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This work is concerned with the generation of text at different reading levels 

by tailoring the generated text to fit the reading level that is appropriate to the reader. 

The technique is employed in the context of conveying the high-level messages of 

information graphics in online popular media in order to allow access to such media 

by people who are blind or visually impaired, as well as by systems with limitations 

on screen sizes or bandwidth where images are not convenient.  The contributions of 

this work aim to avoid commonly placed rule-based methodologies and to improve 

different phases of the NLG pipeline.  

The methodologies and techniques proposed by this work were employed in 

the context of the SIGHT system, which provided textual summaries of simple bar 

charts.  In this thesis, we handle single line graphs and have made significant 

contributions to several modules of the NLG pipeline, including: content 

determination, text structuring, aggregation and lexicalization. 

Texts in popular media are written to target readers at different reading levels – 

some of the text is rather simple (geared toward 4th grade readers, for example), while 

other text is quite sophisticated (geared toward college-level readers, for example).  

We found that text that was geared toward a reading level that did not match the 

reader was difficult for that reader to understand.  Thus, we attempt to produce a 

summary whose writing sophistication matches that of the article in which the graphic 

appears.  Two of the phases of the NLG system are crucial to achieving generation at 

different reading levels: aggregation and lexicalization. 

ABSTRACT 
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The methodologies and techniques developed in the context of this work were 

evaluated by generating summaries of line graphs present in online popular media.  

Summaries generated at different reading levels were evaluated by both automatic 

reading level assessment tools and by readers at different reading levels.  The 

appropriateness of the summary context was evaluated by people with visual 

impairments who were asked to answer important questions about the presented line 

graphs.

 



 

 

1 

INTRODUCTION 

Access to online resources and news has grown dramatically in the past 

decades.  At the time this study was first described, Pew Internet & American Life 

Project Tracking surveys (Center, 2010a, 2010b) showed that around 41% of adults 

(18 or older) utilized the Internet to get news and have access to popular media 

resources.  Another study showed that various social media websites are the source of 

acquisition of news by adult users, and that an increasing number of them access these 

social media sites through mobile devices (Center, 2010a). Assuming that mobile 

devices might present limitations on displaying images either due to network 

bandwidth or screen size, having an alternate modality to present the information 

becomes a desired option.  The National Federation of the Blind has estimated the 

number of blind adult individuals in the U.S to be 25,200,000 (NFB, 2013).  From the 

accessibility perspective, this work has the goal of improving the experience of those 

blind users that use the internet for access to news from popular media by providing 

improved and broader access to the content available online. 

Information graphics (non-pictorial images such as line graphs, bar and pie 

charts) are commonly used by authors in order to convey a message or to make a point 

regarding the topic being discussed; yet screen readers cannot read information in such 

media and therefore those using them may miss those sources of information.  This is 

problematic because many popular media articles do not repeat the content of their 

information graphics in the article’s text (Carberry, Elzer, & Demir, 2006) and the Alt 
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text (text that a screen reader can read that an author writes to describe the image) is 

often missing or misleading.  Moreover, technical limitations on either the device 

(small screen) or the network access (limited bandwidth) reinforces the need for an 

alternative way of accessing the high-level content conveyed by an information 

graphic.  Based on this scenario, the work presented in (Elzer et al., 2007a) was 

undertaken in order to recognize the intended message conveyed by simple bar charts.  

Later, (Demir, Carberry, & McCoy, 2008) developed SIGHT (Summarizing 

Information GrapHics Textually), a natural language generation system that provides 

textual summaries of simple bar charts using English language. 

Line graphs represent another important way of using graphs to convey 

messages in online popular media.  Due to their continuous nature, these graphs, 

however, convey a different set of intended messages and pose challenges for 

identifying and conveying their salient visual features.  Therefore, significant 

additions to SIGHT were required to generate textual summaries of line graphs. 

The work described in this dissertation was initiated to extend the SIGHT 

system to handle line graphs.  Many challenges were unveiled during the natural 

language generation phase where characteristics of the graph and evaluations allowed 

us to find areas of potential contribution to the NLG field.  For example, it was found 

that line graphs appear in articles intended for widely different audiences, with varying 

reading levels.  We found that in order to be able to generate summaries appropriate 

for these varying audiences, the text in the summary should be at the same reading 

level as the article.  Therefore, the main goal of this research was to develop a Natural 

Language Generation system which generates textual summaries at different target 
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reading levels when describing the high-level content (intended message and 

outstanding visual features) of line graphs for visually impaired users. 

The generation at different reading levels resulted from the desire for the 

summaries to 1) match the reading level of the text surrounding the graph, since such 

articles are written for audiences at different reading levels depending on the venue; 2) 

be understood by the person reading the article.  From research and studies performed, 

we learned that simpler is not always better, and even though previous research has 

assumed that the simplest text is always the easiest to understand, results from 

experiments performed showed that the majority of the users at different reading 

levels prefer text that is tailored to their reading level instead of the simplest text they 

can get. 

In order to address the generation of summaries that are written at different 

reading levels and that convey the high-level message and important visual features of 

line graphs, a series of techniques and experiments were performed.  These constitute 

the research contributions of this work and are described in the next section. 

1.1 Research Contributions 

This work reports on a system which is able to generate descriptive summaries 

of line graphs at different readability levels.  These graphs contain a high-level 

message that the author is intending to convey.  In addition, we would like to convey 

other visually salient features of the graphic that a reader viewing the graphic might 

note.  We do that by generating a high-level summary of the graphic which delivers 

the intended message and the graphic’s outstanding visual features.  The summaries 

generated vary in readability level, according to the reading level of the text 
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surrounding the graphic.  These two aspects, accessibility and readability sensitive 

generation of text, comprise the two main contributions this work is concerned. 

We developed a set of strategies that affect different phases of the NLG 

pipeline (shown in Figure 1-1).  Specifically, contributions made are related to all of 

the components of the text planning and micro planning phases with the exception of 

referring expression generation.  The contributions related to Natural Language 

Generation are: 

 

Figure 1-1: NLG system general architecture (Reiter & Dale, 2000). 

 Allowing the content determination phase to consider important 

features of the object being described: The use of a graph-based 

centrality algorithm for content determination which takes into 

consideration visual features of the element being described proved to 

be a great choice.  This is enabled by the ability this approach provides 

to the content determination phase to choose descriptions of the object 
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which are salient and, at the same time, it implements a discourse-

aware technique which produces concise, yet coherent, summaries of 

line graphs.  The content determination phase in this work employs 

modifications to the PageRank (Xing & Ghorbani, 2004) algorithm in 

order to consider the presence and intensity of visual features of the 

line graph being described, allowing the summaries of different graphs 

to vary both in content and size, depending on the graph itself and 

which features of the graph are visually salient.  Therefore, this 

approach allows the summary to be customized based on the particular 

graphic: the more salient features a graphic has, the more detailed is the 

summary that describes it.  This is a promising path to be followed by 

other NLG systems, independent of the domain the system will be 

applied to.  In contrast to the work described here, the SIGHT system 

module that generates initial summaries for simple bar charts used logic 

rules for determining the content to be selected.  By using a graph-

based approach, the system becomes more flexible and easily adaptable 

regarding the selection of content for the initial summary. 

 Considering additional underlying messages contained in the graphic: 

In addition to the intended message identified in a graphic, there can be 

other candidate messages identified in a graphic which augment the 

high-level message of the graphic and help identify the most important 

aspects of the graphic.  We have developed a strategy that allows this 

information to help select content for the summary and have tested and 

validated it.  Since these messages carry significant visual information 
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about the graphic, such information needs to be considered by the 

content determination module.  In contrast, the SIGHT system module 

that generates summaries for simple bar charts only takes the intended 

message of the graphic into consideration, leaving candidate messages 

with non-trivial assigned probabilities out of the scope of the graphic’s 

summary. 

 Structuring text in the summary according to the importance of visual 

features of the element being described: The organization module also 

applies a graph-based customization technique in which the ordering of 

propositions in the initial summary is based on the content of the 

graphic instead of using a predefined organization template.  What is 

deemed to be the most important element present in a graphic will be 

described first, thus providing more emphasis. 

 Allowing the generated text to vary in readability complexity: The 

micro planning phase aims to generate text at a target reading level.  In 

contrast, most text generation systems are designed for one specific 

reading level.  They usually use measures that will balance the 

generated text complexity in order to be able to produce understandable 

text.  However, users that access popular media have neither the same 

age nor the same education and different venues are targeted to users at 

different reading levels.  My hypothesis is that users have preferred 

online sources which they use to gather information, so if the text that 

describes the graphic conforms to the overall text in the article, the 

probability of the graphic summary being understood by the user 
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increases.  In the context of this work, the target reading level of the 

text to be generated is the same reading level as the one used in the 

article’s text in which the graphic appears.  For this, a set of techniques 

and methodologies were employed and evaluated: 

o Determining which syntactic features of a text are associated 

with different reading levels as identified by readability 

measurements:  From this research, a learning methodology was 

developed – using decision trees - in order to look at the 

features of text that can be used while generating text and what 

their measures are.  Learning which values these features take 

for different reading level text was pivotal to using them during 

the aggregation phase (part of the micro planning phase as 

shown in Figure 1-1). 

o Enabling aggregation of propositions to be performed 

efficiently: The system uses a heuristic graph search algorithm 

to search through possible realizations and aggregation choices. 

The heuristic attempts to match text feature measures learned 

from an annotated corpus to achieve the desired reading level. 

o Gathering multiple lexical items so that summaries at different 

reading levels can use different lexical items: An approach for 

gathering synonyms for the concepts being described was 

developed.  The technique starts with seed words for a concept, 

captured from a human subjects experiment, that are used to 

expand the set of lexical items.  Synonyms of these seed words 
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are collected from a thesaurus using only the constraint that 

both the seed word and the synonym have the same part of 

speech.  Since coming up with the appropriate words to describe 

a concept is always one of the challenges faced by NLG system 

architects, the use of seed words from exemplary text provided 

by humans proved to be a good way of starting from a 

representative word for defining a concept.  The idea behind 

gathering all of the synonyms that were used in the same part of 

speech was to allow the lexicalization module to be automated, 

resulting in a methodology that can be ported to other domains.  

However, further refinements were required. 

o Determining which lexical items are relevant to the domain 

being described:  The set of synonyms gathered from the 

thesaurus using POS tags was incredibly broad.  Many of the 

lexical items would not be appropriate to the domain under 

consideration.  Clearly, a way of filtering and finding relevant 

terms was needed.  For that, a combination of a language 

modeling approach and word vectors was used.  This 

combination yielded the best results for filtering the lexical 

items that were pertinent to the domain of describing line 

graphs.  Our hypothesis is that this technique is robust and 

scalable enough to be used in different domains as long as the 

domain concepts can be defined by an initial set of seed words 

provided to the system. 
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o Defining the lexicon based on the different target reading levels 

to increase user understanding of the generated text:  After 

coming up with a set of filtered synonyms for each concept that 

could be used for describing line graphs, the creation of the 

lexicon based on grade level was possible by checking for the 

occurrence of these words in texts marked for the desired grade 

level in the corpus annotated with the grade level (the same 

corpus used to learn text complexity related features and their 

measurements – grade level labeled magazines). 

The contributions related to providing access to line graph content to visually 

impaired users are: 

 Extending the SIGHT system to generate initial summaries of line 

graphs: From the accessibility perspective, the contribution of this work 

is the development of a natural language generation system for high-

level summaries of line graphs.  Once the system is paired with a fully 

robust visual extraction module, it will provide visually impaired users 

with access to the high-level content of line graphs from popular media 

(extending the existing tool that gives them access to simple bar 

charts).  

 Considering visual features when building a summary that describes a 

graph: This allows visually impaired users to have access to an initial 

summary that goes beyond the graphic’s intended message, conveying 

also its prominent visual features and important candidate intended 

messages.  This approach allows the system to provide a richer, 
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although still concise, initial summary that covers most of the 

important high-level information conveyed by the graphic.  The initial 

summary will allow visually impaired users to get the gist of the 

graphic, with the goal of enabling them to experience the same ability 

sighted users have when they skim the graphic on a web page. 

A minor contribution which allows better usability of the system is described 

next: 

 Enabling users to have access to the system without having to install 

anything but a web browser plugin: In order to provide SIGHT as a 

service in the cloud, a Chrome® plugin has been developed to detect an 

image in a web page and launch the system to generate the summary.  

This addition now allows the system to be used remotely, since only 

the plugin must be installed on the user’s machine.  The system is 

called using a web socket and the detected image is sent to the server 

which runs the SIGHT system service.  Upon receiving the request, the 

SIGHT running on the server generates the summary and sends it back 

to the client. 

All of the approaches and methodologies created for addressing the problems 

found while generating text at different reading levels were evaluated and the results 

are presented in Chapter 8.  Likewise, the usefulness of the initial summaries 

generated by the system for users who are blind was also assessed and results are 

presented in the same chapter. 
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RELATED WORK ON ACCESSIBILITY OF GRAPHICS 

This chapter presents research that has been done in the area of accessibility 

for visually impaired users.  It lists a variety of different research avenues that have 

been taken in the area of making graphs accessible.  The chapter describes various 

approaches and methodologies which aim to provide access to graphs and charts to 

people who cannot see them.  Different kinds of graphs have been targeted by 

accessibility research.  Some graphs are concerned with showing hierarchical or 

semantic relationships between entities (with nodes and edges as in a taxonomy, for 

example).  Other graphs, which we call scientific graphs, use bars, pies or lines to 

show statistical data.  Such graphics are used as a device to help the reader interpret 

data such as data from an experiment.  These graphs are important in STEM education 

and reading and interpreting scientific graphs is an important area of study.  A third 

kind of graph is typically found in less formal situations (such as in popular media).  

These graphs are placed in a document in order to make a point or to convey a 

message about one or more entities.  Related work presented here ranges throughout 

all three types of graphics.  This work, however, focuses on the third type: graphics 

that are used in popular multimodal documents to convey a message that augments the 

message of the document or to provide information on its own. 

Some work is related to allowing visually impaired users to access graphs by 

providing a tactile representation of it.  Others provide an audio alternative by 

employing musical stimuli and some alternatives generate descriptive passages that 

Chapter 2 
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narrate the graph.  For the different approaches presented here, a comparison is drawn 

in order to allow the reader to understand how these techniques differ from the 

objective of this work.   

Another relevant area of research which is related to this work is that of 

Natural Language Generation.  Since this aspect of the work represents the majority of 

the theoretical and practical contributions and implementations, related work in the 

area will be presented within the respective sections that they have influenced. 

2.1 Related Work on Providing Access to Graphs for Visually Impaired Users 

2.1.1 The SIGHT system 

SIGHT (Carberry et al., 2013; Demir, Oliver, Schwartz, Elzer, Carberry, 

McCoy, et al., 2010; Elzer, Green, Carberry, Carberry, & McCoy, 2003) is a system 

designed to generate initial summaries and provide follow up responses about simple 

bar charts.  It is an interactive system where the user navigating the web is provided 

with the initial summary of a simple bar chart present in the article he/she is reading 

and is further able to ask for follow up responses, in which case more detailed 

information about the graphic is selected and translated into sentences.  SIGHT is 

triggered by an add-on for the Internet Explorer® browser (Elzer et al., 2007b) that 

recognizes the presence of a graphic image (currently differentiating between simple 

bar charts and line graphs) in multimodal documents from popular media. 

Figure 2-1 shows a simple bar chart followed by its generated initial summary.  

The graphic designer uses a different color for the bar labeled United States.  The 

contention is that she/he does this to catch the attention of the reader and to invoke the 
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comparison of this bar with all the other ones.  Such salient features are very important 

when the system needs to identify the intended message of the graphic. 

 

Figure 2-1: Example of a simple bar chart from popular media. 

Table 2-1: Initial summary generated by the SIGHT system for the graphic in Figure 

2-1. 

Initial Summary: 

The graphic shows that United States at 32434 has the highest number of hacker 

attacks among the countries Brazil, Britain, Germany, Italy, and United States. 

United States has 5.93 times more attacks than the average of the other countries.1 

The SIGHT system did not handle line graphs, which is one of the 

contributions of this work.  The steps which comprise the pipeline of the SIGHT 

system are similar for simple bar charts and for single line graphs.  However, their 

implementations differ considerably, particularly regarding the phases of intention 

recognition, content determination, text organization, aggregation of propositions and 

                                                 

 
1 The provided textual summary would presumably be read by a screen reader. 
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choice of lexical items.  Details on the added functionalities to SIGHT in order to 

handle line graphs are presented in Chapter 3. 

2.1.2 Providing access to graphs through audio 

A varied set of alternatives for providing access to graphics for visually 

impaired users has been investigated.  One alternative is the use of structured musical 

stimuli to convey coordinate locations within a graphical grid in order to be able to 

communicate diagrams composed of geometric shapes (Alty & Rigas, 2005a, 2005b).  

Sound timbre and pitch ((x,y) and magnitude, respectively) are used to represent the 

position of the user’s cursor.  By tracing the object using mappings of timbre and 

magnitude, size and shape attributes are then communicated to the user through sound.  

(Brown & Brewster, 2003; McGookin & Brewster, 2006) uses sonification in order to 

allow visually impaired users to interpret and perform multimodal graph browsing.   

The work presented by Kennel (Kennel, 1996) uses an audio-tactile solution to 

help visually impaired users explore diagrams present in technical reports and papers.  

In this approach, the graphic is displayed on a touch panel where a part of the graphic 

can be selected with a finger.  An auditory component then presents the selected part 

to the user by listing the elements on the diagram (describing the element type and its 

content using words).  If a user decides to explore an element further, then an element 

view and, subsequently, an attribute view can be accessed.  The attribute view, which 

is the most precise display level, tells about the attributes of the element (for frames: 

position, height, width, shape, area color, shade, line color, line width; for text: 

position, string, font, font size, font color; for connections: endpoints, nodes, line 

width, line color, arrows).  The authors state that users need to build a mental map of 

the diagram elements in order to visualize them.  They also affirm that congenitally 
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blind users and users who lost their vision at an early age have more difficulty using 

the system. 

An auditory interface used to display graphics and to help visually impaired 

users perform steering tasks is described by (Cohen et al., 2006; Cohen & Yu, 2005).  

The goal is to allow users who cannot see graphs and relational information to 

navigate through them, moving from one node to another, by using auditory cues to 

help them with the task.  As the diagram is displayed on a tablet, the user can “draw” 

on the page until the stylus reaches a vertex.  When that happens, a sound is played to 

notify the user about the event.  At that point, details about the node are read out loud 

(for example: the text contained inside the node and a list of its neighbors).  The 

system, called PLUMB, was originally designed to provide access to data structure 

and relational diagrams to Computer Science majors, but it is also intended to be 

applied to maps and other representations of such entity-relationship phenomena.   

The approaches mentioned would not be applicable to the type of graphs which 

are the focus of this work.  Information graphics cannot be navigated in the same way 

since they do not reflect vertices and edges representing relationships, but rather they 

contain high-level messages that convey relational information about a set of entities. 

2.1.3 Providing access to graphs through haptic interfaces 

Krufka and Barner (Krufka & Barner, 2006) use tactile representations of 

images in order to make them available for blind users.  The image set contained 

pictures of animals, buildings, people, and objects that were familiar to all subjects 

that participated in the experiments. This work did not present results on evaluating 

comprehension of line graphs through use of tactile approaches. 
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Haptic interfaces are also used to help the user interact with graphics.  The 

work presented in (Ramloll et al., 2000) describes a line graph reader which 

reproduces the line graph by using audio-haptic displays.  The authors map Y 

coordinates to pitch and include the creation of a sound object that can be positioned 

by the stylus of the haptic device.  Each curve contains its own sound object. The goal 

of the authors is to increase independence of people with visual impairments when it 

comes to producing tactile versions of line graphs since the conventional methods 

were time consuming and complex. With the same intent, other work presented in 

(Ramloll et al., 2000; Wall & Brewster, 2006; Yu & Brewster, 2002; Yu, Kangas, & 

Brewster, 2003; Yu, Ramloll, & Brewster, 2001) uses tablets and tactile display 

systems in order to allow visually impaired users to interact, further investigate and 

even create bar charts and line graphs. 

Even though these initiatives have proven to be successful, their purposes – 

which generally are to provide access to scientific graphics to help with data 

interpretation – differ from our purpose which is to provide the user with the high 

level knowledge conveyed by the graphic.  Since the graphics we focus on are used to 

make a point, providing access to the underlying data does not necessarily achieve that 

goal since it would require a huge cognitive task.  In the types of graphic we focus on, 

the visual features and the high-level message conveyed are chosen because they make 

it easier to understand the content of the graphic.  From the technology requirement 

perspective, the initiatives presented in this section have limitations such as the costs 

associated with the haptic devices required, the fact that some of these systems require 

preparation work done by sighted individuals, and the experience and knowledge 

required by people using them. 
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2.1.4 Providing access to graphs through availability of input data 

Another initiative for providing access to graphics for visually impaired users 

involves the generation of graphics from input data.  Goncu and Marriott (Goncu & 

Marriott, 2008) developed a tool that automatically generates tactile versions of bar 

and pie charts from input data present in textbooks.  The work presented by Yu et al. 

