document sets as the score of the k-th

document increases in order from the document set with the lowest maximum score

118

Figure 7.6: The architecture of Document Prioritization query processing

Query

Time Predictor

Document Sets
Selection

Time
Constraint

Enabled
Document Sets

List

Query
Processing

Results

to the document set with the highest maximum score. Generally, the document sets

with high maximum scores are more likely to contain high-score, relevant documents,

while most of the documents in low maximum score documents sets are low-score and

nonrelevant. To reduce query processing times to meet constraints, can we evaluate

only the high score document sets? Based on this hypothesis, we propose the document

prioritization method which borrows some ideas from [111].

Figure 7.6 shows the architecture of the document prioritization method. First

we use the analytical model and the time constraint to select the document sets with

the highest maximum scores. The system then evaluates only the documents in the

given sets and skips all others. By applying a pivoted-based document lookup strategy

similar to WAND, this method can prune documents efficiently. Algorithm 9 shows the

document set selection process, in which DS represents all the documents generated

by given query Q, TC is the time constraint, PT is predicted executing time, and

ES represents the selected document sets. As we know, candidate documents can be

divided into document sets based on the query terms they contain. For example, a

query AB with two query terms will yield three document sets:(1) documents contain-

ing all both A and B, (2) documents containing only A, and (3) documents containing

only B. Obviously, for query Q with L(Q) unique query terms, there will be 2L(Q)

document sets. We present all the document sets as DS. We then sort DS and try

to involve document sets (i.e., d) one after another in the order from those with the

119

highest maximum scores to those with the lowest maximum scores until the prediction

time exceeds (PT) the time constraint (TC). Finally, we output the involved document

sets ES and use them for top-k query processing.

Algorithm 9 Select document sets based on query processing time prediction

Function{GetDocumentSets}{Q, TC}
DS = DocSet(Q) % Get all document sets of Q
sort(DS) % Sort Document Sets by their maximum score
ES = % Initial enabled documents set as empty
for d in DS do
PT = TimePrediction({ES, d})
if PT > TC then
BREAK

else
ES = {ES, d}

end if
end for
return ES
EndFunction

No matter what the time constraint is, the document sets with the highest

maximum score are always selected and evaluated. As a result, the documents with

the highest scores are very likely to be processed. The document prioritization method

has the ”high score document keeping” property. What is more, the document sets

with low scores are likely to be discarded under tight time constraints, and the system

will not spend too much time on low-score document evaluation, thus having the ”low

score document avoid” property as well.

7.3.5 Summary

In the previous discussion, we proposed five methods to help a top-k query

processing system meet certain time constraints. The five methods have their own

advantages and disadvantages. Overall, however, document prioritization best meets

the rules, and we expect it to perform best. It is also worth mentioning that all

methods except forced termination dynamically adjust their query processing strategies

based on efficiency prediction results. Because current efficiency prediction is not

120

accurate [70, 110] the actual query processing time of the four methods is likely to

exceed the deadline and cannot meet the time constraint strictly. To resolve this

problem, we can mix the four methods with forced termination strategy: when they

exceed the deadline, we force terminate the query processing and output the results.

We show more discussion and results in the next section.

7.4 Experiments

In the previous sections, we proposed five different methods to reduce top-k

query processing time to meet certain time constraints. In this section, we test them

with data sets to check whether they meet our hypothesis.

7.4.1 Experiment design

To test how the three efficiency control methods work, we conduct experiments

on the TREC Gov2 collection [2], which consists of 25.2 million web pages from the

.gov domain. We use the queries from the TREC official terabyte track 2004-2006 [37],

denoting them as TB04, TB05, and TB06. Each query set contains 50 queries, and for

each query we return 1000 documents unless stated otherwise.

As in other chapters, all experiments were conducted on a single machine with

dual AMD Lisbon Opteron 4122 2.2GHz processors and 32GB DDR3-1333 memory.

And we used okapi BM25 [82] as the retrieval function to rank documents. The query

processing system is implemented similar to Virtual IR Lab which is described in

previous chapter.

We denote the force termination method as CUT, the binary adjusting cut-off

threshold rate as RATE-B and its linear version as RATE-L, the query simplifying

method as QS, and document prioritization as DP.

7.4.2 Performance at loose time constraints

In some situations, we would like query processing to follow some loose time

constraints. Instead of forcing every query to finish within strict time deadlines, we try

to reduce query-processing time so that most query processing times and the average

121

query processing time fall within certain range. We test the five methods and compare

their performance through three statistics: the effectiveness, which is measured by

MAP(mean average precision), the average query processing time (AT (ms)), and the

percentage of late queries (LR %). Considering that the computational time may have

small drafting during the experiments, we define late queries as the queries that exceed

the constraint by more than 20%. For example, if the deadline is 15ms, any query whose

query processing time is longer than 18ms will be considered as late. Ideally, we expect

a method to produce high effectiveness results with low average query processing time

and few late queries. However, as we discussed in the previous section, effectiveness

and efficiency are usually at odds with each other. Table 7.1, table 7.2, and table 7.3

show the performance comparison between the methods on TB04 , TB05 , and TB06

collections. We tested four time constraints (15ms, 30ms, 50ms, and 100ms) to simulate

situations ranging from very tight to weak time constraints. For each time constraint,

the winner is not obvious because each performance is evaluated by three features.

However, all the samples demonstrate the trend that efficiency usually conflicts with

effectiveness. In particular, if we use a more aggressive parameter, we may expect

higher efficiency and a lower late query rate but more effectiveness loss.

To more easily compare the differences, we can draw a trend curve from the

samples. Figure 7.7 shows a comparison of those methods when the time constraint

is 15ms for the TB04 collection. Similar figures can be drawn for different time con-

straints and collections. In this figure, the x-axis is the average query processing time

in microseconds and the y-axis is effectiveness as measured in MAP@1000 [19,41]. The

points are samples from different methods with different parameters. The curve of

RATE-L is above the curve of RATE-B, which confirms our hypothesis that adjusting

the cut-off threshold rate through linear function may lead to a better tradeoff between

the curves. Although query simplification has a disadvantage (i.e., a high risk of losing

high-score documents), its advantage (a simpler mechanism) helps it to a performance

comparable to that of RATE-B and RATE-L. The point above the two curves, rep-

resenting the document prioritization method, shows that the document prioritization

122

Figure 7.7: The comparison of difference methods when time constraint is 15ms for
TB04 collection

0 20 40 60 80 100 120
0.05

0.1

0.15

0.2

0.25

0.3

Average Query Processing Time (ms)

E
ffe

ct
iv

en
es

s
(M

A
P

)

RATE−B
RATE−L
QS
DP
CUT

method can provide higher effectiveness results at the same level of efficiency. This

advantage results from its better compliance with the three rules. Overall, the results

confirm our hypothesis in the previous section.

7.4.3 Performance at strict time constraints

The purpose of efficiency control is merely to reduce average query processing,

but more importantly, to make sure every query can finish on time to maximize user

satisfaction. Unfortunately, four of the five methods, (RATE-B, RATE-L, QS, and

DP), cannot guarantee that every query processing meets the time constraint. The four

methods all dynamically adjust their strategies based on efficiency prediction. Because

efficiency prediction is not accurate, the methods may apply a ”not aggressive enough”

strategy and exceed the time deadline. The experimental results shown in table 7.1

also confirm the problem that none of the four methods has zero late queries under

the strict time constraints (e.g., 15ms). The fifth method, CUT, can guarantee query

processing finish on time; however it hurt effectiveness a log. To solve this problem,

we combine CUT with aforementioned four methods. Specifically, we terminate their

query processing when they hit the deadline. Thus, every query can be finished in time,

123

T
a
b
le

7
.1

:
P

er
fo

rm
an

ce
C

om
p
ar

is
on

on
T

B
04

co
ll
ec

ti
on

in
lo

os
e

ti
m

e
co

n
st

ra
in

ts
.

