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Abstract
This study uses a spatial Durbin error model (SDEM) approach to analyze adoption 
trends for residential energy-efficiency measures (EEMs) in New York state. Model 
results are based on socioeconomic, building, and house-hold demographic characteristics 
during the 2012–2016 period. Our study’s results confirm that a positive correlation exists 
between EEM uptake and multifamily buildings, gas-heated homes, education effects, and 
spatial spil-lover effects among neighboring ZIP codes. The results show that building 
attributes hold a relatively high explanatory power over EEM adoption compared with 
socioeconomic characteristics. Our results show that energy-efficiency policies can 
create positive and significant neighborly effects in promoting EEM adoption. The 
developed SDEM methodological framework provides useful insights in identifying energy-
efficiency opportu-nities that exist in rural, suburban, and urban communities, highlighting 
the need to review policy incentives periodically to address underlying changes in the built 
environment and spatial disparities in energy-efficiency investments.
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Introduction
Climate change and the confluence of forecasted long-term increases in fossil fuel prices with 
greater opportunities for deploying low-carbon technologies have made the expeditious 
transition to an energy-efficient future an at tractive ch oice (G raziano, F iaschetti, an d At 
kinson-Palombo 2019; Kanger et al. 2019; Nyangon 2021). New investments in cities have 
focused on designing smart, polycentric energy frameworks (Nyangon 2021), including 
transportation-as-a-service and associated business model innovations that promote electric vehicles 
(EVs), car-sharing, ride-sharing, and using the urban fabric for “solar city” development (Byrne 
and Taminiau 2018). In the residential building sector, which consumes nearly 39% of electricity 
in the United States (EIA 2020), growth in energy retrofits and r apid a doption o f energy-
efficient household app liances are ris ing to red uce energy demand and achieve climate-related 
goals (Douthat et al. 2020). However, most studies to date that have considered links between 
climate change, energy prices, and low-carbon technologies have focused on either 
adoption rates based on expectations of future electricity demand changes, or socially 
incremental choices that are driving the energy transition process, often in terms of consumer 
behavior or energy consumption patterns (Heijden 2017). An overlooked critical area is how 
and where these technologies diffuse across s pace b ased o n t he p erformance o f e nergy 
efficiency (EE) policies or complementarities across policy mixes to achieve direct, measurable benefits 
(Trencher and van der Heijden 2019). Spatial sensitivity is an essential variable in analyzing 
technology- or sector- 
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specific EE policies to promote efficient buildings. The National Renewable Energy Laboratory, under 
the U.S. Department of Energy’s Office of Energy Efficiency & Renewable Energy, agrees with this view 
(Wilson et al. 2017). To address the neglected role of spatial sensitivity, we developed a model that 
includes standard explanatory variables – including socioeconomic characteristics, building attributes, 
dwellings’ characteristics, and households’ attitudes and behavior (Bertoldi and Mosconi 2020; 
Douthat et al. 2020) – that influence the adoption and diffusion of these energy-efficiency measures 
(EEMs) in existing households (Spyridaki et al. 2020).

For New York state, which has the fourth-highest share of residential electricity consumption in the 
United States – nearly 3.9%, behind only Texas (10.8%), California (6.9), and Florida (6.3%) – 
identifying local spatial conditions’ influence on the uptake of energy-efficient technologies by home-
owners can support the diffusion of EEMs, particularly in lower-income households (i.e., technology 
diffusion) (EIA 2020). Applying a spatial perspective approach provides geographically rich insights 
for understanding changing socio-technical factors and the preferences for technology adoption that 
underlie these shifts. Whether electricity-powered appliances, space heating, and cooling appliances, 
or domestic water heaters, innovation and investment in energy-efficient technologies reduce energy 
use and carbon emissions. Energy consumption differs across building stocks and locations, and 
accounting for these geographical variations is vital to formulating effective EE policies to improve 
building energy performance measurement (Papadopoulos and Kontokosta 2019) and scale up deep 
energy retrofits that holistically address a combination of heating, cooling, and the building envelope.

Herein lies the growing strategic challenge for utility program facilitators and policymakers: Why 
does EEM adoption happen in one location or dwelling type and not another? Do geographical or local 
differences in socioeconomic and building characteristics matter in explaining the scale, pace, and 
outcome of EE diffusion? If so, which ones exert the most explanatory power? Pang et al. (2020), 
Wilson et al. (2019), Nyangon (2017), and Granade et al. (2009) go further by examining EE 
opportunities’ huge, untapped potential in the residential sector, as well as available policy support 
programs, to foster the uptake of EE technologies. Such measures include regulations such as 
minimum energy performance requirements, building codes and standards, information programs 
(e.g., energy labeling), and financial support for EE programs, such as subsidies, tax rebates for 
replacing less-efficient appliances, etc. (Douthat et al. 2020; Safarzadeh and Rasti-Barzoki 2019; 
Spyridaki et al. 2020). Characterizing the geographical elements of the scale, pace, and patterns in 
the adoption of these EEMs requires a detailed spatial accounting of the building envelope and the 
dwellings’ characteristics. For example, using spatially distributed energy demand information, home-
owners can access the right financial and business models for EE retrofits, leading to improved project 
bankability (i.e., the ability to access project financing from banking institutions) and EE investment 
decisions. Statistically, decomposing the ZIP-code-level dataset to demonstrate EE programs’ adop-
tion trends is one of the best methods with which to create and evaluate a spatially resolved set of 
variables and encourage energy consumers to double down on all EEMs’ adoption, diffusion, and 
innovation progress.

However, considering the aforementioned aspects, EE upgrades of conventional appliances and 
existing households through adoption of energy-efficient systems not only result in reduced energy 
demand, but also might elicit undesirable effects, thereby reducing the benefits from the efficiency 
improvements (Safarzadeh and Rasti-Barzoki 2019). Furthermore, these effects could elicit “rebound 
effects,” (Seebauer 2018). Typically, the energy rebound encourages homeowners to use more energy and 
generally is divided into direct and indirect effects. Furthermore, these effects can be investigated from 
the consumer side (i.e., technological efficiency improvements associated with new electrical appliances) 
or producer side (i.e., the backfire or “Jevons paradox” effect resulting from technological efficiency 
improvements made to production processes) (Sorrell 2009). The energy rebound, as a behavioral 
reaction discussed in this article, considers the consumer side of household energy consumption.

This study uses a spatial Durbin error model (SDEM) approach to test how local residential 
EE-relevant indicators – including households’ socioeconomic characteristics, buildings’ charac-
teristics, households’ attitudes, consumer behavior, and knowledge about consumers’ energy use 
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and spending that influence the adoption of EE technologies – can help policymakers understand 
the spatial diffusion of EEMs, energy demand, and rebound effects. Our study analyzes geogra-
phical variations in EE development in New York state during the 2012–2016 period to 
determine which factors exerted the most impact on spatial diffusion of New York’s Energy 
Efficiency Portfolio Standard (EEPS) policy. We developed a spatial regression model to analyze 
the identified indicators to understand their statistical significance in predicting observed spatial 
variation in EEPS policy diffusion. In doing so, this study aims to complement other results that 
demonstrate how spatial processes influence energy-efficiency policy performance. The article is 
organized as follows: Section 2 introduces EE policies’ spatial proximity perspectives and con-
trasts them with other mainstream approaches. Section 3 reviews the EEPS policy directive and 
discusses in detail the methodology and performance indicators employed in this spatial analysis. 
Section 4 presents the study’s results and a discussion of our key findings. Finally, Section 5 
offers a perspective on the policy implications and significance of spatial heterogeneity in 
relation to energy demand and energy rebound in relation to EEM diffusion.

2. Background and literature review
2.1. Spatial perspectives on energy-efficiency policy implementation

This article draws from extensive extant literature on adoption and diffusion of EEMs and EE 
technologies that consider energy policies and just transitions (Day, Walker, and Simcock 2016; 
Lele et al. 2019; Meyers and Hu 2001); interlinkages between building regulations, economic struc-
tures, and business model innovations (Dormady et al. 2019; Nyangon and Byrne 2018; Zabaloy, 
Recalde, and Guzowski 2019); and minimum energy performance standards and building codes 
(Chung 2011; Geels et al. 2018; Li et al. 2019; Papadopoulos, Bonczak, and Kontokosta 2018; Zou, 
Wagle, and Alam 2019). However, this is one of only a few papers that accounts for spatial dimensions 
at the ZIP-code level from the perspective of EEM adoption and EE policy diffusion. One of the earliest 
reviews of building energy performance found that benchmarking results can be used to foster uptake 
of EEM opportunities (Chung 2011). A more recent study that examined impacts from information 
asymmetry found that lack of information, as well as households’ knowledge about energy consump-
tion and adoption decisions, can limit uptake of EEMs (Liu, Yao, and Wei 2019). However, what these 
studies lack is geographically resolved ZIP-code-level data on EEM adoption that captures impacts 
from socioeconomic characteristics and the built environment. Graziano, Fiaschetti, and Atkinson- 
Palombo (2019) noted that the lack of a rich data set that accounts for the built environment’s impact 
at multiple levels is a recurring problem in the EE marketplace, including the building of energy 
management and automation systems.

