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Abstract: We analyze a class of time-triggered stochastic hybrid systems where the state-
space evolves as per a linear time-invariant dynamical system. This continuous-time evolution
is interspersed with two kinds of stochastic resets. The first reset occurs based on an internal
timer that measures the time elapsed since it last occurred. Whenever the first reset occurs,
the states-space undergoes a random jump, and the timer is reset to zero. The second reset
occurs based on an arbitrary timer-depended rate, and whenever this reset fires, the state-space
is changed based on a given random map. We provide exact conditions for this class of systems
that lead to finite statistical moments and the corresponding exact analytical expressions for the
first two moments. This framework is applied to study random fluctuations in the concentration
of a protein in a growing cell. In the context of this example, the timer denotes the time elapsed
since the cell was born, and the cell division event (first reset) is triggered based on a timer-
dependent rate. The second reset corresponds to the protein synthesis in stochastic bursts,
and finally, during cell growth, protein concentration continuously decreases due to dilution.
Our analysis provides closed-form formulas for the noise in the protein concentration and leads
to a striking result - for a constant (timer-independent) protein synthesis rate, the noise in
the protein concentration is invariant of the noise in the cell-cycle time. Finally, we provide a
rigorous framework for investigating protein noise levels for different forms of timer-dependent
synthesis rates, as is the case for cell-cycle regulated genes inside the cell.
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1. INTRODUCTION

This contribution focuses on Time-Triggered Stochastic
Hybrid Systems, where the state evolves as per a linear
dynamical system. This continuous-time evolution is in-
terspersed by stochastic events that occur based on an
internal timer. The timer measures the time elapsed since
the last event and creates a memory in event timing.
Whenever the event occurs, the state undergoes a random
jump based on a given random map, and the timer is
reset to zero. These SHS classes have been shown to be
quite helpful in modeling and analyzing networked control
systems (Antunes et al., 2013b,a; Hespanha, 2014; Soltani
and Singh, 2018).

This work’s key contribution is to generalize Time-
Triggered SHS to include a second family of random resets
(Fig. 1). This second family of resets occurs based on a
timer-dependent rate, and similar to the first family of
reset, the state undergoes a stochastic jump whenever
the corresponding events occur. While the first family

� AS is supported by NSF (ECCS-1711548) and ARO (W911NF-19-
1-0243).

of resets reinitializes the timer back to zero, the second
family of resets does not affect the timer. Note that these
stochastic systems are essentially a subclass of Piecewise-
deterministic Markov processes.

This work’s second contribution is to use this framework
for capturing random fluctuations in the concentration of
a protein inside a cell that undergoes periods of growth
followed by division into two daughters. Through our
analysis, for the first time we predict the exact analytical
formulas for the protein mean and noise levels when the
protein synthesis rate varies arbitrarily along the cell cycle
(E.g. as a function of the timer), giving novel results and
insights that can be tested with further experiments.

This paper is organized as follows. In Section 2, we provide
the mathematical formulation of the stochastic system and
show its applicability in modeling protein concentration
fluctuations inside an individual cell. In Section 3, we
derive analytical formulas for the first and second-order
moments for the general SHS system with two timer-
dependent resets. These results are applied to the protein
synthesis example in Section 4, followed by conclusions in
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family of resets does not affect the timer. Note that these
stochastic systems are essentially a subclass of Piecewise-
deterministic Markov processes.

This work’s second contribution is to use this framework
for capturing random fluctuations in the concentration of
a protein inside a cell that undergoes periods of growth
followed by division into two daughters. Through our
analysis, for the first time we predict the exact analytical
formulas for the protein mean and noise levels when the
protein synthesis rate varies arbitrarily along the cell cycle
(E.g. as a function of the timer), giving novel results and
insights that can be tested with further experiments.

