

PRE- AND POST-PROCESSING

TOOLS FOR NEXT-GENERATION SEQUENCING

DE NOVO ASSEMBLIES

by

Sari S. Khaleel

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Master of Science in Bioinformatics

and Computational Biology

Spring 2012

© 2012 Sari Khaleel
All Rights Reserved

PRE- AND POST-PROCESSING

TOOLS FOR NEXT-GENERATION SEQUENCING

DE NOVO ASSEMBLIES

by

Sari S. Khaleel

Approved: __
 Cathy H. Wu, Ph.D.
 Professor in charge of thesis on behalf of the Advisory Committee

Approved: __
 Errol Lloyd, Ph.D.
 Chair of the Department of Computer and Information Sciences

Approved: __
 Babatunde A. Ogunnaike, Ph.D.
 Interim Dean of the College of Engineering

Approved: __
 Charles G. Riordan, Ph.D.
 Vice Provost for Graduate and Professional Education

 iii

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Cathy Wu; and my committee members

Dr. Chuming Chen, Dr. Shawn Polson, and Dr. Eric Wommack for the guidance,

encouragement, and patience that they have provided me with over the past two years.

I would also like to thank my friends, Phil Perry and Michael Turchiano, and my

colleagues, Dan Nasko and Xia Bi who have supported me and enriched my life.

This dissertation was made possible by funding from the National Science

Foundation grant # MCB-0731916 (to K.E. Wommack and S.C. Cary), the Gordon

and Betty Moore Foundation’s Marine Microbiology Initiative to (K.E. Wommack

and S.W. Polson); and the U.S Department of Energy grant # DE-FOA-0000368 (to

C.H. Wu).

I would like to acknowledge Craig Cary of the University of Waikato, New

Zealand for his cooperation with my metagenome analysis projects, and Miguel

Pignatelli from the Wellcome Trust Genome Campus, EBI for his assistance with the

development of my tools and expanding my knowledge of bioinformatics

programming.

This dissertation is dedicated to my parents, Safaa and Wiaam Khaleel for their

love, support, and guidance throughout my life, and to my brother, Waseem Khaleel,

for being my brother and best friend.

 iv

TABLE OF CONTENTS

LIST OF TABLES ... v	
LIST OF FIGURES..vii	
ABSTRACT ... x

Chapter	

1 INTRODUCTION.. 1	

2 PRE-PROCESSING OF NEXT GENERATION SEQUENCING READS
AND DE-NOVO GENOME ASSEMBLY.. 5	

2.1	 Next-Generation Sequencing Technology .. 6	
2.2	 Error Profiles of Illumina and 454 Platforms .. 7	
2.3	 De novo Genome Assembly Using the De Bruijn Graph Approach 9	
2.4	 Review of Current Tools for Pre-processing NGS Reads 14	
2.5	 ngsShoRT .. 17	
2.6	 Conclusions ... 28	

3 DETECTION AND REMOVAL OF EXOGENOUS SEQUENCE
ARTIFACTS FROM NGS READS... 29	

3.1	 Removing Primer/Adaptor Contamination in Literature......................... 30	
3.2	 The kmerFreq Algorithm... 30	
3.3	 Testing kmerFreq on 454 Reads of a Real Viral Metagenome 32	

4 CHIMERIC CONTIGS IN METAGENOME ASSEMBLIES 37	

4.1	 Introduction to Metagenomics and Metagenome De Novo Assembly.... 38	
4.2	 The Chimeric Contig Simulation and Analysis Pipeline......................... 42	
4.3	 Generation of Simulated Metagenomes: createMetagenomes 45	
4.4	 Analysis of Read-to-Contig Alignment Information: contigAnalyzer 48	
4.5	 Analysis Results for Simulated Bacterial Metagenome Assemblies....... 52	
4.6	 Conclusion... 60	

5 CONCLUSION .. 64	

REFERENCES... 66	

 v

LIST OF TABLES

Table 4.1 	 Simulated 454 dataset and their Newbler de novo assembly
statistics. Contig statistics were derived from each assembly’s
454AllContigs.fna, excluding contigs shorter than 400 bp (read
length). C.L. = contig length. .. 54	

Table 4.2 	 Analysis pipeline results for the simulated test dataset assemblies.
The information shown in this table was derived from contig
reports generated by analyzeChimericContigs (see section 2.4). chi
contigs = chimeric contigs, sig-chi contigs = significantly chimeric
contigs, sig-chi contigs with LCA > spp = significantly chimeric
contigs where the rank of the LCA reported by NCBI’s Taxonomy
Browser was higher than “species” (genus and above), whereas
other sig-chimeric contigs were formed by different species strains
of the same organism... 54	

Table 4.3 	 Taxonomy reports for simulated metagenome assemblies. This
table shows a subset of the Taxonomy report file produced by our
pipeline for Newbler assemblies of the X10, X10_error, and X5
datasets, showing the top 18 organisms contributing to sig-
chimeric contigs. Organisms from the same species/genus are
highlighted using the same color. Note that the “percentage of
(Not-) significantly chimeric contigs” equals the “percentage of
(Not-) significantly chimeric contigs with an LCA rank higher than
species” + “percentage of (Not-) significantly chimeric contigs
formed by strains of the same species.” .. 56	

 vi

Table 4.4 	 Possible functions of chimeric regions on contigs with an LCA
rank above genus. Several sig-slices from the Sig-slice report
generated by analyzeChimericContigs (see section 4.4) were
aligned against the nr/nt database using BLASTN (with the Entrez
query field set to “bacteria”). The table shows the dataset, slice ID
(parent contig ID and slice location on contig in 1/100ths of contig
length), the LCA (and its rank), and the expected function of this
region. The expected function of these slices was deduced from the
BLAST report by choosing the most common feature of the
subject sequences. Note that contig01335 was almost entirely
chimeric (some slices are not shown in this table) and aligned to
the rRNA-16S ribosomal RNA sequence in members of the family
Pasteurellaceae. ... 59	

 vii

LIST OF FIGURES

Figure 2.1 Differences between Overlap and De Bruijn Graph Construction.
Based on the set of 10 8-bp reads (A), we can build an overlap
graph (B) in which each read is a node, and overlaps >5 bp are
indicated by directed edges. Transitive overlaps, which are implied
by other longer overlaps, are shown as dotted edges. In a de Bruin
graph (C), a node is created for every K-mer in all the reads; here
the K-mer size is 3. Edges are drawn between every pair of
successive K-mers in a read, where the K-mers overlap by k -1
bases. In both approaches, repeat sequences create a fork in the
graph. Note here we have only considered the forward orientation
of each sequence to simplify the figure. Adapted from [35]................... 11	

Figure 2.2 Construction and Resolution of the DBG graph of a DNA
sequence. The sequence at the top represents the polymorphism-
free genome sequence, which is then sampled using shotgun
sequencing with 7-bp reads (step 1). Some of the reads have errors
(red). In step 2, the K-mers in the reads (4-mers in this example)
are collected into nodes and the coverage at each node is recorded.
There are continuous linear stretches within the graph, and the
sequencing errors create distinctive, low-coverage features through
out the graph. In step 3, the graph is simplified to combine nodes
that are associated with the continuous linear stretches into single,
larger nodes of various k-mer sizes. In step 4, error correction
removes the tips and bubbles that result from sequencing errors
and creates a final graph structure that accurately and completely
describes in the original genome sequence. From [11]. 13	

 viii

Figure 2.3 Assembly of ngsShoRT-trimmed datasets using Velvet. Each
trimmed dataset is named after the sequence of ngsShoRT
trimming algorithms used to create it from raw reads. For (a),
Contiguity is measured as the N50 contig length (C.L.). For (b)
and (c), Correctness is measured as the ratio of length of contigs
(Hit Contig Length, HCL) aligning to the C. elegans reference
genome and the complete proteome database using BLASTN and
BLASTX, respectively. Contiguity and Correctness were measured
for contigs with C.L. >= 200 bp. In (d) and (e), Velvet
performance is measured as the maximum RAM usage and
runtime of the DBG building and manipulation step (velvetG) of
Velvet, respectively. 5adpt = 5adpt[mp =100, list=Illumina
primers and adapters, search_depth = full_read_length,
action=ka], nsplit5 = nsplit[n ≥5], ncutoff1 = ncutoff[n=1] =
remove reads with any ‘N’ bases, tera = TERA[avg =2], lqr =
LQR[lqs =3, p ≥70%], mott= Mott[ml = 0.6], 3end = 3end[x=7].
For 3end, x was set to 7 to compare it to TERA[avg=2], which
removed about 7% of bases... 24	

Figure 3.1 BLASTN matches in nr/nt for Left1 and Left, the merged
sequences of high-frequency left 8-mers detected by kmerFreq.
BLASTN was run using word length = 7, and all other parameters
were set to their default values. Only hits with E-value < 5 are
shown in this figure. .. 34	

Figure 4.1 Flow diagram of a typical meta-genome project. Dashed arrows
indicate steps that can be omitted. From [57]... 39	

Figure 4.2 The chimeric contig simulation and analysis pipeline. 44	

Figure 4.3 The contigAnalyzer pipeline. .. 49	

Figure 4.4 Cladogram for a significantly chimeric contig. This cladogram was
generated by contigAnalyzer (step 7) for the largest contig in the
X5 assembly. The LCA for this tree is the Phylum Proteobacteria. 50	

 ix

Figure 4.5 Types of slices in a chimeric contig. This is a section of the sliced
coverage plot generated by contigAnalyzer (step 7) for a contig in
the X5 assembly. The X-axis shows the sources of each bases
(represented by characters: A= Xylella fastidiosa 9a5c, B = Xylella
fastidiosa M12), and the Y-axis shows the coverage for every base.
A non-chi (non-chimeric) slice has one source, while a not-sig (not
significant) slice is chimeric but not “significant” for analysis
because it did not satisfy the coverage and/or length cutoffs (10,
20, respectively). Base sources of the sig-chi slice are suffixed
with an asterisk. The parent contig of these slices is labeled “sig-
chimeric” because it had at least one sig-chi slice. Not-sig-
chimeric contigs have non-chi and not-sig chi slices but no sig-chi
slices. ... 52	

Figure 4.6 Location of sig-chimeric slices on contig.. 59	

Figure 4.7 Mean base coverage of significantly chimeric contigs (sig-contig)
and their significantly chimeric (sig-) and non-chimeric (non-chi)
slices. ... 60	

 x

ABSTRACT

High-throughput Next-Generation Sequencing (NGS) technologies have

revolutionized and accelerated genomic analyses. However, their shorter read length

and higher error rates in comparison to classical Sanger sequencing have hindered

downstream analyses such as de novo genome assembly. Therefore, there is an urgent

need to develop tools for quality control and pre-processing of NGS short-read data

and perform systematical assessments of their impact on downstream analyses

Many de novo assembly projects that use NGS include a pre-processing step

where low quality reads and sequence artifacts are cleaned from NGS reads using

unpublished in-house scripts. Although some open-source and commercial trimming

scripts or pre-processing tools are available, a simple and comprehensive open-source

toolkit with major trimming algorithms is currently lacking. Furthermore, most of the

aforementioned assembly projects assess assembly by contiguity alone without

evaluating the correctness of the assembled contigs.

The problem of misassembly is complicated further in metagenomic

assemblies by contig chimerism, which is caused by the co-assembly of reads from

two or more genomes at regions of sequence similarity. Recently developed

metagenomic assemblers attempts to solve this problem during assembly, but they are

trained on short, high-coverage Illumina reads and not the long, low-coverage reads of

454, the preferred platform for metagenome sequencing. Contig chimerism affects

downstream metagenome analyses, such as binning and gene prediction.

 xi

Presented are methods and tools for pre- and post-assembly processing of NGS

data. ngsShoRT (next-generation-sequencing Short Reads Trimmer), a tool written in

Perl to implement many of the commonly used algorithms in trimming literature as

well as methods developed by our group, was developed for pre-processing of NGS

reads. ngsShORT was tested on Illumina paired-end (PE) reads of the Caenorhabditis

elegans genome, and its trimming methods were compared by the improvement in

assembly contiguity as well as accuracy with BLAST. A particular problem in

trimming NGS reads is the identification of adaptor sequences in NGS reads that may

not be detected by regular text-search algorithms. This problem can be managed by

the identification and removal of high frequency K-mers in reads using kmerFreq, our

adaptor sequence detection and trimming tool. kmerFreq was tested on 454 reads of a

viral metagenome specimen and the resulting improvement in assembly contiguity and

assembler performance was evaluated.

Finally, an analysis pipeline for contig chimerism in metagenomic assemblies

of simulated 454 reads is presented and tested on a simulated bacterial metagenome.

Our hypothesis is that chimeric contigs can be identified in a metagenomic assembly

by the presence of unique coverage and polymorphism attributes that distinguish them

from non-chimeric contigs. To train this post-assembly approach, a chimeric contig

simulation and analysis pipeline was developed to study contig chimerism in

assemblies of simulated metagenomes. The pipeline was used to simulate a bacterial

metagenome and analyze and compare chimeric and non-chimeric contigs in its

assembly. The results of this analysis may provide insight into coverage and

polymorphism patterns in chimeric contigs, and may be useful for the detection of

chimeric contigs in a real metagenome assembly.

 1

Chapter 1

INTRODUCTION

The emergence of Next-Generation Sequencing (NGS) technologies as a cost-

effective, high throughput alternative to classical Sanger technology has greatly

benefitted biological research. Popular commercially available NGS platforms include

Illumina (Genome Analyzer I, II and HiSeq), Roche (454 GS FLX Pyrosequencer) and

ABI (SOLiD). Currently, the two major NGS platforms are Illumina and 454 [52, 60].

Unfortunately, all NGS platforms have major drawbacks in comparison to

classical Sanger sequencing, including shorter read lengths, higher base-call error

rates, and novel platform-specific artifacts. These sequencing errors result in poor

quality assemblies that have shorter lengths and higher error rates when aligned to

reference sequences [7]. In addition, the high throughput and short length of NGS

reads (especially Illumina and ABI-SOLiD) make classical Overlap-Layout-

Consensus (OLC) assembly algorithms obsolete. Instead, short high-throughput NGS

reads are usually assembled using the de Bruijn Graph (DBG) approach, in which

reads are decomposed into K-mers that in turn become the nodes of the DBG [37, 45].

The DBG approach has several drawbacks that include sensitivity to sequencing

errors, as miscalled bases produce erroneous K-mers that result in increasing the DBG

complexity, which can lead to longer runtime, more memory overhead, and more

importantly, poor assemblies [7].

