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Abstract
Photodetectors and solar cells based onmaterials with strongly bound excitons rely crucially on
field-assisted exciton ionization.We study the ionization process inmultilayer transition-metal
dichalcogenides (TMDs)within theMott-Wanniermodel incorporating fully the pronounced
anisotropy of thesematerials. Using complex scaling, we show that thefield-dependence of the
ionization process is strongly dependent on orientation. Also, wefind that direct and indirect excitons
behave qualitatively differently as a result of opposite effective anisotropy of these states. Based on
first-principlesmaterial parameters, an analysis of several important TMDs revealsWSe2 andMoSe2
to be superior for applications relying on ionization of direct and indirect excitons, respectively.

1. Introduction

Transition-metal dichalcogenides (TMDs) includingMoS2,MoSe2,WS2, andWSe2 are layered two-
dimensional semiconductors with unique electronic and optical properties. They are highly promising for
optoelectronic applications such as photodetectors [1–5], solar cells [6, 7], and light emitting diodes [8]. In their
monolayer form,MoS2,MoSe2,WS2, andWSe2 are direct bandgap semiconductors. Importantly, the low
dimensionality and reduced screening leads to highly prominent exciton effects with binding energies of several
hundredmeVs [9, 10]. Such excitons greatlymodify both linear [11] and nonlinear [12] optical properties.
Regarding applications, exciton binding energies significantly larger than the thermal energy at room
temperature (~25 meV) increase radiative electron-hole recombination and are, therefore, beneficial for
efficient light emission. In contrast, strongly bound excitonsmay reduce the efficiency of photodetectors and
solar cells because these devices require exciton ionization in order to separate electrons and holes. Thefirst
monolayer TMD-based photodetectors showed relatively low efficiencies [1]. By improvingmaterial quality and
thereby increasing carriermobility, the responsivity was subsequently greatly improved [2, 4]. These devices all
operated in the parallel collectionmode, inwhich an in-plane bias betweenmetal contacts drives the current
along themonolayer. Recently, devices based on perpendicular collection, i.e. transport between layers, have
emerged as promising alternatives. In particular, both efficient and ultrafast photoresponse has been
demonstrated forMoS2 [3] andWSe2 [5] photodetectors. Importantly, this approach allows for devices based on
stacking of appropriate two-dimensionalmaterials. Thus, contacts for carrier collection can be fabricated by
encapsulation of the photoactive semiconductor between conducting graphene sheets [3, 5].

The highly promising characteristics demonstrated in [3, 5]were obtained formultilayer samples having
thicknesses of 50 nm [3] and between 2.2 and 40 nm [5], respectively. In such samples, electron and holes are
delocalized across several layers and,moreover, screening is increased compared tomonolayers. Hence, in slabs
thicker than the bulk exciton Bohr radius, the exciton binding energy is significantly reduced. This is expected to
contribute to the high sensitivity and response rate observed experimentally. The limiting factors for the rate are
poorly understood, however. In [5], the response rate was shown to increase approximately linearly with bias
voltage between the graphene contacts while an inverse quadratic dependence on sample thickness was found.
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This suggests that out-of-plane drift is the limiting factor for the rate [5]. It is clear, however, that a full
description of the response involves several physicalmechanisms. In fact, the photoresponse itself is a combined
process consisting of (i) exciton creation upon photon absorption, (ii)field-assisted ionization of the exciton,
(iii) transport of dissociated carriers, and (iv) collection at the contacts. Hence, the applied bias performs a two-
fold function of driving both exciton ionization and carrier transport.