M
et

h
o
d
s

ar
e

ev
al

u
at

ed
b
y

M
A

P
(M

ea
n

A
ve

ra
ge

P
re

ci
si

on
),

A
T

(A
ve

ra
ge

P
ro

ce
ss

in
g

T
im

e:
m

s)
an

d
L

R
(L

at
e

R
at

e
%

)
D
ea
d
li
n
e

=
15
m
s

D
ea
d
li
n
e

=
30
m
s

D
ea
d
li
n
e

=
50
m
s

D
ea
d
li
n
e

=
10

0m
s

D
ea
d
li
n
e

=
20

0m
s

M
A

P
A

T
L

R
M

A
P

A
T

L
R

M
A

P
A

T
L

R
M

A
P

A
T

L
R

M
A

P
A

T
L

R
T

er
m

in
at

e
Q

u
er

y
P

ro
ce

ss
in

g
w

he
n

it
hi

ts
th

e
de

ad
li

n
e

C
U

T
0.

10
0

14
.7

0%
0.

15
1

27
.6

0%
0.

20
0

41
.2

0%
0.

24
0

64
.4

0%
0.

24
6

87
.8

0%
A

dj
u

st
cu

t-
off

th
re

sh
ol

d
ra

te
th

ro
u

gh
bi

n
ar

y
de

ci
si

on
F

’=
1

0.
25

0
10

2.
4

86
%

0.
25

0
10

0.
7

66
%

0.
25

0
10

1.
0

54
%

0.
25

0
10

0.
5

26
%

0.
25

0
10

0.
3

12
%

F
’=

1.
5

0.
19

9
32

.4
46

%
0.

20
7

34
.4

26
%

0.
20

7
35

.2
18

%
0.

23
8

53
.1

8%
0.

24
7

71
.1

2%
F

’=
2

0.
15

9
11

.5
18

%
0.

18
0

14
.4

0%
0.

18
1

15
.0

0%
0.

22
2

35
.9

2%
0.

24
0

58
.6

2%
F

’=
2.

5
0.

13
7

7.
8

2%
0.

16
4

11
.0

0%
0.

16
4

11
.9

0%
0.

21
4

33
.9

2%
0.

23
9

58
.6

2%
F

’=
3

0.
12

2
6.

6
2%

0.
15

5
9.

9
0%

0.
15

5
10

.6
0%

0.
21

0
33

.7
2%

0.
23

9
57

.2
2%

F
’=

5
0.

09
2

5.
0

2%
0.

13
5

8.
4

0%
0.

13
5

9.
2

0%
0.

20
4

33
.1

2%
0.

23
9

58
.1

2%
F

’=
10

0.
08

1
4.

4
2%

0.
13

4
7.

9
0%

0.
13

4
8.

9
0%

0.
20

1
32

.9
2%

0.
23

9
56

.9
2%

A
dj

u
st

cu
t-

off
th

re
sh

ol
d

ra
te

th
ro

u
gh

li
n

ea
r

fu
n

ct
io

n
α

=
0.

00
2

0.
24

4
48

.1
82

%
0.

24
5

50
.5

54
%

0.
24

7
55

.1
42

%
0.

25
0

66
.2

16
%

0.
25

1
85

.7
6%

α
=

0.
00

5
0.

21
6

24
.8

56
%

0.
22

4
27

.4
26

%
0.

22
7

33
.3

16
%

0.
23

7
47

.5
2%

0.
24

9
70

.2
4%

α
=

0.
00

8
0.

19
5

18
.0

46
%

0.
20

8
21

.7
20

%
0.

21
9

26
.9

4%
0.

23
6

41
.0

2%
0.

24
9

64
.8

2%
α

=
0.

01
0.

18
3

15
.0

34
%

0.
19

7
18

.7
14

%
0.

21
6

24
.4

2%
0.

22
8

37
.9

2%
0.

24
6

65
.0

2%
α

=
0.

01
5

0.
16

9
11

.6
20

%
0.

17
6

14
.6

0%
0.

20
2

20
.7

0%
0.

22
4

36
.4

2%
0.

24
2

61
.3

2%
α

=
0.

02
0.

16
0

10
.1

12
%

0.
16

6
12

.0
0%

0.
18

9
18

.5
0%

0.
22

3
36

.3
2%

0.
24

1
60

.0
2%

α
=

0.
03

0.
15

0
8.

7
10

%
0.

15
5

10
.1

0%
0.

17
0

16
.2

0%
0.

22
2

34
.9

2%
0.

23
9

58
.9

2%
α

=
0.

05
0.

14
0

7.
5

6%
0.

14
4

8.
9

0%
0.

15
8

13
.4

0%
0.

21
8

34
.2

2%
0.

23
9

57
.4

2%
α

=
0.

1
0.

13
4

6.
5

4%
0.

13
4

8.
0

0%
0.

14
2

10
.1

0%
0.

21
5

33
.2

2%
0.

23
9

56
.6

2%
Q

u
er

y
A

pp
ro

xi
m

at
io

n
Q

S
0.

18
1

37
.9

46
%

0.
22

4
44

.1
34

%
0.

22
7

46
.5

18
%

0.
24

5
60

.5
8%

0.
25

0
78

.9
2%

D
oc

u
m

en
t

P
ri

or
it

iz
at

io
n

D
P

0.
24

6
48

.3
54

%
0.

24
6

50
.1

40
%

0.
25

0
51

.1
28

%
0.

24
7

62
.8

14
%

0.
24

7
76

.3
2%

124

T
a
b
le

7
.2

:
P

er
fo

rm
an

ce
fo

r
d
iff

er
en

t
effi

ci
en

cy
co

n
tr

ol
m

et
h
o
d
s

on
T

B
05

co
ll
ec

ti
on

D
ea
d
li
n
e

=
15
m
s

D
ea
d
li
n
e

=
30
m
s

D
ea
d
li
n
e

=
50
m
s

D
ea
d
li
n
e

=
10

0m
s

D
ea
d
li
n
e

=
20

0m
s

M
A

P
A

T
L

R
M

A
P

A
T

L
R

M
A

P
A

T
L

R
M

A
P

A
T

L
R

M
A

P
A

T
L

R
T

er
m

in
at

e
Q

u
er

y
P

ro
ce

ss
in

g
w

he
n

it
hi

ts
th

e
de

ad
li

n
e

C
U

T
0.

09
3

14
.8

0%
0.

16
3

28
.1

0%
0.

20
8

42
.9

0%
0.

29
1

67
.0

0%
0.

31
2

81
.7

0%
A

dj
u

st
cu

t-
off

th
re

sh
ol

d
ra

te
th

ro
u

gh
bi

n
ar

y
de

ci
si

on
F

’=
1

0.
32

4
81

.1
88

%
0.

32
4

81
.5

70
%

0.
32

4
81

.4
50

%
0.

32
4

81
.1

18
%

0.
32

4
81

.5
4%

F
’=

1.
5

0.
27

5
21

.7
44

%
0.

28
0

24
.6

24
%

0.
29

7
29

.1
8%

0.
30

9
41

.3
2%

0.
32

2
62

.6
0%

F
’=

2
0.

21
4

10
.2

12
%

0.
23

3
13

.6
4%

0.
25

0
19

.2
2%

0.
28

6
35

.6
2%

0.
31

6
61

.0
0%

F
’=

2.
5

0.
17

2
7.

3
6%

0.
19

3
11

.0
4%

0.
22

2
17

.0
2%

0.
27

4
34

.5
2%

0.
31

1
61

.0
0%

F
’=

3
0.

15
8

6.
3

4%
0.

18
1

10
.2

4%
0.

21
2

16
.4

2%
0.

27
0

34
.3

2%
0.

31
0

60
.7

0%
F

’=
5

0.
13

6
4.

8
2%

0.
16

4
8.