(Yu et al., 2003) allows blind users to create virtual graphs through the use of a low-

cost haptic device.  These devices create a graphic from available information and 

allow the user to explore it through touch.   

The GraSSML (Graphical Structure Semantic Markup Languages) approach, 

proposed by Fredj and Duce (Fredj & Duce, 2007), has the goal of improving the 

accessibility of diagrams at the creation stage (by making their structural and semantic 

information available through metadata) as well as making the information “behind” 

the diagram available for modification and adaptation.  The availability of this 

information is then exploited to generate alternative representations that improve the 

accessibility of diagrams.  It captures the information contained in the diagram and 

allows the generation of different ways of representing it (through text, graphic, 

speech, etc.).  An example of the Verbalization model is shown in Figure 2-2. 
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Figure 2-2: Example of the Verbalization model on which a textual description of the 

diagram is generated by the system described in (Fredj & Duce, 2007) 

As one can see, these diagrams can have their relationships described, which 

does not apply to line graphs present in online popular media which are used to make 

a point.  These relationships are provided by human annotators in order to create the 

metadata and the textual representation then reflects the information on the metadata. 

2.1.5 Providing access to graphs through text 

(Kurze, 1996) presents the generation of textual summaries of graphics by 

constructing a description of the diagram by providing its labels, axes ranges, and data 

set values.  The iGraph-Lite system (Ferres, Lindgaard, Sumegi, & Tsuji, 2013; 

Ferres, Parush, Roberts, & Lindgaard, 2006; Ferres et al., 2007a) provides a template-

based summary of what the graph looks like (such as the caption of the graph, and the 

maximum and minimum values of the graph) based on the data points given in a 

spreadsheet and allows the user to further explore the graph (Ferres et al., 2007b).  An 

example of a line graph and of a summary generated by the iGraph-Lite system is 

shown in Figure 2-3.  As one can see, these graphs represent statistical data and their 

purposes are not to convey a message or a point.  Therefore, every summary of a line 
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graph will contain the same information (e.g., max and min values) regardless of what 

the graph looks like.  In contrast, the system described in this thesis will provide 

different information for different graphics.  For example, in the graph shown in 

Figure 2-3, the falling trend and the volatility of the data points would likely be 

mentioned.  It will provide what it shows to be the most visually salient features of the 

graphic.  The evaluation of the system is presented in (Ferres et al., 2013). 

Therefore, the main difference between the approaches described above and 

our work is the fact that our system automatically captures the high-level message and 

the outstanding visual features of the graphic and utilizes that information to produce 

summaries that vary in content and size. 

 

Figure 2-3: Example of a line graph and the summary generated for it by the iGraph-

Lite system (Ferres et al., 2007a). 
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BabyTalk (Gatt et al., 2009) is a system which generates narratives for doctors, 

nurses and parents from time-series data captured in a neonatal intensive care unit.  It 

is a decision support system designed to extract the most important aspects from 

neonatal ECG reports.  Although the system captures the important times where the 

results need special attention in order to generate a summary that reflects this 

phenomena, they do not address the issues related to generating summaries of 

information graphics the same way we do since their focus is in summarizing key 

information from a domain/user perspective based on data, instead of describing 

graphics that try to make a point. 

The TREND system (Boyd, 1998a) aims to generate descriptions of time-series 

data.  It uses Wavelet and Fourier Transform in order to segment the trend in a line 

graph.  It is applied to weather data and generates text using FUF/SURGE.  It outputs 

sentences describing each identified trend in chronological order. While this work 

does describe a line graph, it does not address many of the aspects of line graph 

description we believe are important.  For example, it always uses chronological order 

(where our system describes the most important things first) and does not include 

visually salient features in its descriptions.  The evaluation shows that 17 of 26 trends 

that were described by experts were also described by the system. However, the 

experts also mentioned visual aspects of the graphs such as volatility, max, min, initial 

and end values of the graphic but the system did not cover such aspects in its 

generated descriptions.  That is one of the main aspects used by our system in order to 

produce a high-quality summary of a graphic. 
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2.1.6 Overall comparison 

Drawing an overall comparison of our system with other approaches, we can 

state that: (1) our system intends to provide access to the high-level message and 

outstanding visual features conveyed by graphics present in multimodal documents 

from popular media, in contrast with systems that enable the user to explore scientific 

graphics in detail. Scientific graphics usually do not carry a high-level message but, 

instead, they require that users have access to the data points in order to draw 

conclusions and perform analysis. (2) Our work requires neither special equipment nor 

skills on the part of the user. (3) It also does not require high cognitive load since users 

do not need to construct a visual representation of the graphic in their minds. The goal 

of the system described in this work is to make graphics that are already available 

accessible instead of recreating graphics from input data.  Some interviews with 

visually impaired users indicate that they ignore the graphics in multimodal articles 

because systems are not available that provide the kind of inexpensive, real-time 

access that they require. The SIGHT system, to the best of our knowledge, is the only 

one to consider the high-level message, the point the graphic designer is trying to 

make through the use of a graph, along with the salient features of the graph in order 

to create a high-level summary that describes the content of the graph.  This provides 

users with quick access to the high-level knowledge and important information 

conveyed by the graphics, thereby enabling effective use of this information resource 

(Carberry et al., 2013; Demir, 2010; Demir, Oliver, Schwartz, Elzer, Carberry, & 

McCoy, 2010). 
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2.2 Summary 

This chapter presented a variety of accessibility initiatives that aim to provide 

access to charts and graphs for users who cannot see them.  It presented efforts that 

have been pursued in the audio, tactic and textual areas.  It also stated how these 

approaches and methodologies differ from the work being presented in this thesis.  

Additional related work, relevant to the area of Natural Language Generation, is 

described in the specific chapters that they influenced.  The next chapter will cover the 

SIGHT system architecture and its modules. 
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THE SIGHT SYSTEM 

This chapter introduces the SIGHT system.  It describes its overall 

architecture, its modules and their responsibilities, as well as how they interact to 

provide the system all the information needed in order to Summarize Information 

GrapHics Textually. 

Line graphs are often used in popular media to convey messages that augment 

the information provided in the articles in which they appear.  These graphics, even 

with the implementation of the first version of SIGHT, were not accessible to people 

with visual impairments since the system could not handle such graph type.  This work 

expands the ability of the SIGHT system by modifying several of its modules in order 

to allow line graphs to be textually described. 

The first section discusses the current architecture of the system (Carberry et 

al., 2013).  It outlines the modules responsible for visual extraction of the image 

containing the graphic (Chester & Elzer, 2005), identification of the high-level 

message being conveyed by the graphic (Burns, Carberry, & Elzer, 2010; Demir, 

Carberry, & Elzer, 2007; Elzer et al., 2005; Wu, Carberry, Elzer, & Chester, 2010), 

and generation of textual summaries (Demir, Carberry, & McCoy, 2012; Moraes, 

McCoy, & Carberry, 2014a; Moraes, Sina, McCoy, & Carberry, 2014).  All of these 

phases also receive help from additional modules which are also described.  The 

second section highlights the added functionalities needed to handle line graphs in the 

context of SIGHT.  The recognition of the high-level messages conveyed by line 

Chapter 3 
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graphs is explained in the third section.  This message, along with a detailed 

representation of the graphic provided by the visual extraction module, are the input to 

the generation module developed in this work. 

3.1 Overall Architecture of the SIGHT System 

The SIGHT system consists of five modules.  Figure 3-1 shows the 

architecture of the system, its modules and sub modules.  The User Interface module is 

constructed as a Browser Helper Object (BHO) (Elzer et al., 2007b) in the first version 

of SIGHT.  This add-on for Internet Explorer® browsers is installed on the user’s 

machine, along with the SIGHT system itself, and is responsible for identifying the 

presence of the graphic image on the Web page being visited.  If a graphic is present 

in the article, the BHO triggers the Interaction Module (IM).  The Interaction Module 

then captures the image file and sends it to the Visual Extraction Module (VEM) 

where an XML representation of all the graphics features is created. 

Based on the graph type (e.g., bar chart, line graph), the XML file is processed 

by the appropriate Intention Recognition Module where a Bayesian Network is run in 

order to identify the intended message conveyed by the graphic.  The XML is then 

augmented with the intended message and passed back to the Interaction Module, 

which then triggers the Generation Module (GM) in order to construct the textual 

summary of the graphic.  The Generation Module is subdivided into four sub modules 

which are responsible for selecting relevant content (Content Determination), ordering 

sentences (Text Organization), aggregating sentences and choosing lexical items (Text 

Complexity), and finally realizing them using the realizers FUF/SURGE (Elhadad & 

Robin, 1998) for simple bar charts and simpleNLG (Gatt & Reiter, 2009) for line 

graphs (Summary Generation).   
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The SIGHT system was previously only capable of providing access to the 

content of simple bar charts and generating textual summaries and responses for this 

type of graphic.  This work extends SIGHT to handle simple line graphs while 

allowing the summaries to be generated at different target reading levels – such 

functionality is explained in detail in Chapter 7.  Line graphs differ from bar charts in 

the way they represent data and in the messages they intend to convey.  Simple bar 

charts, for example, might display discrete values at certain points in time regarding 

one single entity or might convey a single attribute value for different entities.  On the 

other hand, line graphs are usually a time-series representation (or at least an ordinal 

series) where - sometimes abrupt - changes or steadiness in a trend are displayed, 

along with some possible peaks and drops in the dependent axis (referred to as the 

measurement axis, as it reflects the observed measurements of the entities being 

described, in this context).  This leads to different kinds of intended messages.  Bar 

charts might be used to convey a ranking of entities according to some attribute or to 

convey a trend (usually short) over discrete points, whereas a single line graph might 

be used to convey a long continuous trend or allow one to precisely pinpoint the 

progression of a sudden drop in the value of an attribute.  Visual features are usually 

different in these two types of graphics. While simple bar charts allow the graphic 

designer to highlight particular bars (e.g. using a different color), the author of a line 

graph commonly relies on visual features of the data itself (e.g., sharp changes or 

annotations at points in the line graph) to draw the reader’s attention to interesting 

intervals. 

The steps taken within the system vary based on the type of graphic being 

processed, especially the identification of the high-level message conveyed by the 
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graphic.  Since our work is focused on generating initial summaries for line graphs, 

details specific to this phase applied to line graphs are described next. 

 

Figure 3-1: Architecture of the SIGHT system (Moraes, Sina, et al., 2014). 

3.2 SIGHT System for Line Graphs: Added Functionalities 

Enabling the SIGHT system to generate summaries of line graphs required 

specific modifications to most of the phases of its pipeline.  While we concentrate on 

those involving the Generation Module, other important changes made by other 

members of the SIGHT group are also mentioned.  These include changes to the 

Visual Extraction Module (Chester & Elzer, 2005) and to the Intention Recognition 

Module (Wu, Carberry, & Elzer, 2010; Wu, Carberry, Elzer, et al., 2010) 
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While the previous version of SIGHT required it be installed on the user’s 

computer, this version of SIGHT adds a functionality which allows the system to be 

used through a web service.  A plugin for Chrome®, presented in (Moraes, Sina, et al., 

2014), is available and it can be installed on the user’s machine.  This plugin perceives 

the presence of an image in the webpage and sends the URI (Universal Resource 

Identifier) of the image to a server where SIGHT is running, which triggers the whole 

process from extracting visual features to generating a textual summary. 

3.2.1 Changes in the Visual Extraction and Intention Recognition Modules 

SIGHT team members modified the Visual Extraction Module to recognize 

line graphs and be able to generate an XML representation containing sample points (x 

and y coordinates), labels and tick marks on the axes. 

Other team members modified the Intention Recognition Module by 

implementing a preprocessing step which segments the graphic into visually 

distinguishable trends.  (Wu, Carberry, & Elzer, 2010) presents the work in trend 

segmentation to help identify the intended message a graphic might be conveying.  

This step employs a graph segmentation module that, given the representation of the 

line as a set of small line segments from the visual extraction module, segments the 

line graph into visually distinguishable trends.  For example, the line graph in Figure 

3-2 would be divided into two segments, a steady one from 1900 to 1930 and a second 

rising segment from 1930 to 2003. 

As with the original SIGHT for bar charts, after the Visual Extraction Module 

creates an XML version of the graphic that captures all of the information present in 

the graphic image, some additional processing takes place in order to enrich the 

logical representation of the graphic.  For example, the XML is preprocessed by the 
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Caption Tagging Module (CTM) sub module in order to extract clues from text 

present in the graph’s caption which helps the next phase of the architecture to 

recognize the authors’ intended message conveyed by the graphic. 

 

Figure 3-2: Example of a graph segmentation by the Intention Recognition Module 

(Wu, Carberry, & Elzer, 2010) 

Other team members were responsible for recognizing the intended message of 

line graphs (Wu, Carberry, Elzer, et al., 2010).  The set of intended messages 

identified for line graphs are quite different from the ones used to classify simple bar 

charts.  The possible messages for line graphs identified in the work presented in (Wu, 

Carberry, Elzer, et al., 2010) are: 

1. Rising Trend (RT)  

2. Falling Trend (FT)  

3. Stable Trend (ST)  

4. Big Fall (BF)  
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5. Big Jump (BJ)  

6. Change Trend (CHT)  

7. Change Trend and Return (CTR)  

8. Change Trend on the Last Segment (CTLS)  

9. Contrasting Segment Change Trend (CSCT)  

10. Point Correlation (PC) 

The Intention Recognition Module (IRM) then uses these segments to suggest 

candidate intended messages.  One such message is created for each category that 

could be identified from the segmentation produced by the graph segmentation 

module.  For example, candidate messages for the graph in Figure 3-2 would be 

Change Trend (stable, 1900, 1930, rising, 1930, 2003), Stable Trend (1900, 1930), 

Rising Trend (1930, 2003).  The system will decide which of these is the most likely 

overall intended message by considering evidence in the graphic. 

Information extracted from the graphic by the Caption Tagging Module is one 

category of evidence.  This sub module is responsible for parsing the caption of the 

graphic to acquire communicative clues from parts of speech that is evidence used to 

automatically identify the intended message of the graphic designer.  For line graphs, 

verbs such as “change”, “rise”, “jump”, “fall” are considered as communicative 

signals that can contribute to the classification of the graphic into one of the intended 

message categories.  Relevant nouns and verbs in the caption are therefore considered 

communicative signals and are taken as evidence that might help in intended message 

recognition.  The XML representation of the graphic is then augmented with the verbs, 

nouns or adjectives captured by the Caption Tagging Module. 
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Other evidence includes communicative signals such as annotations on sample 

points.  The identified candidate messages along with the identified evidence are input 

to a Bayesian Network.  The Bayesian Network reasons about the messages and 

assigns probabilities to them.  The message with the highest probability is taken as the 

intended message of the graphic.  The additional identified messages compose the set 

of candidate messages, and those with non-trivial probabilities assigned to them are 

also used by the system when selecting content for the initial summary.  For example, 

Figure 3-2 ostensibly conveys that there is a changing trend in ocean levels: relatively 

stable from 1900 to 1930 but then rising from 1930 to 2003.  The intended message of 

the line graph shown in Figure 3-3 also conveys a change in the trend.  The message in 

this graphic is that there is a changing trend in Durango sales: rising from 1997 to 

1999 but then falling through 2006.  Although the Intention Recognition system (Wu, 

Carberry, Elzer, et al., 2010) classifies both of these graphics into the Changing Trend 

category, for the graphic in Figure 3-3, it also considers the falling trend to be a strong 

candidate for the intended message since the end points of this trend are annotated and 

the caption mentions the action verb “declining”.  Thus, the Intention Recognition 

Module of the SIGHT system then assigns a non-trivial probability (~20%) to the 

Falling Trend category.  Such messages will be referred to as non-trivial candidate 

messages throughout this work.  As discussed later in Chapter 4, we contend that such 

messages, with more than trivial probabilities, should influence the summary. 

3.2.2 Changes in the Generation Module 

Changes in the content determination phase include the consideration of other 

candidate messages with non-trivial probabilities assigned.  While the generation of 

summaries for simple bar charts did not take into account candidate messages that had 
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non-trivial probabilities, they are utilized in this work to identify aspects of the graphic 

that might warrant emphasis in the initial summary; in other words, more emphasis 

will be given to the falling trend when describing the graphic in Figure 3-3, for 

example.  In contrast, if very low probability had been assigned to this candidate 

message, the description of the rising and falling trend – which comprise the changing 

trend – would be given a more balanced description. 

Another important concept is that of a visual feature.  The presence and 

intensity of visual features directly affect the content being selected for the initial 

summary (explained in detail in Chapter 5).  Every visually outstanding component of 

the graphic is considered as a visual feature in the context of this work.  These features 

either are present due to the characteristics of the data, or are added by the graphic 

designer in order to convey a message.  For line graphs in our corpus, fluctuation on 

sample points (as shown in Figure 3-2) and sharpness of slopes (as in the rising trend 

of the graphic in Figure 3-3) are examples of outstanding visual features of the data 

itself.  Examples of visual features added by the graphic designer are annotations and 

words that influence the message conveyed (such as the annotations and the use of the 

word “Declining” in the caption of the graphic in Figure 3-3).  Both kinds of features 

will be called outstanding visual features in the context of this work. 

We argue that the selection of content and organization techniques both need 

to be particular to each type of graphic given their peculiarities.  Therefore, identifying 

the most important high-level message conveyed and clearly structuring and 

organizing a textual summary for different types of graphics require specific and 

individual tasks.  For line graphs, the time-series representation component brings up 

the need for specific ways of explaining the entity behavior.  Merely reading the points 
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of the line graph demands that users visually recreate the graph representation in their 

heads.  Since this exercise can be very uncomfortable and hard to digest, we want to 

capture the important features and messages presented in the graphic, organize and 

aggregate them in a way that is understandable and clear, and realize the knowledge 

conveyed as concise and coherent natural language text. 

 

Figure 3-3: Example of a line graph that carries a message of a change in the trend 

with emphasis being given to the falling part. 

Regarding the generation of text, this work proposes an extension to the 

current generation module of the SIGHT system with significant additions to it.  For 

the micro planning phase, the ability to generate text at different reading levels is 

introduced.  Our hypothesis is that if a user usually reads articles from a given 

magazine or newspaper, then she or he is comfortable with its reading comprehension 

level.  Hence, generating text that describes a graphic that is part of the article using 

the same reading comprehension level assures that the text will not abruptly change to 

a too complex or too simple passage within the context of the article. 
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Two phases within the micro planning phase are affected when generating text 

at different reading levels: aggregation and lexical choice.  For the aggregation phase, 

the system measures the reading level of the article’s text in order to guide its 

aggregation decisions.  Aspects such as average length of noun and verb phrases, 

presence of relative clauses, adjectives, adverbs, passive voice, and others are used to 

guide the amount of aggregation performed and the grammatical construction of the 

sentences.  The frequency occurrences of such features at a particular reading level are 

learned using a decision tree algorithm.  Values of features are then used to build a 

heuristic for a graph search algorithm, which efficiently searches through possible 

realizations to find one at the desired reading level. 

The lexical choice phase is also guided by the target reading level.  The choice 

of words to compose the sentences of the summary are selected based on the desired 

reading level from a reading level based lexicon containing concept synonyms by 

reading level.  This lexicon was constructed through a synonym identification process 

coupled with a reading level filtering step that relies on a corpus annotated with 

different reading levels.  For each concept to be described, possible concept synonyms 

are identified by a concept expansion phase.  The concept expansion is followed by a 

novel word sense disambiguation phase to increase the quality of the built lexicon by 

removing lexical items that would not be appropriate to describe concepts in the 

context of line graphs.  This is followed by the reading level filtering step.  More 

details on the micro planning phase (aggregation and lexical choice) are provided in 

Chapter 7. 
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3.3 Summary 

This chapter described the architecture of the SIGHT system, its modules and 

their functionalities, as well as the recognition of intended messages conveyed by line 

graphs.  It delineated how the modules of the system communicate and interact.  

Special description was provided regarding the intention recognition of line graphs 

since this is the main input to the generation module. 

The identification of the intended message and other candidate messages with 

non-trivial probabilities assigned to them on basis of evidence found in the graphic 

was introduced.  These messages along with salient visual features are used by the 

Content Determination Module to generate the summaries.  This allows the content 

determination to arbitrate between different aspects of the graphic that can be included 

in the initial summary and enables the system to create summaries that vary in content 

and size. 

The next chapter provides details on how outstanding visual features of line 

graphs are identified, extracted and measured to allow summaries to faithfully 

describe such graphics. 
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LINE GRAPH: IDENTIFICATION OF VISUAL FEATURES 

This chapter covers the identification of salient visual features present in line 

graphs that should be included in the generated summary.  This affects the content 

determination phase as it guides the attribution of importance to the various aspects of 

a line graph.  Since different line graphs contain different intended messages and 

salient visual features, identifying their importance is crucial for allowing the content 

determination phase to determine what should be included in the summary of the 

graph.   