Consequently, many assembly projects include a pre-processing step where

NGS data is “quality-trimmed” using a combination of trimming methods. Although

 2

some open-source and commercial trimming scripts or pre-processing tools are

available, a simple and comprehensive open-source toolkit that includes all the major

trimming and contaminant detection methods is currently lacking.

Chapter 2 covers the problem of pre-processing NGS reads and their

subsequent assembly using De Bruijn Graph assemblers. General problems of the

Illumina and 454 platforms are reviewed first, followed by a discussion of the DBG

assembly algorithm and its popular assemblers and a review of trimming algorithms

used in literature as well as commonly used trimming packages/scripts for pre-

processing NGS reads. Chapter 2 ends with presenting ngsShoRT, an NGS reads

trimming tool that implements most of the commonly used sequence-trimming

methods in NGS literature as well as methods created by our group. ngsShORT

methods are applied to Illumina GA II paired-end (PE) reads of the Caenorhabditis

elegans genome, which are subsequently assembled using several popular DBG

assemblers. Individual trimming methods of ngsShoRT are compared by measuring

their resulting improvements on assembly contiguity and correctness with BLAST,

and then the combination of trimming methods that produces the greatest

improvement in both measures is determined.

Chapter 3 covers the problem of detection and removal of sequence artifacts, a

major step in NGS trimming. Most trimming tools search for a user-supplied list of

known platform sequence artifacts in reads using direct text-search. These methods

often do not allow for mismatches and cannot adapt to the possibility of

primer/adaptor sequence fragmentation. The alternative approach proposed in this

chapter for primer/adaptor trimming from NGS reads is done in two steps: The first

step is the detection overrepresented K-mers in the 5’- and 3’-ends of reads sampled

 3

from the dataset using an approximate hash table (a hash that uses approximate

matching for key lookups), as these K-mers may represent adaptor/primer sequences;

the second step is to trim out these over-represented sequences from the dataset reads.

 This approach is implemented in kmerFreq, a tool developed in Perl (with

multiprocessing in order to manage high throughput data) as a pre-processing step for

NGS reads. kmerFreq was tested on 454 reads of a viral metagenome specimen. To

evaluate kmerFreq’s detection function, its detected sequenced were aligned against

NCBI’s nr/nt database using BLASTN. To evaluate the impact of removing these

sequences, the subsequent improvement in de novo assembly of these reads was

measured for assemblies done using the OLC assemblers Phrap [15] and Newbler.

The problem of misassembly is more complicated in metagenomic assemblies

due to the lack of a reference sequence to use for evaluating assemblies [28]. This

complicates downstream analyses, such as binning and gene prediction. In addition,

metagenome assembly suffers from contig chimerism, reads from different taxonomic

groups co-assembling into the same contig [28, 42, 50].

Recently developed metagenome-specific assemblers are based upon DBG

assembly and are trained only on high-coverage short Illumina reads, and are not

reliable for assembly of low-coverage reads from the 454 platform, the more popular

platform for metagenome assembly. Therefore, Newbler, 454’s native OLC assembler,

remains the main assembler for 454 reads although it was not designed for

metagenome assembly.

Chapter 4 discusses the problem of contig chimerism. Our hypothesis is that

base coverage and polymorphism information can be used to differentiate chimeric

from non-chimeric contigs. To test this hypothesis, a chimeric contig analysis pipeline

 4

that generates simulated NGS reads of artificial metagenomes and analyzes the

coverage and polymorphism patterns of non-chimeric and chimeric contigs assembled

from these reads is presented. The goal of the pipeline to find a set of coverage and

polymorphism features that can be used to identify potentially chimeric contigs in

assemblies of real metagenomes with unknown source species. Chapter 4 concludes

by presenting the findings from running our analysis pipeline on a simulated bacterial

metagenome and discussing differences between chimeric and non-chimeric contigs

and examine the chimeric regions of these contigs at which reads from different

species co-assemble. Finally, the conclusions of this dissertation are summarized in

chapter 5.

 5

Chapter 2

PRE-PROCESSING OF NEXT GENERATION SEQUENCING READS AND
DE-NOVO GENOME ASSEMBLY

The disadvantages of NGS include higher error rates and shorter read lengths

in comparison to classical Sanger sequencing. In addition, the high throughput of these

short reads has led to using the De Bruijn Graph (DBG) approach for their assembly

using recently developed and not well-optimized algorithms. The higher error rate of

NGS data and the limitations of DBG assembly algorithms have led to emphasis on

pre-processing NGS reads using some trimming methods that usually include the

removal of reads with uncalled ‘N’ bases and adaptor sequences as well as some form

of quality filtering. However, most assembly projects perform this pre-processing step

using unpublished in-house scripts, and currently popular and freely available

trimming tools do not implement all popular trimming algorithms and lack essential

features for managing NGS reads and their platform-specific errors.

This chapter begins by discussing NGS platforms, specifically second-

generation, cyclic array sequencing platforms, and focuses on the most common of

these platforms, Illumina and 454, discussing their error profiles. Next, the De Bruijn

Graph (DBG) assembly method and its drawbacks are presented. The chapter

concludes by presenting ngsShoRT, a powerful tool written in Perl to manage Single

or Paired-end NGS data in the popular FastQ file format as well as Illumina’s native

qseq format, with special trimming methods for Illumina reads. ngsShoRT allows

users to trim and filter reads using varying combinations of popular trimming methods

 6

in literature as well as methods developed by our group. ngsShoRT is tested on

Illumina GA II datasets and the resulting improvements in assembly contiguity,

correctness, and assembler performance are evaluated in order to determine the best

combination of ngsShoRT methods and parameters for NGS read trimming.

2.1 Next-Generation Sequencing Technology

Until recently, the overwhelming majority of DNA sequence production has

relied on some version of the Sanger biochemistry [32, 52]. The need for a cheaper,

faster and more flexible alternative to Sanger sequencing has driven the development

of new, next-generation technologies [52]. The cheap cost, high throughput and high

coverage offered by NGS make the technology available to researchers in many old

and newly emerging fields of life sciences, such as genomics, transcriptome studies,

metagenomics, etc. In addition to its lower cost, major advantages of NGS over

Sanger sequencing include parallelization (over 100 reactions versus 96 or 384-

channel capillary systems), and the removal of cloning, the main bottleneck of Sanger

Sequencing. Cloning is not fully automated, is expensive, and since the target vector is

bacterial chromosomes, cloning is sometimes biased against certain DNA sequences

that are not easily clonable. In contrast, NGS uses PCR to generated amplicons from

fixed DNA segments [52].

Shendure et al. [52] classified alternative strategies for DNA sequencing into

several categories: (i) microelectrophoretic methods, (ii) sequencing by hybridization,

(iii) real-time observation of single molecules, and (iv) cyclic-array sequencing.

Cyclic-array sequencing is currently the most common of these technologies and most

of the major, commercially available NGS platforms are implementations of cyclic

array. Cyclic array is also known as “second generation sequencing” or sequencing-

 7

by-synthesis, that is, serial extension of primed templates [32, 52]. The most common

and commercialized implementations of NGS include 454 Genome Sequencers

(Roche Applied Science; Basel), Illumina (Genome Analyzer I, II, and HiSeq).

IIllumina; Sang Diego), the SOLiD platform (Applied Biosystems; Foster City, CA,

USA), and the HeliScope Single Molecule Sequencer technology (Helicos;

Cambridge, MA, USA) [52]. In this dissertation, the term “NGS” will be used to refer

specifically to sequencing-by-synthesis platforms.

2.2 Error Profiles of Illumina and 454 Platforms

Currently, the two major NGS platforms are Illumina and 454. Illumina offers

high throughput, short (~100 bp with Illumina GA II, ~150 bp with HiSeq) reads at

relatively low cost, making it the more popular platform for genome re-sequencing

(sequencing a genome with a known reference sequence to detect small mutations,

SNPs, etc), de novo genome and transcriptome assembly, seq-based studies (RNA-seq,

ChIP-seq), and quantitative analysis based on the number of sequence segments [37,

52]. 454, on the other hand, offers lower throughput, long (~400 bp with GS FLX

Titanium) reads, making it the popular platform for metagenomics and other fields

where long read length is essential [52, 60].

Several studies have been done to analyze the error profiles of NGS platforms

[18, 20, 37, 55], and their evaluations of the Illumina and 454 error profiles can be

summarized under the following metrics:

1. Base-call quality and alignability of reads to reference: On average, 55% of

Illumina GA reads passed quality filters, of which approximately 77% aligned

to the reference sequence. In contrast, approximately 95% of 454 reads

uniquely aligned to the target sequence [18].

 8

2. Coverage variation: An often-described property of Illumina and 454 profiles

is coverage variation [18, 20, 37, 55], which has been attributed to the inherent

bias of polymerase chain reaction (PCR) amplification during sample

preparation [18], or formation of secondary structures in single-stranded DNA

(ssDNA) [56]. AT-rich repetitive sequences showed lower coverage [18],

while GC-rich region had higher error rates [37]. Harismendy et al. [18],

noticed an over-representation of amplicon end sequences: These regions,

which represented only 2.3% of their targeted sequence, accounted for up to

56% of sequenced base pairs from Illumina GA technology in contrast to only

5% of 454 bases. This difference in platform performance was attributed to

library preparation process.

For 454, the emulsion PCR (ePCR) reaction seems to have a tendency

for generation of duplicate reads (multiple reads from a single template), which

occur when amplified DNA attaches to empty beads during ePCR, or when the

optical signal during sequencing ‘bleeds’ into the space of an adjacent empty

well [14].

3. Error rates: Illumina sequencers result in more substitution-type miscalls than

indel-type miscalls, while 454 sequencers result in more indel-type miscalls

than substitution-type miscalls [22]. The high frequency of indel miscalls are

caused by the difficulty of correlating the intensity of light produced by the

ePCR when the polymerase runs through a homopolymer with the actual

number of nucleotide positions.

 9

2.3 De novo Genome Assembly Using the De Bruijn Graph Approach

The long read length (~1000 bp) and low throughput of ABI-Sanger reads

allowed them to be assembled using the classical Overlap-Layout-Consensus (OLC)

approach. In the Overlap phase, overlap discovery involves all-against-all, pair-wise

read comparison. Overlap candidates must share K-mers that are used as alignment

seeds. Next, an approximate read layout is constructed from manipulation of the

overlap graph. In the consensus phase, progressive pair-wise alignments are used

compute an optimal multiple sequence alignment [11, 35]. Newbler, the native

assembler of the 454 platform, implements the OLC algorithm [35].

Unlike ABI-Sanger and 454, NGS technologies like Illumina and ABI-SOLiD

generate far shorter reads with far higher coverages (30 to even 100X coverages for

Illumina and SOLiD in comparison to the 8X coverage typical of Sanger sequencing

projects). Furthermore, the shorter read length of NGS reads requires many more reads

to generate the same level of coverage as that of Sanger. This results in very large

datasets of short read sequences that not only make the ‘read-centric’ OLC method

computationally unfeasible, but it also makes it seemingly impossible to find

heuristics to resolve the large number of overlaps between short reads [11]. However,

pioneering work by Pevzner and colleagues in the late 1980s and Idury and Waterman

in the mid-1990s introduced a different framework for handling assemblies. This

framework utilizes the de Bruijn Graph (DBG) data structure instead of the overlap

graph [11, 35, 43]. The DBG consists of very small, fixed-length subsequences known

as K-mers (K is usually 19 or higher), and was originally developed for combinatorial

mathematics [11].

In the DBG approach, the reads are decomposed into K-mers that in turn

become the nodes of a DBG. This allows compressing the massive read dataset by

 10

converting it into a K-mer frequency table where, regardless of the number of a K-

mer’s occurrences in the read dataset, it is represented only once in the table. A

directed edge between the DBG nodes indicates that the K-mers on those nodes occur

consecutively in one or more reads. Given perfect data, i.e., error-free K-mers

providing full coverage and spanning every repeat, the K-mer graph would be a de

Bruijn graph and it would contain an Eulerian path that traverses each edge exactly

once, which is equivalent to the genome sequence, making assembly a by-product of

the graph construction [11, 35]. Figure 2.1 shows the basic approach for constructing

Overlap and de Bruijn graphs from the same set of reads.

 11

Figure 2.1 Differences between Overlap and De Bruijn Graph Construction. Based
on the set of 10 8-bp reads (A), we can build an overlap graph (B) in
which each read is a node, and overlaps >5 bp are indicated by directed
edges. Transitive overlaps, which are implied by other longer overlaps,
are shown as dotted edges. In a de Bruin graph (C), a node is created for
every K-mer in all the reads; here the K-mer size is 3. Edges are drawn
between every pair of successive K-mers in a read, where the K-mers
overlap by k -1 bases. In both approaches, repeat sequences create a fork
in the graph. Note here we have only considered the forward orientation
of each sequence to simplify the figure. Adapted from [35].

Sequencing errors complicate K-mer graphs because a single miscall will

result in creating a new K-mer sequence that adds an additional branch within the de

Bruijn Graph. However, many errors are easily recognized by their structure in the

graph. For example, errors at the end of a read usually create K-mers that occur only

once, and therefore form dead-end ‘‘tips’’ in the graph. Errors in the middle of a read

create alternate paths called ‘‘bubbles’’ that terminate at the same node (Figure 2.2).

DBG assemblers search for these localized graph structures in an error correction

phase and remove the error nodes and other low coverage nodes [11]. Mate-pair

information can be used to resolve ambiguity, using the coverage at each node to

identify repeats, and by searching for unique paths through the graph consistent with

the mate pairs [11, 35 63]. Popular freely available DBG assemblers include Velvet

[63], ALLPATHS [4], ABySS [54], and SOAPdenovo [31].

 12

 13

Figure 2.2 Construction and Resolution of the DBG graph of a DNA sequence. The
sequence at the top represents the polymorphism-free genome sequence,
which is then sampled using shotgun sequencing with 7-bp reads (step 1).
Some of the reads have errors (red). In step 2, the K-mers in the reads (4-
mers in this example) are collected into nodes and the coverage at each
node is recorded. There are continuous linear stretches within the graph,
and the sequencing errors create distinctive, low-coverage features
through out the graph. In step 3, the graph is simplified to combine nodes
that are associated with the continuous linear stretches into single, larger
nodes of various k-mer sizes. In step 4, error correction removes the tips
and bubbles that result from sequencing errors and creates a final graph
structure that accurately and completely describes in the original genome
sequence. From [11].

By breaking reads into shorter K-mers and processing these K-mers instead of

reads, the K-mer graph construction discards long-range continuity information in the

reads that are longer than their constitutive K-mers [35]. Repeats longer than K lead to

tangled K-mer graphs that complicate the assembly problem, and complete read

information can be essential for resolving long repeat or ambiguous regions that

cannot be resolved using the K-mer graph or mate pair information [11, 35].