This paper is organized as follows. In Section 2, we provide
the mathematical formulation of the stochastic system and
show its applicability in modeling protein concentration
fluctuations inside an individual cell. In Section 3, we
derive analytical formulas for the first and second-order
moments for the general SHS system with two timer-
dependent resets. These results are applied to the protein
synthesis example in Section 4, followed by conclusions in
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Fig. 1. Model schematic of a stochastic hybrid
system with two timer-dependent resets. The
state x ∈ Rn×1 evolves as per a linear time-invariant
system and two families of resets occur at random
times with rates hi(τ ), i ∈ {1, 2}. Here τ is a timer
that measures the time elapsed since the last event
belonging to the first family of resets. Whenever the
events occur the state is reset as per x �→ xi+ , where
xi+ is a random variable whose statistics is given by
(8) and (9). The first family of resets also reinitializes
the timer back to zero, while the second family of
resets has no impact on the timer.

Section 5. Before starting with the model formulation, we
briefly discuss notation used throughout the paper.

Notation: R denotes the set of real numbers. We use hat to
indicate constant vectors, e.g. â, and matrices are denoted
by capital letters. A� is transpose of matrix A and In
is n × n identity matrix. We use small bold letters to
denote random processes. 〈x〉 is expected value of random

process x. 〈x〉 ≡ limt→∞〈x〉 is the expected value at
the steady-state. 〈x|y〉 is the conditional expectation of
x given another random variable y.

2. TIME-TRIGGERED STOCHASTIC HYBRID
SYSTEMS

2.1 Model Formulation

The stochastic dynamical system is formulated as follows:

Continuous dynamics The states of the SHS x ∈ Rn×1

evolve as per a linear time-invariant system

ẋ(t) = Ax+ â, (1)

where A ∈ Rn×n and â ∈ Rn×1 are constant matrix and
vector, respectively. The continuous time evolution of the
state space is interspersed by two families of random resets.

The first family of resets The first family of resets is
assumed to occur at times ts, s ∈ {1, 2, 3, . . .}, such
that the time intervals τs ≡ ts − ts−1 are independent
and identically distributed random variables following an
arbitrary positively-valued continuous probability density
function (pdf) f . To model the timing of these resets, we
introduce a timer τ that linearly increases over time

τ̇ = 1, (2)

and resets to zero

τ �→ 0 (3)

whenever a random event occurs. The occurrence of the
next event depends on the state of the timer introducing
memory in the event-arrival process. More specifically, the
probability that an event occurs in the next infinitesimal

time interval (t, t+dt] is given by h1(τ )dt, where the hazard
rate is

h1(τ) ≡
f(τ)

1−
∫ τ

y=0
f(y)dy

. (4)

As an example, if f is exponentially-distributed with
mean 〈τs〉, then h1(τ) = 1/〈τs〉 would be a constant
corresponding to Poisson arrival of events. Defining the
arrival of events as per (4) ensures that τs follows the pdf
f

τs ∼ f(τ) = h1(τ)e
−
∫ τ

y=0
h1(y)dy

, (5)

and the corresponding pdf of τ is given by

τ ∼ p(τ) =
1

〈τs〉
e
−
∫ τ

y=0
h1(y)dy

. (6)

Having modeled the first family of resets’ timing, we next
describe its impact on the SHS state space. Each time this
event occurs, the state of the system undergoes a random
jump as per the reset

x �→ x1+ , τ �→ 0, (7)

where x+
1 represents the state of the system immediately

after the event belonging to the first family of resets.
We assume x1+ to be a random variable whose statistics
depend on the value of x just before the event. More
specifically, the average value of x+

1 is

〈x1+〉 = J1x+ r̂1, (8)

where J1 ∈ Rn×n and r̂1 ∈ Rn×1 are constant matrix and
vector, respectively. Furthermore, the covariance matrix
x+
1 is given as

〈x1+x�
1+

〉 − 〈x1+ 〉〈x�
1+

〉 = Q1xx
�Q�

1 +B1xĉ
�
1 + ĉ1xB

�
1 +G1,

(9)

where Q1 ∈ Rn×n, B1 ∈ Rn×n are constant matrices,
G1 ∈ Rn×n is a constant symmetric positive semi-definite
matrix, and ĉ1 ∈ Rn×1 is a constant vector. In essence,
(9) represents the noise added when the event is triggered,
and this noise can be state-dependent.

