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Abstract

We study several generalizations of the AGM continued fraction of Ramanujan inspired by a
series of recent articles in which the validity of the AGM relation and the domain of convergence
of the continued fraction were determined for certain complex parameters [4, 3, 2]. A study of
the AGM continued fraction is equivalent to an analysis of the convergence of certain difference
equations and the stability of dynamical systems. Using the matrix analytical tools developed
in [2], we determine the convergence properties of deterministic difference equations and so
divergence of their corresponding continued fractions.
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1 Introduction

For the sequence a := (an)∞n=1, denote the continued fraction S1(a) by

S1(a) =
12a2

1

1 +
22a2

2

1 +
32a2

3

1 +
. . .

(1.1)

We study the convergence properties of this continued fraction for deterministic sequences (an).
The case of sequences of random variables is treated in a companion paper [5]. We derive our most
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general results from an examination of periodic sequences, that is, sequences satisfying aj = aj+c

for all j and some finite c. In this case we will sometimes represent the sequence only by its base
cycle a = (a1, a2, . . . , ac). Our definition of S1 leads to a slight idiosyncrasy with respect to other
definitions for the case c = 2 since these begin the continued fraction with the second element of
the sequence. Many special cases of the above continued fraction for particular choices of a have
been determined in [3, 2]. In particular the cases (i) an = const ∈ C, (ii) an = −an+1 ∈ C, (iii)
|a2n| = 1, a2n+1 = i, and (iv) a2n = a2m, a2n+1 = a2m+1 with |an| = |am| ∀ m,n ∈ N. In the
present work we are interested in the convergence of S1 for arbitrary sequences of parameters.

To evaluate S1, we study the recurrence for the classical convergents pn/qn to the fraction S1,
For a general continued fraction of the form

Sη(γ) = η0 +
γ1

η1 +
γ2

η2 +
γ3

η3 +
.. .

these are defined by the truncated continued fraction: p−1 = 1, p0 = η0, q−1 = 0, q0 = 1 and

Sη(γ) ≈ p1

q1
=

η1p0 + γ1p1

η1q0
= η0 +

γ1

η1
first order,

≈ p2

q2
=

η2p1 + γ2p0

η2q1 + γ2q0
= η0 +

γ1

η1 +
γ1

η2/γ2

second order,

≈ . . .

≈ pn

qn
=

ηnpn−1 + γnpn−2

ηnqn−1 + γnqn−2
= η0 +

γ1

η1 +
γ1

η2

. . . +
. . .

ηn/γn

n’th order.

A simple induction argument establishes the general recurrence for the numerator and denominator
pn and qn shown above, namely

pn = ηnpn−1 + γnpn−2 and qn = ηnqn−1 + γnqn−2.

For the continued fraction S1(a) we have

qn = qn−1 + n2αnqn−2 where αn := a2
n. (1.2)

We will use αn and a2
n interchangeably throughout. The pn terms of the classical convergents also

satisfy Eq.(1.2).

Since the recurrence is a 2-step backward difference equation it is convenient to reformulate
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Eq.(1.2) in terms of 2× 2 matrices

q(n) = Qnq(n−1) where Qn :=
[

1 n2αn

1 0

]
and q(n) :=

(
qn

qn−1

)
. (1.3)

To analyze the case of cyclic parameters an with periods of length c, we regroup the above recursion
into blocks of length c

q(cn+m) = Q̂(m)
n q(c(n−1)+m) where Q̂(m)

n :=
cn+m∏

j=c(n−1)+m+1

Qj . (1.4)

Throughout, we interpret the matrix product ascending from right to left. To avoid notational
clutter, we will, without loss of generality, consider only the 0th term of the cycle, i.e. m = 0 in
Eq.(1.4). In this case Q̂n := Q̂

(0)
n .

Following [2], it is helpful to consider the renormalized sequences (tn) and (vn) where

tn :=
qn−1

n!
and vn :=

qn

Γ(n + 3/2)a(n+1)
n

. (1.5)

As with q(n) define

t(n) :=
(

tn
tn−1

)
and v(n) :=

(
vn

vn−1

)
. (1.6)

Then
t(cn) = Tnt(c(n−1)) where Tn := [Nn]−1Q̂nNn−1 (1.7)

for
Nn := Diag ((cn)!, (cn− 1)!) . (1.8)

Here we have also used the simplification of considering only the 0th term of the cycle in order to
avoid cumbersome notation.

As we will see in Section 5 the sequence (vn) lends itself to a more general analysis that is
independent of the cycle length. Accordingly, we do not group the corresponding recurrence into
cycles as above but study, instead, the base sequence

v(n) = Ynv(n−1) where Yn := G−1
n QnGn−1 (1.9)

for

Gn := Diag
(

Γ
(

n +
3
2

)
a(n+1)

n ,Γ
(

n +
1
2

)
an

n−1

)
. (1.10)
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By a standard identity [7, Eq.(1.2.10)], the separation of the convergents to S1 can be written as

pcn

qcn
− pcn−1

qcn−1
=

(−1)cn−1(cn)!2

qcnqcn−1

cn∏
j=1

a2
j

=
(−1)cn−1(cn)!2

qcnqcn−1

 c∏
j=1

αj

n

. (1.11)

In terms of the renormalized sequences (tn), and (vn), this is

pcn

qcn
− pcn−1

qcn−1
=

(−1)cn−1

tcn+1tcn(cn + 1)

 c∏
j=1

αj

n

(1.12)

=
(−1)cn−1

vcnvcn−1a
(cn+1)
cn acn

cn−1

 cn∏
j=1

αj

{1 + O

(
1
n

)}
. (1.13)

Thus, for |an| = |am| = b 6= 0 for all n, m ∈ N, the continued fraction S1 diverges – that is, the
convergents separate – if

|tn| ≤ O

(
bn

√
n

)
or (vn) is bounded, (1.14)

each of these being equivalent.

To begin, we focus our attention on cyclic parameters, that is an+c = an for c ≥ 1 and all
n. We then broaden the analysis to infinite sequences. In Section 4 we investigate the first of
the convergence criterion Eq.(1.14) using operator norms. The advantage of this criterion is that
it yields an asymptotic estimate of the rate of divergence of S1 for the cases we consider. The
second criterion allows for more general, albeit less detailed, analytical techniques, which we apply
in Section 5. The case of random sequences (an) builds upon the ideas developed in Section 5 but
requires a slightly different perspective which we develop in [5]. A summary of our most attractive
results is given in Theorem 6.1. Before proceeding with the analysis, however, we motivate this
study in Section 2 with some numerical experiments of specific examples.