The process of exciton ionization is a crucial step in the photoresponse. Inmaterials with strongly bound
excitons, such as TMDs, thermal ionization is inefficient and a strong external electric field is required for
efficient carrier separation. As an estimate, the required field strength for efficient dissociation is given by the
ratio between exciton binding energy andBohr radius. A full description of the ionization process is needed,
however, tomodel the dependence of the ionization rate onfield strength.Moreover, in anisotropicmaterials,
the ionization rate will depend on the direction of the applied field. In the present paper, we study the exciton
ionization process in anisotropic TMDs using amodifiedMott-Wannier [13] approach incorporating the
material anisotropy. In this approach, bulk dielectric constants and effectivemasses lead to an exciton eigenvalue
problem that ismathematically identical to that of a hydrogen atom embedded in an anisotropicmaterial. The
material constants are calculated from first-principles density-functional theory. To describe field-assisted
ionization, an electric field is added to theMott-Wannier equation.We apply the complex scaling technique [14]
and hypergeometric resummation [15, 16] to compute ionization rates and Stark shifts of excitons in typical
TMDs. These are highly non-perturbative phenomena. In particular, the ionization rate cannot be described
using afinite-order perturbation expansion [14]. Ourwork is related to a recent work [17], inwhich the second-
order Stark shift in phosphorenewas studied. This two-dimensionalmaterial has strong in-plane anisotropy.
Also, in TMDs, the optical Stark effect, i.e. non-perturbative effects of strong laser excitation, has been
demonstrated [18, 19]. In addition, a recent study by some of the present authors has described exciton
dissociation inmonolayerMoS2, demonstrating a pronounced dependence on screening by the surroundings
[20]. Very recently [21], experimental Stark shifts due to static perpendicular fields inMoS2multilayers with
thicknesses between one andfive layers were reported. Theweak thickness dependence of the observed shift
clearly indicates that exciton effects are important. So far, however, exciton ionization due to staticfields in
multilayer TMDs has not been discussed in any quantitative theoretical work.

2. Anisotropic excitonmodel

In a truly two-dimensionalmaterial, the nonlocal wave vector dependence of the dielectric constant is important
for a correct description of screening [10]. In a three-dimensionalmaterial, however, dispersion ismuch less
pronounced and the dielectric constant can be assumed independent of wave vector, i.e. approximated by the
long-range limit e ( )q 0


[22]. In uniaxially anisotropic three-dimensionalmaterials such asmultilayer

TMDs, the dielectric constant is then given by a constant tensor e e e e= ( )diag , ,x x z


with separate elements for
the out-of-plane (z-axis) and in-plane (x-axis) values. Similarly, the effectivemasses for these directions differ.
For direct excitons, electrons and holes are located at theK point. For indirect excitons, holes reside at theΓ
point whereas electrons are located at the conduction bandminimumΣ roughlymidway betweenΓ andK. In
fact, the in-plane effectivemass depends on rotation angle in the (x, y)plane. This relatively weak in-plane
dependencewill be ignored, however. Thus, belowwe take the effective holemasses computed for the K M
andΓ→M directions for direct and indirect excitons, respectively. For electrons, the corresponding directions
are K M andΣ→M, respectively. The out-of-plane effectivemasses are determined from the dispersion
along the perpendicular lines passing through the band extrema. For the conduction band, the electron (e)
effectivemass tensor in then of the diagonal form = ( )( ) ( ) ( ) ( )m m m mdiag , ,e

x
e

x
e

z
e

, and similarly for holes (h) in
the valence band.Moreover, the reducedmass tensor for the electron-hole pair is = ( )m m m mdiag , ,x x z


with

/= +( )( ) ( ) ( ) ( )m m m m m .i i
e

i
h

i
e

i
h Introducing the relative-motion coordinate = -r r reh e h

  
of the electron hole

pair, theMott-Wannier problem for excitons in the presence of an electric field F

is of the form
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with the anisotropically screened electron-hole attraction [23, 24]

/pe e e e e
=

+ +
( )

( ( ) )
( )V r

e

x y z4
. 2eh

x z eh eh x z eh

2

0
2 2 2 1 2



It is convenient to scale distances according to anisotropic Bohr radii e e= ( )⁎a m m ax x x z0 0 and
e e= ( )⁎a m m m az x z x z0 0 for the x- and z-directions, respectively, with m0 the free electronmass and

pe= ( )a m e40 0
2

0
2 the hydrogenBohr radius. Similarly, we introduce the effective excitonHartree energy
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e e= ( )⁎ m mHa Hax x z0 with = ( ) m aHa 2
0 0