Furthermore, unlike the overlap graph, the DBG is not read coherent, i.e., there may

be paths (resulting from K-mer alignment) through the graph that form a sequence that

is not supported by the underlying reads. For example, if the same K-mer occurs in the

middle of two reads, but the reads do not otherwise overlap, the corresponding DBG

for those reads contains a branching node instead of two separate paths [11]. Another

potential drawback of the DBG approach is that graph construction can require an

enormous amount of computer resources [35]. Unlike conventional overlap

computations, which can be partitioned into multiple jobs with distinct batches of

reads (overlaps can be discovered in parallel with a matrix partition), the construction

 14

and analysis of a DBG is not easily parallelized [35]. As a result, DBG assemblers

such as Velvet [63] and ALLPATHS [4], which have been used successfully on

bacterial genomes, would require several terabytes of RAM for assembly of the human

genome, which is far more memory than is available on most computers. Currently,

ABySS [54], SOAP [31] and CLCBio [5] are the only DBG assemblers known to be

capable of assembling a mammalian genome [35]. All three assemblers use some form

of parallelization to divide the memory load, as well as early correction of the DBG to

remove erroneous K-mers that would otherwise add more complexity to the graph,

thus increasing memory usage [5, 11, 31, 35, 54]. Finally, current DBG assemblers do

not include base-call quality in graph construction, and do not produce quality score

information for assembled contig bases.

For these reasons, many sequencing projects (especially metagenome projects

where read length matters for better homology detection [60]) prefer the relatively

longer 454 reads (~400 bp with Titanium FLX) over Illumina reads (100 bp with GA

II, ~150 bp with HiSeq). Instead of DBG assembly, 454 reads are assembled using

Newbler which implements OLC instead of DBG, uses read quality score and flow

information in OLC construction, and produces quality scores for assembled contig

bases, along with complete read-to-contig alignment information [35].

2.4 Review of Current Tools for Pre-processing NGS Reads

Due to the problems of NGS, assembly projects that use NGS data include a

pre-processing step where NGS data is “quality-trimmed.” This section reviews the

pre-processing steps used by several recent assembly projects [1, 8, 9, 22, 34, 40, 54,

61, 64] that used Illumina and 454 data, as well as popular NGS-trimming software [5,

7, 10, 21, 16, 26, 30, 56, 41, 49]. Trimming steps that were used by all assembly

 15

projects and provided by most trimming software include removing reads with

uncalled ‘N’ bases, and the detection and removal of adaptor sequences using direct

text-search algorithms to search for user-specified adaptor sequences (usually the

platform’s known PCR primers, linkers and adaptors) in the reads set. To our

knowledge, only CLC’s commercial genomics workbench allows for the modification

of the text-search algorithms used for adaptor sequence detection.

An additional step done by a few assembly projects [1, 17] is to trim a number

of bases from the 3’-end of all reads because of low base-call quality at the 3’-ends of

reads [7, 20, 37]. Multiple trimmed datasets are generated by trimming different

arbitrary numbers of bases from the 3’-end of reads, and are assembled at different K-

mer lengths with a DBG assembler like Velvet. The chosen dataset (and thus the

number of 3’ bases that was removed from all of its reads) is the one with highest

contiguity assembly. This method is inefficient because it relies on selecting an

arbitrary set of numbers, treats all reads as if they all have the same quality scores at

their 3’-ends, and requires assembly of multiple datasets using different arbitrary K-

mer lengths, which is computationally expensive. Finally, the correctness of these

trimmed datasets is not evaluated by comparison to a reference sequence.

 A less crude approach involves a sliding window algorithm that tries to extract

a substring of read bases whose first and last base quality scores exceed a specified

cutoff. This “dynamic trimming” step [7, 16, 26] is still arbitrary when it comes to

determining the quality score cutoff and sliding window length, and can result in high-

quality reads that are still skipped during DBG assembly because they were trimmed

to lengths shorter than the K-value (K-mer length) used by the DBG assembler, which

requires all reads to be at least longer than K bases [63].

 16

An additional complication of trimming is the special case of mate pairs. As

we mentioned earlier, mate pairs are important for repeat resolution and scaffolding,

especially for DBG assemblers where long reads are broken down into short K-mers

that are usually shorter than repeat regions. Most NGS platforms, especially Illumina,

produce PE or mate pair reads. Mate pairs are usually listed in two separate files: the

forward direction reads are in a file suffixed with _1, and their reverse direction mate

reads are in a file suffixed with _2 in the same order of reads in the _1 file. During PE

assembly, assemblers take one read from each mate file and use them only if the

header of the read from _1 matches the read from _2. Moreover, a pair will still be

skipped if either or both of its reads are shorter than the K-mer length used by the

DBG assembler.

Given the importance of mate pairs and the important ordering and length

conditions for using their information, it was surprising to find that most of the

available trimming tools do not trim mate pair files as a unit. Instead, they trim each

mate file separately, which can result in removing some reads from the _1 file, while

their mates in the _2 file are not removed (and vice versa), thus ruining the mate pair

ordering for the two files. To our knowledge, the only freely available platforms that

manage mate pairs are Btrim [26] (in a secondary step following separate mate file

trimming), and NGS QC [41]. Except for NGS QC, none of the available toolkits

implement multiprocessing to manage large NGS read datasets, especially the short

reads of the high coverage Illumina and ABI-SOLiD platforms.

Despite the popularity of the Illumina platform, none of the software tools that

we reviewed offer Illumina-platform specific trimming methods or manage the direct

qseq-format output of Illumina, which included “Failed_Chastity” filter information

 17

that is very useful for trimming and can greatly improve assembly [22] but is lost

during conversion to FastQ or FastA + qual files prior to trimming. Another unique

feature of Illumina qseq format that is usually lost during quality score conversion

from Illumina’s ASCII-to-Phred mapping to the standard Sanger mapping is

Illumina’s ‘B’ quality score, which in Illumina jargon means ‘unknown quality score.’

None of the platforms reviewed managed this case or try to trim ‘B’-scored bases, and

only one assembly project [12] managed it using unpublished in-house scripts that

process raw qseq files.

Finally, we could not find a toolkit that included all popular trimming methods

and was used by many assembly projects. Instead, most of the assembly projects that

were reviewed [1, 8, 9, 22, 34, 40, 54, 61, 64] do not use these open-source toolkits

and instead perform trimming using their own unpublished in-house scripts, with

arbitrary parameters that are tailored to their NGS data.

2.5 ngsShoRT

ngsShoRT (NGS Short Read Trimmer) is a tool written in Perl 5.6 to trim

Single or Paired-end reads in the popular FastQ read format or Illumina’s native qseq

format using all of the popular trimming methods used in NGS assembly projects and

tools, as well as methods developed by our group. ngsShoRT uses multiprocessing to

manage high throughput data and reduce running time. Another unique feature of

ngsShoRT is that it was designed to manage Paired-End (PE) reads using PE-specific

modules. ngsShoRT can be easily incorporated as a pre-processing step for most NGS

transcriptome and genome assembly pipelines to improve the contiguity and

correctness of assembly as well as reducing the memory usage for the assembly

process.

 18

The following methods are implemented by ngsShoRT:

(1) 5adpt[mp,list,approx_match_modifiers,search_depth,action], which detects (at a

match percentage mp and up to a depth of search_depth) 5'-adaptor/primer

sequences loaded from list (which is defaulted to Illumina library primers and

adaptor sequences) and removes them from reads. 5adpt allows users to implement

approximate matching using the Levenshtein edit distance implementation in

CPAN’s String::Approx module [19]. This module allows approximate matching

using a simple percentage cutoff, or using detailed modifiers: the number of

allowed insertions, substitutions, and deletions. This feature, accessible through

the approx_match_modifiers option, allows 5adpt to be modified to adapt to

specific platform features and error profiles. For example, one should expect more

indels over substitutions for 454 reads, and expect the opposite for Illumina reads.

 After an adapter/primer/linker sequence (or fragment) is matched and

trimmed out of the read, action allows users to specify what to do with the read: it

can be removed completely (action=kill-read, kr) or trimmed to the base 5’ to the

detected artifact string (action=kill-after, ka).

(2) nperc[p] and (3) ncutoff[n], which filter out reads with uncalled ‘N’ bases whose

percentage or number are >= p or n, respectively. ncutoff[n =1] can be used to

replicate the commonly used pre-processing step of trimming out reads with any

‘N’ bases.

(4) nsplit[l], which detects strings of uncalled ‘N’ bases whose length is >= l, removes

them from the read, and then splits the read around the detected ‘N’-string into two

 19

smaller daughter reads. This method was developed by our group to remove N-

bases from reads without having to remove the entire read and lose its information.

nperc, ncutoff and nsplit are important for removing ‘N’ bases because

they usually have low quality scores, and DBG assemblers discard reads with such

bases [54], or simply convert them to an arbitrarily-chosen nucleotide like ‘A’

[63].

(5) 3end[x] and (6) 5end[y], which trim x and y bases from the 3' and 5' ends of all

reads.

(7) TERA[avg], is a method that I developed as an alternative to 3end. Unlike 3end,

TERA trims the 3'-end of each read differently depending on it base-call quality

scores. Starting at the 3'-end, the running average quality score (RAQS) for each

base is calculated until it exceeds a cutoff, avg, at a base X; all bases 3' to X are

then discarded. A good read with high quality (above avg) bases at its 3'-end will

not be trimmed by TERA, while a low quality read may be trimmed more than

other reads.

(8) Mott[ml], is a quality-window extraction algorithm (i.e., it can trim both the 5' and

3' ends of a read). Starting at the 3'-end of a read, it counts the running sum of (ml

- Perror) values, RSMLP, for each base in the read (Perror of a base = 10-Q/10), it

extracts the string from the first base with RSMLP > 0 to the base with the highest

RSMLP. Mott method was adapted from the CLC Bio Genomics Workbench [5].

Mott is also similar to the “QRL” algorithm used by [8].

 (9) LQR[lqs, p], which reads with over p% of bases whose quality score is under lqs.

It is similar to algorithms used in [5, 16, 22].

 20

(10) qseq0 and (11) qseqB[n,mode,action] are methods specifically designed for

Illumina reads. qseq0 removes qseq reads that did not pass the “Failed_Chastity”

filter, which was shown to greatly improve assembly contiguity and correctness

(Illumina technote, 2010). qseqB trims out reads with more ‘B’-scored bases than

n. Illumina’s ‘B’ score means ‘unknown quality score’ and bases with such scores

are usually trimmed out along with bases 3' to them [8, 12]. Unlike qseq0, qseqB

can be used with Illumina reads in the FastQ format after switching their ASCII-

to-Phred score mapping from Sanger back to Illumina using switch_scores (see

below).

At mode=”local,” qseqB[n] will remove reads with >= n ‘B’-scored

bases. At mode=”local,” qseqB[n] will search for a string of consecutive ‘B’-

scored bases no shorter than n. If such a string is detected, the read can be removed

completely (action=kill-read, kr) or trimmed to the base 5’ to the detected ‘B’-

scored string (action=kill-after, ka). A limited implementation of qseqB with

mode=local and action=ka is used by [12].

 (12) switch_scoring is not a trimming feature, but it allows switching the ASCII-to-

Phred mapping of base-call quality scores between Illumina and Sanger mapping,

which restores original Illumina-scoring for FastQ-formatted Illumina reads

downloaded from NCBI’s short read archive, including the aforementioned ‘B’-

scoring of bases that can then be trimmed using qseqB.

DBG assemblers will skip a PE read pair in paired-end assembly mode if either

of its reads is shorter than the K-mer length used for assembly. To avoid trimming

reads to lengths smaller than the K-mer size used for assembly, ngsShoRT enforces a

global minimum read length limit variable, min_rl, on TERA, 3end, 5end, and Mott

 21

methods to stop trimming when a read’s length = min_rl. So, if the highest K-mer

length used for assembly was 41, we set min_rl to 42 bp.

Another special case of PE read trimming is “widowed” mates: if a read pair

had one trimmed-out read and another intact read, ngsShoRT saves this “widowed”

read in a separate single reads file that is co-assembled with the PE reads file. This

approach was suggested by Daniel Zerbino (personal communication, 2011) and is

used by [8] and [41].

ngsShoRT was designed in object-oriented Perl where the main object is a

READ object. Every time ngsShoRT parses the next (qseq, FastQ, FastA) read from

its input reads file, a READ object is created for every read to hold its attributes (most

importantly, the header, the sequence, and the quality score strings of the source read,

and the “Failed_Chastity” filter of qseq-format reads). Trimming methods act on the

READ object’s components and are independent of the reads file’s original format,

which makes it easy to implement additional trimming methods or have different

output formats in ngsShoRT since the design is format-independent.

ngsShoRT was tested on a publically available (from NCBI Short Read

Archive, Accession Number: SRX026594) C. elegans genome, sequenced with

Illumina Genome Analyzer II, consisting of 3.3 million PE 100-bp reads (insert size:

356) which totaled to about 6.8 billion base pairs. This dataset was chosen because it

was relatively complex (multicellullar eukaryote with ~100 Mbp genome, consisting

of 7 large chromosomes), had an annotated reference genome and transcriptome, and

used a manageable memory overhead when assembled with Velvet (maximum RAM

usage was ~70 GB at K = 23, minimum was ~20 GB with K=41 on most of our

machines).

 22

A trimmed reads dataset was produced for each method by running ngsShoRT

to implement this method on the raw C. elegans genome dataset. The min_rl was set to

52 bp, which was greater than all K-mer lengths used for assembly. Assembly was

done using the popular DBG assembler Velvet (version 1.1.04) at different K-mer

lengths (27, 31, 41, and 51 bp). ngsShoRT and Velvet were run on X86_64 Fedora

Core 14 server with 256G RAM and 64 CPU/Core (2GHz). ngsShoRT was run using

60 threads, and the average runtime was 20 minutes per trimming job with a maximum

RAM usage of ~200 MB for the total of the 60 threads. Assembly correctness was

evaluated by aligning contigs against the C. elegans reference genome and complete

proteome database using BLASTN and BLASTX (coverage i.d. = 90, e-value =

0.00001), respectively. Figure 2.3 shows N50 Contig Length (C.L.), BLAST

correctness, and assembler performance results for these assemblies.