The chapter describes a human subject experiment performed to determine 

features that should be considered salient.  The experiment design and data collection 

was performed by another group in previous work in the context of SIGHT.  This 

work uses the data collected and performs analysis of the results in order to assess the 

importance of visual features in line graphs.  This chapter further explains the two 

identified groups of features and how they affect the content determination phase of 

the Natural Language Generation pipeline, an object of this work.  This chapter also 

explains how some features of line graphs are measured in order to differentiate their 

intensity from one graph to another (an important aspect of determining salience). 

Line graphs are often used to demonstrate the continuous behavior of an entity 

(either over time or in relation to an ordinal factor).  In order to generate text that 

describes an entity, it is essential to first identify the features that might be used to 

describe it.  Knowing the importance of a feature amongst the set of all possible 

Chapter 4 
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features allows one to choose what is relevant to say and to generate a clear, concise, 

yet coherent description of the object being described. 

4.1 Human Subject Experiment for Identification of Line Graph Important 

Features 

The important features of line graphs that should be included in a summary, or 

at least what is noticed by humans when viewing them in an article, were identified 

through analysis of an experiment that aimed to determine what are the features that 

are included in summaries of line graphs (Greenbacker, Carberry, & McCoy, 2011)2. 

The experiment provided the participants with line graph images followed by a 

sentence that described the graphic’s intended message; the participants were 

instructed to write a summary which contained what they considered to be the most 

important information conveyed by the graphic.  The goal was to identify people’s 

perception of a graphic, which salient visual features would be mentioned (e.g., 

steepness of a trend line, fluctuation of data values), and how often they would 

mention those features.  One example of a line graph used in the experiment is shown 

in Figure 4-1.  For this graph the sentence was: The line graph shows a rising trend 

from January to December in the number of apple pies sold.    From the experiment 

we were able to assess features of a line graph that are usually mentioned by users 

when describing line graphs that contained them. 

The experiment used 23 different graphics with various intended messages and 

visual features.  The graphics used for data collection were representative of the set of 

                                                 

 
2 The experiment was performed and data was gathered by Greenbacker. The analysis 

of the results and the conclusions reached, which are described in this chapter, are part 

of the contributions of this thesis. 
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intended messages and visual features that are common to line graphs (steepness, 

fluctuation, annotations, etc.).  Having a small number of graphs possibly avoided the 

presence of all the possible combinations of visual features and intended messages the 

graphs could have.  However, since the goal was to identify how often such features 

were mentioned rather than how they were mentioned when another one was present, 

the co-occurrence of features was not a crucial fact for the analysis of the collected 

data.  The graphs were extracted from articles of online or paper magazines such as 

The Atlantic, BBC, Business Insider, Business Week, CNN Money, Forbes, New 

York Times, The News Journal, Newsweek, USA Today, among others. 

Results revealed that 10 main features of line graphs are frequently mentioned 

by users when summarizing a line graph that contains the feature (with sufficient 

intensity).  The features that we identified from the subjects’ descriptions comprise the 

set of individual propositions that can be used to describe a graphic instance.  We use 

excerpts from actual answers of participants in the experiment to illustrate how those 

features were usually mentioned: 

 The graphic representation form: "the graph shows...", or "the line 

graph shows...”. 

 The entity being described by the graphic: “the number of apple 

pies sold this year”. 

 The overall behavior of the graphic: "the graph is constantly 

increasing in stock price...”. Since the intended message was 

provided to the subjects, these excerpts were usually present when 

the participant meant to further specify it. 

 The individual trends forming the line graph: "this graph shows a 

decrease..., then an increase...”. 
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 The initial/end value/date of the trend/graphic: "From July 28th to 

August 20th the price of crude oil ranged from about $43 to about 

$49 a barrel”. 

 The volatility of the trend/graphic (when sufficiently high): "the 

crude oil prices has had a very up and down trend, constantly 

fluctuating”. 

 The slope of the trend (when it reaches certain values): "the rise 

from May to August is very steep and the fall from August to 

November is just as steep”. 

 The overall amount of change in the trend/graphic: "overall, the 

stock price decreases from around 39 dollars to around 24 dollars”. 

 The overall time which the trend/graphic spans: "the x axis goes 

from January to December...”. 

 The maximum and minimum points of the graphic: "the sales of 

apple pies were at their highest in the beginning of December and at 

their lowest in the middle of January...”. 

From the set of features identified from the human subjects experiment, we 

noticed the existence of two main classes: static visual features and valued visual 

features.  Static visual features are ones where variations in their values do not affect 

their chances of being included in the initial summary.  Initial and end dates, for 

example, will not have their importance leveraged based on when these dates 

occurred.  While the importance of including static visual features is not affected by 

their values, their importance might be enhanced by attributes associated with them 

that are used by a graphic designer in order to draw the reader’s attention to that 

feature.  Annotations placed on end points, different bar colors (in the context of bar 

charts), and bolded legends are examples of visual resources a graphic creator might 

use in order to give more importance to static features. 

In contrast to static visual features, volatility (i.e., the amount of fluctuation) 

and steepness are two examples of valued visual features in the context of line graphs.  
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They are more likely to be mentioned when their values are at an extreme, considering 

the visual presentation of the data in the graphic.  This led us to measure the levels of 

the features to appropriately describe the parts of the graphic that contained them and 

to influence whether a feature is included in a summary (since it was identified 

through the subjects’ summaries that participants would mention these features in 

proportion to their intensity).  Volatility in a trend or across the whole graphic, for 

example, varies boundlessly.  How extreme the volatility of a line graph is will depend 

on the variation of behavior of the trends/segments according to their amplitude 

regarding the dependent axis, for example.  The following sections show how we 

calculate values of valued visual features.  

 

Figure 4-1: Sample of a line graph created for this study. 
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4.2 Assessing Valued Visual Features 

Figure 4-3 and Figure 4-2 show two examples where the degree of volatility 

differs.  It was noticed that, for graphics such as the one presented in Figure 4-2, the 

participants did not mention volatility (even though the graph is classified as slightly 

volatile by the system), whereas in Figure 4-3 the reference to the high volatility was 

almost unanimous. 

Similarly, the steepness of a trend would likely be mentioned as its slope 

increased.  The graph in Figure 4-2 had its first two trends described as “sharp 

increase/decrease”, or “the trend steeply increases/decreases” by the subjects quite 

often, whereas other graphics that presented flat trends or slightly rising/falling ones 

did not usually include mention of their steepness. 

For this reason, two methods were used in order to provide the system with 

automated tools to deal with these special features.  These methods are described in 

the following two subsections. 

4.2.1 Calculating volatility 

This section describes the strategy used by our system to measure the level of 

volatility in a trend. We defined volatility as the amount of fluctuation in data values 

that occur in a trend3. 

                                                 

 
3 According to (Dictionary.com, 2015), fluctuation as a noun represents 1. continual 

change from one point or condition to another. 2.wavelike motion; undulation. 3. 

Genetics. a body variation due to environmental factors and not inherited.  Although 

the term volatility, also according to (Dictionary.com, 2015), represents 1. a volatile 

substance, as a gas or solvent, one of its definition in the Merriam Webster (Merriam, 

2016)dictionary is likely to change in a very sudden or extreme way. Both of these 

terms has been interchangeably used by participants to describe the fluctuation of the 

data points in line graphs. 
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Figure 4-2: Graphic that has its volatility classified as slightly volatile by the system. 

 

Figure 4-3: Graphic which has its volatility classified as highly volatile by the system. 
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Some work that appears to capture what we want equates fluctuation with 

coefficient of variation (CV) or relative standard deviation (RSD) (Koopmans, Owen, 

& Rosenblatt, 1964).  However, this is not a good match for us because data values 

with high standard deviation may not appear to be volatile.  For example, when 

providing the sample points as the distribution for the graphs in Figure 4-2, the CV 

obtained was 263.06, while the CV obtained from the sample points in the graph 

shown in Figure 4-3 was 133.34.  In contrast, by applying the volatility measurement 

devised in this work the normalized values for volatility for these two graphs were 

0.30 and 0.55, respectively.  Therefore, if the trend possesses a substantial number of 

up-and-down changes and they are not large in their y-value amplitude, the standard 

deviation will hold a lower value, but our participants often referred to such graphs as 

highly volatile. 

Moreover, it was noticed that users would more likely mention volatility when 

noticing frequent direction changes in the trend, taking into account the amplitude of 

those changes as a further factor when defining the level of volatility of a line graph. 

We developed a method for estimating volatility that takes into account two 

aspects.  The first aspect is the frequency of change in the trend.  This frequency is 

represented by a change rate, which is obtained by dividing the number of noticeable 

changes (how many times a trend changed its behavior from falling to rising and vice-

versa by at least 3 pixels), herein called fragments, by the number of sample points. 

The second aspect is the amplitude of those changes.  The amplitude is calculated as 

the ratio of the vertical side of the right triangle formed by the rising/falling trend and 

the y-axis.  To illustrate, let’s take a look at Figure 4-4.  The bars labeled 1, 2 and 3 

represent the amplitude of the fragments used to calculate the overall volatility of the 
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trend (from point A to point B); while the actual length of the fragment is the size of 

the fragment (obtained by calculating the hypotenuse of the formed triangle). 

 

Figure 4-4: Illustration of a trend which contains fluctuation. 

Since changes in behavior appeared to be more noticeable (based on the results 

of the human subject experiment) and associated with the perception of a volatile trend 

than the amplitude of the graphic trends, a higher weight was assigned to this measure.  

The formula used to calculate volatility is as follows: 

 

𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 = 0.75 ∗
𝑣𝑖𝑠𝑢𝑎𝑙𝑐ℎ𝑎𝑛𝑔𝑒𝑠

𝑠𝑎𝑚𝑝𝑙𝑒𝑝𝑜𝑖𝑛𝑡𝑠
+ 0.25 

∑
𝑠𝑖𝑧𝑒𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑆𝑖𝑑𝑒𝑖
𝑦𝑎𝑥𝑖𝑠𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

𝑓
𝑖=1

𝑓
 (1) 

 

Where visual_changes refers to the number of times the behavior (rising or falling) of 

the sample points changed by more than 3 pixels; sample_points is the number of 
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sample points in the graph or trend (depending on where the volatility calculation is 

being applied); size_vertical_side is the hypotenuse of the triangle formed with the 

fragment and the y-axis; yaxis_amplitude is the length of the projection of the 

fragment into the y-axis; and f is the number of fragments (visually distinguished 

changes in behavior identified by the Intention Recognition Module) in the 

trend/graphic (which is 3 in the example shown in Figure 4-4, where three fragments 

are identified from point A to point B). 

The formula used to calculate and classify volatility provides results that are 

within the range [0, 1] and can be applied to finding the volatility measurement of 

both individual trends and the whole graph.  The results were compared to the way 

participants mentioned this feature when describing it in order to bucket the values 

into various description types (described in the next section). 

Rising or falling trends that do not present any change in behavior have a value 

of 0 for its volatility measure.  The second part of the formula calculates the averaged 

amplitude of the fragments that are changing in behavior across the number of trends 

identified in the graphic in order to assess how large they are in regards to the 

amplitude of the y-axis.    

A volatility measurement rarely gets close to 1 for two reasons.  The first is the 

fact that the number of changes in trend behavior in a graph is unlikely to be the same 

as the number of sample points in the graphic (obtained from the XML representation 

of the graphic provided by the Visual Extraction Module described in Chapter 3).  

Another reason is that the amplitude of all the changes is unlikely to be close to the 

overall amplitude of the y-axis.  Therefore, to obtain volatility measurements that can 

effectively differentiate among themselves, a normalization step is performed based on 
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the highest volatility measurement found so far in the corpus4.  The final volatility 

value assessed is then used by the system in the content determination step (described 

in the next chapter) in order to dynamically determine the importance of the 

propositions representing volatility of various elements in a given line graph. 

4.2.2 Calculating steepness 

Steepness or flatness associated with rising and falling trends of a graphic is 

assessed through its arctangent calculation.  The final value of the steepness of the 

trend is represented by the assessed angle and the importance of the feature is directly 

associated to its slope, as noted in the results of the human subject experiment. 

4.3 Describing Valued Visual Features 

After values are obtained for both volatility and steepness, another problem 

needs to be solved: Assuming the importance of volatility and steepness cause it to be 

included in the summary, how to describe valued visual features based on the resulting 

value computed for it.  Differences in the degree of volatility and steepness need to be 

described in different ways.  This section explains how words are selected in order to 

describe all the degrees present in these features. 

When analyzing the experiment described previously in which subjects 

provided descriptions of line graphs, not only did the subjects describe the feature 

itself (the fact that the values were fluctuating), but they also attributed different 

degrees when describing the feature through the use of adverbs (highly, slightly) or 

                                                 

 
4 A corpus of 240 line graphs was used for defining the normalization factor. The 

highest volatility is stored in a configuration file and it can be modified as new graphs 

are added to the corpus and a new highest is found. 
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adjectives (many, few).  Therefore, besides being able to identify the magnitude of this 

feature in order to assess the importance of including the feature in the initial 

summary, the system needs to be able to appropriately describe it using applicable 

English words. 

Based on the result of the calculation of volatility (explained in Section 4.2.1), 

the system then classifies the trend and the graphic as either: smooth, slightly volatile, 

volatile, or highly volatile.  Since the formula used to calculate volatility provides 

results that are within the range [0, 1], the scale increases at every 33% since smooth 

is only attributed to trends that have 0 volatility.  So if the volatility measured is 

within the range (0 – 0.33], it is named slightly volatile; if it is in the range [0.34 – 

0.66], it is named volatile; and if it is in the range [0.67 – 1], it is named highly 

volatile.  Figure 4-3 shows an example where the system classifies the whole line 

graph as highly volatile, while Figure 4-2 shows a line graph that is classified as 

slightly volatile.  These descriptions groups matched the descriptions used by 

participants in the experiment described in Chapter 4.  Matching these descriptions 

served the purpose of evaluating the calculation and assignment of volatility values to 

the different volatility intensities. 

In order to provide a description of steepness in a trend, an experiment 

involving human subjects was performed to determine the range of degrees that would 

be named by participants as: flat, relatively flat but rising/falling, slightly 

rising/falling, rising/falling (no degree identified), steeply rising/falling, very 

steeply rising/falling. 

The experiment presented trend slopes from every 10 degrees (from 5o until 

85o for rising trends and from 275o until 355o for falling trends) in random order and 
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asked the participants to choose one of the options above to describe the trend.  We 

used Qualtrics (Qualtrics, Provo, UT), a web-based tool for building surveys, for 

making the questions available to a total of 21 participants.  The participants were 

recruited online and they were from various backgrounds. 

We considered a category assigned to a degree range if at least half of the 

participants had chosen that description.  Figure 4-5 shows an example of a trend 

which has a 45-degree arctangent.  Table 4-1 show some results for the experiment.  

The description for the steepness presented in Figure 4-5 has been chosen by the 

majority to be “rising” (86% of the participants chose that description).  In order for an 

angle measurement to be classified as slightly steep, steep, or very steep, for example, 

we looked for an agreement of at least 50% of the participants.  When no clear 

majority was present (as the results for the 55-degree angle, for example), we chose to 

break the tie on the description side that contains the majority.  For this example, since 

10 participants chose “Rising”, another 10 chose “Steeply rising” and 1 chose “Very 

steeply rising”, the description for this angle was chosen to be “Steeply rising” while 

there was a tie between “Rising” and “Steeply Rising”.  The one vote for “Very 

Steeply Rising” broke the tie in favor of “Steeply Rising” (which is closer to “Very 

Steeply Rising” than “Rising”). 
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Figure 4-5: Example of a rising trend with a 45-degree incline used in the experiment 

for assessing how users classified different steepness' descriptions. 

Figure 4-2 (page 41) shows a graphic for which the system classifies both 

trends – the first rising trend and the falling trend - as being steep while the second 

rising trend is classified as slightly steep according to the descriptions we gathered 

from the results of the experiment. 

Table 4-1: Example of experiment results for steepness description of a rising trend. 

(Results were also collected for falling trends). 

Degree 

angle 
Answer 

Number of 

participants 

Percentage of 

participants 

25 

Very steeply rising 0 0% 

Steeply rising 1 5% 

Rising 15 71% 

0
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12
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Series1
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Degree 

angle 
Answer 

Number of 

participants 

Percentage of 

participants 

Slightly rising 5 24% 

Relatively flat but rising 0 0% 

Flat 0 0% 

45 

Very steeply rising 1 5% 

Steeply rising 2 10% 

Rising 18 86% 

Slightly rising 0 0% 

Relatively flat but rising 0 0% 

Flat 0 0% 

55 

Very steeply rising 1 5% 

Steeply rising 10 48% 

Rising 10 48% 

Slightly rising 0 0% 

Relatively flat but rising 0 0% 

Flat 0 0% 

85 

Very steeply rising 19 90% 

Steeply rising 2 10% 

Rising 0 0% 

Slightly rising 0 0% 

Relatively flat but rising 0 0% 

Flat 0 0% 
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4.4 Describing Static Features Based on Design Choices 

The features that describe the overall change in the value (the delta of the y-

values over a trend) can be described using either the unit representing it (“the line 

graph shows an overall increase of 40 million dollars”) or by the percentage of the 

increase.  If the y-axis already represents percentage, the generation system will prefer 

to convey it using the absolute value change (since it will represent the delta already in 

percentage); thus the importance of the proposition representing the absolute value 

change is set higher than the proposition representing the percentage of change.   

Following the same rule, the features representing the dates can be conveyed 

by the generation system in different ways depending on the date format of the labels 

on the x-axis.  If the whole graphic or a trend spans over a year or more and the labels 

present the dates using the format Month/Year, the system will prefer to present this 

information to the user in months (“the graphic spans over 14 months”).  The change 

value is 36 months, above which the system conveys the time span in years. This is 

accomplished by boosting the proposition that will best describe a feature given the 

choices the graphic designer made when creating the line graph. 

4.5 Summary 

This chapter presented how visual features of line graphs were identified in 

order to allow the system to generate descriptive summaries of such graphics.  An 

experiment performed with human subjects provided insight on which visual aspects 

are important to mention when describing a line graph, as well as how important they 

are by assessing how often they were mentioned.  The frequency was found to be 

directly related to the intensity of valued features (volatility and steepness are two 

examples). 
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The chapter further explains and illustrates how valued features are calculated 

(for the content determination phase) and how we used a human subject experiment to 

determine which wording is most appropriate for different values of features (for the 

summary realization phase of the SIGHT pipeline). 

The next chapter introduces the content determination module.  It describes the 

role of the features of line graphs - described in this chapter - in the graph-based 

algorithm, how the features relate to each other, the mechanism for deciding when to 

stop selecting propositions for the initial summary, and the experiment conducted in 

order to evaluate the content determination of the system. 
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CONTENT DETERMINATION PHASE 

The content determination phase of the system is described in this chapter.  

This phase is crucial since it determines the content of the summaries that are 

generated for each line graph by choosing which features are important enough to 

mention in the short initial summary from all possible features that could be said about 

a graphic. 

When talking about a graph, if a trend happens to present attributes such as 

extreme volatility, high steepness, and annotations on its end points, for example, it is 

more likely that that trend will be noticed by a user looking at the graphic, so we want 

to increase the chances that this trend and its attributes are included in the summary of 

the graph.  However, we do not want deterministic rules that will predefine what 

should be chosen to describe the trend.  We want an algorithm that will allow the 

measurements of importance of a feature (as described in the previous chapter) to 

make it stand out from the other features when determining the content of the 

summary.  In this example, since the measured values of the attributes of the trend are 

higher than those of other trends in the graphic, we want this aspect to be considered 

when determining the content of the summary. 

These measurements of importance, combined with the intended message 

identified in the graph (as well as candidate messages with non-trivial probabilities) 

and design choices such as annotations on end points, should inform the likelihood of 

a feature being included in the summary to the content determination algorithm. 

Chapter 5 
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Therefore, instead of choosing a threshold to determine which features should 

be part of the summary, a centrality-based algorithm enables the inclusion in the 

summary of features that are deemed more important and, along with them, other 

features that are related to them.  These algorithms rely on the popularity of a node 

and allow the content determination phase of the SIGHT system to employ a 

discourse-aware methodology when choosing the features to be included in the 

summary. 

Following (Demir, Oliver, Schwartz, Elzer, Carberry, McCoy, et al., 2010), our 

content determination is based on the PageRank (Page, Brin, Motwani, & Winograd, 

1999) algorithm which is intended to determine the importance of a node by how 

connected that node is to other nodes in a graph.  This chapter details the use of this 

adapted version and the modifications needed in order to accommodate the content 

determination in the context of line graphs.  Key steps are needed in order to use this 

version of the algorithm: 

1. Defining the set of features (herein called propositions): These features 

are mapped to vertices of the graph and are represented as propositions 

in the context of SIGHT.  The set of identified features is listed in 

Section 4.1. 