2 the atomicHartree. In these units, i.e. writing
= ( )⁎ ⁎ ⁎r a x a y a z, ,eh x x z


and = ⁎E EHa ,eh equation (1) becomes

/k
y y-  -

-
+ ⋅ =

( )
( )

⎧⎨⎩
⎫⎬⎭r z

r E
1

2

1
32

2 2 1 2

 

with the anisotropy parameter k e e= - m m1 .x x z z Wenote that the electric field 

is now given in effective

units so that = ( )      F , ,x x x y z z0


with /= = ⋅ - eaHa 5.14 10 V m0 0

11 1 the characteristicfield strength
in atomic units and the anisotropic field scaling factors given by

/ /

/ /e e e e
= =

( ) ( )
( ) 

m m

m

m

m
, . 4z

x z

x z
x

x

x z
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0
2 3 2

2

0
2 3 2

As illustrated infigure 1, these scaling factors are the appropriate ones for the cases of perpendicular

collection (

along z) and parallel collection (


along x), respectively.

In the effective exciton units, the consequences of anisotropy are entirely governed by the single parameter
k.Hence, if k = 0, thematerial is effectively isotropic. In contrast, k > 0 means that, in scaled coordinates, the
Coulomb attraction is less sensitive to the z coordinate. In fact, as k approaches unity, the z-dependence of the
interaction vanishes. Hence, for k > 0 excitons will tend to delocalize perpendicular to the layers. If k < 0,
delocalizationwithin individual layers is enhanced. These trends are illustrated by the schematic insets in
figure 2.We stress that this picture is only valid in scaled coordinates. As shown below, the sign of k differs for
direct and indirect excitons. Hence, the large effectivemasses for the z-direction for direct excitonsmean that
k > 0 for these states in TMDs. In contrast, indirect excitons have nearly isotropic effectivemasses and it is
mainly the dielectric constants that lead to anisotropy. The fact that e e>x z consequentlymeans that k < 0 for
indirect excitons.

To solve the eigenvalue problem,we introduce cylindrical polar coordinates r q{ }z, , and expand in a
Laguerre-type basis

å ååy r q r q j j= +
= = =

( ) ( ) { ( ) ( )} ( )( ) ( )z R l c z c z, , cos 5
m

M

n

N

l

L

ml mnl
s

ns mnl
p

np
0 0 0

with /j = -( ) ( ∣ ∣)z L k z e ,ns n
k z 2 /j = -( ) ( ∣ ∣)z zL k z e ,np n

k z1 2 and /r r r= r-( ) ( )R L qe .ml
l q

m
l2 2 The parameters k

and q can be optimized tominimize the exciton ground state energy.Wefind however, that = =k q 2 is very

nearly the optimal choice in all cases. For = ˆ z,


cylindrical symmetry is preserved around the z-direction and
for the exciton ground state =L 0 is sufficient in the expansion above.On the other hand, for = ˆ x,


the

symmetry is broken andwe use an expansion limited by =L 5. In this case, however, inversion symmetry along
z ismaintained and =( )c 0.mnl

p In the former case, we include 30 basis states for both r and z dependencies, i.e.
= =M N 29. Similarly, for = ˆ x,


we take = =M N 19.Hence, the size of the basis is 1800 and 2400 for the

two cases, respectively.
In the limits k = 0 and k = 1, theWannier equation describes three-dimensional and two-dimensional

excitons, respectively.We note, however, that for k = 1 the exciton state is actually completely delocalized along

