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ABSTRACT

Hot, massive stars (spectral types O and B) have extreme luminosities (10* —
10°L,) that drive strong stellar winds through UV line-scattering. Some massive stars
also have disks, formed by either decretion from the star (as in the rapidly rotating
“Classical Be stars”), or accretion during the star’s formation. Extending the wind-
developed Sobolev methods for line radiative transfer, this dissertation examines the
role of stellar radiation in driving (ablating) material away from these circumstellar
disks.

A key result is that the observed month to year decay of optically thin Be
disks can be explained by line-driven ablation without, as was done in previous work,
appealing to anomalously strong viscous diffusion. Moreover, the higher luminosity of
O stars leads to ablation of optically thin disks on dynamical timescales of order a day,
providing a natural explanation for the lack of observed Oe stars. In addition to the
destruction of Be disks, this dissertation also introduces a model for their formation
via “Pulsationally Driven Orbital Mass Ejection”. This “PDOME” model couples
observationally inferred non-radial pulsation modes and rapid stellar rotation to launch
material into orbiting Keplerian disks of Be-like densities.

In contrast to such Be decretion disks, star-forming accretion disks are much
denser and so are generally optically thick to continuum processes like electron scat-
tering. To circumvent the computational challenges associated with long-characteristic
radiation hydrodynamics through optically thick media, we develop an approximate
method for treating optically thick continuum absorption in the limit of geometrically

thin disks. The comparison of ablation with and without continuum absorption shows

Xvil



that accounting for disk optical thickness leads to less than a 50% reduction in abla-
tion rate, implying that ablation rate is largely independent of disk mass, and depends
mainly on stellar properties like luminosity.

Finally, as a side problem, we discuss the role of “thin-shell mixing” in re-
ducing X-rays from colliding wind binaries. Laminar, adiabatic shocks produce well
understood X-ray emission, but the emission from radiatively cooled shocks is more
complex due to thin-shell instabilities. The parameter study conducted here system-
atically varies colliding wind binary shock densities to determine scaling relations for
this emission. A key result is that, in the limit of strongly radiatively cooled shocks,
emission is reduced by a fixed factor ~ 50 from analytic scalings that ignore thin-shell

structure.

xXviil



Chapter 1

INTRODUCTION

Luminous, massive stars play a crucial role in the chemistry and energetics of the
galaxy. Through their high bolometric luminosity and peak flux of ultraviolet photons,
they ionize their surroundings, and their violent demise in supernovae both energizes
the interstellar medium while also enriching it with heavy elements synthesized in their
interiors. The high luminosity of massive stars also drives powerful stellar winds, with
mass loss rates ranging up to ~ 107> M, /yr, more than billion times the much weaker,
gas-pressure-driven solar wind (Puls et al., 2008).

These radiation forces likely even play a fundamental role in governing the
upper mass limit of stars. As summarized in chapter 2, if one takes a standard mass-
luminosity scaling L oc M3, then the breaching of the classical Eddington limit (Ed-
dington, 1930), wherein the basal radiation acceleration from just free electron scatter-
ing exceeds the stellar gravity, corresponds roughly with the observationally inferred
stellar upper mass limit' of ~ 200 — 300M, (Crowther et al., 2010). While estab-
lishing a strict theoretical upper mass limit requires further detailed stellar structure
and opacity modeling, the intense luminosity of massive stars remains a fundamental
obstacle in stars reaching high masses. What remains unclear, however, is whether this
upper mass limit is predominantly a stellar structure constraint, or perhaps instead a

consequence of the formation mechanics of massive stars.

1 There is some contention as to whether the current record holder, the 300M® star
R139a, is indeed a single star or an unresolved binary. Nevertheless, it seems clears
that the limit is of order a few hundred solar masses and, by observational constraints,
is certainly neither tens or thousands of times the mass of the sun.



Initial star-formation models assuming spherically symmetric accretion con-
cluded that radiation forces acting on dust opacity would limit the gravitationally
induced accretion for cloud cores as low as 20 My, (Kahn, 1974; Wolfire & Cassinelli,
1987). More recent studies (Krumholz et al., 2007; Commergon et al., 2011; Kuiper
et al., 2015) account for the natural tendency of contracting clouds to collapse into an
extended accretion disk; the associated optically thick shielding of the central equato-
rial layers of the disk from radiative forces then allows the gravitational accretion in
the outer disk to proceed for cloud cores approaching the inferred stellar mass limit
of a few hundred M. However, in focussing on the accretion of dust-forming disks
at scales of 10 to 100 au or more, there has been relatively little study of how such
accretion proceeds down to scales of a few radii of the protostar, where the strong
UV radiation is likely to ionize much of the disk, and also drive a stellar wind outflow
through line-scattering of the stellar radiation by heavy ions.

Motivated by this, a central goal of this dissertation is to develop methods for
treating the effects of such strong line-scattering forces in driving (or ablating) material

from an orbiting disk in these near-star regions.

1.1 Background Formalism on Winds and Disks

Chapter 2 reviews the basic formalism of line-driven stellar winds. Drawing
on the expertise of the massive star group at the University of Delaware, we use the
approach of Cranmer (1996), who generalized the standard, spherically symmetric line-
driven wind model of Castor et al. (1975) to non-spherical winds from rapidly rotating
stars, including the effects of stellar oblateness and gravity darkening (Cranmer &
Owocki, 1995; Owocki et al., 1996). These models retain the assumption that the
background wind is optically thin in the continuum, but use the Sobolev approxima-
tion (Sobolev, 1960) to derive the radiative driving from scattering by a mixture of
optically thin and thick lines. Within this approximation, it is possible to calculate all
three vector components of the line-acceleration in a fully three dimensional medium,

assuming strong line-of-sight velocity gradients. While the traditional implementation



assumes that these velocity gradients arise in the radial direction from an expanding
wind, they can also arise along non-radial rays from Keplerian shear in a disk (see, e.g.
figure 2.5). Equation 2.39 gives the line-acceleration prescription used in the remainder
of the thesis to model line-driven ablation of circumstellar disks.

Chapter 3 reviews the structure of the disks used in this dissertation. For sim-
plicity, the disks are assumed to be isothermal, which makes their vertical stratification
Gaussian, with a scale height H (= Ra/ves) set by the ratio of sound speed a to lo-
cal orbital velocity vy, = /GM/R (where M is the stellar mass and R is the local
cylindrical radius). The radial variation of density is not set a priori, so we assume the
equatorial density to be a power-law in cylindrical radius, pe, = po(R/R.)™", where
po is the equatorial density at the stellar surface?. For constant opacity (a.k.a. mass
absorption coefficient) k, the radial optical depth through the disk midplane is then
given by 7 = kp,R./(n — 1). For protostellar accretion disks, 7 is extremely large
(> 10%), which presents a fundamental problem for applying the standard approach of

line-driving from an optically thin continuum.

1.2 Optically Thin Disk Ablation

In applying these line-driving methods in chapter 4, the initial focus is thus not
on the accretion disks of protostars, but on the lower density, marginally optically thin
decretion disks of Classical Be stars. These rapidly rotating, main-sequence objects
are capable of dynamically launching and destroying low density disks on time-scales
of only a few months or years. As such, Be disks provide their own unique set of
challenging research problems. For example, their observational signatures indicate
the disks can decay on timescales of months to a year, which, within the standard

model of mass transport by viscous diffusion, requires an anomalously high viscous

2 For accretion disks, one often takes n ~ 1.5 R,. As discussed below, we use n = 3.5
as is appropriate for decretion disks.



coefficient® (Carciofi et al., 2012).

The broad parameter study of chapter 5 shows that the timescale for ablation
for such a Be star can readily explain the month to year disk decay without invoking
such an anomalously high viscosity. Moreover, the decay of disks around hotter, more
luminous O stars occurs on a dynamical timescale of order days. This provides a

natural explanation for the relative rarity of observed Oe stars.

1.3 Disk Production Modeling

To complement the modeling of disk destruction by ablation, chapter 6 intro-
duces a “Pulsationally Driven Orbital Mass Ejection” (“PDOME”) model for disk
production. This couples rapid stellar rotation and non-radial pulsation modes to
launch material into circumstellar orbit, and thereby form a Keplerian decretion disk
with Be-like densities. This is done in the absence of the competing radiative-driving,
leaving to future work a study of the direct competition between such production by

mass ejection and destruction by radiative ablation.

1.4 Optically Thick Disk Ablation

While Classical Be stars provide a useful laboratory for star-disk interactions,
recall that a central motivation of this thesis is to investigate the interaction of radiation
with optically thick accretion disks within the last few protostellar radii. To circum-
vent the computational challenges associated with long-characteristic radiation hydro-
dynamics through optically thick media, chapter 7 presents an approximate method for
treating optically thick continuum absorption, in the limit of geometrically thin disks.
By applying this method to disks of accretion densities, and comparing to models that
omit continuum optical depth effects, we find that optical depth effects lead to a mod-
est, less than 50% reduction on the rate of disk ablation. Furthermore, comparison of

these results with those for the optically thin Classical Be stars demonstrates that disk

3 In the formalism introduced by Shakura & Sunyaev (1976) where the coefficient of
kinematic viscosity is given by v = aaH, Carciofi et al. (2012) required a ~ 1.



ablation rate is largely independent of disk mass, and instead, like wind mass loss rate,
depends mainly on stellar properties such as luminosity.

This chapter also can be seen as a method for modeling Ble] stars (Kraus &
Miroshnichenko, 2006). This rare class of B supergiants is observed to host optically
thick circumstellar disks, diagnosed through the presence of forbidden line emission.
While the origin of these disks is uncertain, such disk-star systems can be seen, in

many ways, as naked analogues to the high density star formation disks.

1.5 X-ray Reduction by Thin-Shell Mixing of Radiative Shocks in Collid-

ing Wind Binaries

Chapter 8 presents a side discussion* of X-ray diagnostics of massive star winds.
When stellar wind material collides supersonically, it can be shock heated to tens of
millions of Kelvin and emit hard X-rays of energies up to tens of keV. By studying this
X-ray emission, we can learn about the gas that generated it. These X-ray emitting
shocks arise in a variety of astrophysical scenarios, but our discussion focusses on
“colliding wind binaries”, in which the winds of two massive stars collide head-on. In
situations where the binary separation is large, or the winds are relatively low density,
these colliding wind binary shocks tend to be thick, laminar, and adiabatic, generating
X-ray emission which has been readily interpreted (Stevens et al., 1992; Rauw et al.,
2016). When the shocked layers are much denser, as occurs in close binary systems, the
shock rapidly cools by radiation over a geometrically thin layer. In multi-dimensional
models, thin-shell instabilities break these layers into small, dense knots. Our results
show that this reduces the X-ray emission from radiative shocks by about a factor 50

relative to an analytic, laminar model without mixing.

4 'While thematically somewhat peripheral, this work was instrumental in developing
the skill sets necessary for the rest of this dissertation.



1.6 Conclusions and Future Work

Chapter 9 concludes the body of the dissertation with a summary and outline
for future work. This includes immediate extensions and modifications applicable to
optically thin Be disks, and longer term developments appropriate to the central goal
of modeling much denser accretion disks of massive protostars. The latter will likely

be a major focus of postdoctoral work by this doctoral candidate.



Chapter 2

PHYSICS OF LINE-DRIVEN STELLAR WINDS

The regions around high-mass, luminous stars are characterized by outflows,
referred to as stellar winds, with speeds of ~ 1000 km/s and carrying away as much
as 107° My, /yr. These winds are driven by the scattering of photons in spectral lines.
To illuminate the issues surrounding the interaction of radiation and gas that form the
core of this dissertation, discussing the launching of these winds provides an excellent

jumping off point.

2.1 Radiative Acceleration
To begin, let us consider the most general form of a radiative acceleration. For
intensity I at frequency v and position r in direction 0, absorption or scattering by

material with mass absorption coefficient (a.k.a. opacity) k gives a vector acceleration

(see e.g. Mihalas, 1978)

1 [0.9]
8rad = —j[/ k(v)I(v,r,n)dvidQ, (2.1)
¢ 0

where ¢ is the speed of light and €2 is solid angle.

2.1.1 Acceleration from electron scattering

In general, k can arise either from continuum or line opacity. The atmospheres
of main sequence massive stars have temperatures greater than 10* K, hot enough that
they are effectively fully ionized, implying that continuum opacity is dominated by

electron scattering. Since electron scattering is frequency independent, or gray, and,



when averaged over many photons, isotropic, £ can be pulled out of both integrals in

equation 2.1, leaving only the scaling with stellar bolometric flux, F,:

eF* eL* ~
i fel g (2.2)

¢ dmrc
The second equality applies in the case of a spherically symmetric star with luminosity,
L, viewed from a radius 7.

Since the acceleration due to electron scattering has the same 1/r? scaling as

gravity, it is useful to define their ratio (Eddington, 1930),

r = 9 _ KeLs
7 Ggraw  ATGM.,c’

(2.3)

where M, is the stellar mass and G is Newton’s gravitation constant. As ', — 1
(referred to as the classical Eddington limit), the star formally becomes gravitationally
unbound and is subject to highly unstable mass loss (Owocki & Gayley, 1997; Owocki,
2015). For the Sun, T, o & 2.5 x 107°; if one takes the standard scaling that L, oc M3
on the main sequence, one infers that I', &~ 1 for M, ~ 200 M, in good agreement
with the observationally inferred upper mass limit.!

For the stars considered in this thesis, I'. ranges from 1072 to 0.5. To drive
material away from a star in a stellar wind — or by ablation of a circumstellar disk
— requires the radiative acceleration to exceed gravity in these circumstellar regions,
with associated I" > 1. As discussed in the next section, the inclusion of line opacity

can readily achieve this.

2.1.2 Acceleration from a single, isolated spectral line
In contrast to the continuum scattering of free electrons, line-scattering from
bound electrons is confined to a very narrow range around a resonance frequency, v,.

However, the resonant nature means that the frequency-integrated opacity can be much

! In practice the mass-luminosity scaling becomes nearly linear for high mass star as
radiation reduces the gravitational force by a factor of (1 —I'.). Nevertheless, this
simple calculation gives a good first-order estimate of the observed stellar mass limit.



stronger than the opacity of free electrons. When the line resonance is removed from
its own shadow by the Doppler shift of a flow acceleration, the associated radiative
force can also be much stronger than for free electrons.

To quantify this, let us define a direction- and frequency-independent line center
opacity, kr,, and a frequency-dependent shape of the line-profile, given by the normal-
ized profile function ¢(v, n,r, v(r)). The radiative acceleration due to a single, isolated

line can then be cast as

Sline = L f / ¢(v,n,r,v(r)) I(v,r,n) dvirdQ. (2.4)
¢ 0
The line center opacity can be calculated by (e.g. Puls et al., 1993),
or(r)n(r)

p(r)

where p is the mass density and n; is the number population of atoms that can be photo-

ki (r) = (2.5)

excited in the transition. The line cross-section o7 depends on the classical oscillator,
me? /mec = mrec (given in terms of the mass, radius, and charge of an electron, m., re,
and e respectively), and the associated quantum mechanical oscillator strength of the
transition, fi,,

me? 1

JL(r) = flu . (26)

mec Avp

The inverse proportionality to the Doppler width of the line, Avp = v vy, /¢ — which
describes the characteristic scale of thermal broadening of the spectral line about its
natural frequency, v, in terms of the ion thermal speed, vy, — converts the frequency
times cross-section units of the classical oscillator to the cross-section units of oy.

To illustrate the relative strength of line scattering to scattering off of free

electrons, let us define the ratio q to be



which, recalling the inverse dependence of k7, on Avp, is independent of vy,. In parallel

with equations 2.5 and 2.6, electron scattering opacity scales as

OThTe
Ke = ) (2.8)
P

where

(2.9)

_ 2
OTh = g’ﬂ'?“e s

is the Thompson cross-section. For an allowed transition with f;, ~ 1, ¢ can then be
cast in terms of the mean mass per electron, u. = n./p, and the mean mass per ion
that can be excited, p; = n;/p, such that

_ 3 A0 fe

_ 2o fle 2.10
=S m (2.10)

For a line in the optical, A, /7. ~ 10® but, for the metal ion resonance lines that provide
the dominant contribution to line opacity for massive stars, p./p; ~ 107 — 1075.
Nonetheless, this still gives a characteristic value of several thousand for ¢, confirming
the inherent strength of resonance scattering lines noted above.

For an optically thin line, the intensity is not significantly attenuated by the
line at any frequency and can be pulled out of the frequency integration. Since the

profile-function is normalized, we can now write

KLAvpL,, _ Kequw, Ly

Gthin = = qWyYe , (211)

4rr2e 4mric
where the second equality introduces the weighting factor w, = v, L., /L, which char-
acterizes the placement of the line in the stellar spectrum. For lines near the peak of

the flux spectrum w, < 1, we now see that the acceleration from a single spectral line

can be boosted by up to a factor ¢ ~ 10® over the electron scattering force integrated
over the whole continuum.
In practice, such strong lines will be optically thick, and one must account for

the attenuation of the intensity by self absorption within the spectral line. In general,
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this can involve complicated non-local integrations. However, in the presence of strong
velocity gradients Sobolev (1960) showed that this line transfer can be reduced to a
purely local calculation. For example, for the simplified case of radially streaming
photons and a spherically symmetric outflow undergoing strong radial acceleration
dv,./dr, a photon emitted at a frequency v 2 v, can only interact with a line over a

short resonance zone of width,

Uth
Loy = —2th 2.12
50 = v, Jdr (2.12)

and centered on a radius 7,5, where the photon has been brought into resonance by the
Doppler shift of the outflow, i.e. with v,(r.s) = ¢(v/v, — 1). For supersonic outflow
with v, > vy, this “Sobolev length” is quite small, allowing one to obtain a local

expression for the integrated line optical depth

- KRLPUh
" dv,/dr

(2.13)

In the general case of a vector velocity v, the analogous optical depth along a direction

A .

n is
_ Kppuip

= dv,,/dn’

where dv,/dn = n - V(i -v). While the general expression for this gradient is alge-

(2.14)

braically cumbersome to express, its components in various geometries are available,
for instance, in Batchelor (1967).

This “Sobolev optical depth” allows one to account for the line attenuation of
a given continuum intensity® I, . that is interacting with the spectral line. Defining a
frequency displacement from line center in units of the thermal Doppler width

V— U,

2.1

T

2 Intensity is usually assumed to be the unattenuated stellar intensity. However, this
approximation breaks down in the presence of very dense circumstellar disks, as is
addressed in chapter 7.
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and velocity in units of the thermal velocity u = v /vy, the local intensity in a direction
n at vector location r is the continuum intensity exponentially attenuated by an optical

depth term, which in the Sobolev approximation is given by
I(v,r,0) = I,,e ™®E-0w (2.16)
Here we have introduced the integrated profile function,
O(z) = /OO o(x')dx', (2.17)
x

which, for a Gaussian profile is given by the complementary error function.