8
4%

0.
19

6
15

.2
2%

0.
26

3
33

.3
2%

0.
30

7
60

.4
0%

F
’=

10
0.

11
7

4.
1

2%
0.

14
8

8.
3

4%
0.

18
5

14
.8

2%
0.

25
5

33
.2

2%
0.

30
6

60
.6

0%
A

dj
u

st
cu

t-
off

th
re

sh
ol

d
ra

te
th

ro
u

gh
li

n
ea

r
fu

n
ct

io
n

α
=

0.
00

2
0.

31
6

40
.9

78
%

0.
31

9
47

.7
60

%
0.

32
1

51
.7

36
%

0.
32

2
55

.4
8%

0.
32

3
65

.6
0%

α
=

0.
00

5
0.

28
3

26
.3

64
%

0.
29

3
29

.9
36

%
0.

30
0

36
.0

16
%

0.
31

2
49

.3
4%

0.
31

9
63

.8
0%

α
=

0.
00

8
0.

26
3

19
.2

50
%

0.
27

3
23

.6
18

%
0.

28
1

30
.4

8%
0.

30
3

42
.1

2%
0.

31
5

63
.4

0%
α

=
0.

01
0.

24
9

16
.7

40
%

0.
26

5
21

.1
14

%
0.

27
3

27
.9

6%
0.

29
5

40
.8

2%
0.

31
5

63
.0

0%
α

=
0.

01
5

0.
22

0
12

.3
26

%
0.

24
3

17
.2

8%
0.

26
3

23
.9

2%
0.

28
9

39
.2

2%
0.

31
4

62
.7

0%
α

=
0.

02
0.

20
4

10
.5

18
%

0.
22

9
15

.0
4%

0.
25

1
21

.8
2%

0.
28

4
38

.2
2%

0.
31

4
61

.6
0%

α
=

0.
03

0.
19

1
8.

7
14

%
0.

20
2

12
.7

4%
0.

23
7

19
.0

2%
0.

27
7

36
.4

2%
0.

31
3

61
.5

0%
α

=
0.

05
0.

16
2

7.
1

8%
0.

18
4

11
.0

4%
0.

21
6

17
.1

2%
0.

27
0

34
.5

2%
0.

31
4

61
.9

0%
α

=
0.

1
0.

14
1

5.
8

2%
0.

14
9

9.
1

4%
0.

19
2

15
.8

2%
0.

25
2

33
.6

2%
0.

30
3

61
.1

0%
Q

u
er

y
A

pp
ro

xi
m

at
io

n
Q

S
0.

24
2

30
.9

48
%

0.
28

9
37

.3
30

%
0.

31
0

41
.7

20
%

0.
31

6
51

.7
4%

0.
32

2
68

.1
0%

D
oc

u
m

en
t

P
ri

or
it

iz
at

io
n

D
P

0.
30

8
40

.8
58

%
0.

30
8

43
.3

40
%

0.
30

9
46

.4
22

%
0.

32
2

57
.6

10
%

0.
32

3
67

.1
2%

125

and the quality of a method is evaluated only by the effectiveness of force-terminated

query processing results.

The difficulty in this mixture of method is that, if a method is too aggressive and

finishes query processing far before the deadline, it may naturally miss many relevant

documents. On the other hand, if a method is not aggressive enough and requires

time beyond the deadline, its effectiveness may still suffer because large numbers of

documents at the tails of posting lists are not evaluated. A good method is one that

selects proper strategy and collects as many relevant documents as possible.

Table 7.4 compares the effectiveness of different methods for strict time con-

straints. Because they all meet the efficiency requirement, we compare only their

effectiveness, which is measured by MAP@1000. For all collections, forcing termi-

nation alone CUT performs the worst. We tuned the parameters of RATE-L and

RATE-B (e.g., F and α) and report the best performance in the table. Although

the optimized parameters are used, they still don’t show the best performance. Com-

pared with adjusting the cut-off threshold, query simplification QS performs better in

TB04 and TB05 collections, while document prioritization shows the best results on

all collections.

To explain the results, we measure the three statistics for each method during

query processing: total number of evaluated documents, average BM25 score of evalu-

ated documents, and processing percentage when it is force terminated. We estimate

processing percentage by dividing the number of current processed and skipped post-

ings by total number of postings. Table 7.5 shows the average of the three statistics

when we apply the strict time constraint at 15 ms. First, we look only at CUT, the

force termination approach. It proceeds slowly and only finishes under 20% of the

process when timed out. Thus, we expect more than 80% of high-score documents

to be missed. Moreover, the average score of the evaluated documents is quite low,

suggesting that most of the evaluated documents are low-score and nonrelevant. These

two observations do indicate that force termination misses the ”high score document

keeping” and ”low score document avoid” properties. Although forced termination

126

alone does evaluate more documents than other methods because fewer documents are

skipped, it still outputs the worst effective results. Compared with forced termination

alone, RATE-L + CUT and RATE-B + CUT show higher average document scores

and finish percentages because the higher cut-off threshold helps avoid low document

evaluations. Consequently, the two methods perform better together than forced ter-

mination alone CUT.

Document prioritization DP + CUT demonstrates even more advantages in

these statistics. First, the average evaluation score is significantly higher than that

produced by other methods, supporting our hypothesis that document prioritization

has a strong ability to avoid low-score documents and keep high-score documents.

Moreover, document prioritization also shows a higher average process percentage, and

fewer documents at the tails are cut off during forced termination. These advantages

let document prioritization process more high-score documents under the strict time

constraint. Consequently, although document prioritization evaluates few documents

on average because it results in more skipping, it outputs significantly better results

compared with the other four methods under strict time constraints.

Compared with the previous four methods, query simplification QS is very

different. It may reduce the number of process query terms in exchange for increased

speed. Table 7.5 shows that QS can usually evaluate more documents in the given

time compared with other methods. QS runs fast, which greatly reduces the cost of

forced termination. The average document score is just a little lower than RATE-B

+ CUT and RATE-L + CUT. Considering that it has few terms, this number still

indicates the good quality of its evaluated documents. As a result, it performs better

than Rate-B and Rate-L on TB04 and TB05 collections. However, for queries with

phrases, deleting query terms may change the meaning of original queries and lead

to poor effectiveness. As a result, in TB06 it performs more poorly than the baseline

methods. Despite QS, we observe that this method has some potential for long queries.

The comparison for long queries is reported as Table 7.6. Because the number of long

queries in the three collections is small, we merged all long queries (i.e. query length

127

≥ 5) in TB04, TB05, and TB06 and report their average. It is obvious that CUT,

RATE-B + CUT, and RATE-L + CUT perform much worse than DP + CUT and QS

+ CUT, especially when the time constraint is very tight. Between the two winners,

QS + CUT performs a little better than DP + CUT because of its strong ability to

speed up query processing. We expect the method to perform better if there are more

longer queries.

To make our claim more convincing, we also test the five methods on a larger

collection (i.e. TREC clueweb09 category B collection 1) which contains 50 millions

documents and its size is almost as twice large as the Gov2 collection which we tested

before. As more documents need to be processed, the expected average query process-

ing time can be longer and we expect the influence of time constraints will become

more obvious. We test the five methods through the official 200 queries in TREC web

track 2009 to 2012. We force each methods to stop at different time constraints and

compare their performance by using the results effectiveness as MAP (Mean Average

Precision) 1000. The results are summarized in table 7.7. Comparing to the similar

comparison in table 7.4, the advantages of document prioritization (DP) and query

simplification (QS) become more obvious. The large effectiveness improvement is not

only shown in very tight time constraints (e.g. 15ms and 30ms), but also in loosen

time constraints such as 50ms, 100ms and 200ms as well. This observation also con-

firms our hypnosis that forcing termination at tight time constraints may bring more

influence in effectiveness for queries who requires longer query processing time and in

this situation it is more important to select a wise effectiveness and efficiency trade off

method. Since commercial search engines may use much larger data collections and

require longer query processing time, we expect our analysis and proposed methods

can make better impacts in real applications.