2 Numerical Motivation

For different cases of the parameters an in the continued fraction S1 we plot in the complex plane
odd and even iterates of the recurrence

tn =
1
n

tn−1 +
n− 1

n
αn−1tn−2, (2.1)
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Figure 1: Dynamics for cycles of length c = 2. Shown are the iterates t̃n :=
√

ntn for tn given by
Eq.(2.1) with (a1, a2) = (exp(iπ/4), exp(iπ/6)). Odd iterates are light, even iterates are dark.

which follows directly from the rescaling Eq.(1.5). Our examples focus on the case |an| = b for
all n, and, in particular (without loss of generality) |an| = 1. In order to confirm the order of
convergence of the iterates required by Eq.(1.14) (indicating the divergence of S1), we plot

√
ntn.

As a point of reference we reproduce in Fig. 1 the dynamics for periodic (an) with cycle length 2,
and each a1 and a2 being roots of unity. This was also demonstrated in [2]. For cycles of length
c = 2n (n ≥ 2), the rates of convergence appear also to be O(1/

√
n) with odd and even iterates

easily distinguishable as shown in Fig. 2. These dynamics are explained principally in Section 4.
Even if the sequences (an) are random, the odd and even iterates demonstrate a surprising amount
of structure as demonstrated by Fig. 3. We explain this remarkable regularity in [5].

When cycle lengths of (an) are odd, however, the iterates of Eq.(2.1) display a much richer
diversity of behaviors. We show examples of cycles of length 3 with parameter values on the unit
circle. The iterates still appear to obey a regular odd/even behavior, however in the first case
Fig. 4 it appears that the iterates scaled by

√
n are diverging. This indicates that the order of

convergence of the unscaled iterates, if they converge at all, is something greater than O(1/
√

n),
which suggests, from Eq.(1.14), that it is possible that S1 converges for these parameters. On the
other hand, for different parameter choices with cycles of length 3 shown in Fig. 5(a), it appears
that the odd iterates scaled by

√
n are converging, while the even iterates are diverging. In light

of Eq.(1.14) it is unclear what this indicates about the continued fraction S1. We get a different
picture if we look instead at the iterates vn of the corresponding recurrence

vn =
2

an(2n + 1)

(
an−1

an

)n

vn−1 +
4n2

(2n− 1)(2n + 1)

(
an−2

an

)(n−1)

vn−2. (2.2)

As with Eq.(2.1) this recurrence follows directly from the rescaling Eq.(1.5). Fig. 5(b) shows the
unscaled iterates vn. It appears from this simulation that the sequence (vn) is indeed bounded,
though the iterates process around a circle of radius slightly larger than 1 in the complex plane.
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Figure 2: Dynamics for cycles of length c = 4. Shown are the iterates t̃n :=
√

ntn for tn given by
Eq.(2.1) with cycle length 4, a1 = a3 = exp(iπ/4), a2 = exp(iπ/6), a4 = exp(i(π/6 + 1/2)). Odd
iterates are light, even iterates are dark.

(a) (b)

Figure 3: Dynamics for random cycles. Shown are the iterates t̃n :=
√

ntn for tn given
by Eq.(2.1) with (a) cycle length ∞ with only one random strand mod2, a2n+1 = exp(iπ/4),
a2n = exp(iθn), θn ∼ U [0, 2π], and (b) cycle length ∞ (i.e. an = exp(iθn), θn ∼ U [0, 2π] for
all n). Odd iterates are light, even iterates are dark.
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Figure 4: Dynamics for cycles of length 3. Shown are the iterates t̃n :=
√

ntn for tn given by
Eq.(2.1) with (a1, a2, a3) = (exp(iπ/4), exp(iπ/4), exp(iπ/4 + 1/

√
2)). Odd iterates are light, even

iterates are dark.

This indicates that the continued fraction S1 diverges for these parameter values. While it is not
apparent from this example, the iterates vn display the same odd/even behavior as the rescaled
iterates tn. In our final example Fig. 6 we show the remarkable behavior of a length 3 cycle with
well balanced parameters an. We explain exactly what we mean by “well balanced” in Section
5. In the first example, the scaled iterates of Eq.(2.1) appear to line up at specific locations in
the complex plane. In the second example we see concentric orbits familiar from the even cycle
examples.

Our object in the following analysis is to shed some light on some of these dynamics.

3 Convergence: the real case

It was conjectured in [3] and proved in [2] that:

Theorem 3.1 (length 2 cycles) The original Ramanujan continued fraction

R1(a1, a2) :=
a1

1 + S1(a2, a1)

diverges if and only if
0 6= a2 = a1e

iφ with cos2 φ 6= 1

or if
a2

1 = a2
2 ∈ (−∞, 0).

In particular, R1(a1, a2) converges for all real a1 and a2.
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(a) (b)

Figure 5: Dynamics for cycles of length 3. Shown are the iterates (a) t̃n :=
√

ntn for tn given
by Eq.(2.1) and (b) vn given by Eq.(2.2). In both of these examples the parameter values are
(a1, a2, a3) = (exp(iπ/4),− exp(iπ/4), exp(iπ/4 + 1/

√
2)). Odd iterates are light, even iterates are

dark.

Figure 6: Dynamics for cycle of length c = 3. Shown are the iterates t̃n :=
√

ntn for tn given by
Eq.(2.1) with (a1, a2, a3) = (exp(iπ/2), exp(iπ/6), exp(−iπ/6)). Even iterates are light, odd iterates
are dark.

8



Figure 7: Dynamics for cycle of length c = 3. Shown are the iterates t̃n :=
√

ntn for tn given by
Eq.(2.1) with (a1, a2, a3) = (exp(i(π/3 + 0.05)), exp(−i(π/3 + 0.05)), exp(0.05i)). Even iterates are
light, odd iterates are dark.

We note that only the case a2
1 = a2

2 < 0 leads to something other than convergence of the odd
and even iterates to distinct values [2, Section 2].

Our main task in the rest of this paper is to establish a general divergence theorem capturing
much of Theorem 3.1. Before we do, we establish a simple but fairly general real convergence result.

Theorem 3.2 (arbitrary real parameters) The generalized Ramanujan continued fraction S1

converges whenever all parameters an are real and satisfy 0 < m ≤ |an| ≤ M < ∞.

Proof. The proof follows much as the two term case given in Theorem 2.1 of [4]. We write S1 as a
reduced continued fraction Ŝ1 with coefficients Ai > 0, that is,

Ŝ1(a) =
1

A1 +
1

A2 +
1

A3 +
.. .

(3.1)

where

An =


n!2

(n/2)!4
4−n

∏n/2
j=1

a2
2j−1

a2
2j

=
(

2
nπ + O

(
1
n2

))∏n/2
j=1

a2
2j−1

a2
2j

(n even)

(((n−1)/2)!)4

n!2
4n−1

a2
n

∏(n−1)/2
j=1

a2
2j

a2
2j−1

=
(

π
2n + O

(
1
n2

))
1

a2
n

∏(n−1)/2
j=1

a2
2j

a2
2j−1

(n odd).
(3.2)

Note that for real an satisfying 0 < m ≤ |an| ≤ M < ∞ the sum of the coefficients An is unbounded.
Convergence then follows from the Seidel-Stern Theorem [7], which asserts that a reduced continued
fraction converges if and only if

∑
Ai = ∞. �
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The case of complex convergence is much more vexing, largely because the Seidel-Stern result is
not available.