2. Setting up the initial importance score of propositions: Propositions are 

assigned a priori importance based on the assessment of how salient 

they are in the graphic.  The importance of a proposition is also 

affected by its popularity (interconnectedness), and both aspects 

contribute to their chances of being selected. 
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3. Defining the relation between the propositions: Edges of the graph 

become a representation of the semantic relationship between 

propositions.  

4. Determining the stopping criteria for selecting the most important 

propositions. 

This chapter starts by providing some related work in the area of content 

determination.  It further explains how line graph features and their measurements of 

importance, assessed by the experiment and formulae described in the previous 

chapter, affect the content that comprises the summaries.  Finally, the chapter presents 

experiments that evaluate the system’s ability to select appropriate content for a 

summary of a graphic.  This evaluation consisted of two phases – where the second 

phase was the reassessment of the effectiveness of the initial summaries after the 

system was revised to address the comments and results from the first phase. 

5.1 Some Related Work on Content Determination in NLG Systems 

The selection of content (a.k.a. content determination phase) is the process by 

which the information that will be communicated in the text is chosen (Reiter & Dale, 

1997).  New rules generally need to be created for each domain (Duboue & 

McKeown, 2003).  Different approaches exist for selecting content in natural language 

generation systems.  (Bouayad-Agha, Casamayor, & Wanner, 2011) and (Bouayad-

Agha, Casamayor, Wanner, Fernando, & López, 2011) present a content determination 

approach that is based on the use of a knowledge base to generate football related 

summaries.  The content determination uses inference rules in an ontology to 

determine which content should be selected and it includes a phase in which the main 

topic is selected through the use of a user model, a set of weighted heuristics (whose 
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weights are determined by supervised learning from a corpus of summaries aligned 

with data) and semantic relations that relate individuals within the knowledge-base.   

The work of (Louis, Joshi, & Nenkova, 2010), uses discourse-based relations 

such as cause, contrast and elaboration, in order to assess text importance for single 

document summarization.  The authors claim that information structure is the most 

robust indicator of importance, while semantic relations impose constraints on the 

content determination, having their structure features derived from Rhetorical 

Structure Theory (W. Mann & S. Thompson, 1987).  (Reiter, Sripada, & Robertson, 

2003) have investigated ways knowledge acquisition might improve the content 

determination phase of an NLG system.  The authors present experiments using the 

following Knowledge Acquisition techniques: direct acquisition of knowledge, corpus 

creation and analysis, structured group discussion, and think-aloud protocol based 

sessions.  As stated by the authors, the first two are the ones widely used in developing 

NLG systems but the last two were the ones which worked best in their scenario 

(generation of letters that encouraged smokers to stop smoking) since group 

discussions allowed the experts to reach an agreement quickly and think-aloud 

protocols helped with providing good information on reasoning and intentions.  They 

describe how these Knowledge Acquisition techniques can help the content 

determination phase.  (Jordan & Walker, 2005) describe content determination 

learning for dialogue systems in the context of object description.  The authors use 

previously proposed models in order to define the set of features to be used in a 

machine learning algorithm that develops a content determination component for 

generating an object descriptor in dialogue.  The utterances are defined based on the 

set of attributes of an object that are chosen by the object description generator. 
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The development of the SIGHT generation system faced a challenge due to the 

non-existence of expert summaries describing the high-level content of graphics.  The 

knowledge acquisition technique that guided our content determination phase was 

based on direct acquisition of knowledge through judgements by humans who were 

not necessarily experts on the graphics domains since the graphics vary in their 

domains of knowledge, and the message we are attempting to convey about the 

graphics are not domain specific, but composed of the general knowledge they carry.  

Through the experiment described in the previous chapter we could see that a set of 

rules would not be enough to depict the varied set of nuances each graphic instance 

possesses in addition to reflecting how the different combination of feature values 

could affect each other. 

5.2 Setting Up the Initial Importance Score of Propositions 

The propositions identified for a particular graphic were defined based on the 

set of features identified in the experiment described in the previous chapter.  These 

propositions constitute the data pool from which the content determination algorithm 

will choose the propositions that will comprise the initial summary.  Propositions have 

an initial importance score associated with them.  These initial scores are assigned 

based on four aspects: (1) frequency of the participants’ mention of a specific feature 

in their descriptions of the graphics in the experiment described in the previous 

chapter; (2) values of valued features calculated by the formulae described in the 

previous chapter (e.g., the proposition that represents the steepness of a given trend 

will have a higher initial weight associated with it if it was classified as very steep than 

if it was classified as slightly steep since our experiments showed that the probability 

of this feature being noticed by a user reading the graphic is higher in the first case.); 
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(3) enhancements due to graphic design choices such as annotation on the end points; 

(4) the fact that a proposition belongs to a trend which is part of the intended message 

or a candidate message.  These factors combined indicate the initial importance of a 

proposition. 

Overall, the inclusion of a proposition in the summary of a line graph is not a 

yes or no decision based on whether or not the measurement of a visual feature 

exceeds a predefined threshold (Carberry et al., 2013).  Ranking of a proposition is 

affected by its connectivity with other propositions (vertices) in the graph, which 

represents its popularity, as well as by its a priori importance. 

5.2.1 Setting a priori node importance in PageRank 

A node’s importance score, as computed by the PageRank algorithm, is 

influenced by the weights associated with the number of edges between that node and 

other nodes.  However, besides the popularity of a node (how much connectivity it 

possesses) we also want to consider its isolated importance, defined by its initial 

importance score.  The goal is to capture in the algorithm the intrinsic ranking of 

visual features of line graphs in isolation. 

None of the versions of PageRank, however, allows a priori importance 

associated with the nodes themselves.  The PageRank formula inherently relies on the 

weights on the edges, and ultimately converges to an importance score associated with 

a node.  In the context of SIGHT, features (represented as nodes) were identified as 

possessing an initial importance that differentiated them from the other features in the 

graph.  In order to capture this importance in a way that complies with the use of the 

PageRank formula, a special vertex called priority was introduced by (Demir, 

Carberry, & McCoy, 2010) and also applied in the content determination of this work.  
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This node is never considered for inclusion in the summary, but it is instead connected 

to every other node in the graph, with the connecting edge weights assuming the 

values of the feature weights assessed through the human written summaries. 

The weights, defined by the four aspects described earlier, are assigned to the 

edges connecting nodes to the priority_vertex.  Valued features such as volatility and 

steepness have their initial weights boosted based on the degree assessed (described in 

Section 4.2); dates and values that correspond to the format chosen by the designer to 

present the data are boosted by a predetermined factor when annotations are associated 

with them; propositions that are part of the intended message and candidate messages 

with non-trivial probabilities assigned to them are boosted by the messages probability 

assigned by the Intention Recognition Module.  

In this scenario, if a set of propositions captured as nodes are related to both 

the intended message and another candidate message, these propositions will have 

their initial weights boosted twice, increasing considerably its likelihood of being 

chosen as part of the initial summary.  To illustrate this functionality, we present an 

example in Section 5.5 where two graphics (one which also has a candidate message 

and another one which only has the intended message) have their set of chosen 

propositions affected by the propagation of their propositions’ importance. 

5.3 Defining the Relation Between the Propositions 

(Demir, Carberry, et al., 2010) presents a framework where semantic relations 

between propositions are represented by the edges of the graph and it introduces the 

concepts of attractors and repellers.  These relationship types are responsible for 

defining how a node is related to its siblings and ancestors/descendants.   
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Attractor relations relate two propositions that should generally be discussed 

together, while repellers relate propositions that generally should not be discussed 

together (e.g., because they would provide redundant information).  The relations 

classified as attractors are: complementRelation, belongsToRelation, and 

contrastRelation.  One example of complementRelation is between the nodes 

trend_initial_date and trend_end_date, since the information about the end date of a 

trend is usually used to complement the information about the start date of the same 

trend (the same applies to trend_initial_value and trend_end_value).  The 

belongsToRelation connects propositions that comprise parts of a whole to their 

respective wholes.  For example, proposition nodes that describe a trend in the graphic 

(such as trend_initial_value, trend_volatility, trend_steepness) are related to the 

trend_description proposition (e.g., "rising trend", “stable trend”).  The 

contrastRelation connects propositions that convey, as the name suggests, contrasting 

information about a concept such as the graph_max_point_value and the 

graph_min_point_value propositions. 

The redundancyRelation is a repeller relation type.  This relationship 

connects propositions that are conceptually similar, but might convey the information 

in a different way.  The proposition trend_overall_value_change (which tells how 

much a trend either increased or decreased in its unit) is related to the proposition 

trend_overall_rate_change (which conveys the percent or rate of the change) 

through the redundancyRelation, since both represent the same concept, only varying 

in the way the information is represented. 

These relations were established based on how two propositions were 

mentioned together or apart in the human-written summaries provided by the 
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aforementioned experiment.  In order to reflect this using the PageRank algorithm, the 

edges representing attractor relationships are given high scores, causing two nodes that 

attract each other to mutually raise each other’s scores.  In contrast, edges representing 

repeller relations have a much lower weight so as to propagate a smaller weight 

between nodes that repel each other.  Figure 5-1 shows a model of a graph. 

The nodes of type candidate_message and trend_description can vary in 

number depending upon the number of candidate messages suggested by the Intention 

Recognition Module and number of trends present in the graphic itself.  One category 

of intended message is Change-Trend-Return that contains three trends: a changing 

trend followed by a return to the direction of the first trend.  In cases where there is 

more than one candidate message (as in the example provided by Figure 3-3, page 32), 

there will be a node of type candidate_message to represent each one. 

Each relationship type in the graph receives a weight that is responsible for 

reflecting the relation type behavior between two nodes.  These weights will provoke 

an attraction or repellence between nodes.  These relationship types can also be in 

various degrees if the relationships have different importance within the domain.  In 

our case, for example, contrastRelation is not as attracting as the complementRelation 

since providing complementary information about a feature appeared more frequently 

in the human written summaries than providing contrasting information.  That 

suggests that the weight associated with complementRelation should be higher than 

the one associated with the contrastRelation. 
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Figure 5-1: Graph nodes and their relationships. belongsToRelation, 

complementRelation, and contrastRelation are the attractor relations. 

RedundancyRelation is the repeller relation. 

5.3.1 Selecting propositions in a discourse-aware fashion 

The most straightforward way to use PageRank for natural language generation 

would be to run the algorithm one time (until it converges) and then take the top n 

propositions to include in the summary.  It could possibly, however, generate either a 

redundant or an incomplete summary where the n most important features present 

could be conveying the same information (the propositions describing a trend’s 

absolute change value and its percentage of change) or even missing complementary 

information that is usually mentioned together (as noticed in the experiment described 

in Chapter 4) such as the minimum and maximum values of the graphic. 
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To address this issue, (Demir, 2010; Demir, Carberry, et al., 2010) proposes a 

discourse-aware content determination framework where propositions are selected one 

at a time and their semantic relationships are considered in order to attract information 

relevant to the current proposition and repel any information that is  redundant to it.  

This strategy allows the selection of each proposition to be affected by its relationship 

with the previously selected propositions, thereby increasing the power of the 

algorithm to select more relevant information.  This work also adopts this strategy on 

its content determination phase. 

Recall that the relationships between nodes are of two kinds: attractors and 

repellers.  These relations assign weights to the edges connecting two propositions.  

Once a proposition is selected, propositions connected to it by attractor relationships 

have their importance increased by the propagation of a high factor (therefore making 

them more likely to be selected next), while propositions connected to it by repeller 

relationships have their importance increased by a much lower factor, therefore 

making them less likely to be selected next. The steps taken in order to accomplish 

this are: 

(1) Run PageRank to convergence in order to identify the most important 

proposition and include that proposition in the summary (mark proposition as 

selected).  

(2) Update the weights on the edges that are connected to the selected node by:  

a) Raising the weights on attracting edges by a high factor and  

b) Raising the weights on repelling edges by a low factor.  

(3) Repeat the process starting from running PageRank again to select the next 

proposition until a stopping criterion is met. 
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The formula used for this adapted version of PageRank, presented by (Sinha & 

Mihalcea, 2007), is:  

 
(2) 

where wba is the weight associated with the edge between vertices (Va) and 

(Vb), E is the set of all edges, and d represents the damping factor, which is currently 

set to 0.15 in this work as opposed to the default value of 0.85 used in the previous 

version of SIGHT, since the probability of making a random jump in our scenario is 

very low (it is an undirected graph with no isolated nodes).   

By altering the weights between each run of PageRank, the system is more 

likely to select a set of propositions that attract each other and avoid choosing 

propositions which repel.  An important question this algorithm leaves open is how 

many propositions to include in a summary.  The stopping criteria defined in this work 

are explained in the next section.  

5.4 Determining the Stopping Criteria for Selecting the Most Important 

Propositions 

Deciding what to say in the initial summary using PageRank was only the first 

step of the content determination process.  The decision about when to stop using the 

highest ranked nodes after each iteration of the algorithm imposed a challenge.  

(Demir, Carberry, et al., 2010) arbitrarily chose a set number of propositions in a 

response.  This work, on the other hand, uses heuristics based on differences of 

importance scores from one selection to the next in order to define when to stop 

selecting propositions for the initial summaries.  Initial summaries are intended to be 

concise and, at the same time, complete enough to give an overall idea of the most 
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important information contained in the graphic.  The relative importance scores of 

nodes seemed to be a promising boundary determiner, but it still required a definition 

regarding comparing importance scores in order to define the cut off.  In this scenario, 

it is paramount to be able to tell when a node, given the importance of the previous 

selected nodes, is much less important, and stop. 

Table 5-1: Pseudo code showing the two strategies for the stopping criteria in 

PageRank. 

for each node{ 

   infoScore1 = node.score; 

   infoScore2 = node.next.score; 

   if absolute difference between infoScores < averageScoreGap 

      add node to listOfNodes; 

   else 

      break; 

} 

if listOfNodes is missingRequiredNodes{ 

   listOfNodes.clear 

   for each node{  

      infoScore1 = node.score; 

      infoScore2 = node.next.score; 

      if absolute difference between infoScores < averageScoreGap / 2 

         add node to listOfNodes; 

      else 
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         break; 

   } 

} 

 

Two strategies are used in the stopping criteria (as shown in Table 5-1):  The 

first technique calculates the average gap between importance scores of all nodes in 

the graph; this average defines the threshold used for determining the selection of new 

nodes since, empirically, this average split the set of important and less important 

nodes well for the set of line graphs that were examined.  The algorithm keeps 

selecting nodes until the difference between the current node and the next node to be 

selected is greater than the calculated average gap.  The second one only comes into 

play when following the stopping criterion above results in a summary that does not 

contain the minimum required nodes for that graphic instance (graph type, entity 

description and intended message)5.  This generally happens when the average gap is 

too big (as noticed in some cases), for which the algorithm then keeps selecting nodes 

but now it compares the difference between importance scores with the average gap 

divided by two.  The more trends a graph has, the higher is the number of important 

features competing to be part of the initial summary. 

When the algorithm reaches another stopping point, it then makes sure that the 

required nodes were included.  If any of these propositions are still missing, the 

algorithm continues including nodes until all of them are part of the initial summary.  

                                                 

 
5 These three propositions were shown to be essential to the basic understanding of a 

summary as presented in previous SIGHT work (Demir et al., 2008; Elzer et al., 

2008).  
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The examples shown in Table 5-2 reveal that the number and the type of selected 

propositions are not the same, showing how our stopping criteria selects the more 

relevant information customized for each graphic. 

5.5 Example of How Features and Candidate Messages Affect Content 

Determination 

The examples in this section, based on the graphics in Figure 5-2 and Figure 

5-3, illustrate how the content determination approach using a modified version of 

PageRank selects a different set of propositions for two graphics that possess a similar 

overall structure.  For this example, one of the graphs present in the corpus was 

revised in order to modify its salient visual features and candidate messages with non-

trivial probabilities assigned by the Intention Recognition Module.  Table 5-2 shows 

the set of propositions selected for the graphics and it also demonstrates how the 

stopping criteria played a role in determining the amount of information that should be 

added to the initial summaries for the two different graphics. 

The graphic in Figure 5-3 was adapted from the graphic in Figure 5-2 so we 

could clearly visualize how our version of the PageRank algorithm would select 

different propositions to include in the initial summary of these graphics.  For the 

adapted version of the graphic, we did not include the sample point annotation of the 

falling trend and the title no longer contained the word “declining”.  The exclusion of 

these visual features causes the Intention Recognition Module to assign a higher 

probability to the changing trend category because it no longer assigns much weight to 

the falling trend alone (higher than the 78% assigned to the original version of the 

graphic, where the falling trend category receives a probability of 20% since it 

contains the visual features shown). 
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Figure 5-2: Original graphic present in the corpus. 

 

Figure 5-3: Instance of a graphic created for this study. 

Since, in the case of the original graphic, the falling trend and its features were 

boosted by the 20% assigned to the falling trend candidate message, the set of 

propositions selected by PageRank for the two graphics are different in number and 

content.  We can see that the end points of the falling trend were selected for the initial 

summary of the original graphic but not for the summary of the adapted graphic.  This 

happens due to both the presence of annotations on the sample points and the falling 
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trend belonging to a non-trivial candidate message.  We can see that in the adapted 

version the rising trend was selected first.  That is due to the fact that, in this graphic, 

both trends (rising and falling) would probably have the same initial importance.  The 

rising trend, however, was initially boosted by more important propositions connected 

to it (the steep slope is one example).  

Table 5-2: Selected propositions (shown in order of selection) to be included in the 

initial summary of the example graphics and the summaries generated for 

each graphic. 

Propositions for graphic shown in 

Figure 5-2 for which the IRM assigns 

78% to changing trend and 20% to the 

falling trend categories. 

Propositions for graphic shown in Figure 

5-3 for which the IRM assigns 97% to 

changing trend and 1% to the falling 

trend categories. 

Node: entity_description 

Description: the number of Durango sales 

Membership: line graph 

 

Node: graph_type 

Description: line graph 

Membership: line graph 

 

Node: composed_trend 

Description: CHT  

Membership: line graph 

 

Node: trend_description 

Description: falling trend 

Membership: FT 

Membership: CHT 

 

Node: trend_description 

Description: rising trend  

Membership: CHT 

 

Node: composed_trend 

Description: FT  

Membership: line graph 

Node: entity_description 

Description: the number of people who 

started smoking under the age of 18 in the 

US 

Membership: line graph 

 

Node: graph_type 

Description: line graph 

Membership: line graph 

 

Node: composed_trend 

Description: CHT  

Membership: line graph 

 

Node: trend_description 

Description: rising trend  

Membership: CHT 

 

Node: trend_description 

Description: falling trend  

Membership: CHT 

 

Node: steepness 

Description: 57.0948  
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Propositions for graphic shown in 

Figure 5-2 for which the IRM assigns 

78% to changing trend and 20% to the 

falling trend categories. 

Propositions for graphic shown in Figure 

5-3 for which the IRM assigns 97% to 

changing trend and 1% to the falling 

trend categories. 

 

Node: trend_end_value 

Description: 189840  

Detail: annotated  

Membership: CHT 

Membership: rising trend 

 

Node: trend_initial_value 

Description: 189840  

Detail: annotated  

Membership: FT 

Membership: falling trend 

 

Node: trend_end_value 

Description: 70606  

Detail: annotated  

Membership: FT 

Membership: falling trend 

 

Detail: steep  

Membership: CHT 

Membership: rising trend 

 
 

Summary generated by the system: 

The image shows a line graph. The line 

graph presents the number of Durango 

sales. The line graph shows a trend that 

changes. The changing trend consists of a 

rising trend from 1997 to 1999 followed 

by a falling trend through 2006. The 

second segment is the falling trend. The 

falling trend has an initial value of 

189840. The falling trend has an ending 

value of 70606. The first segment is the 

rising trend. 

Summary generated by the system: 

The image shows a line graph. The line 

graph presents the number of people who 

started smoking under the age of 18 in the 

US. The line graph shows a trend that 

changes. The changing trend consists of a 

rising trend from 1997 to 1999 followed by 

a falling trend through 2006. The first 

segment is the rising trend. The rising trend 

is steep. The second segment is the falling 

trend. 

The use of PageRank for content determination in the context of line graphs 

has required substantial changes such as taking into consideration candidate messages 

and how they might affect the choice of which pieces of the graphic should be 

conveyed in a response.  Adding this functionality to this current content 
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determination module and running it on the corpus of line graphs allowed the 

assessment of how candidate messages particularize a summary.  They raise the 

importance of features that represent pieces of the graphic that are visually 

outstanding, since these same features led the Intention Recognition Module to also 

consider that message as the possible intended message of the graphic designer.  We 

claim that this information is too valuable to be left behind when describing a graphic 

for a person who is unable to see it. 

5.6 Evaluation of the Content of an Initial Summary – Phase 1 

To evaluate how well the system was selecting the most important content of a 

graphic for the summaries, and consequently their completeness and conciseness, a 

pilot human subjects experiment was performed.  16 graduate students from various 

Computer Science areas were recruited as participants.  The participants were 

provided with the initial summaries generated by the system and were asked to draw a 

rough sketch of what they believed was in the original graphic.  The initial summaries 

were not aggregated (one sentence was used to realize each proposition) and 

pronominalization was not performed.  The following is an example of a summary 

used in the experiment generated for the line graph in Figure 5-4: 

 

The image shows a line graph. 