1 http://http://www.lemurproject.org/clueweb09.php/

128

7.5 Conclusion

Only reducing average query processing time is not enough. To maximize user

satisfaction, an IR system should also try to make sure that every query’s processing

time meets certain time constraints. Unfortunately, previous work did not pay enough

attention to the problem. To solve it, we provide three rules for selecting good top-k

query processing methods in a time-constrained environment. In addition, we pro-

posed five methods; the experimental results confirm our theoretical analysis, and the

method that follows the rules performs better than other methods under the same time

constraints.

129

T
a
b
le

7
.3

:
P

er
fo

rm
an

ce
fo

r
d
iff

er
en

t
effi

ci
en

cy
co

n
tr

ol
m

et
h
o
d
s

on
T

B
06

co
ll
ec

ti
on

D
ea
d
li
n
e

=
15
m
s

D
ea
d
li
n
e

=
30
m
s

D
ea
d
li
n
e

=
50
m
s

D
ea
d
li
n
e

=
10

0m
s

D
ea
d
li
n
e

=
20

0m
s

M
A

P
A

T
L

R
M

A
P

A
T

L
R

M
A

P
A

T
L

R
M

A
P

A
T

L
R

M
A

P
A

T
L

R
T

er
m

in
at

e
Q

u
er

y
P

ro
ce

ss
in

g
w

he
n

it
hi

ts
th

e
de

ad
li

n
e

C
U

T
0.

08
6

14
.5

0%
0.

16
5

28
.3

0%
0.

22
5

42
.4

0%
0.

27
0

59
.6

0%
0.

28
3

70
.9

0%
A

dj
u

st
cu

t-
off

th
re

sh
ol

d
ra

te
th

ro
u

gh
bi

n
ar

y
de

ci
si

on
F

’=
1

0.
28

5
63

.7
92

%
0.

28
5

63
.8

64
%

0.
28

5
63

.8
36

%
0.

28
5

63
.8

14
%

0.
28

5
63

.9
2%

F
’=

1.
5

0.
26

4
20

.9
44

%
0.

26
7

25
.0

22
%

0.
27

1
29

.1
6%

0.
27

9
42

.3
4%

0.
28

2
55

.5
0%

F
’=

2
0.

21
8

10
.4

18
%

0.
22

1
15

.3
6%

0.
23

2
20

.8
2%

0.
26

7
37

.5
4%

0.
27

9
53

.9
0%

F
’=

2.
5

0.
17

1
7.

1
2%

0.
18

0
12

.4
4%

0.
19

8
18

.6
2%

0.
25

7
36

.6
4%

0.
27

8
53

.5
0%

F
’=

3
0.

15
3

6.
0

2%
0.

16
6

11
.5

6%
0.

18
6

17
.7

2%
0.

25
5

36
.1

4%
0.

27
8

53
.5

0%
F

’=
5

0.
11

3
4.

4
2%

0.
14

0
10

.3
4%

0.
16

5
16

.7
2%

0.
25

2
35

.7
4%

0.
27

7
53

.4
0%

F
’=

10
0.

09
3

3.
7

2%
0.

13
7

9.
8

6%
0.

16
3

16
.3

2%
0.

24
5

35
.3

4%
0.

27
7

53
.4

0%
A

dj
u

st
cu

t-
off

th
re

sh
ol

d
ra

te
th

ro
u

gh
li

n
ea

r
fu

n
ct

io
n

α
=

0.
00

2
0.

27
9

39
.1

88
%

0.
27

9
41

.4
54

%
0.

27
9

44
.4

22
%

0.
28

1
50

.6
6%

0.
28

5
62

.9
0%

α
=

0.
00

5
0.

26
5

26
.0

72
%

0.
26

7
29

.2
30

%
0.

27
3

34
.3

8%
0.

27
8

44
.3

6%
0.

28
2

58
.8

0%
α

=
0.

00
8

0.
25

2
21

.7
62

%
0.

25
7

25
.1

20
%

0.
26

5
30

.5
4%

0.
27

3
40

.6
4%

0.
28

2
57

.9
0%

α
=

0.
01

0.
24

5
19

.3
54

%
0.

25
0

23
.5

16
%

0.
25

8
28

.8
2%

0.
27

1
39

.8
4%

0.
28

2
57

.6
0%

α
=

0.
01

5
0.

23
3

15
.2

34
%

0.
23

9
21

.2
12

%
0.

24
9

26
.5

2%
0.

26
8

38
.9

4%
0.

28
2

56
.8

0%
α

=
0.

02
0.

20
3

12
.9

26
%

0.
22

9
18

.4
12

%
0.

24
0

24
.6

2%
0.

26
0

38
.2

4%
0.

28
2

56
.4

0%
α

=
0.

03
0.

18
1

10
.0

18
%

0.
20

4
16

.2
10

%
0.

22
9

21
.9

2%
0.

25
7

37
.5

4%
0.

28
1

55
.8

0%
α

=
0.

05
0.

15
7

8.
0

12
%

0.
17

2
13

.3
8%

0.
20

4
19

.7
2%

0.
25

3
36

.5
4%

0.
28

1
55

.3
0%

α
=

0.
1

0.
14

2
6.

2
4%

0.
15

9
11

.2
6%

0.
18

8
18

.5
2%

0.
24

7
35

.8
4%

0.
27

9
53

.7
0%

Q
u

er
y

A
pp

ro
xi

m
at

io
n

Q
S

0.
19

9
25

.8
42

%
0.

25
0

31
.8

24
%

0.
27

1
37

.0
10

%
0.

28
1

50
.5

8%
0.

28
3

60
.1

0%
D

oc
u

m
en

t
P

ri
or

it
iz

at
io

n
D

P
0.

28
3

28
.1

52
%

0.
28

4
32

.8
24

%
0.

28
6

36
.7

10
%

0.
28

5
48

.7
8%

0.
28

5
59

.5
0%

130

Table 7.4: Performance Comparison on strict time constraints

15ms 30ms 50ms 100ms 200ms no constraint

TB04
CUT 0.100 0.151 0.200 0.240 0.246 0.250

Rate-B + CUT 0.143 0.192 0.202 0.232 0.249 0.250
Rate-L + CUT 0.148 0.193 0.207 0.231 0.250 0.250

QS + CUT 0.161 0.209 0.216 0.243 0.246 0.250
DP + CUT 0.195 0.223 0.239 0.241 0.249 0.250

TB05
CUT 0.093 0.163 0.208 0.291 0.312 0.324

Rate-B + CUT 0.186 0.244 0.269 0.306 0.319 0.324
Rate-L + CUT 0.188 0.247 0.273 0.308 0.318 0.324

QS + CUT 0.196 0.252 0.273 0.307 0.319 0.324
DP + CUT 0.197 0.261 0.270 0.313 0.319 0.324

TB06
CUT 0.086 0.165 0.225 0.270 0.283 0.285

Rate-B + CUT 0.191 0.229 0.264 0.277 0.282 0.285
Rate-L + CUT 0.197 0.234 0.259 0.274 0.282 0.285

QS + CUT 0.179 0.223 0.260 0.277 0.283 0.285
DP + CUT 0.233 0.250 0.276 0.279 0.285 0.285

Table 7.5: Statistic Comparison when process is forced terminated at 15 ms

of Evals Avg. score Process

TB04
CUT 29,818 5.89 18%

Rate-B + CUT 13,212 7.62 45%
Rate-L + CUT 13,489 7.73 49%

QS + CUT 30,349 6.59 59%
DP + CUT 7,257 11.9 59%

TB05
CUT 33,227 5.60 18%

Rate-B + CUT 13,313 7.31 53%
Rate-L + CUT 13,680 7.31 55%

QS + CUT 28,739 7.07 64%
DP + CUT 10,374 11.0 62%

TB06
CUT 32,033 5.89 16%

Rate-B + CUT 13,994 7.70 54%
Rate-L + CUT 15,436 7.69 53%

QS + CUT 33,876 6.83 68%
DP + CUT 7,149 12.1 72%

131

Table 7.6: Performance Comparison on strict time constraints for long queries (≥ 5)
15ms 30ms 50ms 100ms 200ms