More recently, attempts to account for geographical insights relevant to EE technology 
diffusion and EEM adoption in the residential sector have focused on identifying and quantifying 
sustainability metrics on local conditions. Using statistically decomposed ZIP-code-level electri-
city and fuel consumption data from the New York City Mayor’s Office of Long-Term Planning 
and Sustainability, Howard et al. (2012) estimated end-use energy consumption in New York 
City. However, this study did not demonstrate how trends in energy consumption can be linked 
to specific EEM or EE retrofit options and physical processes in a residential building. Bridge 
et al. (2013) showed that energy infrastructure systems are situated spatially (e.g., space heaters 
and coolers, domestic water heaters, and electricity-powered applications are embedded in a 
particular geographical setting). Thus, geographical processes (e.g., landscape, location, spatial 
differentiation, scaling, spatial embeddedness, and territoriality) can impact ongoing sustainabil-
ity transition trajectories. Graziano and Gillingham (2015) showed that solar photovoltaic (PV) 
technologies’ diffusion patterns are mediated by spatial and socioeconomic factors in the built 
environment, with the spatial neighborly effect from nearby systems diminishing with distance 
and time.
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The benefits from explicitly (and spatially) accounting for the built environment and its different 
asset classes are underscored further by Urquizo, Calderón, and James (2018). Using more recent 
results, they showed that district heating (decentralized energy supply) and group heating networks 
make a considerable impact on spatial patterns of energy consumption. Common benefits from a 
spatially detailed approach include appropriately capturing and comparing local contexts, as well as 
linking observed trends in EEM patterns to specific retrofit options and physical processes in the 
building. For example, spatial differences reflect geographical variations in energy systems – such as 
energy generation, distribution, and demand patterns – as well as forms of EE upgrades and 
technologies. Papadopoulos and Kontokosta (2019), Papadopoulos, Bonczak, and Kontokosta 
(2018), and Graziano, Fiaschetti, and Atkinson-Palombo (2019) offered a similar perspective, noting 
that due to the built environment’s spatial heterogeneity and demographic information, authorities 
should prioritize using local data on building characteristics and energy consumption patterns to 
evaluate unique local conditions with more spatially detailed outputs.

Additionally, by using artificial neural network algorithms to model geographical variations in 
occupancy patterns and habitual energy-use behavior, Wang et al. (2017) showed that spatially 
detailed outputs foster an accurate and more granular determination of occupancy detection in 
building energy management and adoption of EEM technologies. Policymakers designing policy 
support schemes to foster uptake of smart EE features could use insights from these detailed trends 
to upgrade local energy building codes and other regulations governing the built environment. 
However, analysis of the literature reveals some limitations. First, to date, most of these research 
efforts often are “geographically coarse” (Wilson et al. 2019) because they use data at an aggregated, 
large-area level, either on a national or regional scale, and few models have been employed to study 
ZIP-code-level data (Nemet et al. 2017). Considering that these studies often inform policymaking 
efforts, this limitation could lead to sub-optimal investments, as differences in building types between 
rural, suburban, and urban neighborhoods (e.g., electricity use in urban areas), as well as varying 
socioeconomic contexts, exert a large impact on policy diffusion. Second, these studies are based 
primarily on historical energy-savings data (Barbose et al. 2013; Bilgen and Sarıkaya 2016; Wilson et al. 
2019). With recent innovations in EE technologies, policies, markets, and building design continuing 
to reshape the residential building sector, basing future trends in EE growth on only historical energy- 
savings is inherently inadequate and problematic.1 Anderson et al. (2013) investigated opportunities 
for integrating EE technologies and solar PV systems in buildings, and found that as minimum energy 
codes continue to improve for new homes, and residential PV systems “begin to break the 3 USD/kW 
barrier that represents rough parity with the retail cost of residential electricity in many areas of the 
United States,” zero-net energy communities will increase over time nationwide. Achieving this target 
requires bridging the gap between consumer choices and EE investment in research and development 
(R&D) (Michas et al. 2019).

2.2. Factors affecting residential EEMs and energy-saving behaviors

Socioeconomic, demographic, and dwelling characteristics influence residential end-users’ adoption 
of EEMs (Bertoldi and Mosconi 2020; Douthat et al. 2020). Typical classification of these factors 
distinguishes between (1) households’ socioeconomic contexts (e.g., age, employment, education, 
households’ dwellers’ knowledge about their energy spending and use, etc.); (2) building character-
istics (e.g., type, age, tenure, size, etc.) and local environmental conditions (Chokhachian et al. 2020; 
Douthat et al. 2020; Papadopoulos, Bonczak, and Kontokosta 2018; Zabaloy, Recalde, and Guzowski 

1These innovations include urban infrastructure development and land-use planning, EE policy and program design, improvement in 
market and regulatory environment, etc. For example, implementation of city-scale urban sustainability, should prioritize 
innovations targeting low-income households in driving EE investments, such as modal shifts that promote cost-effective EE 
technologies, on-site distributed electricity generation, subsidies supporting EE upgrades, improving building codes and standards, 
EE business model innovation, and strengthening partnership and collaboration with the building construction industry (Bertoldi 
and Mosconi 2020; Taminiau and Byrne 2020).
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2019); (3) economic factors (e.g., high energy prices or constrained energy supply) (Matosović and 
Tomšić 2018; Nyangon, Byrne, and Taminiau 2017; Tsemekidi Tzeiranaki et al. 2019); and (4) policy 
and program design parameters (e.g., taxes and subsidies) (Seebauer 2018; Trencher and van der 
Heijden 2019).

Typical tools for promoting residential EE upgrades through the diffusion of EEMs include 
household equipment and appliance configurations, taxation, regulations, monetary incentive 
schemes, and information and education programs to raise awareness (Bertoldi and Mosconi 2020; 
Spyridaki et al. 2020; Trencher and van der Heijden 2019). Besides occupants’ age and family profiles, 
living arrangements – such as single-family and/or married family with or without children – and 
household size variables often are considered. Katircioğlu (2014) assessed the relationship between 
energy consumption and household education levels, and found that awareness of energy use and 
knowledge about energy-saving opportunities were higher among college-educated households. 
Lundberg, Tang, and Attari (2019) reported similar findings by showing that support for EE standards 
and other factors – such as information awareness about a household’s spending and energy con-
sumption, building-labeling schemes, and energy audits and assessments – were correlated positively 
to education level.

The American Community Survey ACS (2020) and the American Housing Survey (AHS) classify 
dwelling types as detached, attached, duplex, or multifamily building stock. Seebauer (2018) found 
that those living in low-income and energy-poor single-family detached or terraced houses were more 
liable to practice energy-efficiency rebound behaviors, noting that habitual heating practices increase 
energy rebound. Papadopoulos, Bonczak, and Kontokosta (2018) similarly analyzed buildings with 
similar temporal energy performance patterns in New York City and found that large multifamily 
buildings had higher energy-use intensity, while those with higher unit density showed improved 
performance over time. However, residential buildings using fuel oil boilers had increasing energy-use 
intensity over time, further highlighting the education effect and need to address the inertia from 
deferred maintenance and replacement delays. With respect to tenure status and dwelling size, several 
features, including ownership patterns (e.g., owned outright and owned with mortgage status) and 
occupancy-related parameters (e.g., number of rooms, number of residents, and number of bedrooms) 
are employed often to evaluate the link between building characteristics and energy consumption, 
respectively (Chokhachian et al. 2020; Matosović and Tomšić 2018; Seebauer, Friesenecker, and 
Eisfeld 2019). Urquizo, Calderón, and James (2018) found that a dwelling characteristic, such as 
tenure, correlates strongly with the type of heating system used, with owner-occupied and social 
housing stock being the predominant tenures. Assessment of dwelling tenure typically focusses on 
market failures in EE investments, such as fragmented market structure, and split-incentive problems 
between a building’s owner (who invests in an energy-efficient upgrade) and a tenant (who benefits 
from lower energy costs). Bednar, Reames, and Keoleian (2017) noted a statistically significant 
correlation between dwelling tenure and heating energy consumption. However, heating energy 
consumption was correlated negatively with the number of energy-burdened households experiencing 
economic poverty (Bohr and McCreery 2019). The number of bedrooms generally has a significant 
positive correlation with energy consumption and increases monotonically (Douthat et al. 2020), 
indicating that larger single-family households tend to consume more electricity. Moreover, the 
number of occupants is related to the number of rooms and, thus, square feet and energy consumption 
rate.

