
MANIFOLD, DEEP AND ADVERSARIAL LEARNING FOR VISUAL OBJECT

DETECTION

by

Qiaosong Wang

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science

Spring 2019

c© 2019 Qiaosong Wang
All Rights Reserved



MANIFOLD, DEEP AND ADVERSARIAL LEARNING FOR VISUAL OBJECT

DETECTION

by

Qiaosong Wang

Approved:
Kathleen F. McCoy, Ph.D.
Chair of the Department of Computer and Information Sciences

Approved:
Levi T. Thompson, Ph.D.
Dean of the College of Engineering

Approved:
Douglas J. Doren, Ph.D.
Interim Vice Provost for Graduate and Professional Education



I certify that I have read this dissertation and that in my opinion it meets the aca-
demic and professional standard required by the University as a dissertation for the
degree of Doctor of Philosophy.

Signed:
Christopher E. Rasmussen, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the aca-
demic and professional standard required by the University as a dissertation for the
degree of Doctor of Philosophy.

Signed:
Chandra Kambhamettu, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the aca-
demic and professional standard required by the University as a dissertation for the
degree of Doctor of Philosophy.

Signed:
Li Liao, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the aca-
demic and professional standard required by the University as a dissertation for the
degree of Doctor of Philosophy.

Signed:
Paul Huang, Ph.D.
Member of dissertation committee



ACKNOWLEDGEMENTS

I would like to give tremendous and heartfelt thanks to my advisor, Professor Christo-

pher Rasmussen, for giving me the opportunity to work on exciting research projects during

the past few years. Throughout my studies, he has always been supportive and spent an

enormous amount of time guiding me through various research problems.

I am fortunate enough to work with my co-advisor, Professor Jingyi Yu, who provides

enormous support and insightful suggestions on a few research topics. Also, thank Professor

Yu for helping me with a few funding sources that made my Ph.D. work possible.

Thanks to Professor Chandra Kambhamettu, Professor Li Liao, and Professor Paul

Huang for serving on my dissertation committee and providing invaluable feedback and

comments.

I owe my deepest thanks to my parents for their support. Also, thank all my friends

for the wonderful time I spent with you at UD.

iv



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Chapter

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Blueprint of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 5

2 CLASS-AGNOSTIC SALIENT OBJECT DETECTION VIA A NOVEL
GRAPH MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Graph Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Proposed Graph Model . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Background Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Query via the Boundary Prior . . . . . . . . . . . . . . . . . . . 16
2.4.2 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.1 Parameter Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.2 Ablation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.3 Comparison with State-of-the-Art . . . . . . . . . . . . . . . . . 22

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

v



3 DETECTION AND TRACKING OF CLASS-SPECIFIC OBJECTS VIA
DEEP CONVOLUTIONAL NEURAL NETWORKS . . . . . . . . . . . . 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.3 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 JOINT LEARNING FOR OBJECT DETECTION AND FINE-GRAINED
CLASSIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3.1 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 Fine-grained Recognition Benchmark . . . . . . . . . . . . . . . 43
4.3.3 Training Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.1 Fine-grained Classification . . . . . . . . . . . . . . . . . . . . 45
4.4.2 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.3 Joint Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 RGB-D DATA ACQUISITION AND REFINEMENT ON A MOBILE
DEVICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vi



5.4 Programmable Stereo Camera . . . . . . . . . . . . . . . . . . . . . . . 60

5.4.1 Development Environment . . . . . . . . . . . . . . . . . . . . 60
5.4.2 The FCam API . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.3 Calibration, Synchronization and Autofocus . . . . . . . . . . . . 62

5.5 Disparity Map Generation . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.5.1 Graph Cuts Stereo Matching . . . . . . . . . . . . . . . . . . . . 64
5.5.2 Joint Bilateral Upsampling . . . . . . . . . . . . . . . . . . . . 67

5.6 Depth of Field Rendering . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.6.1 Synthesized Light Field Generation . . . . . . . . . . . . . . . . 70
5.6.2 Comparison of our method of single-image blurring . . . . . . . . 72

5.7 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 ADVERSARIAL LEARNING FOR 3D VISUAL OBJECT DETECTION
FROM MONOCULAR IMAGES . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.1 Depth Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.2 Feature Map Generation . . . . . . . . . . . . . . . . . . . . . . 92
6.3.3 3D Object Detection . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 103

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

108BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

vii



viii

Appendix

A PERMISSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



LIST OF TABLES

2.1 Ablation study on adding different components to the baseline GMR [151]
algorithm (Sec. 2.5.2). All results correspond to ECSSD. GF = guided
filter [48], RTV = texture smoothing using relative total variation [149],
EBR = erroneous boundary removal [78], RPCA = robust PCA [18], LAB
= CIELAB color [53], HIST = L*a*b* histogram, LM = Leung-Malik
filter bank [77], LBP = local binary patterns [98], AVE = simple
averaging, HS = hierarchical saliency [150], GMR = graph based manifold
ranking [151], BC = boundary connection, GEO = geodesic distance.
Methods included in the final pipeline are marked in bold. . . . . . . . 16

3.1 mAP %, time on detection, tracking datasets . . . . . . . . . . . . . . 32

4.1 Dataset Statistics. The PASCAL VOC Bird and Car dataset are derived
from the PASCAL VOC 0712 dataset with only Bird or Car class with all
other categories removed. Our FGR-4K dataset contains 3818 images with
196 labels inherited from the Stanford Cars dataset. Our dataset aims at
providing a technical benchmark for testing purposes only. . . . . . . . 46

4.2 Results on Fine-grained Classification and Object Detection benchmarks.
Our methods handles both tasks at the same time, while performs
favorably against alternative methods designed for each task. . . . . . . 46

5.1 Comparing running time (ms) of different stereo matching methods on the
Tegra 3 tablet, using the Middlebury Cones dataset. The longer edge is set
to 160 pixels and the number of disparities is set to 16. . . . . . . . . . 65

ix



5.2 Evaluation of different stereo matching methods on the Middlebury stereo
datasets cite in bad pixel percentage (%). The method shown in the last
row applies 5 iterations of Joint Bilateral Upsampling to the downsampled
results (half of the original size) of GC, using the full resolution color
image as guidance image. The resolutions of the four datasets (Tsukuba,
Venus, Teddy, Cones) are 384×288, 434×383, 450×375, 450×375,
respectively. If not specified, raw image size of each individual dataset
will be the same for the remainder of this paper. Nonocc: bad pixel
percentage in non-occluded regions; All: bad pixel percentage in all
regions; Disc: bad pixel percentage in regions near depth discontinuities. 66

5.3 Evaluation of various upsampling methods on the Middlebury stereo
datasets in bad pixel percentage (%). We run these methods on
downsampled ground truth data (half of the original size), and then try to
recover the disparity maps at original size and measure the error
percentage. Nonocc: bad pixel percentage in non-occluded regions; All:
bad pixel percentage in all regions; Disc: bad pixel percentage in regions
near depth discontinuities. . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Results of subjective quality rating tests. . . . . . . . . . . . . . . . . 78

6.1 Quantitative mAP results. Note that we only evaluate within the visible
range of the predicted depth map/point cloud, whereas all other methods
evaluate on the full LiDAR scan. Also, our method and ComplexYOLO
report scores on the random test split while MV3D evaluate on the test set.
Both MV3D and ComplexYOLO scores are reported under the easy
category of the BEV evaluation task. See Section. 6.4 for details. . . . . 95

x



LIST OF FIGURES

1.1 A brief chronicle of visual object detection. The first wave begins with
Itti’s [58] visual attention model. The second wave is started when Liu et
al [88] defined the problem of Salient Object Detection. The third wave is
represented by the series of publications based on the deep convolutional
neural network (CNN) architectures [71, 124]. The topics discussed in this
dissertation are marked in red. . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Overview of topics covered in this dissertation. Our work shows
incremental development from unsupervised to supervised approaches,
and from two-dimensional to three-dimensional space. Each block in this
diagram shows the research work of a chapter in this dissertation. . . . . 3

2.1 Our novel graph structure with superpixels as nodes. The purple and blue
lines represent connections to first and second order neighbors,
respectively. The green lines indicate that each node is connected to the
boundary nodes on four sides of the image. The red lines show that the all
boundary nodes are connected among themselves. See Sec. 2.3.1 for
details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Pipeline of the proposed algorithm, divided into three parts: Graph
Construction (Sec. 2.3), Query Selection (Sec. 2.4.1) and Refinement
(Sec. 2.4.2). Nodes in the graph are superpixels. Weights are based on
color and texture features. Groups of background seeds are selected for
initial saliency based on their influence via the graph structure.
Inconsistent groups of background seeds are eliminated. This estimated
saliency map is refined by passing it again through the system. This
process is repeated at multiple scales and results are fused. . . . . . . . 9

2.3 The effect of our graph model described in Sec. 2.3.1. From left to right:
input image, result using the graph structure proposed by [151], result
obtained using our graph model. Our model performs better since it
encodes background consistency, global contrast and local contrast. . . 12

xi



2.4 Examples where geodesic distance generate more accurate results. From
left to right: input image, results without enforcing the geodesic distance
constraints, results with geodesic constraints. Geodesic distance avoids
missing parts due to color bleeding. . . . . . . . . . . . . . . . . . . . 13

2.5 Quantitative PR-curve and F-measure evaluation of 9 approaches on 3
datasets. The rows from top to bottom correspond to ECSSD, THUS10K
and JuddDB, respectively. Clearly, our approach excels all other
unsupervised approaches and performs favorably against a powerful
supervised approach (DRFI). . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Qualitative evaluation. DRFI is one of the best supervised approaches. All
other approaches shown here are unsupervised. Our model is closely
related to GMR, but gives much better performance. See Sec. 2.5.3 for
details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Quantitative PR-curve and F-measure evaluation of 7 methods on the
PASCAL-S dataset. Note that our method achieves similar or better
F-measure as more compute expensive methods. . . . . . . . . . . . . 23

2.8 Quantitative PR-curve on different design options mentioned in Sec. 2.5.2.
The baseline method (GMR) and final combined method (GraB) are added
to both figures for comparison. . . . . . . . . . . . . . . . . . . . . . 24

3.1 Sample bird and nest detections from a test video sequence . . . . . . . 27

3.2 YOLOB+N detection pipeline (here S = 7, B = 2, and C = 2) . . . . . 28

3.3 Quantitative PR-curves for different datasets . . . . . . . . . . . . . . 34

3.4 (a-b) Sample detection results of YOLOB+N . . . . . . . . . . . . . . . 35

3.5 (c)-(e) Sample tracking results, where blue bounding box is output of
hybrid tracker TrackYOLOB+N , yellow is naive tracker YOLOB+N , and
red is KCF [51] alone (initialized manually) . . . . . . . . . . . . . . . 36

4.1 Sample images from the PASCAL VOC and CUB-200-2011 datasets.
Compared to generic object detection datasets, fine-grained detection
datasets include more close-up photos to include details. . . . . . . . . 39

4.2 Architecture of our network. Our network is based on Faster-RCNN and
branches after ROI Pooling layer for fine-grained classification. . . . . . 41

xii



4.3 Randomly selected sample images from our FGR-4K benchmark.
Compared to the Stanford Cars [70] dataset, our benchmark contains more
real-life images with complex background. . . . . . . . . . . . . . . . 43

4.4 Confusion matrix on the CUB-200 and Stanford Cars datasets. The
vertical axis shows the groundtruth labels while the horizontal axis shows
the predicted labels. Note that our model makes more false positive
predictions on the CUB-200 dataset compared to the Stanford Cars
dataset. This is because CUB-200 contains non-rigid transformations with
larger intra-category variance on object pose and appearance. . . . . . . 47

4.5 Quantitative PR-curves for Bird and Car class on PASCAL VOC07 and
PASCAL VOC12 validation datasets. . . . . . . . . . . . . . . . . . . 49

4.6 t-SNE visualization [92] of features extracted from the joint model on
Stanford Cars test set (Best viewed zoomed in and in color). The
similarities are calculated purely based on visual feature embeddings. This
illustrates that our joint model is able to preserve fine-grained semantics
information after dimensionality reduction. . . . . . . . . . . . . . . . 50

4.7 Precision-recall curve of our joint model on the FGR-4K dataset (Best
viewed electronically). Left: PR curve on the top-performing 30 classes.
Right: PR curve on the lowest-performing 30 classes. Note that our model
is robust to stricter IoU criterias and the performance starts to degrade
when IoU is increased to more than 0.7. . . . . . . . . . . . . . . . . . 52

4.8 mAP and TP/FP scores of our joint model on the FGR-4K dataset (Best
viewed electronically). Left: True (green)/False (red) predictions using
our approach. Right: True (green)/False (red) predictions obtained by
Sighthound Cloud API for vehicle recognition [3]. The average mAP of
our approach is 62.59% while the average mAP of the Sighthound Cloud
API is 56.88 %. Note that our model predicts less false alarms comparing
to the Sighthound production model. . . . . . . . . . . . . . . . . . . 53

4.9 Qualitative results on PASCAL VOC 0712 Bird and Car classes [31]. The
labels are learnt from CUB-200-2011 [142] and Stanford Cars dataset
[70], respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xiii



5.1 This diagram shows how our application interacts with the camera system.
Our application accepts user input from the multi-touch screen, sends
multi-shot requests to the sensors with desired parameters and then
transfers the raw stereo image pairs to the stereo matching module. We
then upsample the low-resolution disparity map and synthesize a light
field image array. Finally, we render DoF effects on the screen of the
tablet. We compute the best focal plane by using image statistics
information tagged with the raw image frame. . . . . . . . . . . . . . . 63

5.2 Comparison of our approach and other popular stereo matching
algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Comparison of results using different number of iterations. (a),(b),(c),(d)
are using 0,5,10,20 iterations respectively. . . . . . . . . . . . . . . . . 68

5.4 Evaluation of the disparity maps using different number of Joint Bilateral
Upsampling iterations on the Middlebury stereo dataset. The horizontal
axis shows the number of iterations and the vertical axis shows the bad
pixel percentage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Comparison of our approach and other upsampling algorithms on the
Middlebury cones dataset. . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6 Synthesized light field view, missing pixels are marked in red. (a) input
image (b) warped left side view (c) warped right side view (d) result image
using our hole-filing algorithm, taking (c) as the input. . . . . . . . . . 71

5.7 Comparing rendering results with different sizes of the synthesized Light
Field array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.8 Causes of different boundary artifacts. See Section 6.2 for details. . . . 75

5.9 Comparison between our method and single image blurring. Single image
blurring methods suffer from intensity leakage (a) and boundary
discontinuity (b) artifacts. Our method (c,d) reduces these artifacts. . . . 76

5.10 Input disparity map and rendered images of our system on two frames
from the same stereo video sequence. . . . . . . . . . . . . . . . . . . 79

5.11 Input disparity map and rendered images of our system on two real scenes
with the same arrangements as Figure 11. . . . . . . . . . . . . . . . . 80

xiv



5.12 Our result on a skateboard scene at 6MP captured by Fujifilm FinePix
Real 3D camera. Courtesy of Design-Design [27]. . . . . . . . . . . . 81

5.13 example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1 Sample output and intermediate results from our pipeline (Best viewed
electronically). Top left: Our predicted 3D bounding boxes (red) vs.
ground-truth annotations on the KITTI dataset (green). Top middle:
predicted depth map. Top right: 2D detection results on our depth map
projected to the birds-eye-view (BEV) map. Bottom: Our transformed
point cloud aligned with LiDAR scanlines. The intensity values on our
point cloud are calculated using grayscale intensity values from the input
RGB image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 Architecture of our network. Top left: our CycleGAN based depth
prediction network. Top right: our 3D detection network based on
Complex YOLO. Bottom: our network for inference. Note that for
training our method requires both monocular images and aligned LiDAR
scans. However, for inference we only need monocular images to predict
3D object locations and categories. See Section. 6.3 for details. . . . . . 88

6.3 Bidirectional transforms between LiDAR and camera coordinates (Best
viewed electronically). Top left: LiDAR scans provided by the KITTI
dataset projected to the camera imaging plane, color-coded by depth.
Middle left: LiDAR scans projected to the corresponding RGB image.
Bottom left: predicted depth map with one-to-one mappings to the input
image. Top right: predicted depth map transformed to the LiDAR
coordinates, color-coded by one channel grayscale intensity. Middle right:
LiDAR scan color-coded by intensity/reflectivity. Bottom right: our
transformed point cloud aligned with the LiDAR scan. Note the LiDAR
has a much wider field of view (FOV). . . . . . . . . . . . . . . . . . 90

6.4 Training loss visualization using TensorBoard [6]. Top: training loss on
class labels, Euler region proposals Middle and Bottom: training loss on
object length, object width, horizontal and vertical locations. See Section.
6.4 for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5 Feature map visualization (Best viewed electronically). Top two rows:
Our combined BEV feature map, density map, height map and grayscale
intensity map. Bottom two rows: Feature map, density map, height map
and intensity map on corresponding LiDAR scans used by Complex
YOLO [116]. See Section. 6.3.2 for details. . . . . . . . . . . . . . . . 97

xv



6.6 Dataset statistics and precision-recall curve. Left: Number of objects per
class in the KITTI dataset. Right: mean Average Precision (mAP) values
on the car, truck, van and tram classes across varying
Intersection-over-Union (IoU) values. Note that the performance of our
model is robust to stricter IoU criterias and the performance only begins to
significantly degrade when IoU is bigger than 0.6. . . . . . . . . . . . 99

6.7 Qualitative results on the KITTI dataset. Left: our 3D bounding box
predictions (red) vs. ground-truth (green) annotations projected to the
camera imaging plane. Right: our 2D bounding box predictions (red) on
the BEV map vs ground-truth (green) annotations. Note that the camera
optical axis is facing down on the BEV map for better visualization. See
Section. 6.5 for details. . . . . . . . . . . . . . . . . . . . . . . . . . 101

xvi



ABSTRACT

In recent years, emerging technologies such as deep learning have become critical

in enabling robots to interact with complex real-world environments. This dissertation is

focused on developing new algorithms to improve object detection for mobile robots. We

start by exploring unsupervised algorithms to detect class-agnostic object saliency using a

novel graph model. Next, we enable detection of class-specific objects and extend it to

tracking. Furthermore, we demonstrate a joint learning scheme for simultaneous detection

and fine-grained classification. Finally, we present a framework to perform 3D visual object

detection on monocular images.

Firstly, we propose an unsupervised class-agnostic object detection approach by ex-

ploiting novel graph structure and background priors. The input image is represented as an

undirected graph with superpixels as nodes. Feature vectors are extracted from each node

to cover regional color, contrast and texture information. A novel graph model is proposed

to effectively capture local and global saliency cues. To obtain more accurate results, we

optimize the saliency map by using a robust background measure. Comprehensive evalua-

tions on benchmark datasets indicate that our algorithm universally surpasses state-of-the-art

unsupervised solutions and performs favorably against supervised approaches.

Secondly, we show a deep visual object detector without using object proposals. We

modify a generic object detection network to train deep neural networks (DNN) models for

bird and nest categories and extend it to enforce temporal continuity for tracking. The system

shows satisfactory speed and accuracy for both detection and tracking. We also contribute

a new dataset for nest detection. The proposed detector is well-suited for environmental

robotic applications which demands real-time performance.

Next, we demonstrate a unified framework to detect and classify fine-grained objects.

To evaluate performance, we have created a new benchmark for fine-grained recognition.
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Experiments show that our approach performs favorably against competitive methods. Our

network structure provides more desirable characteristics for practical computer vision ap-

plications and reaches a good balance between the model size, computational complexity,

and accuracy.

Moreover, we extend our work to RGB-D datasets and begin by introducing an algo-

rithm to produce 3D shapes of a scene on a mobile device. The algorithm leverages stereo

cameras to generate a full resolution depth map of the scene, recording 3D geometry in-

formation. Quantitative analysis showed that this new 3D imaging algorithm consistently

outperformed the existing methods. We also show a novel scheme for rendering dynamic

Depth of Field (DoF) effects based on the generated depth map.