Figure 1. Schematic illustration of the collectionmodes for different field orientations.
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the z-direction and the 2Dbehavior pertains to the in-plane character only. This follows from the behavior of the
potential / /k-  +- -( ) ( )r z x y2 2 1 2 2 2 1 2 as the limit k = 1 is approached.Hence, the in-plane and out-of-
planemotions decouple completely leading to delocalization along z. The 2D character of the exciton in this
limit is, however, rather different from excitons inmonolayer TMDs because of differences in screening, which
has a pronounced nonlocal wave vector dependence formonolayers, as discussed above. Infigure 2, we show the
binding energy E0 of the ground state as a function of the anisotropy. As expected, the limits for k = 0 and
k = 1are /= -E 1 20 and = -E 2,0 respectively. Importantly, though, for k = 1 the ground state is, in fact,
the lower limit of a continuum reflecting the delocalized z-dependence. In contrast, the state is fully localized for
k = 0. Infigure 2, we also include the perturbation result valid for small k, i.e. formaterials that are only weakly
anisotropic, see appendix and [25].

3. Exciton ionization

Asmentioned above, field-ionization is a non-perturbative phenomenon that is not captured in anyfinite-order
perturbation expansion infield strength. In the presence of the field, the bound state energies turn into complex
resonances.Writing = D - G( )E i 2wemay decompose such complex eigenvalues into their real and
imaginary parts. The interpretation is then that the real partD represents the Stark energy whereas the
imaginary part provides the ionization rate G.This rate can be understood as the rate of tunneling from the
bound state into the dissociated state. There are two commonly sought routes to obtaining G, both of whichwe
will pursue below. Thefirst is the purely numerical approach of complex scaling [14, 20] that immediately
provides both real and imaginary parts of the resonance. Alternatively, a semi-analytical result can be obtained
through analytical continuation and resummation of a low-order perturbation series [15, 16, 26].

In a direct bandgapmaterial, the excitation and ionization processes are conceptually simple.Hence, for
excitation by photon energies close to the fundamental exciton, the initial excitation quickly relaxes to the lowest
direct exciton. Fromhere, the state then either recombines (radiatively or non-radiatively) or becomes ionized.
In contrast, an indirect bandgapmaterial ismore complicated. Assuming again excitation by low energy photons
and ignoring phonon-assisted processes, the initial excitation is the direct exciton as the transition to the indirect
one is optically forbidden bymomentum conservation. Hence, if ionization happens sufficiently rapidly, the
dissociating species is still the direct exciton. Conversely, ionization after thermal relaxation to the indirect
excitonmeans that this species is the relevant one. It follows that a rapid ionization rate, i.e. ionization in a strong
field, pertains to the direct exciton. Slow ionization inweak fields, on the other hand, will predominantly happen
from the indirect exciton. In the present work, wewill study ionization of both species. As our focus is on strong
field ionization, however, wewillmainly illustrate results relevant for direct excitons, i.e. the k > 0 regime.

If a weak electric field is applied, the resonance is approximately » +( ) ( ) E E E ,x z x z, 0 ,
2 2 where subscripts x

and z indicate parallel and perpendicular collection, respectively. The coefficient of the second order term
determines the exciton polarizability ax z, through a= -( )E .x z x z,

2 1

2 , More generally, if a perturbation expansion

in the electricfield is applied, the ground state energy is written å= =
¥( ) ( ) E E .x z n x z

n n
, 0 ,

2 2 Only even powers of
the electricfield appear due to inversion symmetry of the unperturbed system in theMott-Wanniermodel. The
zeroth order term =( )E Ex z,

0
0 is the unperturbed ground state energy and obviously independent offield

Figure 2.Exciton ground state energy versus anisotropy. The horizontal black lines indicate the limiting values and the dashed line is
the first order perturbation result. The insets illustrate exciton delocalization for different signs of the effective anisotropy.
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direction.Using afinite-field approach, we solve theWannier equation equation (3) in the presence of a small
electric field ofmagnitude = - 10 3 applying the localized bases introduced above. By subtracting the field-free
ground state energy, we obtain the direct exciton k >( )0 polarizabilities shown infigure 3. As shown in the
figure, the behavior for highly anisotropicmaterials is strongly dependent on the direction of the appliedfield.
The two curves start from a common value of 9/2 in agreementwith the exact value for the hydrogen atom
[27, 28]. For values of k approaching unity, however, their behaviors aremarkedly different. Thus, in the
perpendicular case, the polarizability diverges reflecting the completely delocalized state along the z-direction.
In contrast, in the parallel case, the polarizability remainsfinite and eventually reaches a value of
/ »21 128 0.1641 in the 2D limit [29]. Again, in the plot, we include the approximate results found by