Applying 2.16 in equation 2.4 gives, for the vector line force

A o0 R
Bline = fL2lp fj*,y/ ¢($ —n- U)G_Tné(x_n.u) dxndS2. (218)
¢ —00
Noting that ¢dr = —d®, the frequency integration reduces to
1 _
1—e ™
/ Ay =~ (2.19)
0 Tn
giving, then
A 1—e ™
&jine = L2TD ]{ L, fqdQ. (2.20)
C 4 Tn,

For radial streaming radiation, with i = t as from a point star, the line accel-
eration is only in the radial direction gjne = Grinet, where
1l—e™™
Gline = JGthin . (221)
Ty
For weak lines with low optical depth, 7,, < 1, this recovers the optically thin expres-

sion, Ginin, given by 2.11. On the other hand, for strong lines with high optical depth,

we obtain

Gthin - wl/L* dvr

Gthick ~ ;T > 1 (2.22)

7. 4wr2ctp dr
Note that in the second expression, since both ¢, and 7. depend linearly on kp,
Ginick 18 independent of k. This can be understood by recognizing that once a line is
optically thick it can scatter all photons that encounter it, regardless of its intrinsic

strength.
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2.1.3 Acceleration from an ensemble of lines

The analyses above have only considered the acceleration from a single line.
However, spectra of massive stars show many spectral lines that can contribute to ra-
diation driving. Castor et al. (1975) (hereafter CAK) developed a general formalism to
account for a large number of non-overlapping lines. Following CAK?, let us introduce

the optical depth for a line with ¢ = 1,

KepC

" dv,Jdr’

t (2.23)

This has the advantage of encapsulating the physics of Doppler shift into ¢ and line
strength into ¢, such that 7. = ¢t. Making this substitution, the total line force is
formally given by

1—e

1—e?
o= o =g, L — . 2.24
Gtot thh g Zw q at ( )

7—7'
As there are typically thousands of lines contributing to this sum, the sum can be well
approximated by an integral over a flux-weighted number distribution! d/N/dq in line

strength ¢,

t dq
Following CAK (see their appendix), the number distribution in opacity can be well

A dN
Gror = 9_/ (1—e %) —dq. (2.25)
0

approximated by a power-law. Using a notation analogous to that introduced by Gayley

(1995), we express this as

(@) o

3 The form here replaces the fiducial thermal speed vy, as used by CAK, with the speed
of light ¢. This removes the artificial dependance of both ¢ and the line acceleration
O1l V¢p .

4 This is defined such that each line contributes its associated w, to the integration
over lines.
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where () can be interpreted as a flux and population weighted ¢, and « is a temperature
dependant fit parameter between about 0.5 and 0.65 (Puls et al., 2000).

Evaluating equations 2.25 and 2.26 yields the CAK line-acceleration,

9.Q1 _[ (keQ)' L. } 1 (mw)“f, (2.27)

BoAK = (1 —a)te  |[4n(1 —a)c | r2 \p dr
where the square bracket term is constant, showing then explicitly the spatial depen-
dance of the acceleration, specifically its dependance on the velocity gradient to the
a power. CAK cast this through a “force multiplier”, defined such that goax/g. =

M(t) = kt=*, where now k = Q'7/(1 — ).

2.2 Line-Driven Stellar Winds
In addition to describing the behavior of line acceleration, the CAK formalism
provides a basis for deriving stellar wind solutions. In the limit of zero sound speed,
which neglects the relatively small contribution of gas pressure in accelerating the wind
outflow, the steady-state, spherically symmetric equation of motion takes the form
dv, GM.(1-T.)  g.Q'"

Ao . 2.98
v dr r2 + (1 —a)t~ ( )

The left hand term represents the contribution of inertia, while the two terms on the

right respectively represent the inward pull of gravity (reduced by continuum electron
scattering) and the outward push of lines.
Introducing the variable transformations w = v?/v%,. (with 02, = GM,(1 —

€esc €sc

I.)/R.), x =1— R./r, and w' = dw/dz, equation 2.28 reduces to the form

Cuw' =w'+1 (2.29)

1 L* « Fe 1—a
c=1 (M) (Ql_re> | (2.30)

2

where the constant M = 4mpv,r? is the wind mass loss rate. Figure 2.1 shows an

overplot of the left and right sides of equation 2.29 and demonstrates that, for a given
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Figure 2.1: Overplot of the left and right sides of equation 2.29 for different values of
C. For C too large two solutions exist while for C too low no solutions exit, such that
there is a unique value of C for which only a single solution exists.

value of a, equation 2.29 has zero, one, or two solutions depending on the value of
C' o« M~®. The minimal allowed, or “critical”, value of C. = a (1 — a)* ! is an
attractor solution and gives the optimal case for which the star drives the maximum

possible mass loss,

. a3 L* Ff‘ (1_"}')/(“)
Meak = — ¢ : ; 2.31
CAK = 7 2 (21—1}) . (2.31)

This corresponds to a critical acceleration w/, = /(1 — «). Since 2.29 has no explicit

position dependance, w’ = w.. everywhere, and this can be integrated to give a velocity-

I / R, / R,
'UI'(T) — L'Ues(r l——= Vo l1— — 3 (232)
l—« i r

where v, is the terminal speed of the stellar wind.

law
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Let us now investigate the general scaling of Mc i with stellar parameters. For
all the stars in this dissertation, and indeed all but the very most massive of stars, the
scaling with (1 —I'.) can be ignored leaving

MCAK X (233)

Since o ~ 0.6 and the scaling of luminosity with mass is approximately L, oc M2, mass
loss rate is a very steep function of stellar parameters going roughly as Mcax L}
MO,

The preceding analysis ignores the finite cone angle subtended by the star by
assuming the star to be a point source. Including this lowers the mass loss rate by
about 50% while increasing the wind terminal speed by a comparable factor (Friend &
Abbott, 1986; Pauldrach et al., 1986). The derivation also ignores the contribution of
pressure forces to accelerating the wind, the inclusion of which increases mass loss rate
and decreases the wind terminal speed by around 10% (Owocki & ud-Doula, 2004).
Finally, this analysis also ignores the ionization balance of the stellar wind and how
this contributes through the spectral lines available to radiation. This effect is more
subtle and is discussed in appendix C.

In general, the inclusion of these same effects tends to flatten the velocity-law.

To account for this, we generalize equation 2.32 to

(1) = vac (1 . &)B . (2.34)

r

Fits of this to simulations including the corrections above give 8 ~ 0.8 — 1.0.

2.3 Inclusion of an Exponential Cutoff to the Line Force

One further adjustment to the CAK line acceleration is the inclusion of an ex-
ponential cut-off in the line distribution function, equation 2.26. Since the distribution
function in principle allows there to be a line of ¢ = oo, and g, < ¢, formally the

line force is allowed to approach infinite strength. This is not a physically meaningful
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situation which can be remedied by including an exponential cut-off in q. Owocki et al.

(1988) introduced such a cut-off making the distribution function

dN _ Q q o —q/Qo
W TeE ) 239

where Q as used before is related to the new Q and Q, by Q'™ = QQ-“. Repeating

the analysis done before,

geQ (]- + To r)lia —1
ot — ’ s 2.
Gtot 1—a) [ Tor (2.36)
where 7, , = Qokepc/(dv, /dr) = Qot. In the limit where 7,, > 1, we obtain
Q1
9eQ (2.37)

Gtot = mt—a )

and, using Q' = QQ5*, this reduces to goax.

2.4 A Generalized Three-Dimensional Formalism

Although the spherically-symmetric case with radially streaming photons is il-
lustrative, for the disk ablation models in this dissertation the non-radial velocity gra-
dient components can also come into play. Therefore, we need a fully three-dimensional
(both in flux prescription and components of the velocity gradient) line-acceleration.
Cranmer & Owocki (1995) introduced such a formalism.

While the simplicity of a 1D formalism is emphasized in the prior sections,
this is not the key elegance of the CAK formalism. Indeed, without the Sobolev
approximation, we would not have been able to obtain any of these results. By realizing
that the Sobolev approximation is valid along any line of sight 1, rather than just along
the radial direction T, it becomes evident that we can generalize the derivations above

by taking

dv,/dr — - V(i v). (2.38)
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With this substitution, the preceding derivations which led to equation 2.36 now gen-

eralize to a form with angle integration over source intensity I,

goncan = ) Q[ [ Ton) T — 1
CARSD = (1 ) cltope | Ton

where 7,, = Qokepe/(fi- V(@i - v)) is the maximum optical depth allowed for a line in

] AdQ, (2.39)

dN/dg. In parallel to the prior section, for 7,, > 1 this reduces to

1—a )
8CAK3D = a —<Z€)>cl+fp2an 7{]* - V(id-v)]"ndQ. (2.40)

As emphasized before, the central scaling of this equation® is with

1 /a-Vm-v)\“
JCAK 3D X 3 (—(p )> (2.41)

Like its 1D equivalent, this involves only purely local calculations making its imple-
mentation in a finite differencing hydrodynamics code straightforward.

This dissertation presents the first application of the fully 3D line acceleration to
a circumstellar, Keplerian disk. However, prior work has demonstrated the importance
of correctly treating these non-radial effects for winds from rotating stars. Such effects
become particularly pronounced when the star is so rapidly rotating that it becomes
“oblate” with an equatorial radius that is larger than that over the poles. Since the
local net flux is perpendicular to the local surface and the stellar surface is no longer on
a sphere, at mid-latitudes it has a poleward component that drives material away from
the equator. In addition, since photons take the path of minimal optical depth when
passing through an optically thick medium, the equator of such rapidly rotating stars
becomes “gravity darkened” (see, e.g. Cranmer, 1996; von Zeipel, 1924). Appendix A
discusses these effects more extensively.

As discussed in Owocki et al. (1996), one notable example of the importance

of such effects is in their inhibition of the “wind-compressed disk” effect, proposed by

> The 1/7? scaling cited here is buried in the solid angle integral.
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Figure 2.2: With permission, figure 1 of Owocki et al. (1996). The panels show density
contours and the latitudinal component of velocity. From left to right the panels
correspond to a) spherically symmetric radiation, b) inclusion of non-radial line forces,
and c) inclusion of both non-radial forces and gravity darkening.

Bjorkman & Cassinelli (1993) to explain the circumstellar emission from the rapidly-
rotating, Be stars®. Their central idea was that radiatively driven material which
overcomes the centrifugally reduced gravity of a rapidly rotating star would, by angu-
lar momentum conservation, cross the stellar equator and collide with material from
the opposite hemisphere, forming an outflowing wind-compressed disk. Initial simula-
tions of Owocki et al. (1994) that assume pure radial driving, and so ignore oblateness
and gravity-darkening, indeed produce such a disk. Subsequent simulations by Owocki
et al. (1996) show, however, that when oblateness is included the equatorward flow
is reversed, leaving only a weak equatorial over-density associated with the lower net
gravity near the equator. Moreover, when equatorial gravity-darkening is also included,
the over-density shifts toward the poles, suggesting that rapidly rotating oblate stars
should actually have prolate winds. Figure 2.2 shows this “wind-compressed disk inhi-
bition” in both density contours and latitudinal velocity vectors.

Subsequent work by Gayley & Owocki (2000) showed that the shear arising from

the radially declining azimuthal velocity leads to an azimuthal line-acceleration that

can actually lead to a net “spin-down” of the stellar wind (see figure 2.3). Figure 2.4

6 Such Be stars form a significant part of this dissertation and are discussed in more
detail in chapter 3.
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Figure 2.3: With permission, figure 1 of Gayley & Owocki (2000). The panels show,
for the region around a rapidly rotating B star, a) the azimuthal force component (g, )
and b) net change in azimuthal velocity with respect to a model ignoring gg4.
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Figure 2.4: With permission, figure 3 of Gayley & Owocki (2000). Each panel shows
the velocity as seen by an observer at the intersection between the two rays shown,
labeled I for the ray from the blue-shifted hemisphere and I~ for the ray from the
red-shifted hemisphere. From left to right, the panels show the velocity that would
arise for a) rigid rotation and a wind velocity law, b) angular momentum conserving
Hows with a wind velocity law, and ¢) a Keplerian disk with no outflow.
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Figure 2.5: Schematic depiction of the radial velocity gradient, dv,/dr, for a wind (left)
and the line of sight velocity gradient, dv,/dz, for a Keplerian disk (right).

shows how the combination of rotation and outflow leads to an asymmetry in the line
of sight velocity gradient towards the prograde vs. retrograde hemisphere. Thus even
though there is no net flux in the azimuthal direction, there arises a net azimuthal
component of the line-acceleration that acts against the direction of stellar rotation,
and so causes the wind rotation to “spin down”.

A key motivation for this dissertation is the idea that such non-radial velocity
gradients might also play a key role in the forces acting on a circumstellar, Keplerian
disk. While part ¢ of figure 2.4 shows that such a Keplerian disk with no outflow
experiences no azimuthal acceleration, it is also clear from this figure that there should
be a net radial acceleration. To reinforce this point, figure 2.5 compares the velocity
gradient along a ray tangential to the stellar surface, through a Keplerian disk, to
the velocity gradient in the radial direction in a spherically symmetric wind. These
are comparable in magnitude and qualitatively quite similar in radial variation. This
dissertation examines the implications of such shear-enhanced line-accelerations on the

ablation of Keplerian disks.
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Chapter 3

THEORY AND OBSERVATIONS OF CIRCUMSTELLAR DISKS AND
THEIR HOST STARS

Disks are one of the most prominent structures in the universe. From the rings
of Saturn to the material accreting onto black holes and even all the way up to the
structure of spiral galaxies like the Milky Way, disks are the natural byproduct of ro-
tation and angular-momentum conservation. In effect, disks are the mediators of mass

and angular momentum transfer between their host and the surrounding environment.

3.1 Formation of Circumstellar Disks by Cloud Collapse

Circumstellar disks are a ubiquitous feature of the formation of stars from tur-
bulent gas clouds. Although the turbulence is composed of randomly oriented motions
over a range of scales, Burkert & Bodenheimer (2000) showed from simulations that
a subset of a cloud undergoing gravitational collapse will generally have a preferred
rotation axis with non-zero angular momentum. As the cloud collapses toward a stel-
lar core, angular momentum conservation amplifies the rotational velocities about this
axis, while velocities parallel to the axis are cancelled out in collisions.

A simple model illustrating this effect is the collapse of a spherical shell of gas
of radius R, initially in rigid rotation with angular velocity €2, about a point mass M.
Let us define the ratio of rotational kinetic energy T,,; of a parcel at the equator, to
gravitational potential energy Uy, .,

Troo  PR%)2
Upaw GM/R’

Beq = (3.1)

Assuming the cloud satisfies the Jean’s Criterion, i.e. is cold enough that the internal

thermal energy is less than the gravitational potential energy, then it will collapse to
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Beg=0.1 Bau=0.2

Be=0.3 Bes=0.4 Bea=0.5

Figure 3.1: A schematic depiction of the collapse of a spherical shell (black circle)
around a point mass. The blue lines trace the path taken by gas parcels conserving
angular momentum into the final state as a disk, shown in red. The panels vary 3., as
described in equation 3.1.
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form a disk with outer radius 2f.,R. Parcels at colatitude § have 3() = Bsin® 6 and,
as illustrated by figure 3.1, collapse by angular momentum conservation to a Keplerian
disk radius 283, Rsin 6. If, instead of a single shell, there are now a large number of
concentric shells, each will collapse the same way as before, now under the gravitational
attraction of the shells inside it.

To illustrate this, figure 3.2 shows the final state of a hydrodynamical simulation
of the collapse of such a rigidly-rotating, solid sphere of uniform density and fixed
isothermal temperature 7'. To avoid the need to compute the self-gravity of the cloud,
we retain the assumption of a central point mass M that is much greater than the
mass of the cloud. As expected, the final state is a disk with outer radius for this case
of Beq = 0.45 near the expected value of 25.,,R = 0.9R. However, the left panel of
figure 3.2 shows that the finite temperature in the cloud leads to a pressure/density
stratification in the vertical direction away from the equatorial plane. The right panel
plots “Kepler Number”, defined as the ratio of azimuthal velocity to local Keplerian
orbital velocity

K= (3.2)

Vg
sinf\/GM/r’

with near unity values around the disk plane demonstrating that this “flared” disk is

Keplerian.

3.2 Disks Around Massive Stars

While such protostellar disks are readily observed around stars less than a few
solar masses, confirming their presence and studying their properties for luminous,
massive stars is observationally more challenging (see, e.g. Zinnecker & Yorke, 2007)
because their formation generally occurs deeply embedded in the star’s natal cloud.
For O stars this means that, by the time the star can be observed without significant
extinction in shorter wavebands than the infrared, the disk has also been largely dis-
sipated by the strong winds and radiative-acceleration discussed in the prior chapter.

One goal of this thesis is to quantify this process.
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Figure 3.2: Final state of the collapse of a rigidly rotating cloud of § = 0.45 shown in
both density (left) and Kepler number (right).

In lower mass B stars, disks can survive to the later pre-main-sequence phase
when the shrouding by the natal cloud has been reduced sufficiently to see emission line
signatures of the disk, for example in the Herbig Ae and Be stars. Such Herbig Ae and
Be stars provide a good laboratory for the role of disks in massive star formation and
providing observational test of the disk dissipation processes discussed in this thesis.

However, massive stars’ disks are not confined to the star formation phase. Fully
20% of main sequence B stars show an IR excess as well as Ha emission associated
with a circumstellar, gaseous disk (see figure 3.3). Such stars, observed extensively since
their discovery nearly 150 years ago by Secchi (1866)!, are referred to as Classical Be
stars, and also provide a valuable opportunity to probe the interactions between stars
and gaseous disks. Classical Be stars are far too old to still harbor vestiges of the star
formation process, and so are not subject to the extinction that plagues observations

of stars still in formation. Additionally, Classical Be star disks come and go on time

! In fact, Father Angelo Secchi’s 1866 observation of the Be star v Cassiopeiae (7 Cas)
was the first observation of emission lines in a stellar spectrum.
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Figure 3.3: By mapping the visible surface area of a Keplerian disk into a histogram
by line-of-sight velocity (left), it is easy to see how the majority of disk viewing an-
gles produce double-peaked emission (right panel with permission from Rivinius et al.

(2013)).

scales of months to years, allowing for observations that have captured both their
growth and decay. This combination of stellar age and transient appearance has led to
the consensus that these disks are dynamically generated by the stars themselves, likely
as a byproduct of their extreme rotation rates at upwards of 70% of orbital velocity
(Townsend et al., 2004). Such a high rotation velocity leads to stellar oblateness and
gravity darkening as discussed in appendix A. Figure 3.4 shows such a star. Chapter 6
provides a model for the ejection of material into a disk by rotationally assisted stellar
pulsation. Chapters 4 and 5 discuss how disk destruction by line-driven ablation might
explain their transient nature and occasional disappearance. For Classical Be stars
observed near to edge-on, there is direct observational evidence for enhanced flows
along the disk surface (e.g. Grady et al., 1987, 1989) providing a direct test for ablation
models.

Observations show that there is a dependance on spectral type of the fraction
of B stars that are observed to be Classical Be stars (see e.g. Martayan et al., 2006;
Rivinius et al., 2013). On the low mass end, Be stars are thought to transition into
a population of A and F disk hosting stars. As these are stars expected to host very
weak winds, if indeed they have line-driven winds at all, we do not discuss them any

further here. On the high mass end, Be stars seem to cut off fairly abruptly around
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Figure 3.4: A star rotating with equatorial rotational speed 80% of local orbital speed.
Such a star has Requator/Rpoie = 1.32 and Figuator/Fpore = 0.2. The shading depicts
relative surface brightness.

the B to O spectral transition. Indeed, while there are several possible candidates for
O9e stars? there are very few claims of more massive Classical Oe stars. One of the
central aims of this thesis is to investigate whether this high mass cutoff can be related

to the stronger radiative accelerations present in these more massive stars.