Lastly, we develop a framework to detect and classify 3D objects from monocular im-

ages. Experiments show that our approach performs favorably against competitive methods

trained on LiDAR data. Our method leverages generative adversarial networks (GANs) to

perform monocular depth estimation. The GAN approach is more flexible in terms of extend-

ing to other computer vision tasks. Also, we integrate both visual and structural cues into the

feature map representation, which distinguishes our method from those purely operating on

LiDAR data, and those who learn depth from a monocular image but still perform detection

on the pseudo LiDAR data (ignoring visual information). Our system can be used to add vi-

sual intelligence to smart vehicles, which is particularly useful for improving camera-based

advanced driver-assistance systems (ADAS) for L3 level autonomy. Also, our system could

be used as a supplementary or fall-back option to LiDAR sensors.
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Chapter 1

INTRODUCTION

Visual object detection is a complex task which deals with localizing, counting, and

recognizing semantic objects of certain classes. Object detection has applications in many ar-

eas, including video analysis, face recognition, image retrieval, autonomous driving, robotic

grasping, and so on. The human ability to rapidly detect natural objects in a scene has long

been studied in neuroscience and cognitive psychology, but this task is particularly challeng-

ing for computers.

The literature of visual object detection is vast. One of the earliest visual attention

models is proposed by Itti et al. in 1998 to detect attentive regions in scenes [58]. Inspired

by this model, a series of work [100, 17, 65] are published to investigate salient locations

in natural images, which is later termed Fixation Prediction. The second milestone came at

2007, when Liu et al. defined the problem of Salient Object Detection, which aims at de-

tecting objects by rectangles in an image [88]. This sparks interest in research to extend the

problem to Saliency Map Prediction [135, 44, 109, 141, 151, 78] , which uses a probability

map instead of a binary rectangular map to mark salient objects. Since then, various low-

level features have been shown to be effective for saliency object detection, such as color

contrast, edge density [109], backgroundness [141, 151], objectness [21, 63], focus [63], etc.

Also, multiple benchmark datasets [150, 32, 24, 88, 15, 64] are proposed and a series of su-

pervised approaches [65, 88, 63, 79] show great success by learning visual knowledge from

ground truth annotations. Efforts have also made for Object Proposal Prediction [11, 19] and

Object Subtizing [110, 135, 160]. Recently, it has been shown that deep convolutional neural

network (CNN) architectures such as [71, 124] are able to generate highly efficient abstract

image representations for computer vision tasks. When combined with object proposals
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[113, 38], deep classification networks could be transformed into detection frameworks lo-

cating and classifying object instances at the same time. More recently, detection systems

have adopted region proposal networks to learn ground-truth locations [89, 108, 105, 106],

enabling a large speed-up. Modern detection algorithms exhibit high detection accuracy,

low-computational cost and real-time performance.

1st wave: Itti et al.
Attention model
1998

Saliency map prediction

Object Proposal 
Prediction

Object Subtizing Object detection

2nd wave: Liu et al.
Saliency object detection
2007

3rd wave: Krizhevsky et al.
Deep models
2012

4 sailboatsailboatsailboat

input image

RGB-D
detection

Figure 1.1: A brief chronicle of visual object detection. The first wave begins with Itti’s [58]
visual attention model. The second wave is started when Liu et al [88] defined the problem
of Salient Object Detection. The third wave is represented by the series of publications
based on the deep convolutional neural network (CNN) architectures [71, 124]. The topics
discussed in this dissertation are marked in red.

In this dissertation, we focus on developing algorithms to improve object detection

accuracy. We exploit 3 different approaches, from manifold learning to deep and adversarial

learning. Firstly, we introduce an unsupervised, bottom-up method to detect class-agnostic

object regions in an image. Next, we move to supervised learning and show a method to

detect class-specific objects with extension to tracking on video frames using convolutional

neural networks. We make further developments to this network to enable joint learning of

object detection and fine-grained classification. Finally, we move to RGB + depth data for

richer representation. We begin by showing a method to acquire and refine depth maps on
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a mobile device. Then, we introduce a framework for detecting 3D objects on monocular

images.

Depending on the perspective, our approach to visual object detection can be viewed

as incremental development from unsupervised (Chapter 2) to supervised (Chapter 3, 4, 6)

and from 2D (Chapter 2, 3, 4) to 3D (Chapter 5, 6). An overview of the topics covered in

this dissertation can be found at Fig. 1.2. We make reference to previously published work

here: [139, 136, 137, 138].

1 Class-agnostic Saliency 
Object Detection 

2 Class-specific Object 
Detection Via Deep CNN

3 Joint Learning for Object 
Detection and Fine-grained 

Classification

   

5 Adversarial Learning For 3D 
Visual Object Detection From 

Monocular Images

4  RGB-D Data Acquisition And 
Refinement On A Mobile Device

2D

3D

Manifold Learning

Deep Learning

Adversarial Learning

Figure 1.2: Overview of topics covered in this dissertation. Our work shows incremen-
tal development from unsupervised to supervised approaches, and from two-dimensional to
three-dimensional space. Each block in this diagram shows the research work of a chapter
in this dissertation.
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1.1 Statement

This dissertation focuses on exploring graph-based manifold ranking, deep convolu-

tional neural networks and generative adversarial networks to improve mean Average Preci-

sion (mAP) scores on 2D and 3D object detection benchmark datasets.

1.2 Contributions

A Novel Graph Model for Manifold-Ranking We present a novel graph model for salient

object detection. Our graph model incorporates local and global contrast and naturally en-

forces the background connectivity constraint. The proposed feature distance metrics effec-

tively and efficiently combine local color and texture cues to represent the intrinsic manifold

structure. The proposed model achieves state-of-the-art results.

Detection and Tracking of Class-Specific Objects We have presented a deep CNN sys-

tem specialized for bird and nest detection and tracking that exhibits excellent accuracy and

speed. The proposed system modifies the loss term on the existing YOLO framework and

introduces a way to integrate detection with a real-time tracker to improve tracking perfor-

mance.

Joint Learning for Object Detection and Fine-grained Classification We propose an ap-

proach for joint object detection and fine-grained classification. Despite recent achieve-

ments in both fine-grained classification and object detection, few works have demonstrated

datasets or solutions to simultaneously handle both tasks. We make two contributions to this

problem. Firstly, we construct a fine-grained classification and detection benchmark. Sec-

ondly, we show an end-to-end convolutional neural network (CNN) architecture to detect and

classify fine-grained objects. Experimental results verify that our network perform favorably

against alternatives.

Acquisition and Refinement of Depth Maps on a Mobile Device We implemented a sys-

tem to calculate and refine depth maps on an off-the-shelf tablet with dual cameras. The sys-

tem can be easily ported to other mobile devices with limited computational power. We con-

ducted extensive experiments to obtain the optimal combination of methods and parameters.
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We experimented with Graph Cuts for depth map calculation, Joint Bilateral Upsampling for

depth map refinement and the system is capable of working with a variety of scene structures

and illumination conditions. Quantitative evaluations show that the proposed method can be

used to improve existing stereo matching results. We also proposed a scheme for rendering

dynamic Depth of Field (DoF) effects using the output depth map.

Adversarial Learning for 3D Visual Object Detection from Monocular Images We pro-

pose a novel approach to predict accurate 3D bounding box locations on monocular images.

We first train a generative adversarial network (GAN) to perform monocular depth estima-

tion. The ground truth training depth data is obtained via depth completion on LiDAR scans.

Next, we combine both depth and appearance data into a birds-eye-view representation with

height, density and grayscale intensity as the three feature channels. Finally, We train a

convolutional neural network (CNN) on our feature map leveraging bounding boxes anno-

tated on corresponding LiDAR scans. Experiments show that our method performs favorably

against baselines.

1.3 Blueprint of the Dissertation

The rest of this dissertation is organized as follows.

Chapter 2 discusses an unsupervised approach for class-agonistic salient object de-

tection. The proposed approach is based on a novel graph model and background priors.

In Chapter 3, we introduce a method for visual object detection via deep convolu-

tional neural networks. We also extend this framework to enforce temporal continuity for

tracking.

In Chapter 4, we demonstrate a joint framework to detect and classify fine-grained

objects. We also created a new benchmark to evaluate this task which we term fine-grained

recognition.

In Chapter 5, we move from 2D to the 3D domain. To begin with, we introduce an

algorithm to capture accurate 3D data on a low-cost mobile device. We also show how to

render DoF effects based on captured depth maps.
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In Chapter 6, we develop a novel framework for detecting and classifying 3D objects

from monocular images. We show depth map prediction via adversarial learning and propose

a scheme for feature map generation. Our trained detector only requires a monocular image

as input and has its unique advantage comparing to LiDAR-based methods.

Chapter 7 draws a conclusion to this dissertation and points out potential future di-

rections.

6



Chapter 2

CLASS-AGNOSTIC SALIENT OBJECT DETECTION VIA A NOVEL GRAPH
MODEL

In this chaper, we propose an unsupervised class-agnostic salient object detection

approach by exploiting novel graph structure and background priors. The input image is

represented as an undirected graph with superpixels as nodes. Feature vectors are extracted

from each node to cover regional color, contrast and texture information. A novel graph

model is proposed to effectively capture local and global saliency cues. To obtain more

accurate saliency estimations, we optimize the saliency map by using a robust background

measure. Comprehensive evaluations on benchmark datasets indicate that our algorithm

universally surpasses state-of-the-art unsupervised solutions and performs favorably against

supervised approaches.

2.1 Introduction

Humans are able to rapidly identify the visually distinctive objects in a scene. This

fundamental capability has long been studied in neuroscience and cognitive psychology. In

the computer vision community, researchers focus on similar tasks to determine regions

that attract attention from a human perception system. The selected regions contain finer

details of interest and can be used for extraction of intermediate and higher level information.

Therefore, a fast and robust saliency detection algorithm can benefit various other vision

tasks.

The literature of saliency map estimation is vast. However, most existing approaches

can be categorized into unsupervised (typically bottom-up) [44, 109, 141, 151, 78] and su-

pervised (typically bottom-up, but more recent approaches are a combination of top-down

and bottom-up) [65, 88, 63, 79] approaches.
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Figure 2.1: Our novel graph structure with superpixels as nodes. The purple and blue lines
represent connections to first and second order neighbors, respectively. The green lines
indicate that each node is connected to the boundary nodes on four sides of the image. The
red lines show that the all boundary nodes are connected among themselves. See Sec. 2.3.1
for details.

While supervised approaches are able to automatically integrate multiple features

and in general achieve better performance than unsupervised methods, it is still expensive

to perform the training process, especially data collection. Also, compared to traditional

special-purpose object detectors (e.g. pedestrian detection) where objects under the same

class share some consistency, the salient objects from two images are often found vastly

different in terms of visual appearance, especially when the object can be anything. Further-

more, the process of generating pixel-wise ground truth annotations itself is expensive and

labor-intensive, and sometimes may even be impossible considering the scale of today’s mas-

sive long-tailed visual repositories. This is typically the case in large e-commerce scenarios.

A fast saliency technique can be an essential preprocessing step for background removal or

object/product detection and recognition in large ecommerce applications.

In this chapter, we propose an unsupervised bottom-up saliency estimation approach.

Our method is based on the remarkable success of the spectral graph theory. We focus

on the core elements of spectral clustering algorithms. Specifically, we introduce a new

graph model which captures local/global contrast and effectively utilizes the boundary prior.

Inspired by ISOMAP manifold learning [127], we introduce geodesic distance to calculate

the weight matrix. This constraint maximally enforces the background connectivity prior.
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Input pyramid  𝐼 Feature extraction

J

Final Result 𝑆‡

Graph Construction

Refinement

Graph construction 

L*a*b

LM filter

Query Selection

Multiscale fusion

𝐹𝑖

𝐵𝑖

𝑦

𝑓†

𝑓‡

Initial result 𝑆†

Figure 2.2: Pipeline of the proposed algorithm, divided into three parts: Graph Construction
(Sec. 2.3), Query Selection (Sec. 2.4.1) and Refinement (Sec. 2.4.2). Nodes in the graph are
superpixels. Weights are based on color and texture features. Groups of background seeds
are selected for initial saliency based on their influence via the graph structure. Inconsistent
groups of background seeds are eliminated. This estimated saliency map is refined by pass-
ing it again through the system. This process is repeated at multiple scales and results are
fused.

Furthermore, we exploit boundary prior for selecting seeds to perform an initial background

query. The resulting saliency map is further used to generate seeds to perform another query

to obtain the final saliency map. As we will demonstrate empirically, the proposed method

universally outperforms state-of-the-art unsupervised methods (e.g. GMR [151] ) by a large

margin, and in some cases even excels supervised methods (e.g. DRFI [62]). Our claim is

that the proposed graph model provides more desirable characteristics for saliency detection

and achieves unprecedented balance between computational complexity and accuracy.

2.2 Related Work

The core of our work is closely related to graph-based manifold ranking as in [151],

geodesic distance as in [141], boundary prior sampling as in [78] and multi-scale fusion as

in [150].
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Supervised vs. Unsupervised Unsupervised methods [44, 109, 141, 151, 78] aim

at separating salient objects by extracting cues from the input image only. To date, various

low-level features have been shown to be effective for saliency detection, such as color con-

trast, edge density [109], backgroundness [141, 151], objectness [21, 63], focus [63], etc.

By eliminating the requirement of training, unsupervised methods can be easily integrated

into various applications. In contrast, supervised approaches [65, 88, 63, 79] acquire visual

knowledge from ground truth annotations. Recent advances in deep learning show promis-

ing results on benchmark datasets [79]. However, it is expensive to collect the hand-labeled

images and set up the learning framework.

Graph-based Models Graph-based approaches have gained great popularity due to

the simplicity and efficiency of graph algorithms. Harel et al. [44] proposed the graph

based visual saliency (GBVS), a graph-based saliency model with multiple features to ex-

tract saliency information. Chang et al. [21] present a computational framework by con-

structing a graphical model to fuse objectness and regional saliency. Yang et al. [151] rank

the similarity of superpixels with foreground or background seeds via graph-based manifold

ranking. This method is further improved by Li et al. to generate pixel-wise saliency maps

via regularized random walks ranking [78].

Center vs. Background Prior Recently, more and more bottom-up methods prefer

to use the image boundary as the background seeds. This boundary prior is more general

than previously used center prior, which assumes that the saliency object tend to appear near

the image center [65, 88]. Wei et al. [141] define the saliency of a region to be the length

of its shortest path to the virtual background node. In [171], a robust background measure is

proposed to characterize the spatial layout of an image region with respect to the boundary

regions.
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2.3 Graph Construction

Our approach is based on building an undirected weighted graph for superpixels. We

first segment the input image I into n superpixels S = {s1, s2, ..., sn} via the Simple Linear

Iterative Clustering (SLIC) [7] algorithm. For each superpixel s, we extract color and texture

information to form a regional feature descriptor r. A metric is proposed to calculate the edge

weight between two given descriptors. Next, we construct a graph G = (V , E) (see Fig. 2.1)

where V is a set of nodes corresponding to superpixels S, and edges E are constructed using

the proposed graph model. E is quantified by a weight matrix W = [wij]n×n where the

weights are calculated using distances between extracted feature descriptors. In Sec. 2.3.1,

we describe our newly proposed graph model and in Sec. 2.3.2 we show how to extract

regional features and calculate the weight matrix W .

2.3.1 Proposed Graph Model

Given a set of superpixels S , we start by building a k-regular graph where each node

is only connected to its immediate neighbors. We define the adjacency matrix of the initial

graph G to be A = [aij]n×n. If aij = 1, then the nodes si and sj are adjacent, otherwise

aij = 0. As G is undirected we require aij = aji. B ∈ S denotes a set of boundary nodes

containing |B| superpixels on the four borders of the input image. For robust purposes, we

only choose to use three borders, and the selection of borders is described in Sec. 2.4.1. We

subsequently add edges to the initial graph G to build a new graph model with the following

rules: 1) Each node is connected to both its immediate neighbors and 2-hop neighbors; 2)

We add edges to connect each node to boundary nodes on the four sides of the image. The

weight for each edge is divided by the number of boundary nodes; 3) Any pair of nodes

on the image boundary is considered to be connected. We denote the above three rules by
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R1, R2 and R3, and the final edge set E = {E1, E2, E3} can be obtained as:

R1 : E1 = {(si, sj)|si, sj ∈ S, aij = 1}

∪ {(si, sk)|sk ∈ S, akj = 1},

wij = weight(ri, rj).

R2 : E2 = {(si, sj)|si ∈ S, sj ∈ B},

wij = weight(ri, rj)/|B|.

R3 : E3 = {(si, sj)|si, sj ∈ B},

wij = weight(ri, rj).

(2.1)

The structure of our graph model is shown in Fig. 2.1. Since neighboring superpixels are

more likely to be visually similar, R1 enables us to effectively utilize local neighborhood

relationships between the superpixel nodes. R2 connects each node to all boundary nodes,

enforcing the global contrast constraint. Since the number of boundary superpixels may be

large, we average the edge weights, making the total contribution of boundary nodes equiv-

alent to only one single superpixel. R3 enforces the graph to be a closed-loop. Combined

with R2 which connects each superpixel to boundary nodes. R3 further reduces the geodesic

distance of two similar superpixels.

Figure 2.3: The effect of our graph model described in Sec. 2.3.1. From left to right: input
image, result using the graph structure proposed by [151], result obtained using our graph
model. Our model performs better since it encodes background consistency, global contrast
and local contrast.
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Figure 2.4: Examples where geodesic distance generate more accurate results. From left to
right: input image, results without enforcing the geodesic distance constraints, results with
geodesic constraints. Geodesic distance avoids missing parts due to color bleeding.

2.3.2 Feature Extraction

In this section, we detail the process of extracting feature descriptors from each super-

pixel. This process is crucial to the estimation of the final saliency map as the edge weights

are calculated by comparing the feature descriptors of two nodes. A good feature descriptor

should exhibit high contrast between salient and non-salient regions. In our work, we mainly

adopt two kinds of features: color and texture. For color features, we consider mean color

values and color histograms in the CIELAB [53] color space for each superpixel. For texture

features, we use responses from the Leung-Malik (LM) filter bank [77]. Let vlab, hlab, htex

be the mean L*a*b* color, L*a*b* histogram and max LM response histogram of superpixel

s, we define the distance between two superpixels as:

dist(ri, rj) =λ1||vlabi − vlabj ||+ λ2 χ
2(hlabi , hlabj )

+ λ3 χ
2(htexi , htexj ).

(2.2)
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where r = (v, hlab, htex) is the combined feature descriptor for superpixel s, λ1, λ2

and λ3 are weighting parameters, χ2(h1, h2) =
∑K

i=1

2(h1(i)− h2(i))2

h1(i) + h2(i)
is the chi-squared

distance between histograms h1 and h2 with K being the number of bins. The edge weights

can be obtained by the Gaussian similarity function:

weight(ri, rj) =


exp(−dist(ri, rj)/σ2) if aij = 1,

minρ1=ri,ρ2=ri+1,...,ρm=rj∑m−1
ρ=1 weight(ρk, ρk+1) if aij = 0.

(2.3)

where σ is a constant. In the above equation, the second condition considers the

shortest path between nodes i, j. As can be seen from Eq.(2.2), our approach is completely

based on intrinsic cues of the input image. Without any prior knowledge of size of the salient

object, we adopt the L-layer Gaussian pyramid for robustness. The lth-level pyramid I l is

obtained as:

I l(x, y) =
2∑

s=−2

2∑
t=−2

ω(s, t)I l−1(2x+ s, 2y + t), l > 1. (2.4)

where I0 is the original image, ω(s, t) is a Gaussian weighting function (identical at all

levels). The number of superpixels nl = |S l| for the l-th level pyramid I l is set as:

nl =
nl−1

22(l−1) (2.5)

Next, we extract multiscale features rl and build weight matrices W l for each level. The

final saliency estimation is conducted on each level independently and the output saliency

map is combined using results from all levels (see Sec. 2.5.2 for details).