The second family of resets These resets occur randomly
at a timer-dependent rate h2(τ ), where h2 is an arbitrary
positive-valued function, i.e., the probability that the
second family of reset happens in the next infinitesimal
time (t, t+dt] is h2(τ )dt. Whenever these resets occur the
state is reset as

x �→ x2+ , (10)

where x2+ denotes the state of the system just after the
event belonging to the second family of resets. Similar to
(7), the average jump in x2+ is

〈x2+〉 = J2x+ r̂2, (11)

where J2 ∈ Rn×n and r̂2 ∈ Rn×1 are constant matrix and
vector, respectively. Furthermore, the covariance matrix of
x2+ is same as (9) by replacing Q2, B2, ĉ2 and G2 with
Q1, B1, ĉ1 and G1 respectively. It is important to point out
that unlike the first family of resets, the second family of
resets do not affect the timer. While the occurrences of all
stochastic events are timer driven, only events of the first
family of resets reinitialize the timer back to zero (Fig. 1).

2.2 Biology Example

It turns out that the above SHS framework with two-timer
dependent resets is ideal for capturing stochastic fluctua-
tions in the concentration of a protein within growing cells.
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Fig. 2. Modeling protein concentration in a single cell using the time-triggered stochastic hybrid system:
Left: Protein level x is modeled via an SHS with two families of stochastic resets. The first family of resets
represents cell-division events that occur randomly with the rate h1(τ ) where τ is cell-cycle timer measuring time
elapsed since the cell was born. Whenever the cell divides, the protein level changes as per (14) and (15). The
second family of resets corresponds to the production of proteins in bursts of size u, and these burst events occur
with the rate h2(τ ). For each burst event, the protein level changes as per (16) and (17). Right: Sample realization
of the protein concentration showing increase due to burst events, exponential decay between two burst events due
to dilution, and cell division events that do not change the mean concentration but add partitioning noise.

Before proceeding with a rigorous analysis of the SHS, we
provide some details on this example.

Consider a newborn cell, whose volume grows exponen-
tially over time with rate γ, and after a period of growth,
the cell symmetrically divides into two daughters. These
randomly-timed cell division events are the first family of
resets. Here the timer τ denotes the time elapsed since the
cell’s birth, and the next cell division event is assuming to
occur with the rate h1(τ ). Choosing this rate as in (4)
ensures that the time duration from cell birth to division
τs follows a prior probability distribution f . Let scalar
x(t) denote the concentration of a protein. Then during
cell growth, the protein level is continuously diluted as

ẋ(t) = −γx, (12)

where the growth rate is related to the average cell-cycle
duration

〈τs〉 =
ln 2

γ
. (13)

This implies A = −γ, â = 0 in (1). Note that a cell division
event does not change the protein concentration (both
the cell volume and the protein copy number are approx-
imately halved). However, it introduces some noise due
to errors from random partitioning of protein molecules
between two daughters (Soltani et al., 2016; Huh and
Paulsson, 2011b,a; Vahdat and Singh, 2021). Towards that
end, the reset map for the first family of rests is given by

〈x1+〉 = x (14)

and
〈x2

1+〉 − 〈x1+〉2 = bx, (15)

where the parameter b quantifies the extent of partitioning
noise (Soltani et al., 2016). Comparing (14) and (15)
with (8) and (9) leads to the following parameters for
the first family resets: J1 = 1, B1 = b/2, ĉ1 = 1 and
r̂1 = Q1 = G1 = 0.

The second family of resets correspond to the stochastic
synthesis of a protein in bursts as has been shown ex-
perimentally (Suter et al., 2011; Bartman et al., 2016;

Singh et al., 2010), and modeled previously (Pedraza and
Paulsson, 2008; Jia and Kulkarni, 2011; Kumar et al., 2015;
Bokes and Singh, 2017; Vahdat et al., 2020; Shahrezaei
and Swain, 2008; Friedman et al., 2006). In particular,
the burst events arrive at rate h2(τ ) that can depend
on the cell-cycle timer. Whenever the burst event occurs,
the protein concentration increases by a burst size u,
where u is assumed to be an identically and independently
distributed random variable. Based on this formulation of
the second family of resets,

〈x2+〉 = x+ 〈u〉 (16)

and

〈x2
2+〉 − 〈x2+〉2 = 〈u2〉 − 〈u〉2, (17)

implying J2 = 1, r̂2 = 〈u〉, Q2 = B2 = ĉ2 = 0 and
G2 = 〈u2〉− 〈u〉2. In summary, the SHS framework allows
integration of three distinct noise mechanisms critically
affecting gene expression: synthesis of a protein in random
bursts, the division of a cell into two daughters at random
times, and randomness in the partitioning of a protein
between daughters. A typical stochastic realization of this
SHS model is illustrated in Fig. 2.