3.3 Structure of Circumstellar Disks
While circumstellar disks occur in a variety of scenarios, there are commonalities
to their structures. Solving the radial, R, and vertical, z, components of the momentum

conservation equations yields analytic scalings for the stratification of density p in both

2 Work by Vink et al. (2009) has shown a systematic mistyping of Oe/Be stars around
the B to O transition as earlier spectral types than they actually are due to their strong
winds, drawing some question to exactly what is the earliest Oe star.
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the radial and vertical directions. For circular orbits with purely azimuthal velocity vy
about a star of mass M,, taking an isothermal equation of state with pressure P = pa?
and sound speed a reduces the vertical component of the momentum to an equation of

hydrostatic equilibrium

a*dp GM,z 13

PXZRT 3
GM,z

- R3 ) (34)

where the approximate equality assumes that z << R. The resulting vertical stratifica-

tion of density then follows a Gaussian
p oc e V2EH) (3.5)

with scale height H = a?R?/(GM). Under the same assumptions, the radial component
of the equation of momentum conservation is
Y _a’dp  GMR (3.6)
R pdR (R?+22)%2
Since both the radial variation of v, and p are unspecified here, and there is no other
constraining equation to satisfy, we can freely choose the radial variation of one of

them; here we choose to specify p(r) to be a power-law of an index n giving the full

functional form,

R\ 1
p(R.2) = p, (R—) e b/ (3.7)

with associated velocity

GM R H
R.z) = 1—nZ) . 3.8
volf2) VR? 4+ 22 VR? + 22 < nR> (38)

While n is presented as a free parameter in these equations, prior work has
put constraints on its value. For instance, by modeling the Ha profile generated by
equation 3.7 and fitting to the observations of 56 Classical Be stars, Silaj et al. (2010)
found that n fell in the range 1.5 — 4.0 with a statistically significant peak at 3.5.
Individual fits for a large number of other stars (e.g. Porter, 1999; Gies et al., 2007;
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Tycner et al., 2008) confirm this result. Following the work of Carciofi et al. (2006,
2007, 2009), the remainder of this dissertation uses the statistically significant peak
value n = 3.5.

In addition to constraining n, observations of Classical Be stars also constrain
Po- Since the disks are observed to be marginally thin to electron scattering opacity
ke, we here take p, = (k.R.)™!, yielding a radial optical depth through the equatorial
plane of 7 = 1/(n—1) = 0.4. Integrating the disk density profile over the full simulation
volume extending from 1 to 10 stellar radii, the total disk mass for power-law index

n = 3.5 depends on the stellar parameters as

(27)3/2 a 2.5
My, = R?51n(10 3.9
disk ke GDM, n(10) (3:9)
T [10M, R \%*°
=124 x 10700 \/ \/ © . 1
x 10 “V1o*KV M \5R, (3.10)

For comparison, for a star without a disk but a mass loss rate M and a constant
outflow, i.e. a 8 = 0 velocity law, v, = v, the total wind mass in the same simulation

volume is given by

IR, M

Mwind = /pwznddv - (311)

M R, 10%cm/s
10-My /yr 5Ry  Vso

=9.9 x 107" M, (3.12)

Figure 3.5 plots the ratio Mgy;s/Mying, demonstrating that the disk makes up the
majority of mass in the simulation across all spectral types considered. Accounting for
a more realistic, § = 1 velocity-law causes the wind mass to slowly diverge as the lower
integration bound approaches R,, where v, — 0 makes p — co. However, doing this
integral with a lower bound R, + € only introduces an order unity increase (depending
on the lower integration bound), and so the general conclusion that the disk mass is

larger than the wind mass does not change.
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Figure 3.5: The ratio of disk to wind mass for the stars in this dissertation.

3.4 Viscous Transport

Modeling of the dynamic evolution of circumstellar disks has previously focused
on the role of viscous forces, largely ignoring ablation effects.® As concentric rings of
gas in the disk shear against each other, angular momentum is transported outwards
allowing material to diffuse either inward or outward based on the mass source bound-
ary conditions. In the case of a star in formation, where the dominant mass reservoir
is the cloud at the outer edge of the disk, the net material transport is inwards (accre-
tion), while in the case of a Classical Be star, where the rapidly rotating star provides
an inner mass reservoir, the net material transport is outwards (decretion?).

Since viscosity does not determine the vertical structure of a disk with only

Keplerian orbital velocity, let us define the vertically integrated surface density ¥ =

3 For a detailed review of viscous transport in gaseous disks see Lodato (2008).

4 “Decretion”, literally meaning a decrease, is not a particularly common word in the
English language. However, it is vastly preferable to “excretion” as was once used.
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[=5_ pdz. For a disk with Gaussian vertical stratification, this gives ©(R) = /TH peq(R),
where p.,(R) accounts for the power-law dependence of density on radius. Combining
the equations of mass and momentum conservation, the interaction of Keplerian shear
with kinematic viscosity v causes ¥ to evolve according to the diffusion equation (see,
e.g. Lodato, 2008),

0

dS 30 [, s
4z 3 0 9 ) 1
&~ wor |® ap (BvE) (3.13)

A simple way to illustrate this diffusive evolution of a disk is to introduce at
time t = 0, a d-function in surface density at some initial equatorial radius R,, such
that X(R,t = 0) = m/(2nR,) 6(R — R,) where m is the total mass in the annulus.
This material is also given Keplerian orbital velocity vy = m If v is position
and density independent, the evolution follows the so called “spreading ring” solution,

(Lynden-Bell & Pringle, 1974)

m x Yt 2
Dl ) = e 0 gy (20 (3.14)

where x = R/R,, 7, = 12vt/R2, and I, 4 is a modified Bessel function of the first kind.
Since v is taken to be independent of ¥, this represents a Green’s function solution in
space and time to a linear equation. Figure 3.6 plots several snapshots of the behavior
of this function, showing that the ring spreads both inwards and outwards from its
initial position. Using the principles of superposition, this Green’s function allows
one to solve for the time evolution of disks of arbitrary initial surface density. For a
constant rate of mass being added at some source radius R,, it also allows us to solve
for the asymptotic spreading of a disk away from a mass source. If this mass source is
at the inner edge of the disk ¥ o< r=%®, while X is independent of radius if the mass
source is at the outer edge of the disk. While these are interesting and useful results,
they are only valid for a constant v, which is not expected to be the case.

One particularly common method for accounting for the spatial dependence of
v is the “a-prescription”. First introduced by Shakura & Sunyaev (1976) to treat

accretion onto black holes, this method consists of breaking down kinematic viscosity,
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Figure 3.6: The spreading ring Green’s function solution at several times demonstrating
its behavior in space and time. X has been normalized such that the peak value of

2(x,0.01) = 1.

which has units of a length-squared over time, into the product of a characteristic

length, a characteristic velocity, and an efficiency factor e such that
v=aHa. (3.15)

Here the pressure scale height has been chosen as the characteristic length as it is the
largest scale over which material can be expected to be coherently transported, and the
sound speed has chosen as the characteristic velocity as viscous transport is expected
to be subsonic. a then can be alternatively interpreted as the product of the fraction of
a scale height over which material is actually transported and the fraction of the sound
speed at which it travels. While this only qualitatively describes the underlying physics
of viscous transport, it does provide a simple method for determining the approximate
scale of the viscous forces as well as a first order estimate of their spatial dependence.
Based on these merits, the a-prescription has become one of the most prevalent ways
to cast viscosity in astrophysics.

For position dependent kinematic viscosity, as is the case in the a-prescription,
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we no longer have access to the Green’s function solution. However, it is still possible to
derive an asymptotic surface density distribution as was done for instance in Bjorkman
& Carciofi (2005). For an a-prescription of viscosity and a scale height proportional
to R~1%, the asymptotic surface density in an isothermal decretion disk has ¥ oc R=2
and, since ¥ o< pH, volume density varies with radius as R72°. Comparing this to the
results of Silaj et al. (2010) shows that this is the statistically significant peak value of
n, reinforcing the choice to use n = 3.5 here.

With this confirmation that the a-prescription is a good model for disks, we can
now turn our attention to the scale of &. While it is in principle a free parameter of the
a-prescription, we expect that a < 1 so that material is not transported supersonically
or over larger lengths than the disk scale height. Beyond this simple limit, it is also
possible to calibrate a by comparing the distribution of gas in a sample of disks of a
variety of inferred ages (see, e.g. Hartmann et al., 1998; Andrews & Williams, 2007).
Doing so suggests that for star forming disks o ~ 0.01. This should be taken as a loose

order of magnitude estimate only, however, as « itself is not necessarily constant even

3.6

3.8

0.60.81.01.21.41.6
4.0

Figure 3.7: With permission, figure 1 of Carciofi et al. (2012) showing observations and
viscous diffusion fits to the disk decay of 28 CMa.
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within a single system as it likely depends on at least temperature, ionization level,
density, and radius.

In the study of Classical Be disks, the a-prescription has notably been applied
to dynamical modeling of 28 CMa (Carciofi et al., 2012). Figure 3.7 shows a series of
observations taken between 2003 and 2009 showed over a half a dex dimming of the
visual band magnitude of this star, inferred to be associated with the disappearance of
a circumstellar disk. To match the observed ~170 day decay time of the disk, an « of
1.0+£0.2 is required®; on the cusp of (if not too large for) the expected range of o < 1.
Therefore a much more efficient process for evacuating a circumstellar disk in necessary.
This dissertation investigates the possibility that this more efficient evacuation of the
disk is related to the non-radial velocity gradient components discussed at the end of

chapter 2.

5 Re-analysis of the data suggests a closer to 0.4, still large compared to the expected
value 0.01 < a < 0.1. (Carciofi, private communication).
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Chapter 4

RADIATIVE ABLATION OF AN OPTICALLY THIN DISK

We now have both a formalism for implementing a 3D, vector line-acceleration
(chapter 2) and a description of the disks to which we want to apply it (chapter 3).
Before undertaking an investigation of the interaction between disk and radiation over
a wide range of stellar parameters, however, let us focus on a single model, here chosen
to be a non-rotating main sequence B2 star (section 4.1), with emphasis on resolution
and comparison of force implementations.

From physical arguments and prior experience, the spatial resolution is relatively
easy to specify. In contrast, the required number of rays to resolve the stellar radiation
and properly model disk ablation is not as clear. We therefore carry out a resolution
study in ray quadrature (section 4.2).

Another issue regards the importance of non-radial velocity gradients and ac-
celerations found to play such a crucial role in the wind rotation models of chapter
2. The parameter study here examines their role for disk ablation by comparing a
model which has a fully 3D vector acceleration with two simplified models: one with
a 1D radial acceleration calculated using dv,/dr as opposed to n - V(n - v); and one
with a 3D radial acceleration calculated with the non-radial velocity gradients but only
implementing the radial component of the acceleration (section 4.3).

To wrap up the investigation of a B2 star and allow us to continue on to a
parameter study of stellar spectral type, section 4.4 presents a discussion of the effects
of rotation on ablation. While chapter 3 points out the ubiquitous observation of rapid
rotation in Be stars, including such rotation in a grid-based, numerical hydrodynamics

code poses challenges for implementation and adds complexity through the introduction
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Table 4.1: Stellar and Disk Parameters of the B2 Standard Model

Sp. type | Teyy (KK) | Ly (Lo) | My (Mg) | R (Ro) | Maisk (M)
B2V 22 5.0x10° 9 5.0 1.9x10710

Table 4.2: Wind Parameters of the B2 Standard Model

Sp. type | Q | Qo | a | Myina (Mg/yr)
B2V 1800 | 4900 | 0.59 7.4%x10710

of a new parameter, so we wish here to determine the importance of its inclusion for

the ablation rate.

4.1 Standard Model of a B2V Star

For our standard model, we choose a B2 star both because of its strong lumi-
nosity and also because this is near the spectral type with the largest fraction of Be
stars. Table 4.1 provides the full set of stellar and disk parameters as derived from the
evolutionary tracks of Georgy et al. (2013) and the effective temperature calibrations
of Trundle et al. (2007). Table 4.2 gives the wind parameters as derived by Puls et al.
(2000).

Taking these parameters, we use the hydrodynamics code VH-1 to evolve the

time-dependent equations for conservation of mass and momentum,

9p

+V- — 4.1
ot (pv) =0 (4.1)
—8V+V Vv = —EVP— + (4.2)
ot 0 8grav Srad - .

Here we do not need an equation of energy conservation because we assume an isother-
mal equation of state, P = pa? where a = \/m is the isothermal sound speed for
temperature 7' and mean molecular weight i (~ 0.6mprot0n). Additionally, gravity
only arises from the fixed stellar mass, as the self-gravity of the disk is many orders
of magnitude weaker. The initial condition assumes a superposition of a hydrostatic,

optically thin, Keplerian disk (as described in chapter 3) onto a background spherically
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Figure 4.1: Initial condition of the B2 standard model plotted in log(p) measured in
log(g/cm?).

symmetric wind (as described in chapter 2). Each extends from the stellar surface to
the outer simulation boundary in its respective portion of the initial conditions. Figure
4.1 plots log(p) contours for this initial condition.

The outer boundary at r = 10R, (see table 4.3) assumes a zero gradient in all
quantities; the inner boundary at r = R, assumes a constant density' and linearly
extrapolates the velocity components across the boundary with the constraint that
they not be larger than the isothermal sound speed. For this initial model, the stellar
radiation field is characterized by a grid of rays, projected onto the stellar disk with
ngy = 6 rays in the full circle in azimuthal angle 0 < ¢’ < 27 about the center, and
n, = 6 rays in impact parameter p. These are distributed and weighted according to a
Gauss-Legendre quadrature in ¢/ and impact area y = p*/R?2. For a depiction of this
quadrature, see the second panel from the right in figure 4.9.

In addition to the model parameters and simulation method, we also need to

define a few quantities that will be used in this analysis, as well as in the remainder of

I This density is p. = 5psonic: With psonic = ﬁ'fc‘%—/(élirrﬁfmica) the density at the sonic

radius Ryonic, Where v,.(Reonic) = @. For this B2 model, p, = 5 x 10 *g/cm?.
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the dissertation. One particularly important quantity is the mass flux distribution per

unit solid angle, for azimuthally symmetric models proportional to,
dM
— = 2mpv,r?, 4.3
0 TPUT (4.3)

where ;1 = cos 6. By plotting the time average of this quantity for the B2 model, figure
4.2 confirms the expectation that ablation should mostly occur in thin layers along the
upper and lower edges of the disk?. By comparing this with the second panel of figure
4.2, which shows force-per-unit-length pg,r%, we can see that the material in these
ablating layers is accelerated throughout the full radius of the simulation. However,
since the thickness of the ablating layer does not substantially change in solid angle, we
interpret this as continuing acceleration of the material that has been dislodged from
the disk near the star, rather than an addition of new disk material to the ablation
flow. Note that, while this mass loss rate per solid angle is much larger than that
of the wind, its much smaller solid angle means that the total mass loss rate can be
comparable.

To quantify this disk ablation rate, one option is to compute the flux of mass
through the outer simulation boundary. By plotting this, figure 4.3 demonstrates that,
after an initial adjustment period, the mass loss rate from a model with disk ablation
is roughly SMwind. However, this includes both the wind and disk mass loss rates. We
can attempt to remedy this by choosing only a small angle about the equator. This is
also shown in figure 4.3 as “M;5”, referring to the inclusion of mass loss in a band of 15°
above and below the equator Finally, figure 4.3 also shows the rate of change of mass
in the simulation volume AM/At, since this is not affected by the steady state wind.
The initial spike in this disk ablation rate is due to accretion of material back onto the
star. After a few kiloseconds, however, the ablation rate becomes nearly equal to Msy;

the small difference at late times can be accounted for by the shrinking of solid angle

2 The small pink excursions into the central region of the disk are the remnants of small
scale oscillatory motions set off by the relaxation of the initial conditions. Elsewhere
in the disk, these have averaged out.
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Figure 4.2: Time averaged mass flux per unit cos(6) of the non-rotating B2 star model,
plotted in units of Mg, yr=! cos(f)~! (left), and force-per-unit-length pg,r? in cgs units
(right). Both been averaged from 10° to 3 x 10° s to omit the time dominated by the
disk readjusting to the introduction of radiation forces.

of the disk and the contamination of a little bit of wind. Therefore, the remainder of
this dissertation uses AM /At as the disk ablation rate, with the caveat that the initial
few ks are dominated by infall.

The next section investigates how this ablation rate, which is a key outcome of

the dynamical simulations, is affected by both resolution and force implementation.

4.2 Resolution tests
4.2.1 Spatial grid

Beginning with the spatial grid, in radius we must resolve the trans-sonic region
where the wind goes from sub- to super-sonic. To ensure that this condition is met,
we compare our grid scale against the radial pressure scale height of the star, given
by a?/v2,, R.. Beyond the trans-sonic region the requirements for resolution are much
less stringent, however, so a stretch factor is applied such that each grid cell is 2%
larger than the one immediately interior to it, making the grid resolution lower with
increasing distance from the star. The first column of data in table 4.3 gives the details

of the r grid including the minimum grid spacing as well as the pressure scale height

for the standard model of a B2V star and for an O7V star which is the most massive
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Figure 4.3: Mass loss rate in units of spherically symmetric mass loss rate for three
mass loss metrics of the standard model of a B2 star.

model considered. In both cases the smallest grid cell is about half the size of the scale
height, which we deem sufficient based on prior experience.

In latitude, the scale to be resolved is the vertical pressure scale height of the
disk. This now requires higher resolution near the equatorial plane, so again a stretch
is applied, this time with the minimum grid spacing at the equator (6 = 7/2) and the
stretch proceeding in both directions toward the poles (f = 0 and 7), making each cell
1.5% larger than the one immediately closer to the equator. The second column in
table 4.3 gives details of this @ grid, including now the minimum grid spacing in € and
the disk pressure scale height at R, where H has its minimum, again calculated for
both the B2V and O7V models. Note that there are again approximately two zones per
scale height. Since the scale height grows faster than linear with r (like 7> near the
equator) while the @ grid spacing scales linearly with r, away from stellar surface this

resolution of the disk pressure scale height improves. Figure 4.4 plots this coordinate

mesh in both r and 8.
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Figure 4.4: Grid mesh as a function of r (x-axis) and 6 (y-axis) with the initial state
in log(p) plotted for comparison.

Table 4.3: Grid specifications

r 0
min. R, 0
max. 10 R, T
number of zones 300 120
stretch 1.02 1.015

min. grid spacing | 4.7x107* R, 1.7x1072 R,
B2 scale height 88x107* R, 3.0x1072R,
O7 scale height 9.3x107* R, 3.0x1072R,
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Figure 4.5: Snapshots of g,, gs, and g4 for a n, = ny = 6 ray quadrature at ¢t = 500 ks

4.2.2 Ray quadrature

Ensuring a sufficient ray quadrature resolution is less obvious than the spatial
grid. Predominantly, this is due to the fluctuating small scale structures generated by
ablation. Since each viewing direction shows a different velocity gradient, these small
scale structures can be of different magnitudes and, in some cases, even different posi-
tions with changing ray quadratures. The sharp interface between the disk and wind
also contributes to significant differences between velocity gradients for neighboring
rays. Figure 4.5 demonstrates this noisiness by plotting the three components of the

line-force for a n, = ng = 6 ray quadrature at ¢ = 500 ks.
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Figure 4.6: Convergence test for the components of the line-acceleration.

To quantify whether these structures converge with increasing ray resolution,

we define an error measure to be

.Q:r:(n/ 2) _
= ) 44

where 2 can be r, 0, or ¢, and we here fix n = n, = ng. Figure 4.6 plots this error

Frror =Max ({1 —

versus n for all three components of the line-acceleration®. While g, converges to within
10% error by n = 8 and continues to converge as n increases, the error in gy nor gy
stays high and shows no clear signs of converging up to n = 32.

On a grid level, it is thus difficult to identify a quadrature with clear formal
convergence, so a more global criterion is needed. As the most important characteristics
of the simulations are the ablation rate and the amount of disk material remaining in
the simulation, a more meaningful test is to run several models and compare their

evolution in these key parameters. Figure 4.9 shows the ray quadratures used for this

3 Points where g,(n) = 0 are omitted from this calculation to prevent Error— oo.
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Figure 4.7: Total mass in the simulation volume as a function of time for several ray
quadratures. Each label lists first the number of y points and then the number of ¢’
points.

— 1x1
— Ix2
— 3x4
— 6x6
— 12x12

0 200 400 600 800 1000
t (ks)

Figure 4.8: Ablation rate as a function of time for several ray quadratures. Each label
lists first the number of y points and then the number of ¢’ points.

test®. As can be seen in figures 4.7 and 4.8, with the exception of the lowest two
resolution simulations, the variations between the different quadratures are below the

level of the random fluctuation in mass loss rate for a single simulation leading to very

4 Here the “1x1” quadrature is actually a point star model including the finite disk
correction factor
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Figure 4.9: Ray quadratures used for figures 4.7 and 4.8. Each label lists first the
number of p points and then the number of ¢’ points.

similar amounts of mass remaining in these three simulations.