 23

 24

Figure 2.3 Assembly of ngsShoRT-trimmed datasets using Velvet. Each trimmed
dataset is named after the sequence of ngsShoRT trimming algorithms
used to create it from raw reads. For (a), Contiguity is measured as the
N50 contig length (C.L.). For (b) and (c), Correctness is measured as the
ratio of length of contigs (Hit Contig Length, HCL) aligning to the C.
elegans reference genome and the complete proteome database using
BLASTN and BLASTX, respectively. Contiguity and Correctness were
measured for contigs with C.L. >= 200 bp. In (d) and (e), Velvet
performance is measured as the maximum RAM usage and runtime of
the DBG building and manipulation step (velvetG) of Velvet,
respectively. 5adpt = 5adpt[mp =100, list=Illumina primers and
adapters, search_depth = full_read_length, action=ka], nsplit5 =
nsplit[n ≥5], ncutoff1 = ncutoff[n=1] = remove reads with any ‘N’ bases,
tera = TERA[avg =2], lqr = LQR[lqs =3, p ≥70%], mott= Mott[ml =
0.6], 3end = 3end[x=7]. For 3end, x was set to 7 to compare it to
TERA[avg=2], which removed about 7% of bases.

Overall, Velvet assemblies of from trimmed datasets had higher N50 contig

length (C.L.) and BLAST correctness than raw dataset assemblies at all K-mer

lengths, with the N50 increasing with higher K-mer lengths (Figure 2.3.a-c). VelvetG

RAM usage and runtime were also considerably reduced, especially for low K-mer

length assemblies where quality-trimming methods (TERA, lqr, qseqB) reduced them

to 50% of the raw dataset’s values. The high sensitivity smaller K-mer length

 25

assemblies to quality is a unique feature of the DBG algorithm: a miscall in a small K-

mer assembly can generate many more potential branches within the DBG than a

miscall in a longer K-mer assembly would. So, the choice of K is dataset-dependent,

and is a trade-off between specificity and sensitivity: shorter K-mers are more

sensitive to base-call errors, while longer K-mers allow more specificity (i.e. less

spurious overlaps) but lower coverage [63]. The higher sensitivity to base-call errors

of smaller K-mer (23, 27 bp) assemblies makes quality-based trimming much more

important than simple removal of reads with uncalled ‘N’ bases or low quality bases.

When comparing individual methods against each other, the following trends

are noticed from Figure 2.3:

1. The improvement in contiguity, correctness and assembler performance was

higher with methods that trimmed low quality bases and artifacts from reads

(5adpt-ka, 3end, TERA, Mott, qseqB-local-ka) rather than filtering entire reads

(lqr, ncutoff). This is interesting, since most assembly projects examined in

section 2.4 used methods that filter entire reads and did not use methods that

trim bases from reads.

2. qseqB greatly improved assembly. To our knowledge, ngsShoRT is the first

tool to implement qseqB on Illumina reads in FastQ format by restoring the

original Illumina ASCII-to-Phred scoring using switch_scores. Instead, a

methods similar to qseqB[mode=loca, action=ka] was used for raw qseq-

formatted Illumina reads by [12].

3. Removing all reads with ‘N’ bases (using ncutoff), a standard trimming step for

assembly projects, and splitting reads around strings of 5 or more ‘N’-bases

using nsplit reads did not seem to improve contiguity nor correctness and

 26

actually worsened Velvet’s performance. This observation may be limited to

our dataset, which had a low percentage of reads with uncalled bases (about

3%).

4. Not surprisingly, removing Illumina sequencing artifacts using 5adpt improved

all assembly measures, even with the simple parameters that we used for

experiment [match=100% with no approximate matching or edits allowed in

the sequence] in order to compare performance to the generally used method

for adapter trimming in literature, which do not use approximate matching.

5. TERA greatly improved all four measures even with the low cutoff of 2, which

was chosen in order to remove ‘B’-scored bases (which would be equivalent to

a score of 2 on Illumina’s ASCII-Phred mapping) as well as lower-quality

bases from read ends. In comparison to qseqB, TERA-trimmed read assemblies

performed a little better in terms of contiguity, and much better in terms of

BLAST correctness. So, TERA essentially removed regions similar to these

removed by qseqB and other low quality bases from reads. This supports our

belief that base-trimming, quality score-guided methods (qseqB does not really

calculate quality scores, it simply searches for ‘B’ characters) outperform read-

filtering or even base-trimming methods that do not use quality scores.

6. TERA was also compared to 3end[x] by removing a similar

number of bases. TERA[avg=2] removed ~7% of bases non-uniformly: a low-

quality read may be trimmed down to min_rl, while a high-quality read may

not be trimmed at all. In contrast, 3end trims reads uniformly (the same x bases

for all reads) regardless of each read’s overall quality. x was set to 7 for 3end,

which resulted in removing exactly 7% of bases from our 100 bp reads. TERA-

 27

trimmed read assemblies, with their higher average quality scores,

outperformed 3end-trimmed assemblies in assembler performance (Figure

2.3.d,e), as they result in less erroneous K-mers and thus less complicated

DBGs. TERA also outperformed 3end BLAST correctness (Figure 2.3.b,c).

In terms of contiguity (Figure 2.3), TERA performed similarly to 3end,

but for higher K-mer length assemblies (31, 41, 51 bp), 3end outperformed

TERA. Again, this can be explained by the balance of sensitivity and

specificity coming from K: smaller K-mers assemblies are more sensitive to

sequencing errors and thus prefer read correctness over length, while longer K-

mers assemblies prefer read length (for more alignments) over read correctness

and are less sensitive to sequencing errors. This is what is seen when

comparing the N50 C.L. of TERA-trimmed datasets that have a non-uniform

read length pool (read lengths between 100 bp and 52, the min_rl), to the

uniform 93 bp lower quality read pool of 3end[x=7].

Next, I tried to find the best combination of trimming methods to improve

assembly results. Only methods that improved our evaluation measures considerably

were used (therefore, ncutoff and nsplit we discarded), and we always started by

removing artifacts from reads using 5adpt, followed by trimmin bases/reads using a

quality-trimming method (lqr, mott, TERA, qseqB) or 3end, which was used for

comparison with TERA. Not surprisingly, using 5adpt greatly improved all measures,

making [5adpt, 3end] the best combination in terms of contiguity and BLASTX

correctness, and [5adpt, TERA] the best combination in terms of BLASTN correctness

and reducing Velvet’s RAM usage and runtime. It’s important to note that our choice

of x=7 bp for 3end, was based on the percentage of bases removed by TERA at avg=2,

 28

rather than comparing trimming with different x values then selecting the one that

resulted in the highest contiguity [1, 17].

2.6 Conclusions

This chapter presented ngsShoRT, a tool that implements several short read

trimming methods adapted from assembly literature as well as methods that we

created to trim single and paired-end NGS short reads in the FastQ and raw Illumina

qseq sequence formats. Several combinations of ngsShoRT methods were tested on

publicly available Illumina GA II eukaryotic genome data and showed that trimming

improved the contiguity, correctness and performance of assemblies. I recommend the

combination of 5’-adaptor-trimming and trimming of low quality bases from the 3’-

ends of reads using our novel trimming method, TERA. ngsShoRT is written in the

platform-independent programming language Perl and uses multiprocessing to manage

high throughput read sets. ngsShoRT can be incorporated as a pre-processing step for

genome and transcriptome sequencing pipelines to clean up NGS data to improve

assembly contiguity and correctness as well as assembler performance. Further

directions for ngsShoRT testing may include evaluating trimmed read assembly

performance with other popular DBG assemblers (SOAPdenovo, CLC Genomics, etc),

with different genome or simulated read datasets; and comparing the performance

(runtime, memory usage, and improvement in assembly) of ngsShoRT to other

popular NGS trimming tools.

 29

Chapter 3

DETECTION AND REMOVAL OF EXOGENOUS SEQUENCE ARTIFACTS
FROM NGS READS

The removal of primer/adaptor contamination is major step in trimming of

NGS reads. The approach for trimming adaptor/primer sequences in literature is to use

direct text-search algorithms to look for a user-specified set of sequences in the read

set and remove any matching reads instead of trying to trim only the adaptor sequence.

This approach requires a priori knowledge of platform-specific artifact sequences,

does not usually allow for mismatches or the possibility of primer/adaptor sequence

fragmentation. An alternative approach to adaptor/primer trimming that tries to

manage these problems is to search for high frequency K-mers in the dataset, but is

mostly used for detection and removal of tag sequences instead of sequence

contaminants [41, 49].

This chapter begins with a discussion of currently used approaches for

adaptor/primer trimming in literature. Next, an alternative approach that tries to detect

exogenous sequences in NGS reads without prior knowledge of platform-specific

artifacts is presented. This approach is implemented in kmerFreq, a tool written in Perl

to detect and remove adapter sequences from NGS reads. kmerFreq is tested on 454

reads from viral metagenomes and its performance is evaluated by examining the

sequences that it detected in these reads and the effect of trimming these sequences

from reads on subsequent assembly with Newbler and Phrap.

 30

2.1 Removing Primer/Adaptor Contamination in Literature

The general approach for removal of primer/adaptor sequences is to search for

sequences from a user-specified list of known artifacts (such as Illumina and 454

primer/adaptor libraries and/or user-specified sequences) in the read dataset [1, 5, 8,

16, 26, 41, and others]. These tools use direct text-search algorithms that do not allow

for mismatches or indels within the target sequence. A variation of this approach is to

align all reads against the UniVec [58] database using BLAST, discarding any reads

that match [10, 56]. This approach is computationally inefficient, especially for high

throughout datasets, and does not account for adaptor/primer fragmentation either.

Even with the approximate matching function of ngsShoRT (5adpt, see section

2.5), it is difficult to predict if and how adaptor/primer sequences will be fragmented

in the data, or adapt to the possibility of finding novel, dataset-specific artifacts.

Therefore, an alternative method for adaptor or tag detection implements searching for

over-represented sequences by obtaining a K-mer frequency table for the dataset

reads. K-mers sequences are loaded a hash table and examining high frequency K-

mers. This is implemented by [41] and [49], but it allows for only one mismatch per

K-mer sequence during the process of K-mer table construction. Additionally, the

extracted, non-tag, over-represented sequences were not tested to see if they actually

reflected possible vector/adaptor/primer contamination, and their influence on

subsequent assembly contiguity and assembler performance was assessed.

2.2 The kmerFreq Algorithm

My proposed approach to adaptor/primer detection is a variation of the

aforementioned K-mer frequency approach and is implemented in kmerFreq, a tool

written in Perl with multiprocessing functionality to manage high throughput reads.

 31

kmerFreq’s main function is to search for over-represented K-mers in a read sample

using approximate matching with the Levenshtein edit distance implementation in

CPAN’s String::Approx module [19]. An optional additional functionality is to trim

these overrepresented K-mers and/or user-specified adaptor sequences from the read

dataset using an implementation of ngsShoRT’s 5’ adaptor trimming algorithm, 5adpt

(section 2.5). kmerFreq’s algorithm is described below, and was tested on 454 reads

datasets for viral metagenome specimens.

From both directions in a read, kmerFreq searches for over-represented K-mers

in overlapping windows of size K. For each window, a local hash table of K-mers that

uses approximate K-mer matching (allowing a certain mismatch percentage as well as

specific values for allowed insertions, substitutions and deletions) is built at every

iteration. K-mers in the window are approx-matched against this window’s local hash

table as well as a global K-mer table to allow for sliding of adaptor/primer sequences.

K-mer table building continues up to a user-specified depth within the read. K-mers

whose frequency exceeds a user-specified percentage cutoff are printed for every

window (Left/Right inSpan K-mer table file) and for the global K-mer hash

(Left/Right global K-mer table file).

In the second step of kmerFreq, these sequences are trimmed from reads (along

with an optional adaptor/primer/linker sequence list provided by the user).

Approximate matching is done for these sequences against all of the dataset reads

within a user-specified matching range (the default range is the first 100 bases from

the 5’ and 3’ ends). If a target sequence is detected within the first 100 5’ bases, it is

removed along with all bases 5’ to it. So, if the 8 bp sequence AGGACCGT was found to

start at 5’-33 in the read, the 5’ bases 1 through 41 are trimmed from the read. The

 32

same action is done from the 3’-end for sequences detected in the first 100 3’-bases. If

multiple hits are found on the same read, trimming is done from the deepest hit.

2.3 Testing kmerFreq on 454 Reads of a Real Viral Metagenome

We tested the K-mer detection and trimming functionalities of kmerFreq on

four Chesapeake Bay viral metagenome 454 datasets [Polson and Wommack,

unpublished]. For each dataset, reads were clipped and converted from sff to FastA +

FastA.qual files using Newbler’s sffinfo function, which is the default trimming tool

for 454 reads that trims out suspected primer and low quality sequences. Newbler

clipped 13 5’-bases (all of which had the sequence tcagaccgaatac) and, on average,

84 3’-bases from all reads.

Next, kmerFreq was run on these clipped reads to search for over-represented

8-mers (exceeding a minimum percentage of 2% in sampled reads) in the read sample

(10% of reads, picked at random) within the first 100 5’ and 3’ bases at a match

percentage of 100%. Any detected over-represented left and right global 8-mers were

then used by the trimming functionality of kmerFreq to trim all reads without using a

list of known 454 primer/adaptor sequences. kmerFreq’s trimming functionality

removed, on average, about 2.4% of bases in each clipped reads dataset.

Interestingly, in all four datasets, kmerFreq detected the same high frequency

overlapping global 8-mers within the first 30 5’-bases of reads, finding them in ~18%

of reads. High frequency global and local 8-mers were also found in the 3’-ends of

~3% of reads. We aligned the left global 8-mer sequences using CLUSTALW

(http://www.ebi.ac.uk/Tools/msa/clustalw2/), then used the alignment information to

manually merge the sequences into fewer representative sequences:

>Left1

 33

AGGACCGTTATAGTTAGG
>Left2
TCGCTACCTTAGGACCGTT
>Left3
CGCTACTTAGGACC
>Right1
TGGCAATATCAATC
>Right2
ATCCTGGCAAT
>Right3
GCGATGGAATCCTGG

Next, these sequences were aligned against the NR/NT database using

BLASTN. Figure 3.1 shows top hits (with E-value < 5) for these sequences, which

included several known cloning vectors. To evaluate the effect of trimming these

sequences from the datasets, clipped reads (reads clipped using sffinfo) and trimmed-

clipped reads (reads clipped using sffinfo, then trimmed using kmerFreq) that were

generated from the same raw dataset were assembled using Newbler and Phrap [15].

During assembly of clipped reads, Newbler printed a warning about finding

(using direct text match) “suspected 5’ primer TCGCTACCTTAGGACCGTTATAGTTA” and

the “suspected 3’ primer CGCTACCTTAGGACCGTTATAGTTA” in ~17% and ~3% of reads,

respectively. This warning was not printed for the trimmed-clipped reads.