The line graph presents the value of Dow. 

The line graph shows a trend that changes. 

The changing trend consists of a big fall from 2001 to 7/2002 followed by a rising 

trend through 2006. 

The first segment is the big fall. 

The second segment is the rising trend. 

The rising trend has an ending value of 11317.43. 
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Figure 5-4: Example of a line graph used in the content determination evaluation 

experiment. 

The purpose of asking the participants to draw the graphic was not to see if 

they could faithfully reproduce the graphic (since the goal of the system is not 

concerned with being able to draw the graphic from the summary, but with identifying 

the information content from it).  Rather, the purpose of having the subjects draw the 

graphic was to ensure that they processed the summary in enough detail so they would 

be able to judge its appropriateness. 

After drawing the graphic, the participants were shown the original graphic 

image and were asked a set of questions to assess how effective they considered the 

initial summary to be.  They were asked to assign a rating (1 being strongly ineffective 

and 10 being strongly effective) to the initial summary, to point out any misleading or 

unnecessary information present in the summary, and to describe what they felt was 
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missing and should be included in the initial summary.  Each participant processed 

between 10 and 15 graphics in a 45-minute period.  These graphics covered a variety 

of recognized intended messages, as well as a variety of outstanding visual features. 

The set of graphs originally used in the experiment contained 2 graphs (L5 and L17) 

which overlapped with the graphs in the experiment for feature identification, 

described in Chapter 4.  The results from including the two graphics and not including 

them are provided next. 

The average rating given by all participants to all graphics (including the two 

graphs used for feature identification) was 7.54, which indicates that the subjects 

overall found the summaries having an above average effectiveness.  When removing 

the responses about the two graphics used in the experiment for feature identification, 

the average rating dropped to 7.48.  Of importance for evaluating the stopping criteria 

is information the participants found to be missing or misleading.  The following are a 

subset of the comments provided by the participants:  

 The number of subjects affirming that the initial summary was missing 

relevant information was relatively small.  Only 49 out of 201 

responses pointed out the need for more information content when 

describing what they felt was missing in the summary.  Some 

individuals, indeed, declared that the initial summary was missing the 

initial and end values of some of the trends.  However, there was no 

consensus about this.  Upon further reflection, the task that we gave the 

participants to draw the graphic may have influenced their feeling that 

they wanted the end values so that they could faithfully draw the 

graphic.  Nonetheless, having the participants draw the graph was 
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essential to make sure they would pay enough attention to the initial 

summary and be able to judge if it was carrying the most important 

information about the graphic or if it was misleading. 

 Some participants stated that the initial summary was repetitive.  That 

aspect might have been mentioned for two reasons: the first was the 

fact that the sentences were realized without being aggregated and the 

second was the presence of individual trend statements and of initial 

and end dates propositions in the summary in cases where this 

information was already provided by the sentence conveying the 

intended message.  The repetition issue was subsequently addressed by 

both aggregating sentences and pronominalizing referring expressions.  

The repetition of initial and end points was addressed by adding a 

repeller relation between initial and end points in the graph and 

intended message nodes in the PageRank graph.  In that case, whenever 

the intended message was selected, the end points that belonged to 

trends pertaining to the intended message would be repelled, so they 

would not be included in the same response. 

 Some of the observations made by the participants did not have any 

relation to the content selected by the system, but it was rather related 

to either the organization of the sentences or to the repetition of the 

referring expressions.  These results showed how important the 

aggregation step is in generating effective summaries.  They also 

motivated tackling the aggregation phase for the system as it is 

discussed in Chapter 7. 
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Although the overall experiment results were very positive and indicative that 

the methodology and stopping criteria are reasonable, it was found that the participants 

had a difficult time evaluating the actual content because text realization decisions got 

in the way.  Thus, the decision to implement some aggregation and then re-run the 

experiment with a larger number of participants was made, so that a more accurate 

assessment of the content evaluation could be performed.  The second experiment 

intended to reflect the evaluation of the content determination module without being 

affected by discourse issues found in the first experiment’s results.  The results of the 

second experiment are discussed in the next section. 

5.7 Evaluation of the Content of an Initial Summary – Phase 2 

The second evaluation of the content of summaries for line graphs produced by 

the system had the same configuration as the first experiment and, surprisingly, similar 

results.  The participants were provided with graph summaries and the same steps 

were taken in order to assess the quality of content determination in the summaries.  

The difference between the two phases of this experiment is in the presentation of the 

summary.  For the first phase the summaries presented one sentence for each 

proposition selected by PageRank, which contained some redundancy and repetition of 

referring expressions, while in the second phase summaries had some aggregation and 

pronominalization applied to the sentences.  The following summary contains these 

modifications for the graph presented in Figure 5-4: 

 

The image shows a line graph, which has many peaks and valleys, presenting the 

value of Dow. It conveys a trend that changes consisting of a big fall from 2001 to 

7/2002 followed by a rising trend through 2006. The rising trend is sharp and has 

many ups and downs. It has an ending value of 11317.43. This trend follows the big 

fall, which is also sharp and shows much fluctuation. 
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 With the aggregation plus pronominalization step the system was able to 

eliminate the dissatisfaction that arose from the repetition and the redundancy present 

in the previous summaries.  However, there was still some dissatisfaction now due to 

some of the summaries being considered “too complex” by some of the participants.  

29 undergraduate students from various majors (Cognitive Science; Chemistry; 

Communication Interest; English; Physics; Criminal Justice; English; Political 

Science; Computer Science; Civil, Chemical, Electrical, Mechanical, Environmental 

Engineering) participated in the second phase.  They were able to answer a total of 

331 evaluations, an average of around 11 graphs per participant.  Even though the 

results for the second phase were expected to be higher than the ones for the first 

phase (since aggregation and pronominalization were introduced) the average score 

assigned by all the participants for the summaries was slightly lower (7.30) when 

considering all the graphics (including the two graphics which were part of the 

experiment for feature identification).  When the two graphics used for feature 

identification were removed from the results, the average rating dropped to 7.08. 

From the results of this phase of the experiment, it was noticed that the users’ 

taste of appropriate aggregation varies across users.  From that observation, the 

contention that a system should be able to assess a user’s preferred level of text 

complexity and adapt to it was born.  It further implies that using the same reading 

level as the article containing the graph to guide the level of aggregation applied to the 

summary allows the summary to more appropriately fit the article’s text and the user’s 

reading level of preference. 

The decision to apply different reading levels also required an adjustment to 

the vocabulary (the lexicon used in the generation of the summaries).  For summaries 
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which should be at a lower reading level, a set of words more commonly found in text 

appropriate to that level must be used in order to describe things such as volatility and 

steepness of a trend (this decision was also inspired by the comments from the 

experiments in which some subjects wrote that they did not know the meaning of the 

word volatility).  The choice of a different lexicon for the aggregation used in the 

second phase of the experiment increased the vocabulary approval by 25%.  However, 

we still needed to strive to find even more appropriate wording for describing visual 

features of line graphs since we still received comments from participants about that 

matter. 

Also based on previous results, the system was adjusted in order to eliminate 

redundancy of text and content.  Adjustment based on comments about some 

information being repeated (by modifying the relationship types between those 

propositions in the content determination algorithm) and the aggregation plus 

pronominalization eliminated the repetition caused by reintroduction of entities.  It 

was noticed that the system adjustment was effective since almost no subject 

complained about repetition (only 2 out of 331 mentioned that we should have 

aggregated some additional sentences further). 

Two other identified points of discussion provided by the participants were the 

sentence organization and the lack of detailed information about the graphic (initial, 

end, maximum and minimum values; rate of change).  The former gives rise to an 

interesting problem.  Our claim is that the most important things in a graphic are 

usually noticed first by a sighted user, who pays attention to the outstanding visual 

information first, and to the complementary features second.  It is the system’s goal to 

provide a summary that also focusses on the most important pieces of the graphic first.  



 

 

77 

The lack of detailed information might be addressed by providing the ability to ask 

follow-up questions (as described in Chapter 9).  It can be considered that this 

information is not crucial to the initial summary since the goal of the initial summary 

is to convey the intended message and the outstanding visual features of the graph 

(things that a sighted user catches with just a gist of it).  One possibility is that these 

features were mentioned as missing from the initial summary because the task of the 

experiment was to draw the graph from the summary.  This observation is reflected by 

the comments, such as: 

"I feel like I had too many "ups and downs". Maybe try to give a better estimate of how 

many peaks there are"  

when talking about the volatility of a trend that he/she was trying to draw.  However, 

the generated summary’s intention was to provide a blind user with the information 

that the trend was not steady, but instead had fluctuations. 

The validation of the choice of a different organization structure (not 

necessarily describing the graph from left to right) could be achieved through an 

experiment with visually impaired users, discussed in detail in Chapter 8.  That 

experiment assessed the influence such decisions had on their understanding of the 

high-level knowledge about the graphic conveyed by the summary. 

5.8 Thought Experiment 

The lack of a baseline for the system kept us from comparing the results from 

human judgements on the baseline against the system’s output.  One possibility could 

be to evaluate how well PageRank and the stopping criteria performed by comparing 

the results of it with a random number of top N highest initial importance scores of 
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nodes (as defined by the experiment described in Chapter 4), before running 

PageRank. 

5.9 Summary 

This chapter discussed the content determination phase of the SIGHT system.  

It showed how a proposition’s chance of being selected for inclusion in summaries is 

affected by its measurements and by the previously selected propositions.  The chapter 

describes how a graph-based algorithm is adapted in order to address the need for 

reflecting different initial weights of propositions, as well as their semantic 

relationships with propositions that were already selected to be part of the summary. 

The chapter finally draws conclusions about the approach chosen to select 

content in the SIGHT system by analyzing results of the evaluation experiment 

performed with human judges.  The experiment was performed in two phases and was 

crucial for both improving the content determination phase and also for foreseeing 

some needed actions in the following phases of the NLG pipeline. 

Moreover, it allows the possibility of developing general purpose extraction of 

content after the PageRank graph is properly adjusted to a given knowledge domain.  

In our case, nodes in the graph are propositions representing the weighted features 

discussed in the previous chapter, their relationships follow a logical set of 

hierarchical and complementary rules, and the initial weight (initial importance score 

in the context of PageRank) of each node was defined based on how frequent the 

graphical features were mentioned in the experiment in (Greenbacker et al., 2011). 

.  The next chapter describes the text organization phase of the NLG pipeline in 

the SIGHT system. 
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TEXT ORGANIZATION PHASE 

This chapter describes the text organization phase of the generation module in 

the SIGHT system.  It starts by listing some of the existing research and 

methodologies used to organize text in NLG systems.  It further explains how the 

intended message and other candidate messages, as well as salient visual features, 

affect the way the summary of a line graph is organized. 

The overarching organization principle divides the selected propositions into 

three groups.  The first is the set of introductory, overall information about the graph.  

The second group details the trends of the graphic and its characteristics.  The last 

group provides computational information over the whole graph. 

The organization of propositions in the second group is affected by the 

importance of a trend and its selected characteristics provided by the graph-based 

content determination algorithm.  Since the importance of a proposition might affect 

the organization of the summary, the importance value from the PageRank algorithm 

described in the previous chapter is used as input for the organization phase. 

6.1 Related Work on Text Organization for NLG Systems 

What information to communicate, when to say what, and which words and 

syntactic structures best express the desired intent, are the three classes of decisions 

that constitute the full range of the language generation problem (K. McKeown, 1992).  

In order to produce comprehensible text, one needs to decide which ordering of 

Chapter 6 
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sentences will be most effective in achieving the goal of making the discourse 

coherent.  Organization choices are heavily influenced by the content that is available, 

by the main task of the system, as well as by users’ expectations when the purpose of 

the system is to answer questions. 

A schema based approach to discourse structuring was proposed by (K. R. 

McKeown, 1985); it identified certain discourse patterns that facilitate different 

discourse goals.  These schemata are used to organize texts that are defined in terms of 

rhetorical predicates.  This approach allows the same content to be organized 

differently depending upon the discourse goal.  Another technique that has been used 

is top-down planning.  This technique organizes the text as a tree-like structure in 

which the leaf nodes, which are the informational pieces that can have their 

communicative role identified by the hearer, are connected by inner nodes 

representing either the relations that identify rhetorical structures (W. Mann & S. 

Thompson, 1987) or the speaker intention.  (Hovy, 1988), (Zhou & Feiner, 1997) and 

(Moore & Paris, 1993) are some examples of applications of top-down planning for 

text structuring. 

6.2 Organizing the Selected Content of Line Graphs in SIGHT 

Because content determination is done prior to the text organization in this 

work and produces a set of propositions which must be included in the text, a bottom-

up methodology to organize the set of selected propositions is most appropriate.  

Rhetorical predicates are inappropriate since the set of propositions does not comprise 

a vast domain of discourse goals on which schemata based planning would be favored.  

Instead, these propositions would be considered “information” (W. C. Mann & S. A. 

Thompson, 1987).  In the domain of line graph summarization, although a different 
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subset of propositions pertaining to different pieces of the main entity of the graph 

(entities being the whole graph and its individual trends) might be selected for each 

graphic, all the information that is available belongs either to the whole graphic (or 

main entity) or to its sub pieces (the trends).  (Demir, 2010) uses three classes to 

which propositions are assigned in order to organize summaries and follow up 

responses for bar charts.  These classes are message_related, specific and 

computational and the classes appear in this order in the summaries.  The author 

describes the classes as (Demir, 2010): 

“The message related class contains propositions that convey the intended message of 

the graphic. The specific class contains the propositions that focus on specific pieces of 

information in the graphic, such as the proposition conveying the period with an exceptional 

drop in a graphic with an increasing trend or the proposition conveying the label and value of 

a salient bar. On the other hand, propositions in the computational class capture 

computations or abstractions over the whole graphic, such as the proposition conveying the 

rate of increase in a graphic with an increasing trend or the proposition conveying the overall 

percentage change in the trend.” 

This work uses the same overall structure for organizing the propositions 

selected for the summary of line graphs: 

 Our first set of propositions is motivated by Demir’s message 

related, but contains additional information which introduces the 

graph.  The introduction of the graph consists of its type (line 

graph), the description of the measurement axis, and the assessed 

visual features associated with the whole graphic. 

 For the specific class, (or the second set of propositions in the 

overall organization architecture) which describes the smaller 

pieces that comprise the whole line graph, we add detailed 

information about the graph’s trends.  
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 For the computation class, the set of propositions is also about the 

overall graphic; these propositions provide information about the 

graph as a whole but are concerned with values, specific dates and 

deltas.  These are, for example, the overall behavior the graphic 

presents (if the graphic shows an overall increase/decrease), the 

overall percentage or absolute change, and/or the overall time span 

of the graphic. 

The second group of propositions, the one which describes the details of the 

line graphs, may consist of propositions/features associated with a number of trends, 

each having many attributes that should be mentioned.  The question that arises is: 

how to order this information?  Taking into consideration that the answer to this 

question might vary based on the information conveyed, it was decided that the system 

should present this information in two major structures:  

1. In cases where trends in the graph differ in importance, describe the 

trends in order of importance (with the most important trend presented 

first) 

2. Describe the trends in the order that they appear in the graphic (which 

applies when all the trends have similar assessed importance); 

In case 1, one (or more) trends in the graphic is/are considered more important 

than the others.  In such cases, the claim is that discussing this/these trend(s) first 

provides the user with the more important information first, followed by 

complementary information.  Alternatively, if all trends are relatively equal in their 

importance rating, they will be described in left-to-right order.  Section 6.3 explains 

how the importance of a trend is determined. 

In both cases, visual features that are selected by PageRank and have a 

relationship between them (complement or contrast) are organized in such a way that 

they are conveyed close to each other.  The organization rules consider the semantics 

of the propositions when sending the organized set to the aggregation module. 
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6.3 Assessing the Importance of a Trend 

A trend can stand out in importance based on two different scenarios.  The first 

scenario occurs when there are candidate messages with non-trivial probabilities 

(besides the intended message).  If the trend(s) are part of such a candidate message, 

they will be described first.  Table 6-1 lists the possible scenarios for organization of 

propositions that highlight a trend. 

Table 6-1: Scenarios for organization of propositions highlighting a trend. 

 Description Consequence 
Figure with  

graph example 

Scenario I A candidate message 

highlights a trend that is a 

part of an intended message 

that has multiple trends. 

Order the 

important part 

first. 

Figure 6-1 

Scenario II A candidate message with 

multiple trends contains the 

single-trend intended 

message. 

The candidate 

message is 

introduced first; it 

is indicated that it 

does not stand 

alone, but rather is 

part of another 

message. 

Figure 6-2 
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The graph in Figure 6-1 is an example in which there is a candidate message 

(Big Fall) with non-trivial probability that is part of the intended message (Changing 

Trend).  In this case, the falling trend is described first as shown in the summary 

following the figure. 

 

Figure 6-1: Example of Scenario I: a graph with a candidate message (Big Fall) that is 

part of the intended message (Changing Trend). 

(Summary of graph in Figure 6-1) 

The image shows a line graph which presents the number of Durango sales. 

The line graph shows a trend that changes consisting of a rising trend from 1997 to 

1999 followed by a falling trend through 2006. The falling trend has a starting value 

of 189840 and has an ending value of 70606. The rising trend is steep. 

Another situation is when the candidate message contains the intended 

message (the intended message of a big fall is part of a candidate message such as a 

changing trend that returns, i.e., the falling trend in the big fall is one of the trends in 

the changing trend message).  An example of this is shown in Figure 6-2.  This graph 

has as its intended message the Big Fall, which is part of a candidate message with 
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non-trivial probability (Changing Trend Return).  The summary for this graph is 

shown below the figure. 

 

Figure 6-2: Example Scenario II: a graph where the intended message (Big Fall) is 

part of a candidate message with non-trivial probability (Changing 

Trend). 

(Summary of graph in Figure 6-2) 

The image shows a line graph which presents the dollar value of 12-month 

average for regular unleaded. The graph consists of a big fall from 9/4/2005 to 

12/4/2005 which belongs to a changing trend that returns. The big fall spans over 

90 days. The first segment is a rising trend, which is steep.  The third segment is 

another rising trend. 

The second scenario is dependent on the number and type of propositions 

selected by the content determination algorithm.  In cases where a trend contains more 
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visual features selected to be included in the summary than any other trends selected 

for inclusion in the initial summary, the content determination algorithm has implicitly 

rated that trend as more important than the others.  The hypothesis is that that trend 

would probably be outstanding in the graphic, possibly catching a sighted user’s 

attention before s/he can even read the other trends in the graph, even if they occur 

before it.  

Systems that present time series data such as TREND (Boyd, 1998b), usually 

organize information based on time.  It is crucial to notice that, for systems whose goal 

is to provide an overall view of data over time, organizing the text according to the 

order in which they occur might be important in order to consider the evolution of the 

entity being monitored and draw conclusions.  In the case of the SIGHT system, 

however, summaries should be able to deliver the most important pieces of the graphic 

first.  Our contention is that such pieces are perceived first (if not alone) when the 

reader is glancing at the graph.  These important pieces might occur in the middle of 

the graphic, for example, and be preceded and followed by some complementary 

information. 

The experiment performed with visually impaired users described in detail in 

Chapter 8 validates the use of this type of organization by showing that focusing on 

the most important features, even if not in left-to-right order, was effective for users to 

be able to answer important questions about the graphic. 

6.4 Summary 

This chapter presented the organization phase of the SIGHT system.  It 

discussed some of the existing work on text organization for NLG systems and 

detailed the steps taken for the organization of the propositions selected for a line 
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graph in SIGHT.  The chapter explained the different ways the SIGHT system can 

organize the selected content and how the choices for one approach over another are 

made. 

The next chapter presents the micro planning phase of the system.  Once 

propositions are selected and ordered, the micro planning phase decides how they 

should be aggregated and which lexical items should be chosen to describe concepts in 

the context of line graphs. 
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MICRO PLANNING PHASE 

This chapter describes the main contribution with regards to the Natural 

Language Generation aspect of this work.  The micro planning phase, which 

comprises the aggregation of propositions into sentences and the choice of lexical 

items to describe concepts, is a complex and crucial step when generating text.  For 

this work, the micro planning phase is guided by the generation of text at different 

reading levels.  Studies performed throughout this work showed that tailoring the 

generated text to a complexity with which the reader is familiar increases 

understanding and comfortability when reading it. 

The chapter starts by describing the motivation behind the choices made for 

the micro planning phase within SIGHT.  It lists the set of propositions and all of the 

different ways they can be realized.  It then discusses related work in both the 

aggregation and text simplification areas. 

In determining the amount of aggregation applied to a summary, the text 

complexity of the text in which the graphic occurs is taken into account.  Grammatical 

aspects that affect the text complexity are learned in order to guide the aggregation 

phase so that the realized text readability level matches the readability level of the 

surrounding text.  A graph search technique is employed in order to allow good 

performance when employing the aggregation step, since so many possible ways of 

realizing the sentences exist. 