Besides socioeconomic and building characteristics, households’ demographics (e.g., income levels, 
energy rates and policy factors (e.g., energy tax credits and subsidies) also are considered typically 
because (1) low energy prices may impact EE improvement rates negatively, and (2) higher-income 
households are associated with the propensity to invest in EEMs (Spyridaki et al. 2020). This 
phenomenon refers to “demand effect,” as high-income households tend to have higher energy 
consumption and are more likely to invest in high-cost EE retrofit measures. Zabaloy, Recalde, and 
Guzowski (2019) found that EEM adoption varies regionally across residential households because it 
depends on income levels, energy prices, building characteristics, location, weather, energy access, 
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energy resources’ availability (e.g., natural gas, electric, oil, and kerosene central heating), equipment 
characteristics, and existing EE policies. Similarly, according to Fell, Li, and Paul (2014) personal 
incomes and residential electricity demand display relatively strong correlation coefficients, but price 
elasticity varies across different U.S. regions, with the Northeast being the least price-elastic region and 
the South displaying the most price elasticity. In contrast, a regression analysis by Yalcintas and Kaya 
(2017) found that electricity demand in Hawaii increased while electricity prices rose, provided that 
personal income grew at the same rate or higher.

2.3. The energy-efficiency portfolio standard

To examine spatial variability in EEM adoption, we selected the New York Energy Efficiency Portfolio 
Standard (EEPS) as a case study. EEPS energy-efficiency programs only recently have been adopted in the 
U.S., and New York, through the New York Public Service Commission (NYPSC), was one of the first states 
to implement it in June 2008 (NYPSC 2008). Our model (described in more detail below) shows how we 
can measure the spatial factors that influence statewide EEM diffusion and adoption. The EEPS pilot 
program’s objective was to reduce the state’s energy consumption by 15% by the year 2015, its end date (i.e., 
“15 x 15”), and specified both electric and natural gas consumption. The June 2008 order also required the 
state’s utilities, the New York State Energy Research and Development Authority (NYSERDA), and other 
interested parties to submit all their energy-efficiency programs to the NYPSC for approval.

The EEPS’ performance metrics increased across all electric and gas savings categories except for 
total net gas savings for electric programs, which fell sharply, nearly 109% from 2012 to 2013 (Table 1). 
The EEPS program addresses several foundational issues, including creating a three-year cycle target 
for energy savings and forecasting potential EE reductions for achieving the 15 × 15 directive. It also 
fast-tracks approval of EE programs for immediate implementation and directs investor-owned 
utilities (IOUs) in New York to develop a mechanism for collecting system benefits charges (SBCs)2 

from ratepayers to fund EEPS programs (NYPSC 2008). Berg et al. (2018) discussed the vision for New 
York’s EE and clean energy development initiatives to include: (a) EmPOWER New York, a program 
administered by NYSERDA to support EE upgrades for low-income households (such as energy audits 
and replacing old appliances with newer and more efficient ones); (b) investing nearly 234.5 USD 
million from the Clean Energy Fund (CEF) in residential retrofits and low-income EE programs over 
the first three years of the CEF; and (c) reducing the energy burden for low-income households to no 
more than approximately 6% of household income. The historical and future efficiency savings in New 
York and EEPS progress, as a share of the 2015 target, are shown in Figure 1.

Table 1. EEPS cumulative electricity and gas savings and expenditures in New York, 2012–2016.

Year

Total electric savings acquired and 
committed

Total net gas savings acquired and 
committed Total expenditures and encumbrances

for electric pro-
grams (TWh)

for gas programs 
(Billion BTU)

for Electric 
Programs (TWh)

for gas programs 
(Billion BTU)

for electric programs 
(Billion US$)

for gas programs 
(Billion US$)

2012a 4,226 11 663 8,124 0.829 0.252
2013b 5,504 16 (57) 12,997 0.827 0.295
2014 c 7,083 26 (620) 17,594 1.467 0.558
2015d 8,110 32 (1,312) 20,324 1.716 0.670
2016e 8,119 33 (989) 19,886 1.716 0.677

Note: a12 gas programs reported ancillary electric savings while 14 electric programs reported ancillary gas savings in 2012; b13 gas 
programs reported ancillary electric savings while 14 electric programs reported ancillary gas savings in 2013; c, d, e14 gas programs 
reported ancillary electric savings while 15 electric programs reported ancillary gas savings in 2014, 2015, and 2016, respectively. 
All the reports did not include evaluation for the expenditures and encumbrances. Data Source: (NYPSC 2020b).

2The New York state’s SBC programs are administered by NYSERDA, and collectively fall under New York Energy $martSM public 
benefits program. The New York Energy $martSM programs support an accelerated market penetration of energy-efficient 
technologies.
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The research presented here focusses on EEM adoption during the EEPS policy implementation 
period from 2012 to 2016. Instead of renewing the targets when EEPS ended in 2015, NYPSC published a 
new framework under New York’s Reforming Energy Vision (REV), which supported utility EE 
programs under EEPS to deliver more transformational EEM programs, with an emphasis on low- 
and moderate-income households. For this reason, this research covers utility EE programs under the 
EEPS 2008–2015 pilot period, which focused on “acquiring energy savings as a resource,” and the first 
year under REV in 2016, which concentrated on “market transformation of energy-efficient” opportu-
nities (Woolf et al. 2016). The implementation process of EEPS policy comprises four stages, shown in 
Table 2. This process addresses market barriers to EE development, such as access to capital, information 
asymmetry, high transaction costs, and institutional and regulatory impediments.

The NYPSC is required to establish a framework for conducting technical assessments and 
estimates of costs and energy-savings opportunities. For example, following the evaluation, the 
program administrator selects a balanced energy-efficiency portfolio for approval based on a set of 
measurement and verification metrics that result in the greatest savings during the relevant period. 
Expectations are that higher transparency around the approval process––anchored on the merits of 
the EE programs, not the proposing entity’s identity––might spur investments in retrofitting and 
stimulate market demand for EEMs. In other words, energy auditing and retro-commissioning 

Figure 1. (a) Trends in New York energy-efficiency savings: historical targets and staff forecast. (b) EEPS progress as a share of the 
2015 target. Sources: Woolf et al. (2016); Morris and Stutt (2013)

Table 2. A programmatic perspective of the EEPS process.

1. Energy Efficiency Portfolio Standard Assessment
EEPS allocates (initial) energy efficiency target to jurisdictional service territories based upon sales. The EEM deemed most likely to 

be successful in individual service territories are assessed. NYPSC assesses if certain service territories can benefit more from the 
EE opportunities and, if so, the initial territorial assignments are altered to reflect those benefits.
�
2. Approval and Recommendation of EE Programs by NYPSC
NYPSC approves portfolio of proposed utility, NYSERDA, and other energy efficiency programs for each service territory based 

upon its assessment of each proposal measured by the measurement and verification protocol adopted by the Commission. The 
selected programs include “fast-track” Programs.
�
3. Energy Efficiency Portfolio Standard Selection Plan
For each program, EEPS efficiency targets are scrutinized based on: the total resource cost test’s benefit-cost ratio, electric rate 

impact, electric rate impact per MWh saved, peak coincidence factor of MWh saved in 2015, number of participants as a 
percentage of the number of customers in the class as of 2015, and gas rate impact, gas rate impact per MBTU saved (levelized 
over the years through 2015).

4. Installation and Repayment
Certified utility installers undertake energy efficiency retrofits on a customer’s premises and the customer pays its share of costs for 

the improvements through its utility bills, which are no higher than before the installation since the energy savings offset the 
capital costs. EmPower NY targets payment-troubled customers and help them to pay their utility bills.

Accepted Manuscript 
Version of record at: https://doi.org/10.1080/15567249.2020.1868619



requirements are handled separately from installation, and program administrators do not influence 
funding allocations for energy-efficiency programs.

Our research uses EEPS assessments as a proxy for EEM adoption, i.e., initial EEPS savings 
achieved from the program’s October 2008 inception through year-end 2011 (“EEPS 1”) and 
2012–2015 (“EEPS II”). Morris and Stutt (2012) evaluated EEPS 1 performance based on projected 
benefits that would be realized from its successful implementation and found that EEM adoption was 
slower than expected (see Table 3). Administrative delays in approval of EE proposals, competition for 
EE opportunities in the same market segments between NYSERDA and the IOUs, and a flawed 
approach to cost-effectiveness screening of EE projects contributed to this shortfall. Using data from 
the NYPSC’s EEPS Electric Performance Summary website, Woolf et al. (2016) estimated the cost of 
electricity savings for the EEPS II programs at approximately 3.4 cents/kWh (i.e., levelized total cost of 
3.4 cents per lifetime kWh saved). During the lifetime of the EEPS, nearly 9,870 assessments (electric 
and natural gas) were completed in New York state, covering 7,226,693 commercial, multifamily, and 
residential sectors. This equates to roughly 88% of the total building stock over the study period. 
Figure 2 shows the levelized cost of EE programs for different market segments and customer types.