4 Cyclic parameters: analysis of the renormalized sequence (tn)
∞
n=1

We look first at bounds on the sup-norm of the matrix Tn defined by Eq.(1.7). For parameter
cycles an = an+c of length c, induction on c shows that

t(cn) = Tnt(c(n−1)) =
2n− 2
2n− 1

{
Fn + O(n−2)

}
t(c(n−1)). (4.1)

Here, for c even,

Fn :=
[

α̃1
1
cn α̃2

1
cn α̃3 α̃4

]
(4.2)

with1

α̃1 :=

c
2
−1∏

j=0

α2j , α̃2 := α1

∑
c−2≥j( c

2−1)−2≥...

···≥j1≥3

c
2
−1∏

i=1

αji , (4.3)

α̃3 :=
∑

c−3≥j( c
2−1)−2≥...

···≥j1≥2

c
2
−1∏

i=1

αji and α̃4 :=

c
2
−1∏

j=0

α2j+1. (4.4)

For c odd, however,

Fn :=
[

1
cn α̂1

(
1 + 1

2cn

)
α̂2(

1− 1
2cn

)
α̂3

1
cn α̂4

]
(4.5)

1We define empty products to be equal to 1.
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with

α̂1 :=
∑

c−2≥j c−1
2

−2≥...

···≥j1−2≥0

c−1
2∏

i=1

αji , α̂2 :=

c−1
2∏

j=0

α2j+1, (4.6)

α̂3 :=

c−1
2∏

j=1

α2j , and α̂4 := α1

∑
c−3≥j c−1

2
−2≥...

···≥j1−2≥1

c−1
2∏

i=1

αji . (4.7)

From Eq.(4.1) we obtain the bound

|t(cN)| ≤

(
N∏

n=2

2n− 2
2n− 1

(
|Fn|+ O

(
n−2

)))
|t(c)|. (4.8)

By the Wallis/Stirling formula [1] we know that

N∏
n=2

2n− 2
2n− 1

=
√

π

4N
+ O

(
N−3/2

)
. (4.9)

Moreover, the leading order behavior of Fn is

|Fn| =


1√
2

√
b̃1 + |̃b2|+ O

(
n−2

)
, c even and |α̃1| 6= |α̃4|,

1√
2

√
b̂1 + |̂b2|

(
1− bb2

2cn|bb2|
)

+ O
(
n−2

)
, c odd and |α̂3| 6= |α̂3|

(4.10)

where

b̃1 := |α̃1|2 + |α̃4|2, b̃2 := |α̃1|2 − |α̃4|2,
b̂1 := |α̂2|2 + |α̂3|2 and b̂2 := |α̂2|2 − |α̂3|2.

For c even, then, if |α̃1| 6= |α̃4|, the behavior of the product of matrix norms is

N∏
n=2

(
|Fn|+ O

(
n−2

))
= O

(
max (|α̃1|, |α̃4|)N

)
, c even. (4.11)

For c odd with b̂2 > 0 we have

N∏
n=2

(
|Fn|+ O

(
n−2

))
= O

(
|α̂2|N

N1/2c

)
, c odd. (4.12)
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If, on the other hand, b̂2 < 0, we see from Eq.(4.10) that the matrix product is unbounded as
N → ∞ and we lose any predictive power from this analysis. The behavior of the product of
matrix norms apparently depends more intricately on the values of the sequence (an) due to the
O
(
n−1

)
term in Eq.(4.10). This also holds for the case |α̃1| = |α̃4| or |α̂3| = |α̂3| for c even or odd

respectively since, in this case,

|Fn| =


|α̃1|+ 1

2cn

√
|α̃1|2 + |α̃2|2 + |α̃3|2 + 2Re

( eα1eα2eα3eα4

)
+ O

(
n−2

)
, |α̃1| = |α̃4|

|α̂2|+ 1
2cn

√
|α̂1|2 + |α̂2|2 + |α̂4|2 + 2Re

( bα1bα2bα4bα3

)
+ O

(
n−2

)
, |α̂2| = |α̂3|.

(4.13)

A straight forward calculation shows that the O(n−1) term in Eq.(4.13) disappears only when Fn

is the trivial zero matrix, hence there are no nontrivial sequences (an) for which the product of
matrices converges.

We summarize this discussion with the following theorem which generalizes [2, Theorem 5.1].

Theorem 4.1 (convergence/divergence rates for cyclic parameters) Let the coefficients of
the continued fraction S1(a) be given by a = (a1, a2, . . . , ac) ∈ Cc. For c even with |α̃1| 6= |α̃4|,
and α̃j defined by Eq.(4.3)-Eq.(4.4), any solution of the recurrence Eq.(1.12) has the asymptotic
behavior

|tcn| ≤ O

(
max(|α̃1|, |α̃4|)n

√
n

)
,

and the convergents to S1(a) satisfy, for γ > 0 constant,∣∣∣∣p2cn

q2cn
− p2cn−1

q2cn−1

∣∣∣∣ ≥ γ min
(∣∣∣∣ α̃4

α̃1

∣∣∣∣ , ∣∣∣∣ α̃1

α̃4

∣∣∣∣)n

.

For c odd and |α̂2| > |α̂3| where α̂j are defined by Eq.(4.6)-Eq.(4.7), any solution of recurrence
Eq.(1.12) has the asymptotic behavior

|tcn| ≤ O

(
|α̂2|n

n(c+1)/(2c)

)
,

and the convergents to S1(a) satisfy, for γ > 0 constant,∣∣∣∣p2cn

q2cn
− p2cn−1

q2cn−1

∣∣∣∣ ≥ γ

(
|α̂3|
|α̂2|

)n

n1/c.

5 General deterministic parameters: analysis of the renormalized
sequence (vn)

∞
n=1

The analysis of the previous section provides upper bounds on the rate of convergence of the
sequence (tn) for |α̃1| 6= |α̃4| in the case of cycles of even length, and for odd-length cycles when
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|α̂2| > |α̂3|. The case |α̃1| = |α̃4| for periodic (an), and, more generally, the case of infinite or random
sequences (an) requires different analytical tools which we study in this section. Since stochastic
notions intersect only obliquely with deterministic phenomena, we consider exclusively deterministic
sequences. The stochastic analysis detailed in [5] builds naturally upon the deterministic ideas.