2.4 Background Priors

Given the weighted graph, we can take either foreground or background nodes as

queries [151]. The resulting saliency map is calculated based on its relevance to the queries.
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Algorithm 1 Visual Saliency via Novel Graph Model and Background Priors
procedure INPUT(Input image I and related parameters)

1. Apply SLIC [7] and separate input image I into n superpixels S = {s1, s2, ..., sn},
establish graph structure with Eq. (2.1).

2. Calculate W and D using Eq. (2.2) and Eq. (2.3).

3. Select three borders as query seeds as described in Sec. 2.4.1 and obtain query
vector y = [y1, y2, ..., yn]T .

4. Acquire initial saliency estimation S† using Eq. (2.7), Eq. (2.8) and Eq. (2.9).

5. Optimize S† using Eq. (2.10) and re-apply Eq. (2.7) to obtain the foreground
estimation. Apply Eq. (2.4) and average results across different levels to obtain final
saliency map S‡.

Output: A saliency map S‡ with the same size as the input image
end procedure

Our algorithm is based on background priors, which consists of two parts: the boundary

prior and the connectivity prior. The first prior is based on the observation that the salient

object seldom touches the image borders. Compared to the center prior [65, 88] which

assumes that the salient object always stays at the center of an image, the boundary prior

is more robust, which is validated on several public datasets [141]. In our work, we choose

three out of four borders as background seeds to perform queries [78]. This is because the

foreground object may completely occupy one border of an image, which is commonly seen

in portrait photos. Therefore, eliminating one border which tends to have a very distinct

appearance generates more accurate results. The second prior is based on the insight that

background regions are usually large and homogeneous. Therefore, the superpixels in the

background can be easily connected to each other. This prior is also applicable for images

with a shallow depth of field, where the background region is out of focus. The rest of

this section is organized as follows: Sec. 2.4.1 elaborates the detailed steps of the initial

background query and Sec. 2.4.2 illustrates a refinement scheme based on the connectivity

prior.
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Table 2.1: Ablation study on adding different components to the baseline GMR [151] algo-
rithm (Sec. 2.5.2). All results correspond to ECSSD. GF = guided filter [48], RTV = texture
smoothing using relative total variation [149], EBR = erroneous boundary removal [78],
RPCA = robust PCA [18], LAB = CIELAB color [53], HIST = L*a*b* histogram, LM =
Leung-Malik filter bank [77], LBP = local binary patterns [98], AVE = simple averaging, HS
= hierarchical saliency [150], GMR = graph based manifold ranking [151], BC = boundary
connection, GEO = geodesic distance. Methods included in the final pipeline are marked in
bold.

Evaluation
Preprocessing Sampling Features Scaling Graph
GF RTV EBR RPCA LAB HIST LM LBP AVE HS GMR BC GEO

Precision 0.712 0.716 0.725 0.755 0.731 0.725 0.718 0.614 0.727 0.734 0.731 0.771 0.743
Recall 0.729 0.712 0.723 0.646 0.575 0.631 0.682 0.577 0.710 0.716 0.569 0.626 0.618
F-
Measure

0.713 0.716 0.725 0.745 0.715 0.716 0.715 0.610 0.725 0.733 0.714 0.756 0.730

Runtime
(s)

0.136 2.237 0.011 4.782 0.025 0.031 0.094 0.047 0.002 0.129 0.258 0.327 0.538

2.4.1 Query via the Boundary Prior

To provide more accurate saliency estimations, we first compare the four borders of

the image and remove one with the most distinctive color distribution. We combine boundary

superpixels together to form a single region, and use Eq. (2.2) to compute the distance of any

two of the four regions {Btop,Bbottom,Bleft,Bright}. The resulting 4 × 4 matrix is summed

column-wise, and the maximum column corresponds to the boundary to be removed.

Once the query boundaries are obtained, we can label the corresponding superpix-

els to be background. More formally, we build a query vector y = [y1, y2, ..., yn]T , where

yi = 1 if si belongs one of the four query boundaries, otherwise yi = 0. Given the

weight matrix W = [wij]n×n computed in Sec. 2.3.2, we can obtain the degree matrix

D = diag(d1, d2, ..., dn), where di =
∑

j wij . Let f be the ranking function assigning rank

values f = [f1, f2, ..., fn]T which could be obtained by solving the following minimization

problem:

f †=argmin
f

1

2

 n∑
ij=1

wij

∣∣∣∣∣
∣∣∣∣∣ fi√di− fj√

dj

∣∣∣∣∣
∣∣∣∣∣
2

+µ
n∑
i=1

||fi−yi||2
. (2.6)
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where µ is a controlling parameter. The optimized solution is given in [168] as:

f † = (D − W

µ+ 1
)−1y. (2.7)

Three ranking results f †(b) will be achieved after applying Eq. (2.7), where b corresponds

one of the three borders. Since the ranking results show the background relevance of each

node, we still need to calculate their complement values to obtain the foreground-based

saliency:

Si(b) = 1− f †i (b), i = 1, 2, ..., n. (2.8)

The results are then put into element-wise multiplication to calculate the saliency map:

S† =
∏
b

Si(b). (2.9)

2.4.2 Refinement

In this section, we seek to optimize the result from the previous section. The opti-

mized result will be used as foreground query by applying Eq. (2.7) again. The cost function

is designed to assign 1 to salient region value and 0 to background region. The optimized

result is then obtained by minimizing the following cost function [171]:

f ‡=argmin
f

(
n∑
i=1

Fi(fi−1)2+
n∑
i=1

Bif
2
i +
∑
i,j

wij(fi−fj)2
)
. (2.10)

Where Fi and Bi are foreground and background probabilities, Fi > mean(Si) and Bi <

mean(Si). The three terms are all squared errors and the optimal result is computed by

least-square. The newly obtained f is a binary indicator vector and can be used as seed

for foreground queries. By re-applying Eq. (2.7), we obtain the final saliency map S‡ =

(D − W

µ+ 1
)−1f ‡.
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Figure 2.5: Quantitative PR-curve and F-measure evaluation of 9 approaches on 3 datasets.
The rows from top to bottom correspond to ECSSD, THUS10K and JuddDB, respectively.
Clearly, our approach excels all other unsupervised approaches and performs favorably
against a powerful supervised approach (DRFI).
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Figure 2.6: Qualitative evaluation. DRFI is one of the best supervised approaches. All other
approaches shown here are unsupervised. Our model is closely related to GMR, but gives
much better performance. See Sec. 2.5.3 for details.

2.5 Experiments

2.5.1 Parameter Setup

We set the number of superpixels n to be 200 in all experiments. λ1, λ2 and λ3 in Eq.

(2.2) are set to 0.25, 0.45 and 0.3, respectively. In our experiment, we use a 3 level pyramid,

hence l = 3 in Eq. (2.4). The constant σ in Eq. (2.3) and µ in Eq. (2.6) are empirically

chosen and σ2 = 0.1, 1/(µ + 1) = 0.99. Our method is implemented using Matlab on a

machine with Intel Core i5-2500K 3.3 GHz CPU and 16GB RAM. The mean execution time

is around 800 ms to process a typical 400× 300 image.

2.5.2 Ablation Studies

We start by modifying the GMR framework proposed by [151]. We experiment dif-

ferent design options among five categories: preprocessing, sampling, features, scaling and

graph structure. The individual components are added to the original GMR framework and

quantitative evaluations are conducted on the entire ECSSD dataset (Fig. 2.5 and Fig. 2.8).
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Preprocessing The input images are often composed of objects at various scales with

diverse texture details. Therefore, it is important to remove detrimental or unwanted content.

We choose two edge-preserving filters for testing: guided image filtering [48] and imag-

ing smoothing via relative total variation [149]. The first method performs edge-preserving

smoothing while the second method extracts important structure from texture based on in-

herent variation and relative total variation measures. Quantitative evaluations suggest that

both methods are able to improve the saliency detection results with similar performance.

Sampling Our method estimates saliency by using boundary superpixels as queries.

If the foreground object touches one or more boundaries of the image, then the query re-

sults may be problematic. Therefore, it is important to smartly choose boundary superpixels

as seeds. We tested two schemes for sampling boundary superpixels: erroneous boundary

removal and robust principle component analysis. The details of the first method is illus-

trated in Sec. 2.4.1. The second method is based on the recently proposed rank minimization

model [18]. We randomly sample 25% of all superpixels on each border, and repeat this step

n times. This results in 4n set of query seeds. For each set we apply Eq. (2.7) to estimate

saliency values for all superpixels. We unroll each resulting image into a vector and stack

them into a matrix P . The low rank matrix A can be recovered from the corrupted data

matrix P = A+ E by solving the following convex optimization problem:

min
A,E
||A||∗ + λ||E||1. (2.11)

where || · ||∗ denotes the nuclear norm, || · ||1 denotes the sum of absolute values of matrix

entries, λ is a positive weighting parameter andE is a sparse error matrix. In our experiment,

we set n = 5 and perform the query 20 times for each image to get the initial saliency map

S†. Evaluation on the complete ECSSD dataset shows that RPCA achieves better precision

than erroneous boundary removal.

Features As stated in Sec. 2.3.2, we associate each superpixel with a feature vector

to calculate the weight matrix W . A good feature descriptor should exhibit high contrast

between salient and non-salient regions. In our experiment, we mainly test four different
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features: mean L*a*b* value [53], L*a*b* histogram, responses from the LM filter bank and

local binary patterns (LBP) [98]. Among these features, the mean L*a*b* value is shown

to be effective in [141, 151, 171]. According to Jiang et al. [62], the L*a*b* histogram

is the most important regional feature in their feature integration framework. We are able

to achieve satisfactory precision using the first two features. The LM filter response gives

better overall recall. LBP feature seems to be not as effective as LM texture features in our

case. Therefore, we linearly combine the first three features together to form the final feature

vector.

Scaling In the saliency detection literature, hierarchical models are often adopted

for robustness purpose [150, 62]. Our first experiment is to build an image pyramid, apply

our algorithm to each layer and simply average all maps (Sec. 2.3.1). We subsequently

test the approach proposed in [150]. This method differs from naive multi-layer fusion by

selecting optimal weights for each region using hierarchical inference. Due to the proposed

tree structure, the saliency inference can efficiently be conducted using belief propagation.

Graph Structure We use the model proposed by [151] as a baseline to test variations

on the graph structure. The reference model enforces rule R1 and R3 in Sec. 2.1 and adopts

Euclidean distance as the weighting metric. We conduct experiments on both graph struc-

tures (Sec. 2.3.1) and distance metrics (Sec. 2.3.2). Quantitative evaluations show a major

performance improvement compared to other methodologies.

Combination We have presented 5 different strategies to facilitate more accurate

saliency estimation. However, it is difficult to test all permutations and analyze the interac-

tions between different methods. Therefore, how to optimally combine these methods still

remains non-trivial. For example, the use of guided filter and multiscale averaging alone im-

proves the recall scores. However, when combined together the performance drops slightly.

Also, we choose not to use RPCA-based boundary sampling and belief-propagation based

multi-layer fusion due to speed-accuracy tradeoffs. In our final model we choose not to

perform any texture smoothing and employ the multiscale averaging scheme due to its sim-

plicity and efficacy. The color histogram based erroneous boundary removal scheme is used

for generating the initial queries. The methods we choose to include in the final pipeline are
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marked in bold in Table 2.1. At the core of our algorithm is the newly proposed graph model

and geodesic distance metric as they offer significant performance improvements.

2.5.3 Comparison with State-of-the-Art

Datasets In the experiments, we qualitatively and quantitatively compare the pro-

posed approach with eight state-of-the-art approaches, including DRFI [62], DSR [82], GMR

[151], HS[150], LMLC [148], MC [61], RC [23], SF [102]. It is important to note that be-

sides DRFI, all other methods are unsupervised. The evaluation is conducted on three chal-

lenging datasets: ECSSD, THUS10K and JuddDB. The Extended Complex Scene Saliency

Dataset (ECSSD) [150] contains 1000 semantically meaningful but structurally complex im-

ages from the BSD dataset [12], PASCAL VOC [32] and the Internet. The binary masks

for the salient objects are produced by 5 subjects. THUS10K [24] contains 10000 images

with pixel-level ground-truth labelings from the large dataset (20,000+ images) proposed by

Liu et al. [88]. The JuddDB dataset [15] is created from the MIT saliency benchmark [64],

mainly for checking generality of salient object detection models over real-world scenes with

multiple objects and complex background. Additionally, we compared with all saliency ob-

ject segmentation methods mentioned in [83] and [153] on the PASCAL-S dataset, including

CPMC+GBVS [83], CPMC+PatchCut [153], GBVS+PatchCut [153], RC [23], SF [102],

PCAS [94] and FT [8]. The PASCAL-S is proposed to avoid the dataset design bias, where

the image selection process deliberately emphasizes the concept of saliency [83].

Evaluation We follow the canonical precision-recall curve and F-measure method-

ologies to evaluate the performance of our algorithm using the toolbox provided by [81]. The

PR-curve and F-measure comparisons are shown in Fig. 2.5. Specifically, the PR curve is ob-

tained by binarizing the saliency map using varying thresholds from 0 to 255, as mentioned

in [8, 23, 102, 114]. F-measure is obtained using the metric proposed by [8]:

Fβ =
(1 + β2)Precision×Recall
β2Precision+Recall

(2.12)

Here, the precision and recall rates binarized using an adaptive threshold determined as two
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Figure 2.7: Quantitative PR-curve and F-measure evaluation of 7 methods on the PASCAL-
S dataset. Note that our method achieves similar or better F-measure as more compute
expensive methods.

times the mean saliency of a given image. We set β to 0.3 to emphasize the precision[8, 151,

78].

As can be seen in Fig. 2.5, our method significantly outperforms all seven unsuper-

vised methods by a large margin. Specifically, our method achieved an improvement of 6%

in comparison with the baseline GMR model on the challenging ECSSD dataset. Also, our

method is highly competitive when compared to DRFI on all three datasets. It is worth not-

ing that DRFI takes around 24 hours for training and 10 seconds for testing given a typical

400×300 image [62], whereas our method is fully unsupervised and only takes 800 mil-

liseconds to process a similar image. Furthermore, DRFI takes 2500 images for training

and extracts more than 20 different features, while our method is purely based on the input

image and only uses 3 simple features. In other words, our method is much more efficient

than DRFI yet still capable of maintaining competitive accuracy. The efficacy of our graph

model is self-evident.

Quantitative evaluations on PASCAL-S [83] (Fig. 2.7) show that our method achieves

higher precision, recall and F-measure scores compared to the state-of-the-art CPMC+GBVS

algorithm presented in [83]. Also, our method performs favorably against the more recent

PatchCut method [153] and clearly above all other saliency algorithms. Again, our method is
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Figure 2.8: Quantitative PR-curve on different design options mentioned in Sec. 2.5.2. The
baseline method (GMR) and final combined method (GraB) are added to both figures for
comparison.

training-free and performs much faster than CPMC+GBVS and PatchCut. (CPMC+GBVS

takes around 30s to process a 400× 300 image, according to our experiment; PatchCut takes

around 10s for segmenting a 200 × 200 image, as reported by [153]. Both methods require

extra training/example data).

Our evaluation does not include some of the latest deep-learning methods. The crux

of our method is to propose a novel heuristic model which is able to achieve similar per-

formance to supervised methods like DRFI or CPMC+GBVS without preparing expensive

training data. This provides simplicity and easy-to-use generality in many practical applica-

tions where computing power is limited and ground truth annotations are very expensive or

impossible to acquire.

Fig. 2.6 shows a few saliency maps for qualitative evaluation. We note that the pro-

posed algorithm uniformly highlights the salient regions and preserves fine object boundaries

than other methods.

2.6 Conclusion

We present a novel unsupervised saliency estimation method based on a novel graph

model and background priors. Our graph model incorporates local and global contrast and
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naturally enforces the background connectivity constraint. The proposed feature distance

metrics effectively and efficiently combines local color and texture cues to represent the in-

trinsic manifold structure. We further optimize the background seeds by exploiting a bound-

ary query and refinement scheme, achieving state-of-the-art results. Our future work includes

theoretical analysis on the proposed graph model and its potential towards building better

clustering algorithms. Also, we would like to accelerate our algorithm via parallel comput-

ing, as large-scale spectral clustering has been trivially accomplished in high-performance

graphics hardware [123].
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Chapter 3

DETECTION AND TRACKING OF CLASS-SPECIFIC OBJECTS VIA DEEP
CONVOLUTIONAL NEURAL NETWORKS

In this chapter we present a visual object detector based on a deep convolutional

neural network that quickly outputs bounding box hypotheses. We modify the network for

better performance, specialize it for a robotic application involving bird and nest categories

(including the creation of a new dataset for the latter), and extend it to enforce temporal

continuity for tracking. The system exhibits very competitive detection accuracy and speed,

as well as robust, high-speed tracking on several difficult sequences

3.1 Introduction

Visual object detection is a complex task which entails recognizing, localizing, and

counting objects within an image. The human ability to rapidly detect natural objects in a

scene has long been studied in neuroscience and cognitive psychology [129], but this task

is particularly challenging for computers. Until recently, the best-performing detectors for

objects such as people and cars used combinations of handcrafted image features such as

histograms of oriented gradients [26, 43].

Our motivation in this chapter is not general object detection, but rather to rapidly and

accurately detect and track birds and bird nests in forest scenes for a environmental robotic

application. ”Bird” is a category in the well-known PASCAL VOC dataset [31], a widely-

used benchmark in visual category classification, detection, and segmentation. However,

there is very little previous work on visual bird tracking or bird nest detection: [112] applies

morphological analysis to analyze overhead images of poultry, [120] using saliency methods

on visible-wavelength and infrared images to find ground nests in agricultural fields, and

[144] uses shape analysis to find nests as outliers on power poles adjacent to high-speed rail.
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Figure 3.1: Sample bird and nest detections from a test video sequence

In the last few years, standard detection pipelines have been dramatically outper-

formed by deep learning representations. Deep convolutional neural network (CNN) ar-

chitectures such as [71, 124] are able to generate high-level image representations that are

effective for a variety of tasks. However, most CNN-based object detectors operate either in

a sliding window fashion [113] or by generating object ”proposals” separately [131, 172] and

then evaluating these hypotheses. These approaches can achieve good results on difficult de-

tection benchmarks, but are typically fairly slow and not well-suited to real-time deployment

when compared to very fast and accurate special-purpose detectors (such as for pedestrians

[13] and traffic signs [95]) built with other machine learning methods.

More recently, it has been shown that current CNNs have sufficient power to represent

geometric information for localizing objects, opening the possibility of building state-of-

the-art object detectors that rely exclusively on CNNs free of proposal generation schemes

[105, 108, 75]. In such approaches, the network is trained end-to-end to predict both the

appearance and geometric information of an object. At test time, given an input image, the

entire network is only evaluated once instead of evaluating at different locations and scales

of the image, enabling a large speed-up.

Inspired by these examples, in Sec. 2 we build on the general-purpose ”YOLO” de-

tection network [105], which exhibits excellent accuracy and runs at up to 150 Hz by directly
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Figure 3.2: YOLOB+N detection pipeline (here S = 7, B = 2, and C = 2)

outputting detection bounding boxes with confidences. We improve upon the original net-

work by making several modifications, and specialize it by training on only our two classes

”bird” and ”nest.” To this end, we contribution a new dataset for nest detection, described in

Sec. 4.1.

The speed of the detector permits it to be integrated into a real-time tracker. One

advantage of a deep CNN tracker vs. most standard template-based trackers [145] is ”au-

tomatic” initialization: because it has an a priori class concept, it can find the object(s)

itself, and refind it/them if occlusions or mistracking occurs. There has been some recent

work on applying deep learning techniques to visual tracking, or so-called ”deep tracking”

[134, 80, 133], but these are still relatively slow. In Sec. 3 we extend the baseline YOLO

detector to improve the temporal smoothness of the localization estimate while retaining

robustness to object appearance and pose changes.

3.2 Detection

We adapt the 24-layer YOLO network [105] for detection tasks, which we term

YOLOB+N (”YOLO Birds + Nests”). YOLOB+N has approximately the same architec-

ture as the GoogLeNet proposed by [124], except that the inception modules are replaced by

1 × 1 reduction layers + 3× 3 convolutional layers. The full network structure is shown in

Fig. 3.2: it takes a raw input image, resizes it to 448× 448, and outputs the size and location

of bounding boxes for all C classes.