Table 3. Estimated projected and actual electric savings and foregone benefits not realized by missing EEPS targets.

Benefits

Projected savings and 
associated benefits of EEPS 

1
Actual savings and asso-
ciated benefits of EEPS 1

Lost energy-sav-
ing 

opportunities

Electric savings 3,424,379 MWh 2,132,093 MWh 1,292,286 MWh
Directly avoided energy payments $2.914 billion $1.814 billion $1.1 billion
Demand-Reduction-Induced Price Effect Savings 

(DRIPE) due to decreased statewide electricity 
demand

$897 million $558 million $338 million

Avoided capacity charges $1.345 billion $837 million $508 million
Total energy savings ($) $5.16 billion $3.21 billion $1.95 Billion
Jobs created 16,586 10,327 6,260

Data sources: NYPSC (2020a); Woolf et al. (2016)

Figure 2. Levelized costs (c/kWh) of efficiency programs. Data source: (Woolf et al. 2016).
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3. Methods and data
3.1. Hypothesis and rationale f or spatial dif f usion of  energy-ef f iciency variables

This study evaluates the spatial patterns of residential EEM diffusion and adoption in New York, 
focusing on five explanatory parameters: socioeconomic characteristics; building attributes and 
differences in their explanatory power of energy-saving opportunities; education effects; building 
heating types; and spatial spillover effects.

Our core hypothesis concerns:

● Spatial spillover effects: The diffusion of EEPS policy (and EEM adoption) in New York exhibits
positive effects and “neighborly emulation” factors, implying that the uptake of energy efficiency
retrofits in a particular local ZIP code is associated positively with rates observed in neighboring
ZIP codes after accounting for technologies, policies, economics, socioeconomic contexts, and
building stock.

3.2. Data sources

This article uses a highly geographically resolved, household-level data set from multiple sources. 
EEPS data were obtained from NYPSC and include monthly reports, program sectors (e.g., 
commercial, multifamily, and residential buildings), program types (monthly electricity and 
natural gas consumption), and program status (i.e., open or closed) (NYPSC, 2020a). These data 
were gathered from NYSERDA and major IOUs in New York, including ConEdison, Central 
Hudson Gas & Electric, Cascade Natural Gas, National Fuel, National Grid, New York State 
Electric & Gas, Orange and Rockland Utilities, and Rochester Gas & Electric. This data set covers 
a total of 9,870 EEPS 1 and EEPS II assessments from February 2010 to December 2015. This 
spatially explicit data set covers 1,483 ZIP codes, which equates to approximately 69% of the state’s 
total ZIP codes. We also obtained data from building and socioeconomic variables covering New 
York State ZIP codes (NYSZCs) from the ACS database covering the period from January 2012 to 
December 2016 (ACS 2020; PolicyMap 2020). This data set contains the number of EEPS assess-
ments, socioeconomic characteristics, building and dwelling characteristics, and EEM types, as 
detailed in Table 4. We processed and spatially joined this data set in PolicyMap to create a geo- 
referenced shapefile that contains detailed, geographically rich, ZIP-code-level energy consump-
tion data (PolicyMap 2020).

3.3. Spatial analysis

Typically, the literature acknowledges three main methods that can be applied to examine energy 
consumption and EEM adoption patterns in buildings: regression analysis; neural networks; and 
decision trees (Tso and Yau 2007). However, while neural networks and decision trees perform 
better in different local settings, the three methods are not significantly different from each 
other. Thus, we used a multiple linear regression (MLR) approach, as applied in Howard et al. 
(2012), to study the uptake of energy-efficiency upgrades considered in this article. The 
Residential Energy Consumption Survey (RECS) has identified fuel types and end-uses, structural 
and geographic characteristics, appliances, electronics, lighting, space heating, air conditioning, 
water heating, household demographics, building unit size, and household energy insecurity as 
making a large impact on energy consumption (EIA 2020). In addition, we used various software 
tools to produce our statistical outputs, including Tableau for data visualization, GeoDa for 
analyzing spatial variance and autocorrelation and spatial weight construction (Anselin 1995), 
and the GeoDa Regress functionality (Anselin, Syabri, and Kho 2006) for spatial regression 
analysis.
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Table 4. Descriptive statistics of variables related to socioeconomic, education, income, building, and energy-efficiency character-
istics employed in our analysis (n = 1483).

Variables | EEMs Adoptions Mean S.D. Min. Max.

EEPS 1 and EEPS II (per 1000 household)a 4.87 6.87 0.038 42.78

Socioeconomic characteristics
Family with children (%)b 40.27 9.13 7.87 95.69
Family without children (%)b 59.73 9.13 4.31 92.13
Married family with children (%)b 27.47 8.97 2.25 88.79
Single-headed family with children (%)b 12.80 7.81 0.77 54.17
Single female-headed family with children (%)b 9.21 6.77 0.00 48.82
3-person households (%)b 15.79 4.94 1.95 60.49
4-or-more person households (%)b 22.18 8.55 0.66 61.96

Education level
No qualifications 25 years and over (%)b 3.97 3.79 0.00 28.11
High school diploma 25 years and over (%)b 89.11 6.80 51.17 100.00
Associate’s degree 25 years and over (%)b 27.99 6.86 3.57 60.28
Bachelor’s degree 25 years and over (%)b 16.58 8.24 0.97 53.78
Postgraduate degree 25 years and over (%)b 13.39 9.16 0.36 52.40
Doctorate 25 years and over (%)b 1.29 1.68 0.00 21.97

Energy tax credit
Residential energy tax credit (%)b 1.68 1.39 0.00 5.83

Income level
Median personal income (‘000 $)c 79.30 34.38 20.96 250.00

Economic
Family in poverty (%)c 9.00 7.72 0.00 49.44
Families with single female poverty (%)c 31.92 22.24 0.00 100.00
Families with one parent poverty (%)c 28.06 20.08 0.00 100.00

Building/dwelling characteristics
Detached house (%)c 68.21 23.97 0.00 100.00
Attached house (%)c 3.18 5.51 0.00 73.91
Multifamily house (%)c 17.69 23.71 0.00 100.00
Duplexes (%)c 6.78 8.17 0.00 59.69

Tenure parameters
Owned-outright (%)c 40.89 10.94 0.00 100.00
Number of owned mortgage c 1634.76 2056.79 0.00 15,649.00
Rent cost as percentage of income (%)c 31.22 7.88 10.00 50.00

Dwelling size
Mean number of roomsc 2266.35 4807.62 0.00 32,060.00
Mean number of homeowners c 2606.67 3135.11 0.00 23,008.00
Mean number of bedrooms (3 bd and more)c 475.33 940.22 0.00 7366.00

Energy efficiency heating types
Gas central heating (%)a 37.93 30.64 0.00 100.00
Electric central heating (%)a 10.38 9.48 0.00 83.95
Oil and kerosene central heating (%)c 30.86 22.62 0.00 95.13
Households using other energy heating sourcesc 160.67 183.94 0.00 2884.00
No central heating (%)c 0.42 0.79 0.00 7.04

aNYPSC (2020a) 
bACS (2020) 
cPolicyMap (2020)

3.4. Spatial weights and autocorrelation

To evaluate the geographical patterns of EEM uptake distribution and statistically model their relationship 
to the underlying data sets, we applied a three-step spatial analysis. First, we examined spatial heterogeneity 
in EEPS adoption in New York by creating a series of choropleth maps to assess spatial resolution of EEPS 
uptake across NYSZCs between January 2012 and December 2015 (the full monthly data for EEPS 1 and 
EEPS 11 implementation periods) and 2016 – the first full year under the REV process. Following Haining 
(2010), we specified a spatial weight matrix to classify the NYSZCs (georeferenced data) based on their 
degree of connectivity with one another. Equation (1) shows the structural form of the standardized local 
spatial weight matrix, W, in which the elements Wij of the matrix are the spatial weights. In addition, using 
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the first-order queen contiguity approach, we defined the geographical units as neighbors (i.e., neighboring 
ZIP codes that share a point or line boundary) in the manner specified by Yang and Jensen (2015). Using 
the results from this stage, we calculated a spatially lagged variable of EEPS adoption across the 1,483 
NYSZCs: 

W ¼

W11 W12 . . . W1n
W21 W22 . . . W2n

..