5.1 Matrix Products

We pursue here a matrix analysis of S1 based on the renormalized sequence (v(n)) defined by
Eq.(1.9). Though the basic framework of our analysis makes no use of the notion of a cycle, the
sequence (v(n)) still exhibits an odd/even behavior. To exploit this, we define the matrix Ŷn by

Ŷn := Y2nY2n−1. (5.1)

This has the explicit representation

Ŷn =


(

α2n−2

α2n

)n (
1

α2n−2α2n

)1/2 (
1+4n2α2n
4n2−1/4

) (
α2n−3

α2n

)n
(

α2n−1

α2n−3α
1/2
2n

)(
(2n−1)2

(2n−3/2)(4n2−1/4)

)
(

α2n−2

α2n−1

)n
1

α
1/2
2n−2

1
(2n−1/2)

(
α2n−3

α2n−1

)n−1 (
(2n−1)2

(2n−1)2−1/4

)
 .

(5.2)
The determinant of this general Ŷn is

det(Ŷn) =
(

α2n−2

α2n

)n−1/2(α2n−3

α2n−1

)n−1 64n2(2n− 1)2

(4n− 3)(4n− 1)2(4n + 1)
.

Not only is the odd/even behavior manifest in the αj terms above, but, as it turns out, the identity

∞∏
n=2

64n2(2n− 1)2

(4n− 3)(4n− 1)2(4n + 1)
=

π

2

follows readily from the Wallis formula. Hence

lim
n→∞

det(Yn) =
π

2
β where Yn =

n∏
j=1

Ŷn. (5.3)

and

β :=
∞∏

n=2

(
α2n−2

α2n

)n−1/2(α2n−3

α2n−1

)n−1

= lim
n→∞

α
1/2
2

α
n−1/2
2n αn−1

2n−1

2n−2∏
j=1

αj . (5.4)

Existence of limn→∞ det(Yn) therefore depends on the product Eq.(5.4). Nevertheless, con-
vergence of the determinant is no guarantee of the same for the matrices Yn. Proving that the
matrices converge is the object of the analysis that follows. Assume, for the moment however, that
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limn→∞ Yn = Y∞ where Y∞ is a finite complex matrix. We then have the following generalization
of [2, Theorem 4.1] concerning the convergence of odd and even parts of S1(a).

Theorem 5.1 (odd and even convergents of continued fractions) Let the nonzero complex
sequence (an)∞n=1 satisfy

β := lim
n→∞

a2

a2n−1
2n a2n−2

2n−1

2n−2∏
j=1

a2
j 6= 0.

For the corresponding continued fraction S1(a) defined by Eq.(1.1), let (un) be the analog to (vn)
in Eq.(1.5) with qn replaced by pn. Let the matrix Yn defined by Eq.(5.3) converge to the matrix
Y∞. For the standard initial conditions

(u−1, u0, v−1, v0) =
(

1√
π

, 0, 0,
2

a0
√

π

)
, (5.5)

the even and odd parts of S1(a) are given by

S(even)
1 (a) =

a0y
∞
1,2

2y∞1,1

, and S(odd)
1 (a) =

a0y
∞
2,2

2y∞2,1

. (5.6)

These limits are not equal, thus S1 diverges. Indeed, the separation of odd and even limits is given
explicitly by

S(even)
1 (a)− S(odd)

1 (a) = − a2
0π

4a2y∞1,1y
∞
2,1

β. (5.7)

Proof. The first relation Eq.(5.6) is immediate from the definition of the classical convergents. The
limits cannot be equal since otherwise we would have

a0y
∞
1,2

2y∞1,1

=
a0y

∞
2,2

2y∞2,1

=⇒ y∞1,1y
∞
2,2 − y∞1,2y

∞
2,1 = 0

whence, from Eq.(5.3), β = 0. But this contradicts the assumption that β 6= 0. To see Eq.(5.7)
note that, by Eq.(1.13) and the initial condition (v−1, v0) = (0, 2/(a0

√
π),

S(even)
1 (a)− S(odd)

1 (a) = lim
n→∞

−

(∏2n
j=1 αj

)
v2nv2n−1α

n+1/2
2n αn

2n−1

,

= lim
n→∞

− a2
0π

4y
(n)
1,1 y

(n)
2,1

(∏2n
j=1 αj

)
α

n+1/2
2n αn

2n−1

,

where y
(n)
i,j is the ij-th element of the matrix Yn defined by Eq.(5.3). The limit above, together

with Eq.(5.4), yields

S(even)
1 (a)− S(odd)

1 (a) = − a2
0π

4a2y∞1,1y
∞
2,1

β.
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�

Remark 5.2 This result makes no use of the specific nature of the parameters an beyond the
qualification that limn→∞ Yn exists and is nonsingular. If β = 0, then the analysis is indeterminate.
Formally from the definition of the classical convergents we have

2
a0
√

π
y∞1,1S

(even)
1 =

1√
π

y∞1,2 and
2

a0
√

π
y∞2,1S

(odd)
1 =

1√
π

y∞2,2.

Multiplying the equation on the left by y∞2,1 and the right by y∞1,1 and subtracting yields

1√
π

(
y∞1,1y

∞
2,2 − y∞1,2y

∞
2,1

)
=

2
a0
√

π
y∞2,1y

∞
1,1

(
S(even)

1 − S(odd)
1

)
.

But, since β = 0, by Eq.(5.3) we have y∞1,1y
∞
2,2 − y∞1,2y

∞
2,1 = 0. and so y∞2,1y

∞
1,1

(
S(even)

1 − S(odd)
1

)
= 0.

We cannot determine from this analysis whether the separation of the odd and even convergents is
zero as would be the case if S1 were to converge. �

It remains to determine whether (or in what sense) Yn converges as n → ∞. We begin by
extracting the leading-order behavior. Expanding Ŷn in powers of n−1 yields

Ŷn = Kn +
1
2n

Wn + O
(
n−2

)
where

Kn =


(

α2n−2

α2n

)n−1/2
0

0
(

α2n−3

α2n−1

)n−1

 , (5.8)

and

Wn =

 0 1
a2n

(
α2n−3

α2n

)n (
α2n−1

α2n−3

)
1

a2n−2

(
α2n−1

α2n−2

)−n
0

 . (5.9)

As we shall see in Theorem 5.3 below, we need only focus our attention on the leading order
behavior of the matrix product Yn. Define

Un :=
n∏

j=2

Kj +
1
2j

Wj .

Then

Yn =
n∏

j=2

(
Kj +

1
2j

Wj + O(j−2)
)

= Un + O(n−2) (5.10)
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Induction on n shows that Un factors as

Un =

 n∏
j=2

Kj

 n∏
j=2

(
I +

1
2j

Ŵj

)
, (5.11)

where

Ŵn :=

 n∏
j=2

Kj

−1n−1∏
j=2

K̂j

Wn

for

K̂j =
[

0 1
1 0

]
Kj

[
0 1
1 0

]
.