Interestingly, the merged Left(1-3) and Right(1-2) sequences were substrings of these

suspected primers. So, Newbler’s pre-assembly warning confirms that (1) kmerFreq’s

detection function reported valid hits because they are substrings of known primer

sequences, and (2) kmerFreq’s trimming function successfully removed all of these

sequences (and their fragments and variant sequences, if any) from the trimmed

dataset. This indicates that Newbler’s sffinfo function left some untrimmed primer

sequences (within the first 30 5’ and 3’-bases of reads, constituting about ~2.4% of all

bases) in the clipped reads, and that these sequences were trimmed out by kmerFreq.

 34

Newbler assembly of trimmed-clipped reads had higher N50 contig length

(972 bp), maximum contig length (13,400 bp) and total assembled bases (2,065,295

bp) values than those of clipped reads (N50: 952 bp, maximum contig length: 11,917

bp, total bases: 2,034,316). Assembly of trimmed-clipped reads took only 7 minutes,

while assembly of clipped reads took 42 minutes on the same machine (Dell

PowerEdge R415 server, 2 AMD Opteron 4238 six-core processors at 3.60 GHz (total

of 12 cores), 128 GB of memory). Considering the fact that Newbler warned about

primer sequences only in the clipped reads set, this suggests that the 6X increase in

runtime for these reads (relative to trimmed-clipped reads) was caused by these primer

sequences, further confirming that kmerFreq detected and removed the correct

sequences.

Figure 3.1 BLASTN matches in nr/nt for Left1 and Left, the merged sequences of
high-frequency left 8-mers detected by kmerFreq. BLASTN was run using
word length = 7, and all other parameters were set to their default values.
Only hits with E-value < 5 are shown in this figure.

 35

For Phrap [15] assemblies, the most remarkable effect of trimming was on the

assembly runtime and memory usage: trimmed-clipped reads were assembled within 5

minutes and with a maximum RAM usage of 572 MB. In contrast, clipped reads

assembly required 9 hrs (108X of the trimmed-clipped reads’ assembly time) and a

maximum RAM usage of 4.6 GB (8X of the trimmed-clipped reads’ assembly

memory usage). This difference is similar to what was seen with Newbler assemblies,

which suggests that this 60X difference in runtime was caused by the primer

sequences that were not trimmed out of the clipped reads and thus caused many faulty

overlaps that complicated Phrap’s assembly. Additionally, trimmed-clipped read

assemblies had much higher N50 and Maximum contig length (767 bp and 28,214 bp,

respectively) than clipped-read assemblies (540 bp and 16,919 bp, respectively).

Finally, kmerFreq was tested on artificial datasets, created by inserting

artificial “adaptor” sequences into a subset of reads taken from one of the trimmed-

clipped datasets from the previous experiments. Sequences of 6-11 bases that had very

low frequency in the test dataset (< 0.01% of reads) were created and inserted them at

random positions within the first 100 5’ and 3’ bases in 70% of reads (selecting reads

at random). kmerFreq was run on the test dataset to detect over-represented (occurring

in >= 5% of reads) 8-mers, using 100% match (no approximate matching) for building

the K-mer frequency table. kmerFreq detected only the artificial sequences (or their

fragments if they were longer than 8 bp) in the test dataset (data not shown).

In conclusion, I have created a tool that can accurately detect (with/without

approximate matching) and remove primer/adaptor sequences and their fragments in

NGS reads without prior knowledge of the platform and its expected artifact

sequences. kmerFreq allows users to modify many parameters for K-mer search and

 36

trimming, and to specify target sequences to be trimmed along with over-represented

K-mers. kmerFreq was tested on newbler-trimmed 454 reads for real viral

metagenome datasets, and showed that it detected substrings of known 5’ and 3’

primers and removed them successfully (Newbler did not detect the aforementioned

primers in trimmed-clipped datasets) from the reads resulting in much faster and

higher contiguity assemblies with Newbler and Phrap. Further directions for

development of kmerFreq can include testing on other platforms (Illumina GA I, II,

and HiSeq; 454 FLX+, etc) as well as automating the K-mer search to try different K-

mer lengths for target dataset and determine the “best” set of K-mer sequences to use

for trimming. It would also be interesting to study the relation between K-mer length

and detected sequences in different platforms.

 37

Chapter 4

CHIMERIC CONTIGS IN METAGENOME ASSEMBLIES

The field of metagenomics aims to examine the genetic diversity encoded by

microbial life in organisms inhabiting a common environment by directly studying the

genomic material without culturing [52]. Due to the reliance of metagenomics on

sequencing, development of NGS technologies has provoked a profound impact in this

field and has put metagenomic experiments within the range of many microbiological

laboratories in terms of budget, time and work [27].

A major step in metagenomics projects is de novo assembly, which differs

from single-genome de novo assembly in three main aspects: one, a “correct” solution

or reference sequence for assembly evaluation are usually lacking in metagenomics;

two, single-genome assembly algorithms are not well suited for metagenome assembly

because they assume uniform read coverage depth and utilize coverage depth

information to resolve repeats, remove errors, and construct contigs and scaffolds.

Coverage depth is non-uniform in metagenomes, and high/low coverage regions are

not necessarily repeats or errors; three, reads from different species can co-assemble

into a single contig, a problem known as contig chimerism. Contig chimerism reduces

the quality of assembly and hinders downstream analyses that rely on it, such as

binning (association of sequences to taxonomic groups) and gene annotation, which

assume that contigs consist of reads from the same species.

This chapter begins with a discussion of de novo metagenome assembly and its

problems in general and contig chimerism in particular. Contig chimerism is very

 38

difficult to resolve (especially within strains of the same species), and most

approaches to managing this problem work at the pre-assembly (by binning/clustering

reads by taxonomy, sequence, etc) or assembly (metagenome-specific

assembly/scaffolding software) levels with limited success. I propose a post-assembly

approach that tries to identify chimeric contigs in a metagenome assembly, and to

break such contigs back to their original reads and re-assemble these reads into non-

chimeric contigs. Our hypothesis is that chimeric contigs are different from non-

chimeric contigs in certain features, such as coverage distribution and polymorphism

(SNPs) levels, and that such features can be used to identify potentially chimeric

contigs in an assembly without necessarily knowing the source species of their reads.

Our hypothesis will be tested by studying chimeric and non-chimeric contig

populations reads in assemblies of simulated metagenomes using a chimeric contig

analysis pipeline presented in this chapter. The chapter ends with a discussion of

analysis results on a simulated bacterial metagenome, the future directions for

improving the pipeline and how it may be applied for detection of chimeric contigs in

real metagenome assemblies.

4.1 Introduction to Metagenomics and Metagenome De Novo Assembly

Metagenomics can be defined as the application of shotgun sequencing of

DNA samples obtained directly from environmental specimens or from living beings

without culturing [28, 45]. In metagenomic studies that rely on NGS, the full genomic

content of the communities is sequenced to obtain the bacterial composition and

functional repertoire present in the environment of interest at the DNA or DNA-RNA

level. This is a great improvement over the classic 16S rRNA surveys that were useful

for taxonomic classification of bacterial and eukaryotic species [28, 52].

 39

The workflow of a typical

metagenome project is shown in Figure 4.1.

The two major NGS platforms used in the

DNA sequencing step of this workflow are

454 and Illumina [28, 33, 45]. However, The

longer length of 454 reads (400-500 bp with

GS FLX Titanium versus ~150 bp with

Illumina HiSeq), shorter runtime (PE analysis

requires only 1 day versus 10 instrument days

with Illumina) and their lower single read

error rate relative to Illumina makes it more

the more favorable platform for metagenome

assembly [57]. The longer read length of 454

is the most important of these advantages

because it reduces the possibility of

misassembly and improves downstream

analyses, especially for low-abundance species and functional annotation [57, 60].

However, 454 sequencing technology has its drawbacks, which include a high amount

of artificially duplicated reads and a bias towards indel errors (see section 2.2). Failure

to remove duplicate reads can affect downstream analyses, such as differential

assessment of gene fractions between two metagenomic communities [14, 57]. Indel

errors, on the other hand, result in reading frameshifts if protein-coding sequences are

called on a single read, which may be corrected during assembly as the consensus

sequence is determined from multiple reads [57].

Figure 4.1 Flow diagram of a
typical meta-genome
project. Dashed arrows
indicate steps that can
be omitted. From [57].

 40

An important attribute of metagenomes built from viral/microbial communities

that can affect sequencing and assembly design is community complexity, which

defined by Kunin et al. [28] as the function of the number of species in the community

(richness) and their relative abundance (evenness). A community with more species

that are closer to equal abundance is more complex than a community with less

species that have unequal abundance [28]. Community complexity affects downstream

analyses in general, and assembly in particular [28, 33, 45]. In literature, communities

are commonly divided into low, moderate, and high-complexity communities [33].

Low-complexity (LC) communities are dominated by a single near-clonal population

flanked by low-abundance populations, as in bioreactor communities. Assembly of LC

datasets may result in a near-complete draft assembly of the dominant population [28,

33]. Moderately complex communities (MC) have more than one dominant

population, also flanked by low-abundance ones, as has been observed in an acid mine

drainage biofilm [33]. High-complexity communities lack a dominant species, such as

agricultural soil communities, and result typically in minimal assembly without large

genomic fragments of any component population.

The variation of organism abundance in metagenomes built from

viral/microbial communities results in nonuniform read depth over the sequence and

makes de novo assembly algorithms that assume clonal genomes less suitable for

metagenomics. Most OLC and DBG assemblers (see section 2.3) were designed for

single genomes, where the major challenge is repeat resolution [11, 27, 28, 35, 57, 63].

Both OLC and DBG assemblers use coverage depth information to identify unitigs or

paths that appear to represent repetitive segments of a genome and keep them out of

initial assembly [27, 35]. These coverage-based approaches work well with single

 41

genomes, but can lead to false positives in metagenomic datasets. Coverage-based

methods can classify abundant organisms as repeats, preventing the assembly of

exactly those segments of the community that should be easily assembled [27, 57]. In

contrast, three algorithms will classify low-coverage sequences derived from low-

abundance organisms as sequencing errors, leading to false negatives in assembly.

Due to these problems of metagenomic DBG assemblers, most 454 reads are still

assembled using Newbler, the native OLC assembler of 454 technology, despite the

fact that it is also not trained for metagenome assemblies.

The consequence of failing to separate similar read sequences that belong to

different species or strains during assembly is the coassembly of these reads into the

same contig, resulting in contig chimerism [27, 28, 33, 45]. Coassembly is more likely

with reads from closely related genomes where the sequence similarity is higher, but

has been found between reads originating from phylogenetically distant taxa, with

conserved genes serving as the focal point for misassembly [28]. In addition to

reducing assembly quality, contig chimerism hinders downstream analyses, such as

binning and functional annotation (Figure 4.1). Binning, the process of associating

sequence data (reads, contigs, scaffolds) with contributing species (or higher- level

taxonomic groups) benefits from assembly because assembly should result in

assembling reads from the same source species into the same contigs.

Several solutions have been proposed for reducing contig chimerism: pre-

assembly approaches attempt to bin or cluster similar reads prior to assembly [45, 57],

a process that is computationally expensive with high throughput short reads.

Assembly approaches are done by modifying assembly algorithms (e.g., Celera and

TIGR) or development of metagenomic assemblers that were discussed above, and

 42

post-assembly pipelines try to assess contigs by aligning them to reference sequences

and calculate the percent identity, which is not a reliable solution since a fundamental

problem of metagenomics is that the “correct” or “reference” sequences are not

usually available [28].

This chapter presents a post-processing approach for resolving chimeric

contigs. This method will distinguish chimeric from non-chimeric contigs in an

assembly by identifying potential chimeric regions in a contig by their coverage,

polymorphism, and logistical attributes, which are expected to be significantly

different from their contig and analogous non-chimeric regions on that contig. These

features will be analyzed in assemblies of NGS reads of simulated metagenomes using

our chimeric contig analysis pipeline, which is presented in the following section.

4.2 The Chimeric Contig Simulation and Analysis Pipeline

The basic design of the pipeline is shown in Figure 4.2. createMetagenomes

(steps 1-4) is used to create raw FastA reads for an artificial metagenome with a

custom selection of organisms and coverages raised to a user-specified sequencing

coverage, X. Next, createMetagenomes converts the raw reads generated into Illumina

FastQ or 454 sff files using ngsfy (step 5), a program designed by Miguel Pignatelli

[45] to simulate NGS platform reads (Single- or Paired-end), with or without

sequencing errors.

The next step in the pipeline is the assembly of reads using an assembler that

provides read-to-contig tracking information, such as Celera, Newbler, SSAKE, and

Velvet [45]. Since the CM-generated test dataset consisted of 454 sff reads, Newbler

(step 6) was used for assembly, which stores read-to-contig tracking information in its

454Contigs.ace file. This information was used by contigAnalyzer (step 7) to generate

 43

the detailed contig reports (listed in section 4.4) for every contig. contigAnalyzer

separates contig reports into two main categories: chimeric and non-chimeric. It was

necessary to identify a detection threshold for our algorithm such that chimeric contigs

passing this cutoff are believed to be detectable based on specific attributes in

coverage and polymorphism caused by the co-assembly of reads from different

species. Chimeric contigs with coverages above this cutoff are referred to as

“significantly chimeric” contigs. For the initial test run, this threshold was represented

by a coverage cutoff: chimeric contigs with coverages above this cutoff were

detectable. This coverage cutoff and the detection threshold can be subsequently

“tuned” for our algorithm with more test runs on simulated and real data.

 44

Figure 4.2 The chimeric contig simulation and analysis pipeline.

Therefore, chimeric contigs are divided into two subcategories: significantly

chimeric (sig-chimeric) and not-significantly chimeric (not-sig-chimeric). A contig is

“significantly chimeric” if it contains a chimeric region that passes certain cutoffs

(discussed in section 4.4), the most important of which is the aforementioned coverage

cutoff. contigAnalyzer divides a chimeric contig by its source species into “slices,” so

that each slice has different source(s) from its adjacent slices. A slice is chimeric if it

has multiple sources, and is sig-chimeric (significantly chimeric) if it passes the

coverage cutoffs discussed in section 4.4. Our hypothesis is that sig-chimeric slices are

different in coverage, polymorphism, and other features from other non-chimeric

slices in their parent contig, and that the presence of sig-chimeric slices can be used to

differentiate chimeric from non-chimeric contigs.