The resized input image is divided into an S×S grid of cells, each of which contains

information on B hypothetical object bounding boxes. Each bounding box is parametrized

by a 5-D vector [x, y, w, h, P (Obj)], where P (Obj) = 1 if the center of any ground-truth
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object bounding box is inside the cell and P (Obj) = 0 otherwise. Each grid cell also

includes a conditional class probability: Pr(c | Obj), where c ∈ {C}. Accordingly, the

class-specific confidence is given by: P (c) = Pr(c | Obj)P (Obj). For each presented

image, the output layer of the network is an S × S × (B ∗ 5 + C) tensor. Non-maximal

suppression is used to remove duplicate detections, followed by thresholding on P (c).

Our modifications are as follows. First, during the training stage, except the final

layer which uses a linear activation function φ, all other layers in YOLOB+N use softplus

activation [28]: φYOLOB+N
(x) = ln(1 + ex). This gives a smoother approximation than the

leaky activation function in the original implementation in [105]. Second, in [105] a term in

the network loss function containing the square roots of the bounding box width and height

is used to address the fact that small deviations in large boxes should weigh less than in small

boxes.

We got better results using normalized coordinates to equally weigh errors between

large and small boxes:

λcoord

S2∑
i=0

B∑
j=0

1objij (
wi − ŵi
ŵi

)2 + (
hi − ĥi
ĥi

)2 (3.1)

3.3 Tracking

A ”naive” YOLOB+N tracker consists of running the detector on each successive

frame independently. As seen in Table 3.1, this approach surpasses a number of recent

trackers benchmarked in [145]. However, it still misses detections in isolated frames, and

the localization is a little noisy, suggesting the introduction of a temporal filter.

We accomplish this by running YOLOB+N and a template-based tracker simultane-

ously, combining them to create a hybrid detector-tracker which we call

TrackYOLOB+N . For the single-object tracker here, we use the very fast kernelized corre-

lation filter (KCF) [51] (coded as ”CSK” in [145]), which maintains a trained linear classifier

for all frames since last initialization. The two threads are combined as follows:

• When YOLOB+N first detects an object, KCF is initialized using the highest-probability

detected bounding box
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• Let Bt
YOLOB+N

and Bt
KCF denote the output bounding boxes at time t of the base detector

and the template tracker, respectively, where B = [x, y, w, h]

• Let ∆(t) = ||Bt
YOLOB+N

− Bt
KCF || be a ”disagreement” measure for each frame that

YOLOB+N has at least one detection, and define a threshold ε = 0.5 ×max(W/S,H/S)

where W ×H are the image dimensions and S is the YOLO detection grid size

• If ∆(t) < ε, the hybrid tracking solution is a linear combination:

Bt
TrackYOLOB+N

= λ1B
t
YOLOB+N

+ λ2B
t
KCF .

Else, clear the training buffer of KCF and fall back to the detector:

Bt
TrackYOLOB+N

= Bt
YOLOB+N

• Finally, if YOLOB+N does not detect an object, the template tracker alone is used:

Bt
TrackYOLOB+N

= Bt
KCF

3.4 Experiments

3.4.1 Dataset

Bird nests We collected 114 images from the web, each containing at least one nest from a

variety of species, for a total of 169 nest instances1. A wide range of scales were included,

from close-ups to very distant views, and image resolutions ranged from 500×333 pixels to

4000×3000. Some examples (with results overlaid) can be seen in Fig. 3.5(a).

Birds We used the bird object category from the 2012 PASCAL VOC dataset [31], a widely-

used benchmark in visual category classification, detection, and segmentation. VOC 2012

has 20 classes; there are 765 images containing birds in the trainval portion of the data, with

1,165 bird instances present. Samples are in Fig. 3.5(b).

Tracking Neither birds nor nests are in standard tracking benchmarks [145], so we prepared

several image sequences from YouTube videos; 3 are presented here. For each, we manually

chose ground truth bounding boxes every 10 frames and linearly interpolated them to gener-

ate annotations for all frames. The first sequence has 540 frames at 1920× 1080 resolution.

1 Full nest dataset available here: http://nameless.cis.udel.edu/data/
nests
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It is taken from a ground-based camera and the dominant motion is a zoom-in on a distant

nest. The second sequence has 310 frames at 1280× 720, and is from a drone flying around

a tree containing a large bird nest. The third sequence has 564 frames at 854× 450, and is a

pan to follow a single bird flapping in front of a complex background. Samples from these

sequences can be seen in Fig. 3.5(c)-(e).

3.4.2 Detection

We set the following parameters for YOLOB+N training: batch size = 64, momentum

= 0.6, decay = 0.001, learning rate = 0.0001, iterations = 5,000. For robustness, we perform

data perturbation during training via random scaling and translations of up to 30% of the

original image size and random adjustment of the exposure and saturation of the image by up

to a factor of 2 in the HSV color space. Our model is pre-trained on the 1000-class ImageNet

classification training set [71] and fine-tuned on the VOC 2012 trainval set containing only

bird images and half of the nest dataset. For testing, detection threshold on P(c)= 0.2, and

the correctness threshold on Intersection over Union (IoU) = 0.5.

Results are summarized in Table 3.1 in terms of mean Average Precision (mAP) [31]

and time in seconds to process each image. For a baseline comparison (denoted ”ImageNet-

CNN”), we used the Caffe reference network [60] with approximately the same architecture

as [71] and selective search to generate 4,000 object proposals per image. The network was

trained and tested on the nest and bird data separately. mAP on both categories was quite low,

and processing time very long. For a more competitive comparison, we refer to the PASCAL

VOC 2012 detection task submissions [5]. At the time of submission, the leader using only

PASCAL VOC data is ”DenseBox”, a VGG16-like CNN which performs end-to-end object

detection [55]. DenseBox’s mAP on the ”bird” category is well below ours, and it is fairly

slow and thus is not suitable for tracking.

When external training data is allowed, the current VOC 2012 detection leader is

”ResNet”, based on a residual network with a depth of over 100 layers [46]. Its ”bird”

mAP is the only submission higher than that of YOLOB+N , but at a cost of considerably

more processing time. However, this number is not directly comparable to ours. All of the
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Table 3.1: mAP %, time on detection, tracking datasets

Nest Bird
Ground
nest

UAV
nest

Flying
bird

s/im

YOLOB+N 97.9 77.2 36.8 62.8 27.8 0.07
ImageNet-CNN 34.5 18.2 32.0
DenseBox [55] 28.8 ≥ 2

YOLO [105] 57.7 0.07
ResNet [46] 84.8 ≥ 2

TrackYOLOB+N 63.8 45.6 77.4 0.07
KCF (”CSK”) [51] 15.9 54.6 74.3 0.001
CT [161] 19.9 59.8 81.4 0.03
SCM [166] 17.5 6.0 75.3 9.61

detectors submitted to [5] are attempting a harder task in that they are trained for C = 20

classes rather than C = 2 as we do. To capture the difference in difficulty, we note the lower

mAP for the original YOLO [105], also using external training data.

We were only able to directly compare ImageNet-CNN to YOLOB+N on the ”nest”

category, but we obtained a higher mAP for it than any algorithm on any other category in

the VOC dataset. This may be because nests are rigid objects with relatively less appearance

variation than other categories.

3.4.3 Tracking

Table 3.1 also shows tracking results for YOLOB+N and TrackYOLOB+N (ε = 60

and λ1 = λ2 = 0.5) as compared to several trackers benchmarked in [145] (others were

measured, but left out for space reasons). The comparison trackers and TrackYOLOB+N

were started on the ground truth bounding box in the first frame, whereas YOLOB+N has to

find the object by itself.

In all of the sequences, both YOLO-based trackers found and followed the object

throughout the sequence, as seen in Figure 3.5(c)-(e). We observe that the ground nest

sequence was most difficult for the comparison trackers, most likely because of its extreme

scale change. TrackYOLOB+N provided the most improvement on the flying bird sequence,

because YOLOB+N did not reliably detect the bird in certain phases of its flapping cycle.
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3.5 Conclusion

In this chapter we have presented a deep CNN system specialized for bird and nest

detection and tracking that exhibits excellent accuracy and speed. Current work focuses

on incorporating scene context (sky/ground/tree segmentations) into the detection process,

bringing more online learning into the tracking process without impacting speed severely,

and extending the tracking to multi-object/class scenarios.
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Figure 3.3: Quantitative PR-curves for different datasets
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(a) Our nest dataset

(b) PASCAL VOC 2012 bird dataset

Figure 3.4: (a-b) Sample detection results of YOLOB+N .
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(c) Ground camera nest video sequence with frame numbers

(d) UAV nest video sequence

(e) Flying bird video sequence

Figure 3.5: (c)-(e) Sample tracking results, where blue bounding box is output of hybrid
tracker TrackYOLOB+N , yellow is naive tracker YOLOB+N , and red is KCF [51] alone
(initialized manually)
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Chapter 4

JOINT LEARNING FOR OBJECT DETECTION AND FINE-GRAINED
CLASSIFICATION

In this Chaper we propose a joint learning approach for object detection and fine-

grained classification. Fine-grained classification is a challenging problem due to subtle

differences between intra-class categories. In practice, fine-grained classification is often

used in conjunction with object detection algorithms to locate and identify object categories.

Despite recent achievements in both fine-grained classification and object detection, few

works have demonstrated datasets or solutions to simultaneously handle both tasks. We

make two contributions to this problem. Firstly, we construct a fine-grained classification

and detection benchmark. Secondly, we show an end-to-end convolutional neural networks

(CNNs) architecture to detect and classify fine-grained objects. Experimental results verify

that our networks perform favorably against alternatives.

4.1 Introduction

Locating and identifying objects is important for many computer vision applications.

For example, one could develop automated computer vision software to process live surveil-

lance videos and recognize brand and model of a vehicle for identifying traffic violations.

For environmental monitoring, locating and recognizing wildlife could generate statistics

to help protecting endangered species. However, even for car enthusiasts or bird-watching

experts, it is still difficult to identify a specific car model or bird species accurately.

Recent advances in deep learning have shown promising results for image classifi-

cation and detection. PASCAL VOC [31] and ImageNet [71] are widely used to evaluate

classification/detection performance. Both datasets provide annotations for generic object
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classification and detection. In contrast to generic object classification, fine-grained classi-

fication aims at identifying objects within the same fine-grained category (or subcategory).

Stanford Cars [70] and Caltech-UCSD Birds 200 (CUB-200) [142] are the two most popular

benchmarks for evaluating such tasks. Comparing to the generic classification task, images in

fine-grained datasets usually exhibit small inter-class and large intra-class variations in visual

appearances. The small inter-class variation is due to the natural of fine-grained classification

task, where all objects belonging to the same category share similar appearances. The large

intra-class variation is introduced by the dataset, where objects are often presented in close-

up photos with a combination of pose, viewpoint, illumination and background changes (see

Fig. 4.1). A simple change in the camera perspective may lead to dramatic visual differences

which could easily fool a neural network model trained on generic classification datasets.

While fine-grained datasets composed of close-ups are often geometrically warped

comparing to photos from generic classification datasets, it enables learning of features more

robust to variations in camera perspective and pose. Humans are able to rapidly identify the

model of a car from key visual features such as the shape of the taillight or logo [154].

However, CNNs struggle on learning the fine details because it only learns the object ap-

pearance and lacks understanding of keypoint location, pose and geometry [59]. Recent

work has shown that CNNs have remarkable capabilities to learn geometry-related informa-

tion in convolutional layers [167, 99], but final fully-connected layers weaken this ability

and tend to keep only category-level information. Based on this finding, researchers propose

several two-stage object detectors [108, 47, 84] to use shared convolutional layers to find

object proposals and output final predictions.

This leads to an open question: can we utilize a single network to learn both object-

level localization information as well as stable fine-grained features invariant to imaging

conditions and pose deformations? We address this question by creating a unified frame-

work to perform fine-grained object recognition, subsuming the problems of object detection

and fine-grained classification. Although many deep learning methods have been proposed

for each task, we are not aware of any framework that directly train on both fine-grained

classification and generic object detection datasets. By learning both spatial locations and
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Figure 4.1: Sample images from the PASCAL VOC and CUB-200-2011 datasets. Compared
to generic object detection datasets, fine-grained detection datasets include more close-up
photos to include details.

intra-class diversities of an object, we enable the network to produce quality feature vec-

tors with high distinctiveness. Additionally, as most convolutional layers in our network are

shared for both tasks, we introduce very little computational overhead to achieve combined

goals of efficiency and accuracy.

The rest of this chapter is organized as follows. Section 4.2 discusses related work.

Section 4.3 details our overall framework based on the proposed method. We show experi-

mental results in Section 4.4 and conclude in Section 4.5.
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4.2 Related Work

Visual Object Classification: Visual object classification aims at predicting class labels

from a given image. Deep convolutional neural networks (DNNs) have led to tremendous

success in visual recognition [71, 50]. Deep networks naturally enforce features from differ-

ent levels and can be trained easily in an end-to-end fashion to reach high accuracy. Highway

Networks [119] were the first to introduce bypassing paths to tackle the gradient vanishing

problem. ResNet further utilizes identity mapping as bypassing paths and achieved remark-

able performance in benchmark datasets such as ImageNet and Microsoft COCO [50]. Ex-

periments have shown that ResNet is able to converge on as many as 1000 layers. In the

mean time, researchers also attempt to make the network wider. [126] proposes wider resid-

ual blocks to achieve better accuracy.

Fine-grained Classification: As a direct extension of the visual object classification prob-

lem, fine-grained recognition is the process of identifying objects within the same category.

It can also be viewed as classifying subcategories. Fine-grained categorization has been ex-

tensively investigated and various fine-grained classification datasets are proposed. These

studies include bird species classification [155, 69] and recognition of car brand, year and

model [70, 154]. [162] was among the first to employ deep object detection networks for

fine-grained classification. [56] leverages a convolutional networks to locate multiple object

parts and a two-stream classification network to encode object and part level information.

Spatial transformer networks [59] explicitly allow spatial manipulation of training data, giv-

ing neural networks the ability to actively transform the region of interest. Other research

directions include attention models and feature pooling. Attention models aim at focusing

the network on only a few distinctive image parts/keypoints [72, 165] while feature pooling

collects second-order or higher-order statistics to form a more distinctive feature vector for

better classification results [86, 67].

Object Detection: Object detection aims at finding locations of object instances in a scene.

Recent work shows CNN has sufficient power to learning geometric representations to pre-

dict both the class label and geometric information of an object [167, 99, 108, 47]. Modern
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Figure 4.2: Architecture of our network. Our network is based on Faster-RCNN and
branches after ROI Pooling layer for fine-grained classification.
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detectors can be categorized as one-stage or two-stage frameworks. The one-stage detection

framework [89, 106] is free of object proposals and can be trained in an end-to-end fashion.

At test time, the entire network is only evaluated once, achieving real-time performance. The

two-stage detection framework [108, 47], on the other hand, includes a class-agnostic region

proposal generator and a classifier. Generally speaking, one-stage frameworks exhibit better

efficiency and run at a higher frame rate, while two-stage frameworks are more accurate and

are capable of locating smaller objects. Also, there is a growing interest in converting these

frameworks into more compact versions for real-time/embedded systems [84].

Weakly-supervised Object Localization: The recent progress of deep learning is largely

due to advances in high-power computing hardware and the availability of large-scale, high-

quality annotated datasets. However, the annotation of ground truth labels is expensive

and labor-intensive, and sometimes even impossible considering the scale of todays mas-

sive visual data. Therefore, it is important to develop unsupervised or weakly-supervised

approaches to enable continuous learning. Researchers have investigated weakly-supervised

object localization by studying maximal activations in the network layers [99, 167]. Our

work attempts to learn from both detection and classification benchmarks without full anno-

tation.

4.3 Approach

4.3.1 Network Architecture

In [108], Ren et al. designed the Faster-RCNN network which is composed of a

Region Proposal Network (RPN) and a backbone CNNs. To improve efficiency, they also

combined the RPN and the CNNs into a single network with a large number of shared layers.

Faster-RCNN exhibits excellent tradeoff of speed and accuracy. It runs at near real-time

speed (5fps) on a single GPU, while achieving state-of-the-art detection accuracy. Although

Faster-RCNN gives perfect results on detection benchmarks, it can not be directly applied

to the task of learning both detection and fine-grained classification. Therefore, we build

upon the Faster-RCNN network architecture and made a few modifications. Firstly, we use

ResNet-101 [50] as the backbone CNNs as it is deeper and gives better accuracy compared to
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Figure 4.3: Randomly selected sample images from our FGR-4K benchmark. Compared to
the Stanford Cars [70] dataset, our benchmark contains more real-life images with complex
background.

the ZF or VGG16 network used in the original paper. Next, we made a new branch after the

ROI Pooling layer for predicting fine-grained categories. Therefore, apart from the original

RPN stream which predicts bounding box coordinates, the additional steam simultaneously

predicts fine-grained class labels. Our network structure is illustrated in Fig. 4.2.

4.3.2 Fine-grained Recognition Benchmark

Existing fine-grained classification benchmarks such as Stanford Cars [70] only con-

tain one object per image. Also, a large portion of the dataset is composed of stock images

with clean/white background. To provide a fair technical benchmark for evaluating fine-

grained classification and object detection performance, We introduce a new dataset called

FGR-4K (Fine-grained Recognition 4K). We plan to open-source this dataset for research

purposes. Our dataset is annotated using the same labels from the Stanford Cars dataset (see

Fig. 4.3). This dataset is constructed for testing only, as training and validation data could
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Algorithm 2 Training Strategy
Parameters:M← CNNs Model

1: D ← Dataset
2:
3: procedure TRAININGSTRATEGY(Dfg+det)
4: Mfg ← LEARNINGPOLICY(MImageNet,Dfg)
5: Mdet ← LEARNINGPOLICY(MImageNet,Ddet)
6: Mjoint ← netsurgery(Mfg,Mdet)
7: Mjoint ← LEARNINGPOLICY(Mjoint,Dfg+det)
8: returnMjoint

9: end procedure

be obtained from Stanford Cars or PASCAL VOC car class. Our dataset provides 3818 im-

ages crawled from Google image search API. These images are filtered to include only those

permitted for commercial reuse. We also run automated deduplication, white background

detection and text detection algorithms to remove images not suitable for annotation. The

deduplication is done by removing images with the same SHA256 checksum on RGB values.

White background is identified by converting the image to a binary map using 33% above its

median pixel value as the threshold. If white pixels occupy more than 50% of the image then

we will remove it from the candidate set. We use the open source text detection library [4]

to remove images detected with any words or letters. After the automatic filtering, we man-

ually clean up the dataset to choose only real-life images with complex background. Next,

we send the candidate set to human annotators to draw rectangles around all car objects that

fall into the given 196 fine-grained categories. Compared to the Stanford Cars dataset, our

benchmark contains more real-life images with complex backgrounds which are challenging

for both fine-grained classification and object detection tasks.

4.3.3 Training Strategy

Because of the high diversity in fine-grained classes, we use on-the-fly data augmen-

tation during training. The augmentation includes random cropping, resizing and rotation

up to 30 degrees. We also included random smooth filtering and JPEG compression varying
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from 50% to 90% quality. The online augmentation is only applied to training while the val-

idation/testing accuracy is still reported on the original dataset. Due to the difficulty in train-

ing initial weights for the whole network, we first train a ResNet model on the fine-grained

dataset and a Faster-RCNN model on the detection dataset separately. Note that these two

networks are using the same ResNet-101 backbone and the only difference between them is

the RPN network inserted between Res4b and Res5a layers. Once both models converge, we

freeze all layers in the detection model by setting learning rate to 0 for all bottom layers be-

low the ROI Pooling layer. Next, we append all top layers above res4b from the fine-grained

model to the detection model as a separate branch and start finetuning the entire network.

We use MSRA initialization [49] and SGD solver for optimization.