Happily, Ŵn has a simple explicit representation:

Ŵn =
1

a2n

[
0 ωn

ω−1
n 0

]
, where ωn =

a2n

a2

n∏
j=1

α2j−1

α2j
. (5.12)

At this point one can easily see how the parity of the cycle lengths (odd or even) might have
a profound impact on the dynamics of the recursion for the classical convergents of S1. For cycle
length c even we have

ωn =
a2n mod c

a2

n mod c/2∏
j=1

α2j−1

α2j

 c/2∏
j=1

α2j−1

α2j

b2n/cc

(c even). (5.13)

For odd-length cycles, on the other hand, the power disappears through cancellation:

ωn =
a2n mod c

a2

n mod c∏
j=1

α2j−1

α2j
(c odd). (5.14)

We will return to this in the next sections.

To ease the computations, we focus our attention on the rotated product

Ûn :=

 n∏
j=2

Kj

−1

Un =
n∏

j=2

(
I +

1
2j

Ŵj

)
. (5.15)

The justification for looking at these rotated products follows from the next theorem.

Theorem 5.3 (invertible matrix products) Let (An) and (Cn) be sequences of m×m complex
matrices. Suppose that (i)

(∏n
j=1 Cj

∏n
j=1 Aj

)
converges to the invertible matrix L1 as n →∞, and

(ii)
∏n

j=1 Cn converges to an invertible matrix L2. Then, as n →∞, the matrix product
∏n

j=1 An
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converges to L−1
2 L1. Moreover, if (Bn) is a sequence of m × m complex matrices satisfying (iii)∑∞

j=1 |Bj | < ∞, then
∏n

j=1(Aj + Bj) converges to a finite complex matrix.

Proof. By hypotheses (i), given any ε there is an N1 such that n ≥ N1 implies that∣∣∣∣∣∣
n∏

j=1

Cj

n∏
j=1

Aj − L1

∣∣∣∣∣∣ < ε

2M

where M ≥ maxk≥N1

∣∣∣∣(∏k
j=1 Cj

)−1
∣∣∣∣ (which exists by (ii)). The Cauchy-Schwarz inequality then

yields ∣∣∣∣∣∣
n∏

j=1

Aj −

 n∏
j=1

Cj

−1

L1

∣∣∣∣∣∣ < ε

2
. (5.16)

On the other hand, by (ii) and [2, Lemma 6.3b], (Cj) is tail Cauchy, that is,
∏q

j=p+1 Cj → I as
q > p →∞, thus there is an N2 such that n ≥ N2 implies

∣∣L−1
2

∣∣ ∣∣∣∣∣∣
∞∏

j=n+1

Cj − I

∣∣∣∣∣∣ |L1| <
ε

2
.

Here, the Cauchy-Schwarz inequality gives∣∣∣∣∣∣
 n∏

j=1

Cj

−1

L1 − L−1
2 L1

∣∣∣∣∣∣ < ε

2
. (5.17)

For n ≥ N = max{N1, N2}, adding Eq.(5.16) to Eq.(5.17) and applying the triangle inequality
establishes the first statement of the theorem. This fact, along with hypothesis (iii) and [2, Theorem
6.1] yields the second statement and completes the proof. �

The application to continued fractions is an immediate corollary.

Corollary 5.4 If Ûn → Û∞ and
∏n

j=2 Kj → K∞ where both Û∞ and K∞ are nonsingular, then
Un → K−1

∞ Û∞ and Yn → Y∞, a finite matrix.

Remark 5.5 (parameter qualifications) Before proceeding, a brief summary of our strategy
and the attendant restrictions is in order. Most of the restrictions on the sequences (an) come from
the invertibility assumptions in Theorem 5.1 and Corollary 5.4. The first of these, that β 6= 0 where
β is defined by Eq.(5.4) was discussed in Remark 5.2. The assumption that

∏n
j=1 Kj converges to
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an invertible matrix is equivalent to the condition

0 6= lim
n→∞

α
1/2
2

α
n−1/2
2n αn−1

2n−1

2n−2∏
j=1

αj < ∞ (5.18)

The remaining invertibility assumption of Corollary 5.4 is that Ûn converges to an invertible matrix.
From Eq.(5.12) this is equivalent to the condition

0 6= det
∞∏

j=2

(
I +

1
2ja2j

[
0 ωn

ω−1
n 0

])
< ∞

or, more simply,

0 6=
∞∏

j=2

(
1− 1

(2ja2j)2

)
< ∞. (5.19)

Conditions Eq.(5.18) and Eq.(5.19) are central to our analysis.

5.2 Exponential-sums

The problem of determining the convergence or divergence of S1 has been reduced to determining
the convergence or divergence of Ûn defined by Eq.(5.15). In [2] an exponential sum analysis was
applied to such matrix products for the case of cycles of length c = 2 in order to obtain detailed
results about the convergence of Ûn. Though this analysis does not appear to be tractable in
general, we set out the formal basis from which useful special cases may be gleaned.

To begin, note that even products of Ŵj are diagonal matrices, and odd products are skew
matrices. To wit, we have

2n+1∏
j=1

Ŵj =

2n+1∏
j=1

1
a2j

[ 0
∏2n+1

j=1 ω
(−1j+1)
j∏2n+1

j=1 (ω−1
j )(−1j+1) 0

]
(5.20)

while
2n∏

j=1

Ŵj =

 2n∏
j=1

1
a2j

[ ∏2n
j=1 ω

(−1j)
j 0

0
∏2n

j=1(ω
−1
j )(−1j)

]
(5.21)

Let ωn = (ω1, . . . , ωn) and

Tj(n, ωn) :=
n∑

mj>···>m1≥1

(
j∏

k=1

ω
(−1(j mod 2)+k)
mk

mka2mk

)
(5.22)
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where the sum is empty (0) if j > n and, by definition, T0(n, ωn) := 1. In general we have

Ûn = I +
n∑

j=1

 n∑
mj>···>m1≥1

(
j∏

k=1

1
2mk

Ŵmk

) =
[
An(ωn) Bn(ωn)
Bn(ω−1

n ) An(ω−1
n )

]
,

where

An(ωn) :=
∞∑

j=0

2−2jT2j(n, ωn) and Bn(ωn) :=
∞∑

j=0

2−2jT2j+1(n, ωn).

This formulation is difficult to work with in general, though for some special cases it yields explicit
bounds on matrix elements as the next example illustrates.

Example 5.6 Let an = an+2 (n = 1, 2, . . . ). From Eq.(5.12) we have

ωn =
a2n

a2

n∏
j=1

α2j−1

α2j
=
(

α1

α2

)n

which we will write as ωn. Thus

Tj(n, ω) =
1

aj
2

n∑
mj>···>m1≥1

(
j∏

k=1

ω(−1(j mod 2)+k)mk

mk

)
.