CUT 0.012 0.037 0.091 0.124 0.151
RATE-B + CUT 0.030 0.053 0.066 0.077 0.125
RATE-L + CUT 0.026 0.042 0.053 0.076 0.137

DP + CUT 0.070 0.118 0.121 0.130 0.151
QS + CUT 0.072 0.111 0.146 0.142 0.145

Table 7.7: Performance Comparison on strict time constraints on larger collection

15ms 30ms 50ms 100ms 200ms 500ms no constraint
CUT 0.049 0.084 0.117 0.143 0.173 0.185 0.188

RATE-B + CUT 0.075 0.105 0.123 0.142 0.154 0.182 0.188
RATE-L + CUT 0.074 0.098 0.116 0.132 0.152 0.181 0.188

DP + CUT 0.098 0.130 0.149 0.166 0.178 0.185 0.188
QS + CUT 0.093 0.117 0.131 0.151 0.172 0.183 0.188

132

Chapter 8

CONCLUSION AND FUTURE WORK

Comparing to effectiveness, efficiency and usability are also important features

of IR systems. If an IR system cannot satisfy certain efficiency requirements, users

may lose patience and switch to another IR system. What is more, efficiency is also

important for server health and energy saving. Maintaining reasonable query processing

efficiency is one of the necessary requirements of running a commercial information

retrieval system. Although a lot of efforts have been done to improve the speed of

query processing, they do not solve the whole puzzle. In some situation such as withing

a large number of returned documents, long queries, the query processing speed can

be still slow and better methods are needed.

In addition to query processing efficiency, we also study another kind of IR effi-

ciency: how fast users may implement different retrieval functions. Although existing

IR toolkits, such as Indri [3] and Lucene [7], provide users the possibility to implement

retrieval methods through their API, they are complicated and may not be suitable for

education and research.

To solve these critical problems, first we introduce a novel toolkit called Virtual

IR Lab. Virtual IR Lab applies a simple, but efficient and flexible architecture. By

applying dynamic code generation and multiple optimization, it can help users to

initiate various retrieval functions in a convenient and efficient way. Its friendly user

interface and interesting features, such as a leading board, make it a good fit for both

teaching and research. In addition to this, Virtual IR Lab also performs much faster

than existed IR toolkits such as Indri [3] in the part of query processing. It is a good

example that how we can improve query processing efficiency by applying simple but

optimized architectures.

133

Parallel to optimizing in implementation, we also try to improve query process-

ing efficiency by designing better query processing strategies. Focused on DAAT [50,97]

query processing, we study why queries are slow. Specifically, we identified some im-

portant features and built an analytical model to monitor how these features can affect

top-k query-processing time. The model proved to be more accurate and more salable

than previous models.

Inspired by this novel model, we study some important problems of IR efficiency.

First of all, existing dynamic pruning methods such as BMW and live block can reduce

query processing greatly when k (i.e., number of returned documents) is small. How-

ever as k becomes large, such dynamic pruning methods are less efficient. To solve this

problem, we designed a new document-prioritization method. The novel method pri-

oritizes documents before grading them. By applying an efficient, decision-tree-based

mechanism, the method can greatly reduce top-k query processing time with minimal

effectiveness loss and it can be more than two times faster than strong baseline when

k is large.

Second, query processing time increases exponentially as the query becomes

longer. This weakness hinders the usage of some advanced techniques, such as pseudo-

relevance feedback. To solve this problem, we proposed a novel incremental approach in

which we used the results of an initial round of pseudo-relevance feedback to leverage

the query processing of the second-round retrieval. By using the new method, we

reduced the query-processing time of SAAT [18] mode with pseudo-relevance feedback

by 2-4 times.

Designing this method is not enough. In order to meet efficiency requirements,

we explored methods that sacrifice effectiveness in exchange for even shorter query-

processing times. We provide three theorems to identify good methods, which can

satisfy efficiency with small effectiveness loss. We then propose five different time-

constrained top-k query-processing methods and use the theorems to analyze them.

The experimental results match the analysis, and the two time-constrained methods,

”document prioritization” and ”query simplification,” are the winners. We can use the

134

two methods to further improve efficiency with minimized effectiveness loss.

There are several interesting directions for future work: First, we can develop

methods to improve efficiency without or with ignorable effectiveness loss for TAAT,

DAAT and SAAT query processing. There are multiple direction we can do for it. One

way is to follow the idea of dynamic pruning to skip more low score documents. In

order to do so, we need additional features to better distinguish high score documents

from low score documents. Another way is trying to reduce the costs of document

evaluating. The Tie-breaking method [102,109] shows a comparable effectiveness with

simplified retrieval strategies and we may be able to reduce query processing time

by applying these methods. In addition to improve query processing speed in single

machine, we can borrow the power of parallel computing to improve query processing

speed as well.

Second, we can explore methods for time-constrained query processing those

can further reduce effectiveness loss. In particular, we can try methods in SAAT

query processing. Since SAAT query processing is based on impact-sorted indices, the

most impacted postings are usually processed first. Therefore, we expect SAAT query

processing methods can perform well in time constrained environment.

Third, we can extend the features and functionality of the Virtual IR Lab. One

important thing is to improve its ability of building indices from large collections.

We may achieve this goal by optimizing low level I/O code or by applying parallel

computing framework such as Hadoop [6]. In addition to that, we may consider add

more features for Virtual IR Lab (e.g. term proximity, average term frequency in each

documents and etc.) and it will help it support even more retrieval functions. Finally,

we can incorporate distributed computing techniques to speed up query processing of

Virtual IR Lab as well.

135

BIBLIOGRAPHY

[1] The clueweb09 dataset. http://lemurproject.org/clueweb09.php/.

[2] Gov2 test collection. http://ir.dcs.gla.ac.uk/test_collections/

gov2-summary.htm.

[3] Indri - language modeling meets inference networks. http://www.

lemurproject.org/indri/.

[4] Ivory: A hadoop toolkit for web-scale information retrieval. http://lintool.

github.io/Ivory/.

[5] Trec 2004 robust track guidelines. http://trec.nist.gov/data/robust/04.

guidelines.html.

[6] Welcome to apacha hadoop. https://hadoop.apache.org/.

[7] Welcome to apache lucene. https://lucene.apache.org/.

[8] Welcome to the terrier ir platform. http://terrier.org/.

[9] James Allan. Relevance feedback with too much data. In Proceedings of the 18th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’95, pages 337–343, 1995.

[10] Ismail S. Altingovde, Rifat Ozcan, and Özgür Ulusoy. Static index pruning in web
search engines: Combining term and document popularities with query views.
ACM Trans. Inf. Syst., 30(1).

[11] Gianni Amati and Cornelis Joost Van Rijsbergen. Probabilistic models of in-
formation retrieval based on measuring the divergence from randomness. ACM
Trans. Inf. Syst., 20(4), October 2002.

[12] V. N. Anh and A. Moffat. Compressed inverted files with reduced decoding
overheads. In Proceedings of SIGIR’98, 1998.

[13] Vo Ngoc Anh, Owen de Kretser, and Alistair Moffat. Vector-space ranking with
effective early termination. In Proceedings of SIGIR’01, 2001.

[14] Vo Ngoc Anh and Alistair Moffat. Impact transformation: efffective and efficient
web retrieval. In Proceedings of SIGIR’02, 2002.