Chapter 7 
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This chapter also presents the lexical choice step of the micro planning phase.  

Once again, the desired reading level guides the choice of the lexical items.  To collect 

a set of relevant terms for describing line graphs, a synonym expansion phase and a 

word sense disambiguation phase are applied.  Ensuring that the synonyms expanded 

were both relevant to the domain in question (description of line graphs) and 

appropriate to the different reading levels imposed interesting challenges.  These 

challenges are presented in this chapter.  The chapter ends by presenting an example 

of summaries of a line graph generated at the different reading levels.  The evaluation 

of text complexity is presented in the following chapter. 

7.1 Why do NLG Systems Need a Micro Planning Phase? 

Deciding on the complexity of a generated text in NLG systems is a 

contentious task.  Some research efforts propose the generation of simple text for low-

skilled readers (Williams & Reiter, 2005a); some choose what they anticipate to be a 

“good measure” of complexity by balancing sentence length and number of sentences 

(using scales such as the D-level sentence complexity) for the text (Demir et al., 

2008); others target high-skilled readers.  In this work, we employ an approach that 

aims to leverage the experience of the reader when reading generated text by matching 

the syntactic complexity of the generated text to the reading level of the surrounding 

text.  We propose an approach for sentence aggregation and lexical choice that allows 

generated summaries of line graphs in multimodal articles to match the reading level 

of the text of the article in which the graphs appear. 

As presented in (Moraes, McCoy, & Carberry, 2014b), the main motivation for 

choosing a scalable approach for this phase is based on the need identified in current 

generation systems for a generic approach that allows a system to adapt the generated 
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text complexity to a given user context.  This work was motivated by the desire to 

enable NLG systems to adapt their generated text to different levels of text complexity 

upon identification that readers will have better comprehension when reading text that 

is generated at their reading levels.  Additionally, if the generated text for the graph 

matches its surrounding text with regards to readability level, we ensure accordance 

between their levels, therefore avoiding abrupt changes.  Our method for adaptation 

takes into consideration grammatical features as well as lexical choice6.  This chapter 

details the steps taken in order to achieve this capability in the context of line graph 

summary generation within the SIGHT system. 

Initially, in the context of this work, the micro planning phase, which 

comprises lexicalization and aggregation, was designed and implemented using a rule-

based approach in which different text plans were designed for creating summaries for 

the different grade levels.  The text plans were defined by assessing the upper bound 

of the reading level if all the propositions about a graph were selected.  By having all 

of the possible propositions available for creating the text plans for the different sizes 

of graphs (1, 2, 3 or more trends), the system would not generate text that would be 

more complex than desired in cases where the content determination algorithm 

selected more propositions.  In contrast, the current version of this work has been 

improved to tackle this problem by proposing an approach which combines a learning 

phase, a concept expansion and word sense disambiguation phase, and a graph search 

                                                 

 
6 It is important to mention that the aspects considered for guiding the generation of 

text at different complexity levels in this work are related to syntactic, grammatical 

and lexical ones.  Discourse strategies and other linguistics features are not taken into 

account. 
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phase in order to be able to generate text at different reading levels.  Even though 

some pieces of the approach are preprocessed offline for lexicon building, the 

algorithm used to aggregate propositions in order to select appropriate lexical items to 

reach a desirable text complexity happens during runtime. 

The major identified steps needed to achieve the generation of text at different 

target reading levels encompass: 1) understanding what makes a text passage complex; 

2) mapping measurements of text complexity to specific actions when aggregating 

propositions into sentences; 3) choosing the set of appropriate words to be used when 

generating a text passage.  The following sections will cover some prior work on 

sentence aggregation and text simplification as well as all the details on the 

implementation of the steps mentioned above. 

7.2 Related Work on Aggregation of Multiple Propositions into Single 

Sentences 

Interesting work has been pursued in the area of aggregation of sentences.  The 

approach proposed by (Wilkinson, 1995) divides the aggregation process into two 

major steps: semantic grouping and sentence structuring.  Although they are 

interdependent, both are needed in order to achieve aggregation in a text.  Initiatives 

on automatic aggregation (or only semantic grouping) of text using learning 

techniques also exist.  (Barzilay, 2006; Barzilay & Lapata, 2006) uses a database and 

its attributes to formalize semantic grouping as a set partitioning problem.  It 

automatically learns grouping constraints by using an aligned parallel corpus of 

sentences and their underlying semantic representation.  (Bayyarapu, 2011) presents 

an algorithm for context sensitive aggregation that learns aggregation rules that take 

into consideration the context in which concepts are described and related to each 
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other.  It uses a parallel corpus of multi-sentential text and their underlying semantic 

representations in order to learn.  It models the problem of semantic grouping as a 

hypergraph partitioning problem that uses the probabilities obtained from a context-

dependent discriminative model.  (Walker, Rambow, & Rogati, 2001) propose SPoT, 

a trainable sentence planner that generates a large set of possible organizations for a 

sentence.  It trains a ranker that chooses which of the sentence’s organizations are 

preferred based on a corpus of dialogs and feedback provided by human judges.  

Although these learning methodologies are innovative, they assume that there 

is one best way to aggregate the text (based on human judgments).  However, the 

graph summaries that the SIGHT system aims to generate occur in articles and the 

complexity of the articles’ texts vary considerably.  Rather than a single “perfect” 

aggregation level, this work contends that the text in the summary should match as 

much as possible the reading level of the text of the article in which the graphic 

appears. 

In the version of SIGHT for simple bar charts (Demir, 2010), the aggregation 

of sentences within each semantic category is done by considering all possible ways 

the sentences can be aggregated.  Her mechanism treats each proposition as a single 

node tree, which can be realized as a sentence and attempts to form more complex 

trees by combining trees in such a way so that the more complex tree (containing 

multiple propositions) can still be realized as a single sentence.  In order to decide 

which tree is the best one to realize, Demir’s work tries to balance sentence 

complexity and number of sentences.  It takes into consideration center-embedded and 

right-branched relative clauses and their different complexity levels.  Demir uses the 

revised D-level sentence complexity scale (Covington et al., 2006) in order to measure 
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the syntactic complexity of a sentence according to its syntactic structure and make a 

decision about the best structure to use. 

7.3 Related Work on Text Simplification and Readability Assessment 

Research on generating text concerned with low-skilled users has been 

conducted by (Williams & Reiter, 2004, 2005a, 2005b, 2008; Williams, Reiter, & 

Osman, 2003).  As stated by (Williams & Reiter, 2005b), most NLG systems generate 

text for readers with good reading ability.  Thus, they developed a system called 

SkillSum which adapts its output for readers with poor literacy after assessing their 

reading and numeracy skills.  Their results show that, for these target readers, the 

micro planning choices made by SkillSum enhanced readability.  The work does not 

consider higher skilled readers. 

(Siddharthan, 2003) proposes a regeneration phase for syntactic text 

simplification in order to preserve discourse structure, with the objective of making 

the text easier to read for some specific target reader groups or simpler to process by a 

computer program.  (Carroll et al., 1999) presents a text simplification methodology to 

help language-impaired users.  (Rello & Baeza-Yates, 2012) investigates dyslexic 

errors on the Web and (Rello & Baeza-Yates, 2014; Rello, Baeza-Yates, Bott, & 

Saggion, 2013; Saggion et al., 2015) proposes a system that uses lexical simplification 

to enhance readability and understandability of text for people with dyslexia.  They 

help users to understand the text by offering as options the replacement of more 

complicated lexical items by simpler vocabulary.  They performed experiments with 

people with no visual impairments and with people with dyslexia and other visual 

impairments and concluded that the system improved readability for the users with 

dyslexia and improved comprehensibility for users with no visual impairments. 
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Effort has also been made on evaluating text simplification systems.  

(Temnikova & Maneva, 2013) presents an evaluation metric that aims to allow 

comparison across different text simplification systems by creating C-Score, a 

common evaluation measure.  (Stajner, Mitkov, & Saggion, 2014) proposes some 

automatic measures that aim to evaluate the grammaticality and meaning preservation 

of the output text of text simplification systems to replace human evaluation. 

Although text simplification is crucial when generating text for low-skilled 

readers and users with language disabilities, experiments performed with college 

students (described in detail in Chapter 8) showed that the simplest text was rather 

unpleasant to read for the majority of them.  Just as high-level texts are difficult for a 

low level reader, over simplified texts are disconcerting to a high-level reader.  

Therefore, this work proposes a technique that focuses on adjusting the generated text 

to the reading level of the surrounding text.  Thus, the new version of the SIGHT 

system, the product of this work, aims to satisfy both high-level and low-level readers. 

Recently, Artificial Intelligence has been applied to systems that aim to assess 

and predict the reading level of texts.  Language models and Natural Language 

Processing have been used for predicting the grade level of documents. (Si & Callan, 

2001) and (Collins-Thompson & Callan, 2004) predict grade levels of documents by 

training unigram language models. In addition to language models, (Heilman, Collins-

Thompson, Callan, & Eskenazi, 2007; Heilman, Collins-Thompson, & Eskenazi, 

2008) and (Schwarm & Ostendorf, 2005) use syntactic features to estimate the text’s 

grade level. (Pitler & Nenkova, 2008) additionally looks into discourse features in 

order to assess text quality for educated adult audiences using texts from the Wall 

Street Journal as the corpus.  (Kate et al., 2010) presents a system developed to 
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classify the text readability based on syntactic, lexical and language modeling features.  

The system performed better than naïve judges when classifying documents based on 

their readability when compared to annotations provided by language experts.  

Although these efforts also look into classification of texts based on their readability 

levels, the work in this thesis uses the classification as a means of assessing the values 

associated with the features in order to use that as the input to an aggregation module 

in an NLG system. 

(Tanaka-Ishii, Tezuka, & Terada, 2010) presents comparators implemented 

using Support Vector Machines that are used to, given a set of texts, sort the 

documents by their readability level.  An analysis of the usefulness of applying 

learning algorithms and sophisticated linguistic features (that go beyond the “classic” 

features used by more established readability measurements) is presented in (François 

& Miltsakaki, 2012).  (Kanungo & Orr, 2009) uses simple surface level features, like 

the number of characters and syllables per word, capitalization, punctuation, ellipses 

etc., to train a regression model to predict readability values in the task of predicting 

readability of web summary snippets produced by search engines. 

7.4 What is There to Realize? 

Every NLG system is designed to translate concepts into natural language.  

They start with the set of concepts or ideas that need to be realized (part of the content 

determination step) and then organize and plan the structure and surface realization of 

these concepts or ideas. 

In this work, the concepts are related to describing information graphics for 

visually impaired users.  The set of concepts, called propositions, represent semantics 

of this domain.  The micro planning phase of the system starts from a set of selected 
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propositions, which are ordered by the organization phase, and applies aggregation 

and lexical choice techniques in order to produce the final text.  Table 7-1 shows the 

propositions which are the set of all possible proposition types that can be chosen by 

the content determination module.  Some of them are presented with a simple sentence 

translation based on the graph example shown in Figure 5-4 (page 71) for illustration: 

Table 7-1: List of all propositions that can talk about a graph. 

Proposition Type Sentence Translation 

graph_type The image shows a <graph_type> - line graph. - 

"The image shows a line graph". 

entity_description The graph presents <entity_description> – "The 

line graph presents the value of Dow".  This is a 

special case where the entity description is the 

Measurement Axis Descriptor (MAD) identified 

and produced by the work presented in (Demir, 

2010). 

graph_volatility The graph is (<degree>) volatile/smooth. / The 

graph shows (<degree>) volatility. - In this case, 

the degree is defined by the metric calculation 

result. - "The graph is highly volatile." / "The 

graph shows much volatility." 

graph_overall_behaviour The graph shows an overall 

(<graph_overall_behaviour>). - "The graph 

shows an overall increase." 
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graph_absolute_change The graph changed by 

(<graph_absolute_change>) (<unit>). 

graph_rate_change The graph (<graph_overall_behaviour>) 

(<graph_rate_change>). - "The graph increased 

by x percent." 

graph_overall_period_years The graph spans over 

(<graph_overall_period_years>). 

graph_overall_period_months The graph spans over 

(<graph_overall_period_months>). 

graph_overall_period_days The graph spans over 

(<graph_overall_period_days>). 

graph_initial_date The graph starts in/on (<graph_initial_date>). 

graph_end_date The graph ends in/on (<graph_end_date>). 

graph_initial_value The graph starts at (<graph_initial_value>). 

graph_end_value The graph ends at (<graph_end_value>). 

maximum_point_value The graph has a maximum value of 

<maximum_value>. 

minimum_point_value The graph has a minimum value of 

<minimum_value>. 

maximum_point_date The maximum value occurs at 

<maximum_value_date>. 

minimum_point_date The minimum value occurs at 

<minimum_value_date>. 
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composed_trend The graph shows a <composed_trend>. – This 

describes the intended message of the graph - 

"The line graph shows a trend that changes. " 

trend_description The <segment_position> is a 

<trend_description>. – "The first segment is a big 

fall. " Options of trend description are: rising, 

falling, stable, big fall, big jump, point 

correlation and non-sustained. 

trend_volatility The <trend_description> is (<degree>) volatile / 

smooth. – Where the degree is defined by the 

metric calculation result. 

trend_steepness The <trend_description> is (<degree>) steep / 

flat. – Where the degree is defined by the metric 

calculation result. 

trend_initial_date The <trend_description> starts in/on 

<trend_initial_date>. 

trend_end_date The <trend_description> ends in/on 

<trend_end_date>. 

trend_initial_value The <trend_description> has an initial value of 

<trend_initial_value>. 

trend_end_value The <trend_description> has an end value of 

<trend_end_value>. 

trend_absolute_change The <trend_description> has a total 

increase/decrease of (<trend_absolute_change>). 
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trend_rate_change The <trend_description> increased/decreased by 

(<trend_rate_change>). 

trend_overall_period_years The <trend_description> spans over 

(<trend_overall_period_years>). 

trend_overall_period_months The <trend_description> spans over 

(<trend_overall_period_months>). 

trend_overall_period_days The <trend_description> spans over 

(<trend_overall_period_days>). 

As described in Chapter 5, a subset of these are selected for the initial high-

level summaries of line graphs, according to their importance. 

The goal of the micro planning phase is to realize the set of selected 

propositions as sentences.  However, there are many ways these propositions can be 

realized.  They can each originate a sentence, some of them can be realized as an 

adjective attached to a noun phrase, as a noun phrase added to a conjunction with a 

preexisting noun phrase, or as a subordinating conjunction.  The last three realization 

options require what we call aggregation of propositions, where multiple propositions 

are composed to form a complete sentence. 

The proposition graph_type, for example, can originate: 

 A sentence: “There is a line graph.”. 

 An adjective (or compound noun): “…line graph…” – where “graph” is 

the head noun. 

 A relative clause: “…which is lined…”. – where the head noun is 

“graph”. 
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The other propositions can also have their realizations made in different ways 

(based on grammatical restrictions of how each concept can be described).  A hard 

decision, therefore, is to choose which realization to apply to each proposition.  

Another important issue that needs to be addressed is lexical choice.  What words 

should be used in the example above?  Should we use graph, chart, or diagram?  

Deciding how to realize a set of propositions requires a complex and hard set of 

decisions.  How much should be aggregated and how, and which lexical items should 

be used to describe concepts are the key questions this chapter addresses.  The 

approach used for the system in the context of this work is to use the reading level of 

the article in which the graphic appears to guide such decisions.  The idea is to 

generate summaries in a given reading level so that their reading levels match.  How 

the system employs this approach is the main focus of this chapter. 

7.5  Planning the Realization of Propositions 

Thus far, it has been shown how propositions can be realized as full sentences.  

However, we want to be able to aggregate sentences together and we want all of the 

possible combinations.  Now we are going to formulate the problem of generating all 

of the possible realizations using graph search.  By having all of the possible 

realizations, we will be able to choose the one at the desired reading level.  For this to 

happen, however, we need to learn about text complexity and be able to augment the 

algorithm by adding that information to a heuristic, so it can inform us how close we 

are to the desired output.  Finally, we want to do this efficiently, so we choose and 

apply a graph search algorithm that, by using the heuristic, can lead us to the desired 

output faster. 
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7.5.1 Realizing each proposition 

In Section 7.4 the set of propositions was presented, along with some examples 

of their realizations as active voice sentences.  The possible realizations being 

considered in the context of this work are: 

1) Realization as a sentence in active voice 

2) Realization as a sentence in passive voice 

3) Realization as a relative clause 

4) Realization as an adjective 

5) Realization as a conjunction 

Not all of the possible realizations can be applied to all of the proposition types 

and some propositions can have more than one realization under one of these options.  

One example of the former is the proposition composed_trend, which conveys the 

intended message.  This proposition cannot be realized as an adjective as its core 

description is a phrase on itself (e.g., The line graph shows a trend that changes).  

For this proposition, the possibilities are: 

1) Realization as a sentence in active voice: The line graph shows a trend 

that changes. 

2) Realization as a sentence in passive voice: A trend that changes is shown 

by the line graph. 

3) Realization as a relative clause: … graph, which shows a trend that 

changes, … 

4) Realization as a conjunction: …graph, which presents the value of Dow 

and shows a trend that changes, … 

The example above also applies to propositions such as 

graph_overall_behavior, graph_initial_value, and many others. 
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Other propositions can be realized as all four alternatives.  In fact, they have 

different ways in which they can be realized within each alternative and these are 

determined by the lexical item being used.  One example of such a proposition is 

graph_volatility.  Since this concept can be described by adjectives (volatile, jagged, 

variable) as well as by nouns (volatility, fluctuation, variability, jaggedness), there are 

multiple options for realizing this proposition for each alternative7: 

1) Realization as a sentence in active voice: The line graph is volatile. / The 

line graph shows fluctuation. 

2) Realization as a sentence in passive voice: Volatility is shown by the line 

graph. (Even though the construction “Jagged is the line graph” is 

grammatically correct, we decided not to allow such a realization because 

it is unusual.  The example in Figure 7-1 shows the comparison between 

the occurrence of the sentences “The girl is beautiful” and “Beautiful is the 

girl” in the Google Books Ngram corpus (Michel et al., 2011), showing 

that contemporary language has dropped such use, making it unlikely to 

appear in popular media available online. So the idea is that the system 

should also take this into consideration when generating summaries of the 

graphics). 

3) Realization as a relative clause: … graph, which is variable, … / … graph, 

which shows jaggedness, … - where graph is the head noun. 

4) Realization as an adjective: …volatile graph… - where graph is the head 

noun. 

                                                 

 
7 Appendix A shows the formalization of all the different proposition realization 

templates. 
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5) Realization as a conjunction: …graph, which presents the value of Dow 

and shows much fluctuation, … 

The propositions trend_volatility and trend_steepness have a similar 

behavior to the proposition graph_volatility.  The concept steepness can also be 

described by adjectives (steep, abrupt) as well as by nouns (steepness, abruptness). 

The propositions which share the same set of possible alternatives and the 

same root predicate (show, present, have) are combined and use the same proposition 

realization template, where just the concepts and values are instantiated for each 

individual proposition. 

 

Figure 7-1: Snapshot from Google Books Ngram Viewer (books.google.com/ngrams) 

comparing the usage of the sentences "The girl is beautiful" versus 

"Beautiful is the girl". 
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7.5.2 The graph search problem for realizing propositions 

For generating graph summaries at a desired reading level, we are formulating 

the problem as a graph-search through the space of possible realizations.  The 

following describes the search space: its states, actions, transition model and goal test. 

States: A state consists of two parts: a list of unrealized propositions and the 

realizations performed so far (which can consist of full sentences or sentence 

fragments). 

Initial state: The initial state contains the set of all propositions unrealized. 

Actions: The actions in a given state take the next unrealized proposition and 

realize it (generating a new state for each realization the proposition allows).  The 

possibilities are: realize_as_active_sentence, realize_as_passive_sentence, 

realize_as_adjective, realize_as_relative_clause and realize_as_conjunction.  Each 

proposition contains a set of its allowed actions.  Figure 7-2 shows a piece of the graph 

search in which the proposition graph_volatility (for the graph example presented in 

Figure 5-4 page 71) is the next to be realized8.  It illustrates the states that result from 

a node containing graph_volatility as the next proposition to be realized is chosen 

from the open list and expanded.  If the needed head noun is not present in any of the 

realizations, then some of the actions (adjective, relative clause and conjunction) will 

be realized as segments and will wait until such a head noun is generated to be added 

to a full sentence.  If the required head noun is already realized in a full sentence, the 

fragment is then attached to the existing realization.  In the example presented in 

Figure 7-2 the head noun graph_type is present in a full sentence, so the fragments 

could be attached.  The fragment for the relative clause was left out for illustrative 

                                                 

 
8  The proposition order is provided by the organization module. 
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purposes, but it could be added as a relative clause or as a conjunction (generating two 

different successors). 

Goal test: It checks if all the propositions have been realized and if all of them 

are aggregated into full sentences. 