3. STATISTICAL MOMENTS

Having formulated the SHS with two-timer dependent
resets, we next derive the statistical moments of x.

3.1 The first-order moment

We start by outlining our approach and then summarize
the main result in Theorem 1. In between two successive
events of the first family of resets, the conditional mean
〈x|τ = τ〉 evolves as follows (due to limited space, we
provide the details in the OSF preprints version (Singh
et al., 2019))

∂ 〈x|τ = τ〉
∂τ

= Ax(τ) 〈x|τ = τ〉+ âx(τ), (18)
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elapsed since the cell was born. Whenever the cell divides, the protein level changes as per (14) and (15). The
second family of resets corresponds to the production of proteins in bursts of size u, and these burst events occur
with the rate h2(τ ). For each burst event, the protein level changes as per (16) and (17). Right: Sample realization
of the protein concentration showing increase due to burst events, exponential decay between two burst events due
to dilution, and cell division events that do not change the mean concentration but add partitioning noise.

Before proceeding with a rigorous analysis of the SHS, we
provide some details on this example.

Consider a newborn cell, whose volume grows exponen-
tially over time with rate γ, and after a period of growth,
the cell symmetrically divides into two daughters. These
randomly-timed cell division events are the first family of
resets. Here the timer τ denotes the time elapsed since the
cell’s birth, and the next cell division event is assuming to
occur with the rate h1(τ ). Choosing this rate as in (4)
ensures that the time duration from cell birth to division
τs follows a prior probability distribution f . Let scalar
x(t) denote the concentration of a protein. Then during
cell growth, the protein level is continuously diluted as

ẋ(t) = −γx, (12)

where the growth rate is related to the average cell-cycle
duration

〈τs〉 =
ln 2

γ
. (13)

This implies A = −γ, â = 0 in (1). Note that a cell division
event does not change the protein concentration (both
the cell volume and the protein copy number are approx-
imately halved). However, it introduces some noise due
to errors from random partitioning of protein molecules
between two daughters (Soltani et al., 2016; Huh and
Paulsson, 2011b,a; Vahdat and Singh, 2021). Towards that
end, the reset map for the first family of rests is given by

〈x1+〉 = x (14)

and
〈x2

1+〉 − 〈x1+〉2 = bx, (15)

where the parameter b quantifies the extent of partitioning
noise (Soltani et al., 2016). Comparing (14) and (15)
with (8) and (9) leads to the following parameters for
the first family resets: J1 = 1, B1 = b/2, ĉ1 = 1 and
r̂1 = Q1 = G1 = 0.

The second family of resets correspond to the stochastic
synthesis of a protein in bursts as has been shown ex-
perimentally (Suter et al., 2011; Bartman et al., 2016;

Singh et al., 2010), and modeled previously (Pedraza and
Paulsson, 2008; Jia and Kulkarni, 2011; Kumar et al., 2015;
Bokes and Singh, 2017; Vahdat et al., 2020; Shahrezaei
and Swain, 2008; Friedman et al., 2006). In particular,
the burst events arrive at rate h2(τ ) that can depend
on the cell-cycle timer. Whenever the burst event occurs,
the protein concentration increases by a burst size u,
where u is assumed to be an identically and independently
distributed random variable. Based on this formulation of
the second family of resets,

〈x2+〉 = x+ 〈u〉 (16)

and

〈x2
2+〉 − 〈x2+〉2 = 〈u2〉 − 〈u〉2, (17)

implying J2 = 1, r̂2 = 〈u〉, Q2 = B2 = ĉ2 = 0 and
G2 = 〈u2〉− 〈u〉2. In summary, the SHS framework allows
integration of three distinct noise mechanisms critically
affecting gene expression: synthesis of a protein in random
bursts, the division of a cell into two daughters at random
times, and randomness in the partitioning of a protein
between daughters. A typical stochastic realization of this
SHS model is illustrated in Fig. 2.