. ..
. . .

. ..
.

Wn1 Wn2 . . . Wnn

2

6
6
6
4

3

7
7
7
5
¼Wij : i; j ¼ 1; . . . ; n 

Wij ¼
1; if spatial unit j and i are neighbors

0; if spatial unit j and i are not neighbors

�

(1) 

We then applied georeferenced spatial analysis, often referred to as spatial autocorrelation analysis, to 
analyze neighborly relationships between the observed values of various data sets across NYSZCs 
(Geels 2012; Getis and Ord 1992). This type of analysis is categorized by methods that focus on global 
or local effects. The local context investigates spatial autocorrelation for singular geographical units, 
while the global perspective considers all geographical units within a given region. To depict local and 
global locations of EEPS uptake clusters clearly, we applied two well-known spatial techniques: 
Anselin’s cluster and outlier analysis, and an optimized Getis-Ord method (Anselin 1995; Getis and 
Ord 1992; Ord and Getis 1995). These methods have found extensive applications in various fields, 
e.g., evaluating distributed solar PV adoption (Graziano and Gillingham 2015), electric vehicles’
demand (Morton et al. 2018), distribution of urban heat island effects (Shaker et al. 2019), and
adoption of building EE policies (Kontokosta 2011). Having summarized the spatial structure in a
spatial weight matrix, we used Moran’s I to define the global spatial autocorrelation (Moran 1948).

The structural form of Moran’s I is summarized in Equation (2), in which n is the number of points 
or spatial units, x is the observed values of the variable of interest (e.g., EEPS uptake per 1,000 
households) in geographical units i and j, �x is the mean of x, and wij is the spatial weight describing the 
adjacency, or distance, between the i-th and j-th point: 

I ¼
n

Pn
i¼1
Pn

j¼1 wij

! Pn
i¼1
Pn

j¼1 wij xi � �xÞ xj � �x
� ��

Pn
i¼j ðxi � �xÞ2

 !

(2) 

When there is no spatial correlation, the expected value of Moran’s I is given as 

E Ið Þ ¼
1

n � 1
(3) 

The significance of Moran’s I can be determined by calculating the variance of I and comparing the 
statistic with the standard normal distribution. 

Z ¼
I � E Ið Þ
Var Ið Þ

(4) 

Assuming that the observed distribution of points is just one of the many possible patterns of n points, 
the variable is expressed as 

var Ið Þ ¼
nS4 � S3S5

n � 1ð Þ n � 2ð Þ n � 3ð Þ ð
Pn

i¼1
Pn

j¼1 wijÞ
2

!

(5) 

in which 
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In practice, Z � 2:0 or Z � � 2:0 (p-values � 0.05) indicates significant spatial autocorrelation.
Following Anselin (1995), we developed local indicators of spatial association (LISA) by decomposing 

global statistics (e.g., Moran’s I) in Equation (2) to create local Moran’s I, which identifies the occurrence of 
local patterns. LISAs are useful in identifying spatial regimes, which may indicate the presence of spatial 
heterogeneity. They also can be applied to identify spatial clusters of values of a variable in each 
geographical area. We also examined the relationships between EEPS and EEM adoption, socioeconomic 
characteristics, and building stock. Finally, we specified the MLR models. The natural logarithms from both 
the dependent and explanatory variables were calculated for each MLR. For the final analysis, we specified 
an ordinary least squares (OLS) regression model as follows: 

EEPSuptake ¼ αþ β1x1 þ β2x2 þ ε (6) 

For the uptake of EEMs and EEPS for a given ZIP code, α is a constant factor, β1 are the coefficients 
associated with socioeconomic variables, x1 are the observations of socioeconomic variables, β2 are the 
coefficients associated with the building’s explanatory variables, x2 are the observations of building 
explanatory variables, and ε is the model residual. To obtain a more robust estimation, we eliminated 
the NYSZCs with incomplete data sets.

3.5. Spatial regression

To account for local or spatial spillover effects from neighboring NYSZCs, we introduced an endo-
genous spatial interaction effect by integrating spatially lagged variables into Equation (6) (Lesage and 
Pace 2009). The endogenous spatial interaction effect allows for examination of whether EEPS and 
EEM adoption in each ZIP code can be associated with the uptake of energy-efficiency measures 
observed in a neighboring ZIP code (Brännström, Trolldal, and Menke 2016). The estimated spatial 
model is reported in Equation (7): 

EEPSuake ¼ αþ βxþ ρWy þ θWx þ ε (7) 

in which α is a constant factor, β is the coefficient for the explanatory variables, x is the observation of 
the explanatory variables, ρ represents a spatial interaction coefficient for the spatially lagged depen-
dent variable, Wy represents observations of the spatially lagged dependent variable, Wx is a vector set 
of observations of the spatially lagged explanatory variables, θ is a vector of coefficients of the spatially 
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lagged model explanatory variables, and ε is the model residual. Finally, although Zhou, Wang, and 
Cadenasso (2017) and Bell and Bockstael (2000) cautioned that spatial autocorrelation analysis may be 
less sensitive to the choice of the neighboring matrix, resulting in spurious inferential findings, few 
studies have attempted to correct the associated errors during parametric tests. Furthermore, this 
problem lies beyond this study’s scope, so we followed the common practice of using spatially lagged 
analysis to examine the correlation between neighboring geographical units.

4. Results and Discussion
4.1. Spatial variation in EEPS adoption

Figure 3 illustrates the spatial dynamics of EEPS adoptions across NYSZCs between January 2012 
and December 2016. A significant degree of geographical variability in EEPS/EEM diffusion was 
observed. The ZIP codes located in major cities contain a relatively high level of EEM adoption. 
Nearly 67% of the ZIP codes display the lowest level of EEM uptake, at 9.1 per 1000 households in 
December 2016. New York City, Buffalo, and Rochester have the highest rate of EEM adoption, at 
36.4–45.5 per 1,000 households. As the implementation of EEPS policy progresses, the ZIP codes 
located in downstate regions (e.g., Hudson Valley, New York City, and Long Island), contain 
relatively higher adoption rates, especially those surrounding some of the large boroughs and 
counties (e.g., Kings, Queens, New York, Bronx, and Richmond) and counties (e.g., Erie, Monroe, 
Westchester, and Onondaga).

Figure 3. Classified choropleth map of EEMs/EEPS uptake per 1000 household across the geographical units (ZIP codes) of New York 
state.
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4.2. Spatial Autocorrelation Analysis

A significant degree of spatial variation in EEPS and EEM uptake is evident in Figure 4, but it is 
difficult to deduce whether this variation is random only by visually inspecting the spatial map. 
Therefore, we conducted further spatial autocorrelation analysis to examine whether EEM adoption 
across the NYSZCs has a degree of spatial dependence. Figure 4’s legend contains five codes for 
corresponding spatial association: pink (not significant); coral pink for high-high; light red (salmon) 
for low-low; vermilion for low-high; and maroon for high-low. High-high means the ZIP codes with 
high EEM adoption rates are clustered with similar areas that also have large EEM uptake values. 
Conversely, low-low means the NYSZCs with low EEM uptake are clustered together. High-low 
indicates ZIP codes with high-EEM adoption that are surrounded by ZIP codes with low EEM uptake. 
Similar descriptions were applied to low-high and high-low codes (i.e., low surrounded by high and 
high surrounded by low, respectively). The high-high areas are mainly in the Central New York, North 
Country, Mohawk Valley, and Capital District regions of New York. A few areas in the Finger Lakes 
and Southern Tier regions also have a clustering tendency with high-EEM diffusion. New York City, 
Buffalo, and Rochester have high-low clustering, i.e., high EEPS adoptions surrounded by neighboring 
ZIP codes with low EEM uptake.

The results from Moran’s I test of global spatial autocorrelation yield 0.658 (p-value < 0.05). This 
signifies that the spatial correlation of EEPS uptake is moderate, i.e., with ZIP codes 269, 168, and 113 
being statistically significant at 0.05, 0.01, and 0.001, respectively. Figure 4 illustrates the LISA analysis 
of EEM uptake clustered in specific territories of New York. Regions highlighted in pink (0.1–9.1 EEM 
adoption) represent clusters of ZIP codes with low EEM uptake (i.e., cold spots). These regions cover a 
large part of the state, suggesting that with relevant policymaking and EE program administration, 
these locations could offer potential energy-saving opportunities in the future. A visual inspection of 
the LISA map illustrates again that regions with the highest levels of EEPS adoption (highlighted in 

Figure 4. LISA of EEMs adoption across ZIP codes from 2012 to 2016.
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Figure 5. Moran’s 1 test – LISA significance map of EEPS adoption across ZIP codes of New York state.

maroon color) – represented by New York City, Buffalo, a nd R ochester –  c ontain a  c luster o f ZIP 
codes with relatively high rates of EEM adoption (see also Figure 5).