136

http://lemurproject.org/clueweb09.php/
http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm
http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm
http://www.lemurproject.org/indri/
http://www.lemurproject.org/indri/
http://lintool.github.io/Ivory/
http://lintool.github.io/Ivory/
http://trec.nist.gov/data/robust/04.guidelines.html
http://trec.nist.gov/data/robust/04.guidelines.html
https://hadoop.apache.org/
https://lucene.apache.org/
http://terrier.org/

[15] Vo Ngoc Anh and Alistair Moffat. Index compression using fixed binary code-
words. In Proceedings of the 15th Australasian Database Conference - Volume
27, ADC ’04, 2004.

[16] Vo Ngoc Anh and Alistair Moffat. Inverted index compression using word-aligned
binary codes. Inf. Retr., 8(1), January 2005.

[17] Vo Ngoc Anh and Alistair Moffat. Simplified similarity scoring using term ranks.
In Proceedings of SIGIR’05, 2005.

[18] Vo Ngoc Anh and Alistair Moffat. Pruned query evaluation using pre-computed
impacts. In Proceedings of SIGIR’06, 2006.

[19] Jaime Arguello, Fernando Diaz, Jamie Callan, and Ben Carterette. A methodol-
ogy for evaluating aggregated search results. In Advances in information retrieval,
pages 141–152. Springer, 2011.

[20] Nima Asadi and Jimmy Lin. Fast candidate generation for two-phase document
ranking: Postings list intersection with bloom filters. In Proceedings of CIKM’12,
2012.

[21] Nima Asadi and Jimmy Lin. Effectiveness/efficiency tradeoffs for candidate gen-
eration in multi-stage retrieval architectures. In Proceedings of SIGIR’13, 2013.

[22] Ricardo Baeza-yates, A. Gionis, F. Junqueira, V. Murdock, V. Plachouras, and
F. Silverstri. The impact of caching on search engines. In Proceedings of SI-
GIR’07, 2007.

[23] Luiz Andre Barroso, Jeffrey Dean, and Urs Holzle. Web search for a planet: the
google cluster architecture. IEEE Micro, 23(2):22–28, 2003.

[24] Holger Bast, Debapriyo Majumdar, Ralf Schenkel, Martin Theobald, and Ger-
hard Weikum. Io-top-k: Index-access optimized top-k query processing. In Pro-
ceedings of the 32Nd International Conference on Very Large Data Bases, VLDB
’06, 2006.

[25] Bodo Billerbeck and Justin Zobel. Efficient query expansion with auxiliary data
structures. Information Systems, 31(7):573–584, 2006.

[26] Carolina Bonacic, Carlos Garcia, Mauricio Marin, Manuel Prieto-Matias, and
Francisco Tirado. Building efficient multi-threaded search nodes. In Proceedings
of CIKM’10, 2010.

[27] Peter Brass. Advanced data structures. Cambridge University Press Cambridge,
2008.

[28] Eric A. Brewer. Lessons from giant-scale services. IEEE Internet Computing,
5(4):46–55, 2003.

137

[29] Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Zien.
Efficient query evaluation using a two-level retrieval process. In Proceedings of
CIKM’03, 2003.

[30] Andrei Z. Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Zien.
Efficient query evaluation using a two-level retrieval process. In Proceedings of the
Twelfth International Conference on Information and Knowledge Management,
CIKM ’03, pages 426–434, 2003.

[31] Eric W. Brown, James P. Callan, and W. Bruce Croft. Fast incremental index-
ing for full-text information retrieval. In Proceedings of the 20th International
Conference on Very Large Data Bases, VLDB ’94, 1994.

[32] Jake D. Brutlag, Hilary Hutchinson, and Maria Stone. User preference and search
engine latency. In JSM Proceedings, Qualtiy and Productivity Research Section.,
2008.

[33] C. Buckley. Automatic query expansion using SMART: Trec-3. In D. Harman,
editor, Overview of the Third Text Retrieval Conference (TREC-3), pages 69–80,
1995. NIST Special Publication 500-225.

[34] Chris Buckley and Stephen Robertson. Relevance feedback track overview: Trec
2008. In Proceedings of TREC’08, 2008.

[35] C. Burckley and A. Lewit. Optimizations of inverted vector searches. In Pro-
ceedings of SIGIR’85, 1985.

[36] Michael Busch, Krishna Gade, Brian Larson, Patrick Lok, Samuel Luckenbill,
and Jimmy Lin. Earlybird: Real-time search at twitter. In Proceedings of the
2012 IEEE 28th International Conference on Data Engineering, ICDE ’12, 2012.

[37] S. Buttcher and C. L. A. Clarke. The trec 2006 terabyte track. In Proceedings
of TREC’06, 2006.

[38] Stefan Büttcher and Charles L. A. Clarke. A document-centric approach to
static index pruning in text retrieval systems. In Proceedings of the 15th ACM
International Conference on Information and Knowledge Management, CIKM
’06, 2006.

[39] Guihong Cao, Jian-Yun Nie, Jianfeng Gao, and Stephen Robertson. Selecting
good expansion terms for pseudo-relevance feedback. In Proceedings of SIGIR’08,
2008.

[40] David Carmel, Doron Cohen, Ronald Fagin, Eitan Farchi, Michael Herscovici,
Yoelle S. Maarek, and Aya Soffer. Static index pruning for information retrieval
systems. In Proceedings of the 24th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’01, 2001.

138

[41] Ben Carterette. System effectiveness, user models, and user utility: a conceptual
framework for investigation. In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval, pages 903–
912. ACM, 2011.

[42] Marc-Allen Cartright, James Allan, Victor Lavrenko, and Andrew McGregor.
Fast query expansion using approximations of relevance models. In Proceedings
of the CIKM’10, 2010.

[43] Kaushik Chakrabarti, Surajit Chaudhuri, and Venkatesh Ganti. Interval-based
pruning for top-k processing over comparessed lists. In Proceedings of ICDE’11,
2011.

[44] Junghoo Cho and Sourashis Roy. Impact of search engines on page popularity.
In Proceedings of the 13th international conference on World Wide Web, pages
20–29, 2004.

[45] John Cocke and Ken Kennedy. An algorithm for reduction of operator strength.
Communications of the ACM, 20(11):850–856, 1977.

[46] Kevyn Collins-Thompson and Jamie Callan. Estimation and use of uncertainty
in pseudo-relevance feedback. In Proceedings of SIGIR’07, 2007.

[47] W Bruce Croft, Donald Metzler, and Trevor Strohman. Search engines: Infor-
mation retrieval in practice, volume 283. 2010.

[48] Joshua V. Dillon and Kevyn Collins-Thompson. A unified optimization frame-
work for robust pseudo-relevance feedback algorithms. In Proceedings of
CIKM’10, 2010.

[49] Constantinos Dimopoulos, Sergey Nepomnyachiy, and Torsten Suel. A candi-
date filtering mechanism for fast top-k query processing on modern cpus. In
Proceedings of SIGIR’13, 2013.

[50] Shuai Ding and Torsten Suel. Faster top-k document retrieval using block-max
indexes. In Proceedings of SIGIR’11, 2011.

[51] Caroline M Eastman and Bernard J Jansen. Coverage, relevance, and ranking:
The impact of query operators on web search engine results. ACM Transactions
on Information Systems (TOIS), 21(4):383–411, 2003.

[52] Ronald Fagin. Combining fuzzy information: an overview. ACM SIGMOD
Record, 31(2), 2002.

[53] Hui Fang, Tao Tao, and ChengXiang Zhai. A formal study of information retrieval
heuristics. In Proceedings of SIGIR-04, 2004.

139

[54] Hui Fang, Hao Wu, Peilin Yang, and ChengXiang Zhai. Virlab: A web-based vir-
tual lab for learning and studying information retrieval models. In Proceedings of
the 37th International ACM SIGIR Conference on Research & Development
in Information Retrieval, SIGIR ’14, pages 1249–1250, 2014.