The contig reports of non-chimeric, sig-chimeric, and not-sig-chimeric contigs

are analyzed and contrasted by analyzeChimericContigs (step 8), a script that

generates multiple large (60+ column) information tables for contigs and all slices

within contigs that can be loaded into R for statistical analysis. The current version

(1.0) of analyzeChimericContigs produces the following reports:

1. Taxonomy report: for every species used in the simulated reads set, analyze-

ChimericContigs reports its contribution in all, chimeric, and sig-chimeric

contigs. In addition, it reports (and prints a taxonomy tree of) all organisms

whose reads co-assembled with reads from this species.

 45

2. Non-, sig-chimeric, and Not-sig-chimeric contig reports: these reports include

information (length, taxa, LCA, coverage statistics, polymorphism, number of

slices and sig-chimeric slices, etc) for every contig in each group.

3. Sig-slice report: this report includes detailed information for each sig-slice in

the assembly, as well as the sig-slice’s parent contig, and analogous non-

chimeric slice(s) on the same contig. This report is important because it allows

to test our hypothesis: that sig-slices have distinguishing coverage,

polymorphism, and statistical features that differentiate them from their parent

contig and other non-chimeric regions on the parent contig.

4.3 Generation of Simulated Metagenomes: createMetagenomes

Since the pipeline relies on tracking reads and their source species to contigs, it

needs a metagenome simulation tool that (1) can create simulated reads with source

species information, (2) allows us to manipulate individual genome coverage as well

as overall metagenome sequencing coverage, (3) produces platform-specific read

formats that included quality score information, such as FastQ/qseq for Illumina and

sff for 454, and (4) offers pre-built artificial metagenome coverage distributions

commonly used in literature. Metasim [47], the popular metagenome simulation

software, satisfies the first and second requirements but fails the third and fourth

requirements, as it produces only flat FastA files without quality score information and

users have to design metagenomes from scratch.

Therefore, createMetagenomes (CM) a metagenome-simulation pipeline

designed in cooperation with Miguel Pignatelli (Wellcome Trust Genome Campus,

EBI) was created for the chimeric contig analysis pipeline. CM was written in Perl

 46

with a detailed usage manual and supports all of the above requirements. The steps of

the CM pipeline are shown in Figure 4.2 (steps 1-5) and are as follows:

Step 1 Selection of genomes. CM uses the genome FastA files provided by the user

(such as NCBI’s viral or bacterial genome repository) to generate a “genome

pool.” Genomes are then picked from this pool at random or following a user-

specified list. In the random pick case, the number of genomes to pick follows

the number of entries in the coverage distribution used in Step 2.

Step 2 Creation of Metagenome Distribution. CM offers the user three pre-built

coverage distributions that are based on the artificial metagenomes designed by

Mavromatis et al. [33], which consist of three different complexity

metagenomes (simLC, simMC, simHC). These datasets have been used by

about 20 metagenomic benchmarking studies since their publication in 2007

[33, 45]. Users can select and edit any of these distributions, or create a custom

distribution.

Step 3 Raise the sequencing coverage by X-fold. X is an integer value (1 by default),

and the coverage values from Step 2 are simply multiplied by X to simulate

raising the sequencing coverage of the metagenome specimen. This is useful

for studying effect of varying sequencing on metagenome assembly and

chimeric contig formation [45].

Step 4 Create raw FastA reads. By default, reads of user-specified length range (or

using the defaults of 100-100 bp for Illumina GA II and 400-400 bp for 454

Titanium) are picked from genomes, and each genome is “sequenced” by a

number of reads that corresponds to its target coverage (the product of the

coverage specified in Step 2 and the X value in Step 3). So, the number of

 47

reads per genome = (cov ˙ g)/r, where cov = the genome’s target coverage, g =

genome length, and r = minimum read length (specified in the length range).

By default, reads are picked at random from the genome sequence

(with a special case for circular bacterial genome sequences) with no region-

specific bias, i.e., read coverage is uniform over the genome sequence.

However, the user can simulate region-specific bias (such as known amplicon

sequences – see section 2.2) using a distribution profile option that forces

sampling to be higher at certain regions than others. The reads are generated as

FastA sequences, and the read header includes the organism’s gi, taxid,

scientific name (loaded from NCBI’s taxonomy files), read length, and the

read’s location in the genome.

 Step 5 Convert FastA reads to NGS reads. The final step of the CM pipeline is the

conversion of the raw FastA reads to Illumina or 454 sff reads (with/without

platform errors and mate pair features), and is done by ngsfy, a tool created by

Miguel Pignatelli to simulate Illumina and 454 reads in [45].

CM serves as a user-friendly interface for ngsfy that allows

multiprocessing to speed up simulations of large metagenomes. This step can

be run on flat FastA reads independently of the previous steps, which is useful

for two reasons: one, the FastA reads used by ngsfy can be generated from CM

(steps 1-4) or any other simulation software that produces FastA files, like

Metasim [47]; two, the same raw FastA reads can be subsequently used for

several runs of Step 5 to generate reads for different platforms or with different

error profiles and study the effect of changing the platform and its errors on the

behavior of the same original read sequence.

 48

4.4 Analysis of Read-to-Contig Alignment Information: contigAnalyzer

Our analysis pipeline needed a tool that can generate per-base coverage,

polymorphism, and taxonomy reports for contig assemblies from read-to-contig

tracking files. I did not find such a tool in literature, and thus created contigAnalyzer,

a tool written in Perl 5.6 that utilizes object-oriented programming, multiple

bioinformatics applications, and BioPerl modules to produce detailed analysis reports

for the three contig populations of our pipeline’s simulated metagenome assemblies:

non-chimeric, sig-chimeric, and not-sig-chimeric contigs. The ultimate purpose of our

analysis pipeline is to train contigAnalyzer and make it capable of identifying

potentially chimeric contigs in real metagenomic assemblies (where read sources are

unknown) based on a set of distinguishing coverage and polymorphism features

deduced from our analysis pipeline.

The workflow of contigAnalyzer is shown in Figure 4.3. For every contig, its

read-to-contig tracking information (which provided by several assemblers including

Celera, Velvet, SSAKE, Newbler, etc) is used to generate a CONTIG object, which

consists of individual BASE and READ objects. This object-oriented design makes

contigAnalyzer independent of the assembler’s format for read-to-contig tracking

information (Newbler’s ace file format, Velvet’s and Celera’s amos files, etc) and also

facilitates designing methods that manipulate CONTIGs and their corresponding

READs. READ sequences are re-aligned to their CONTIG using FR-HIT [39] (step

3), whose output can also be used to generate pileup files using SAMtools (step 4),

which can then be used by VarScan [25] to predict SNPs (step 5).

 49

Figure 4.3 The contigAnalyzer pipeline.

 50

Steps 1

through 5 produce

read coverage and

SNP information for

every base in the

contig as well as the

contig’s coverage

statistics, reported in

detailed information

tables and as a png

coverage plot. Next,

steps 6 through 8 (blue) are done for chimeric contig analysis in assemblies of reads

generated by createMetagenomes (CM). CM-generated reads include their source

taxonomy information (NCBI taxid) in their headers. Therefore, contigAnalyzer can

determine if a contig is

chimeric by examining

the sources of reads

covering its bases,

separating chimeric

(multiple source) from non-chimeric contigs (single source) in step 6.

In step 7, the taxonomy of chimeric contigs is analyzed using a special module

that utilizes NCBI’s Taxonomy Browser tool [36], which builds a taxonomy tree for

the contig’s sources. This tree is then loaded into BioPerl’s Tree, Taxonomy, and

cladogram modules [3] to predict the lowest common ancestor (LCA) of the contig’s

Figure 4.4 Cladogram for a significantly chimeric
contig. This cladogram was generated by
contigAnalyzer (step 7) for the largest contig
in the X5 assembly. The LCA for this tree is
the Phylum Proteobacteria.

 51

sources and generate a cladogram of these sources, such as the cladogram shown in

Figure 4.4. Next, contigAnalyer breaks the contig into several “slices,” where each

slice is a substring of the contig’s bases that differs from adjacent slices in its source

species. So, if a contig consists of reads from sources A and B so that reads from A

and B co-assemble only in the middle of the contig, then the contig consists of three

slices: the slice from A, the slice from AB, and the slice from B. Slice AB is the

chimeric slice within the contig, and is “significantly chimeric” (sig-chimeric) if it

passes certain cutoffs: (1) it must be longer than a cutoff length (default is 20 bp), (2)

its overall read coverage is no less than a coverage cutoff (default is 10 reads), and (3)

this read coverage must be divided somewhat evenly between species: each species in

the slice must contribute no less than a cutoff number of reads to the coverage (default

is 3). An example of a contig region with sig-chimeric, not-sig-chimeric, and non-

chimeric slices is shown in Figure 4.5.

 52

Figure 4.5 Types of slices in a chimeric contig. This is a section of the sliced
coverage plot generated by contigAnalyzer (step 7) for a contig in the X5
assembly. The X-axis shows the sources of each bases (represented by
characters: A= Xylella fastidiosa 9a5c, B = Xylella fastidiosa M12), and
the Y-axis shows the coverage for every base. A non-chi (non-chimeric)
slice has one source, while a not-sig (not significant) slice is chimeric but
not “significant” for analysis because it did not satisfy the coverage
and/or length cutoffs (10, 20, respectively). Base sources of the sig-chi
slice are suffixed with an asterisk. The parent contig of these slices is
labeled “sig-chimeric” because it had at least one sig-chi slice. Not-sig-
chimeric contigs have non-chi and not-sig chi slices but no sig-chi slices.

The location of slices on contigs is normalized by dividing each contig into

100 intervals that will be referred to as “cents,” and identifying each slice’s location

by its cent span. This is useful for comparing the location of sig-chimeric slices on

different contigs. Chimeric contigs that contain at least one non-edge (not in the first

or last N cents, with N = 5 by default) sig-chimeric slice are labeled “sig-chimeric,”

and “not-sig-chimeric” otherwise (step 8). Edge slices are discarded because contig

edges tend to have low and irregular coverage, which may affect analysis of sig-

chimeric slices. So, in summary, the sig-chimeric contig population consists of contigs

with at least one, non-edge sig-chimeric slice whose length, coverage, and per-species

coverage satisfy user-specified cutoffs (20 bp, 10, and 3 are the default values,

respectively).

4.5 Analysis Results for Simulated Bacterial Metagenome Assemblies

The analysis pipeline was tested on the artificial bacterial metagenomes

(simLC, simMC, simHC) designed by Mavromatis et al. [33] to facilitate

benchmarking of metagenomic data processing methods. Since their publication, these

datasets have been simulated by about 20 metagenomic benchmarking studies,

 53

including a study by Pignatelli and Moya [45] that analyzed the assemblies of

simulated short (100 bp) Illumina and long (400 bp) 454 reads of the simLC, simMC,

simHC, and simHC_hc (simHC with a sequencing coverage of 10) metagenomes. This

pipeline was tested on the simLC dataset as a baseline, since it was reported to have a

lower occurrence of chimeric contigs than simMC and simHC assemblies by [45].

The species list and coverage distribution of the simLC dataset for steps 1 and

2 of the pipeline, then created two different sequencing coverage read sets in Step 3

with X = 5 and 10 (because X =1 resulted in only two sig-chimeric contigs in our

initial assemblies), creating the X5 and X10 flat FastA datasets in step 4. Then, for

each dataset, Step 5 was run to generate 400 bp sff reads of 454 Titanium with and

without errors (error parameters were set to ngsfy’s default values). Therefore, four sff

read datasets were generated: X5 and X10 (no errors), X5_e and X10_e (errors). The

sequencing coverage of the X5 dataset is comparable to a plate of 454 reads. Each

dataset was then assembled using Newbler (step 6 of the analysis pipeline, see Figure

4.2).

Table 4.1 provides information about each dataset’s reads and its assembly

statistics. Not surprisingly, the no-error datasets (X5 and X10) had a higher N50 than

error datasets (X5_error and X10_error). However, the X10 sets had a smaller N50

and maximum contig length than the X5 dataset: X5 had the largest maximum contig

length (455,147 bp), which was a significantly chimeric contig (LCA : the

Proteobacteria, a Phylum), as shown in Figure 4.4. As expected, the main contributing

species to the longest contig in all dataset assemblies was the dominant species

(Rhodopseudomonas palustris HaA2: 5,331,656 bp, coverage = 25.95X), with

different species aligning to its sequences at different regions of the contig.

 54

Table 4.1 Simulated 454 dataset and their Newbler de novo assembly statistics.
Contig statistics were derived from each assembly’s 454AllContigs.fna,
excluding contigs shorter than 400 bp (read length). C.L. = contig length.

Data-
set

Reads # Bases Min.
Cov.

Max.
Cov.

Contigs N50
C.L.

Max
C.L.

Total Assembly
length

X5 1,080,987 432,394,800 0.35 25.95 8,324 4,776 455,147 21,463,012
X5_e 1,080,987 432,394,800 0.35 25.95 8,320 4,649 581,484 21,263,753
X10 2,161,920 864,768,000 0.7 51.9 21,798 3,552 276,717 39,410,064
X10_e 2,161,920 864,768,000 0.7 51.9 22,698 3,028 314,555 39,271,810

Table 4.2 Analysis pipeline results for the simulated test dataset assemblies. The
information shown in this table was derived from contig reports
generated by analyzeChimericContigs (see section 2.4). chi contigs =
chimeric contigs, sig-chi contigs = significantly chimeric contigs, sig-chi
contigs with LCA > spp = significantly chimeric contigs where the rank
of the LCA reported by NCBI’s Taxonomy Browser was higher than
“species” (genus and above), whereas other sig-chimeric contigs were
formed by different species strains of the same organism.

Dataset # Contigs # chi contigs (%
of contigs)

sig-chi contigs (%
of chi contigs)

sig-chi-contigs with LCA > spp (% of
sig-chi contigs)

X5 8,324 1,448 (17.4%) 29 (2.0%) 13 (44.8%)
X5_e 8,320 1,325 (15.9%) 25 (1.9%) 7 (28.0%)
X10 21,798 3,033 (13.9%) 349 (11.5%) 61 (17.5%)
X10_e 22,698 2,057 (9.1%) 293 (14.2%) 49 (16.7%)

Next, contig chimerism in these assemblies was assessed using contigAnalyzer

and analyzeChimericContigs (steps 7 and 8 of the analysis pipeline). In general,

increasing sequencing coverage resulted in reducing the percentage of chimeric

contigs (Table 4.2), which may be due to improved accuracy of assembly with higher

coverage. The addition of sequencing errors also resulted in lowering the percentage

of chimeric contigs probably because these errors reduced the sequence similarity

 55

among reads from different species. These trends were also observed with the fraction

of chimeric contigs that were significantly chimeric (Table 4.2).