4.3 Comparison of Force Implementations
Let us now examine how changes in the line-acceleration implementation affect

the ablation rate. To do this, we define three models:

1. 1D radial: This assumes v(r) = v,f and vy = vy = O, /00 = Ov,.[/0p = 0 in

computing a purely radial” line-acceleration g = g,T.

2. 3D radial: This calculates the full integral over the stellar core with v(r,0, ¢) =
v, F 4 g0 + 'v¢(2) in order to calculate a fully 3-dimensional line acceleration. How-

ever, only the radial component, g = g,F, is used in the evolution of the code.

3. 3D wector: This accounts for the full vector velocity gradients in computing a

full vector line-acceleration.

Note that in all these implementations of the line-acceleration, the wind itself
does have v(r) = v, and, since it is spherically symmetric, dv, /90 = v, /D¢ = 0.
Therefore, we expect the wind to be unchanged among the three implementations. This
means that what follows can be considered to be an investigation of how disk ablation
depends on the force implementation, and that this investigation is not contaminated

by variations in the stellar wind.

% This is achieved by replacing fi - V(fi - v) with p?dv,/dr + (1 — p?)v,/r in equation
2.40.
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Figure 4.10: Ablation rate, measured in units of the spherically symmetric mass loss
rate, for the three force implementations discussed in the text.

4.3.1 1D radial vs. 3D vector line acceleration

By comparing the 1D radial implementation to the 3D vector implementation,
we can test the importance of the non-radial velocity gradient terms in causing ablation.
This comparison can also help disentangle what portion of the mass lost from the disk is
due to ablation — by which we mean the removal of material only by direct acceleration
of disk material by radiation — and what fraction is from “entrainment”, wherein the
wind drags low density disk material viscously coupled through a Kelvin-Helmholtz
instability. Figure 4.10 shows that, asymptotically, the 3D vector form yields a disk
ablation rate more than twice the 1D radial model. This suggests that the inclusion of

full line-acceleration more than doubles any ablation from entrainment alone.

4.3.2 3D radial vs. 3D vector line acceleration
Figure 4.10 also includes the 3D radial model. While there is a marked differ-
ence between including or omitting the non-radial velocity gradients, the non-radial

components of the line-acceleration seem to make very little difference to the overall
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ablation rate. This stands in interesting contrast to the wind-compressed-disk inhi-
bition and wind spin-down discussed at the end of chapter 2, wherein the angular
acceleration components were most important. Note that for both the 3D radial and
vector implementations the full 3D line-acceleration is calculated, but for the 3D radial
implementation the - and ¢-components are reset to zero. Therefore, while it seems
that they formally could be omitted here, there is effectively no computational cost
difference between including and omitting them, and the full 3D version will be used
for the remainder of the dissertation.

In light of these results we can now see that, in terms of ray quadrature resolu-
tion, it is the convergence of the radial component of the line-acceleration that is most
crucial, since the 6 and ¢ components are dynamically unimportant. As the radial
component does converge relatively well with increasingly dense ray quadratures (see
figure 4.6), we can now understand why there is such good agreement between the sim-
ulation mass and ablation rate in figures 4.7 and 4.8. Therefore, for the remainder of
the dissertation we choose a n, = ng = 6 ray quadrature as a balance between ensuring

convergence in radial acceleration without having prohibitively expensive simulations.

4.4 Effects of Rotation
As discussed in chapter 3, Classical Be stars are observed to be rotating at
upwards of 70% of critical, defined here (see Rivinius et al., 2013, and appendix A) by

the ratio of their equatorial rotation speed to local Keplerian orbital speed,

W=— (4.5)

VGM, /R,

As discussed in chapter 6, it seems that this rapid rotation plays a key role in the
feeding of the circumstellar disk. Let us here examine whether this rapid rotation,
and the associated stellar oblateness and gravity darkening, has a significant effect on

line-driven ablation.
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Figure 4.11: Initial condition of the rotating B2 model plotted in log(p) measured in
log(g/cm?).

To test this, we modity our standard B2 model to have W = 0.8, keeping the
equatorial radius constant and allowing the polar radius to shrink®. As done for the
non-rotating case, this rotating model is allowed to relax to a steady state wind and
then a disk is superimposed on top. Recall from chapter 2 that an oblate star is
expected to have a prolate wind, a property that is reproduced in these simulations,
as can be seen from the initial conditions plotted in figure 4.11.

Figure 4.12 compares the ablation rate of the B2 models with and without rota-
tion, showing that the ablation rate is somewhat reduced, by a maximum factor about
two. This is consistent with the comparable factor two equatorial gravity darkening
between the non-rotating and rotating models, as discussed in appendix A, following

the review given by Cranmer (1996).

6 Such a star may not be viable under stellar evolution models. However, this choice
provides the most direct method for comparing ablation effects with and without stellar
rotation.
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Chapter 5

RADIATIVE ABLATION OF CLASSICAL BE-TYPE DISKS AS A
FUNCTION OF SPECTRAL TYPE

We now have in hand a standard simulation model describing a B2 star with
an optically thin circumstellar disk. Additionally, we can feel confident, in light of
the resolution tests performed at the end of the last chapter, that we understand
the necessary spatial and ray quadratures for an ablation simulation. Finally, we
also now have a more quantitative understanding both of the necessity of the 3D
acceleration implementation derived in chapter 2, and that it is the radial component
of this acceleration that is most essential for calculating line-driven ablation.

We can now move forward into a parameter study of the dependance of ablation
on stellar spectral type. As pointed out in chapter 3, Classical Be stars do not extend
significantly into the O star domain. Therefore, a particularly important question is
whether such a trend can be explained by the stronger radiative ablation associated
with the greater luminosity of such stars. To this end, we first present a model of
an O7 star, which should not be expected to host a Be-type disk. By separating this
model out from the rest of the spectral type survey, we can discuss its properties in
more detail.

Section 5.2 then presents the complete parameter study of ablation as a function
of spectral type. Here there is particular emphasis on the scaling of ablation with stellar
and disk parameters. In particular, we present a simple scaling relation that quite well

describes the simulation results.
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Table 5.1: Stellar and Disk Parameters of the O7 Model

Sp. type | Teyy (KK) | Ly (Lo) | My (Mg) | R (Ro) | Maisk (M)
orv 36 1.3x10° 26.5 9.4 7.0x10710

Table 5.2: Wind Parameters of the O7 Model

Sp type Q Qo « Mwind (M@/?ﬂ")
o7V 2500 | 2200 | 0.66 1.2x1077

5.1 Disk Destruction by an O7V star

To begin, let us discuss the parameters of an O7 star and its optically thin disk,
presented in table 5.1, and of its wind, presented in table 5.2. The choice of keeping
the disk marginally optically thin leads to a factor 5 increase in disk mass, but the
stellar luminosity has increased by a factor of 25, leading to a factor 200 increase in
the mass loss rate. Therefore, we should expect much stronger disk ablation.

Indeed, while the model of a B2 star presented in the prior chapter slowly
destroys its disk by eating away at it from the edges, the radiative acceleration of an O7
star is strong enough to simply carry the whole disk away in a dynamical timescale as
shown by figure 5.1. This process is rapid enough to preclude producing a comparable
figure to 4.2 for this model. Figure 5.2 instead plots the spatial and temporal variation

of mass in each spherical shell,

% = ]{perQ. (5.1)

Note particularly the rapid removal of material from the inside of the disk outwards, as
well as the quite short (less than three day) time it takes for the disk to be completely
evacuated.

Figure 5.3 shows the wind normalized ablation rate for the O7 simulation.
Whereas the B2 model slowly relaxed over the simulation duration to a relatively
steady ablation rate at about twice the spherically symmetric mass loss rate, the O7
model impulsively ejects the disk material in one large burst and then returns to a
steady state wind. This removal of the disk is so sudden that the ablation rate never

significantly exceeds the spherically symmetric mass loss rate.
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Figure 5.1: Snapshots of log(p) for the O7 model at 0, 125, and 250 ks.
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Figure 5.2: Mass in spherical shells above the stellar surface in units of solar masses
per stellar radius.

53



1.5' : ¥ ! T T T T T T T T T T T T T
1.0 {

0.5 i

M/Mwind

_0_5lllxlx..lj.lll.-|...1_
0 200 400 600 800 1000

t (ks)

Figure 5.3: Ablation rate in units of spherically symmetric mass loss rate for an O7
star, the highest mass model considered.

We thus see that an O7 star destroys a pre-existing optically thin disk on a
dynamical timescale. In order to counter this destruction, the star would need to be
feeding a disk at a rate of over 1.2 x 10" "M /yr. Since this rate is so much larger
than that needed to maintain a disk for later spectral types, this provides a possible
explanation for why there are no O7e stars. (see e.g. Martayan et al., 2006; Rivinius

et al., 2013).

5.2 Variation of Spectral Type

Since the fraction of O and B stars showing the Be phenomena is a function of
spectral type, we here investigate whether this may in part be a byproduct of radiative
ablation. To address this question, we consider a series of models spanning a spectral
range from B3 to O7 with parameters given in tables 5.3 and 5.4. The stellar parameters
of the O stars are taken from Martins et al. (2005) while, as was done for the B2 star,
Trundle et al. (2007) and Georgy et al. (2013) are used to derive the stellar parameters

of the B stars. Puls et al. (2000) is used for all wind parameters.
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Table 5.3: Stellar and Disk Parameters as a Function of Spectral Type

Sp. type | Tepr (kKK) | Ly (Le) | My (My) | Re (Re) | Maisk (M)
B3V 18 1.6x 103 6 1.1 1.3x10° 10
B2V 22 5.0x10° 9 5.0 1.9% 1010
B1V 24 7.9%x10° 11 5.2 2.0x10 10
B0.5V 28 1.6x 10 13 5.5 2.3x10°10
BOV 31 1.6x 10 16 6.0 2.7x10710
09V 32 5.0x10% 18 7.7 4.8x10°10
08V 33 7.9%x10% 22 8.5 5.7x 1010
o7V 36 1.3x10° 26.5 9.4 7.0x10°10

Table 5.4: Wind Parameters as a Function of Spectral Type

Sp. type
B3V
B2V
B1V
B0.5V
BOV
09V
o8V
orv

Q
1500
1800
2000
2300
2400
2400
2300
2200

Qo

7000
4900
4600
3900
3400
3300
3100
2500

ﬂ;—fwind. (ﬂ/_f(')/yr)

7.3x10° 1
7.4%x10°10
1.7x107°
6.0x107?
1.9x10°8
3.4x 10
6.3x 10
1.2x10

-1 oo oo
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Figure 5.5: Fractional mass in the simulation volume as a function of time and spectral
type

To facilitate comparison among the models, figure 5.4 plots the ratio of disk to
wind mass following the scalings introduced in section 3.3. While this ratio declines
fairly significantly going to earlier spectral types, it is never less than 10, and thus the
simulations always have their initial mass budget dominated by the disk. Since this
ratio depends on stellar mass, radius, and temperature, the models can most easily be
directly compared by focusing on the fraction of initial mass that remains at time t,
as shown in figure 5.5, or on the ablation rate as shown in figure 5.6. Both of these
metrics highlight two populations, one consisting of stars that behave like the O7 star
and dynamically eject their disk, and the other consisting of stars like the B2 star and
slowly ablate their disks at a steady rate over a much longer time. We bridge the
strong difference between a B0 star (in the first category) and a Bl star (in the second
category), with a B0.5 model.

While this transition in behavior is very sharp, it is perhaps unsurprising. The
ratio between initial disk mass and spherically symmetric mass loss rate, shown by

the blue points in figure 5.7, reproduces within an order unity factor the actual disk
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Figure 5.6: Ablation rate in units of spherically symmetric Ming for each spectral
type.

destruction times shown in orange. Therefore, with knowledge of the stellar spectral
properties and circumstellar disk mass, one can accurately estimate the destruction
time of an optically thin disk.

The ability of this simple scaling to predict simulation results guides its use to
predict the behavior of actual stars. Recall that chapter 3 reviewed the disk decay
inferred observationally by Carciofi et al. (2012) for the Be star 28 CMa. In order
to reproduce the 170 day disk decay time, these authors invoked strong viscous force
with an anomalously high viscous coefficient o =~ 1 (Shakura & Sunyaev, 1976). By
comparing the inferred stellar parameters of 28 CMa from Maintz et al. (2003) to the
models here, we can see that it is best represented by our B2 model. The simple scaling
relation for this case gives a disk destruction time of 97 days, within a factor of two of
the observed 170 day disk decay time.

This important result indicates that line-driven ablation can readily explain the
relatively short, few-month timescale observed for Be-disk decay, without the need to

invoke an anomalously strong viscous diffusion. As discussed further in the conclusions,
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it also provides a prediction of ablation time with spectral type, which can be readily

tested by observations.



Chapter 6

PULSATIONAL MASS EJECTION IN BE STAR DISKS

This first appeared as a conference proceeding as Kee et al. (2014a).

6.1 Introduction

Despite the long and extensive history of observations of Classical Be stars, much
remains unknown about the physics that forms their circumstellar disks. Of key interest
is the mechanism by which such stars are able to launch material into their circumstellar
environment with enough angular momentum to form a disk. At this point, it is widely
accepted that the universal appearance of rapid rotation in this class of objects plays
a central role in this process. Though exact rotation velocities for individual Be stars
are not well agreed upon due to the flattening of the relationship between observed
line broadening and stellar rotation velocity in the limit of rapid rotation (Townsend
et al., 2004), for sub-critical rotation, some additional mechanism(s) are necessary to
place material into orbit.

A crucial step toward an understanding of the origins of the circumstellar ma-
terial came from the wind compressed disk (WCD) model of Bjorkman & Cassinelli
(1993). In this model, the radial velocity contribution of line-driving in the stellar
wind, coupled with the tangential velocity component from the rapid rotation of the
star, places material in the wind into inclined orbits that eventually pass through
the equatorial plane, whereupon collision with material from the opposite hemisphere
forms an equatorial WCD. However, the work of Owocki et al. (1996) showed that
the combination of non-radial forces and the equatorial gravity darkening present in
rapidly rotating, oblate stars combine to reverse the expected equatorward flow into a

poleward flow, thereby inhibiting the formation of an equatorial disk.
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A possible clue to an alternate mechanism came from observations of line profile
variability of p Cen by Rivinius et al. (2001) and w CMa by Maintz et al. (2003).
In both cases, increases in the amplitude of photometric variability from non-radial
pulsations were found to be associated with modulation and growth of emission from
the circumstellar disk. Since then, observations have shown that non-radial pulsation
in Classical Be stars is a ubiquitous feature, and Rivinius et al. (2003) have even gone
so far as to suggest that these non-radial pulsations may be causally connected with
the Be phenomena.

The Pulsationally Driven Orbital Mass Ejection (PDOME) model here explores
the dynamical issues for ejecting material into orbit from non-radial pulsations on a
star near critical rotation. Section 6.2 discusses details of the model and the parameters
used, section 6.3 presents some preliminary findings, and section 6.4 discusses possible

fruitful directions for future work.

6.2 Details of the Model
6.2.1 Basic Paradigm

Our approach here is to explore the dynamics of circumstellar material launched
within the equatorial plane from perturbations in density and azimuthal velocity on
an underlying, rapidly rotating Be star. Before beginning a discussion of the model
in full, it is helpful first to define and clarify some terms. The most important among
these are concerned with the nature of the surface perturbations intended to mimic
non-radial gravity waves (g-mode) pulsations.

For computational convenience, the perturbations explored here are always as-
sumed to be |m| = 4 | where m is the number of nodes around the equator of the star;
however, our implementation of lower boundary conditions in density and velocity al-
lows for distinct directions of phase propagation and energy transport. Specifically, in
the frame of the star, the phase propagation can either be prograde (vppase > 0) or
retrograde (Upnese < 0) relative to the direction of stellar rotation. Separately, we can

also force the material velocity at the peak density of the perturbation to be either
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prograde (Vpert(Pmaz) > 0) or retrograde (Upert(pmaz) < 0). Since the material motion
sets the direction of energy propagation that is normally associated with group veloc-
ity, we refer to the four combinations we explore as prograde group/prograde phase

(+/+4), prograde group/retrograde phase (+/-), etc.

6.2.2 Numerical Model Specifications

Our numerical simulations of the PDOME model use the Piecewise-Parabolic
Method (Colella & Woodward, 1984) hydrodynamics code' VH-1, implemented here
in a 2D, spherical equatorial (7, ¢) plane with azimuth ranging from 0 to 90 degrees
and radius from 1 to 6 R,. For simplicity we use an isothermal approximation without
explicit inclusion of viscous terms.

As the scale height of the stellar atmosphere is very small, H ~ R, /1000, it
is difficult to resolve stellar pulsations within a hydrodynamic simulation focused on
the dynamics of a circumstellar disk over several stellar radii. We thus, instead, mimic
the effect of pulsations by imposing sinusoidal perturbations in density and azimuthal

velocity at the lower boundary,

p(6) = po10(es( 757 sin (3 me)) (6.1)
Vg (@) = Vpor + Vg pert SIN <% +mao + (bo) , (6.2)

where the exponential variation in density reflects the exponential stratification of the
stellar atmosphere, with mean density py and maximum density of the perturbation
Pmaz- Here vg e is the azimuthal velocity perturbation, P is the perturbation period,
and |m| is the number of nodes around the stellar equator, with m > 0 (m < 0) giving
prograde (retrograde) phase velocity. For ¢y = 0°, the perturbations in density and
velocity are in phase, representing a prograde group velocity; for ¢y = 180° the velocity
and density perturbations are in antiphase, signifying retrograde group velocity. Table
6.1 summarizes the 4 intercombinations explored in the models detailed in section 6.3

and what each implies for phase and group velocity.

! http://wonka.physics.ncsu.edu/pub/VH-1/
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m <0 m >0

o =0°| v, <009 >0 | v, >0,09 >0

o = 180° | v, < 0,03 <0 | v, > 0,0, <O

Table 6.1: Sense of phase and group velocity as a function of the sign of m and the
value of ¢y.

Apart from the variations noted in table 6.1, all models share common param-
eters (table 6.2). Parameters are chosen to be roughly representative of those inferred
for a typical pulsating Be star (eg. p Cen). For simplicity, M, and R, are tuned
to give an equatorial surface orbital speed vy, = 500 kms~!. This fixed value for all
models allows for the introduction of the stellar parameter W' = v,4¢/Vorp, Where v,
is the equatorial rotation speed. For the standard set of parameters, W = 0.95 and

1

Urot = Uorp — Cs Where ¢, = 25 kms™ is the sound speed.

Stellar Parameters

M, 9.2M Perturbation Parameters
R, TRe P 40 ks
Upor | 475 kms™! |m| 4

Cs 25 kms™?

Table 6.2: Standard simulation parameters.

6.3 Results
6.3.1 Prograde vs. Retrograde Phase and Group Velocity

In considering results, let us first compare the behavior of the four possible
combinations of phase and group velocity listed in table 6.1. Figure 6.1 compares

results for the log of the azimuthally averaged density, log(p),, as a function of radius
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Figure 6.1: log(p) in gem ? as a function of radius, measured in R, and time in seconds.

While all combinations put some mass into orbit, prograde group velocity simulations
do so much more efficiently than those with retrograde group velocity.