During training, we define the maximum number of iterations as max iter and iter-

ations per step as step size. The learning rate will drop by a factor of 10 (i.e. multiplied by

lr decay where lr decay = 0.1 ). Once the step size is reached, the learning rate decreases

by 10. The accuracy jumps when learning rate changes. This is because the solver has been

optimizing at a certain learning rate for a certain number of iterations to find the local opti-

mum. The weight of the whole model stabilizes for the duration of a consistent learning rate.

After the learning rate reduces, it is easier for the neural networks to capture fine details and

increase accuracy. Assuming the initial warm-up learning rate to be lr init, when we reach

the max iter the learning rate will be lr init× lr decaymax iter/step size. When the accuracy

saturates, we will only fine-tune softmax layers to obtain the joint model. We illustrate the

details of our training strategy in Algo. 2.

4.4 Experiments

4.4.1 Fine-grained Classification

We use Caltech-UCSD Birds-200-2011 (CUB-200-2011) [142] and Stanford Cars

dataset [70] for fine-grained classification experiments. The CUB-200-2011 dataset con-

tains 200 fine-grained bird categories with 11788 images. The Stanford Cars dataset con-

tains 16185 images with 196 classes of cars including year, make and model. Details of

the datasets are shown in Table. 4.2. For both datasets, We first fine-tune on the ImageNet
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Dataset Image Class Train Val Object
CUB-200 [142] 11788 200 5994 5794 11788
Stanford Cars [69] 16185 196 8144 8041 16185
VOC Bird [31] 765 1 395 370 1119
VOC Car [31] 1161 1 590 571 2017
FGR-4K 3818 196 N/A N/A 4008

Table 4.1: Dataset Statistics. The PASCAL VOC Bird and Car dataset are derived from the
PASCAL VOC 0712 dataset with only Bird or Car class with all other categories removed.
Our FGR-4K dataset contains 3818 images with 196 labels inherited from the Stanford Cars
dataset. Our dataset aims at providing a technical benchmark for testing purposes only.

CUB-200 Top-1 Stanford Cars Top-1
Xiao et al. [146] 69.7 Krause et al. [69] 92.8
Simon et al. [115] 81.0 Lin et al. [86] 91.3
Kong et al. [67] 84.2 Zhang et al. [163] 88.4
Liu et al. [90] 85.4 Xie et al. [147] 86.3
Ours Initial 81.0 Ours Initial 90.1
Ours Joint 72.6 Ours Joint 86.2

Methods Train Test Bird Car
Faster-RCNN
(VGG16) [108]

VOC 0712 VOC07 70.9 84.7

Faster-RCNN
(ResNet50) [108]

VOC 0712 VOC12 74.3 75.9

SSD300 [89] VOC 0712 VOC07 70.5 76.1
YOLO [106] VOC 0712 VOC12 57.7 55.9
YOLOv2 544 [107] VOC 0712 VOC12 74.8 76.5
Ours (ResNet101) VOC 0712 VOC07 72.0 75.2
Ours (ResNet101) VOC 0712 VOC12 77.9 78.0

Table 4.2: Results on Fine-grained Classification and Object Detection benchmarks. Our
methods handles both tasks at the same time, while performs favorably against alternative
methods designed for each task.
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Figure 4.4: Confusion matrix on the CUB-200 and Stanford Cars datasets. The vertical axis
shows the groundtruth labels while the horizontal axis shows the predicted labels. Note that
our model makes more false positive predictions on the CUB-200 dataset compared to the
Stanford Cars dataset. This is because CUB-200 contains non-rigid transformations with
larger intra-category variance on object pose and appearance.
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ResNet-101 model. The first round is trained from scratch with random weight initialization.

The model is trained with the base learning rate of 0.01, gamma of 0.5, momentum of 0.9

and weight decay of 0.0001. After the first round reaches maximum number of iterations, we

replace all bottom layers except the softmax layer with pre-trained ImageNet weights. The

accuracy of the initial model trained from scratch is 66.0% and the one fine-tuned on Ima-

geNet is 77.8 %. Next, we start fine-tuning this model with the training scheme mentioned

in Sect. 4.3.3. Once the training accuracy is saturated, we fix all bottom layer weights and

only fine-tune the softmax layer. The final accuracy is 81.0%. A comparison to related work

is shown in Table 4.2.

4.4.2 Object Detection

We build our approach based on the state-of-the-art Faster-RCNN [108] detection

framework. We start training the modified Faster-RCNN network explained in Sect .4.3 with

ResNet-101 backend. The weights of ResNet-101 is initialized with pre-trained ImageNet

weights. We train our model with base learning rate of 0.001, gamma of 0.1, momentum

of 0.9 and weight decay of 0.0005. The training is performed on the combined PASCAL

VOC 07+12 dataset on a single class (car or bird). After 1000K iterations the tested mAP is

71.99% on VOC 07 and 77.85% on VOC 12 for the bird class. We repeat the same procedure

for the car class on VOC 07 and 12 and the final mAP for the car class is 75.15% and 78.06%,

respectively. Quantitative evaluations can be found at Table. 4.2. Note that our accuracy is

reported on images only containing the bird or car class with all other annotations removed,

while the accuracy reported by all other algorithms still consider classes other than bird or

car. The precision-recall curves are shown in Fig. 4.5. Qualitative results are shown in Fig.

4.9.

4.4.3 Joint Training

Now that we obtained models for both detection and fine-grained classification, we

start merging the models for joint training. During inference time, the network will produce

bounding box locations in an image, as well as fine-grained class labels for each bounding
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(a) VOC07 Bird (b) VOC12 Bird (c) VOC07 Car (d) VOC12
Car

Figure 4.5: Quantitative PR-curves for Bird and Car class on PASCAL VOC07 and PASCAL
VOC12 validation datasets.
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Figure 4.6: t-SNE visualization [92] of features extracted from the joint model on Stanford
Cars test set (Best viewed zoomed in and in color). The similarities are calculated purely
based on visual feature embeddings. This illustrates that our joint model is able to preserve
fine-grained semantics information after dimensionality reduction.
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box. We freeze all layers in the detection model by setting learning rate to 0 for all bottom

layers below the roi pool5 layer. Next, we append all top layers above res4b from the fine-

grained classification model to roi pool5 layer in the detection model. Because of weight

discrepancies between the original bottom layers and the new bottom layers trained on the

object detection dataset, the test accuracy of the joint model on CUB-200-2011 drops from

81.0% to 67.5%. After joint training for another round (1000K iterations, freezing bottom

layers) the fine-grained classification accuracy goes up to 72.6%. We performed the same

net-surgery and training procedures for the car class. The final classification accuracy for

cars is 86.2%. The detection accuracy stays the same since we are only training the fine-

grained branch with all other weights fixed. We found that this training schedule leads to

the best results comparing to alternative approaches such as adjusting weights for all layers.

The whole training process is illustrated in Algorithm 2. Next, we apply our joint model to

the FGR-4K benchmark dataset. We show the precision-recall curve for the best and worst

performing 30 categories in Fig. 4.7. This is done by varying the IoU threshold from 0.5 to

0.9 and recalculate mAP scores for all classes.

We also compare our model with the commercial vehicle recognition service pro-

vided by Sighthound [3] on the FGR-4K dataset. Since Sighthound API only returns vehicle

brand and model, we remove the year info from both the groundtruth and predicted results

on the FGR-4K dataset for comparison. The final average mAP of our method is 62.59%

while the average mAP of Sighthound is 56.88%. We show True /False predictions for each

fine-grained class in Fig. 4.8. Note that the production Sighthound model is possibly trained

on a enlarged dataset which includes more vehicle models than the FGR-4K dataset.

4.4.4 Analysis

For the fine-grained classification experiments, we show the confusion matrix on

the CUB-200 and Stanford Cars datasets in Fig. 4.4. As shown in Fig. 4.4, the CUB-

200 contains objects with non-rigid transformations and is more challenging compared to

the Stanford Cars dataset. Also, according to Table. 4.2, there is a larger gap between

the classification accuracy of our model and attention-based models [90, 69] on CUB-200
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Figure 4.7: Precision-recall curve of our joint model on the FGR-4K dataset (Best viewed
electronically). Left: PR curve on the top-performing 30 classes. Right: PR curve on the
lowest-performing 30 classes. Note that our model is robust to stricter IoU criterias and the
performance starts to degrade when IoU is increased to more than 0.7.
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Figure 4.8: mAP and TP/FP scores of our joint model on the FGR-4K dataset (Best viewed
electronically). Left: True (green)/False (red) predictions using our approach. Right: True
(green)/False (red) predictions obtained by Sighthound Cloud API for vehicle recognition
[3]. The average mAP of our approach is 62.59% while the average mAP of the Sighthound
Cloud API is 56.88 %. Note that our model predicts less false alarms comparing to the
Sighthound production model.

.
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compared to Stanford Cars. Furthermore, our joint model suffers more accuracy degradation

on the CUB-200 dataset compared to the Stanford Cars dataset. Despite these limitations,

our model is able to learn from two vastly distinctive datasets and demonstrate competitive

performance compared to methods developed for each task. We apply t-SNE visualization

[92] to features extracted from the joint model on Stanford Cars test set and visualize the

embeddings in Fig. 4.6. This illustrates that our joint model is able to preserve fine-grained

semantics information in the high-dimensional space. The t-SNE visualization also indicates

that our learnt features are able to capture visual similarities but is less sensitive to pose

variations. For the FGR-4K dataset, we evaluate the detector performance against varying

IoU thresholds in Fig. 4.7. As can be seen from the figure, the mAP per category only starts

decreasing when IoU is more than 0.7. This shows that our detector is robust to stricter

evaluation criterias, which is generally more desirable for real life vision applications. We

also notice that the best-performing class labels are mostly composed of visually distinctive

car models from different manufacturers, while the lowest-performing classes are more often

from the same manufacturer with similar car-model names. This implies that the current joint

network is good at detecting objects but is still having difficulties capturing small partial

details within the object. Therefore, in the future we could consider adding attention-based

models or feature pooling methods to better handle small details and improve accuracy.

We show qualitative results in Fig. 4.9 (a) by running forward-inference on this

joint model. Note that our model is able to predict fine-grained class labels not present in

the PASCAL VOC dataset. As shown in Fig. 4.9 (a), our joint network predicts accurate

bounding box locations for all bird objects in an image. In addition, our network is good at

recognizing subtle color (e.g. Red headed woodpecker in row 2 column 3, Gray Catbird in

row 2 column 4, Red bellied woodpecker in row 3 column 2 and White crowned sparrow in

row 3 column 3) and shape variations (e.g. difference between Mallard and Herring Gull in

row 3 column 1). In Fig. 4.9 (b), the model is able to recognize subtle differences between

two similar-looking cars with the same color (e.g. ”Jaguar XK XKR 2012” in row 2 column 1

vs. ”BMW M6 Convertible 2010” in row 3 column 4) and partial object with occlusion (e.g.

”Mercedes Benz SL Class Sedan 2012” in row 1 column 5). For object classes not present
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in the Stanford Cars dataset, the network is able to assign a label with a closest visual match

(e.g. ”Dodge Challenger SRT8 2011” in row 1 column 3).

4.5 Conclusion

In this chapter we have presented a framework to detect and classify fine-grained

objects. To evaluate performance, we have created a new benchmark for fine-grained recog-

nition. Experiments show that our approach performs favorably against competitive meth-

ods. In summary, our network structure provides more desirable characteristics for practical

computer vision applications and reaches good balance between the model size, computa-

tional complexity and accuracy. Our system can be used to add visual intelligence to mobile

devices. This feature is particularly useful for ornithologists or car enthusiasts who wish

to identify or search for a particular object of interest. In the future, we plan to leverage

post-training quantization techniques to compress our joint model and enable fast forward-

inference on mobile apps.
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(a) Results on PASCAL VOC 0712 bird class

(b) Results on PASCAL VOC 0712 car class

Figure 4.9: Qualitative results on PASCAL VOC 0712 Bird and Car classes [31]. The labels
are learnt from CUB-200-2011 [142] and Stanford Cars dataset [70], respectively.
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Chapter 5

RGB-D DATA ACQUISITION AND REFINEMENT ON A MOBILE DEVICE

From this chapter on we aim at moving from 2D to 3D space. To begin with, we

introduce an algorithm to capture accurate 3D data on a low-cost mobile device. We calibrate

the stereo cameras and rectify the stereo image pairs through FCam API, then generate a low-

res disparity map using graph cuts stereo matching and subsequently upsample it via joint

bilateral upsampling.

Further, we show a method for realistic depth of field (DoF) rendering using the

captured high resolution disparity map. We generate a synthetic light field by warping the

raw color image to nearby viewpoints, according to the corresponding values in the high-

resolution disparity map. Next, we render dynamic DoF effect on the tablet screen with light

field rendering. The user can easily capture and generate desired DoF effects with arbitrary

aperture sizes or focal depths using the tablet only, with no additional hardware or software

required. The system has been examined in a variety of environments with satisfactory

results.

5.1 Introduction

Recent advances in commodity depth cameras enable the user to capture 3D scene

geometry. This brings huge potential for mobile robotic applications. However, due to cost

and manufacturing constraints, it is still difficult and expensive to integrate 3D sensors into

small hand-held devices like smartphones or tablets.

To address this problem, we develop a an algorithm to calculate and refine depthmaps

on mobile devices with dual-cameras. Because our algorithm works on regular stereo camera

systems, it can be directly applied to existing consumer products such as 3D-enabled mobile

phones, tablets and portable game consoles. We also consider the current status of mobile
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computing devices in our software system design and make it less platform-dependent by

using common libraries such as OpenCV, OpenGL ES and FCam API. We start by using

two cameras provided by the NVIDIA Tegra 3 prototype tablet to capture stereo image pairs.

We subsequently recover high-resolution disparity maps of the scene through Graph Cuts

(GC) [66] and then refine the depthmap using joint bilateral upsampling. We implement

our algorithm on the NVIDIA Tegra 3 prototype tablet under the FCam architecture [9].

Experiments show that our system produces accurate depthmaps in both indoor and outdoor

scenes with various depth ranges.

Also, we demonstrate that DoF effects can be rendered using the proposed approach

on low-cost mobile devices. We first capture stereo image pairs by using the FCam API, then

apply the Graph Cuts stereo matching algorithm to obtain low-resolution disparity maps.

Next, we take raw color images as guide images and upsample the low-resolution disparity

maps via joint bilateral upsampling. Once the high-resolution disparity maps are generated,

we can synthesize light fields by warping the raw color images from the original viewing

position to nearby viewpoints. We then render dynamic DoF effects by using the synthetic

light fields and visualize the results on the tablet screen. We evaluate a variety of real-

time stereo matching and edge-preserving upsampling algorithms for the tablet platform.

Experimental results show that our approach provides a good tradeoff between expected

depth-recovering quality and running time. All the aforementioned processing algorithms

are implemented to the Android operating system and tested on the Tegra 3 T30 prototype

tablet. The user can easily install the software, capture and generate desired DoF effects

using the tablet only, with no additional hardware or software required. The system has been

tested in a variety of environments with satisfactory results.

5.2 Related Work

Since conventional imaging systems are only two-dimensional, a variety of methods

have been developed for capturing and storing light fields in a 2D form. Ives and Lippmann

[87] were the first to propose a prototype camera to capture light fields. The Stanford multi-

camera array [143] is composed of 128 synchronized CMOS firewire cameras and streams
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captured data to 4 PC hosts for processing. Because of the excessive data volume, DoF ef-

fects are rendered offline. The MIT light field camera array [152] uses 64 usb webcams and

is capable of performing real time rendering of DoF effects. However, these camera sys-

tems are bulky and hard to build. Recently, Ng [97] has introduced a new camera design by

placing a microlens array in front of the sensor with distance equals microlens focal length,

wherein each microlens captures a perspective view in the scene from a slightly different po-

sition. However, the spatial resolution near the microlens array plane is close to the number

of microlenses. To overcome this limitation, Lumsdaine and Georgiev [36] introduced the

focused plenoptic camera which trades angular resolution for spatial resolution. An alterna-

tive approach is to integrate light-modulating masks to conventional cameras and multiplex

the radiance in the frequency domain [132]. This design enables the camera sensor to capture

both spatial and angular frequency components, but reduces light efficiency.

As rapid research and development provide great opportunities, hand-held plenoptic

camera has been proven practical and quickly progressed into markets. The Lytro camera

[91, 37] is the first implementation of a consumer level plenoptic camera. Recently, Peli-

can Imaging [101] announced a 16-lens mobile plenoptic camera system and scheduled to

implement it to new smartphones in 2014.

Our work is inspired by the algorithms proposed by Yu et al. [159, 158, 157]. How-

ever, the system proposed in these two papers is bulky, expensive and the algorithm is highly

dependent on the GPU performance, making it hard to transfer the proposed method to small

handheld devices such as cellphones and compact size cameras. The system used by Yu

et al. [159] is composed of a desktop workstation and a customized stereo camera sys-

tem. The desktop is equipped with a 3.2 GHz Intel Core i7 970 6-core CPU and a NVIDIA

Geforce GTX 480 Graphic Card with 1.5 GB memory. Actually, very few laptops on the

market can reach the same level of performance, let alone tablets or cellphones. Also, this

system connects to two Point Grey Flea 2 cameras via a Firewire link. The retail price

for two Flea cameras is around 1500 dollars and the camera itself requires external power

source, professional software for functionalities such as auto exposure, white balancing and

stereo synchronization, which is almost impractical for general users without a computer
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vision background. In addition, most scenes in this paper are indoor scenes with controlled

lighting, and the user is required to tune different parameters on a GUI in order to obtain

a good-looking disparity map in different scenes. In contrast, our software system works

directly on an off-the-shelf tablet which costs less than 400 dollars. Since our algorithm is

implemented under the Android operating system using highly optimized CPU-only func-

tions from OpenCV4Android SDK, it can be easily ported to other handheld Android devices

with limited computational power. Besides, we conducted extensive experiments to obtain

parameters that generate optimal results. Therefore, it’s easy to install and use our software,

no hardware setup or parameter adjustment is required. Furthermore, our system uses Graph

Cuts [16] instead of Belief Propagation (BP) [122] for stereo matching, and is tested working

under complex illumination conditions. According to tests carried out by M. Tappen et al.

[125], Graph Cuts generates smoother solutions compared to BP and consistently performs

better than BP in all quality metrics for the Middlebury [111] Tsukuba benchmark image

pair. To conclude, we made the following contributions:

• We implemented the entire system on an off-the-shelf Android tablet using highly

optimized CPU-only functions from OpenCV4Android SDK. The system can be easily

ported to other mobile photography devices with limited computational power.

• We conducted extensive experiments to obtain the optimal combination of methods

and parameters under the Tegra 3 T30 prototype device. As a result, there is no need

for parameter adjustment and it is easy for the user to install and use our application.

• We experimented with Graph Cuts for disparity map calculation and the system is

capable of working with a variety of scene structures and illumination conditions.

5.3 Overview

5.4 Programmable Stereo Camera

5.4.1 Development Environment

The Tegra 3 T30 prototype tablet is equipped with a 1.5 GHz quad-core ARM Cortex-

A9 CPU and a 520 MHz GPU. It has three sensors. The rear main sensor and secondary
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sensor are identical with a 6 centimeter baseline. The third sensor is on the same side of the

multi-touch screen facing the user. The raw image resolution is 640×360(16:9).

Our software is running under Android 4.1(Jelly Bean) operating system. We use the

Tegra Android Developer Pack (TADP) for building and debugging the application. This

software toolkit integrates Android SDK features to Eclipse IDE by using the Android De-

velopment Tools (ADT) Plugin. ADT extends the capabilities of Eclipse and enables the user

to design graphic UI, debug the application using SDK tools, and deploy APK files to phys-

ical or virtual devices. Since typical Android applications are written in Java and compiled

for the Dalvik Virtual Machine, there’s another toolset called Android Native Development

Kit (NDT) for the user to implement part of the application in native code languages such as

C and C++. However, using the NDT brings certain drawbacks. Firstly, the developer has

to use the NDT to compile native code which hardly integrates with the Java code, so the

complexity of the application is increased. Besides, using native code on Android system

generally does not result in a noticeable improvement in performance. For our application,

since we need to use the FCam API for capturing stereo pairs, OpenCV and OpenGL ES for

image processing and visualization, we implemented most of the code in C++ and run the

code inside the Android application by using the Java Native Interface (JNI). The JNI is a

vendor-neutral interface that permits the Java code to interact with underlying native code

or load dynamic shared libraries. By using the TADP, our workflow is greatly simplified.