 

Figure 7-2: Snapshot from the Best First Search algorithm at a point where the 

proposition graph_volatility is being expanded. 

The partial summary realized so far and the set of unrealized propositions is 

used to calculate h(n).  For each unrealized proposition, one new node is added to the 

open list for each possible realization of that proposition.  If a proposition can be 

realized as a single sentence in active voice, a single sentence in passive voice, an 

adjective and a relative clause, four new nodes will be added to the open list, one for 
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each possible realization of such proposition.  The same applies to the whole set of 

unrealized propositions. 

  The graph search algorithm chosen was the Best First Search algorithm (BFS) 

(Russell & Norvig, 2003).  The choice for this algorithm was motivated by the size of 

the search space and the need for a complete solution.  Algorithm Best First Search 

uses the formula f(n) = h(n), at each expanded and visited node in the graph – say n.  

For that node, the estimated cost from n to a goal node is defined by a heuristic. 

In this work we develop a special heuristic, composed of two main factors.  

The first factor is the level of the node in the tree: favor nodes deeper in the tree (i.e., 

closer to being fully realized).  The second factor considers how likely the eventual 

realization is to be within the range of features for the desired grade level.  This is 

estimated by taking into account both the realization so far and the estimation of how 

the features are likely to change given the proposition that have not yet been realized.  

The next section provides details on the heuristic function. 

The next section describes the steps needed to build the graph search 

algorithm, especially the path taken to learn the measurements that will be mapped to 

the heuristic. 

7.6 Building the Graph Search Algorithm 

7.6.1 Finding the heuristic to estimate text complexity  

In order to define a heuristic that will allow the implementation of the Best 

First Search algorithm, one needs to understand which aspects of text contribute to its 

complexity, identify a subset of these that can be used when generating text, and map 

its values to functions to construct the heuristic. 
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7.6.1.1 Understanding what makes text complex 

Various reading assessment measures exist today.  Given an excerpt of text, 

these measures usually take into consideration features such as word and sentence 

lengths, and some syntactic structures in order to assess the grade level the reader 

should be at in order to easily understand the text.  Described next are some of the 

most commonly used reading level measurement techniques.  Here we describe 

several simple measurement techniques that can be automatically applied to text 

through freely available software packages. 

7.6.1.1.1 Automated Readability Index 

The Automated Readability Index (Smith & Senter, 1967) relies on a factor of 

characters per word (a character is a letter, a number, or a punctuation mark) to assess 

word length (which is one of the major factors for assessing grade level).  Some other 

measures use syllables per word for their computation of grade level and still others 

use complex word indices.  Although opinion varies about its accuracy as compared to 

the syllables/word and complex words indices, characters/word is often faster to 

calculate, as the number of characters is more readily and accurately counted by 

computer programs than syllables (Smith & Senter, 1967).  In fact, this index was 

designed for real-time monitoring of readability on electric typewriters.  The grade 

level is calculated as: 

 

4.71
𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠

𝑤𝑜𝑟𝑑𝑠
+ 0.5

𝑤𝑜𝑟𝑑𝑠

𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠
− 21.43 

 

(3) 
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7.6.1.1.2 Flesch-Kincaid 

The Flesch-Kincaid grade level readability formula improves upon the Flesch 

Reading Ease Readability Formula (Kincaid, Fishburne, Rogers, & Chissom, 1975). 

Originally formulated for US Navy purposes, this formula is best suited to the field of 

education.  The two measures (FleschIndex and Kincaid) use word and sentence 

length with different weighting factors.  FleschIndex is a test of reading ease with 

higher scores indicating text that is easier to read.  Kincaid is a grade score that is 

negatively correlated to FleschIndex and provides a grade level for the text.  Formula 

4 represents the measure: 

 

𝛼 ∗   
𝑤𝑜𝑟𝑑𝑠

𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠
+ 𝛽 ∗   

𝑠𝑦𝑙𝑙𝑎𝑏𝑒𝑠

𝑤𝑜𝑟𝑑𝑠
− 𝛾 (4) 

 

where the weights assume the values −1.01, −84.6 and 206.83 respectively for 

FleschIndex and the values 0.39, 11.8 and −15.59 respectively for Kincaid. 

7.6.1.1.3 Coleman-Liau Index 

The Coleman-Liau index was developed with the goal of making the process 

of assessing the reading level of a text faster (by not depending on the assessment of 

the number of syllables), since keypunching the text into the computer in order to be 

able to access syllables was generally more expensive than obtaining a reading ease 

score by hand counting (Coleman & Liau, 1975).  It proposes the use of an optical 

scanner to count all words occurring between two periods.  The authors claim that it 

would be equally simple for the same device to count word length by requiring that 

word length be measured in letters, not syllables.  The index is represented by a cloze 

score (instead of a grade level) which, according to the authors, might not be as easily 
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readable by users.  The cloze score can be converted to a grade level using a second 

formula. 

0.059 𝐿 − 0.296 𝑆 − 15.8 (5) 

where, L is the average number of letters per 100 words and S is the average number 

of sentences per 100 words. 

7.6.1.1.4 SMOG (Simple Measure Of Gobbledygook) 

The SMOG grading level assessment uses the number of polysyllables (a word 

consisting of more than three syllables) and the number of sentences in order to 

calculate the grade level of a given passage.  According to (Laughlin, 1969), the 

SMOG grade yields a 0.985 correlation with a standard error of 1.5159 grades with the 

grades of readers who had 100% comprehension of test materials.  SMOG has been 

widely used in health messages.  According to the author, word length is associated 

with precise vocabulary in the English language, so a reader must usually expend extra 

effort in order to identify the full meaning of a long word, simply because it is precise.  

In the same way, long sentences nearly always have complex grammatical structure, 

which is a strain on the reader's immediate memory because he has to retain several 

parts of each sentence before he can combine them into a meaningful whole.  The 

SMOG formula is given below: 

1.043 √𝑛𝑢𝑚𝑂𝑓𝑃𝑜𝑙𝑙𝑦𝑠𝑦𝑙𝑙𝑎𝑏𝑙𝑒𝑠 ∗  
30

𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠
+ 3.219 (6) 

The measurements described above generally do not agree on their assessed 

reading grade level when they analyze a passage.  A tool available in the GNU project 

Style and Diction (Fsf, 2005) provides results for ARI, Flesch-Kincaid, Coleman-Liau, 
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Fog, Lix and SMOG.  As a baseline, we average these measures for comparison 

purposes when evaluating the text generated at different reading levels by the system. 

7.6.1.1.5 Latest efforts on readability measurement 

The previous measures are the ones most widely used. They have been 

available for a couple of decades and are relatively easy to use.  However, findings by 

the Common Core State Standards Initiative (Common Core State Standards Initiative, 

2010) have shown that their capability is limited when analyzing text complexity. 

Motivated by this, the Common Core Standards launched a challenge for the creation 

of new measurement tools that would additionally consider textual aspects such as 

grammatical, discourse-related, and genre related when evaluating and assessing the 

readability of a passage.  

Examples of measurement tools that resulted from this effort are TextEvaluator 

(previously named SourceRater) (Napolitano, Sheehan, & Mundkowsky, 2015; 

Sheehan, Kostin, Futagi, & Flor, 2010) and Coh-Metrix (Graesser et al., 2004).  

TextEvaluator, for example, uses eight component scores, each of which is a linear 

combination of four to ten fine-grained features.  It follows the Common Core 

Standards methodology of grouping texts into two types: Informational and Literary.  

The component scores consist of the following groups: sentence complexity, 

vocabulary difficulty, connections across ideas, and organization.  

In order to use the measurements as a guide for generating text, one needs to 

know exactly how each feature affects readability.  Obtaining such a level of precision 

becomes a challenge through the analysis of the results provided by these latest tools.  

Since estimating their individual feature measurements is not straightforward, they are 

kept from being readily available for use as the input for an external Natural Language 
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Generation system.  Additionally, some of the features used by such tools are not 

relevant for generating graph summaries (one example is the presence of discourse 

strategies such as persuasion and negation). 

Motivated by these constraints on using available readability measurement 

tools, a learning approach was developed specifically for this work.  The goal was to 

identify the set of features of language and their weights that directly affect text 

complexity and, at the same time, can be used as the input for a NLG system in a 

straightforward manner.  This learning approach is described next and it has as its sole 

purpose to provide the NLG system with a set of weighted parameters that will be 

applied during the aggregation phase. 

7.6.1.2 Learning the importance of a specific subset of features which affects 

text complexity 

As mentioned previously, a learning approach was taken in order to learn 

which set of features and their weights leads text to have varied complexity levels.  

These features need to be chosen based on both their effect on text complexity and 

their usability.  The choice of features for constructing the model was made based on 

the work presented by (Vajjala & Meurers, 2012) which uses Second Language 

Acquisition (SLA) research based features combined with traditional readability 

features such as word length and sentence length in order to classify text into different 

grades.  Their work results in classifiers that outperform previous approaches on 

readability classification, reaching higher classification accuracy.  However, since this 

work still needs to map features back to the NLG aggregation phase, the set of features 

used by SIGHT represents a subset of the features presented by their work. 
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7.6.1.2.1 Feature engineering and learning algorithm choice 

For the learning algorithm a decision tree is used.  This algorithm was selected 

after an analysis of accuracy and ease of assessment of the features and their values.  

The goal of the learning algorithm was to provide the system with concrete measures 

of the chosen features that can be used during the aggregation phase.  The set of 

features, motivated by the work presented in (Vajjala & Meurers, 2012), used to train 

the model were:  

 Percentage of sentences starting with a pronoun 

(percBegSentPronoun); 

 Percentage of passive sentences (percPassiveSent); 

 Percentage of conjunctions (percConjunction); 

 Percentage of pronouns (percProunoun); 

 Percentage of sentences starting with subordinating conjunction 

(percBegSentSubConjunction); 

 Percentage of prepositions (percPreposition); 

 Percentage of sentences starting with conjunction 

(percBegSentConjunction); 

 Percentage of nominalizations (percNominalization); 

 Percentage of sentences beginning with prepositions 

(percBegSentPreposition); 

 Percentage of adjectives (percAdjective); 

 Percentage of adverbs (percAdverb); 

 Percentage of relative clauses (percRelativeClauses); 

 Average noun phrase length (avgNounPhraseLength); 

 Average verb phrase length (avgVerbPhraseLength); 
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 Average sentence length (avgSentLengthWord); 

7.6.1.2.2 Corpus of grade level annotated text 

Data was obtained from text exemplars classified at different grade bands 

available in Appendix B of the Common Core State Standards ("Common Core State 

Standards Initiative," 2014) and various articles written and annotated at different 

reading levels.  Magazine articles collected from the Austin Public Library electronic 

catalog (Library, 2015) were annotated using the Lexile measure ("Lexile Framework 

for Reading," 2015).  Since the Lexile measure uses a different measurement scale 

(the output is not in terms of grade levels) for selecting articles for different grade 

levels, a conversion table (shown in Table 7-2) was used.  Classes for the learning 

algorithm were defined as groups of grade levels.  The grades were grouped as 4th and 

5th grades, 6th through 8th, 9th and 10th, and 11th and up.  One hundred articles, varying 

in size, were collected for each one of the grade level groups.  These articles were in 

HTML format and they were preprocessed to remove tags and special characters.  

After preprocessing the files, they were split into smaller passages, of at least 150 

words, which is equivalent to the average size of the summaries the system generates.  

Because the passages needed to have complete sentences in order to obtain more 

accurate measurement of the features during learning, the splitting step counted words 

sentence by sentence and, after reaching 150 words, it stopped adding sentences to the 

current passage.  Splitting the articles resulted in 1874 passages, which were used as 

instances in the learning algorithm. 

Since some of the articles would have a Lexile measure that belonged to 

multiple of our grade level groups, only articles that were annotated with Lexile 

measures belonging to unique grade level groups were used.  For example, when 
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looking at Table 7-2, for the grade level group 4th and 5th grades, the best Lexile 

measurement representing these in our scenario would be 700 since measures in the 

upper 600’s can also be classified as 3rd grade and in the lower 800’s can also be 

classified as 6th grade.  Only articles annotated with 700 Lexile measurement were 

chosen for that grade group.  Similarly, for 11th grade and up, only articles annotated 

with a Lexile measurement of above 1150 were chosen.  After splitting the articles 

into similar passage sizes, the values of the features are calculated using the Style & 

Diction tool (Fsf, 2005) for assessing some of the syntactic features and NLTK (Loper 

& Bird, 2002) for grammatical features.  After all the features were assessed, a tab file 

(appropriate input file type for use with the Orange toolbox (Demsar et al., 2013)) is 

generated and ready for training.  The next section details the learning process, the 

choice of the right learning algorithm, and the accuracy for the classification of 

passages. 

7.6.1.2.3 Learning algorithms and classification task 

Before choosing decision trees as the learning algorithm to be used for this 

classification task, other algorithms were analyzed using the data described in the 

previous section and their results were compared.  Random forests, Bayesian 

networks, Classification (or decision) trees and Neural Networks were applied to the 

classification task.  The Orange toolbox was used for this comparison as it makes 

available a number of different classification, regression and association algorithms 

for machine learning and data mining.  Using leave-one-out cross validation, the 

system achieved a classification accuracy of 85.38% and F1 measure of 87.97% using 

decision trees.  The Neural Network outperformed the classification accuracy of the 

decision tree by 1.39%, but had a smaller F1 measure.  The neural network used 20 
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hidden layers, which would probably complicate reading the feature weights due to the 

combination functions that happen within the hidden layers, for example.  Since the 

goal is to be able to map the weights of the features to a heuristic in a graph search 

algorithm, the best option turned out to be the decision tree since it provides rules 

which allow the values of the features to be captured. 

Decision trees provide a set of logic rules, which establish a relationship 

between the features that contributed to the classification and their corresponding 

values.  This is the input used to guide syntactic and grammatical decisions during the 

micro planning phase.  Learned values of these features allow the micro planning 

phase to use this information to decide on the structure of the generated text. 
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Table 7-2: Conversion table for Lexile measurement scale. 

Grade Level Accelerated Reader DRA Level* Lexile 

K 1-1.2 A-2 
Beginning 

Reader 

1 

1.2-1.4 
2 

100 
6 

1.5-1.7 
10 

200 
14 

1.8-2.1 16 300 

2 2.2-2.6 
18 

400 
20 

2.7-3.2 
24 

500 

3 

28 

3.3-3.9 600 

30 

34 

36 

38 

4 

4.1-4.7 

40 

700 42 

5 

44 

5.0-5.8 800 

6 
6.0-7.0 900 

7-8 7-8.9  1000 

9-12 9-12.9  1150 
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Figure 7-3: Comparison across different learning algorithms. 

The paths from the root to the leaves (or classes, in this case) provide logical 

rules that represent the values of the different features which led to that classification.  

The logic rules can be read as path1 OR path2 OR … pathN for a given grade level 

group (grade level groups are the target classes of the leaf nodes).  Within a leaf node, 

however, there is a combination of constraints that are satisfied in the path from the 

root to the leaf which are the values of features in that path.  Some classifications have 

lower confidence than others.  Only nodes with a classification confidence above 70 

percent were used to construct the set of logic rules that is used by the system.  A set 

of rules for a 9th – 10th grade level band is shown here as an example of what the 

decision tree produces: 

(avgParagLengthSent <= 10 AND (avgSentLengthWord > 13 AND 

avgSentLengthWord <= 15) AND percPassiveSent <= 0.4 AND  

numberRelativeClauses <= 0.6 AND percBegSentPronoun > 0.2 AND  

percBegSentPronoun <= 0.5)  

OR  
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(avgParagLengthSent <= 9 AND (avgSentLengthWord > 14 AND 

avgSentLengthWord <= 16) AND percPassiveSent <= 0.1 AND 

numberRelativeClauses <= 0.8) 

We use these rules as a heuristic to help guide the search to a realization that 

satisfies the target reading level.  When using these rules within our heuristic, the 

function will be estimating the cost based on how well the to-be-realized propositions 

fall within those ranges in order to be inside the grade level constraints. 

7.6.1.3 Mapping the rules to a heuristic function 

In calculating the heuristic, two groups of features have their costs estimated 

differently.  The first group contains features that do not fluctuate their values as new 

propositions are realized.  One example is the number of relative clauses in a 

paragraph.  As the number of sentences in the paragraph increases, the value of this 

feature can never go down, it only goes up.  The second group contains features 

whose values can fluctuate (either up or down) as new propositions are realized.  The 

average sentence length in words, for example, can go up or down as new propositions 

are realized since they can become new sentences (making it go down) or be 

aggregated with existing sentences (making it go up).  For this reason, the heuristic 

calculates the estimated cost that is added to h(n) differently for these two groups.  

The next sections explain how they are calculated. 

Another aspect, which is common to both groups and is part of calculating the 

heuristic, is called “depth measure” and it represents the proximity of the current node 

to a goal node.  Since all of the goal nodes are at the same depth in the tree (if there 

are 8 propositions to be realized, all the goal nodes will be at depth 8), this measure 

favors the nodes which are deeper in the search when compared to shallower ones.  
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This cost is obtained by applying formula (7) and it gets smaller as the node gets 

closer to a goal node.  A depth measure of 0 is added when the number of unrealized 

propositions is equal to 1.  When the number of unrealized propositions is equal to 0, a 

goal node was reached, so h(n) is no longer needed. 

 

𝑑𝑒𝑝𝑡ℎ𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  1 −
1

𝑢𝑛𝑟𝑒𝑎𝑙𝑖𝑧𝑒𝑑𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠
 (7) 

 

7.6.1.3.1 Calculating the cost added by feature values that do not fluctuate 

Features that are part of this category are: begSentPronoun, numberArticles, 

begSentArticle, numberRelativeClauses, numberAdjectives, and numberAdverbs.  To 

illustrate, consider the following example used to explain the heuristic calculation: 

suppose that the decision tree learned that, for paragraphs that contain around 150 

words, the range of values for the numberAdjectives feature is 2 <= numberAdjectives 

<= 5 for a 4th grade level text.  The sequence of rules to calculate the cost for this type 

of feature is: 

1. If the measured value of the feature in what has already been 

realized is above the upper limit of its range (if it is equal to 6 for 

the example above), add an infinite cost to the estimation.  Since 

these feature’s values can never go down, this node cannot satisfy the 

requirements for the grade level and so should be ordered towards the 

end of the open list. 

2. If the measured feature is within the predefined range (if it is equal 

to 3 for the example above), add to the estimation the probability of 

increasing the value of the feature based on the unrealized 
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propositions.  In this case, the probability of increasing the feature is 

the ratio of possible realizations that increase the feature’s value (e.g. a 

proposition that has a possible realization as an adjective will increase 

the numberAdjectives) over all possible realizations amongst the set of 

unrealized propositions.  With this metric, we want to make sure that 

the nodes that have a higher probability of staying within the range 

have a smaller cost added to them.  In the example above, if there were 

6 unrealized propositions from which 2 could only be realized as 

active voice sentence and passive voice sentence (4 possible 

realizations), 1 could be realized as active voice sentence, passive 

voice sentence and relative clause (3 possible realizations), and 3 could 

be realized as active voice sentence, passive voice sentence, adjective, 

and relative clause (12 possible realizations), the number of possible 

realizations would be 19.  Since only 3 could be realized as an 

adjective, the probability of increasing the value of this feature is 3/19 

(~ 0.16).  This value would be added to the cost, versus 0.31 (6/19) if 

there were 6 possible realizations as adjectives in the set of all possible 

realizations. 

3. If the measured value is less than the lower limit (if it is equal to 1 

for the example above), multiply the probability of increasing the 

value of the feature given the unrealized propositions (as explained 

above) by the inverse of the value that the feature can increase by 

(feature upper limit – feature value = 2 for the example above), then 

multiply the result by the number of possible realizations that use 
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the feature.  In this case, the more chances to realize a proposition as 

an adjective the better since the value is currently lower than desired.  

For the example provided above, 1.44 would be added to the cost for 

the first case (3 / 19 * 1 / (5-3) * 3) and 5.58 would be added to the 

cost for the second case (6 / 19 * 1 / (5-3) * 6). The first case is 

preferred since the second case could go over the upper limit if all 6 

possible realizations as adjectives were indeed realized as adjectives.  