63



Mlass (Solar Masses)

251077 ¢
2x107? |
— prograde, prograde

PP TL b
1510 e —— prograde, retrograde
- e retrograde, prograde

Lxlo® b “ cii
retrograde, retrograde
510710 H M
-—.'.—'.-f---------'--ﬁTimc:ﬂ
0 200000 400000 600000 800000 L= 105

Figure 6.2: Mass in the disk in M as a function of time. Sense of velocity is listed
with group first, then phase.

and time. While the outer boundary of the simulation is at 6R,, the figures focus on
the most interesting behavior, below 2.5R,. Figure 6.2 plots the total mass in the disk
as a function of time, computed by summing density over the radial direction, while
accounting for mass that escapes through the outer boundary. Note that, while all
four models do put some material into orbit, prograde group velocity models do so
much more effectively. Moreover, observations favor a retrograde phase velocity model
(Rivinius et al., 2003), thus our favored model is a mixed phase model with prograde

group velocity and retrograde phase velocity, henceforth referred to as the +/- model.

6.3.2 +/- model

For considering a PDOME model in detail, there are four quantities of particular
merit, namely: log(p)s; mass above each radius; radial velocity; and Kepler number,
the ratio of azimuthal velocity to local Keplerian orbital velocity. These are plotted in
figure 6.3 for the +/- model. The first of these, log(p)s, has already been shown and
discussed for all models in figure 6.1. The mass above each radius shows that the mass
launched into orbit is comparable to inferred total masses in Classical Be disks. Radial
pressure support allows the disk to be nearly in hydrostatic equilibrium in the radial

direction for the inner disk even with Kepler number slightly below unity and, indeed,
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Figure 6.4: Mass in the disk in M, as a function of time. Pulsations are turned off at
1 Ms and the disk is allowed to relax.

the lower left panel of figure 6.3 shows that radial velocity is significantly below the
local escape speed. Figure 6.4 shows that, if the pulsation is turned off, about half of
the material begins to settle into a stable disk, while the remainder falls back on to

the star.

6.3.3 Variations on the +/- model

As preliminary investigations into some possible future veins of research, we
consider two variations on the +/- model. The first of these is to vary the ratio of the
perturbation velocity to Av = v, — V0. Figure 6.5 shows that decreasing this ratio
proportionally decreases disk mass, while increasing it creates a much steeper increase,
nearly a factor of ten, in disk mass. Understanding this strong sensitivity requires
further study.

The second variation on the base model, motivated by the complex multiperiodic
nature of pulsations on p Cen (Rivinius et al., 1998), is to consider the effects of two
perturbations beating against one another. For this, two perturbations with vpe, =
Awv/2 are imposed with 10% separated periods (P = 40 ks + 2 ks), leading to a 400 ks
beat period. Figure 6.6 shows that the disk mass oscillates with this beat period.
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Figure 6.5: Mass in the disk in Mg, as a function of time for vy;/Awv of 0.5, 1, and 2.

During constructive interference, the mass peaks at a level comparable to that seen for
a single mode mode; during destructive interference much of the material falls back
on the star, much as occurred when the perturbations were turned off. Stochastic
and impulsive events would be expected to produce a similar behavior, so long as the

matter is ejected with sufficient angular momentum and energy to enter orbit.

6.4 Conclusions and Future Work

While preliminary, the results here provide a proof of concept for ejection of mass
into the circumstellar environment by non-radial pulsations. They also demonstrate
how such a disk, once generated, can persist in the absence of pulsations, viscous
forces, and radiative forces. However, there is much room for future work. For instance,
models should assume more moderate rotation rates, v,,; = 0.8—0.85v,,4, which require
9 — 16 times more energy to reach orbit. In addition, models should be extended to
higher latitudes away from the equatorial plane using either 2D axisymmetry? or a

full 3D model. Given the success of building and dissipating disks by viscous diffusion

2 Note that such an azimuthally symmetric mode would imply radial pulsation modes
which are not observed in Classical Be stars but may still be considered meaningful as
a computationally inexpensive first step.
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Figure 6.6: Mass in the disk in M as a function of time for a single mode pulsation
and two pulsation modes beating against one another.

(Bjorkman & Carciofi, 2005; Carciofi et al., 2012), viscous forces should be included in
modeling the disk evolution. Given the high luminosity of the central star, one should
also consider the effect of line driven forces in inhibiting the build-up of a disk, or
ablating its surface layers. Nevertheless, the PDOME models here provide a promising
step toward understanding the dynamics of Be disk formation, and a framework for

such further investigations.

6.5 Questions

A. Okazaki: You mentioned that no viscosity is included in your simulations.
But, your disks extend up to 1.5 Ry, where the specific angular momentum is about
20% higher than at the stellar equatorial surface. What’s the mechanism for angular

momentum transport in your simulations?

N. D. Kee: It is correct that viscous forces are not explicitly included in these
simulations. However, due to the use of a grid based code, the code is subject to nu-
merical viscosity. This is likely sufficient to provide the radial extent that is seen in
the results I have shown. However, confirming that this is the mechanism responsible

for the spreading of the disk is still one of the issues to be addressed.
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Chapter 7
RADIATIVE ABLATION OF OPTICALLY THICK DISKS

Having discussed both the formation and destruction of the optically thin, de-
cretion disks of Be stars, let us next examine line-driven ablation of the much denser,
optically thick, accretion disks that develop during the early star-formation phases
of luminous, massive stars. For this study, it is this substantial continuum optical
depth which is most problematic. In general, fully treating radiative transfer through
a multi-dimensional, optically thick medium is computationally prohibitive; thus in
section 7.1, we develop an approximate method for optically thick, but geometrically
thin, isothermal disks in the limit of gray continuum absorption.

Section 7.2 then applies this approximate method to radiative ablation of a
very optically thick disk (with radial optical depth 7 = 400 in the equatorial plane; see
section 3.3) around an O7 star. To understand the effects of continuum absorption, we
compare this against a model that ignores continuum optical depth. These two models
have the added benefit of bracketing the expected behavior of continuum electron

scattering.

7.1 Analytic Optical Depth for a Geometrically Thin Disk

To generalize the results of chapter 4 to disks of arbitrary optical thickness, we
need a method for treating continuum optical depth along an arbitrary ray. Here,
however, a problem arises. At the temperatures and densities found around high
mass stars, the dominant continuum opacity source is electron scattering. Scattering
radiative transfer is tricky to calculate as it requires knowledge of a non-local scattering
source function at all points along the ray under consideration (see, e.g. Mihalas &

Mihalas, 1984). Monte Carlo methods can bypass this problem but are computationally
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prohibitive to incorporate into a hydrodynamics code!. Thus, for this work, we choose
to initially assume a pure absorption model (i.e. no source function) which exaggerates
the reduction of continuum flux, and thus leads to a lower limit on net ablation rate.
Comparison with no continuum opacity thus brackets the net ablation rate expected
from a scattering opacity.

Unfortunately, even an absorption model is not straightforward in a grid-based
hydrodynamics code such as VH-1. The ideal method is to use long characteristics
and integrate the optical depth along each of many ray characteristics. For spherical
geometry in grid based codes, however, an arbitrary set of rays is not guaranteed to
cross any grid vertices where the density is known. Additionally, even for a spherical
grid that is designed such that a long-characteristic approach can be used (see Owocki,
1999; Dessart & Owocki, 2005, for the description of such a grid), the grid would
be constrained in such a way to make resolving a disk problematic. Therefore, an
alternative method is needed.

Here, we can take advantage of the geometry of the problem. Recalling the
general form of optical depth along a path from a point (here on the stellar surface) at

s, to a circumstellar point at s,

T:/ k(s)p(s)ds (7.1)
= :‘ie/ Cpeq(R(s))eil/z(z(s)/H(R(S)))zds. (7.2)

For cylindrical coordinates R(s) and z(s) at the local ray position s, the latter equality
assumes that optical depth arises from continuum electron opacity k. in a vertically
hydrostatic, Keplerian disk (see chapter 3) with arbitrary radial dependence of equato-
rial density pe,. Under the “thin-disk” assumption that the radial variations of density

and scale height are much slower than the projected Gaussian vertical variation of

! Recent work by Harries (2015) suggests that this may be able to be overcome with
massively parallel codes, although this method is not yet widespread.
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Figure 7.1: Density profile along an arbitrary ray through the circumstellar disk both
along the full, correct path s and using the Gaussian approximate vertical direction.

3 P e T - 1 M_E dlog H cosy
density — i.e. that for a ray at angle v from the disk vertical, | 15 |? | 15 | < 75
the dominant contribution to optical depth will come from the region near the equator

at radius R, where the ray from s, to s. crosses the equatorial plane. Figure 7.1

€q
compares the actual density variation along the full path s to the Gaussian density
variation for this “thin-disk” approximation. The limited shift in peak value and over-
all comparable variation of density in the two cases allows for the integral over ds to

be approximated by an integral over dz/ cos(7),

T ﬁ:[:p(.’q(l?-(:q) /ZC e 1/’2(2,’”{;’?,:”))2{1"2 (?3)

cos(y) Js,

T KePeg(Fleq) H (Req) ( Ze ) ( o )
—af L Fxf — Brf
\/; COS("}‘) 1 \/ﬁ!f(]?m}) ' \/511(}?((;)

where the absolute value in the latter form ensures that 7 is always positive. The left

. (4

panel of figure 7.2 graphically illustrates a typical equatorial crossing ray.
In general, not all rays will cross the equator, as illustrated by rays b and ¢ in
the right panel of figure 7.2. While case b may seem problematic as R.; does not fall

between s, and s, in practice the difference between error functions for points on the
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x (R.)

Figure 7.2: Optical depth along the solid black arrow is calculated by optical depth
along the dashed black arrow in the left panel, corrected by 1/ cos(y). Density at the
intersection of the black line and the dotted white line is used for p., in the analytic
formula. In the right panel, the three possible scenarios discussed in the text for the
optical depth calculation are shown.

same side of the disk is quite small. Thus, even without handling this case separately,
very little attenuation is computed for such a ray, so we can simply continue to use
equation 7.4.

For case ¢, however, R., < R, and thus we do not have a disk density defined at
Req. To handle this case, we simply set 7 = 0, as we do not expect much optical depth
to arise for a ray which only passes through wind and highly stratified disk material.

For the initial analytic condition of a stratified disk, we can calculate optical
depths using both the full long-characteristic integral (equation 7.1), and this thin-
disk approximation (equation 7.4), allowing for a discussion to test the accuracy of
this method. Normalizing by the radial optical depth in the equatorial plane, figure 7.3
compares optical depths from the two methods as a function of circumstellar position R
and z, for a fixed impact parameter p = 1/2 and projected azimuthal position ¢’ = 45°
on the star; figure 7.4 compares the same normalized optical depth as seen from a

fixed point at 2R, and 10° above the equator looking back at various p and ¢’ on the
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Figure 7.3: Normalized optical depth as a function of position around the star for a
ray of impact parameter, p = 1/4/2 and radiation azimuthal position ¢/ = 45°.
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Figure 7.4: Normalized optical depth from a single point above the star at r = 2R,
and 10° above the equator.
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stellar surface. Generally, the agreement between the two methods is quite striking,
with the modest discrepancies occurring in the regions where the ray does not directly
impact the disk so that the optical depth is already small. This thin-disk method thus
provides an accurate and much more computationally efficient method for computing

optical depths in optically thick, geometrically thin disks.

7.2 Initial Tests of Ablation on a Disk of Star Forming Density

Let us now use this method to study ablation of much denser, optically thick
disks, such as those found around stars still in the process of forming. As discussed in
chapter 2, at the temperatures found near luminous, massive stars, continuum opac-
ity is dominated by electron scattering. The thin-disk model calculates an absorption
optical depth, which systematically underestimates the local flux expected from scat-
tering and, therefore, the line-accelerations. On the other hand, omitting continuum
optical depth effects completely systematically overestimates the flux and acceleration
everywhere. Since scattering optical depths are not easy to compute, we use these
two methods of continuum absorption and no continuum optical depth to bracket the
expected behavior of scattering.

As the O7 model (see section 5.1) has the strongest radiation field considered
here, we use it for this study, now with an equatorial plane optical depth of 7 = 400 (see
chapter 3). Here we continue to use the density power-law index 3.5 that is expected
for decretion. For an accretion disk we would generally expect a power-law index closer
to 1.5. By leaving the power-law index unchanged, however, we can investigate the
effects of disk optical depth separately from the effects of changing this power-law,
which we leave for a future investigation.

Figure 7.5 shows the ratio of the radial acceleration component computed with
continuum absorption to the same component computed with continuum optical depth
omitted. Note that the largest reduction occurs near the equatorial plane, where large

portions of the star are occulted by the disk, with the differences tapering off toward
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Figure 7.5: Reduction of the radial line-acceleration component due to continuum
optical depth with respect to the same acceleration ignoring continuum absorption.
Here, the disk optical depth in the equatorial plane is 7 = 400.
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Figure 7.6: Ablation rate at time ¢ for models with and continuum absorption and no
continuum optical depth.

the poles where the full star is visible. For points not inside the disk, the peak reduction
is about 50% as the disk occults at most half of the star as seen from such positions.

Figure 7.6 confirms the expectation of a smaller disk ablation rate for the case
with continuum absorption with respect to the case with no continuum attenuation.
The difference between the two is modest, however, with only about a 50% reduction
in ablation rate. Thus, these two methods provide an even tighter than expected
constraint on the ablation from an intermediate case with electron scattering rather
than absorption.

Here we find an extremely high ablation rate in the early phases of the simula-
tion, tens of times the spherically symmetric wind mass loss. This is further evidence
of the general incompatibility of a disk with a wind and an intense radiation field.
Where previously the radiation of an O7 star dynamically destroyed a disk, however,
now there is sufficient disk material to require a protracted adjustment period before
the radiation and disk settle into an asymptotic configuration. Note that the O7 star
ablates its optically thick disk at perhaps 4-5 times its wind associated mass loss rate,
as opposed to the factor of 2 found for the B1 and B2 stars. Nevertheless, this mod-
est increase in disk ablation rate allows the continued use of the simple Mgy;q/ ﬂ-:irmmd

scaling introduced in chapter 5 to approximate the disk destruction time around stars
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with optically thick disks.

Recall that this comes with the caveat that here we have used the radial power-
law exponent of 3.5. However, the analysis in chapter 4 suggests that material is mainly
ablated from the disk near the stellar surface, and here we recover an ablation rate that
is within about a factor of two of the steady state disk ablation found in chapter 5,
even though here the disk is 1000 times more massive. Thus, we do not anticipate that
changing the disk density profile away from R, will significantly impact the ablation
rate, but we leave it to future work to confirm this expectation and more stringently

test the applicability of the Mg/ Mwmd scaling for star-forming accretion disks.
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Chapter 8

SUPPRESSION OF X-RAYS FROM RADIATIVE SHOCKS BY THEIR
THIN-SHELL INSTABILITY

This is a pre-copyedited, author-produced PDF of an article accepted for publi-
cation in Monthly Notices of the Royal Astronomical Society following peer review. The
version of record Kee et al. (2014b) is available online at: http://mnras.oxfordjournals.

org/cgi/content/full/stt247571ijkey=aylHC81TpOPICXD&keytype=ref.

8.1 Introduction

Shocks that arise from collision between highly supersonic flows are a common
source of X-ray emission from astrophysical plasmas. A prominent example is the case
of colliding wind binaries (CWB’s), wherein the collision is between strong, highly
supersonic stellar winds from the individual components of a massive-star binary sys-
tem. In relatively wide, long-period binaries, wind material that is shock-heated by
the collision cools gradually by adiabatic expansion, leading to a spatially extended
region of hot post-shock flow, with X-ray emission that is readily computed from the
local density-squared emission measure. This gives an overall X-ray luminosity that
scales with the square of the mass loss rate (Lx ~ M?) of the source stellar wind, and
with the inverse of the distance d from the star to the interaction front. Numerical
hydrodynamics simulations of such wide CWB systems have thus been quite success-
ful in modeling both the level and, in the case of eccentric systems, the orbital phase
variation, of observed X-rays from long-period CWB’s such as n Carinae and WR 140
(Parkin et al., 2009, 2011; Russell, 2013).

In closer, short-period binaries, the higher density at the interaction front means

that cooling in the post-shock region can become dominated by radiative emission, with
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an associated radiative cooling length /. < d that can be much smaller than the star to
interaction-front distance d that characterizes the scale for adiabatic expansion cooling
(Stevens et al., 1992; Pittard, 2009). Since the X-ray emission over the cooling layer is
limited by the incoming kinetic energy flux, the X-ray luminosity from such radiative
shocks is expected now to scale linearly with the mass loss rate, Lx ~ M (Owocki
et al., 2013).

However, analytic stability analyses (Vishniac, 1994) show that the narrowness
of such radiatively cooled shock layers makes them subject to a non-linear thin-shell
instability, wherein lateral perturbation of the interaction front causes material to be
diverted from convex to concave regions, converting the direct compression from the
oppositely directed flows into multiple elongated regions of strong shear. Beginning
with the pioneering work by Stevens et al. (1992), all numerical hydrodynamics simu-
lations of flow collisions (e.g., Walder & Folini, 1998; Pittard, 2009; Parkin & Pittard,
2010) in this limit of radiatively cooled shocks indeed show the interaction front to be
dominated by highly complex regions of dense, cooled gas, with little high-temperature
material to emit X-rays.

While it is clear that such thin-shell instability structure is likely to reduce the
X-ray emission from what is expected from a simple laminar compression analysis,
so far there have been only limited attempts to quantify the level of this reduction,
and how it might scale with physical, and even numerical, parameters. Parkin & Pit-
tard (2010) have emphasized the potential role of “numerical conduction”, and other
numerical effects associated with limited grid resolution, in lowering the temperature
of shock-heated regions, and so reducing the X-ray emission. Lamberts et al. (2011)
also assess the spatial grid needed to resolve the instability, and identify a related
“transverse acceleration instability” that can further contribute to flow structure. Nu-
merical resolution is certainly a challenge for simulating the small-scale structure that
arises with a small cooling length /., especially when carried out over the much larger
separation scale d; but even in simple planar slab collision models with grids set to

well resolve this cooling length (see §8.3.2), there is a substantial reduction in X-ray
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emission. While numerical diffusion and other artifacts may play a part in this, it
seems that much or even most of this reduction stems from a robust physical effect,
namely the conversion of direct compressive shocks to highly oblique shocks along the
elongated “fingers” of shear from the oppositely directed flow.

The simulations and analysis here aim to quantify such effects of thin-shell
instability-generated structure in reducing X-ray emission from radiative shocks. To
focus on thin-shell structure, we ignore the added complexity of fully 3D models ex-
plored by other authors (e.g., van Marle et al., 2011; Parkin & Gosset, 2011) within
the specific context of CWB’s, using instead the simplest possible 2D simulations of
equal colliding flows that still allow full development of thin-shell structure. Beyond
CWRB’s, this has relevance for interpreting X-rays from shocks in other dense stellar
outflows, for example the “embedded wind shocks” that originate from instabilities in
the line-driving of hot-star winds. To explain the observed linear Lx ~ L, relation
between X-ray and stellar bolometric luminosity of single O-type stars, Owocki et al.
(2013) proposed that thin-shell mixing in these radiative shocks reduces their X-ray
emission in proportion to some power — dubbed the mixing exponent — of their mass
loss rate. The complexity of treating the nonlocal radiation transport makes it difficult
to develop multi-D simulations of the structure arising from this line-driving instability,
and so a general goal here is to use a study of direct shocks from opposing supersonic
flows as a first test of this proposed scaling for thin-shell-mixing effects.