3. STATISTICAL MOMENTS

Having formulated the SHS with two-timer dependent
resets, we next derive the statistical moments of x.

3.1 The first-order moment

We start by outlining our approach and then summarize
the main result in Theorem 1. In between two successive
events of the first family of resets, the conditional mean
〈x|τ = τ〉 evolves as follows (due to limited space, we
provide the details in the OSF preprints version (Singh
et al., 2019))

∂ 〈x|τ = τ〉
∂τ

= Ax(τ) 〈x|τ = τ〉+ âx(τ), (18)
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where

Ax(τ) = A+ h2(τ)(J2 − In), âx(τ) = â+ h2(τ)r̂2.
(19)

This time-varying system leads to the following conditional
mean

〈x|τ = τ〉 = e

∫ τ

0
Ax(y)dy 〈x|τ = 0〉

+ e

∫ τ

0
Ax(y)dy

∫ τ

0

e
−
∫ l

0
Ax(y)dyâx(l)dl,

(20)

where 〈x|τ = 0〉 is the expected value just after the first

family of resets. In order to find 〈x|τ = 0〉, we apply (8)

〈x|τ = 0〉 = J1〈x|τ = τs〉+ r̂1, (21)

and substitute 〈x|τ = τs〉 from (20) in (21) that yields

〈x|τ = 0〉. Finally, we use (6) to uncondition 〈x|τ = τ〉
with respect to τ to get the expected value of x. This
result can be formally summarized as follows.

Theorem 1. Consider the SHS with two-timer dependent
resets as formulated in (1)-(11). If all eigenvalues of

J1

〈
e

∫ τs

0
Ax(y)dy

〉
are inside the unit circle, then the first-

order moment exists and is given by

〈x〉 =
〈
e

∫ τ

0
Ax(y)dy

〉
(In − J1

〈
e

∫ τs

0
Ax(y)dy

〉
)−1×

(
J1

〈
e

∫ τs

0
Ax(y)dy

∫ τs

0

e
−
∫ l

0
Ax(y)dy

âx(l)dl

〉
+ r̂1

)

+

〈
e

∫ τ

0
Ax(y)dy

∫ τ

0

e
−
∫ l

0
Ax(y)dy

âx(l)dl

〉
,

(22)

where

Ax(y) = A+ h2(y)(J2 − In), âx(y) = â+ h2(y)r̂2.
(23)

�
A particular case of the Theorem is when h2(τ ) = 0 and
the system reduces to a single family of resets as considered
in (Soltani and Singh, 2019). For completeness, we provide
this result as a Corollary.

Corollary 1. Assume that the system is described by (1)-
(11) with h2(τ ) = 0 and all eigenvalues of the matrix
J1

〈
eAτs

〉
are inside the unit circle. Then the first order

moment of the system is

〈x〉 =
〈
eAτ

〉 (
In − J1〈eAτs 〉

)−1(
J1

〈
eAτs

∫ τs

0

e−Alâdl

〉

+ r̂1
)
+

〈
eAτ

∫ τ

0

e−Alâdl

〉
.

(24)

See the details for computing 〈eAτ 〉 and
〈
eAτs

∫ τs

0
e−Alâdl

〉
in (Vahdat et al., 2019).

3.2 Second-order moments

To derive the second-order moment we consider the time
evolution of the conditioned covariance matrix

〈
xx�|τ

〉

∂
〈
xx�|τ

〉
∂τ

= Axx� + xx�A� + âx� + xâ�. (25)

By vectorization, we replace xx� with vec(xx�). Defining

µ ≡ [x� vec(xx�)�]�, (26)

the continuous dynamics of µ follows

µ̇ = Aµµ+ âµ, (27)

where

Aµ =

[
A 0

In ⊗ â+ â⊗ In In ⊗A+A⊗ In

]
, âµ =

[
â
0

]
,

(28)
and ⊗ denotes the Kronecker Product (Soltani and Singh,
2019). When the first family (i = 1) or the second family
(i = 2) of resets occurs, µ changes as per the map