We first send commands to the camera using the FCam API, then convert raw stereo image

pairs to cv::Mat format and use OpenCV for rectification, stereo matching, joint bilateral

upsampling and DoF rendering. The final results are visualized on the screen using OpenGL

ES.

5.4.2 The FCam API

Many computational photography applications follow the general pattern of capturing

multiple images with changing parameters and combine them into a new picture. However,

implementing these algorithms on a consumer level tablet has been hampered by a number
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of factors. One fundamental impediment is the lack of open software architecture for con-

trolling the camera parameters. The Frankencamera [9] proposed by Adams et al. is the first

architecture to address this problem. Two implementations of this concept are a custom-built

F2 camera and a Nokia N900 smartphone running a modified software stack to include the

FCam API. Alejandro et al. extended the implementation of FCam API to support multiple

cameras [130] and enables the NVIDIA Tegra 3 prototype tablet to trigger stereo captures.

5.4.3 Calibration, Synchronization and Autofocus

Since the two sensors are not perfectly aligned, we calibrated the stereo pair using

a planar checker board pattern outlined by Zhang [164]. We computed the calibration pa-

rameters and saved them to the tablet hard drive as a configuration file. Once the user starts

the application, it automatically loads the calibration parameters to memory for real-time

rectification. This reduces distortion caused by the optical lens and improves stereo match-

ing results. Even though we obtained rectified image pairs, we still need to synchronize the

sensors since we cannot rectify over time for dynamic scenes. The main mechanism for

synchronizing multiple sensors in FCam API is by extending the basic sensor component

to a sensor array [130]. A new abstract class called SynchronizationObject is also derived

from the Device class with members release and wait for software synchronization. When

the request queue for the camera sensors is being processed, if a wait is found and a certain

condition is not satisfied, the sensor will halt until this condition is satisfied. On the other

hand, if a release is found and the condition is satisfied, the halted sensor will be allowed

to proceed. The FCam API also provides classes such as Fence, MultiSensor, MultiShot,

MultiImage and MultiFrame for the user to control the stereo sensor with desired request

parameters.

In our application, we use the rear main camera to continuously detect the best fo-

cusing position and send updates to the other sensor. Firstly, we ask the rear main lens to

start sweeping the lens. We then get each frame with its focusing location. Next, we sum up

all the values of the sharpness map attached to the frame and send updates to the autofocus

function. The autofocus routine will move the lens in a relatively slower speed to refine
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Figure 5.1: This diagram shows how our application interacts with the camera system. Our
application accepts user input from the multi-touch screen, sends multi-shot requests to the
sensors with desired parameters and then transfers the raw stereo image pairs to the stereo
matching module. We then upsample the low-resolution disparity map and synthesize a light
field image array. Finally, we render DoF effects on the screen of the tablet. We compute the
best focal plane by using image statistics information tagged with the raw image frame.

the best focal depth. Once this process is done, we trigger a stereo capture with identical

aperture, exposure and gain parameters for both sensors. The overall image quality is sat-

isfactory, considering the fact that the size of the sensor is very small and the cost is much

lower than research stereo camera systems such as Pointgreys Bumblebee. Figure 5.1 shows

how our software system interacts with the imaging hardware.

5.5 Disparity Map Generation

Computing depth information from stereo camera systems is one of the core prob-

lems in computer vision. Stereo algorithms based on local correspondences [54, 35] are

usually fast, but introduces inaccurate boundaries or even bleeding artifacts. Global stereo

estimation methods such as Graph Cuts (GC) [16] and Belief Propagation (BP) [122] have

shown good results on complex scenes with occlusions, textureless regions and large depth

changes [111]. However, running these algorithms on full-resolution (1 mega pixel) image
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pairs is still expensive and hence impractical for mobile devices. Therefore, we first down-

sample the raw input image pair and recover a low-resolution disparity map via GC. Next,

we take each raw color image as the guidance image and upsample the disparity map via

joint bilateral upsampling [68].

5.5.1 Graph Cuts Stereo Matching

In order to efficiently generate a high-resolution disparity map with detailed infor-

mation about the scene, we propose a two-step approach. We first recover a low resolution

disparity map on downsampled image pairs with the size of 160×90. Given the low resolu-

tion image pairs, the goal is to find labeling of pixels indicating their disparities. Suppose

f(p) is the label of pixel p; Dp(x) is the data term, reflecting how well pixel p fits its coun-

terpart pixel p shifted by x in the other image; Vp,q(y, z) is the smoothness term indicating

the penalty of assigning disparity y to pixel p and disparity z to pixel q; N is the set of neigh-

boring pixels, the correspondence problem can be formulated as minimizing the following

energy function:

E (f) = argmin
f

(∑
p∈P

Dp (f (p)) +
∑
{p,q}∈N

Vp,q (f (p) , f (q))

)
(5.1)

The local minimization of function (1) can be efficiently approximated using the

alpha-expansion presented in [16]. In our implementation, we set the number of disparities

to be 16 and run the algorithm for 5 iterations. If the algorithm cannot find a valid alpha

expansion that decreases the overall energy function value, it may also terminate in less than

5 iterations. The performance of GC on the Tegra 3 tablet platform can be found at Table

5.1.

To evaluate our scheme, we performed experiments on various stereo image datasets.

The stereo matching methods used here are block matching (BM), semi-global block match-

ing (SGBM) [54], efficient large-scale stereo (ELAS) [35] and Graph Cuts (GC) [16]. Table

5.1 shows the running time of these algorithms on the Tegra 3 tablet and Figure 5.2 shows

the calculated disparity map results. According to our experiments, BM is faster than SGBM

and ELAS on any given dataset, but requires an adequate choice of the window size. Smaller

window sizes may lead to a larger bad pixel percentage while bigger window sizes may
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Table 5.1: Comparing running time (ms) of different stereo matching methods on the Tegra
3 tablet, using the Middlebury Cones dataset. The longer edge is set to 160 pixels and the
number of disparities is set to 16.

Data sets BM SGBM ELAS GC

Tsukuba 15 28 51 189

Venus 13 30 97 234

Cones 19 42 124 321

cause inaccuracy problems on the boundary. Besides, the overall accuracy of disparity val-

ues generated by BM is not very high. As can be seen from Figure 5.2, we can still identify

the curved surface area of the cones from results generated by SGBM and ELAS, but the

same area looks almost flat in BM. SGBM and ELAS are two very popular stereo matching

algorithms with near real-time performance. According to our experiments on the tablet,

they are very similar to each other in terms of running time and accuracy. From Table 5.1

and Figure 5.2 we can see that ELAS generates better boundaries than SGBM on the cones

dataset, but takes more processing time and produces more border bleeding artifacts. The

GC gives smooth transitions between regions of different disparity values. According to Ta-

ble 5.2, the GC algorithm outperforms other algorithms in most of the quality metrics on

the Middlebury datasets. For our application, since the quality of upsampled result is highly

dependent on the precision of boundary values in low resolution disparity maps, we choose

to use GC rather than other methods which runs faster. Another reason is that we are running

the GC algorithm on low-resolution imagery. According to Table 5.1, the running time is

around 250 ms, which is still acceptable compared to ELAS (around 100 ms). In return,

noisy and invalid object boundaries are well optimized and the resulting disparity map is

ideal for refinement filters such as joint bilateral upsampling.
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Table 5.2: Evaluation of different stereo matching methods on the Middlebury stereo datasets
cite in bad pixel percentage (%). The method shown in the last row applies 5 iterations of
Joint Bilateral Upsampling to the downsampled results (half of the original size) of GC, us-
ing the full resolution color image as guidance image. The resolutions of the four datasets
(Tsukuba, Venus, Teddy, Cones) are 384×288, 434×383, 450×375, 450×375, respectively.
If not specified, raw image size of each individual dataset will be the same for the remain-
der of this paper. Nonocc: bad pixel percentage in non-occluded regions; All: bad pixel
percentage in all regions; Disc: bad pixel percentage in regions near depth discontinuities.
.

Tsukuba Venus Teddy Cones

nonocc all disc nonocc all disc nonocc all disc nonocc all disc

BM 10.3 11.9 21.5 12.4 13.9 21.6 16.7 23.1 27.3 7.46 17.2 23.8

SGBM 3.26 3.96 12.8 1.00 1.57 11.3 6.02 12.2 16.3 3.06 9.75 8.90

ELAS 3.96 5.42 17.9 1.82 2.78 20.9 7.92 14.5 22.8 6.81 14.9 17.2

GC 1.94 4.12 9.39 1.79 3.44 8.75 16.5 25.0 24.9 7.70 18.2 15.3

Proposed 1.01 2.83 5.42 0.18 0.59 1.99 6.57 11.2 15.1 3.06 9.70 8.92

Figure 5.2: Comparison of our approach and other popular stereo matching algorithms.
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5.5.2 Joint Bilateral Upsampling

Because the stereo matching process is performed on low resolution stereo image

pairs, the result disparity map cannot be directly used for DoF synthesis. We need to upsam-

ple the disparity map while keeping important edge information.

Bilateral filtering proposed by C. Tomasi et al. [128] is a simple, non-iterative scheme

for edge preserving smoothing which uses both a spatial kernel and a range kernel. However,

for low signal-to-noise ratio (SNR) images, this algorithm cannot keep the edge information

very well. A variant called joint bilateral filter introduced by J. Kopf [68] et al. addresses

this problem by adding the original RGB image as a guidance image. More formally, let p

and q be two pixels on the full resolution color image I; p↓ and q↓ denote the corresponding

coordinates in the low resolution disparity map D
′; f is the spatial filter kernel, g is the

range filter kernel, W is the spatial support of kernel f , and Kp is the normalizing factor.

The upsampled solution Dp can be obtained as:

Dp =
1

Kp

∑
q↓∈W

D
′

q↓f (‖p↓ − q↓‖) g (‖Ip − Iq‖) (5.2)

This method uses RGB values from the color image to create the range filter kernel

and combines high frequency components from the color image and low frequency compo-

nents from the disparity map. As a result, color edges are integrated with depth edges in the

final upsampled disparity map. Since depth discontinuities typically correspond with color

edges, this method can remove small noises. However, it may bring some unwanted effects.

Firstly, blurring and aliasing effects caused by the optical lens are transferred to the dispar-

ity map. Besides, the filtering process may change disparity values in occlusion boundaries

according to high frequency components in the color image, and thus causing the disparity

map to be inaccurate. We address this problem by iteratively refining the disparity map after

the upsampling process is done. As a result, the output image of the previous stage becomes

the input of the next stage.

Figure 5.3 shows results after different number of iterations. The initial disparity

map (see Fig. 5.3 (a)) is noisy and inaccurate because it is generated on low resolution

image pairs. However, if too many iterations are applied to the input image (Fig. 5.3 (d)),

the boundaries of the cup handle starts to bleed into the background, which is a result of
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Figure 5.3: Comparison of results using different number of iterations. (a),(b),(c),(d) are
using 0,5,10,20 iterations respectively.

over-smoothing. Also, more iterations add to the complexity and processing overhead of

the entire application. According to Figure 5.4, the quality of the disparity map can be

improved during the first 5 or 6 iterations. This is because Joint Bilateral Upsampling can

preserve edges while removing noises in the disparity map. However, if the refining process

contains too many iterations, then the disparities of one side of edges starts to bleed into

the other side, causing the bad pixel percentage to go up, especially in regions near depth

discontinuities (refer to the increase of disc values in Figure 5.4). Therefore, a compromise

number of iterations must be chosen. In our application, the number is set to 5. Since

the Middlebury datasets contain both simple scenes like Venus and complex scenes such as

Teddy and Cones, we assume that 5 iterations should return good results under a variety of

scene structures. Generally, it takes around 40 milliseconds to finish the 5 iteration steps on

the tablet. Figure 5.5 illustrates the detailed view of our result compared to other standard

upsampling methods. Because DoF effects are most apparent around depth edges, it is very

important to recover detailed boundaries in the high resolution disparity map. According to

Table 5.3, our method outperforms other methods in all quality metrics and generates better

boundary regions (refer to disc values in Table 5.3) by using the fine details from the high

resolution color image.
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Table 5.3: Evaluation of various upsampling methods on the Middlebury stereo datasets in
bad pixel percentage (%). We run these methods on downsampled ground truth data (half
of the original size), and then try to recover the disparity maps at original size and measure
the error percentage. Nonocc: bad pixel percentage in non-occluded regions; All: bad pixel
percentage in all regions; Disc: bad pixel percentage in regions near depth discontinuities.

Tsukuba Venus Teddy Cones

nonocc all disc nonocc all disc nonocc all disc nonocc all disc

Nearest Neighbor 5.55 6.65 18.3 0.47 1.02 6.56 8.65 9.77 28.2 7.98 9.62 23.7

Bicubic 4.97 5.69 18.7 0.67 0.93 9.32 4.89 5.61 17.8 6.81 7.59 20.6

Bilateral 4.59 5.04 10.8 0.41 0.60 5.75 4.52 5.12 16.3 6.85 8.41 20.5

Proposed 3.08 3.34 7.54 0.25 0.33 3.47 2.41 2.89 8.76 3.45 3.96 10.5

Figure 5.4: Evaluation of the disparity maps using different number of Joint Bilateral Up-
sampling iterations on the Middlebury stereo dataset. The horizontal axis shows the number
of iterations and the vertical axis shows the bad pixel percentage.

5.6 Depth of Field Rendering

Once we obtained the high resolution disparity map, we can proceed to synthesize

dynamic DoF effects. Previous studies suggested that real time DoF effects can be obtained
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Figure 5.5: Comparison of our approach and other upsampling algorithms on the Middle-
bury cones dataset.

by applying a spatially varying blur on the color image and use the disparity value to deter-

mine the size of the blur kernel [73, 74]. However, this method suffers from strong intensity

leakage and boundary bleeding artifacts. Other methods such as distributed ray tracing [25]

and accumulation buffer [42] give more accurate results. However, these methods are com-

putationally expensive and therefore can only provide a limited frame rate.

5.6.1 Synthesized Light Field Generation

In this paper, we use a similar approach to [157] by generating a synthetic light field

on the fly. The main idea is to get the light field image array by warping the raw color image

to nearby viewpoints according to corresponding values in the upsampled high resolution

disparity map. The light field array can then be used to represent rays in the scene. Each ray

in the light field can be indexed by an integer 4-tuple (s, t, u, v), where (s, t) is the image

index and (u, v) is the pixel index within an image. Next, we set the rear main camera as the

reference camera and use the high resolution color image and disparity map for reference

view R00. We then compute all rays passing through a spatial point X with shifted disparity

γ from the reference view. Suppose X is projected to pixel (u0, v0) in the reference camera,

we can compute its image pixel coordinate in any other light field camera view Rst as:

(u, v) = (u0, v0) + (s, t) · γ (5.3)

However, this algorithm may introduce holes in warped views, and this artifact be-

comes more severe when the synthesized baseline increases. To resolve this issue, we start

from the boundary of the holes and iteratively take nearby pixels to fill the holes. Note that

this module is only used for generating pleasing individual views for the user to interactively
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shift the perspective. In the final rendering process, missing rays are simply discarded and

the filled pixels are not used. Figure 5.6 shows warped views of an indoor scene using the

aforementioned warping and hole-filling algorithms.

Figure 5.6: Synthesized light field view, missing pixels are marked in red. (a) input image
(b) warped left side view (c) warped right side view (d) result image using our hole-filing
algorithm, taking (c) as the input.

Since the image formed by a thin lens is proportional to the irradiance at pixel a [121],

if we use Lout(s, t, u, v) to represent out-of-lens light field and Lin(s, t, u, v) to represent in-

lens light field, the pixels in this image can be obtained as a weighted integral of all incoming

radiance through the lens:

a(x, y) '
∑
(s,t)

Lin(s, t, u, v) · cos4 φ (5.4)

To compute the out-of-lens light field, we simply remap the pixel a(x, y) to pixel

(u0, v0) = (w − x, h − y) in the reference view R00. Therefore, we can focus at any scene
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depth with corresponding disparity γf by finding the pixel index in camera Rst using equa-

tion 5.3. Since the direction for each ray is (s, t, 1), we can approximate the attenuation term

cos4 φ as 1
(s2+t2+1)2

, and the irradiance at a can be calculated as:

a(x, y) '
∑
(s,t)

Lout(s, t, u0 + s · γf , v0 + t · γf )
(s2 + t2 + 1)2

(5.5)

Figure 5.7 shows details of the rendered image by using different sizes of the syn-

thesized Light Field array. Since aliasing artifacts are related to scene depth and sampling

frequency [20], we can reduce aliasing in the rendered image by increasing the size of the

synthesized Light Field array.

Figure 5.7: Comparing rendering results with different sizes of the synthesized Light Field
array.

5.6.2 Comparison of our method of single-image blurring

Reducing boundary artifacts is very important as DoF effects are apparent near the

occlusion boundaries. Comparing with single-image blurring methods [73, 74], our light

field based analysis is good at reducing two types of boundary artifacts: the boundary dis-

continuity and intensity leakage artifacts. We summarize four types of boundary artifacts and

analyze them separately. A detailed illustration of the four cases can be found at Fig. 5.8. In

practice, the four cases can occur at the same time within a single scene.

Our analysis is based on the real world scene shown in Fig. 5.8. Consider a woman

in a black dress walking in front of a white building. When we conduct the DoF analysis,
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the camera is either focused at the foreground (the woman) or the background (the building).

For Fig. 5.8 (a, b), we assume the camera to be focused at the background and for Fig. 5.8

(c, d), we assume that the camera is focused at the foreground. For each case, a comparison

of results using different methods is shown at the right side of the images.

Now consider the first two cases shown in Fig. 5.8 (a, b). Suppose Pb is a point on the

background building and its image Ib in the camera is right next to the foreground as shown in

Fig. 9 (a). The ground truth result should blend both the foreground and background points

for calculating Ib to make the transition natural and smooth. However, single image blurring

methods would consider Pb in focus and directly use its color as the value of Ib. This will

result in a boundary discontinuity artifact because of the abrupt jump between foreground

and background pixel values. Our method, however, takes advantage of the synthesized

light field and attempts to use rays originating from both the foreground and background to

calculate pixel value of Ib, and hence generates correct results for this scenario. Similarly,

for a foreground point Pf shown in Fig. 5.8 (b), the ground truth result should blend its

neighboring foreground pixels and a single in-focus background point. Single-image blur-

ring methods will use a large kernel to blend a group of foreground and background pixels,

producing the intensity leakage artifact. In contrast, our method only takes rays needed to

get the value of Pf and is free of intensity leakage artifacts. However, due to occlusion, some

background pixels may be missing. In this case, our method will blend foreground rays and

accessible background rays together. Since the missing rays only occupy a small portion of

all background rays, our method produces reasonable approximations.

For the other two cases (Fig. 5.8 (c,d)), assume that the camera is focused at the

foreground. As shown in Fig. 5.8 (c), the ground truth result should only blend background

pixels. However, because of the blur kernel, the single-image blurring method blends both

foreground and background pixels and thus causing intensity leakage problems. Our method,

on the other hand, only attempts to blend background rays. Similar to the previous case, some

rays are occluded by the foreground. We simply discard these rays and by blending existing

rays together, we are able to reach reasonable approximations of the ground truth. For the

last case, consider a point Pf on the foreground shown in Fig.5.8 (d). Since this pixel is
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considered to be in focus, the single image blurring method will directly use its color and

produce the correct result. Our method collects all rays coming from Pf and these rays are

all accessible. Therefore, our method is also able to get the correct result.

Fig. 5.9 shows results of our method and single image blurring on an outdoor scene.