This form of the exponential sum, it turns out, is tractable. Indeed, this can be rewritten as

(5.23)
Tj(n, ω) =(

j∏
k=1

ω(−1(j mod 2)+k)

)∫ 1

0
· · ·
∫ 1

0
dx1 · · · dxjSj(n;ω(−1(j mod 2)+1)x1, . . . , ω

(−1(j mod 2)+j)xj),

where

Sj(n; z1, . . . , zj) =
n∑

mj>···>m1≥1

z
mj
n z

mj−1

j−1 . . . zm1
1 .

In particular,

Sj(∞; z1, . . . , zj) =
zj−1
j

1− zj

zj−2
j−1

1− zjzj−1
· · · 1

1− zjzj−1 · · · z1
.

Using these identities, it can been shown that if |ω| = 1 with ω 6= 1, then the matrix Un = Ûn

converges as N →∞ with explicit bounds on the limit U∞ (see [2, Theorem 7.5]). �

An interesting open problem is to find an integral representation similar to Eq.(5.23) for general-
ized Lerch sums of the form Eq.(5.22) with parameters ω = (ω1, . . . , ωn) involving more complicated

19



behavior. Given the simplicity of wn given by Eq.(5.12), it seems quite likely that tractable refor-
mulations can be extracted from Eq.(5.22).

5.3 General Matrix Analysis

Given the difficulty of working with generalized exponential sums of the form Eq.(5.22), we pursue
a more general approach. In this section we shall prove following.

Theorem 5.7 (matrix products) Let the sequences (ζj) and (ζ ′j) satisfy

sup
k

∣∣∣∣∣∣
k∑

j≥n

ζj

∣∣∣∣∣∣ < ∞ and sup
k

∣∣∣∣∣∣
k∑

j≥n

ζ ′j

∣∣∣∣∣∣ < ∞, (5.24)

and let (ηj) be a real nonnegative square summable sequence decreasing monotonically to 0. Then
the matrix product

T̂n :=
n∏

j=1

(
I + ηj

[
0 ζj

ζ ′j 0

])
(5.25)

converges to a finite matrix as n →∞. If, in addition,∣∣1− η2
j ζ

′
jζj

∣∣ ≥ m > 0 ∀ j, (5.26)

then T̂n converges invertibly.

Remark 5.8 Compare this result to a similar result by Trench [8, Theorem 4] which states that for
any sequence of m×m matrices (An) the product

∏∞
n=1 (I + An) converges invertibly if

∑∞ |An| <
∞. Condition Eq.(5.24) is less restrictive than the requirement that the corresponding matrix
norms be summable, however our result is much less general. In light of other sufficient conditions
developed by Trench [8, Theorems 5-6] it would be interesting to see if the techniques presented
here can be applied to more general matrix products.

As in [2], denote the limit of (an) by a∞, and denote by (an) ≺ (εn) convergence of (an) when
this is provided by |an − a∞| = O(εn).

Lemma 5.9 Let (an) and (bn) be complex sequences, let (εn) be a positive sequence and let (zn)
with |zn| = z ∈ R+ ∀ n = 1, 2, . . . be any complex number. Suppose that

(an) ≺ (εn) and (bn) ≺ (εn),

then
(an + bn) ≺ (εn), (anbn) ≺ (εn) and (znan) ≺ (εn)
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Proof. The first two relations are clear. The last relation follows immediately from |znan−zna∞| =
z|an − a∞|. �

The following lemma yields a key bound on partial sums which appear in our analysis and is a
simple consequence of Abel’s transformation [9, Eq.(I.2.1)],

m∑
j=n

ηjζj =
m−1∑
j=n

(
j∑

k=n

ζk

)
(ηj − ηj+1) + ηm

m∑
k=n

ζk (n < m). (5.27)

Lemma 5.10 Let (ηn) be a decreasing sequence of non-negative real numbers that converges to 0
and let (ζn) be a sequence satisfying Eq.(5.24). Then n∑

j=1

ηjζj

 ≺ (ηn). (5.28)

Proof. This is the content of [9, Theorem I.2.2]. Indeed, the absolute value of the right-hand side
of Eq.(5.27) is bounded by

ηn sup
j

∣∣∣∣∣
j∑

k=n

ζk

∣∣∣∣∣ = O(ηn).

�

Lemma 5.11 (product convergence) Let (ηj) be a nonnegative real decreasing sequence con-
verging to 0 with

∑
j>0 η2

j < ∞, and let (ζk) satisfy Eq.(5.24). Then the product

n∏
j=1

(1 + ηjζj) (5.29)

converges as n →∞.

Proof. By Lemma 5.10, the sequences (ηn) and (ζn) satisfy Eq.(5.28). Also, since (ζn) satisfying
Eq.(5.24) is bounded and (ηn) is square summable, then (ηjζj) is square summable, thus by [6,
pp.225] the product Eq.(5.29) converges. �

We are now ready to proceed with the proof of the main result of this section.

Proof of Theorem 5.7 Our proof follows the same pattern as that of [2, Theorem 8.1]. We split the
matrices in the infinite product into upper and lower triangular pieces and show that the resulting
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submatrices and their products converge. Let

U :=
[

0 1
0 0

]
and L :=

[
0 0
1 0

]
.

We write (
I + ηn

[
0 ζn

ζ ′n 0

])
= (I + ηnζnU)

(
I + ηnζ ′nL

)
− η2

nζnζ ′nUL

and define the partial product

Πn
UL =

n∏
j=1

(
(I + ηjζjU)

(
I + ηjζ

′
jL
))

.

For n ∈ N let

Πn
U :=

n∏
j=1

(I + ηjζjU) , Πn
L :=

n∏
j=1

(
I + ηjζ

′
jL
)

Σn
U :=

n∑
j=1

ηjζj , and Σn
L :=

n∑
j=1

ηjζ
′
j .

We interpret Σ0
U and Σ0

L to be zero. By [2, Lemma 8.6] (replace their “zmjω
j” by “ηjζj” and

“zmjω
−j” by “ηjζ

′
j”) Πn

UL can be rewritten as

Πn
UL = Πn

UΠn
L

n∏
j=1

(I + Rj) ,

where

Rn := ηnζ ′n

[
−Σn−1

U −
(
Σn−1

U

)2 Σn−1
L −

(
Σn−1

U

)2
Σn−1

U Σn
L + Σn−1

U Σn−1
L + Σn−1

L Σn
L

(
Σn−1

U

)2 Σn−1
U +

(
Σn−1

U

)2 Σn
L

]
.

By the definitions of Σ0
U and Σ0

L, we have R1 := 0. The partial sums Σn
U and Σn

L converge by
Lemma 5.10. By induction it can be shown that

Πn
U =

[
1 Σn

U

0 1

]
and Πn

L =
[

1 Σn
L

0 1

]
,

thus the sequences of matrices (Πn
U ) and (Πn

L) converge. Hence, if
∏n

j=1 (I + Rj) converges, then
the sequence (Πn

UL) converges. Convergence of the product
∏n

j=1 (I + Rj) follows from Lemmas
5.9 and 5.11, and [2, Lemma 8.7]. Finally, for (ζn) and (ζ ′n) satisfying Eq.(5.24) and ηn square
summable, we have

n∑
j=1

∣∣η2
j ζjζ

′
jUL

∣∣ < ∞,

22



thus, from Theorem 5.3, the product Eq.(5.25) must converge.