µi+ = Jµiµ+ r̂µi , i ∈ {1, 2}, (29)

where

Jµi =




Ji 0
Bi ⊗ ĉi + ĉi ⊗Bi

+Ji ⊗ r̂i + r̂i ⊗ Ji Ji ⊗ Ji +Qi ⊗Qi


 , (30)

r̂µi
=

[
r̂i

vec(Gi + r̂ir̂
�
i )

]
. (31)

Having recast the stochastic dynamics of µ, also as an
SHS with two families of resets, the expected value of µ
(and hence xx�) can be obtained by applying Theorem
1 on this augmented system. While the analysis presented
here is restricted to the first and second-order moments, a
similar approach can be applied for deriving higher-order
moments.

4. REVISITING STOCHASTIC PROTEIN
SYNTHESIS

Having derived the first two moments of x in the general
setting, we now revisit the biological example introduced
in Section II. Recall that in the example, the scalar x
denote the concentration of a protein that is continuously
diluted from cell growth via (12). The first family of resets
represents cell-division events that reset the state as per
(14) and (15). The second family of resets corresponds to
protein bursts that reset the state as per (16) and (17).

Defining the vector µ ≡ [x x2]�, then the continuous
dynamics of µ between resets is given by (27) with

Aµ =

[
−γ 0
0 −2γ

]
, âµ =

[
0
0

]
. (32)

Using (29), the resets in µ are

Jµ1
=

[
1 0
b 1

]
, r̂µ1

=

[
0
0

]
, (33)

Jµ2
=

[
1 0

2〈u〉 1

]
, r̂µ2

=

[
〈u〉
〈u2〉

]
(34)

corresponding to the first and second families of re-
sets, respectively. Applying Theorem 1 on this augmented
system yields the first two steady-state moments of the
protein concentration. As the formula for the second-order
moment is quite lengthy, we only provide the result for the
mean protein concentration that is given by

〈x〉 =
〈u〉
γ〈τs〉

〈
e−γτs

∫ τs

0

eγlh2(l)dl

〉
+ 〈u〉

〈
e−γτ

∫ τ

0

eγlh2(l)dl

〉

(37)

with 〈u〉 being the mean burst size, γ the protein dilution
rate, and h2(τ ) the timer-dependent protein synthesis
rate. Next, we explore protein mean and noise levels for
specific forms of the synthesis rate. We quantify protein
noise levels by the steady-state Fano factor FFx (vari-
ance/mean).

FFx =
〈u2〉
2〈u〉︸︷︷︸

Protein bursting noise

+ b

(
k2〈τs〉(〈e−γτs 〉 − 1 + ln(2))

(1− 〈e−γτs 〉) ln2(2)((CV 2
τs

+ 1)k2〈τs〉+ 2k1)
+

k1

ln(2)((CV 2
τs

+ 1)k2〈τs〉+ 2k1)

)

︸ ︷︷ ︸
Partitioning noise

+

〈u〉k22
(
(1− 〈e−γτs 〉)〈τs〉3

(
3(CV 2

τs
+ 1)2 ln2(2) + 6(CV 2

τs
+ 1) ln(2)− 12

)
+ 4(〈e−γτs 〉 − 1)〈τs3〉 ln2(2) + 12〈τse−γτs 〉〈τs〉2 ln(2)

)
6(〈e−γτs 〉 − 1) ln3(2)((CV 2

τs
+ 1)k2〈τs〉+ 2k1)︸ ︷︷ ︸

Cell-cycle noise

.

(44)
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Fig. 3. Protein noise components are affected dif-
ferently by the noise in the cell-cycle time. For
a Gamma-distributed τs, the noise components in
(44) are plotted with respect to CV 2

τs
. Interestingly

contrasting behaviors emerge with the noise contri-
bution from bursting remaining constant, the noise
contribution from partitioning decreasing, and the
noise contribution from cell-cycle noise increasing as
CV 2

τs
varies from zero (deterministic cell-cycle times)

to one (exponentially distributed cell-cycle times).
Other parameters taken as 〈τs〉 = 1 hr, 〈u2〉 = 2,
〈u〉 = 1, b = 1, k1 = 1 hr−1, k2 = 2 hr−2.