To provide a firm physical basis, we do this through 3 tiers of simulation, based
on the 3 configurations of flow collision illustrated in figure 8.1. For the simple case of
a 1D planar slab with collision between equal and opposite flows (figure 8.1a), we first
derive analytic scalings for the temperature variation and X-ray emission (§8.2) within
a cooling length /. on each side of the interaction front, under the idealization of steady-
state, standing shocks. We next (§8.3.1) use time-dependent numerical simulations to
illustrate the cooling oscillation (Chevalier & Imamura, 1982) of such 1D slab collision,
along with associated variation in X-ray emission. §8.3.2 extends this planar collision

model to include vertical advection in 2D (figure 8.1b), showing how the initial cooling
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Figure 8.1: Schematic illustration of the 3 types of flow collision modeled here, as
denoted by the figure labels. The vectors represent flow velocity, and the dashed lines
represent the mean contact interface for momentum balance. The solid lines in the 1D
slab model a represent the shock pair located at offsets +x, from the interface. The
tilted vectors in the 2D planar advection model b indicate vertical advection at a speed
equal to that of the horizontal compression. The circles in the 2D planar expansion
model c¢ indicate stellar wind mass sources at locations +d from the interface, with
constant outward expansion speed.

oscillation breaks up into extensive shear structure along the vertical advection, with
an associated factor ~ 1/50 reduction in the X-ray emission. For 2D CWB-like models
of collision between mass sources with planar expansion (figure 8.1c), §8.4 carries out
a systematic parameter study of how the structure formation, and X-ray reduction,
depend on the mass source rate and an associated 2D cooling parameter xop ~ 1/ M.
A key result is that Lx follows the expected analytic scalings for the adiabatic regime
Xz2p = 1, but is reduced by a nearly fixed factor ~ 1/50 from the linear Lx ~ M scaling
expected for the strongly radiative limit yop < 1. The final section (§8.5) discusses

open issues from these simulations and outlines directions for future work.
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8.2 Cooling Analysis
8.2.1 General equations of hydrodynamics

All flow models in this chapter assume no gravity or other external forces, so
that the total advective acceleration in velocity v stems only from gradients in the gas

pressure p,

— =—4+Vv - Vv=—. (8.1)
Here the mass density p satisfies the conservation condition,

%—I—V-(pv):o. (8.2)

The internal energy density, given by e = (3/2)p for a monatomic ideal gas, follows
a similar conservation form, but now with non-zero terms on the right-hand-side to

account for the sources and sinks of energy,

% +V-(ev)=—=pV:-v—Cruq. (83)

Here the pressure term represents the effect of compressive heating (V - v < 0) or
expansive cooling (V - v > 0), and the C,q term accounts radiative cooling'. This

volume cooling rate has the scaling,
Crag = nenyN(T) = p* A, (T) (8.4)

where A(T) is the optically thin radiative loss function (Cook et al., 1989; Schure et al.,
2009), and the latter equality defines a mass-weighted form A, = A/pep,. For a fully
ionized plasma the proton and electron number densities n, and n. are related to the
mass density p through the associated hydrogen mass fraction X = m,/u, = myn,/p
and mean mass per electron p, = p/n. = 2m,/(1+ X). We assume here the standard

solar hydrogen abundance X = 0.72. For all numerical simulations below, we use

I For the shock-heated flows considered here, we do not explicitly include any external
heating term; but to mimic the effect of stellar photoionization heating in keeping
circumstellar material from falling below a typical hot-star effective temperature (Drew,
1989), we do impose a ‘floor’ temperature 7" = 30, 000 K.
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the radiative loss tabulation from Cook et al. (1989), implemented within the exact
integration scheme from Townsend (2009).

Using the ideal gas law p = pkT'/i (with k the Boltzmann constant and g =
0.62m,, the mean atomic weight), we can combine eqns. (8.2) and (8.3) to derive a

general equation for the total advective variation of the temperature,

1 DT 2 2 np\,, (T
_ _2g., o 2peAn(T)

7o 3 VT3 (8:5)
8.2.2 Planar steady shock with cooling length /.

To provide a basis for interpreting the time-dependent numerical models below,
let us first consider the idealized case in which two highly supersonic, planar flows with
the same fixed density p, and equal but opposite speeds v, along the z-direction collide
at a fixed interface position x = 0, resulting in a pair of standing, steady-state shocks
at fixed positions z = £, on each side of the interface (see figure 8.1a). Since pv is
constant, eqn. (8.5) for temperature variation in the post-shock layers within |z| <

takes the form

Tdx 3dr 3 kT

Because the post-shock flow is subsonic, the final deceleration to zero speed at the

interface can be achieved with only a mild gradient in pressure; thus, with only a
minor fractional correction in the energy balance (~ 1/16; see Antokhin et al. (2004)
and §8.2.3 below), the cooling layer can be approximated as isobaric. Together with
constancy of the mass flux pv, this means p ~ pT' ~ T'/v are all constant, allowing us

to eliminate density and velocity variations in terms of fixed post-shock values,

dT 2 ju(psT)* A
_ 2_:_—
de 5 k(psvs) (8.7)
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where these post-shock (subscript “s”) values are set by the strong-shock jump condi-

2

tions,
Vo
Vg = —
4
Ps = 4po (88)
3 [
T, = Egvg = 14 MK ;.

The latter evaluation for post-shock temperature again assumes a fully ionized gas with
solar metallicity, with vg = v,/10%cm s~

For such typical post-shock temperatures T, = 10 MK, A,, is a quite weak
function of temperature. If we thus make the further simplification that this A,, is
strictly constant, direct integration of eqn. (8.7) yields an analytic solution for the

decline in temperature from the post-shock value T'(zs) = Ts to a negligibly small

value at the interface (z = 0),

T(x)\’* _ ||
( T ) 7 2| <=4, (8.9)

where the total cooling length /. = x from the shock to the contact interface has the

scaling,
5 kv,T, 5 v U3
(o= = = 0 x~14x10Mem ——. (8.10)
6 ﬁpsAm 512 poAm P-14

At temperatures of order 10 MK, the radiative loss function has a value A = pep,A,, ~
3 x 107%ergem3s™! (Cook et al., 1989; Schure et al., 2009), giving the numerical
scalings in the last equality, with p_14 = p,/107* gem 3.

We can also define a characteristic post-shock cooling time as the post-shock

flow speed through this cooling length,
= 1.2 x 10% 5 (8.11)

The values for ¢, and t. provide convenient reference scales for the cooling length and

time in the more general numerical models below.

2 These jump conditions are most generally cast in terms of the incoming speed relative
to the shock, but in the present idealization of a steady standing shock this is just set
by the speed v, measured relative to the fixed interface.
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Figure 8.2: The 1D cooling oscillation in density log(p(z,t)/p,) (left panel) and tem-
perature T'(z,t) (in MK; middle panel), plotted vs. horizontal position x (in units of
the cooling length £.) and time ¢ (in units of the cooling time ¢.). The right panel shows
the resulting time variation of the X-ray flux Fly, in units of the total flow energy flux
Frp = pov3, with the horizontal dashed line showing the time-averaged value over a
cooling oscillation cycle.

8.2.3 X-ray flux from planar, steady shock

This simple model of steady shock in a 1D slab also provides a useful illustration
for the scaling of the X-ray emission. The volume emissivity for radiation of energy E
depends on the local density and temperature,

n(E,z) = ’; e(;;)A(E,T(x)) , (8.12)

where the energy-dependent radiative loss function A(E,T) (ergem?®s™'keV™!) is de-
rived from APEC thermal equilibrium emission models (Smith et al., 2001), with the
total radiative loss function A(T) = [*A(E,T)dE. The associated radiative flux

comes from integration over both shock cooling layers,

B Ts p2<l’) . .

F(E) = /_ . Me,upA(E,T( ))d (8.13)
B 15 4 [T AE,T)dT
— 1—6,00’00/0 _A(T> Ts ) (814)

where the latter equality comes from using eqn. (8.7) to change integration variable to
temperature, and the factor 15/16 reflects the above-mentioned 1/16 loss due to neglect

of compressive work within the isobaric cooling model (Antokhin et al., 2004). The
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total flux above some representative X-ray threshold, taken here to be Ex = 0.3keV,
thus just scales with the kinetic energy flux Fp = p,v2 from both sides,
Fx :/OOF(E)dE%FKEfX, (8.15)
Ex
where fx characterizes the fraction of total radiative loss that is emitted in the X-ray
bandpass above Ex. Note that for EFxy = 0, we have fx = 1, so that, apart from the
1/16 loss, the bolometric radiative flux nearly equals the total incoming kinetic energy
flux.
An important point to emphasize here is that, even though the local volume
emissivity (8.12) scales with density-squared emission measure, the integrated fluxes
(8.14) and (8.15) over such a radiative cooling layer scale only linearly with the inflow

density p,.

8.3 Numerical simulations for laminar flow collisions
8.3.1 The 1D cooling oscillation

While the above analytic solution for a presumed steady-state shock provides a
simple overall characterization of the shock cooling layer, the linear stability analysis
of Chevalier & Imamura (1982) shows that, even for a 1D steady laminar incoming
flow, a post-shock layer undergoing such radiative cooling is generally not steady-state,
but is unstable to cooling oscillation modes.

As a basis for 2D models below, let us first examine 1D numerical simulations
of this cooling oscillation for this case of direct collision of two equal and opposite
laminar flows. Using the PPM (Piecewise Parabolic Method; Colella & Woodward,
1984) numerical hydrodynamics code VH-13, we solve the time-dependent conservation
equations (8.1) — (8.3) on a fixed 1-D planar grid of n, = 1000 zones extending +2.5¢..
on each side of central contact discontinuity (again set at x = 0) between the two
flows; the uniform spatial zones of size Ax = 0.005 .. thus very well resolve the cooling

region. The left and right boundaries at x ~ 4+2.5¢, assume highly supersonic inflow

3 http://wonka.physics.ncsu.edu/pub/VH-1/
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at speeds v, = 1000 kms~! of gas with a typical hot-star temperature 7' = 30,000 K
and thus sound speed a = \/m ~ 20kms~! = v,/50. The initial condition at ¢ = 0
extends these inflow conditions to direct collision at the x = 0 contact surface. Since
in practice stellar photoionization heating tends to keep gas from cooling much below
the stellar effective temperature, we also use T, as a “floor” temperature for both pre-
and post-shock gas (Drew, 1989).

The color scale plots in figure 8.2 show the time evolution (plotted along the
vertical axis in units of the cooling time ¢.) of the density and temperature within the
cooling layers on each side of the contact discontinuity (vertical dark line), bounded
on the outside edges by the oscillating shock discontinuity. Initially, the limited factor
4 compression means, from mass continuity, that the shock location propagates back
from the contact at a speed v,/3. However, as the gas near the contact cools, the lower
pressure allows compression to higher density, which slows and then reverses this back
propagation, but with a roughly factor two overshoot of the equilibrium cooling length.
As the gas near the contact continues to cool, the cooling layer contraction leads to
direct collapse of the shock onto the contact, whereupon the cycle repeats, leaving just
a buildup of cold dense material at the contact discontinuity. The overall period of the
oscillation is a few (~5) cooling times, with an amplitude of a couple cooling lengths.
For this model, this corresponds to a time of ~ 0.7 days.

During the initial phase of the oscillation, the back-propagation of the shock
means the net velocity jump in the shock frame actually exceeds, by a factor 4/3, that
in the steady flow model, and so this leads to an initial post-shock temperature that
is (4/3)? = 16/9 higher than given in the steady shock scalings of eqns. (8.8). On the
other hand, during the contraction phase, the shock velocity jumps are weaker, leading
to lower post-shock temperatures.

This 1D model of the cooling oscillation provides another sample case for deriv-
ing X-ray emission from such shock compressions. For each time ¢ of a simulation, we
carry out the 1D integration (8.13) to obtain the now time-dependent flux at a selected

energy, F'(F,t). Integration of F(FE,t) over an X-ray energy bandpass EFx > 0.3keV
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yields the associated X-ray flux F'x (). For this cooling oscillation model, the rightmost
panel of figure 8.2 plots the time variation of Fy, normalized by the total kinetic energy
flux from both sides of the inflow, Fxr = p,v3. Note that, due to a accumulation of
shock heated material, F'x increases up to the time ¢ ~ 3¢, when the cooling region
reaches its maximum size, with a peak that reaches about half the kinetic energy input
rate. But as noted above, during the subsequent cooling zone compression the weaker
shocks give lower temperatures. This abruptly reverses the F'x into a decline, making

it nearly vanish near the minimum.

8.3.2 2D spatial breakup of density and temperature structure

Let us next consider a 2D simulation of this same basic model of direct collision
between two equal and opposite planar flows. In addition to the temporal variation
from the cooling oscillation, the addition of a second, transverse (y) direction now
allows the possibility of a spatial break-up of the post-shock cooling layer. To illustrate
this within a single time snapshot, it is convenient to introduce a constant wertical
advection speed vy, set here to be the same as the horizontal (x) inflow compression
speed v,, so that material introduced at all boundaries enters the computational domain
at a fixed angles of £45° on each side of the central axis x = 0. At the lower boundary
y = 0, this leads to a direct interaction at this x = 0 interface. The flow also makes a
45° angle with this interface, but because the shock normal speed is kept at the same
vy = v, = 1000 km/s as in the 1D model, the shock strength is the same. The advection
thus represents a simple Galilean transformation of what would occur in a 2D extension
of the 1D direct collision model. Moreover, away from the lower boundary, it provides
a convenient way to visualize the temporal evolution of the structure through a single
time snapshot.

Figure 8.3 plots such a snapshot of the density (upper left) and temperature
(upper right) structure at a time ¢ ~ 12¢., corresponding to twice the advection time
tade = Ymaz/Vo through the vertical extent ... Both spatial directions are now scaled

by the cooling length /., but for the vertical axis the simple advection at a fixed speed

38



25t

T (MK)

30 Q

-10 1

log (Fy/Fge)

y (£

Figure 8.3: Evolved-time snapshots of the 2D advection model showing spatial (z,y)
variations of log density (upper left) and temperature (upper right), along with vertical
(y) variation of x-integrated X-ray emission Fx(y) (bottom: now on a log scale, but
again normalized by the total kinetic energy flux Fir = p,v3). The horizontal dashed
lines compare the F'x time-averaged compressive value from the 1D cooling oscillation
(upper) and the final shear-dominated state (lower), showing a roughly factor 1/50
reduction in the X-ray emission.

89



means that each scaled length unit can be readily translated to time in cooling times
via y/l. = (4vy,/v,)(t/t.) = 4(t/t.); this thus allows for direct comparison with the
1D space + time variation plot in figure 8.2. The computational grid now contains
ng = 600 horizontal zones over the range —1.5¢, < < +1.5¢,, and n,, = 5000 vertical
zone over the range 0 < y < 25(.. This agains corresponds to a uniform mesh size
Az = Ay =0.005¢, = £./200 that very well resolves the 1D cooling length.

Note that the cooling oscillation still appears in the initial flow interaction near
the lower boundary, but the dense cooled material near the central contact quickly
breaks up into a complex structure. The enhanced cooling associated with mixing of
this dense structure reduces both the amplitude and period of the oscillation. Indeed,
after just one initial cycle, the 1D compressive cooling oscillation is now effectively
overridden by an extensive shear structure, which grows with increasing distance (or
advection time) from the lower boundary, forming complex “fingers” of cool, dense gas
that bound regions of oppositely directed flow.

The net result is to transform the strong shock compression of the 1D collision
into a complex of extended shear layers, along which any shocks are very oblique and
thus very weak, with direct shocks limited to very narrow regions at the (convex) “tips”
and (concave) “troughs” of the fingers. As shown in upper right panel of figure 8.3, this
leads to a corresponding reduction in the spatial extent of high-temperature gas in the
downstream flow. The bottom panel of figure 8.3 shows that, after an initial sharp rise
due to the accumulation of strong compressive shock heating near the lower boundary,
the associated horizontally integrated X-ray emission F) drops abruptly after a single
cooling oscillation extending over a few cooling lengths. It then varies greatly with y-
position, but apart from a limited segment of more direct compression around y ~ 20/,
the overall level after the initial oscillation cycle is reduced by about a factor 1/50 (as
denoted by the range between the horizontal dashed lines).

Note that an important aspect of this thin-shell-instability reduction in X-rays
is the transformation of the flow compression, characterized by a velocity divergence

V - v, into strong velocity shear, characterized a flow vorticity V x v. The spatial
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distribution of these quantities, as well as their relative vertical evolution, is illustrated

in figure 8.4.

8.4 Collision between Expanding Outflows

In practice, shock collisions in astrophysics often occur in expanding outflows,
for example in the collision between two spherically expanding stellar winds in a binary
system. Such expansion tends to give the velocity divergence on the right side of the
temperature equation (8.5) a positive value, contributing then to an adiabatic expansion
cooling that competes with the radiative cooling term (see, e.g., Stevens et al., 1992). To
examine how this competition affects radiative cooling instabilities and their associated
reduction in shock temperature and X-ray emission, let us now generalize the above

flow collision models to allow for expansion within the 2D plane.

8.4.1 Cooling parameter y;p for 2D models with planar expansion
Specifically, instead of two opposing laminar flows, let us now assume the con-
figuration in figure 8.1c, namely a 2D planar expansion from two distinct localized
mass sources at positions {x,,,y,} = {£d,0}, with equal constant outflow speed v,
and equal mass ejection rate M. To facilitate connection to 3D outflows character-
ized by a volume density p, we can formally assume a cylindrical expansion, with M
representing the mass source rate per unit length along an arbitrarily extended z-axis

perpendicular to the 2D (D) computational plane. Ahead of any interaction, at a

distance r = \/ (x — xp)? 4 y? from either source, mass conservation for steady-state,
constant-speed, cylindrical expansion implies a mass density p = M /2mv,r. The equal-
ity of the two mass sources means that their interaction will again center on the bisector
symmetry line at x = 0.

Along the x-axis line between the sources at x,,, = £d, this means that the mass

flux within the cooling layer now varies as pv = M /27mr. Applying this for the isobaric
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Figure 8.4: Snapshots of the 2D advection model at the same time as figure 8.3,
showing spatial (z,y) variations of velocity divergence (upper left) and curl (upper
right). The bottom panel plots vertical evolution of r.m.s. horizontal averages of
these quantities. Note that from the initial condition at the lower boundary (y=0) the
divergence decreases while the curl increases.
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Figure 8.5: Final time (t; = 32d/v,) snapshots for models with mass cooling pa-
rameter 7 = 0.1, 1, 10, and 100, arranged in columns from left to right, with rows
showing spatial (x,y) variation of density logp (top), temperature T (middle), and
X-ray emissivity nx (bottom). The temperature is in MK, but the density is scaled
by po(d) = M /(2mv,d) and the emissivity by an associated kinetic power density,

nxke = Mv?/(2nd?). The axes for horizontal (x) and vertical (y) position are in units
of the star-interface distance d.
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post-shock cooling layer model of §8.2.2, the temperature eqn. (8.7) can now be written
in a generalized, scaled form that accounts for this r-dependence of the mass flux,

0T  2T2 r
or  3xap 12’

(8.16)

which applies along the (y = 0) z-axis, with r = d — |z|. Here the shock distance from

the source is set by

d
VI+xp'

where the dimensionless cooling parameter,

(8.17)

Ty =

Srud 20
= % e 8.18
XD = oo M d (8.18)

with ¢, defined here by (8.10) using the inflow density at the interface, p,(d) =
M /27v,d. Integration of (8.16) with the requirements that T'(r,) = T and T/(d) = 0
now gives for the temperature variation within the cooling zone along the z-axis,

(M)?’—L(dtrz); re<r<d , y=0. (8.19)

T X2D r 3

For xop < 1, r5/d = 1 — xap/2 = 1 — £./d, and since r/d = 1 — |z|/d, we find from
first-order expansion in |z|/d < 1, that (8.19) recovers the laminar collision scaling
(8.9).

The dimensionless parameter y,p characterizes the ratio of length scales for
cooling vs. expansion, set by xop = 2¢./d. It serves as a 2D analog to the commonly
quoted, standard cooling parameter y, defined by Stevens et al. (1992) in terms of
the ratio of time scales for cooling vs. expansion in the full 3D case of colliding stellar
winds. Both have identical scalings with the fourth power of the flow speed and inverse
of the mass source rate; but note that, unlike the full 3D case, the 2D scaling here has
no dependence on the separation distance d. Because planar expansion has one less
dimension than the full spherical case, this 3D scaling with distance in the numerator
becomes replaced with division by a mass source rate M per unit length from cylindrical

sources that formally extend perpendicularly from the 2D plane.
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Nonetheless, for a fixed flow speed v,, which through eqn. (8.8) sets the post-
shock temperature T, we can still readily examine the effects of varying the relative
importance of radiative vs. adiabatic cooling by adjusting this mass source rate M to
change the parameter ysp. Indeed, since yap ~ 1/ M , it is convenient to characterize
the radiative cooling efficiency in terms of rh = M /M, where M, = 5mvt/(128A,,) is
the mass source rate for which yop = 1. This gives m = 1/xap.