linearizing in k as derived in the appendix, i.e. / /a k» -9 2 439 120x and / /a k» -9 2 101 60.z It is seen that
these describe the exact behavior surprisingly well even for anisotropies as large as k ~ 0.8.By solving for several
distinct (small)field strengths, the finite-field approach can be extended to provide higher order terms in the
field expansion. In this way it can be shown that linearization in k remains reasonably accurate for higher order
terms aswell.

In fact, the full asymptotic serieså =
¥ ( )E
n x z

n n
0 ,

2 2 is highly divergent for allfinite values of thefield strength.
However, by appropriate resummation of afinite series, physicallymeaningful quantities can be obtained from
it. Traditionally, Padé approximants have been applied to this end [26]. These typically require partial
expansions of high order to be successful.We have recently shown [15, 16] that hypergeometric resummation
provides a very efficient alternative. Here, only thefirstfive non-vanishing terms  n0 4 of the expansion
are needed tofind a highly accurate result.We have previously applied this result to the three-dimensional [15]
and low-dimensional [16] hydrogen problems, which aremathematically very similar to theWannier problem
considered here. In the appendix, the required series are provided for both collectionmodes and belowwe
demonstrate how thesemay be used to accurately describe both Stark energy and exciton ionization.

The complex scalingmethod [14] is based on a coordinate scaling  jr r e .
 

By analytically continuing into
the complex plane, the parameterj can be taken purely imaginary, i.e.j q= i with q real. In turn, the complex
scaledWannier equation reads as

/k
y y-  -

-
+ ⋅ =

q q
q

- -

( )
( )

⎧⎨⎩
⎫⎬⎭r z

r E
e

2

e
e . 6

2i
2

i

2 2 1 2
i
 

For finitefield and rotation angle q, the eigenstates are square integrable and the eigenvalues complex, as
explained above. In fact [14], the eigenvalue is independent of the value of q as long as a finite value is adopted. In
practise, a small q-dependence is observedwhenever expansion in afinite basis is applied.We have found,
however, that this dependence is negligible if bases of the sizes discussed above are used. Below, all results will be
for q = 0.4.

Infigure 4, the solid lines show the complex scaling results for four values of the anisotropy ranging from
none k =( )0 to substantial (k = -1.0 and k = )0.8 .Moreover, both collectionmodes are analyzed. At
vanishing field strength, the Stark energy, i.e. the real part of the resonance, agrees with the results infigure 2. As
thefield is increased, the energy initially decreases quadratically with a prefactor given by the polarizability in
figure 3.However, beyond afield strength of approximately ~ 0.1, a significantly softer behavior is found. At a

Figure 3.Exact numerical polarizabilities (solid lines) and linearized approximations (dashed lines) for perpendicular (green) and
parallel (blue) collectionmodes.

5

New J. Phys. 18 (2016) 073043 TGPedersen et al



similarfield strength, the ionization rate increases dramatically before becoming approximately linear in the
field. Inweakfields, the ionization rate is dominated by an exponential G ~ -( )cexp behavior. All of these
features agree with the analogous findings for atomic hydrogen [15]. It is observed that increased anisotropy
leads to reduced ionization,mainly as a result of the increased exciton binding energy.Moreover, in the
perpendicular collectionmode, the ionization rate in relatively largefields is only weakly sensitive to the
anisotropy, i.e. all curves share roughly the same slope. In contrast, for the parallel case, the slope decreases
markedly as k is increased. This difference relates to the delocalization behavior of the states as shown in the
insets offigure 2. Thus, as k increases, the states become increasingly delocalized in the perpendicular direction.
This, taken by itself, increases ionization in a perpendicular field but not in a parallel one.Hence, delocalization
partially counteracts the increased exciton binding for the perpendicular collectionmode.