4.3. Correlation Analysis

Table 5 presents correlation analyses between EEM adoption and households’ socioeconomic char-
acteristics. We employed Spearman’s rank-order approach and grouped the parameters into two main 
categories: socioeconomic and building stock characteristics. The results indicate a substantial degree 
of correlation, with EEM uptake displaying moderate (coefficient between 0.1 and 0.4) positive 
correlation with three-person family households (rs: 0.10), households with children (rs: 0.24), 25- 
years-and-older family households with a bachelor’s degree (rs: 0.41), median-income family house-
holds (rs: 0.19), and households with a graduate or professional degree (rs: 0.30). A series of less- 
moderate negative correlations also was observed with no-children households (rs: −0.24), high school 
education (rs: −0.079), and those 25 years and older and with associate’s degrees (rs: −0.30). Generally, 
the correlation between socioeconomic factors and the adoption of EE retrofits is inherently weak to 
moderate.

Similarly, Table 6 presents the correlation between EEPS and EEM adoption and building stock 
parameters. Unlike the socioeconomic variables, a higher degree of interaction is observed with 
energy-related building stock, with the correlations between EEM adoption and the building para-
meters showing a moderate-to-strong relationship. In terms of positive correlations, EEM uptake is 
correlated significantly with multifamily households (rs: 0.69), duplexes (rs: 0.42), and homeowners 
with mortgages (rs: 0.94). In addition, a significant positive relationship is identified between uptake of 
energy-saving measures and natural gas central heating (rs: 0.61), electric heating (rs: 0.15), and 
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Table 5. Spearman’s correlation analysis between EEM adoption and socioeconomic parameters.

Variable Coefficient Variable Coefficient

Family with children 0.24** Associate’s degree (≥ 25 years) −0.30**
Family without children −0.24** Bachelor’s degree (≥ 25 years) 0.41**
Married family with children 0.14** Postgraduate degree (≥ 25 years) 0.30*
Single-headed family with children 0.03 Doctorate (≥ 25 years) 0.33**
Single female-headed family with children 0.08** Median personal income 0.19**
3-person households 0.10** Family in poverty 0.084*
4-or-more person households 0.14** Families with single female in poverty 0.002
No qualifications (≥ 25 years) 0.28** Families with one parent in poverty 0.01
High school diploma (≥ 25 years) −0.079**

*: p-value <0.05 
**: p-value <0.01

Table 6. Spearman’s correlation analysis between EEM adoption and building stock.

Building stock parameter Coefficient Building stock parameter Coefficient

Detached house −0.46 Mean number of homeowners 0.94*
Attached house 0.57** Mean number of bedrooms (≥ 2) 0.92*
Multifamily house 0.69** Mean number of bedrooms (≥3) 0.91*
Duplexes 0.42 Gas central heating 0.61
Owned-outright −0.3 Electric central heating 0.15**
No. of owned mortgages 0.94 Oil and kerosene central heating −0.30
Rent cost as % of income 0.15** Households using coal, wood, solar heating 0.26
Mean number of rooms 0.95 No central heating 0.54**

*: p-value <0.05 
**: p-value <0.01

buildings without central heating (rs: 0.54). With respect to negative correlations, energy-efficiency 
diffusion is correlated significantly with detached building stock (rs:−0.46), owned-outright buildings 
(rs:−0.30), and buildings that use oil and kerosene central heating systems (rs:−0.3). The findings 
indicate a stronger degree of explanatory power between EEM uptake and building characteristics 
(dwelling type, building size, heating fuel, etc.) compared with socioeconomic factors (see also 
Table A1).

4.4. Regression analysis

Table 7 presents the results of the benchmark OLS regression model. The dependent and explanatory 
variables employed in the analysis were transformed into their natural logarithm. These variables were 
selected based on the preceding insights and the specific questions outlined in this study. To ensure 
that the chosen variables were unbiased, we conducted a multicollinearity test to exclude redundant 
explanatory variables and only utilized dominant variables by calculating the variance inflation factor 
(VIF) for each of the specified MLR models. The highest VIF observed is 7.779, while the mean VIF is 
2.917, which is within the threshold tolerance level of 10 (Salmerón, García, and García 2018). 
Different groups of explanatory variables were considered separately for model specification by 
employing staged-entry procedures. For instance, Model 1 includes only explanatory variables related 
to socioeconomic characteristics, while Model 2 contains building stock parameters. Model 3 (final 
stage) incorporates explanatory variables from Models 1 and 2 into one integrated model.

The results show that building stock variables demonstrate relatively high explanatory power over 
energy-efficiency adoption (Model 2 R2: 0.69) compared with socioeconomic characteristics (Model 1 
R2: 0.37). Model 3, which integrates both socioeconomic and building stock parameters, displays the 
highest level of explanatory power (Model 2 R2: 0.751), explaining three-quarters of the variance 
observed in energy-efficiency adoption in New York. Model 3 also returns the lowest value for the 
Akaike information criterion (AIC). The AIC model fit performance metric indicates that Model 3’s 
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specification has a higher degree of explanatory power, thereby providing more accurate estimates of 
the EEMs under consideration. Following Anselin et al. (1996), we calculated the robust Lagrange 
Multiplier (LM) spatial diagnostic tests for each of the models specified to identify whether there were 
any misspecification cases, often attributed to spatial autocorrelation in the model error or omission of 
a spatially lagged dependent variable. In the case of our integrated model (Model 3), the robust LM 
tests indicate that the benchmark OLM model fit can be improved by introducing a spatially lagged 
dependent variable. Consequently, following Anselin, Syabri, and Kho (2006), we specified SDEM to 
examine the relationships between EEM adoption and a set of independent or explanatory variables. 
The SDEM employs a two-stage approach to address both the spatial autocorrelation in the error term 
and the spatially lagged independent variables (Lesage and Pace 2009). The results are reported in 
Table 8.

The results from the SDEM show that model fit is enhanced in relation to the OLS model. 
Furthermore, the existence of direct effects, i.e., effects derived from within the ZIP code boundary, 
is very apparent. Significant and positive direct effects are established for variables that measure the 
proportion of households with children (β: 0.725), without children (β: 0.715), college-educated (β: 
0.731), duplex houses (β: 0.111), multifamily homes (β: 0.300), rent-income ratios (β: 0.438), and 
natural gas heating systems (β: 0.180). The positive direct effects for the coefficient of the proportion of 
college-educated households are relatively high, suggesting that increased awareness of energy use and 
knowledge about specific energy-saving opportunities facilitate the pursuit of energy-saving technol-
ogies. The rate of EEM adoption in multifamily buildings exerts a higher direct positive effect relative 
to duplexes, further indicating that multifamily residential households have higher adoption of EE 
retrofits, potentially offsetting their relatively high monthly utility bills.

Table 7. Benchmark log-log ordinary least squares regression models with EEPS assessments as the dependent variable.

Variable

OLS: Model 1 OLS: Model 2 OLS: Model 3

Beta
Std. 
Err. Beta

Std. 
Err. Beta

Std. 
Err.

Constant 0.57* 3.10 −0.78** 0.64 1.291** 3.42

Socioeconomic Characteristics
% Family with children (ln) 3.53** 0.28 0.62** 0.34
% Family without children (ln) 3.20** 0.33 0.71** 0.39
% Married family with children (ln) −0.65* 0.13 −0.37* 0.12
% 3-person households (ln) 0.31 0.09 0.11 0.12
% 4-or-more person households (ln) 0.20* 0.09 0.25* 0.10
% University education (ln) 1.51* 0.07 0.91* 0.07
% High school diploma 25 years and over (ln) −6.73 0.46 −2.38 0.42

Building Attributes
% Duplexes 0.03* 0.02 0.09* 0.02
% Multifamily house 0.55* 0.03 0.38* 0.03
% Owned-outright −0.73 0.11 −0.56 0.11
% Rent cost as percentage of income (ln) 0.45* 0.13 0.49* 0.12
% Gas central heating 0.28 0.03 0.21 0.03
% Electric central heating (ln) −0.25** 0.04 −0.18** 0.04
% Oil and kerosene central heating (ln) 0.02 0.03 −0.05 0.03
Number of households using coal, wood, solar and other heating 

(ln)
0.29 0.02 0.36 0.02

% No central heating (ln) −0.12 0.03 −0.14 0.03

Model fit
R2 (adjusted) 0.37 0.69 0.751
AIC 1721.61 1293.82 1159.28

Spatial diagnostics
Robust Lagrange-Multiplier (lag) 40.14* 33.61* 22.44*
Robust Lagrange-Multiplier (error) 0.0006 16.08* 21.08

*: p-value <0.05 
**: p-value <0.01
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Significant and negative direct effects were reported for high-school-educated households (β: 
−1.650), indicating that situations in which a lack of awareness or knowledge about specific energy- 
saving incentives and financing, or end-user inertia, could block the pursuit of an opportunity to
upgrade to more energy-efficient technologies. Besides a lack of public awareness of the magnitude of
available net present value (NPV)-positive EEM opportunities available to residential homeowners,
geographical and financial barriers to EE development may combine to create an “energy efficiency
gap” or “energy efficiency paradox,” i.e., “the slow rate of uptake of energy-efficiency products and
services even when they are economically beneficial” (MacDonald et al. 2019). Similarly, outright- 
homeownership status (β: −0.406) and electric central heating households (β: −0.092) exert significant
and negative effects, implying that EEM adoption is less popular with homeownership, as well as
households using electric heating systems. This result could be attributed to the high property taxes in
New York, especially in Manhattan and surrounding boroughs of Queens, Brooklyn, Staten Island,
and the Bronx.