Interestingly, the ratio of sig-chimeric contigs that had an LCA above species

was reduced two fold with the increase in sequencing coverage. Analysis of the

taxonomic composition of these chimeric contigs showed that the abundance of a

species did not seem to be directly related to its contribution in chimeric contigs. For

example, the dominant organism, Rhodopseudomonas palustris HaA contributed less

to chimeric contigs than lower-abundance organisms such as Xylella fastidiosa (in the

X10 and X5 assemblies) and Burkholderia species (in the X10 assembly). Another

interesting observation was that the five different species of Burkholderia formed

more chimeric contigs than the four strains of the same species of Rhodopseudomonas

in the X10 dataset, which may suggest that these Burkholderia species have more

conserved sequences among them than the four strains of Rhodopseudomonas

palustris, or that the higher coverage of Rhodopseudomonas palustris resulted in a

more accurate assembly (Table 4.3). This conclusion is supported by the difference in

the taxonomic composition of chimeric contigs between the X10 and the X5 species:

in the higher coverage X10 datasets, the highest chimera-contributing organisms were

mostly closely related species or strains. In contrast, the highest chimera-contributing

organisms in the lower coverage X5 dataset consisted of more distant species, and the

X5/X5_error assemblies had a higher percentage of chimeric contigs forming by

distant species than X10/X10_error assemblies (Tables 4.2 and 4.3).

In summary, sequencing coverage was the main factor affecting chimeric

contig formation: higher coverage results in a smaller percentage of chimeric contigs

(Table 4.2), most of which were formed by reads of closely related species and strains

 56

(Table 4.3). So, a possible explanation of the higher N50 and maximum contig

lengths of the X5/X5_error compared to the X10/X10_error assemblies is that they

had a higher level of contig chimerism and a higher likelihood of co-assembly of reads

from distant species (Tables 4.2 and 4.3). To confirm this, the slicing report of the

largest contig (contig000001) of each assembly were compared as follows:

contig000001 (length: 455,147 bp) of the X5 dataset consisted of 525 distinct slices

and was formed by reads from 13 different organisms whose LCA was the Phylum

Proteobacteria. In contrast, contig000001 of the X10 dataset consisted of only 340

slices formed by reads from 7 different organisms whose LCA was the Class

Alphaproteobacteria.

Table 4.3 Taxonomy reports for simulated metagenome assemblies. This table
shows a subset of the Taxonomy report file produced by our pipeline for
Newbler assemblies of the X10, X10_error, and X5 datasets, showing the
top 18 organisms contributing to sig-chimeric contigs. Organisms from
the same species/genus are highlighted using the same color. Note that
the “percentage of (Not-) significantly chimeric contigs” equals the
“percentage of (Not-) significantly chimeric contigs with an LCA rank
higher than species” + “percentage of (Not-) significantly chimeric
contigs formed by strains of the same species.”

 57

 58

Sig-chimeric slices were analyzed and compared to analogous non-chimeric

slices (non-edge slices with similar length) on the same contig. In all of our datasets,

sig-chimeric slices were generally found at the middle of their contig (Figure 4.6) and

had significantly higher mean coverage than their parent contig and analogous non-

chimeric slices (Figure 4.7). No significant differences were found in terms of SNP

percentage or quality scores between these regions (data not shown). However, these

results confirm our hypothesis: that (significantly) chimeric contigs differ from non-

chimeric contigs in the presence of high coverage sig-chimeric regions resulting from

the co-assembly of reads from different organisms at regions of sequence similarity.

Next, the sequences of sig-chimeric slices formed from co-assembly of distant

species (LCA rank above genus) were analyzed to understand why their sampled reads

would co-assemble at these slices. To predict the function of these sig-chimeric slice

sequences, they were aligned against NCBI’s nr/nt database using BLASTN, and the

results for some of these slices are shown in Table 4.4. As expected, these slice

sequences matched to regions of important and highly preserved functions such as

DNA replication (DNA gyrase), protein synthesis (Elongation factor Tu, 16S and 23S

ribosomal RNA), and biosynthesis pathways (3-dehydroquinate synthase, 1-deoxy-D-

xylulose-5-phosphate synthase). This agrees with the observations of [28] and [45],

and suggests that conserved functions can be used a hotspots for detection of

chimeras. Additionally, this maybe be extended to all ORFs: contigs can be searched

for ORFs of conserved functions that can be used as markers of potential chimeras.

 59

Table 4.4 Possible functions of chimeric regions on contigs with an LCA rank
above genus. Several sig-slices from the Sig-slice report generated by
analyzeChimericContigs (see section 4.4) were aligned against the nr/nt
database using BLASTN (with the Entrez query field set to “bacteria”).
The table shows the dataset, slice ID (parent contig ID and slice location
on contig in 1/100ths of contig length), the LCA (and its rank), and the
expected function of this region. The expected function of these slices
was deduced from the BLAST report by choosing the most common
feature of the subject sequences. Note that contig01335 was almost
entirely chimeric (some slices are not shown in this table) and aligned to
the rRNA-16S ribosomal RNA sequence in members of the family
Pasteurellaceae.

Data-
set slice ID LCA Expected function of sequence
X5 contig00071_52-53 Bacteria (SuperKingdom) 3-dehydroquinate synthase (shikimate pathway)
X5 contig00005_75-75 Bradyrhizobiaceae (Family) 1-deoxy-D-xylulose-5-phosphate synthase, a

protein of Bradyrhizobiaceae bacteria
X5 contig02868_62-71 Bacteria (SuperKingdom) rRNA-23S ribosomal RNA
X5 contig04219_49-56 Proteobacteria (Phylum) rRNA-23S ribosomal RNA
X10 contig00007_94-94 Alphaproteobacteria (Class) Elongation factor Tu (EF-Tu)
X10 contig00320_59-61 Bacteria (SuperKingdom) DNA gyrase subunit B/DNA topoisomerase IV

subunit B
X10 contig01335_24-33* Pasteurellaceae (Family) rRNA-16S ribosomal RNA
X10 contig00147_50-51 Proteobacteria (Phylum) polyribonucleotide nucleotidyltransferase protein
X10 contig20615_6-35 Bradyrhizobiaceae (Family) DNA-directed RNA polymerase subunit alpha
X10 contig11891_6-24 Gammaproteobacteria (Class) rRNA-23S ribosomal RNA
X10 contig20786_87-94 Actinomycetales (Order) 16S ribosomal RNA gene

Figure 4.6 Location of sig-chimeric slices on contig.

 60

Figure 4.7 Mean base coverage of significantly chimeric contigs (sig-contig) and
their significantly chimeric (sig-) and non-chimeric (non-chi) slices.

4.6 Conclusion

This chapter presented a complete chimeric contig simulation and analysis

pipeline, starting from the creation of NGS (Illumina or 454) reads for simulated

metagenomes and ending at the analysis of chimeric versus non-chimeric contig

populations in terms of coverage, polymorphism, quality scores, and taxonomic

distribution. The pipeline can be used to create and analyze any artificial metagenome

(viral, bacterial, etc) and with any assembler that can provide read-to-contig tracking

information in order to trace reads (and their source species) to their contigs. The goal

of the pipeline is to analyze chimeric contigs and identify distinguishing attributes

(coverage, polymorphism, location on contig, etc) of chimeric “slices” (the regions at

which reads from different species co-assemble) in these contigs. I believe that we can

use these distinguishing attributes to identify potentially chimeric contigs in a real

metagenome assembly where read sources are unknown.

The training dataset for this pipeline was derived from the artificial bacterial

metagenome designed by Mavromatis et al. [33], and was used to generate four simLC

 61

datasets that differed in sequencing coverage and/or the presence or absence of

sequencing errors: X5, X5_error, X10, and X10_error. Significantly chimeric slices

(non-edge, chimeric co-assembly regions on chimeric contigs whose length was >= 20

bp and were covered by >= 10 reads) were analyzed and compared to their parent

contig and analogous slices (similar length and analogous location on contig) on the

parent contig. These sig-chi-slices had a significant difference from their parent contig

and analogous slices in coverage levels and general localized at the middle of their

contig. Sig-chi-slices with an LCA higher than species generally belonged to regions

of conserved function among distant species.

The main factor affecting contig chimerism in Newbler assemblies of these

datasets was sequencing coverage: a two fold increase in coverage (X5 to X10)

increased chimeric contigs over 10 fold and changed the taxonomic distribution of

species in contigs. In contrast, sequencing errors slightly affected contig chimerism,

resulting in less chimeric contigs in datasets with errors. Considering that the X5 is

comparable to the typical 454 sequencing unit used by metagenome researchers, it is

interesting that such coverage with a low complexity community is not enough to

overcome contig chimerism, while the X10 coverage does overcome it.

The majority of chimeric contigs were formed by the co-assembly of different

strains of the same species, which was expected since strains of different species have

the highest sequence similarity. Still, a few chimeric contigs with an LCA rank as high

as kingdom and super-kingdom were found and analyzed, and their sequences were

found to correspond to highly-conserved functional regions (DNA replication,

translation, and biosynthesis pathways). At fixed sequencing coverage, sequencing

errors significantly reduced the ratio of such higher-LCA contigs, which may explain

 62

why the X10/X10_error assemblies had lower contiguity than the X5/X5_error

assemblies. Finally, analysis of significantly chimeric slices generally localized at the

middle of their contigs, and had significantly higher base-coverages (means of base-

coverages) than their parent contigs and analogous non-chimeric slices on their parent

contigs.

These results confirm our hypothesis, which is that chimeric contigs can be

distinguished from non-chimeric contigs by the presence of small regions of

significantly higher coverage that correspond to the region of co-assembly of reads

from different species. However, our results may be dataset-dependent and our

detection threshold for chimeras may require further tuning. Therefore, future

directions for our analysis of simulated metagenomes must include varying the

complexity as well as the composition of our tested metagenomes, such as using

simLC, simMC, and simHC distributions of different viral or bacterial metagenomes.

These variations can be easily simulated and analyzed using our pipeline. While the

test runs focused on 454 reads and Newbler, they can be used to study and compare

contig chimerism with Illumina and/or new metagenomic assemblers, such as Meta-

velvet [38] and Genovo [29].

The final goal for the chimeric contig simulation and analysis pipeline is to

identify set of coverage and polymorphism features that can be used to identify

chimeric contigs in a real metagenome assembly in order to break these contigs into

their source reads and re-assemble these reads with the non-chimeric contigs. These

features will be then incorporated into contigAnalyzer and validate its performance by

testing it on a real metagenome assembly. Without a priori knowledge of the

community complexity or the number of sources in a contig, contigAnalyzer will

 63

identify “possible chimeric contigs” based on coverage, polymorphism, and local

features concluded from analyses of simulated datasets. Next, these contigs will be

managed by simply breaking them back to their reads, then reassembling these reads

more stringently. At worst, the reads will re-assemble into the same “potentially

chimeric” contigs, and at best they will assemble into multiple smaller contigs that

represent same or closer species. Validation of detection will be done by examining

the contigs labeled as “potentially chimeric” (along with their source reads) by

sequence analysis, binning, or gene/ORF/conserved function analysis to see whether

they are really chimeric or not. Evaluation of management will be done by assessing

the difference in downstream analyses (functional binning and gene prediction) results

between managed and unmanaged “potentially chimeric” contigs.

 64

Chapter 5

CONCLUSION

The purpose of this thesis was to develop tools for improving de novo

assembly of NGS reads through pre-processing of NGS reads prior to single and

metagenome de novo assembly, and management of chimeric contigs after de novo

metagenome assembly. The analysis of these tools’ performance provided important

insights into problems with NGS assembly that may have been neglected by the

majority of recent assembly projects and the how managing these problems can

significantly improve assembly contiguity, correctness, and assembler performance.

In ngsShoRT, I implemented popular trimming methods (as well as methods

developed by our group) and analyzed their resulting improvement in terms of

assembly contiguity, correctness, and assembler performance for Illumina reads. I

showed that higher contiguity does not always correspond to higher correctness or

better assembler performance. This is interesting, since most assembly projects rely on

contiguity alone to assess trimming method performance. In kmerFreq, I implemented

an algorithm method for detection and removal of sequence artifacts in NGS reads

without a priori knowledge of their platform’s error profile. I compared trimming of

454 reads by kmerFreq to trimming by the 454-specific Newbler platform. kmerFreq

resulted in better assembly contiguity and assembler performance, which is interesting

since most projects that use 454 reads rely solely on Newbler for trimming 454

sequencing artifacts. For both ngsShoRT and kmerFreq, I showed that a better method

for managing reads with adaptor or low quality bases is to trim these regions out of the

 65

reads rather than filtering out the reads, while most assembly projects rely on read-

filtering as the major trimming step. In addition, both tools significantly reduced the

computational resources required for assembly of trimmed reads. Computational

resources are the major bottleneck for most NGS assembly projects, as assembly

algorithms require exponentially larger resources to assemble erroneous reads.

In my work with de novo metagenome assembly, I focused on contig

chimerism, a problem that hinders the quality of metagenomic de novo assembly as

well as downstream analyses including binning and gene prediction. To study contig

chimerism, I designed a chimeric contig simulation and analysis pipeline to analyze

chimeric contigs and the regions of co-assembly of reads from different species. My

analysis showed that sequencing coverage was the most important factor affecting the

occurrence of contig chimerism in de novo assemblies, and suggested that the current

level of sequencing coverage of 454 (GS FLX Titanium), the popular platform for

metagenomics, may result in a significant level of contig chimerism that was probably

not managed post-assembly. The analysis also showed that chimeric contig reads co-

assemble into relatively high coverage sequences that correspond to regions of

conserved function among different species, which raises questions about the

reliability of binning and gene prediction analyses done for assembled contigs in

recent metagenomic studies that relied on NGS reads. Finally, the results of this

analysis can be used to determine a set of methods that can be used to predict chimeric

contigs in a real metagenome assembly where read sources are unknown, and to

manage these contigs in order to reduce their level of chimerism, thus improving the

quality of de novo assembly as well as binning and gene prediction.

 66

REFERENCES

1. R Atherton, B McComish, L Shepherd, L Berry, N Albert, and P Lockhart.
Whole genome sequencing of enriched chloroplast DNA using the Illumina
GAII platform. Plant Methods, 6(1):22, 2010.

2. S Balzer, K Malde, A Lanzén, A Sharma, and I Jonassen. Characteristics of
454 pyrosequencing data—enabling realistic simulation with flowsim.
Bioinformatics, 26(18):i420-i425, 2010.

3. Bioperl Tree and Taxonomy modules. A HOWTO page for their usage is
available online at http://www.bioperl.org/wiki/HOWTO:Trees

4. J Butler, I MacCallum, M Kleber, I A Shlyakhter, M K Belmonte, E S
Lander, C Nusbaum, and D B Jaffe. ALLPATHS: De novo assembly of
whole-genome shotgun microreads. Genome Research, 18(5):810-820,
2008.