The complex scaling results are based on diagonalization of relatively largematrices on afine grid of electric
field strengths. Such afine grid is required in order to track the evolution of a particular state as the field is
increased. This approach is therefore computationally demanding and it is of interest to compare with themuch
simpler hypergeometric resummation approach. As explained above, themethod takes the first five terms in the
asymptotic expansion of thefield dependence as input. In the appendix, the required expansions are provided.
We apply thesewithin the hypergeometric resummation approach used in [16] and thereby obtain Stark
energies and ionization rates at practically no computational cost. These are shownby the dots infigure 4. For
vanishing anisotropy, the agreement is essentially perfect, as expected [15, 16]. Remarkably, however, the
agreement is excellent even for large values of k∣ ∣.This demonstrates the power of the hypergeometric
resummation approach.We stress that, using the series provided in the appendix, accurate calculation of
resonances for any givenmaterial (within the class studied here) can bemade at a fraction of the computational
cost compared to the full complex scaling.

4. Application to TMDs

To convert any result of theWannier approach to physical quantities we require specific values of the anisotropic
dielectric constants and effectivemasses. To this end, we have performed first-principles calculations for the
important TMDsMoS2,MoSe2,WS2, andWSe2 using the RandomPhase Approximation and including spin–
orbit interaction. All calculations were performedwith the projector augmentedwave electronic structure code
GPAW [30, 31] and include local-field effects in the dielectric response. Full details on the calculations can be
found in [32]. Thefirst-principles results for direct and indirect excitons are listed in table 1 and 2, respectively.

Figure 4.Exciton Stark energy (left axes) and ionization rate (right axes) for two orientations of the electric field. Both complex scaling
(solid lines) and hypergeometric resummation results (dots) are shown.
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For direct excitons, the anisotropymanifests itself in highly different out-of-plane and in-plane effectivemasses.
As seen in table 1, thesemasses differ by nearly an order onmagnitude. Similarly, the out-of-plane dielectric
constants are less than half the in-plane values. For both sulphidesMoS2 andWS2, these values translate into an
anisotropy of k » 0.8.Thus, even if the twomaterials are obviously dissimilar, their effective anisotropy is
essentially the same. The dissimilarity reveals itself in thefield scaling factors, however, which are about twice as
large inMoS2 as inWS2 as a result of themuch larger effectivemasses of the former. Thismeans that any
normalizedfield strength infigure 4 translates into amuch smaller physical field inWS2 relative toMoS2. An
approximately similar ratio is found for the field scaling ofMoSe2 relative toWSe2. To complete the conversion
and translate the ionization rate G into physical units, the frequency scale /⁎ Ha is applied. The converted
results for direct and indirect excitons obtained from this procedure are shown infigures 5 and 6, respectively.

In the effective exciton units, afield of unitymagnitude corresponds to a physical field of

/= = ⁎ ⁎ F aHa ,x z x z x z, , 0 , i.e. the ratio between effectiveHartree andBohr radius for the particular field
direction. From tables 1 and 2 it is seen that the direct and indirect exciton binding energies constitute about
75% and 40%of ⁎Ha , respectively. Hence, estimating thefield strength required for efficient ionization as

/∣ ∣ ⁎E ax z0 , is equivalent to unity field strength ~ 1 in exciton units within a factor of approximately two. From

Table 1.Material parameters for direct excitons in TMDs.

Mat. /m mx 0 /m mz 0 ex ez k ⁎Ha E0 x z

MoS2 0.293 3.096 13.24 5.61 0.777 107 meV −83 meV 1.3 10−4 4.4 10−4

WS2 0.184 1.997 12.49 5.87 0.804 68 meV −54 meV 5.4 10−5 1.8 10−4

MoSe2 0.333 1.573 15.06 7.62 0.582 79 meV −52 meV 9.0 10−5 2.0 10−4

WSe2 0.198 1.198 13.80 7.07 0.677 55 meV −39 meV 4.1 10−5 1.0 10−4

Table 2.Material parameters for indirect excitons in TMDs.