Four significant and positive indirect attributes, i.e., effects exercised by neighboring (con-
tiguous) ZIP codes, have been observed in the model, with four-or-more-person households (θ: 
0.233), college-educated households (θ: 0.787), multifamily buildings (θ: 0.305), and buildings 
that use natural gas heating systems (θ: 0.190) associated with EEM diffusion. Most of the 
energy-efficiency retrofits are implemented in four-or-more-person multifamily residential and 
college-educated households using natural gas heating systems. The positive correlation 
between EEM adoption and education level is well-documented in relevant related studies in 
the field (Ma and Cheng 2016; Mills and Schleich 2012, 2010).

The presence of less-efficient gas-heating systems is more likely to encourage investment in 
EE retrofits (relative to electricity or oil) because homeowners opt for highly energy-efficient 
natural gas systems with a higher seasonal energy-efficiency ratio (SEER). A higher SEER 
number indicates a more efficient natural gas system. According to Prabatha et al. (2020), 
retrofitting electrically heated buildings, especially in areas with high grid emissions, yields 

Table 8. SDEM results estimating direct and indirect effects, with EEPS as the dependent variable.

Variables

Direct Indirect

Mean Z-Value Mean Z-Value

Socioeconomic characteristics
% Family with children (ln) 0.725** 0.322 0.636 2.088
% Family without children (ln) 0.715** 2.027 0.695 2.072
% Married family with children (ln) −0.319* −2.928 −0.250* −2.111
% 3-person households (ln) 0.019 0.173 0.187 1.794
% 4-or-more person households (ln) 0.244* 2.756 0.233* 2.604
% University education (ln) 0.731* 10.607 0.787* 10.613
% High school diploma 25 years & over (ln) −1.650* −4.269 −2.013 −4.935

Building characteristics
% Duplexes 0.111* 5.044 0.143 5.834
% Multifamily house 0.300* 9.533 0.305* 9.830
% Owned-outright −0.406* −4.185 −0.359 −3.422
% Rent cost as percentage of income (ln) 0.438* 3.887 0.325 2.908
% Gas central heating 0.180* 6.757 0.190* 7.004
% Electric central heating (ln) −0.092** −2.458 −0.096 −2.444
% Oil and kerosene central heating (ln) −0.042** −1.785 −0.090 −3.020
Number of households using coal, wood, solar and other heating (ln) 0.370 17.632 0.408 18.732
% No central heating (ln) −0.172* −6.369 −0.109** −4.114

Spatial Interaction
Spatial lag of EEPS (ln) – ρ 0.273* 10.538

Model fit
AIC 1064.710

*: p-value <0.05 
**: p-value <0.01
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insignificant environmental benefits, while in locations “with greener electricity grids, upgrad-
ing houses heated with [old, less-efficient] natural gas [equipment] results in better environ-
mental performance improvements, although it is economically unattractive” (p. 15). There is 
already a literature consensus acknowledging that a decision on whether to adopt a specific EE 
retrofitting strategy (e.g., electricity, liquid/solid fuels, etc.) often changes based on the home-
owner’s priorities, cost implications, and local conditions (Nyangon 2021; Pasichnyi, Wallin, 
and Kordas 2019; Polzin, von Flotow, and Nolden 2016; Seebauer, Friesenecker, and Eisfeld 
2019). However, regarding the influence of heating fuel chosen (e.g., electricity, oil, or natural 
gas systems), a breakdown of households using different heating fuels to enable estimations of 
fuel options by dwelling type could not be provided due to data limitations.

Furthermore, these statistically significant and positive indirect factors confirm that EEM adoption 
and diffusion generate neighborhood effects, which should be accounted for together with other 
geographically tagged dimensions. Significant and negative indirect effects were found for married- 
family-with-children households (θ:−0.250) and building stock without central heating systems (θ: 
−0.109). Meanwhile, the spatial lag of EEPS adoption exhibits a significant positive effect (ρ: 0.273),
implying that the diffusion of EEM in New York displays spillover effects. This indicates that the rate
of uptake of EEMs in a given ZIP code is associated positively with those observed in the neighboring
ZIP codes after accounting for the effects of socioeconomic and building stock parameters. This also
could imply potential “neighborly emulation”3 effects, indicating shared peer relationships through
which networks exchange policy-relevant information––an important predictor of energy policy
diffusion (Carley and Nicholson-Crotty 2018). Figure 6 illustrates local information flows in distribu-
tion channels that are driving EE investment and efficiency gains in New York state. Geo-localization
of local information flows, i.e., the association of such data to ZIP code blocks, was implemented in
GeoDaTM by creating one geo-database for deep EE retrofits at the ZIP code level.

Figure 6. Local information channels for EEPS adoption and diffusion.

3Neighborly emulation is driven by shared energy markets, extent of connections with neighboring parameters in the built 
environment, norms and governance, the influence of residents’ groups, and existing local economic configurations.
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5. Conclusions and policy implications
This article empirically examines the spatial patterns from the diffusion and adoption of residential 
EEMs using a set of socioeconomic and building stock explanatory variables. Besides the more 
commonly studied factors in relevant extant literature––such as socioeconomic, building stock/dwell-
ing, and demographic characteristics––this article’s novelty lies in adopting the spatially resolved 
range of the data set, which this study uses to analyze the policy effects from EEPS, revealing detailed 
trends in the diffusion and uptake of EEMs and ensuring that a geographically rich local context and 
scenarios are captured appropriately in the analysis to inform cost-effective policy design and planning 
of EE investment opportunities. To examine the diffusion of EEMs during the EEPS policy imple-
mentation period, we applied SDEM to a highly geographically resolved, household-level, statistical 
data set in New York state from the 2012–2016 period to understand households’ behavioral features, 
such as their energy conservation behavior, education effects, the influence from households’ building 
stock/dwelling characteristics, and the role of neighborly emulation and spillover effects in the uptake 
of EEMs, as well as to reflect on future adoption trends. Public policy is fundamentally about changing 
behavior. Hood (1986) grouped instruments for detecting and implementing new policies into four 
categories: nodality; authority; treasure; and organization (NATO) tools. In network governance, 
nodality instruments are information-based policy tools that influence people through knowledge 
transfer to achieve a policy result. Treasure tools denote either incentives to encourage certain 
behaviors or disincentives (e.g., taxes or fines) designed to discourage certain behaviors. Authority 
tools refer to laws and regulations that support sustainability transitions. For instance, New York has 
several laws that govern appliance standards, building codes, public benefit funds, and rebate pro-
grams, and the state is leading by example through the REV process. Finally, organization tools 

Table 9. Summary of EE policy implications to foster EEMs adoption.

Policy implication Explanation

EE policy design and regulatory innovation ● Strengthen EE policy design and regulatory frameworks
● Improve EE permitting processes, building code design, appliance and equip-

ment standards, and energy labeling.
● Consistent adoption of cost-effective EE technologies that surpasses the sum 

of the parts to achieve synergistic policy and regulatory benefits
● Improve building energy performance measurement, benchmarking, energy 

audits, and household readiness for uptake of smart EE features.
Technology and R&D innovation ● Improve investment in cost-effective R&D for new EE technologies (e.g., 

lighting, refrigeration, air conditioning, heat pumps, building design and 
control, etc.)

Reduce energy-burden for low- income groups ● Design socially equitable products to address economic and financial barriers 
to EE opportunities for low-income households by addressing conditions 
which constrain EE uptake across spatial contexts.