In the strong radiative cooling limit 7 > 1, the cooling region in this steady
shock model is confined to narrow layer with |z| < ¢, = d/2m on each side of the
interaction front at x = 0. Following the planar scaling (8.15), the X-ray emission
in this case should increase linearly with the mass flux, m. But the very narrowness
of this layer makes it subject to the thin-shell instabilities (Vishniac, 1994) that give
rise to extensive spatial structure seen in the above 2D laminar collision models, with
associated reduction in shock temperature and X-ray emission.

In contrast, in the limit of inefficient radiative emission m < 1, the cooling is
instead by adiabatic expansion, with a much thicker offset from the interface. The
X-ray emission integrated over this extended interface now depends on the density-
squared emission measure, implying a total emission that scales with 72, Moreover,
this extended layer can now effectively suppress the thin-shell instability, allowing the
post-shock gas to retain higher temperatures, and so an extended X-ray emission.

In the absence of instability-generated structure, Owocki et al. (2013) proposed a
simple scaling law that “bridges” the adiabatic vs. radiative limits, which in the current
notation can be expressed in units of twice the X-ray luminosity for the transition case

m=1,
m2

1+m’

(8.20)

LX%

A general goal here is to use numerical simulations to test how this scaling is modified

by the effects of the thin-shell instability for high-density flows with m > 1.
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8.4.2 Numerical simulation settings

Let us now quantify these expectations with a full numerical simulation param-
eter study that examines how shock structure and X-ray emission in this 2D model of
shock collision and planar expansion depends on this cooling efficiency parameter m.
The numerical model again assumes a constant source flow speed v, = 1000kms™!, but
now with the outflow mass sources at {z,, ym } = {£d, 0} embedded in a uniform spatial
grid with n, = 1024 zones ranging over —1.33d < x < +1.33d and n, = 1204 zones over
—0.63d < y < 2.5d. This implies fixed zone sizes Ax = Ay = 0.0026 d = 0.0052 /.

The separation between the mass sources is set to a typical stellar binary sep-
aration 2d = 3.1 x 102 cm = 0.21au. All models are run to a final time ¢; =500ks,
corresponding to nearly 32 characteristic flow times t; = d/v, =15.75ks from the
sources to the interface; this is sufficient for even material that initially collides along
the source axis to flow out through either the bottom or top boundary, following its
vertical pressure acceleration away from this z-axis. The simulation uses simple su-
personic outflow boundary conditions along both horizontal and vertical edges of the

computational domain.

8.4.3 Structure snapshots at final, evolved time

For the final, well-evolved time (¢t = 32d/v,), figure 8.5 compares results for
simulations with m = 0.1, 1, 10 and 100, arranged along columns from left to right.
The upper two rows give color plots of the log density (top) and temperature (middle);
the bottom row shows the associated X-ray volume emission nx for energies £ > Ex =
3keV.

The results quite vividly illustrate the trends anticipated above. For the lowest-
density case with m = 0.1 (leftmost column), the relative inefficiency of radiative vs.
adiabatic cooling leads to a distinct standoff of the shock from the interface, with only
very weak instability structure forming along the interface. Along the direct collision

between the sources, the high post-shock pressure drives material away from this axis,

allowing a shock standoff radius rs/d =~ 0.68 that is larger than the ry/d = 1/v/1+4 =
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Figure 8.6: Time-height (t,y) variation of lateral (x) integrations of density p(y,1)
(top row; on log scale), for models with mass cooling parameter m = 0.1, 1, 10, and
100, again arranged in columns from left to right. The X-ray flux is normalized by
the total kinetic energy flux at the interaction front along the axis between the stars,
Frp = Mv?/(2rd). The vertical (y) spatial axis is in units of star-interaction distance
d, and the horizontal time axis (t) is in units of the characteristic flow time d/v,.
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0.45 predicted by eqn. (8.17) (which accounts for planar expansion, but not such vertical
pressure acceleration). As the standoff distance increases at larger |y|, there develops
an extended region of high post-shock temperature, with an associated extended region
of X-ray emission.

For the factor-ten higher-density model with 72 = 1 (left central column), the
cooling layers become narrower, with now quite notable instability near the interface
that becomes strongly developed at large y. The high temperature region is accordingly
narrower, with vertical extent terminated at the location that instabilities become
strong. The X-ray emission occurs over a similar spatial extent, but is now stronger in
the high density regions near the x-axis interface.

For a further factor-ten higher-density model with m = 10 (right central col-
umn), the cooling layers now become completely unstable, with density showing exten-
sive finger-like structure similar to the above laminar models. The high-temperature
gas, and associated X-ray emission, is now limited to small regions, again associated
with the tips of the fingers and the troughs between them.

Finally, in the highest-density model with 7 = 100 (rightmost column), the
cooling instability leads to even more extended fingering, with the few zones of high-
temperature and X-ray emission now hardly noticeable. However, as quantified below,
the high density of the few remaining hot regions can still lead to significant overall

X-ray luminosity.

8.4.4 Time-height evolution of flow structure

To complement such single-time snapshots of the flow structure, let us next
examine its time evolution. Specifically, to illustrate the flow evolution in time ¢ and
height y, let us define horizontal x-integrations of the density and X-ray emission.
For the density, to compensate for the 1/r decline, we weight the integration by r,

normalized by the associated integration through the unperturbed mass source,

37TUO 4d/3
Py, t) = — / oz, y,t)rde. 8.21
(y,t) d ) s ( ) (8.21)
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We can similarly define a horizontally integrated X-ray flux,
4d/3
Fx(y,t) = / nx(x,y,t)dz. (8.22)
—4d/3

Figure 8.6 shows color plots of the time-height evolution of p(y,t) (upper row)
and Fx(y,t) (lower row), again for models with . = 0.1, 1, 10, and 100, arranged
along columns from left to right.

For the lowest-density model with m = 0.1, both density and X-ray emission
quickly adjust to a time-independent steady-state with smooth distribution in y. But
for all higher density models, there develops clear structure, with density compressions
that diverge away from the mass-source z-axis, along with associated structure in X-
ray emission. In the 7 = 1 case, and in the initial evolution of the m = 10 case, the
overall level of X-ray emission is increased in proportion to the higher source mass rate
m.

But at a time around ¢ ~ 13d/v,, the latter case shows a sharp decline in
filling fraction of X-ray emitting structures, reflecting the formation of strong fingerlike
structures from the thin-shell instability, and its associated limitation of X-ray emission
to tips and troughs of the fingers. For the highest-density case i = 100 this X-ray
volume reduction starts near the initial time, and is even more pronounced. This
lower filling factor significantly reduces the X-ray luminosity, though this can be partly

compensated by the more intense local emission from dense, strongly emitting regions.

8.4.5 Scaling of X-ray luminosity with m

Let us now quantify the overall scaling of the X-ray luminosity with the cooling
efficiency 1 = 1/x2p. For this we derive the asymptotic time-average X-ray luminosity
Lx as the integral of Fx(y,t) over positive y, with then a time average over the time
t > 13d/v, after transition to its asymptotic state. In addition to the 4 models detailed
above that differ in 1 dex increments of m, we also compute 9 additional models to
give a denser parameter grid of 13 models in 0.25 dex increments over the full range

from m = 0.1 to 100.
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Figure 8.7: Time-averaged X-ray luminosity Lx vs. mass-loss-scaled cooling efficiency
m = 1/x2p. The legend identifies curve styles for various analytic scaling formulae.
The points for simulation results are scaled by anchoring Ly for the lowest-density case
m = 0.1 to the bridging form (8.20), with error bars representing +1o0 time variability.
In the nearly adiabatic regime 1 < 1, the simulations nearly follow the black curve for
the scaling (8.20). In the strongly radiative limit 7 > 1, they are (almost) linear with
m, but with strong reduction below the analytic form (8.20). The transition regime
2 < 1 < 6 has large variations from switching between high and low “bi-stable” states.
The cyan curves show factor 1/50 jumps at values ri; bracketing this transition regime,

with slightly sublinear (~ m%?) scaling above the jump.
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Figure 8.7 plots (on a log-log scale) the resulting data points for Lx vs. 1m,
along with error bars to indicate the level of 1o temporal variation. The black curve
compares the Owocki et al. (2013) bridging law scaling (8.20), along with the linear
Lx ~ m scaling (blue) and quadratic Lx ~ m? scaling (red) expected respectively
in the high-density (i > 1), radiative shock limit, and in the low-density (rm < 1)
adiabatic shock limit. We normalize all the simulation data by anchoring the smooth
emission from the lowest-density (i = 0.1), nearly adiabatic case to exactly fit this
bridging law, with Lx = m?2/(1 + 1) =0.009.

In figure 8.7 the first 5 data points with lowest 1, ranging from 0.1 to 1, do
indeed nearly follow this simple bridging law, with small temporal variability indicated
by error bars that are less than the point sizes. This is consistent with the relatively
extended shock compression and X-ray emission shown in the two leftmost columns of
figures 8.5 and 8.6 for models with rh= 0.1 and m =1.

In contrast, for the 5 highest-density models, with 7 > 10, the Lx all fall
roughly a fixed factor 1/50 below the linear increase that applies in the m > 1 limit
of this bridging law, with somewhat larger, but still modest errors bars indicating only
a moderate level of time variability. This is similar to the factor 1/50 reduction in
X-ray emission of the 2D advection models once the initial compressive oscillation is
transformed to the strong shear flow and finger structure. It is also consistent with
the extensive shear fingers and reduced X-ray emission shown in the two rightmost
columns of figures 8.5 and 8.6 for models with mh= 10 and r =100.

Between these two limits, for the 3 intermediate cases with m = 3.5, 6.3 and 5.6,
the Ly vary somewhat erratically, trending below the bridging curve, with large error
bars indicating strong time variability. Figure 8.8 illustrates that this apparently stems
from the tendency for these intermediate cases to undergo switching between high X-
ray states — with the extended compression and emission of the low-m, adiabatic limit
— and a low X-ray state — with the small-scale shear and dense fingers typical of the
unstable structure in the high-m, radiative limit.

The overall result is thus that colliding-flow shock X-rays follow close the simple
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Figure 8.8: Time-height variation of laterally integrated X-rays for transition cases
(= 1.8, 3.2 and 5.4), showing a bi-stability between relatively smooth states with
high Lx and highly structured states with reduced Ly.

adiabatic-to-radiative bridging law for low to moderate density shocks with 7 < 1, then
show a somewhat random modest declining trend for the moderately radiative cases
2 < m < 8, and finally again increase linearly with r for the strongly radiative cases
m > 10, but at about 1/50 lower level than the expected linear scaling for the radiative
limit without instabilities.

This factor 1/50 thus seems to represent a kind of fixed “shear/mixing penalty”

for X-ray production in the limit of strongly radiative shocks.

8.5 Discussion & Future Outlook

All the above 2D planar expansion simulations were computed with a fixed spa-
tial mesh of grid size Az = 0.0026 d. For the highest-density model, . = 100 = 2d/..,
this is roughly half the 1D cooling scale /., indicating that this densest model could
be resolution limited. Nonetheless, note that it does still give roughly the same factor
1/50 reduction in X-ray emission seen in the 2D laminar-collision case, for which the
grid is set to provide a quite high resolution of this cooling length, Az = 0.005/..
Additional planar expansion simulations done at a factor 2 lower resolution still give
good general agreement to the Ly plotted in figure 8.7, except that for the two highest-

density models, with mm = 56 and 100, there is a precipitous drop in X-ray emission.
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Since now the grid zones with Az > /. are no longer adequate to resolve the cooling
length, even in the finger tips and troughs with compressive shocks the numerical hy-
drodynamics using the Townsend (2009) exact integration scheme for radiative cooling
now simply jumps to the fully cooled post-shock equilibrium, without showing any of
the intermediate shock heating.

Such resolution issues are an inherent challenge for any numerical effort to ex-
amine the effects of thin-shell instability on X-ray emission. As emphasized by Parkin
& Pittard (2010), there are many associated numerical effects, for example that of
“numerical conduction”, that can reduce and soften the associated X-ray emission.
Our study here has not included any specialized attempts to mitigate such effects, but
in the 2D planar advection model here, the fixed spatial grid has a resolution of the
cooling length that is comparable to the adaptive mesh refinement models by Parkin
& Pittard (2010). Moreover, the vertical advection makes the vertical structure a con-
venient proxy for the time-dependent evolution. This illustrates how the thin-shell
instability transforms a laminar flow compression into an extensive shear structure,
with associated reduction in X-ray emission that seems not just a numerical effect, but
grounded in the fundamentally different shear vs. compressive flow structure. By using
a systematic parameter study in the cooling efficiency associated with the mass source
rate m, the planar divergence models allow us to examine how the reduction of X-rays
depends on the relative strength of adiabatic vs. radiative cooling.

A key result is the indication here that this thin-shell instability transition to
complex structure might simply lead to a fixed reduction in X-ray emission. But
further work will be needed to determine the origin of this reduction, and how it may
be affected by either numerical or physical parameters. For example, the factor 1/50
found here is roughly comparable to the pre-shock vs. post-shock sound speed, or the
inverse Mach number. Future work should thus explore how this factor depends on
the assumed input/floor temperature T,, or the shock inflow speed v,. In principle,
this can be done within the simple laminar flow model, using perhaps adaptive mesh

refinement to further increase the effective resolution. Such adaptive mesh methods
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would also be particularly useful in testing the inferred linear trend of X-rays at high
m.

Apart from this study of how colliding wind X-rays scale with cooling efficiency;,
it will be of interest to apply the insights here toward understanding the scaling of X-
rays in other contexts, such as from the embedded wind shocks arising from the intrinsic
instability of radiative driving of hot-star winds. In particular, Owocki et al. (2013)
have argued that the observed linear scaling between X-ray and stellar bolometric
luminosity (Lx ~ Lyy) in single O-stars might be explained if thin-shell mixing of
such embedded shocks reduces their X-ray emission by some power — the “mixing
exponent” m ~ 0.4 — of the mass loss rate. This is distinct from the nearly constant X-
ray reduction factor found here in the context of direct flow collision, and so future work
should explore how the scaling of any X-ray reduction might depend on the specific
geometrical and physical context of the shock production, e.g. effect of a large-scale or
turbulent magnetic field (Heitsch et al., 2007).

Indeed, even within the context of CWB’s, there are additional effects not con-
sidered here that could significantly alter how thin-shell instability affects X-ray pro-
duction. For example, how will the factor 1/50 reduction found in these 2D models
differ in a more realistic 3D wind collision? How might this be affected by the shear in
an interaction betweens winds with different speed, on in the bow-shaped interaction
of winds with differing momenta? Even in the planar interaction of winds with equal
momenta, but unequal speed and density, the cooling parameter will be different on
each side of the interaction front. How will this affect thin-shell structure and the re-
duction of X-ray emission? Clearly, there are many remaining issues for understanding
the X-ray properties of such CWB’s. But hopefully the current 2D study of thin-shell

effects can form a good basis for addressing such more complex cases.
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Chapter 9

SUMMARY, CONCLUSIONS, AND FUTURE DIRECTIONS

The central focus of this dissertation has been to investigate the interplay of
radiation forces with circumstellar gaseous disks. To conclude, we here summarize the

key results and then lay out some possible directions for future research.

9.1 Overview of Dissertation Results

After an introductory background overview in chapter 1, chapters 2 and 3 review
the general mathematical formalism for the two components of the dissertation: line-
driven winds, and Keplerian, gaseous disks. In addition to an analytic scaling of wind
mass loss rate with stellar parameters, chapter 2 gives particular emphasis to the 3D,
vector line-acceleration formalism. Chapter 3 and its discussion of circumstellar disks
pointed out the scenarios in which disks occur, some key properties of circumstellar,
gaseous disks including their density structure and total mass, and reviewed prior
attempts to model their dynamics using viscosity.

By taking the results of the background chapters, chapter 4 presents the first
results of line-driven ablation of a circumstellar disk. Not only does this confirm the
prediction that the same line-accelerations that drive stellar winds can also significantly
affect Keplerian disks, but it also investigates the roles played by non-radial velocity
gradients and non-radial acceleration components in line-driven ablation. By further
demonstrating that the effects of rapid rotation on ablation can be understood as
scaling nearly linearly with equatorial brightness, it sets the stage for the parameter
study completed in chapter 5.

Chapter 5 then discusses two of the central results of this dissertation:
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1. The lack of observed Oe stars can be understood as a byproduct of their extreme

luminosity.

2. The time scale for disk destruction can be well approximated by the ratio of disk

mass to spherically symmetric mass loss rate, M,/ Mwind-

These two results address long standing issues in understanding the Classical Be phe-
nomena. Additionally, as both are derived from models that ignore viscosity, we now
can understand the observationally inferred short disk decay times without appealing
to anomalously strong viscous diffusion.

In addition to questions regarding disk decay, there are also several open ques-
tions related to the growth of Classical Be disks. Chapter 6 presents a potential model
for this growth by combining rapid rotation with non-radial pulsation modes. Here,
the results show that it is possible to launch large-scale, nearly Keplerian disks us-
ing non-radial pulsations, consistent with those seen in observations (see e.g. Rivinius
et al., 2003). Several variations on the non-radial pulsations are also investigated there
in order to begin to probe the available parameter space.

This dissertation returned to disk ablation in chapter 7, but there for densities
comparable to those of optically thick, star forming accretion disk. To handle their
extreme optical depths, we introduce and derive a semi-analytic approximation for
treating continuum optical depths under the assumption of a geometrically thin disk.
By considering a model with pure absorption (i.e. no scattering or re-emission), and
comparing it to one which omits continuum optical depths all together, we bracket the
expected ablation of a disk for which the continuum opacity is dominated by electron
scattering. These limits show that, even for a very optically thick disk, the simple
scaling law derived in chapter 5 can still be applied.

Finally, chapter 8 presented some additional work also related to massive star
winds, and particularly to their X-ray properties. Here the central purpose is the
investigation of the scaling of X-ray emission from geometrically thin, shocked layers.

Though there are many astrophysical scenarios in which such shocks occur, this work
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focuses on X-rays as mass loss diagnostics for colliding wind binaries. For the collision
of high density winds, such as would be expected both for close binaries and binaries
with two early O stars, the net effect of the so called “thin-shell instability” is to reduce
X-ray emission by a factor ~ 50. This work has broad implications for the description
of X-ray properties of colliding wind binaries as evidenced by the recent work of Rauw
et al. (2016), and perhaps even for such seemingly far removed fields as habitability of
planets as evidenced by the work of Johnstone et al. (2015)

9.2 Future Directions

While this dissertation presented the first simulations of line-driven ablation of
disks around massive stars, it is far from a complete investigation of the problem. Each
of the following subsections briefly outlines a remaining open question which should be

addressed by extensions of this work.

9.2.1 Immediate extensions

Directly from the work included in this dissertation, there are some obvious im-
mediately available future projects. One particularly pressing and immediately avail-
able project is to introduce the competing mechanism for ablation. For Classical Be
stars, we can use the pulsation models in chapter 6, while for star forming disks we
would need a prescription for how mass enters from the outer disk as well as potentially
a viscosity prescription (discussed more in the next subsection). In both cases, this
would provide us with the appropriate competing mechanism which will act against
ablation to replenish the disk. The effects of this competition both on ablation rate
and the resulting ability to more accurately discuss disk decay rates would be potential
results of this study that would be of particular interest.