Mat. /m mx 0 /m mz 0 ex ez k ⁎Ha E0 x z

MoS2 0.355 0.364 13.24 5.61 −1.302 130 meV −48 meV 2.0 10−4 2.0 10−4

WS2 0.295 0.340 12.49 5.87 −0.827 108 meV −44 meV 1.4 10−4 1.5 10−4

MoSe2 0.404 0.394 15.06 7.62 −1.027 96 meV −37 meV 1.3 10−4 1.3 10−4

WSe2 0.387 0.373 13.80 7.07 −1.025 108 meV −42 meV 1.6 10−4 1.5 10−4

Figure 5.Direct exciton ionization rates converted into physical units for different TMDs. The upper and lower panels are for
perpendicular and parallel collection, respectively.
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figure 4 it is seen that at such afield strength, ionization is well into the linear regime.Hence, using /∣ ∣ ⁎E ax z0 , as an
estimate for the ionization threshold is partly supported by our results. In fact, the transition from exponential to
linearfield-dependence infigure 4 occurs around ~ 0.1,whichmay be considered a bettermeasure for the
threshold.

For both direct and indirect excitons, themagnitude of the ionization rate reflects the exciton binding
energy.Hence, there is a simple correlation between the binding energies in tables 1 and 2, on the one hand, and
the ordering of the curves infigures 5 and 6 on the other, with strongly bound excitons leading to suppressed
ionization. The larger differences for the direct exciton binding energies lead tomore spread-out curves as
compared to the indirect ones. Overall, the best candidates for efficient ionization of direct and indirect excitons
areWSe2 andMoSe2, respectively. For the direct excitons (figure 5) theWSe2 rate is significantly higher than the
second bestmaterial, i.e.MoSe2 andWS2 for perpendicular and parallel collection, respectively. In comparison,
the differences for indirect excitons aremodest.

We end this sectionwith a brief comparison to the experimental photoresponse rate observed in [5]. In that
work, the photoresponse rate was determined using two-pulse excitationwith an adjustable delay. Hence, the
extraction time of the photogenerated carriers produced by the first pulse is probed by the second pulse. The
extraction time itself is ameasure of at least three processes occurring in series: (i) exciton ionization, (ii) drift to
the TMD/graphene interface, and (iii) transfer across the interface. Hence, importantly, themeasurement is
dominated by the slowest among these processes and the experimental rate cannot necessarily be identifiedwith
the actual ionization rate. The fastest response~ ⋅ -2 10 s11 1was seen for aWSe2 device having a slab thickness of
2.2 nm. This thickness is larger than the perpendicular exciton Bohr radius (1.1 and 1.4 nm for direct and
indirect excitons, respectively) andwe therefore expect the bulk picture in the present work to be applicable. Bias
voltages up to 1.2 Vwere applied in themeasurement and the response rate typically increasedwith applied bias.
The precise value of the internal electric field is subject to someuncertainty and depends on the geometrical
capacitance and interface charges (see [5], supplementary information). It is clear, however, that the theoretical
ionization rates computed above exceed themeasured rate by a significant factor. In fact, forfield strengths of

m -100 V m 1 and above, the converted results infigures 5 and 6 for perpendicular collection are found to be at
least ⋅ -2.2 10 s14 1 and ⋅ -3.3 10 s14 1 for direct and indirect excitons, respectively. This is obviously significantly
larger than the experimental response rate. Hence, in agreementwith [5], we conclude that exciton ionization is
not the limiting process in the observed photoresponse at this field strength. Rather, drift of the carriers to the
contacts after ionization is the probable cause of the reduction. Generally, carrier drift in the perpendicular
direction ismuch slower than in-plane drift. For instance, the ratio between parallel and perpendicular carrier
mobility for the relatedmaterialMoSe2 can be as large as 103 [33]. The limiting role of carrier drift is further
evidenced by the inverse square dependence of the rate on sample thickness [5]. Finally, a transfer time of 1 ps

Figure 6. Same asfigure 5 but for indirect exciton ionization.Note thatWS2 andWSe2 results nearly coincide.
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across the interface between graphene andWS2was recently reported [34]. Assuming a similar rate forWSe2,
this implies an upper limit of~ -10 s12 1 for themeasured photoresponse rate.