● Address the split-incentive problem between landlords and tenants (e.g., 
through on-bill financing schemes, provision of landlord incentives, and 
promote mutual cooperation from landlord and tenant to conserve energy), 
expand EE programs to low-income households residing in rural areas.

● Better matching of subsidy support programs for vulnerable consumers with 
the households’ adoption of EEMs.

Administration of EE information and 
education programs to raise awareness

● Targeted application of EE tax incentives, including energy savings perfor-
mance contracts, property-assessed clean energy (PACE) loans, and energy- 
focused loans from national lenders.

● Invest in education and peer-pressure programs to raise public awareness of 
EE opportunities and motivate EE actions.

Building grading and disclosure of EE footprint ● Integrate energy performance into building auditing, retrocommissioning, 
locational decisions, etc.

● Encourage competition among building owners by, e.g., disclosing building 
energy footprint.

● Allow tenants to account for building energy performance and other energy- 
related risks when making their leasing decisions.

Develop new technical, financing and business 
models for the EE sector

● Support design of new utility EE programs, demand response, mandatory 
standards, eco-labeling, and energy use behavior, etc.
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represent institutional choices––such as NYSERDA, NYPSC, etc.––that the state uses to deliver public 
services. Our findings confirmed a more complex picture of EE development in New York state across 
its different counties, cities, and ZIP codes. These results are consistent with other studies on spatial 
diffusion of low-carbon energy technologies (Brännström, Trolldal, and Menke 2016; Graziano, 
Fiaschetti, and Atkinson-Palombo 2019; Kanger et al. 2019; Zabaloy, Recalde, and Guzowski 2019).

Our results confirmed relatively strong positive correlation coefficients for college-educated house-
holds, indicating that with information and education, awareness of energy consumption patterns and 
knowledge about specific energy-saving opportunities can be increased to enable end-users to act 
more swiftly in their financial interests, thereby addressing the energy-efficiency gap issue. The results 
also could hold implications for energy demand, design of appliance standards, building code 
development, fuel economy standards, and rebound effects. With the growing investment in weath-
erization initiatives, the cost per kilowatt-hour of heating and cooling decreases, and this cost savings 
attribute motivates consumers to increase utilization of these energy services, i.e., a direct rebound 
effect on energy demand. Therefore, understanding residential energy-efficiency patterns (spatially) 
for ranges of building stock and socioeconomic aspects offers multiple opportunities to support policy 
and program designs that mitigate the rebound effect, such as stronger statewide environmental 
efficiency standards.

Furthermore, policymakers seeking to expand energy-efficiency programs and mitigate the 
rebound effect at different levels could use these findings to develop solutions to address rebound 
effects from both energy-efficiency improvement and energy demand perspectives (Fournier et al. 
2019; Toroghi and Oliver 2019; Wei, Zhou, and Zhang 2019) as well as direct impacts from the 
rebound effect on energy demand if the efficiency is associated with energy intensity (kWh/square 
foot) instead of energy-augmented technology (Fan, Luo, and Zhang 2016; Shao, Huang, and Yang 
2014). When designing policies and practices for promoting policy diffusion, e.g., uptake of EEMs 
and other utility-sponsored programs for low-income households, emulation theorists, among 
others, argue that policymakers and utility program implementers would benefit from policy 
information networks and best practices that promote a low-cost approach to policymaking, 
such as copying from peers, i.e., mimicking possible outcomes due to common geographic 
proximity or socioeconomic characteristics (Brinks and Coppedge 2006; Zhou et al. 2019). Such 
efforts may include programs under the U.S. Department of Energy, e.g., the Weatherization 
Assistance Program (WAP), which provides states with funds to implement deep retrofits, building 
envelopes, lighting upgrades, replacements of HVAC equipment, domestic water heating, plug- 
loads, and operation and maintenance.

Moreover, extant research has indicated that information asymmetry between governments (e.g., 
due to incomplete and imperfect information on minimum possible energy-savings opportunities that 
consumers could realize in reference cases) and businesses (e.g., due to the maximum technical 
potential of energy-efficiency improvement that firms can achieve realistically) can lead to sub-optimal 
energy-efficiency investments (Gillingham, Jenn, and Azevedo 2015). Such an asymmetric response 
would exacerbate peak electricity demand issues (Taminiau and Byrne 2020) and the rebound effect 
(Seebauer 2018; Wei, Zhou, and Zhang 2019). Marketing efficiency-upgrade schemes, audits and other 
assessments, and awareness campaigns in these low- and moderate-income communities, as well as 
addressing the barriers to energy-efficiency deployment––especially information asymmetry, high 
project development costs, split incentives between landlords and tenants, and lack of standardized 
measurement and verification (M&V) practices––would improve social welfare and equity effects 
(Labanca et al. 2015; Maiorano 2019). According to our results, building characteristics have relatively 
high explanatory power over energy-efficiency adoption relative to socioeconomic characteristics, 
accounting for nearly 75% of the variance. Thus, it would be beneficial to understand residential 
energy-efficiency potential for ranges of building stock to support policy and program design, as well 
as address direct rebound effects, as proposed by Toroghi and Oliver (2019) and Safarzadeh and Rasti- 
Barzoki (2019). The results also indicate that the rent-to-income ratio exerts a significant positive 
direct effect on energy-saving opportunities. For example, targeting retrofit programs, creative 
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financing vehicles (such as on-bill financing), and offering monetary incentives to households with 
higher rent-to-income ratios could increase EEM uptake within this group, as swift actions likely 
would be taken to reduce monthly utility bills.

The extension of the benchmark OLS model to the spatial Durbin model yields an improved model 
specification, with direct effects from the model’s explanatory variables dominating. Furthermore, a 
significant spatial autocorrelation coefficient in the model (ρ: 0.273) indicates the presence of neigh-
borly effects. This suggests consumers’ willingness to pay for, or the state to subsidize, a variety of 
EEMs and EE savings opportunities at the neighborhood level. Furthermore, investing in high- 
potential retrofitting options in once-flourishing cities like Buffalo and Rochester––e.g., automated 
heating control, pre-programmed default temperature profiles, and eco-design product standards–– 
also could offset household-level rebound effects (Seebauer 2018). Additionally, propane, oil, and 
electric resistance heating varieties are used mostly in rural areas, but these forms of heating are often 
more expensive compared with natural gas or electric heat pumps (which are used primarily in urban 
settings). As a result, policymakers and utility program managers should consider tailoring EEM 
opportunities to regions with the greatest potential for rapid adoption. Results from the influence of 
the built environment and jurisdictional boundaries, as reported in the choropleth and LISA maps, 
show that transition capacities are unlikely to be uniform spatially.

Consequently, when designing solutions to address the barriers that impede cost-effective adoption 
of EEM opportunities, authorities should consider additional metrics that factor in these spatial 
nonuniformities, such as area median income and federal poverty levels, which currently are used 
to determine which households are eligible for WAP, the U.S. Department of Housing and Urban 
Development assistance programs, and the U.S. federal Low Income Home Energy Assistance 
Program (LIHEAP). Designing these programs and policy objectives also requires accurate, granular, 
and reliable spatial data on the drivers of and barriers to energy-efficiency management at the city 
level, particularly geographical units with heterogeneous characteristics. Finally, without making 
specific recommendations, Table 9 summarizes policy implications that this study could guide to 
reduce energy demand and potential energy rebound effects.

In conclusion, this work dealt with the limitations of using EEPS assessments as a proxy for EEM 
adoption. At its core, the EEPS analytical approach’s efficacy is contingent on accurate reporting and 
disclosure on EEM opportunities at the granular level, such as income levels, building profiles, and 
geographical insights. Due to the well-documented “aggregation” barrier (Anselin 2002), the findings 
from EEM adoption trends discussed in this article only apply to the New York context and may not be 
generalized to other regions or states with similar EEPS policies. This issue is also sometimes referred 
to as the ecological fallacy problem (Winzar 2015), i.e., drawing inferences about a large geographical 
unit, such as a region or country, concerning its residents’ behavior could be misleading. Furthermore, 
the use of ZIP codes and ZIP code tabulation areas for the spatial analysis of EE opportunities presents 
a unique “modifiable areal unit problem” (Xu, Huang, and Dong 2018), i.e., these geographical units’ 
layouts were designed for postal delivery purposes and may fail to capture some aspects of dynamic 
energy policy design fully, such as EEM adoption.

Greater policymaking processes and program design administration of energy consumption 
for the local context could mitigate potential administrative burdens, and perhaps even dispa-
rities in local energy-efficiency management. As for future research, we call for studies on the 
policy efficacy of EERS on energy-efficiency uptake in low-income households and the rebound 
effect. Also, disparities in access to local energy-efficiency incentives and information, as well as 
education on savings opportunities in low-income households, can be factored into the rebound 
effect calculation.
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