4.1 Constant protein synthesis rate

For a constant protein synthesis rate

h2(τ ) = k1, (39)

using (13) into (37) we get

〈x〉 = k1〈u〉〈τs〉
ln(2)

. (40)

Moreover, the steady-state Fano factor of the protein
concentration obtained as

FFx =
〈u2〉
2〈u〉︸ ︷︷ ︸

Protein bursting noise

+
b

2 ln(2)︸ ︷︷ ︸
Partitioning noise

. (41)

The first component represents the contribution from
stochastic bursting, and the second component arises due
to partitioning errors at the time of cell division. It is
remarkable that in this case the Fano factor is independent
of k1, γ and the moments of the cell-cycle time τs.

4.2 Linearly increasing protein synthesis rate

We next assume that the protein synthesis rate is a linear
increasing function of τ

h2(τ ) = k2τ + k1, (42)

with positive constants k1 and k2. Then, using a similar
procedure we obtain

〈x〉 = k1〈u〉〈τs〉
ln(2)

+
k2〈u〉(CV 2

τs
+ 1)〈τs〉2

2 ln(2)
, (43)
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Fig. 4. Depending on the protein synthesis rate
and partitioning noise, noise in protein con-
centration may decrease, increase or remain
invariant of the noise in the cell-cycle timing.
Steady-state Fano factor of protein concentration as
a function of the noise in the cell-cycle timing for
a Gamma-distributed τs and synthesis rate (42). If
the coefficient k2 is zero, FFx remains constant with
respect to changes in CV 2

τs
. For other values of k2 and

k1, FFx depends on the value of b. Other parameters
are taken as 〈τs〉 = 1 hr, 〈u2〉 = 2, 〈u〉 = 1.

which depends on the average cell-cycle duration 〈τs〉, and
interestingly, also depends on the noise in cell-cycle time
CV 2

τs
as quantified by its coefficient of variation squared.

The Fano factor of the protein concentration is given
by (44) on the top of this page. It can be decomposed
into three components representing contributions from
stochastic bursting, partitioning noise, and cell cycle noise.

To get some insight into how these components vary
with CV 2

τs
, we consider a Gamma-distributed τs. For this

purpose, the terms 〈e−γτs〉, 〈τse−γτs〉 and 〈τs3〉 in (44)
are further simplified and provided in the OSF preprints
version (Singh et al., 2019). In Fig. 3, we plot the three
different noise components of Fano factor from (44) as
a function of CV 2

τs
and observe contrasting behaviors –

the noise contribution from bursting remains constant, the
noise contribution from partitioning decreases, and finally,
the noise contribution from cell-cycle noise increases. Fig.
4 plots the overall Fano factor as a function of CV 2

τs

and depending on the relative contributions, it can either
remain constant, monotonically increase, or vary non-
monotonically with CV 2

τs
.

5. CONCLUSION

We formulated a class of time-triggered stochastic hybrid
systems with two families of resets and exploited this
framework to investigate the noise in the concentration
of a given protein. Our analysis provides the first results
connecting the protein mean and noise levels to distinct
noise mechanisms (stochastic bursting, noise in the cell-
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Fig. 3. Protein noise components are affected dif-
ferently by the noise in the cell-cycle time. For
a Gamma-distributed τs, the noise components in
(44) are plotted with respect to CV 2

τs
. Interestingly

contrasting behaviors emerge with the noise contri-
bution from bursting remaining constant, the noise
contribution from partitioning decreasing, and the
noise contribution from cell-cycle noise increasing as
CV 2

τs
varies from zero (deterministic cell-cycle times)

to one (exponentially distributed cell-cycle times).
Other parameters taken as 〈τs〉 = 1 hr, 〈u2〉 = 2,
〈u〉 = 1, b = 1, k1 = 1 hr−1, k2 = 2 hr−2.