5. CLC Bio, CLC Bio Genomics Workbench User Manual. Available online
at
http://www.clcbio.com/files/usermanuals/CLC_Genomics_Workbench_Us
er_Manual.pdf

6. P A Cock, C J Fields, N Goto, M L Heuer, and P M Rice. The Sanger
FASTQ file format for sequences with quality scores, and the
Solexa/Illumina FASTQ variants. Nucleic Acids Research, 38(6):1767-
1771, 2010.

7. M Cox, D Peterson, and P Biggs. SolexaQA: At-a-glance quality
assessment of Illumina second-generation sequencing data. BMC
Bioinformatics, 11(1):485, 2010.

8. S DiGuistini, N Liao, D Platt, G Robertson, M Seidel, S Chan, T Docking,
I Birol, R Holt, M Hirst, E Mardis, M Marra, R Hamelin, J Bohlmann, C
Breuil, and S Jones. De novo genome sequence assembly of a filamentous
fungus using Sanger, 454 and Illumina sequence data. Genome Biology,
10(9):R94, 2009.

 67

9. D Earl, K Bradnam, A Darling, D Lin, J Fass, H K Yu, V Buffalo, D R
Zerbino, M Diekhans, N Nguyen, P N Ariyaratne, W Sung, Z Ning, M
Haimel, J T Simpson, N A Fonseca, I Birol, T R Docking, I Y Ho, D S
Rokhsar, R Chikhi, D Lavenier, G Chapuis, D Naquin, N Maillet, M C
Schatz, D R Kelley, A M Phillippy, S Koren, S Yang, W Wu, W Chou, A
Srivastava, T I Shaw, J G Ruby, P Skewes-Cox, M Betegon, M T Dimon,
V Solovyev, I Seledtsov, P Kosarev, D Vorobyev, R Ramirez-Gonzalez, R
Leggett, D MacLean, F Xia, R Luo, Z Li, Y Xie, B Liu, S Gnerre, I
MacCallum, D Przybylski, F J Ribeiro, S Yin, T Sharpe, G Hall, P J
Kersey, R Durbin, S D Jackman, J A Chapman, X Huang, J L DeRisi, M
Caccamo, Y Li, D B Jaffe, R E Green, D Haussler, I Korf, and B Paten.
Assemblathon 1: A competitive assessment of de novo short read assembly
methods. Genome Research, 21(12):2224-2241, 2011.

10. J Falgueras, A Lara, N Fernandez-Pozo, F Canton, G Perez-Trabado, and
M G Claros. SeqTrim: a high-throughput pipeline for pre-processing any
type of sequence read. BMC Bioinformatics, 11(1):38, 2010.

11. P Flicek and E Birney. Sense from sequence reads: methods for alignment
and assembly. Nat Meth, 6(11s):S6-S12, 2009.

12. T I Garcia, Y Shen, J Catchen, A Amores, M Schartl, J Postlethwait, and R
B Walter. Effects of short read quality and quantity on a de novo vertebrate
transcriptome assembly. Comparative Biochemistry and Physiology Part
C: Toxicology & Pharmacology, 155(1):95-101, 2012.

13. S D Goldberg, J Johnson, D Busam, T Feldblyum, S Ferriera, R Friedman,
A Halpern, H Khouri, S A Kravitz, F M Lauro, K Li, Y Rogers, R
Strausberg, G Sutton, L Tallon, T Thomas, E Venter, M Frazier, and J C
Venter. A Sanger/pyrosequencing hybrid approach for the generation of
high-quality draft assemblies of marine microbial genomes. Proceedings of
the National Academy of Sciences, 103(30):11240-11245, 2006.

14. V Gomez-Alvarez, T K Teal, and T M Schmidt. Systematic artifacts in
metagenomes from complex microbial communities. ISME J, 3(11):1314-
1317, 2009.

15. Green P. Phrap, version 1.090518. http://phrap.org., 2011.

16. Hannon Lab (unpublished), FASTX-Toolkit.
http://hannonlab.cshl.edu/fastx_toolkit/

 68

17. S Haridas, C Breuill, J Bohlmann, and T Hsiang. A biologist's guide to de
novo genome assembly using next-generation sequence data: A test with
fungal genomes. Journal of Microbiological Methods, 86(3):368-375,
2011.

18. O Harismendy, P Ng, R Strausberg, X Wang, T Stockwell, K Beeson, N
Schork, S Murray, E Topol, S Levy, and K Frazer. Evaluation of next
generation sequencing platforms for population targeted sequencing
studies. Genome Biology, 10(3):R32, 2009.

19. Hietaniemi J. String-Approx, version 3.26.
http://search.cpan.org/~jhi/String-Approx-3.26/Approx.pm, 2011.

20. S Hoffmann, C Otto, S Kurtz, C M Sharma, P Khaitovich, J Vogel, P F
Stadler, and J Hackermüller. Fast Mapping of Short Sequences with
Mismatches, Insertions and Deletions Using Index Structures. PLoS
Comput Biol, 5(9):e1000502, 2009.

21. X Huang. An Improved Sequence Assembly Program. Genomics, 33(1):21-
31, 1996.

22. Illumina. De Novo Genome Assembly Using Illumina Reads. Technical
Note: Sequencing, 2010.

23. W Kao, A H Chan, and Y S Song. ECHO: A reference-free short-read error
correction algorithm. Genome Research, 21(7):1181-1192, 2011.

24. D Kelley, M Schatz, and S Salzberg. Quake: quality-aware detection and
correction of sequencing errors. Genome Biology, 11(11):R116, 2010.

25. D C Koboldt, K Chen, T Wylie, D E Larson, M D McLellan, E R Mardis,
G M Weinstock, R K Wilson, and L Ding. VarScan: variant detection in
massively parallel sequencing of individual and pooled samples.
Bioinformatics, 25(17):2283-2285, 2009.

26. Y Kong. Btrim: A fast, lightweight adapter and quality trimming program
for next-generation sequencing technologies. Genomics, 98(2):152-153,
2011.

27. S Koren, T J Treangen, and M Pop. Bambus 2: scaffolding metagenomes.
Bioinformatics, 27(21):2964-2971, 2011.

 69

28. V Kunin, A Copeland, A Lapidus, K Mavromatis, and P Hugenholtz. A
Bioinformatician's Guide to Metagenomics. Microbiology and Molecular
Biology Reviews, 72(4):557-578, December 2008.

29. J Laserson, V Jojic, and D Koller. Genovo: <i>De Novo</i>
Assembly for Metagenomes. In Bonnie Berger, editors, Research in
Computational Molecular Biology, volume 6044 of Lecture Notes in
Computer Science, pages 341-356. Springer Berlin / Heidelberg, 2010.

30. T Lassmann, Y Hayashizaki, and C O Daub. TagDust—a program to
eliminate artifacts from next generation sequencing data. Bioinformatics,
25(21):2839-2840, 2009.

31. R Li, Y Li, K Kristiansen, and J Wang. SOAP: short oligonucleotide
alignment program. Bioinformatics, 24(5):713-714, 2008.

32. E R Mardis. The impact of next-generation sequencing technology on
genetics. Trends in Genetics, 24(3):133-141, 2008.

33. K Mavromatis, N Ivanova, K Barry, H Shapiro, E Goltsman, A C
McHardy, I Rigoutsos, A Salamov, F Korzeniewski, M Land, A Lapidus, I
Grigoriev, P Richardson, P Hugenholtz, and N C Kyrpides. Use of
simulated data sets to evaluate the fidelity of metagenomic processing
methods. Nat Meth, 4(6):495-500, 2007.

34. E Meyer, G Aglyamova, S Wang, J Buchanan-Carter, D Abrego, J
Colbourne, B Willis, and M Matz. Sequencing and de novo analysis of a
coral larval transcriptome using 454 GSFlx. BMC Genomics, 10(1):219,
2009.

35. J R Miller, S Koren, and G Sutton. Assembly algorithms for next-
generation sequencing data. Genomics, 95(6):315-327, 2010.

36. NCBI's Taxonomy Browser
(http://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi)

37. K Nakamura, T Oshima, T Morimoto, S Ikeda, H Yoshikawa, Y Shiwa, S
Ishikawa, M C Linak, A Hirai, H Takahashi, M Altaf-Ul-Amin, N
Ogasawara, and S Kanaya. Sequence-specific error profile of Illumina
sequencers. Nucleic Acids Research, 39(13):e90, 2011.

 70

38. T Namiki, T Hachiya, H Tanaka, and Y Sakakibara. MetaVelvet : An
extension of Velvet assembler to de novo metagenome assembly from
short sequence reads, ACM Conference on Bioinformatics, Computational
Biology and Biomedicine, 2011.

39. B Niu, Z Zhu, L Fu, S Wu, and W Li. FR-HIT, a very fast program to
recruit metagenomic reads to homologous reference genomes.
Bioinformatics, 27(12):1704-1705, 2011.

40. R Pandey, V Nolte, and C Schlotterer. CANGS: a user-friendly utility for
processing and analyzing 454 GS-FLX data in biodiversity studies. BMC
Research Notes, 3(1):3, 2010.

41. R , Patel and M , Jain. NGS QC Toolkit: A Toolkit for Quality Control of
Next Generation Sequencing Data. PLoS ONE, 7(2):e30619, 2012.

42. Y Peng, H M Leung, S M Yiu, and F L Chin. Meta-IDBA: a de Novo
assembler for metagenomic data. Bioinformatics, 27(13):i94-i101, 2011.

43. P A Pevzner, H Tang, and M S Waterman. An Eulerian path approach to
DNA fragment assembly. Proceedings of the National Academy of
Sciences, 98(17):9748-9753, 2001.

44. M Pignatelli and A Moya. Evaluating the Fidelity of De Novo Short Read
Metagenomic Assembly Using Simulated Data. PLoS ONE, 6(5):e19984,
2011.

45. Pignatelli M. ngsfy (unpublished). Uncompiled version available for
download at https://github.com/emepyc/NGSfy.

46. M Rho, H Tang, and Y Ye. FragGeneScan: predicting genes in short and
error-prone reads. Nucleic Acids Research, 38(20):e191, 2010.

47. D C Richter, F Ott, A F Auch, R Schmid, and D H Huson. MetaSim—A
Sequencing Simulator for Genomics and Metagenomics. PLoS ONE,
3(10):e3373, 2008.

48. L Salmela and J Schröder. Correcting errors in short reads by multiple
alignments. Bioinformatics, 27(11):1455-1461, 2011.

49. R Schmieder, Y Lim, F Rohwer, and R Edwards. TagCleaner:
Identification and removal of tag sequences from genomic and
metagenomic datasets. BMC Bioinformatics, 11(1):341, 2010.

 71

50. T Schoenfeld, M Liles, K E Wommack, S W Polson, R Godiska, and D
Mead. Functional viral metagenomics and the next generation of molecular
tools. Trends in Microbiology, 18(1):20-29, 2010.

51. J Schröder, J Bailey, T Conway, and J Zobel. Reference-Free Validation of
Short Read Data. PLoS ONE, 5(9):e12681, 2010.

52. J Shendure and H Ji. Next-generation DNA sequencing. Nat Biotech,
26(10):1135-1145, 2008.

53. V Shulaev, D J Sargent, R N Crowhurst, T C Mockler, O Folkerts, A L
Delcher, P Jaiswal, K Mockaitis, A Liston, S P Mane, P Burns, T M Davis,
J P Slovin, N Bassil, R P Hellens, C Evans, T Harkins, C Kodira, B
Desany, O R Crasta, R V Jensen, A C Allan, T P Michael, J C Setubal, J
Celton, D G Rees, K P Williams, S H Holt, J R Rojas, M Chatterjee, B Liu,
H Silva, L Meisel, A Adato, S A Filichkin, M Troggio, R Viola, T
Ashman, H Wang, P Dharmawardhana, J Elser, R Raja, H D Priest, D W
Bryant, S E Fox, S A Givan, L J Wilhelm, S Naithani, A Christoffels, D Y
Salama, J Carter, E L Girona, A Zdepski, W Wang, R A Kerstetter, W
Schwab, S S Korban, J Davik, A Monfort, B Denoyes-Rothan, P Arus, R
Mittler, B Flinn, A Aharoni, J L Bennetzen, S L Salzberg, A W Dickerman,
R Velasco, M Borodovsky, R E Veilleux, and K M Folta. The genome of
woodland strawberry (Fragaria vesca). Nat Genet, 43(2):109-116, 2011.

54. J T Simpson, K Wong, S D Jackman, J E Schein, S J Jones, and I Birol.
ABySS: A parallel assembler for short read sequence data. Genome
Research, 19(6):1117-1123, 2009.

55. A Stein, T E Takasuka, and C K Collings. Are nucleosome positions in
vivo primarily determined by histone-DNA sequence preferences?. Nucleic
Acids Research, 38(3):709-719, 2010.

56. The Gene Index Project. SeqClean. Available online at
http://compbio.dfci.harvard.edu/tgi/software/

57. T Thomas, J Gilbert, and F Meyer. Metagenomics - a guide from sampling
to data analysis. Microbial Informatics and Experimentation, 2(1):3, 2012.

58. UniVec Database. Available online for download at
ftp://ftp.ncbi.nih.gov/pub/UniVec/

59. D Willner, R V Thurber, and F Rohwer. Metagenomic signatures of 86
microbial and viral metagenomes. Environmental Microbiology,
11(7):1752-1766, 2009.

 72

60. K E Wommack, J Bhavsar, and J Ravel. Metagenomics: Read Length
Matters. Applied and Environmental Microbiology, 74(5):1453-1463,
March 1, 2008.

61. T Woyke, G Xie, A Copeland, J M González, C Han, H Kiss, J H Saw, P
Senin, C Yang, S Chatterji, J Cheng, J A Eisen, M E Sieracki, and R
Stepanauskas. Assembling the Marine Metagenome, One Cell at a Time.
PLoS ONE, 4(4):e5299, 2009.

62. D R Zerbino and E Birney. Velvet: Algorithms for de novo short read
assembly using de Bruijn graphs. Genome Research, 18(5):821-829, 2008.

63. Zerbino D. Velvet Manual (version 1.1, unpublished). Available online at
http://bioweb2.pasteur.fr/docs/velvet/Manual.pdf, 2008.

64. Q Zhao, Y Wang, Y Kong, D Luo, X Li, and P Hao. Optimizing de novo
transcriptome assembly from short-read RNA-Seq data: a comparative
study. BMC Bioinformatics, 12(Suppl 14):S2, 2011.