[55] Hui Fang and ChengXiang Zhai. Web search relevance feedback. In Encyclopedia
of Database Systems, pages 3493–3497. 2009.

[56] Q. Gan and T. Suel. Improved techniques for result caching in web search engines.
In Proceedings of WWW’09, 2009.

[57] Elke Greifender and Mark-Shane Scale. Facebook as a social search engine
and the implications for libraries in the twenty-first century. Library Hi Tech,
26(4):540–556, 2008.

[58] Ben HE and Iadh Ounis. A study of parameter tuning for term frequency normal-
ization. In Proceedings of the Twelfth International Conference on Information
and Knowledge Management, CIKM ’03, pages 10–16, 2003.

[59] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A survey of top-
k query processing techniques in relational database systems. ACM Comput.
Surv., 40(4), October 2008.

[60] Bernard J Jansen and Amanda Spink. How are we searching the world wide web?
a comparison of nine search engine transaction logs. Information Processing &
Management, 42(1):248–263, 2006.

[61] John Lafferty and Chengxiang Zhai. Probabilistic relevance models based on
document and query generation. In Language modeling for information retrieval,
pages 1–10. 2003.

[62] Amy N Langville and Carl D Meyer. Google’s PageRank and beyond: The science
of search engine rankings. 2011.

[63] Victor Lavrenko and James Allan. Real-time query expansion in relevance mod-
els. Technical Report IR-473, University of Massachusetts Amherst, 2006.

[64] Victor Lavrenko and Bruce Croft. Relevance-based language models. In Proceed-
ings of SIGIR’01, pages 120–127, Sept 2001.

[65] Kyung-Soon Lee, W. Bruce Croft, and James Allan. A cluster-based resampling
method for pseudo-relevance feedback. In Proceedings of SIGIR’08, 2008.

[66] Yong Kyu Lee, Seong-Joon Yoo, Kyoungro Yoon, and P. Bruce Berra. Index
structures for structured documents. In Proceedings of the First ACM Interna-
tional Conference on Digital Libraries, DL ’96, 1996.

140

[67] Yuanhua Lv and ChengXiang Zhai. Positional relevance model for pseudo-
relevance feedback. In Proceedings of SIGIR’10, 2010.

[68] Yuanhua Lv, ChengXiang Zhai, and Wan Chen. A boosting approach to improv-
ing pseudo-relevance feedback. In Proceedings of SIGIR’11, 2011.

[69] Craig Macdonald, Rodrygo L. T. Santos, and Iadh Ounis. The whens and hows
of learning to rank for web search. Information Retrieval, 2012.

[70] Craig Macdonald, Nivola Tonellotto, and Iadh Ounis. Learning to predict re-
sponse times for online query scheduling. In Proceedings of SIGIR’12, 2012.

[71] A. MacFarlane, J.A. McCann, and S.E. Robertson. Parallel search using par-
titioned inverted files. In String Processing and Information Retrieval, 2000.
SPIRE 2000. Proceedings. Seventh International Symposium on, pages 209–220,
2000.

[72] A. MacFarlane, S. E. Robertson, and J. A. McCann. Parallel computing in
information retrieval - an updated review. Journal of Documentation, 53:274315,
January 1997.

[73] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduc-
tion to Information Retrieval. Cambridge University Press, New York, NY, USA,
2008.

[74] W. D. Maurer and T. G. Lewis. Hash table methods. ACM Comput. Surv., pages
5–19, 1975.

[75] Jun Miao, Jimmy Huang, and Zheng Ye. Proximity-based rocchio’s model for
pseudo relevance. In Proceedings of SIGIR’12, 2012.

[76] Allstair Moffat and Justin Zobel. Self-indexing inverted files for fast text retrieval.
ACM Transactions on Information Systems, 14(4):349–379, 1996.

[77] Craig Macdonald Nicola Tonellotto and Iadh Ounis. Efficient and effective re-
trieval using selective pruning. In Proceedings of the Sixth ACM International
Conference on Web Search and Data Mining, 2013.

[78] Alexandros Ntoulas and Junghoo Cho. Pruning policies for two-tiered inverted
index with correctness guarantee. In Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’07, 2007.

[79] Iadh Ounis, Craig Macdonald, Jimmy Lin, and Ian Soboroff. Overview of the
trec 2011 microblog track. In Proceedings of TREC’11, 2011.

[80] M. F. Porter. Readings in information retrieval. chapter An Algorithm for Suffix
Stripping, pages 313–316. 1997.

141

[81] S. Robertson and K. Sparck Jones. Relevance weighting of search terms. Journal
of the American Society for Information Science, 27:129–146, 1976.

[82] S. E. Robertson, S. Walker, S. Jones, M. M.Hancock-Beaulieu, and M. Gatford.
Okapi at TREC-3. In Proceedings of TREC-3, 1995.

[83] J. Rocchio. Relevance feedback in information retrieval. In The SMART Re-
trieval System: Experiments in Automatic Document Processing, pages 313–323.
Prentice-Hall Inc., 1971.

[84] Cristian Rossi, Edleno Silva de Moura, Andre Luiz Carvalho, and Altigran Soares
da Silva. Fast document-at-a-time query processing using two-tier indexes. In
Proceedings of SIGIR’13, 2013.

[85] G. Salton and C. Buckley. Improving retrieval performance by relevance feedback.
Journal of the American Society for Information Science, 44(4):288–297, 1990.

[86] Gerard Salton, editor. The SMART Retrieval System - Experiments in Automatic
Document Processing. Prentice Hall, Englewood, Cliffs, New Jersey, 1971.

[87] Eric Schurman and Jake Brutlag. Performance related changes and their user
impact. In Velocity - Web performance and operations conference, 2009.

[88] Amit Singhal. Modern information retrieval: A brief overview. 2001.

[89] Trevor Strohman. Efficient processing of complex features for information re-
trieval. PhD thesis, University of Massachusetts Amherst, 2007.

[90] Trevor Strohman and Bruce W. Croft. Efficient document retrieval in main
memory. In Proceedings of SIGIR’07, 2007.

[91] Trevor Strohman, Howard Turtle, and Bruce W. Croft. Optimization strategies
for complex queries. In Proceedings of SIGIR’05, 2005.

[92] Daisuke Takuma and Hiroki Yanagisawa. Faster upper bounding of intersection
sizes. In Proceedings of SIGIR’13, 2013.

[93] Bin Tan, Atulya Velivelli, Hui Fang, and ChengXiang Zhai. Term feedback for
information retrieval with language models. In Proceedings of the 30th Annual
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, SIGIR ’07, 2007.

[94] Tao Tao and ChengXiang Zhai. Regularized estimation of mixture models for
robust pseudo-relevance feedback. In Proceedings of SIGIR’06, 2006.

[95] Shirish Tatikonda, B. Barla Cambazoglu, and Flavio P. Junqueira. Posting list
intersection on multicore architectures. In Proceedings of SIGIR’11, 2011.

142

[96] Anthony Tomasic, Héctor Garćıa-Molina, and Kurt Shoens. Incremental updates
of inverted lists for text document retrieval. In Proceedings of the 1994 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’94, 1994.

[97] H. Turtle and J. Flood. Query evaluation: strategies and optimizations. Infor-
mation Processing & Management, 31(1):831–850, 1995.

[98] Lidan Wang, Jimmy Lin, and Donald Metzler. Learning to efficiently rank. In
Proceedings of SIGIR’10, 2010.

[99] Lidan Wang, Jimmy Lin, and Donald Metzler. A cascade ranking model for
efficient ranked retrieval. In Proceedings of SIGIR’11, 2011.

[100] Xuanhui Wang, Hui Fang, and ChengXiang Zhai. A study of methods for negative
relevance feedback. In Proceedings of the 31st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’08,
pages 219–226, 2008.