5. Summary

In summary, we have considered the process offield-assisted exciton ionization inmultilayer TMDs. By solving
an anisotropicMott-Wannier equationwe are able to extract exciton binding energies. Combinedwith complex
scaling and resummation techniques, we subsequently find exciton Stark shifts and ionization rates as a function
of externalfield strength.When applied to sulphides (MoS2 andWS2) and selenides (MoSe2 andWSe2), our
results show that, in scaled exciton units, all of thesematerials behave similarly. However, after conversion into
physical units, significant differences emerge. Thus, direct excitons in the tungsten compoundWSe2 are found
to ionize in substantially smaller fields as a result of the smaller exciton binding energy. Similarly, for the indirect
exciton, the ionization rate ofMoSe2 is the highest among the compounds considered.

Acknowledgments

Thiswork isfinancially supported by theCenter forNanostructuredGraphene (CNG) and theQUSCOPE
center. CNG is sponsored by theDanishNational Research Foundation, project DNRF103 andQUSCOPE is
sponsored by theVillum foundation.HMandBKNare supported byNSF underGrantNo. ECCS 1509094.

Appendix. Perturbation series

Formaterials that are onlyweakly anisotropic so that k∣ ∣ 1, theWannier equation equation (3)may be
approximated by the linearized problem

k
y y-  - - + ⋅ = ( )

⎧⎨⎩
⎫⎬⎭r

z

r
r E

1

2

1

2
. A12

2

3

 

Wewish tofind the perturbation series for the energy as an asymptotic series in the electric field

å= =
¥( ) ( ) E E .x z n x z

n n
, 0 ,

2 2 In the isotropic case k = 0,well-known results for the 3Dhydrogen problem
[16, 27] readily provide the 8th order expansion
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To include afinite but small anisotropy, we now calculate thefirst order correction in k to the eigenvalue in
equation (A1)using linear perturbation theory. To this end, thewave function yk= ( ) ,0 correct to 8th order in
thefield , is required. Fortunately, the separation in parabolic coordinates applied in [16] immediately provides
this function. If thefield is along z such that both perturbations in equation (A1)preserve the rotational
symmetry around the z-axis, the analysis is straightforward and for the total energy » + Dk=( ) ( ) ( )  E E Ez z0

onefinds the correction

kD = - + + +

+ +
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On the other hand, if thefield is in-plane = ˆ x,


equation (A1) is conveniently symmetrized over
directions perpendicular to thefield and reformulated as

k
y y-  -

+
+ + =

k

( )
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
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x
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x E

1

2

1

4
. A42 4

2
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Hence, the isotropic Coulomb term is renormalized by a factor of + k1 .
4
A simple scaling calculation shows that

the 2n′th order field correction for the isotropic case equation (A2) acquires a factor - k( )n1 3
2
as a consequence.

The second k -dependent term in equation (A4) is the same as for the perpendicular case except for a factor
/-1 2.Adding the two contributions, it follows that for the parallel case
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kD = - + + +

+ +

{
}

( )
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The linearization in kmeans that the above results cannot be immediately applied in the experimentally
relevant range for TMDs k∣ ∣  0.5.We therefore fit the full k -dependence to a polynomial using (i) the exact
known limits for k = 0 and k = 1 [16], (2) the exact linear behavior equations (A3) and (A5), and (3)numerical
Stark energies for intermediate values. The results for k  0 for the two orientations are

k k k k

k k k k

k k k k

k k k k

= - + + - +
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Wedo not attempt to incorporate negative k -value into the fit but provide here the relevant expressions for
the characteristic case of k = -1
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