As mentioned before, our method reduces artifacts on boundary regions compared to single

image blurring approaches. In fact, our method will not cause any intensity leakage prob-

lems. When examining the single image blurring result (Fig. 5.9 (a)), it is very easy to find

intensity leakage artifacts along the boundary, whereas our technique prevents such leakage

(Fig. 5.9 (c)). Also, our method provides smooth transitions from the handbag strips to the

background (Fig. 5.9 (d)) while single image blurring method exhibits multiple discontinu-

ous jumps in intensity values.
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Figure 5.8: Causes of different boundary artifacts. See Section 6.2 for details.

5.7 Results and Analysis

We conducted extensive experiments on both indoor and outdoor scenes. Figure 5.10

and 5.11 shows the results generated by our system under different scene structures and

illumination conditions. Scene 1 and 2 demonstrate our system’s ability of handling real-

time dynamic scenes; Scene 3 shows the result on an outdoor scene with strong illumination

and shadows; Scene 4 displays the result on an indoor scene with transparent and textureless

regions.

The processing speed of different frames vary from less than a second to several hun-

dred seconds, depending on parameters such as number of stereo matching iterations, num-

ber of bilateral upsampling iterations and the size of the synthesized light field array. The

user can keep taking pictures while the processing takes place in the background. Consid-

ering the performance of current mobile device processors, rendering real-time DoF effects

on HD video streams is still not practical. However, this does not prevent users from taking

consecutive video frames and render them offline, as can be seen in scene 1 and 2 of Figure
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Figure 5.9: Comparison between our method and single image blurring. Single image
blurring methods suffer from intensity leakage (a) and boundary discontinuity (b) artifacts.
Our method (c,d) reduces these artifacts.

5.10. Also, since in general the stereo cameras on mobile devices have a small baseline, the

disparity values of pixels in the downsampled images have certain max/min thresholds. We

can reduce the number of disparity labels in the Graph Cuts algorithm and further improve

processing speed without introducing much performance penalty.

We first demonstrate our system in dynamic outdoor scenes. Figure 5.10 shows re-

sults of two frames from the same video sequence. Since we currently do not have any

auto-exposure or High Dynamic Range (HDR) modules implemented, some parts of the

photo are over-exposed. As shown in the photograph, many texture details are lost in the

over-exposed regions, making it challenging for the stereo matching algorithm to recover

accurate disparity values. Moreover, the background lawn contains noticeable shadows and

large portions of the building wall are textureless. This adds to the difficulty of finding pixel

to pixel correspondences. Notwithstanding, our algorithm generates visually good-looking

disparity maps. The edges of the woman’s hand and arm are preserved when they are in
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focus and objects outside of the focal plane are blurred smoothly.

Figure 5.11 scene 3 displays a scene of two women walking in front of a parking lot.

Typically the working range of the tablet sensor is from half a meter to five meters. As a

result, the cars in the parking lot are already approaching the maximum working distance

of the sensor. This, however, does not affect the overall refocusing result as the cars with

similar disparity values are either all in focus (Fig. 5.11 row 2, column 2) or blurred (Fig.

5.11 row 2, column 1). The sidewalk in front of the parking lot has a lot of textureless areas,

making it difficult to achieve coherent disparity values. As a result, the left and right part of

the sidewalk are blurred slightly differently although they are on the same plane (Fig. 5.11

row 2, column 2). Also, because the women in scene 3 are farther away from the camera

compared to the women in scene 1 and 2, the boundaries of women in scene 3 are coarser

and fine details on the bodies are lost. Therefore, foregrounds in scene 3 are more uniformly

blurred compared to scene 1 and 2.

Indoor scenes have controllable environments and undoubtedly aid the performance

of our system. For example, most structures from an indoor scene are within the work-

ing range of our system and typically indoor lighting won’t cause problems such as over-

exposure or shadows. Scene 4 of Figure 5.11 shows results on an indoor scene with transpar-

ent objects and textureless regions. Since our algorithm effectively fills holes and corrects

bad pixels on the disparity map by using the guide color image, the resulting disparity map

looks clean and disparity edges of the chandelier are well preserved (Fig. 5.11 row 3, col-

umn 2). The upper left part of the wall surface is over-exposed and the light bulb in the

foreground almost merged into the background. However, the disparity map still recovers

edges correctly. As can be seen in Figure 5.11 row 4, column 2, the defocus blur fades cor-

rectly from the out-of-focus light bulb regions into the in-focus wall regions, despite the fact

that they are both white and do not have clear boundaries in-between.

The discussion here is based on our own captured data and it is hard to evaluate ren-

dered results because of the lack of ground truth. To address this problem, we conducted

subjective rating tests with twenty people. Among these people, ten have a computer vision
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or graphics background and the remaining have no expertise in the related field. For con-

venience and clarity, the rating is done on a 0-9 scale for measuring the quality of rendered

results. We define the rating as follows: 0 (Not Acceptable), 1 (Acceptable), 3 (Good, but

needs improvement), 5 (Satisfactory), 7 (Very good) and 9 (Excellent). The test results can

be found at Table 5.4. The average rating of the non-expert group is 8.1 and the average

rating from the experts is 5.3. Therefore, the overall quality of the rendered results can be

concluded as satisfactory.

According to Table 5.2, our method returns the best disparity map results in terms of

overall bad pixels percentage. Also, our system correctly handles complex scene structures

with real world illumination conditions. Last but not least, according to result images in Fig-

ure 5.7, we reduce aliasing artifacts in out-of-focus regions by blending multiple synthesized

light field views together.

Table 5.4: Results of subjective quality rating tests.

User ] 1 2 3 4 5 6 7 8 9 10 Average

Non-experts 7 9 9 8 9 8 7 7 9 8 8.1

Experts 5 3 7 6 8 7 1 5 5 6 5.3

Finally, to demonstrate that our algorithm is also capable of generating high quality

DoF effects using high resolution stereo input, we leverage mobile devices Fujifilm FinePix

Real 3D camera to capture a set of stereo images and generate shallow DoF images with

refocus capabilities at 6MP resolution, as shown in Figure 5.12 and 5.13. Current light field

cameras are not capable of generating such high resolution images. Figure 5.12 shows the

scene of a person playing with a skateboard. Our algorithm is able to preserve most of the

depth discontinuities in the scene, such as the edges of the hand, the skateboard and the leg.

Note that the background between the legs is marked as the foreground, leaving artifacts

in the final rendering. This is due to the unsuccessful depth estimation of the Graph Cut

algorithm and our current depth upsampling is largely relying on the initial estimation. In

the future, we plan to employ depth error correction into our upsampling scheme. Figure 5.13

shows a scene of a sculpture in a shopping mall. Dispite the complex occlusion conditions
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Figure 5.10: Input disparity map and rendered images of our system on two frames from the
same stereo video sequence.
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Figure 5.11: Input disparity map and rendered images of our system on two real scenes with
the same arrangements as Figure 11.
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Figure 5.12: Our result on a skateboard scene at 6MP captured by Fujifilm FinePix Real 3D
camera. Courtesy of Design-Design [27].

in the scene, our algorithm is still able to synthesize shallow DoF effects with little artifacts,

such as fussy edges on the stairs.

5.8 Conclusion

In this chapter, we demonstrate that accurate, high-resolution depthmaps can be ob-

tained using low-cost stereo vision sensors on mobile devices. We first capture stereo image

pairs by using the FCam API, then apply the Graph Cuts stereo matching algorithm to ob-

tain low-resolution disparity maps. Next, we take raw color images as guide images and
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Figure 5.13: Our result on a sculpture scene at 6MP captured by Fujifilm FinePix Real 3D
camera. Courtesy of Design-Design [27].
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upsample the low-resolution disparity maps via joint bilateral upsampling. We evaluate a va-

riety of real-time stereo matching and edge-preserving upsampling algorithms for the tablet

platform. Experimental results show that our approach provides a good tradeoff between

expected depth-recovering quality and running time. All the aforementioned processing al-

gorithms are implemented to the Android operating system and tested on the Tegra 3 T30

prototype tablet. The user can easily install the software, capture and generate desired DoF

effects using the tablet only, with no additional hardware or software required. The system

has been tested in a variety of environments with satisfactory results. Also, we generate the

synthesized light field by using a disparity warping scheme and render high quality DoF ef-

fects. Our system efficiently renders dynamic DoF effects with arbitrary aperture sizes and

focal lengths in a variety of indoor and outdoor scenes.
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Chapter 6

ADVERSARIAL LEARNING FOR 3D VISUAL OBJECT DETECTION FROM
MONOCULAR IMAGES

In this chapter, we propose a novel approach to predict accurate 3D bounding box

locations on monocular images. We first train a generative adversarial network (GAN) to

perform monocular depth estimation. The ground truth training depth data is obtained via

depth completion on LiDAR scans. Next, we combine both depth and appearance data into

a birds-eye-view representation with height, density and grayscale intensity as the three fea-

ture channels. Finally, We train a convolutional neural network (CNN) on our feature map

leveraging bounding boxes annotated on corresponding LiDAR scans. Experiments show

that our method performs favorably against baselines.

6.1 Introduction

In the past few years, new types of LiDAR (Light Detection And Ranging) sensors

have been developed for autonomous vehicles. These sensors provide an accurate 3D per-

ception of the surrounding environment in real-time. As a result, several LiDAR-based clas-

sification, detection, and segmentation datasets are made available to public [33, 34]. LiDAR

is popular and advantageous compared to traditional stereo or multi-camera ranging devices

for a variety of reasons. Firstly, LiDAR is able to give accurate measurements invariant

of the ego car distance, while camera based ranging algorithms typically give a degraded

performance on distant objects. This is because the object size reduces quadratically with

distance to the camera for most imaging sensors. Secondly, LiDAR is an active time-of-

flight (ToF) sensing device which works on a variety of objects including specular/metallic

surfaces and textureless regions. Also, depending on the wavelength, LiDAR devices have

certain levels of see-through capability on transparent objects (e.g. cloud, rain, snow). On
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the contrary, computer vision algorithms operating on camera sensors will start to fail when

reflective/textureless/transparent regions increase. Finally, most LiDAR devices give 360-

degree surrounding scans and immediate reading of orientation and distance to the object,

whereas camera sensors usually have limited field-of-view (FOV) and multi-camera calibra-

tion issues, plus additional computation overheads to produce depth maps from raw input

images. In the 2007 DARPA Urban Challenge, a team [96] finished in the second place us-

ing LiDAR alone with no camera sensors involved. Despite its advantages, there are a few

major drawbacks of LiDAR sensors. Firstly, they are typically bulky and expensive for wide

use and deployment. Secondly, even top-of-the-line LiDAR sensors only provide 64 or 128

sparse scanlines across the 3D space, while camera sensors operate at a much higher reso-

lution (typically ranging from 5 to 20 megapixels). Finally, LiDAR signals are inherently

limited to spatial information and do not provide what cameras can typically see, such as

words on the traffic sign, color, and pattern of the vehicle, etc. Therefore, it is still important

to keep the camera sensors as a supplementary/fall-back option.
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Figure 6.1: Sample output and intermediate results from our pipeline (Best viewed electron-
ically). Top left: Our predicted 3D bounding boxes (red) vs. ground-truth annotations on the
KITTI dataset (green). Top middle: predicted depth map. Top right: 2D detection results on
our depth map projected to the birds-eye-view (BEV) map. Bottom: Our transformed point
cloud aligned with LiDAR scanlines. The intensity values on our point cloud are calculated
using grayscale intensity values from the input RGB image.

Intuitively, depth data provide more useful descriptions of spatial information, while

appearance data provide more visual cues to identify objects into different categories. There-

fore, when combining semantically rich appearance data with depth information, one can im-

prove the performance of both locating and categorizing objects in an image. Early research

attempts to combine simple depth cues with image features for richer representation [117].

However, due to difficulty in propagating gradients in the model, simply stacking features

from different modalities could not give satisfactory performance. Gupta et al. proposed to

use horizontal disparity, height above ground, and angle with the direction of gravity to form

another 3 channel image for training [41]. Due to difficulty on training these type of feature

maps, it is a common practice to finetune on existing models trained on RGB images [118].
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However, it is questionable whether this way of inter-model fusion is reasonable as depth

features seldom resemble shape, color, and appearance from the visible light spectrum. Lenz

et al. proposes to learn features from RGB and depth images separately and then fuse at a

higher level [76]. This method is termed Late Fusion by Eitel et al. [29]. Most work on 3D

detection, on the other hand, are either purely based on LiDAR data [10, 116, 104] or simply

use visual cues to supplement LiDAR data [103, 85].

In this chapter, we propose a novel approach to leverage both depth and visual cues

for 3D object detection on monocular images. At the core of our technique is to integrate

appearance and structural cues for better object detection. Our method contains three stages.

Firstly, we use an unpaired image to image translation network to learn bi-directional trans-

formations from RGB images to depth maps. Secondly, we calculate height, density and

grayscale intensity as 3 feature channels and project the feature map to a birds-eye-view rep-

resentation. Finally, we take advantage of 3D bounding box annotations on LiDAR data and

train our object detection model on the feature map. The rest of this chapter is organized

as follows. In Section 6.2 we discuss related work. In Section 6.3 we demonstrate different

components of the proposed method. We show experimental results and analysis in Section

6.4, 6.5 and draw conclusions in Section 6.6.

6.2 Related Work

Dual Learning The idea of using forward and backward consistency to improve training

has a long history [14]. Recently, He et al. [45] proposed the concept of dual learning to

improve the performance of machine translation systems. The proposed mechanism can be

viewed as a two-agent communication game. The two agents may not be able to translate

one language to another, but are still able to evaluate and collectively improve the quality

of the two translation models by going through the full forward-backward translation cycle.

This procedure can be performed by an arbitrary number of rounds until the two models

are fully converged. This idea inspired conditional GANs based cross-domain translation

tasks [170, 156] and improves performance in image-based depth/shape estimation tasks.

[39, 169]. We choose to use GAN for depth prediction because it allows unpaired image
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Figure 6.2: Architecture of our network. Top left: our CycleGAN based depth prediction
network. Top right: our 3D detection network based on Complex YOLO. Bottom: our
network for inference. Note that for training our method requires both monocular images
and aligned LiDAR scans. However, for inference we only need monocular images to predict
3D object locations and categories. See Section. 6.3 for details.
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domain transfer, while other depth prediction models are usually dependent on LiDAR input

guidance.

Image-to-Image Translation The idea of learning from a pair of images and then apply the

model at inference time to produce an analogous target image from the input image dates

back to [52]. More recently, Isola et al. [57] proposed a method which exploits conditional

adversarial networks as a unified framework for image to image translation. It uses the L1

loss function to enforce generated synthetic images to be similar to ground truth training

images while letting GANs to only hallucinate high-frequency details in the image. This is

because the L1 loss can already guarantee similarity at low frequencies. Therefore, instead

of processing the whole image, the discriminator only attempts to classify if a N ×N image

patch is correct or not. This method produces remarkable results on a variety of tasks, in-

cluding photographs from sketches, automatic colonization of black and white images, raw

images to label maps, thermal to visible light images, and so on.

3D Object Detection on LiDAR data Recent advance in sensor and computing technology

enables 3D object detection on structural data. Due to the difficulty in processing large-scale

point cloud data, most works preprocess the raw input data into either voxels or birds-eye-

view maps (BEV). Chen et al. converts LiDAR data to a BEV representation for 3D object

detection in the road scene [22]. Liang et al. develop a 3D object detector that reasons in

BEV space and integrates visual cues by learning to project camera-based features into the

BEV space [85]. YOLO3D [10] extends the 2D YOLOv2 object detector [107] to the BEV

map and achieves real-time performance on the KITTI dataset. Complex-YOLO [116] also

operates on the BEV map by running an E-RPN that estimates object orientations by both

imaginary and real numbers.

3D Object Detection on RGB Images More recent publication [140] introduces the concept

of pseudo LiDAR, arguing that by converting the image-based depth maps to a representation

that closely mimics the LiDAR signal, one could obtain state-of-the-art results on stereo

vision based 3D object detection. Our method is along the lines of performing 3D object
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Figure 6.3: Bidirectional transforms between LiDAR and camera coordinates (Best viewed
electronically). Top left: LiDAR scans provided by the KITTI dataset projected to the cam-
era imaging plane, color-coded by depth. Middle left: LiDAR scans projected to the cor-
responding RGB image. Bottom left: predicted depth map with one-to-one mappings to
the input image. Top right: predicted depth map transformed to the LiDAR coordinates,
color-coded by one channel grayscale intensity. Middle right: LiDAR scan color-coded by
intensity/reflectivity. Bottom right: our transformed point cloud aligned with the LiDAR
scan. Note the LiDAR has a much wider field of view (FOV).

detection on RGB images. However, our method differs from the pseudo-LiDAR approach

in a few aspects. Firstly, our detection is performed on a feature map consists of height,

density, and grayscale intensity information. This feature map combines both depth and

visual cues and is not intended to mimic the LiDAR signal. Secondly, our method leverages

unpaired adversarial learning to predict the depth map, eliminating the need for collecting

pairwise-aligned RGB and depth data, thus making it much easier to apply to use cases other

than autonomous driving (e.g. indoor scenes, close-up scenes, top-down surveillance videos,

etc.)
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6.3 Approach

6.3.1 Depth Estimation

We adopt the CycleGAN [170] for depth estimation from monocular images. We use

the sparse to dense [93] depth completion results on KITTI LiDAR scans as groudtruth for

training. The learning objective contains 2 terms: an adversarial loss and a cycle consistency

loss:

L(G,F,DX , DY ) =

γadvLadv(G,DX , DY , X, Y ) + γcycLcyc(G,F )
(6.1)

Where γadv, γcyc are the hyper-parameters to adjust loss on each term and are empirically

set during the experiment. {xi ∈ X}Ni=1 and {yi ∈ Y }Ni=1 are N training images from the

RGB dataset and depth dataset, respectively. G and F are mapping functions G : X → Y

and F : Y → X to transform RGB images to depth maps or vice versa. DX and DY

are adversarial discriminators to distinguish between real images {x} and synthetic images

{F (y)}, or {y} with {F (x)}. The cycle consistency loss is defined as:

Lcyc(G,F ) =Ex ∼ pdata(x)[‖F (G(x))− x‖]

+Ey ∼ pdata(y)[‖G(F (y))− y‖]
(6.2)

It can be viewed as translating an RGB image into a depth image and then translate it back to

compare with the original using L1 norm. Based on the cycle consistency loss, two discrim-

inators DX and DY are introduced to calculate the adversarial loss [40]. This term enforces

the distribution of translated images to be as close to the training images as possible. The

adversarial loss is defined as:

Ladv(G,F,DX , DY , X, Y ) =

= Ey ∼ pdata(y)[logDY (y)] + Ex ∼ pdata(x)[logDX(x)]

+ Ex ∼ pdata(x)[log(1−DYG(x))]

+ Ey ∼ pdata(y)[log(1−DXG(y))]

(6.3)
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By using the above two loss terms we aim to minimize adversarial discriminator errors of

both visual and structural cues, as well as L1 error of predicted images vs. original images.

6.3.2 Feature Map Generation

Once we obtained the trained GAN model for depth prediction, we would like to

transform the depth map from camera coordinate system to the LiDAR coordinate system

for alignment with ground-truth bounding box annotations. In order to do this, we first

transform the depth map to the rectified (rotated) camera coordinate system:

zrect = D(u, v)

xrect =
(u− cu)× zrect

fu
+ bx

yrect =
(v − cv)× zrect

fv
+ by

(6.4)

Where (xrect, yrect, zrect) is the 3D point coordinate in the rectified camera coordinates. (u, v)

denotes a pixel location in the predicted depth map. (cu, cv) is the pixel location correspond-

ing to the imaging center, fu, fv are the horizontal and vertical focal length and bx, by are the

baselines with respect to reference camera. The camera intrinsic can be obtained from the

projection matrix provided by [33]:

Prect =


fu 0 cu −fubx
0 fv cv −fvby
0 0 1 0

 (6.5)

Next, we transform the 3D point cloud from rectified camera coordinates to reference cam-

era coordinates and then to the LiDAR coordinates by calling the KITTI utility library[2].