Finally note that

det T̂n = det
n∏

j=1

(
I + ηj

[
0 ζj

ζ ′j 0

])
=

n∏
j=1

det
(

I + ηj

[
0 ζj

ζ ′j 0

])
=

n∏
j=1

(1− η2
j ζ

′
jζj).

This product is nonzero if
∣∣∣1− η2

j ζ
′
jζj

∣∣∣ ≥ m > 0 ∀ j, in which case T̂n converges invertibly. �

5.4 Application to continued fractions

In this section we establish the link between the generalized matrix analysis of the preceding section
and the sequences of interest defined by Eq.(5.13)-(5.14).

Example 5.12 (odd cycles/arbitrary sequences) Consider the case of odd-length cycles or,
more generally, arbitrary sequences (an). Here, for c ∈ N ∪ {∞} not even,

ζn = ζn mod c :=
1

a2n mod c
ωn =

1
a2

n mod c∏
j=1

α2j−1

α2j

 . (5.30)

For the inverse, we have

ζ ′n = ζ ′n mod c :=
1

a2n mod c
ω−1

n =
a2

α2n mod c

n mod c∏
j=1

α2j−1

α2j

−1

. (5.31)

(see Eq.(5.14)). If ζn and ζ ′n satisfy

sup
k

∣∣∣∣∣
k∑

n=1

ζn

∣∣∣∣∣ < ∞, and sup
k

∣∣∣∣∣
k∑

n=1

ζ ′n

∣∣∣∣∣ < ∞. (5.32)

then by Lemma 5.10, n∑
j=1

1
2ja2j

ωj

 ≺
(

1
n

)
and

 n∑
j=1

1
2ja2j

ω−1
j

 ≺
(

1
n

)
. (5.33)

Theorems 5.1, 5.4, and 5.7 then yield the following general result concerning the continued fraction
of Ramanujan.

Theorem 5.13 (continued fractions with arbitrary parameters) Let the nonzero complex
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sequence a := (an)∞n=1 satisfy Eq.(5.18)-(5.19) in addition to

sup
k

∣∣∣∣∣∣
k∑

n=1

1
a2

 n∏
j=1

α2j−1

α2j

∣∣∣∣∣∣ < ∞ and sup
k

∣∣∣∣∣∣
k∑

n=1

a2

α2n

 n∏
j=1

α2j−1

α2j

−1∣∣∣∣∣∣ < ∞ (5.34)

where αn := a2
n. Then the iterates vn of the corresponding difference equation Eq.(2.2) are bounded

and the Ramanujan continued fraction S1(a) defined by Eq.(1.1) diverges with the even/odd parts
of S1(a) converging to separate limits.

Condition Eq.(5.34), while nontrivial, is not difficult to satisfy. It is certainly satisfied by any
sequence (ζn) which processes “evenly” around the unit circle in the complex plane, or, to anticipate
the stochastic analysis, any bounded (ζn) with mean equal to zero2. We have already seen instances
of such sequences in Section 2. For example, for the case of (an) with odd-length cycles, say c = 3,
then

ζ1 =
a2

1

a3
2

, ζ2 =
a2

3

a3
2

and ζ3 =
1
a2

while

ζ ′1 =
a2

a2
1

, ζ ′2 =
a3

2

a2
1a

2
3

and ζ ′1 =
a2

a2
3

.

The parameters ai then must satisfy

a2
1 + a2

2 + a2
3 = 0.

In Fig. 6 the parameters for iteration Eq.(2.1) with a cycle length 3 are (a1, a2, a3) =
(exp(iπ/2), exp(iπ/6), exp(−iπ/6)) The dynamics of the corresponding sequence of partial sums
is depicted in Fig. 8. In Fig. 7 the parameters are a1 = π/3 + 0.05, a2 = −π/3 + 0.05, and
a3 = 0.05. The dynamics of the corresponding sequence of partial sums are similar to those shown
in Fig. 8.

Example 5.14 (even cycles) Let aj = aj+c for all j and c finite and even. Define ωn by
Eq.(5.13), and define

ζk :=
1

a2k
ωk = γb2k/ccξk where ξk = ξk mod c/2 :=

1
a2

k mod c/2∏
j=1

α2j−1

α2j


and

γ :=

 c/2∏
j=1

α2j−1

α2j

 .

2The reason we cannot immediately extend these results to random sequences is because the partial sums Eq.(5.32)
are not bounded above.
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Figure 8: Sequence of partial sums given by Eq.(5.33) for a cycle length 4 with parameters
(a1, a2, a3) = (exp(iπ/2), exp(iπ/6), exp(−iπ/6)) corresponding to Fig. 6. The dark line corresponds
to the partial sums of 1

a2j
ωj and the light line to the partial sums of 1

a2j
ω−1

j .

Similarly, define

ζ ′k :=
1

a2k
ω−1

k = γ−b2k/ccξ′k where ξ′k = ξ′k mod c/2 :=
a2

α2k mod c

k mod c/2∏
j=1

α2j−1

α2j

−1

.

The following Lemma yields a nice specialization of Theorem 5.13.

Lemma 5.15 Let ξj , ξ
′
j ∈ C satisfy |ξj | ≤ z < ∞ , |ξ′j | ≤ z′ < ∞ ∀ j and let |γ| = 1 with γ 6= 1.

Then for any positive d ∈ N, we have

sup
k

∣∣∣∣∣∣
k∑

j=0

γbj/dcξj

∣∣∣∣∣∣ < ∞ and sup
k

∣∣∣∣∣∣
k∑

j=0

γ−bj/dcξ′j

∣∣∣∣∣∣ < ∞.

Proof. This follows immediately for d finite and γ 6= 1 since |ξj | ≤ z < ∞ and |ξ′j | ≤ z′ < ∞ for all
j and γ±j is a (nonstationary) rotation around the unit disk in C. �

If |γ| = 1 with γ 6= 1 then Lemma 5.10 and Lemma 5.15 guarantee that the parameters satisfy
Eq.(5.33). If, in addition, (an) satisfies Eq.(5.18)-(5.19) then Theorems 5.1, 5.4, and 5.7, together
with Lemma 5.15 assure that S1 diverges for this class of parameters. This yields the following
corollary.