We also are already set-up to more thoroughly investigate the behavior of an
optically thick disk. As discussed in chapter 7, the model there can be seen as an initial
proof of concept for our ability to calculate the ablation of optically thick disks. Now

that we have proven the method, though, there are a variety of directions we can go
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next. For instance, we could repeat the spectral type parameter study from chapter 5
but at 7 = 400 to test whether all disks have the factor 4 — 5 x Mwmd ablation rate
shown by the O7 star. We could also fill in the parameter range in 7 with intermediate
models to test how the strong wind of an O7 star reacts to different densities. Finally,
and probably most importantly, we should do the proposed test at the end of chapter 7
and change the density power-law index to 1.5 to more accurately model the ablation
of an accretion disk.

As briefly mentioned in the introduction, one potential area of interest for ap-
plication of this work is Ble] stars (Kraus & Miroshnichenko, 2006). With O star-like
luminosities and B-like effective temperatures, these post-main-sequence supergiants
provide an interesting test bed for investigating the relative effects of stellar luminosity
and stellar temperature for disk ablation. Additionally, the optically thick, radially ex-
tended, dusty Ble] disks provide an opportunity to study ablation of pre-main-sequence
density disks without the need to contend with extensive extinction from the star’s na-
tal environment.

Finally, we should also attempt to more accurately treat the thermal effects
associated with radiation transport. For all of the work here we have assumed purely
isothermal disks and winds. While this is a good first order approximation, it is
almost certainly not a realistic assumption in any of the cases treated. As material
is irradiated by the stellar flux it should be expected to heat up to some fraction of
the stellar effective temperature, here approximated by holding all material at the
expected stellar effective temperature. However, in regions that are shaded from the
star and regions that are dense, near the disk mid-plane in both cases, material can
cool to much lower temperatures. This could substantially affect the structure of the
disk, potentially removing or reversing the flaring of the disk which exposes high-lying
material to direct stellar flux. It also could begin to introduce variations in the types
of opacity which need to be addressed, particularly for the case of the star in formation
where the UV resonance lines we address here will disappear as elements re-combine

and begin to precipitate out as dust with its own associated opacity. This study will
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likely be a major focus of postdoctoral work by this doctoral candidate.

9.2.2 Comparison of viscous and radiative disk destruction

The results of this dissertation are all derived in the absence of an explicit
viscosity prescription. Inclusion of such a prescription in VH-1 would be possible and
would allow a direct comparison of numerical results using only radiation, using only
viscosity, and using both. Particularly of interest in this line of questioning would be
whether a transition occurs in the Classical Be star domain where viscous effects would
be expected to outperform radiative effects, for normal viscosity parameters o ~ 0.01.
A key challenge in this, however, would be to reconcile the long time-scales associated

with viscosity to the rapid outflows associated with radiative acceleration.

9.2.3 Confronting theory with observations

Owing to the nearly 150 year history of interest in Classical Be stars, there is
an extensive database of legacy observations that are freely available. One particularly
accessible characteristic in these observations is stellar magnitude. As was shown by
Carciofi et al. (2012), the transition between the presence and absence of a circumstellar
disk is accompanied by a marked decline in V-band magnitude. By mining the vast
number of observations, it should be possible to identify a large number of such declines
as well as to measure their durations. The results of chapter 5 predict a trend of disk
duration with spectral type. Such a trend is an unavoidable consequence of line-
driven ablation, so its appearance in observation would provide a strong indicator for
the presence and strength of radiative ablation. One possible issue here, however, is
the dependence of the ejection mechanism on time and spectral type. If the ejection
mechanism simply shuts off periodically, the trend should behave as predicted here. If
it simply gets weaker, the expected trend is as of yet unknown.

As briefly addressed in chapter 3 there are also direct observational signatures
of ablation (Grady et al., 1987, 1989). By modeling individual systems, such signa-

tures provide direct observational constraints for the radiative ablation work conducted
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here. Such constraints would allow us to further investigate the strength and efficiency
expected for radiative ablation, as well as guiding us toward the potential need for

inclusion of physics beyond the scope of what was done in this dissertation.

9.2.4 An upper mass limit for star formation

While the question of whether the upper mass limit of stars is controlled in part
by their formation mechanics is briefly touched on in the introduction, the results of
chapter 7 only begin to address this. To investigate such a question more thoroughly
would require including mass feeding from the outer simulation boundary according
to predictions of massive star formation theory, as well as a handling of the expected
stellar structure which exists below the lower simulation boundary. The former issue of
mass feeding rate and spatial distribution is already being investigated in the presence
of continuum radiation forces by, for instance, Krumholz et al. (2007), Commercon
et al. (2011), and Kuiper et al. (2015). The later issue of underlying stellar properties
and structure is under investigation by, for instance, the MESA (Paxton et al., 2013)
and Geneva (Georgy et al., 2014) collaborations, as well as Hosokawa & Omukai (2009)
who have put particular emphasis on the structure of a star still undergoing accretion.
Therefore, the challenge is in combining accretion, stellar structure, and line-driven

radiative ablation into a single simulation.

9.2.5 High binary fraction in massive stars

Line-driven ablation may even play a role in describing the high binary fraction
observed for luminous, massive stars. As first introduced in Kratter & Matzner (2006),
and then later confirmed by numerical models carried out by Kratter et al. (2010),
circumstellar disks become subject to gravitational instabilities at sufficiently high
accretion rates. As the accretion rate onto a luminous massive star must be high in
order to compete with the very efficient radiative ablation, forming a massive star may
often require accretion rates which come up against this gravitational instability upper

limit, at which point the disk fragments and forms a binary companion.
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Appendix A
PROPERTIES OF RAPIDLY ROTATING STARS

Given that the population of stars to be studied is known to be rapidly rotat-
ing, understanding how this affects the underlying star is necessary. For the surface
properties of the star, these effects predominantly reduce to a change of stellar shape
and a redistribution of surface flux. Both effects are strongly dependent on knowing

the rotation rate of the star.

A.1 Stellar oblateness and the parameterization of rotation rate

As a star is spun up, centrifugal forces reduce its effective gravity away from the
poles. The net effect of this is to make the equatorial regions of the star less tightly
bound than the polar regions, which allows the equator to swell to a larger size than the
poles. In the most extreme case where the stellar equator is traveling rapidly enough
to feel no net gravity (i.e. the equator is effectively in Keperian orbit) the equatorial
radius can grow to 1.5 times the stellar radius at the pole.

To describe the shape that the star takes, one has to know how rapidly the star
is actually rotating. In addition to the observational difficulty of disentangling rotation
rate from viewing angle!, there are several different ways to parameterize the quantity
that one gets out in terms of either a rotational or linear velocity. These velocities are
always defined at the stellar equator but can either be defined for a “critically-rotating”

object, for which the equatorial rotation velocity is the same as the circular Keplerian

1 Observations recover rotation velocity times sine of i, the inclination angle between
the viewer and the star’s rotation axis. This product is normally reported as v sini.
To get back the actual equatorial rotation velocity requires auxiliary knowledge of ¢
and to get to rotation rate requires knowledge of stellar parameters.
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orbital velocity at the equator, or for the actual star in question. In the former case,

the relevant quantities are

2GM,
crit — > Al
Verit 3Rpole ( )
8 GM,
Qerit = 4 [ = A2
crit 27 R?)Ole ) ( )
while, in the later case, the relevant quantities are
G M,
orh = A.3
Vorb R (A.3)
GM,
Qorb = R3 : (A4)
eq

Note that the factor of 2/3 in the first equations arises from the oblateness of a ro-
tating star causing R, = 2/3R,, for critical rigid body rotation under the Roche
Approximation (see, e.g. Maeder, 2009, chapter 2).

Given these definitions, three common parameters exist in the literature to
define the rotation rate of a star. The first two, based on the critical angular and

linear velocity respectively are

Qrot
= A.
“ chit ( 5)
Urot
T = A6
Verit , ( )

which are more commonly used for stating statistical properties of the rotation rates

of stars. The third, based on the equatorial Keplerian velocity,

W = Urot : (A?)

Uorb
will be the parameter predominantly used in this work. The choice is based on the
additional information encoded in this parameter in the form of the necessary velocity
boost to get from the stellar surface into orbit which has particular physical relevance

in the case of Classical Be stars.
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Since all three of these parameters are used in the literature, transformations
between the three and the physical parameters of the star are essential. Using the

relations provided by Collins & Harrington (1966), gives (Rivinius et al., 2013)

(A.8)

T(w) = 2cos (”LCOS(“))) ,

3

1) o (s (1) ). "

Combining these two relations allows for calculation of the ratio of equatorial to polar

and

radius as
R, 37T
—_— = ——. A.10
Rpole 2w ( )
Furthermore, by combining equations A.1 and A.3 with this relation
Verit 2 Req T
=4/= =14/— A1l
Vorb 3 Rpole w 7 ( )

and finally

W = Urot _ Urot Verit _ /T_g ‘ (A12)

Vord Verit Vorb w
Under the assumption that the star’s gravity comes from a centrally concen-
trated point source, the potential felt by a parcel of gas is the sum of this gravity and

a centripetal contribution

GM, 1

O(r,0) = — - 5927"2 sin(#) . (A.13)

r
The surface over which ® is constant is referred to as the Roche equipotential. Since
more detailed modeling of the stellar shape for a non-point mass shows that polar
radius stays constant with increasing rotation rate to the level of around 1% (Orlov,

1961), an analytic solution can be undertaken by using

GM, GM, 1
==+ —O?R(0)*sin(d A4
Rpole R(Q) + 2 ( ) Sln( )? ( )
such that (see, e.g. Collins, 1963; Collins & Harrington, 1966)
R(0) 3 7+ cos™Hwsin )
= Al
Rpoe  wsinf o 3 (A.15)
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A.2 Gravity darkening

As shown by von Zeipel (1924) and Chandrasekhar (1933), the radiative flux of a
distorted star, such as the oblate, rapidly-rotating stars discussed here, is proportional
to its local effective surface gravity. This effect is commonly referred to as “gravity

darkening”. Since the components of gravity are given by

9d  GM,

gy = 3 = > + Q%rsin?6 (A.16)
10®
gy = T O%rsinf cos b, (A17)

and g, = 0 by azimuthal symmetry, the flux as a function of latitude can be established

to be proportional to

19(0)] = \/ CM. L iz gintg. (A.18)

ra
The factor that relates flux and surface gravity, referred to as von Zeipel’s constant
and commonly notated K., then arises from the necessity that the total integral of

flux be equal to bolometric luminosity such that

L

F=K,|g| = m|g| :

(A.19)

While not difficult to express, this integral can prove difficult to evaluate and must be

handled numerically on a case by case basis.
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Appendix B

TRANSLATING BETWEEN THE {q,Q, Qo}, {k, 50, Kmaz }s AND {kr, kmas }
NOTATIONS

While much of this dissertation has bypassed this issue, the development of
CAK theory and the addenda to it have caused the introduction of a variety of no-
tations as well as the inclusion of several additional effects within the formalism. Of
particular importance for the discussions in this dissertation is the treatment of the
line distribution cutoff as introduced by OCR. While the formalism for the inclusion
of this effect in the x notation of OCR is clear, the translation of the effect into the
g notation of Gayley (1995) is not obvious. Additionally, as the line force parameters
used in this work are drawn from Puls et al. (2000), it is essential that the line force
parameters as defined therein are consistent with the definitions in OCR and Gayley
(1995).

To begin, I first want to determine the inter-relation between the notations of
Gayley and OCR. By comparing their definitions of the Sobolev optical depth, it can be
seen that ¢ = kv, /(kec). Using this, it is possible to compare the number distributions

in the two notations. In OCR the number distribution is given by

dN 1 [ k\*7
—=— (= —#/Kmas B.1
‘ drk Ko <Ii0) ¢ ’ (B-1)
where Gayley provides
dN Q q a2
— === = e~/ B.2
‘ dg| T(a)Qf <Q0) (B2)
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to be his number distribution. For these to be compatible, their exponential cutoffs
must occur in the same place, imposed by Qo = KpmazVin/(Kec). By using these inter-
relations of ¢ and x and Qg and K4, the number distributions can be shown to be

compatible with one another if

11—«
Q= (™) ). (B3)
which implies
Rmazx _ QO 1/(1=e)
P <5F(a)) : (B.4)

Given these relations, the remaining task is that of determining whether the
definitions of Puls et al. are consistent with those derived above. Using their line

distribution function

ax
dkry,

and their given relations of ¢, Qq, and Q.. to kr, and k4.

= Nok¢2e~Fe/kmaz (B.5)

Uth,

q= k?L7 (B.6)
QO = kmaccv%h (B?)

(B.8)

max ?

O = NoZ D (a) ke
C

exactly reproduces the line distribution function of Gayley (1995), closing the loop and
allowing the @ and Qg values of Puls et al. (2000) to be used in the formalism of OCR

with the translations given above.
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Appendix C

INCLUSION OF THE EFFECTS OF IONIZATION AND
RECOMBINATION AS A FUNCTION OF POSITION IN THE WIND

An additional correction that can be made to the radiation force and mass
loss rate scaling, as has been done in this work, is accounting for the competition
of ionization and recombination in the stellar wind. Since the line force depends on
the number and strength of lines, a full treatment would require calculating the Non-
Local Thermodynamic Equilibrium (NLTE) ionization structure. However, the effects

of photoionization can be assumed proportional the dilution factor

W=l _2“* (C.1)

and the effects of recombination proportional to the number density of electrons n..
The usual treatment is the use the ratio n.11/W as the parameter of interest (Abbott,
1982) where n. 11 = n./(10"em™2). As neither the force nor mass loss rate are found
to vary linearly with this term, a power-law fit is carried out using the free parameter
0 as the power-law index such that

. 5
Ne 11 s 2M(1—|—,LL*)
inejion = Gline \ —tr7— = Gline | 7 _ 159 111 5 C.2
Gineion = Gine (2 = g1 ( R0 (C.2)

where the second equality is achieved by making the substitutions n. = p/u. and
1 — p? = (R,/r)% Given that M is a constant this leaves us needing to calculate both
v, and p,. In the course of handling the finite sound speed correction to the mass loss
rate, Owocki & ud-Doula (2004) did just this. At what they refer to as the “critical

point” where radiative driving will be the most difficult,

R,
11— (avT = @) / (20esc)

(C.3)

Te
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which means that

Wﬁ:aﬂiz—(“yu—®. (C.4)

U@SC /UCSC

At this same point, the wind velocity is

1Q:¢gﬂ—a)m¢%;. (C.5)

With the necessary values for u, and v, in hand, the effects of ionization and recombi-

nation will enter M such that

M . Qﬁ « L* a=d Fe % 2(]- ‘l’ ,u*,c) % (C 6)
N (1+ oz)i 1 —aQyc? 1-T, A R2v,10M 1 ' '
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PERMISSION FOR USE OF FIGURES
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Gaoppsgéa% Nathaniel Kee <dkee@udel.edu>

Permission Request for Figures 1 and 3 of Gayley and Owocki 2000
2 messages

Nathaniel Kee <dkee@udel.edu= Tue, Dec 1, 2015 at 12:48 PM
To: Ken Gayley <ken.gayley@gmail.com>

Dr. Gayley,

| am a doctoral student of Stan Owocki's completing my dissertation on Radiative Ablation of Disks Around
Massive Stars. | would like to include figures 1 and 3 of Gayley and Owocki 2000 (The Astrophysical Journal,
537:461-470, 2000 July 1) in order to motivate the interaction of non-radial photons with non-radial velocity
gradients. Would | be able to obtain your permission for use of this figure?

Best Regards,
Dylan Kee

Ken Gayley <ken.gayley@gmail.com> Tue, Dec 1, 2015 at 5:25 PM
To: Nathaniel Kee <dkee@udel.edu>

Hello Dylan, yes | know who you are, and you are more than welcome to use those figures in any way you
find them useful. | will be interesting in your findings, that's an interesting problem and I'm not sure it's really
been investigated very deeply.

Ken Gayley

[Quoted text hidden]
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Gaoppsgc!ﬂ% Nathaniel Kee <dkee@udel.edu>

Permission Request for Figure 1 of Owocki and Cranmer 1996
2 messages

Nathaniel Kee <dkee@udel.edu> Tue, Dec 1, 2015 at 1:00 PM
To: Stan Owocki <owocki@bartol.udel.edu>

Dear Stan,

For inclusion in the appendices of my dissertation, | need written permission to reproduce figure 1 of Owocki
and Cranmer 1996. Responding to this e-mail is all that is needed so that | can copy the e-mail exchange into
my appendices.

Best regards,
Dylan

Stan Owocki <owocki@bartol.udel.edu> Tue, Dec 1, 2015 at 1:05 PM
To: Kee Dylan <dkee@udel.edu>

> 0On Dec 1, 2015, at 1:00 PM, Nathaniel Kee <dkee@udel.edu=> wrote:
>

> Dear Stan,

>

= For inclusion in the appendices of my dissertation, | need written permission to reproduce figure 1 of
Owocki and Cranmer 1996. Responding to this e-mail is all that is needed so that | can copy the e-mail
exchange into my appendices.

Dylan,

You have my permission to reproduce this figure, and indeed any other figures taken from papers on which |
am a co-author.

Stan Owocki

> Best regards,
= Dylan
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aoppsg@l;]% Nathaniel Kee <dkee@udel.edu>

Permission Request for Figure 1 of Rivinius et al. 2013

2 messages

Nathaniel Kee <dkee@udel.edu= Tue, Dec 1, 2015 at 12:53 PM
To: Rivi Nomad <triviniu@eso.org>

Dr. Rivinius,

| am a doctoral student of Stan Owocki's completing my dissertation on Radiative Ablation of Disks Around
Massive Stars. | would like to include figure 1 of Rivinius et al. 2013 (The Astronomy and Astrophysics
Review, November 2013, 21:69) in order to show observations of double peaked emission lines from
Classical Be stars as a function of viewing angle. Would | be able to obtain your permission for use of this
figure?

Best Regards,
Dylan Kee

Thomas Rivinius <triviniu@eso.org> Tue, Dec 1, 2015 at 1:08 PM
Reply-To: triviniu@eso.org
To: Nathaniel Kee <dkee@udel.edu>

Man, Dylan,
don't be so formal, we've met often enough. Sure, feel free to use it.
Btw., Dietrich Baade is just about to submit a paper in which he references arXiv:1412.8511
Will you write that up for a refereed work at some point?
Cheers,
Rivi

[Qucted text hidden]

Thomas Rivinius
ESO Paranal Science Support Astronomer
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G‘a)ppsg(!_ﬂ% Nathaniel Kee <dkee@udel.edu>

Permission Request for Figure 1 of Carciofi et al. 2012
2 messages

Nathaniel Kee <dkee@udel.edu> Wed, Nov 25, 2015 at 2:01 PM
To: carciofi@astro.iag.usp.br

Dr. Carciofi,

| am a doctoral student of Stan Owocki's completing my dissertation on Radiative Ablation of Disks Around
Massive Stars. | would like to include figure 1 of Carciofi et al. 2012 (The Astrophysical Joumnal Letters,
744:L15, 2012 January 1) in order to show your inferred alpha and 170 day disk decay time. Would | be able
to obtain your permission for use of this figure?

Best Regards,
Dylan Kee

Alex Carciofi <alexcarciofi@gmail.com=> Thu, Nov 26, 2015 at 6:20 AM
Reply-To: carciofi@usp.br

To: Nathaniel Kee <dkee@udel.edu>

Cc: carciofi@astro.iag.usp.br

Dear Dylan,
Sure, please fell free to use the figure. The eps is attached.

However, please be advised that the value of alpha | obtained in that work was overestimated. A PhD student
of mine is working with 28 CMa and we found a physical effect that was ignored in my study but is extremely
important for the determination of alpha. With this effect included, our current estimate is an alpha of 0.4.

We are quite advanced in drafting the paper.
Best regards,

Alex
[Quoted text hidden]
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