Let Tvelo
cam be the 4 × 4 transformation matrix from the camera coordinate system to the Li-

DAR coordinates, Rrect be the 4 × 4 rectifying rotation matrix converted from Cartesian to

homogeneous coordinates by adding a fourth zero row and setting Rrect(4, 4) = 1, Pvelo and
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Prect ∈ R3 be the 3D point coordinates in the LiDAR and rectified camera coordinates, we

can write the transformation as:

Pvelo = Tvelo
cam R−1rect Prect (6.6)

Note that we also store the RGB value and index of each point in another table to

obtain the RGBXYZ representation of Pvelo. Next, we perform preprocessing in a fashion

similar to Complex YOLO [116] to transform Pvelo into the BEV feature map. The only

difference between Complex YOLO and our method is that we are using grayscale intensity

(visual) as the blue channel of the image while Complex YOLO sets the blue channel to

LiDAR intensity (reflectivity). More formally, let S be the mapping function to map each

point in Pvelo to a grid cell Sbev [116], we can formulate the transformation as:

fg
(
Sjbev

)
= max

(
P ivelo→bev · [0, 0, 1]T

)
fb
(
Sjbev

)
= max

(
I
(
P ivelo→bev

))
fr
(
Sjbev

)
= min(1.0, log(

∣∣P ivelo→bev∣∣+ 1)/64)

(6.7)

Where f is the resulting 3-channel feature map. fg, fb, fr denotes height map, grayscale

intensity map and density map, respectively. I is the grayscale intensity of Pvelo calculated

from the RGB values. Pvelo→bev denotes the 3D points mapped to the grid cell Sbev. To this

end, we have constructed the feature map which is aligned with LiDAR 3D object bounding

box annotations ready for training. We visualize the height, density and intensity maps of

both LiDAR data and predicted depth data in Fig. 6.5. We also show the alignment of LiDAR

data vs. our transformed point cloud in Fig. 6.3. As can be seen from Fig. 6.3, the LiDAR

scanlines are accurately projected onto the camera coordinates. Also, the transformed point

cloud is well-aligned with LiDAR data. It is worth-noting that the field of view (FOV) of

LiDAR is much larger than the camera. This is reflected in both Fig. 6.3 (row 1 column 2 vs.

row 2 column 2) and Fig. 6.5 (first row vs. second row). Therefore, unlike other methods,

during mAP evaluation we only compare with ground-truth bounding box annotations that

falls within the camera FOV.

93



6.3.3 3D Object Detection

We follow the Complex YOLO model architecture put forth by [116] to train the 3D

object detector. This detector takes the BEV feature map mentioned in Section. 6.3.2 as

input, and extends the YOLOv2 detector [107] by a complex angle regression and a Euler

region proposal networks (E-RPN). The E-RPN is a direct extension of the region proposal

networks (RPN) proposed by Ren et al. [108]. Specifically, consider (x, y, w, l, φ) as a

vector describing 2D locations, size and orientations of 3D objects in the BEV coordinates,

the parameterizations of the 5 coordinates can be obtained as [108, 116]:

bx = σ (tx) + cx

by = σ (tx) + cy

bw = pwe
tw

bl = ple
tl

bφ = arg
(
|z|eibφ

)
= arctan2 (tIm, tRe)

(6.8)

The loss function of Complex YOLO is defined as a multi-part loss. The first part is the

YOLOv2 loss [107] and the second part is an Euler regression loss:

LY OLO = λcoordΣ
S2

i=0Σ
B
j=01

obj
ij

[
(xi − x̂i)2 + (yi − ŷi)2

]
+ λcoordΣ

S2

i=0Σ
B
j=01

obj
ij

[(√
wi −

√
ŵi

)2
+

(√
hi −

√
ĥi

)2

] +

(√
hi −

√
ĥi

)2

]

+ΣS2

i=0Σ
B
j=01

obj
ij

(
Ci − Ĉi

)2
+λnoobjΣ

S2

i=0Σ
B
j=01

noobj
ij

(
Ci − Ĉi

)2
+ΣS2

i=01
obj
i Σc∈classes (pi(c)− p̂i(c))2

LEuler = λcoordΣ
S2

i=0Σ
B
j=01

obj
ij

∣∣∣eibφ − eib̂φ∣∣∣

(6.9)

LTotal = LYOLO + LEuler

LEuler = λcoord

S2∑
i=0

ΣB
j=01

obj
ij

∣∣∣eibφ − eib̂φ∣∣∣ (6.10)
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Method Train Test Car Tram Truck Van
MV3D [22] LiDAR+RGB LiDAR+RGB86.02 N/A N/A N/A
C-YOLO
[116]

LiDAR LiDAR 85.89 N/A N/A N/A

Ours LiDAR+RGB RGB 78.78 58.70 80.00 74.14

Table 6.1: Quantitative mAP results. Note that we only evaluate within the visible range of
the predicted depth map/point cloud, whereas all other methods evaluate on the full LiDAR
scan. Also, our method and ComplexYOLO report scores on the random test split while
MV3D evaluate on the test set. Both MV3D and ComplexYOLO scores are reported under
the easy category of the BEV evaluation task. See Section. 6.4 for details.

According to the authors, the Euler loss leads to a closed-form space eliminating singular-

ities. This leads to state-of-the-arts results on the KITTI 3D object detection dataset, while

achieving real-time performance on the embedded NVIDIA TX2 platform [116].

6.4 Experiments

We use the KITTI 3D object detection benchmark suite for training and evaluation.

The KITTI 3D object detection benchmark consists of 7481 training images as well as the

corresponding point clouds, training labels and camera calibration files. We first use the

supervised model [93] provided by the author to obtain depth maps for all training images.

We subsequently perform a random train (60%) / validation (25%) / test (15%) split and

use the code provided by the author [170] for training the CycleGAN model. The model is

trained from scratch with random weight initialization. We set base learning rate = 0.0002,

gamma = 0.5, momentum = 0.5. We train for 200 epochs and use the CycleGAN model for

constructing BEV feature maps.

Next, we modify the Complex YOLO framework by constructing feature maps on-

the-fly during training. We still use the same train/validation sets and construct the BEV

feature map for every image. We run CycleGAN inference on every image to obtain the

depth map, then follow the transformations outlined in Section. 6.3.2 to obtain the 3-channel

feature map as input for the Complex YOLO framework. Our implementation is based on

the open source code provided by [1]. The ground-truth labels are obtained by converting
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Figure 6.4: Training loss visualization using TensorBoard [6]. Top: training loss on class
labels, Euler region proposals Middle and Bottom: training loss on object length, object
width, horizontal and vertical locations. See Section. 6.4 for details.
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Figure 6.5: Feature map visualization (Best viewed electronically). Top two rows: Our
combined BEV feature map, density map, height map and grayscale intensity map. Bottom
two rows: Feature map, density map, height map and intensity map on corresponding LiDAR
scans used by Complex YOLO [116]. See Section. 6.3.2 for details.
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3D bounding box labels to 2D bounding boxes in the BEV coordinates. We set the base

learning rate = 0.0001, gamma = 0.5, momentum = 0.9 and batch size = 32. We train for 700

epochs with four NVIDIA Titan V GPUs. The training losses mentioned in Section 6.3.3 are

visualized in Fig. 6.4 using TensorBoard [6] until the 600th step (∼ 4 epochs).

Similar to [116] which perform PASCAL VOC [32] style mean Average Precision

(mAP) evaluation on its own test set split, we run mAP on 2D bounding boxes in the BEV

space. There is one difference from our evaluation scheme vs. LiDAR-based methods: since

LiDAR data has much wider FOV, we only evaluate against ground-truth bounding boxes

that fall within our camera FOV. This means that we are not considering ground-truth labels

that are too far away, or outside of our camera view frustum. Also, since our predicted depth

map is not able to capture fine structures of small objects like LiDARs do, we only evaluate

on four categories including car, tram, truck and van. As shown in Fig. 6.6, these four (out

of seven) categories consist of more than 85% of objects in the KITTI 3D object detection

dataset. We also vary the IoU threshold from 0.5 to 0.9 with a 0.1 interval and recalculate

the mAP scores. We show the mAP scores at different IoU thresholds in Fig. 6.6. Compared

to existing methods, our framework is one of the few that directly performs inference on

RGB images. We compare with MV3D [22] and Complex YOLO [116] results in Table

6.1. The scores of MV3D and Complex YOLO are adopted from the original paper in the

BEV category with easy difficulty. Easy difficulty is defined according to the bounding box

height and occlusion/truncation levels. In general, the easy task corresponds to cars within

30 meters of the ego-car distance, according to [140]. Note that the effective range of our

transformed point cloud is shorter than this 30-meter range. Also, the Complex YOLO scores

are reported on the test split (similar to our evaluation) whereas the MV3D reports on the

KITTI test set.

6.5 Discussion

We show quantitative PR-curve evaluations in Fig. 6.6 and compare with other meth-

ods in Table 6.1. As can be seen from Fig. 4.7, our method achieves satisfactory results

on car, truck, van and tram categories, and the car category demonstrates the highest mAP
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Figure 6.6: Dataset statistics and precision-recall curve. Left: Number of objects per class
in the KITTI dataset. Right: mean Average Precision (mAP) values on the car, truck, van
and tram classes across varying Intersection-over-Union (IoU) values. Note that the perfor-
mance of our model is robust to stricter IoU criterias and the performance only begins to
significantly degrade when IoU is bigger than 0.6.
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scores across varying IoUs. This may due to the fact that cars are more common in real-life

scenes and thus easier to recognize. Also, because the categories in the KITTI dataset is

highly imbalanced, it is possible that the car class is over-represented and the classifier is

biased towards this single class. In the future, we plan to test our approach on an evenly

sampled 3D object detection dataset with more diverse examples. According to Fig. 6.6,

the mAP starts to dramatically decrease only when the IoU value is more than 0.6. This

shows that our detector is robust to stricter evaluation criteria, which is generally more de-

sirable for complex real-life scenes. Also, according to Table 6.1, our method is competitive

when compared to other LiDAR-based methods, even though our network only uses RGB

images as input to perform forward inference. We visualize the qualitative results in Fig.

6.7. Our approach works well in cluttered scenes (e.g. row 1 and 2). It might be difficult

for appearance-based methods to separate vehicles parked closely together (row 2 column

1), but our method makes accurate depth predictions and the BEV map (row 2 column 2)

makes it much easier to learn the relative locations of the vehicles. However, for small ob-

jects and thin structures (e.g. pedestrian in row 3 and 4), our network is not able to capture,

as the predicted depth maps are not as accurate as LiDAR scans. Also, our method takes

both structural (e.g. height) and visual cues for inference. For example, in the last row, the

closest and farthest objects are wrongly classified as vans while the middle object is correctly

classified as a car. This is because our feature map also contains the height map. The SUV

and MPV in the front and back are taller than the sedan in the middle, which possibly leads

to the wrong classification result. In general, Fig. 6.7 demonstrates that the bounding box

predictions (structural) are more accurate than class predictions (visual appearance). This

implies that our network is good at localizing objects but is still having difficulties learning

visual features of an object. This can also be observed in Fig. 6.4, where the classification

loss curve shows more oscillations than bounding box coordinates (x and y). Although the

learning objective is designed to minimize both classification and localization errors, it is in-

teresting to see what roles the structural and visual cues play, and when one overwhelms the

other. In the future, we plan to train and test on more datasets and visualize neuron activation

heatmaps in each channel (height, density and color intensity).
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Figure 6.7: Qualitative results on the KITTI dataset. Left: our 3D bounding box predictions
(red) vs. ground-truth (green) annotations projected to the camera imaging plane. Right: our
2D bounding box predictions (red) on the BEV map vs ground-truth (green) annotations.
Note that the camera optical axis is facing down on the BEV map for better visualization.
See Section. 6.5 for details.
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6.6 Conclusion

In this chapter, we have presented a framework to detect and classify 3D objects

from monocular images. Experiments show that our approach performs favorably against

competitive methods trained on LiDAR data. Our method leverages generative adversarial

networks to perform monocular depth estimation. The training groudtruth are obtained by

completing LiDAR scans. The GAN approach is more flexible in terms of extending to other

computer vision tasks. On the contrary, traditional monocular depth prediction networks are

heavily dependent on pair-wise color-to-depth alignment and LiDAR input. Also, we inte-

grate both visual and structural cues into the feature map representation, which distinguishes

our method from those purely operating on LiDAR data, and those who learn depth from

a monocular image but still perform detection on the pseudo LiDAR data (ignoring visual

information). Our system can be used to add visual intelligence to smart vehicles, which is

particularly useful for improving camera-based advanced driver-assistance systems (ADAS)

for L3 level autonomy. Also, our system could be used as a supplementary or fall-back op-

tion to LiDAR sensors. In the future, we plan to include spatiotemporal data to improve both

depth prediction (e.g. optical flow) and object detection (e.g. YOLO4D [30]).
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Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this dissertation, we aim at investigating various aspects of the visual object detec-

tion problem. Firstly, we investigate an unsupervised manifold learning approach for detect-

ing class-agnostic salient objects. The detection result is a probability map showing the pixel

level objectness. Then, we focus on a deep learning based method for class-specific object

detection. We modify existing neural networks architecture and extend it for tracking in mo-

tion sequences. Our network is improved to output both bounding boxes and class labels.

Further, we extend to joint learning enabling both object detection and fine-grained classi-

fication. Our work enables joint prediction of bounding box coordinates and fine-grained

class labels, improving the previous inter-class level categorization to a more fine-grained

intra-class level categorization. Next, we target at moving from 2D object detection to 3D

object detection. We begin with a method to capture depth data on low-cost mobile devices.

Experimental results show that our method provides a good tradeoff between expected depth-

recovering quality and computational efficiency. Finally, we proposed an approach leverag-

ing both adversarial and deep learning to directly predict 3D bounding boxes and class labels

on 2D images.

Our research on the object detection problem can be viewed as a multi-dimensional

incremental development from unsupervised (Chapter 2) to supervised (Chapter 3, Chapter

4, 6) and from 2D (Chapter 2, 3, 4) to 3D (Chapter 5). We briefly summarize each chapter

as follows:

In Chapter 2, we present a novel unsupervised class-agnostic salient object detection

method based on a novel graph model and background priors. Our graph model incorporates
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local and global contrast and naturally enforces the background connectivity constraint. The

proposed feature distance metrics effectively and efficiently combine local color and tex-

ture cues to represent the intrinsic manifold structure. We further optimize the background

seeds by exploiting a boundary query and refinement scheme, achieving state-of-the-art re-

sults. Our proposed graph model exhibits the potential towards building better clustering

algorithms.

In Chapter 3, we introduce a method for visual object detection via deep convolu-

tional neural networks. We also extend this framework to enforce temporal continuity for

tracking. We modify the network for better performance, specialize it for a robotic applica-

tion involving bird and nest categories. We also proposed a new dataset for the nest category.

The system exhibits very competitive detection accuracy and speed, as well as robust, high-

speed tracking on several difficult sequences.

In Chapter 4, we demonstrate a joint framework to detect and classify fine-grained

objects. We also created a new benchmark to evaluate this task which we term fine-grained

recognition, subsuming the problems of object detection and fine-grained classification. Al-

though many deep learning methods have been proposed for each task, we are not aware

of any framework that directly train on both fine-grained classification and generic object

detection datasets. By learning both spatial locations and intra-class diversities of an object,

we enable the network to produce quality feature vectors with high distinctiveness. Addi-

tionally, as most convolutional layers in our network are shared for both tasks, we introduce

very little computational overhead to achieve combined goals of efficiency and accuracy.

In Chapter 5, we move from 2D to the 3D domain. To begin with, we introduce an

algorithm to capture accurate 3D data on a low-cost mobile device. We first capture stereo

image pairs on a low-cost tablet, then apply the Graph Cuts stereo matching algorithm to

obtain low-resolution disparity maps. Next, we take raw color images as guide images to up-

sample the low-resolution disparity maps into high-resolution ones via joint bilateral upsam-

pling. We evaluate a variety of real-time stereo matching and edge-preserving upsampling

algorithms for the tablet platform. Experimental results show that our approach provides a

good tradeoff between expected depth-recovering quality and computational efficiency. We
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also show how to render DoF effects based on captured depth maps and why the proposed

scheme is advantageous compared to image-based rendering.

In Chapter 6, we propose a novel approach to leverage both depth and visual cues

for 3D object detection on monocular images. At the core of our technique is to integrate

appearance and structural cues for better object detection. Our method contains three stages.

Firstly, we use an unpaired image to image translation network to learn bi-directional trans-

formations from RGB images to depth maps. Secondly, we calculate height, density and

grayscale intensity as 3 feature channels and project the feature map to a birds-eye-view rep-

resentation. Finally, we take advantage of 3D bounding box annotations on LiDAR data and

train our object detection model on the feature map. Experiments show that our approach

performs favorably against competitive methods trained on LiDAR data.

7.2 Future Work

Visual object detection is one of the most fundamental yet most challenging problems

in computer vision. Despite tremendous success in object detection over the past few years

with the advent of deep learning, much more research and development still remain to be

done to match or exceed human performance. The work presented in the previous chapters

point out a few directions for future research. We briefly summarize a few of them as follows:

Computational Complexity Chapter 2, 3 and 5 explicitly investigated computational ef-

ficiency issues. For practical robotic applications, real-time or lightweight approaches are

much more desirable. Similar to the application scenario presented in Chapter 6, a real-time

object detector with high accuracy is a critical step for an autonomous vehicle to understand

the environment with adequate precision for vehicle operation. In the future, we would like

to work on model compression, binarization and distillation techniques to improve com-

putational efficiency while maintaining high detection accuracy. We are also interested in

applying deep learning models to mobile or embedded devices such as phones, tablets, IoT

devices, autonomous vehicle computing platforms, etc.
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Feature Robustness As mentioned in Chapter 4, humans are able to rapidly identify the

model of a car from key visual features. However, CNNs struggle on learning a robust

feature representation of objects because it learns pose and geometry information in the

convolution layers, but only keeps the category level info in the final dense layers. Since

most of the state-of-the-art object detectors heavily depend on the CNNs as the main feature

extractor, they are inherently limited to learning only partial semantic features. Learning ro-

bust geometry-related features invariant to pose, scale and deformations are critical towards

improving reliability, usability, and applicability of existing deep learning models. In the fu-

ture, we plan to conduct research on attention-based models and feature pooling to improve

feature quality.

Weakly Supervised Learning Some object detectors might work at small scale, but would

be difficult to operate at the industry level. Also, real-world images or semantic classes are

diverse, dynamic and constantly changing. For example, the model trained on the car dataset

mentioned in Chapter 4 may not work well for new car models. For another example, images

and depth data used for training in the KITTI dataset mentioned in Chapter 6 are captured in

Europe, and might not represent the city and road structures in the US. This volatile nature

of training samples brings an extra layer of difficulty in designing a visual object detector.

Therefore, we believe that it is possible to maintain high accuracy based on existing mod-

els while eliminating the need for data collection by leveraging weakly supervised learning

approaches.

Scene Context Reasoning As pointed out by Chapter 3, a possible future research direction

would be to incorporate scene context (sky/ground/tree segmentations) into the detection

process. Also, the crux of the graph model proposed by Chapter 2 is to incorporate back-

ground contextual information to aid foreground detection. We see associating objects with

scene structures as a future research area to work on. This could potentially be done by

leveraging knowledge graph or multi-task learning approaches. One could also jointly train

a model on image embeddings along with text embeddings. This multi-modal approach
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could leverage strong priors in language logic and structures and push the state-of-the-art in

visual object detection.

Spatiotemporal Reasoning In both Chapter 3 and 6 we mentioned that motion cues could

be an important feature to learn in addition to visual and structural cues. Detection and dis-

crimination of motion are one of the most fundamental abilities of humans. We think most of

the work presented in this dissertation have direct extensions to the spatiotemporal domain.

Also, learning spatiotemporal information could potentially reduce the complexity of visual

object detectors. Instead of running forward inference on every frame, one could perform

object detection on only a few keyframes and track the object locations in the intermediate

frames. Also, the recurrences of objects in multiple frames could enable motion forecast-

ing, which helps to narrow down the region where visual object detectors would scan and

generate proposals.
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