Corollary 5.16 (continued fractions with even parameter cycles) Let the nonzero com-
plex sequence a := (an)∞n=1 be periodic with even period, that is, an = an+c for all n and a fixed c
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Figure 9: Sequence of partial sums given by Eq.(5.33) for a cycle length 4 with parameters
(a1, a2, a3, a4) = (exp(iπ/4), exp(iπ/6), exp(iπ/4), exp(i(π/6 + 1/2))) corresponding to Fig. 2. The
light line corresponds to the partial sums of 1

a2j
ωj and the dark line to the partial sums of 1

a2j
ω−1

j .

even. Define

γ :=

 c/2∏
n=1

a2
2n−1

a2
2n

 . (5.35)

If (an) satisfies Eq.(5.18)-(5.19) and |γ| = 1 with γ 6= 1, then the iterates vn of the corresponding
difference equation Eq.(2.2) are bounded and the Ramanujan continued fraction S1(a) defined by
Eq.(1.1) diverges with the even/odd parts of S1(a) converging to separate limits. Conversely, if
c = 2 and S1(a) diverges, then either

(i) |γ| = 1 with γ 6= 1 or (ii) a2
1 = a2

2 ∈ (−∞, 0).

Proof. We have already proved the sufficient conditions for the boundedness of the iterates vn and
corresponding divergence of S1 in the preceding discussion. In the case c = 2, β = a2/a1 where β
is defined by Eq.(5.4), so condition Eq.(5.18) is automatically satisfied for all nonzero (a1, a2). The
necessary conditions (i) and (ii) follow immediately from Theorem 3.1. �

The dynamics of the sequence of partial sums corresponding to iteration Eq.(2.1) for a cycle
length 4 with parameters (a1, a2, a3, a4) = (exp(iπ/4), exp(iπ/6), exp(iπ/4), exp(i(π/6 + 1/2))) (see
Fig. 2) is depicted in Fig. 9.
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5.5 A generalization of S1

We note in passing an immediate generalization of the convergence theory for continued fractions
of the form S1. Recall that we define a = (a1, a2, . . . ). In [2] the continued fraction

S1(a, b) =
1ba2

1

1 +
2ba2

2

1 +
3ba2

3

1 +
. . .

(5.36)

was studied. It was shown that this leads to the rescaled sequence (v(b)
n ), analogous to Eq.(1.5),

v(b)
n :=

qn

Γb/2(n + 3/2)a(n+1)
n

. (5.37)

The difference equation Eq.(2.2) then becomes

v(b)
n =

(
2

2n + 1

)b/2 1
an

(
an−1

an

)n

v
(b)
n−1 +

(
4

(2n− 1)(2n + 1)

)b/2

n2

(
an−2

an

)(n−1)

v
(b)
n−2, (5.38)

and the matrix product

U (b)
n =

 n∏
j=2

Kj

 n∏
j=2

(
I +

1
(2j)b/2

Ŵj

)
. (5.39)

Thus we have the following generalization:

Theorem 5.17 (generalized continued fractions of Ramanujan) Let the nonzero complex
sequence a := (an) satisfy Eq.(5.18), Eq.(5.34) and, for b > 1,

0 6=
∞∏

j=2

(
1− 1

(2j)ba2
2j

)
< ∞. (5.40)

Then the iterates v
(b)
n of the difference equation Eq.(5.38) are bounded and the corresponding Ra-

manujan continued fraction S1(a, b) defined by Eq.(5.36) diverges with the even/odd parts of S1(a, b)
converging to separate limits.

Proof. Define ηn := (2n)−b/2. The result then follows from Theorems 5.1, 5.4 and 5.7 with the
exception that

lim
n→∞

det(Y(b)
n ) =

(π

2

)b/2
β where Y(b)

n =
n∏

j=1

Kj +
1

(2j)b/2
Wj + O

(
j−b
)

(5.41)
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for β, Kj and Wj given by Eq.(5.4), Eq.(5.8) and Eq.(5.9). �

6 Concluding Remarks and Open Problems

We begin with a recapitulation of particularly clean versions of our main results.

Theorem 6.1 (summary) Let the nonzero complex sequence of parameters a := (an) satisfy

0 6=
∞∏

n=1

(
1− 1

(2n)ba2
2n

)
< ∞ and 0 6= lim

n→∞

a2

a2n−1
2n a2n−2

2n−1

2n−2∏
j=1

a2
j < ∞.

For all b > 1, the iterates v
(b)
n of the corresponding difference equation Eq.(5.38) are bounded and

the Ramanujan continued fraction S1(a, b) defined by Eq.(5.36) diverges with the even/odd parts of
S1(a, b) converging to separate limits in the following cases:

(i) Even periodic parameters: If an = an+c for all n and fixed c even, and |γ| = 1 with γ 6= 1
where

γ :=

 c/2∏
n=1

a2
2n−1

a2
2n

 .

(ii) General deterministic parameters:

sup
k

∣∣∣∣∣∣
k∑

j≥n

1
a2

j∏
i=1

a2
2i−1

a2
2i

∣∣∣∣∣∣ < ∞ and sup
k

∣∣∣∣∣∣
k∑

j≥n

a2

a2
2j

j∏
i=1

a2
2i

a2
2i−1

∣∣∣∣∣∣ < ∞.

While the principal application of interest in this work has been the determination of the diver-
gence of continued fractions, our analysis touches on many different areas of mathematics, from
difference equations, to dynamical systems, to matrix theory. We noted in Section 5.2 a direction
for further research is to find an integral representation similar to Eq.(5.23) for generalized Lerch
sums of the form Eq.(5.22) with parameters ω = (ω1, . . . , ωn) involving more complicated behavior.
With regard to infinite products of matrices, it would be interesting to see if the techniques pre-
sented in Section 5 can be applied to general random matrix products. This would have important
implications for Markov processes and random walks. While the continued fractions we considered
here lead only to 2 term difference equations such as Eq.(1.2), one could conceive of more general
difference equations in and of themselves, for example recursions of the form

qn = (n + 1−m)αn

(
n

n−m

)
qn−m−1 +

m−1∑
j=0

(
n

n− j

)
qn−(j+1)
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and their corresponding renormalized difference equations

tn+1 =
n + 1−m

n + 1
αntn−m +

1
n + 1

m−1∑
j=0

tn−(j+1).

Such generalizations would lead to an (m+1)× (m+1) matrix analysis analogous to that pursued
here. One possibly far reaching issue is whether or not the general recurrence relations above admit
generating functions. If so, what can be said about these generating functions, the sequences they
encode and the functions they characterize?

Finally, the attentive reader will note that we have left out any mention of the parameter values
corresponding to the simulations shown in Fig. 4 and Fig. 53. It is easy to verify that for the
parameter values in these examples the partial sums corresponding to Eq.(5.32) are not bounded.
However, condition Eq.(5.32) is only sufficient, thus we cannot determine from our analysis whether
or not the continued fraction S1 converges for these parameter values. Our analysis, while quite
general, still leaves undetermined the necessary conditions for the matrix products Yn to converge.

Indeed, as noted in Section 3, the case of complex convergence is much more vexing, largely
because the Seidel-Stern result is not available. Thus, we leave for a sequel the question of a more
complete analogue to Theorem 3.1.
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