[101] Xuanhui Wang, Hui Fang, and ChengXiang Zhai. A study of methods for negative
relevance feedback. In Proceedings of the 31st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’08,
pages 219–226, 2008.

[102] Yue Wang, Hao Wu, and Hui Fang. An exploration of tie-breaking for microblog
retrieval. In Advances in Information Retrieval, pages 713–719. 2014.

[103] Peter Weiner. Linear pattern matching algorithms. In Switching and Automata
Theory, 1973. SWAT’08. IEEE Conference Record of 14th Annual Symposium
on, pages 1–11. IEEE, 1973.

[104] H Wu, H Fang, SJ Stanhope, et al. Exploiting online discussions to discover
unrecognized drug side effects. Methods Inf Med, 52(2):152–9, 2013.

[105] Hao Wu and Hui Fang. An exploration of new ranking strategies for medical
record tracks. In TREC, 2011.

[106] Hao Wu and Hui Fang. An exploration of query term deletion. Carterette et
al.[2], 2011.

[107] Hao Wu and Hui Fang. Concept detection and using concept in ad-hoc of mi-
croblog search. Technical report, DTIC Document, 2012.

[108] Hao Wu and Hui Fang. Relation based term weighting regularization. In Advances
in Information Retrieval, pages 109–120. 2012.

[109] Hao Wu and Hui Fang. Tie breaker: A novel way of combining retrieval signals.
In Proceedings of the 2013 Conference on the Theory of Information Retrieval,
ICTIR ’13, 2013.

143

[110] Hao Wu and Hui Fang. Analytical performance modeling for top-k query pro-
cessing. In Proceedings of the 23rd ACM International Conference on Conference
on Information and Knowledge Management, CIKM ’14, pages 1619–1628, 2014.

[111] Hao Wu and Hui Fang. Document prioritization for scalable query processing.
In Proceedings of the 23rd ACM International Conference on Conference on In-
formation and Knowledge Management, CIKM ’14, 2014.

[112] Hao Wu, Hui Fang, and Steven J. Stanhope. An early warning system for un-
recognized drug side effects discovery. In Proceedings of the 21st International
Conference on World Wide Web, WWW ’12 Companion, pages 437–440, 2012.

[113] Jiafu Xu, Zhijian Wang, and Chengxiang Zhai. Object-oriented Programming
Language. Nanjing University Press, January 1993. in Chinese.

[114] Yang Xu, Gareth J. F. Jones, and Bin Wang. Query dependent pseudo-relevance
feedback based on wikipedia. In Proceedings of SIGIR’09, 2009.

[115] Hao Yan, Shuai Ding, and Torsten Suel. Compressing term positions in web
indexes. In Proceedings of SIGIR’09, 2009.

[116] Hao Yan, Shuai Ding, and Torsten Suel. Inverted index compression and query
processing with optimized document ordering. In Proceedings of the 18th Inter-
national Conference on World Wide Web, WWW ’09, pages 401–410, 2009.

[117] J. Yang and J. Leskovec. Temporal variation in online media. In Proceedings of
WSDM’11, 2011.

[118] Peilin Yang, Hongning Wang, Hui Fang, and Deng Cai. Opinions matter: a
general approach to user profile modeling for contextual suggestion. Information
Retrieval Journal, 18(6):586–610, 2015.

[119] Chengxiang Zhai and John Lafferty. The dual role of smoothing in the language
modeling approach. In Proceedings of the Workshop on Language Modeling and
Information Retrieval, 2001.

[120] Chengxiang Zhai and John Lafferty. Model-based feedback in the KL-divergence
retrieval model. In Tenth International Conference on Information and Knowl-
edge Management (CIKM 2001), pages 403–410, 2001.

[121] Chengxiang Zhai and John Lafferty. A study of smoothing methods for lan-
guage models applied to ad hoc information retrieval. In Proceedings of the 24th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’01, 2001.

[122] J. Zhang, X. Long, and T. Suel. Performance of compressed inverted list cachign
in search engines. In Proceedings of WWW’08, 2008.

144

[123] Wei Zheng and Hui Fang. A study of pattern-based suptopic discovery and
integration in the web track. In TREC, 2011.

[124] J. Zobel and A. Moffat. Inverted files for text search engines. ACM Computing
Surveys, 38(2), 2006.

[125] Justin Zobel and Alistair Moffat. Exploring the similarity space. SIGIR Forum,
32(1), April 1998.

145

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	2 Background
	2.1 Basic Query Processing
	2.2 Static Document Pruning
	2.3 Top-K Query Processing and Dynamic Pruning
	2.3.1 Dynamic pruning of DAAT query processing
	2.3.2 Dynamic pruning of TAAT(SAAT) query processing

	2.4 Information Retrieval Toolkit

	3 Virtual IR lab: a novel platform for IR teaching and research
	3.1 Introduction
	3.2 Methodology
	3.2.1 Architecture
	3.2.2 Life of an index
	3.2.3 Life of a query

	3.3 Discussions
	3.3.1 Query processing with dynamical code generation

	3.4 Experiments
	3.4.1 Experimental results

	3.5 Conclusion and future work

	4 Performance Modeling for Top-k Query Processing
	4.1 Introduction
	4.2 Model Development
	4.2.1 Multiple Stages in Query Processing
	4.2.2 Performance Modeling: the Initialization stage
	4.2.3 Performance Modeling: the Retrieval stage
	4.2.4 Performance Modeling: Summary

	4.3 Model Fitting
	4.3.1 Fitting for the exhaustive evaluation method
	4.3.2 Fitting for the dynamic pruning methods

	4.4 Feature Approximation
	4.4.1 Approximation in the exhaustive evaluation method
	4.4.2 Approximation in the pruning methods
	4.4.2.1 Estimating the pruning percentage
	4.4.2.2 Feature approximation for maximum score method
	4.4.2.3 Feature approximation for WAND

	4.5 Experiments
	4.5.1 Experimental design
	4.5.2 Results on performance modeling
	4.5.3 Results on processing time prediction
	4.5.4 More analysis
	4.5.5 Efficiency of the model

	4.6 Conclusions

	5 Improve efficiency of query processing through document prioritization
	5.1 Introduction
	5.2 Document Prioritization
	5.2.1 Basic idea
	5.2.2 Tree-based prioritization
	5.2.3 Discussions

	5.3 Experiments
	5.3.1 Experimental setup
	5.3.2 Performance comparison: efficiency
	5.3.3 Performance comparison: effectiveness
	5.3.4 Result analysis
	5.3.4.1 Efficiency comparison for different query lengths
	5.3.4.2 Efficiency: the number of evaluated documents
	5.3.4.3 Impact of the pruning strategy

	5.4 Conclusions

	6 Improve efficiency of Pseudo Relevance Feedback
	6.1 Introduction
	6.2 Efficient Pseudo-relevance Feedback for SAAT
	6.2.1 Overview of existing implementation strategy
	6.2.2 Analyzing the second round retrieval
	6.2.3 The proposed incremental approach
	6.2.4 Discussions

	6.3 Experiments
	6.3.1 Experiment design
	6.3.2 Experimental results
	6.3.2.1 Efficiency and effectiveness
	6.3.2.2 Impact of parameter values
	6.3.2.3 Scalability

	6.4 Conclusion and Future Work

	7 Optimizing Efficiency/Effectiveness Trade-off
	7.1 Introduction
	7.2 Theory
	7.3 Top-k Query Processing at Time Constrained Environment
	7.3.1 Force termination of query processing
	7.3.2 Adjusting cut-off threshold rate F through efficiency prediction
	7.3.3 Simplifying queries
	7.3.4 Document prioritization
	7.3.5 Summary

	7.4 Experiments
	7.4.1 Experiment design
	7.4.2 Performance at loose time constraints
	7.4.3 Performance at strict time constraints

	7.5 Conclusion

	8 Conclusion and Future Work
	Bibliography