4.1 Constant protein synthesis rate

For a constant protein synthesis rate

h2(τ ) = k1, (39)

using (13) into (37) we get

〈x〉 = k1〈u〉〈τs〉
ln(2)

. (40)

Moreover, the steady-state Fano factor of the protein
concentration obtained as

FFx =
〈u2〉
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Protein bursting noise
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b
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. (41)

The first component represents the contribution from
stochastic bursting, and the second component arises due
to partitioning errors at the time of cell division. It is
remarkable that in this case the Fano factor is independent
of k1, γ and the moments of the cell-cycle time τs.

4.2 Linearly increasing protein synthesis rate

We next assume that the protein synthesis rate is a linear
increasing function of τ

h2(τ ) = k2τ + k1, (42)

with positive constants k1 and k2. Then, using a similar
procedure we obtain

〈x〉 = k1〈u〉〈τs〉
ln(2)

+
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and partitioning noise, noise in protein con-
centration may decrease, increase or remain
invariant of the noise in the cell-cycle timing.
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a function of the noise in the cell-cycle timing for
a Gamma-distributed τs and synthesis rate (42). If
the coefficient k2 is zero, FFx remains constant with
respect to changes in CV 2
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. For other values of k2 and

k1, FFx depends on the value of b. Other parameters
are taken as 〈τs〉 = 1 hr, 〈u2〉 = 2, 〈u〉 = 1.

which depends on the average cell-cycle duration 〈τs〉, and
interestingly, also depends on the noise in cell-cycle time
CV 2

τs
as quantified by its coefficient of variation squared.

The Fano factor of the protein concentration is given
by (44) on the top of this page. It can be decomposed
into three components representing contributions from
stochastic bursting, partitioning noise, and cell cycle noise.

To get some insight into how these components vary
with CV 2

τs
, we consider a Gamma-distributed τs. For this

purpose, the terms 〈e−γτs〉, 〈τse−γτs〉 and 〈τs3〉 in (44)
are further simplified and provided in the OSF preprints
version (Singh et al., 2019). In Fig. 3, we plot the three
different noise components of Fano factor from (44) as
a function of CV 2

τs
and observe contrasting behaviors –

the noise contribution from bursting remains constant, the
noise contribution from partitioning decreases, and finally,
the noise contribution from cell-cycle noise increases. Fig.
4 plots the overall Fano factor as a function of CV 2

τs

and depending on the relative contributions, it can either
remain constant, monotonically increase, or vary non-
monotonically with CV 2

τs
.

5. CONCLUSION

We formulated a class of time-triggered stochastic hybrid
systems with two families of resets and exploited this
framework to investigate the noise in the concentration
of a given protein. Our analysis provides the first results
connecting the protein mean and noise levels to distinct
noise mechanisms (stochastic bursting, noise in the cell-
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cycle time, and randomness in partitioning of molecules
between two cells). A key highlight of our results is that the
protein level’s noise becomes invariant of both the mean
cell cycle time and the noise in the cell cycle time for a
constant protein production rate. This natural buffering
of protein noise levels to the cell cycle is intriguing and
can be experimentally tested by measuring protein noise
levels for changing growth conditions in a given cell type.

When the protein production is timer-dependent, we de-
rive exact analytical formulas for the statistical moments
of x. In this case, the protein level noise can be decom-
posed into three components corresponding to the three
different noise mechanisms. Our analysis shows that the
noise component from bursting is invariant of τs, the
noise component for partitioning slightly decreases with
increasing noise CV 2

τs
, and finally the noise contribution

from cell cycle increases sharply with CV 2
τs
. While the

analysis here was restricted to a simple linear production
rate h2(τ ) = k2τ+k1, we plan to investigate more complex
functions in the future.

In (Vahdat and Singh, 2021), we solved the closed-form
statistical moments for a TTSHS with nonlinear contin-
uous dynamics. So, an interesting future work would be
expanding the two-timer TTSHS model to include non-
linear continuous dynamics. Another interesting direction
of future work is to consider two families of resets, each
having its own individual timers. For example, recent work
has shown that the time interval between two protein
burst events follows non-exponential statistical distribu-
tions (Daigle et al., 2015). Thus, by having a second timer,
we can capture a memory in the timing of the burst events.
In future work, we will expand this analysis to multi-
mode SHS, allowing for timer-based switching between
stochastic dynamical systems.
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