The formula for adding the estimated cost is: 

estimated_cost += probabilityOfIncreasingFeature* (1 / featureUpperLimit - 

featureMeasure) * numberUnrealisedPropsAsFeature; 

7.6.1.3.2 Calculating the estimated cost added by feature values that fluctuate 

Other features, such as averages and percentages, need a different logic in 

order to estimate the cost.  This group encompasses the remaining features.  Consider 

avgSentLengthWord as an example.  As new propositions are realized, the average 

number of words per sentence can increase or decrease.  Therefore, a different logic is 

followed in order to take this aspect into account.  For this type of feature, some 

assumptions are made regarding the maximum number a proposition can contribute to 

increasing the value of the feature.  For the feature avgSentLengthWord, for example, 

we assume that the maximum number of words that can be added by the realization of 

any proposition is 15 (this number was chosen by looking at the longest description in 

the set of propositions for describing the intended message of line graphs).  The rules 

to calculate the estimated cost for this type of feature are: 

1. If the measured value of the feature is within the predefined range: 
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o Calculate the expected increase in feature value.  For the 

feature avgSentLengthWord, for example, this is represented by 

the number of words that can be added without new sentences 

being added.  This is calculated by summing the probabilities of 

increasing the number of words multiplied by the number of 

unrealized propositions, divided by 1 minus the probability of 

increasing the number of sentences (which is the probability of 

NOT realizing propositions as single new sentences). 

o Add the expected increase in feature value to the current 

feature value acquired from the already realized propositions 

and divide it by the current number of sentences to find the 

projected feature value. 

o If the projected feature value is within the range, add the 

projected value to the estimated cost.  If the result goes beyond 

the limits of the feature, use the difference to calculate the 

penalty to be added to the estimation.  The penalty is 

represented by the number it went off by times the inverse of 

the number of realizations (since the greater the number of 

unrealized propositions the better in this case, since it gives us 

more room to get to a good final average within the range). 

2. If the measured value is above the upper limit, calculate the 

probabilities of increasing the feature by the possible exceeding 

number.  For the avgSentLengthWord, for example, accumulate the 

probabilities of increasing the feature by the numbers of words that are 
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greater than the limit (if the limit is 5, it will sum up the probabilities of 

adding 6, 7, 8, 9, 10…15 words), multiply it by the probability of 

increasing the number of sentences (by looking at how many 

unrealized propositions can be realized as sentences in active or passive 

voice), then multiply the result by the number of unrealized 

propositions.  This is the penalty that should be added to this node if it 

is already out of limits. 

3. If the measured value is less than the lower limit, calculate the 

probabilities of increasing the feature by numbers that are below 

the lower limit.  Since the average can also change the measured 

feature to fall lower than the lower limit, we need to address this case.  

For that, it accumulates the probabilities of numbers of words to be 

added that are less than the limit (if the limit is 4, it will add the 

probabilities of adding 0, 1, 2, and 3 words).  After summing the 

probabilities, multiply it by the probability of also increasing the 

number of sentences.  Finally, multiply the result by the number of 

unrealized propositions.  This is the penalty that should be added to 

the cost estimation if the measured value of the feature is less than the 

lower limit. 

The final value for h(n) is the sum of all estimated costs when going through 

the set of unrealized propositions.  The calculated value for h(n) is then stored in the 

node and the priority queue (implemented with a min heap) used to order nodes from 

the open list uses this value to insert the new node. 
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7.7 Lexical Choice for Generating Summaries at Different Grade Levels 

Work has been proposed to automate the replacement of lexical items for text 

simplification systems.  Rello (Rello et al., 2013) proposes an approach that lists a set 

of simpler words for the user to choose from in order to replace words considered hard 

or difficult.  It uses a Spanish thesaurus in order to come up with a list of synonyms 

and word frequency for determination of simpler synonyms (assuming simpler words 

are seen more frequently).  (Saggion et al., 2015) presents a text simplification system 

which implements a rule-based approach that aims to address textual simplification 

operations that could not be addressed by synonym substitution. 

Lexical choice is the other important piece of the puzzle when it comes to text 

complexity and grade level.  The system needs choices for lexical items and needs to 

be able to select them such that the generated text is at the desired grade level. 

The first thing that comes to mind when one needs to find variations of 

concepts from which to pick from is to perform synonym expansion.  So the first 

attempt was to use a thesaurus in order to collect synonyms of the terms used to 

describe the concepts in the system.  By searching Thesaurus.com (Dictionary.com, 

2015) one can notice that synonyms are grouped based on synsets – similar to the way 

lexical items are grouped in the WordNet database (Fellbaum, 1998).  For the concept 

trend, for example, the thesaurus provides two different synsets – one for the concept 

of flow, current and another for the concept of style, fashion that is in favor.  Thus, 

one option could be to choose one synset from which the synonyms could be used.  

However, two problems were found with this approach: 1) there were no 

comprehensive synsets which fairly covered the set of appropriate lexical items for all 

of the concepts that could be used in the context of describing line graphs.  The synsets 

would either have a large number of inappropriate synonyms or the appropriate 
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synonyms would be scattered across different synsets; 2) by choosing a synset 

manually, the lexical choice module would be implementing a highly supervised 

approach, which was not what was desired.  The solution was to devise a set of 

techniques that would allow the system to, for each concept, create a relevant synset 

for the domain in question by using all of the available synonyms (given a specific 

part of speech) and further apply a word sense disambiguation step based on a 

pre-defined context for each concept being described. 

After defining its own synset for each concept, the system needs to be able to 

determine which word(s) should be used to describe a concept for each of the different 

target reading levels.  These phases are described in the next sections of this chapter. 

7.7.1 Concept expansion phase 

The first step in constructing a pool of synonyms for choosing from in order to 

realize concepts that occur in a proposition is to find a base lexical item to represent 

the concept and that can be expanded by collecting synonym.  The first challenge was 

to decide which term would be the base lexical item.  For the volatility concept, for 

example, one can start by expanding the term “jagged” or the term “volatile”.  Either 

of two terms would describe the idea satisfactorily for line graphs, but how should we 

decide which lexical items are used for each concept?  Since the thesaurus used in this 

work presents different synonyms for these terms, we wanted to rely as much as 

possible on the way people would describe this concept.  For this reason, the base 

lexical items for each concept were gathered from the experiment performed by 

(Greenbacker et al., 2011) in which participants were asked to describe the important 

aspects they noticed were present in the line graphs.  From these passages, the most 
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common words used to describe concepts such as volatility and steepness were used as 

the starting point for lexical building. 

For expanding these concepts, Thesaurus.com (Dictionary.com, 2015) was 

used.  Thesaurus.com was selected because it has a better coverage with respect to 

synonyms of nouns, verbs, adjectives and adverbs than WordNet (Fellbaum, 1998) 

and VerbNet (Kipper, Dang, & Palmer, 2000).  Thesaurus.com provides synonyms for 

concepts in a varied number of senses and parts of speech by grouping synonyms 

within part_of_speech + synsets.  As mentioned previously, choosing the most 

appropriate concept synsets for the domain of line graphs did not appear to be the best 

approach, as the synsets were not always comprehensive and precise.  In other words, 

all synsets individually contained some synonyms which were not appropriate and 

appropriate synonyms were found across multiple synsets.  Besides, choosing a single 

best synset would not lead to a technique that could perform the synonym expansion 

without human supervision.  For this reason, the decision was therefore to use all 

synsets with a given part of speech and to further filter the resulting set.  The algorithm 

uses all of the synonyms, in all the different sysets (for the same part of speech being 

applied to the concept by the system) present in the Thesaurus.com website as the first 

step for concept expansion.   

This provided the system with an extensive (and noisy) list of synonyms.  The 

set of synonyms was too broad; it included synonyms that would not apply at all to the 

domain of line graph description.  One example is the expansion of the concept show.  

Figure 7-4 through Figure 7-7 extracted from the Thesaurus.com website show the 

synsets for the concept show used as a verb. 
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Figure 7-4: Thesaurus' synonyms for concept show used as a verb with a sense of 

"actively exhibit something". 

 

Figure 7-5: Thesaurus' synonyms for concept show used as a verb with a sense of 

"passively exhibit something". 
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Figure 7-6: Thesaurus' synonyms for concept show used as a verb with a sense of 

"grant". 

 

Figure 7-7: Thesaurus' synonyms for concept show used as a verb with a sense of 

"accompany". 

For example, in the sentence “The image shows a line graph”, many synonyms 

would not sound good (“The image pilots a line graph” or “The image bestows a line 

graph”).  On the other hand, either of “The image reveals a line graph” or “The image 

illustrates a line graph” would be appropriate lexicalizations of the concept show in 

this context. 

The system aims to find the subset of synonyms of a concept that would be 

appropriate in the context of line graphs; therefore, it employs a set of approaches that, 

combined, allows the creation of a “domain aware synset” which is concerned with 

the context of the domain in question (line graphs, in this case). 
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7.7.2 Disambiguating the set of synonyms for the line graph domain 

7.7.2.1 Language modeling: Using 5-grams from the Google Books corpus  

This work applies language modeling to filter the synonyms of a word to that 

subset that is applicable in the context of line graphs.  The intuition is that we want to 

keep only those synonyms that the language model indicates appear in a context 

containing key words indicative of the line graph context. 

The language model used is the 5-gram corpus from Google Books (Michel et 

al., 2011).  The system selects all the 5-gram instances that were found to contain a 

synonym of the concept being expanded co-occurring with one of the words from the 

“concept context”.  The concept context is the set of head nouns that can appear in a 

sentence with the concept being expanded; in the example above, the concept context 

for “show” would be the terms “image”, “graph”, and “trend”, since the possible 

contexts are the sentences: “The image shows a graph” and “The graph shows a 

trend”.  This set of lexical contexts is the same one used to seed the lexical expansion 

of concepts described above and originated from the most common terms used to 

express concepts in the experiment presented in (Greenbacker et al., 2011). 

However, not considering the part-of-speech of the terms in the n-gram still 

allowed many terms that would not be applicable to replace the concept being 

expanded.  The following example illustrates this phenomenon.  For the term 

“volatile”, the synonym “light” appears in the n-gram with the context word “trend”.  

However, volatile is used in the context of the system as an adjective, a modifier of 

graph and trend.  The way to fix this was to consider the part-of-speech of the context 

terms and the synonyms from the expansion when collecting synonyms from the 

language model.  The Google Books corpus (Michel et al., 2011) has both POS tagged 
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and untagged 5-gram counts from digitized books.  We used the POS tagged corpus 

for this.  Without considering the part-of-speech of the grams, occurrences such as the 

ones presented below could not be avoided: 
 

 The_DET light_NOUN of_PREP the_DET trend_NOUN |count: 196 

 light_NOUN of_PREP the_DET recent_ADJ trend_NOUN |count: 79  

 throw_VERB light_NOUN on_PREP the_DET trend_NOUN |count: 40 

In this example, the word light, which appears in the set of synonyms for the 

adjective volatile as shown in Figure 7-8, co-occurs in the corpus with the noun trend 

only as a noun as well.  When considering the tagged adjective light_ADJ, the co-

occurrence disappeared. 

 

 

Figure 7-8: Thesaurus' synonyms for concept volatile used as a verb with a sense of 

"changeable". 

The final set of synonyms that were disambiguated using this approach was 

still large and there were terms that were still inappropriate for the domain – although 

the subset acquired was considerably better than the initial set (few good synonyms 

were filtered out while a good number of inappropriate ones were).  It was evident that 
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further filtering was required.  As an alternative, we then decided to try a vector space 

model approach trained on Wikipedia (Wikipedia, 2004) data, which is available as a 

default corpus for training the word2vec tool available at (Mikolov, Chen, Corrado, & 

Dean, 2013).  This approach is explained in the next section. 

7.7.2.2 Using word vector space models to further filter appropriate synonyms 

Effort has been made on using concept databases such as WordNet (Fellbaum, 

1998) in order to disambiguate concepts.  The work presented in (Klapaftis & 

Manandhar, 2005) combines the use of WordNet with search results from Google in 

order to allow the disambiguation of the word senses to be unsupervised.  Word 

representation in vector spaces has shown to be a promising tool for acquiring terms’ 

semantic knowledge.  According to (Mikolov, Chen, et al., 2013; Mikolov, Sutskever, 

Chen, Corrado, & Dean, 2013), experiments have shown that the word vectors capture 

many linguistic regularities. 

As mentioned in the previous section, the set of synonyms filtered by using 5-

gram language modeling yielded reasonable results but there was still room for 

improvement.  We needed a secondary step that could help us further identify and 

collect synonyms that were applicable to the domain of line graphs.  We then decided 

to use word vector space models.  This technique builds vectors which represent the 

context of a term.  The vector for the term “house”, for example, has a higher count 

for the terms “big”, “white”, “spacious”, than for the terms “hungry”, “bag”, and 

“sky”.  The vector is built by assigning co-occurrence counts to all the words in the 

language in question, and two terms can be compared on how similar they are in their 

contexts by measuring the similarity of their vectors.  The idea is that two synonyms 



 

 

132 

ought to occur in the same linguistic; therefore, their word2vec scores should be very 

close. 

When using the tool to assess its usefulness to the problem posed in this work, 

it was identified that the top ranked term was often its antonym (rising had falling at 

the top of the list of similar concepts). 

By using the word2vec tool, the system was able to filter the set of synonyms 

collected from the language model step and further customize it to the line graph 

domain context.  The reader might ask why both steps are needed in order to come up 

with the set of appropriate synonyms.  As mentioned before, it was noticed that the 

language model alone was not sufficient since no threshold could be set in the system 

in order to consider a synonym for inclusion in the set.  The reason being that any 

threshold eliminated the chances of good synonyms for the context of line graphs 

(volatility, for example), that were not as commonly used in the literature, from being 

added to the set.  Using word vector representations alone, on the other hand, poses 

another challenge.  The approach used by vector representation does not allow 

differentiation of a synonym from an antonym.  The words “pretty” and “ugly” would 

have a very similar vector representation since they can be used within the same 

context.  By collecting synonyms from a dictionary and starting the set of possible 

replacements from them, the antonyms were already filtered.  By filtering co-

occurrence present in Google N-grams (generated from digitized books), the noise is 

significantly decreased.  One can then perform additional filtering by looking at the 

vector space models of the senses being disambiguated, which has good results for the 

line graph use case.  The set of all final synonyms for each concept in our domain are 

presented in Appendix B.  This combined approach proved to be a way of allowing a 
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system to create a customized synset of a domain by starting from a set of context 

words. 

7.7.3 Grade level based lexicon creation 

So far creating customized synsets for the line graph domains starts from a set 

of context words and expands the concepts by gathering all the synonyms assigned to 

the same part-of-speech as the word usage.  Then it uses words from the small context 

to which the concept being expanded belongs (all of the possible uses) to look for their 

co-occurrence in a corpus by applying language modeling techniques.  Last it employs 

the use of word vector space models in order to further filter the set of synonyms 

which semantically applied to the topic signature in question. 

These steps enabled the system to come up with a set of terms that were 

appropriate lexical items for the line graph concepts needed for our summaries.  Since 

the focus of the system is to generate text at different grade levels, a step to bin those 

terms based on their grade level appropriateness was also necessary.  For any given 

concept, some of the lexical items may be rather simple and others might be 

considered more advanced. 

In order to build grade level appropriate lexicons, the final set of synonyms 

disambiguated for the line graph domain was further divided into grade levels by 

checking for their lemma forms in the data previously used to learn text complexity 

feature measurements.  From this step, each group of grade levels ended up with one 

or more terms that could describe the concepts used to generate descriptive summaries 

of line graphs.  Since lexical choice can affect the final readability measurement of the 

generated text, the system randomly selects terms at the target reading level that will 
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represent concepts before starting the graph search explained earlier in this chapter.  

Evaluation results for the micro planning phase are presented in the next chapter. 

7.8 Examples of Summaries Generated for Different Grade Levels 

The following examples show the summaries generated for the line graph in 

Figure 7-9 for 4th – 5th, 6th – 8th, 9th – 10th and 11th – college level. 

4th – 5th summary: 

There is an image. The image shows a line graph. The share of new homes 

sold before completion in percent is given by the graph. The graph consists of a 

changing trend composed of a rising trend from 1996 to 1999 followed by a stable 

trend through 2006. The graph is variable. The graph has the top value of 78.09 

percent. The graph has the lowest value of 62.65 percent. 

6th – 8th summary: 

There is an image. The image reveals a line diagram which presents the share 

of new homes sold before completion in percent and consists of a changing trend 

composed of a rising trend from 1996 to 1999 followed by a stable trend through 

2006. The diagram is variable. The diagram, which has the lowest value of 62.65 

percent, has the highest value of 78.09 percent. 

9th – 10th summary: 

A volatile line diagram, which presents the share of new homes sold before 

completion in percent and consists of a changing trend composed of a rising trend 

from 1996 to 1999 followed by a stable trend through 2006, is shown by the drawing. 

The diagram, which has the lowest value of 62.65 percent, has the highest value of 

78.09 percent. 

11th – College summary: 
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A line graph, which presents the share of new homes sold before completion in 

percent and consists of a changing trend composed of a rising trend from 1996 to 

1999 followed by a stable trend through 2006 and reveals some variability, is revealed 

by the image. The maximum value of 78.09 percent is reached by the graph which has 

the minimal value of 62.65 percent. 

  

Figure 7-9: Example of graph extracted from online popular media. 

7.9 Summary 

This chapter described the micro planning phase of the SIGHT system.  This 

phase aims to generate summaries of line graphs that vary in their readability levels by 

matching the readability level of the text surrounding the graph.  The main steps for 
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enabling the system to adapt the generated text to different reading levels were 

described.  The first step is concerned with understanding the aspects that make text 

complex.  This was done by using decision tree learning to determine the set of 

features and their values that characterized each reading level.  The second step is 

concerned with being able to measure them and map them to decisions made at the 

aggregation phase.  The third step is to choose the set of relevant (to the context) and 

appropriate (to the reading level) lexical items that will be used to describe line 

graphs; here a multi-step process was used involving definition of base lexical items, 

synonym expansion, word sense disambiguation and target reading level filtering.  The 

chapter details the approaches and methodologies used in this complex, but crucial 

phase of the NLG pipeline. 

The next chapter describes all the evaluation experiments performed for this 

work.  It describes both automatic and human judged assessments of the reading level 

and understandability of texts as perceived by participants at different reading levels.  

It also presents the evaluation performed with users with visual impairments. 
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SYSTEM EVALUATION 

This chapter presents the evaluations performed for assessing how successfully 

the system generates summaries at different reading levels and how useful these 

summaries are in delivering the high-level message to visually impaired users. 

For evaluating the generation of summaries at different reading levels, four 

different aspects were considered.  The first evaluation assessed how well the system 

was able to produce a summary that, according to automatic assessment tools, had a 

readability level that was close to the reading level of the text surrounding the graphic.  

The second evaluation was to allow the system to generate, for each line graph, all the 

possible reading level summaries and make sure they indeed differed from each other 

and matched the desired reading level.  The third aspect evaluated was the perception 

of human readers, Mechanical Turkers who were presumably adults, about how these 

summaries could be ranked regarding complexity (in order to assess if people had the 

same “feeling” that one summary was indeed more complex than another).  

Mechanical Turkers are regular users who sign up to work on Human Intelligent Tasks 

(HITs) in the Amazon Mechanical Turk tool.  And the last aspect was to evaluate 

whether the generated summaries were actually more appropriate for readers at the 

matching reading level than summaries that were far from it.  For this last experiment, 

two sets of participants were recruited: 5th graders and freshmen college students.  The 

task, explained in detail later in this chapter, assessed their preference for text 

Chapter 8 
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generated at a 4th – 5th grade reading level or at 11th – college reading level and the 

reasons they chose one over the other. 

The last section of this chapter describes the evaluation performed with 

visually impaired users that assessed the utility of the system in providing access to 

line graphs.  Here we measure the ability of these participants to answer important 

questions about the graphic based on the generated summaries.  This evaluation is 

presented in detail and it was one of the most challenging, given the difficulty of 

recruiting subjects for the experiment.  Evaluation results and conclusions follow each 

of the experiments. 

All the experiments performed had their protocols approved by the University 

of Delaware Human Subjects Review Board. 

8.1 Evaluation of Summaries Generated at Different Grade Levels 

The challenge with evaluating high-level summaries of line graphs is mainly 

the lack of a baseline or a comprehensive corpus of such summaries.  Our evaluation 

task is even more challenging since we decided to generate these summaries at 

different reading levels in order to match the reading level of the surrounding text, as 

described in Chapter 7.  So how do we even start evaluating these summaries? 

The main idea behind dynamically choosing the target reading level is to make 

the summaries understandable to a reader of the text in which the summary appears 

regardless of the reading level of that text.  With that in mind, some aspects need to be 

considered when evaluating such summaries: 1) Is the system able to, given a target 

reading level, generate a summary that is as close as possible to that target? 2) Can the 

system generate different summaries appropriate for different grade levels for each 

graph?  3) Do human readers indeed perceive texts being generated at different 
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reading levels by the system to be of different complexities?  4) Once the system is 

able to successfully generate summaries at different reading levels, it is necessary to 

evaluate whether what the system considers to be ideal for readers at a given reading 

level indeed is.  So, evaluating how well summaries at the “right” reading level can 

help understanding and be preferred by readers at different reading levels is 

paramount. 

8.1.1 Being able to generate summaries to match a given target reading level 

The first step at assessing how well the system is doing when trying to 

generate summaries at the same reading level as the surrounding text of the graphic is 

to measure the reading level of that text.  For that, the system uses the Style & Diction 

tool (Fsf, 2005) presented and discussed in Chapter 7.  This tool provides readability 

measurements from a set of different metrics available in the field.  Since these 

metrics do not always agree exactly on the readability level of a passage, we decided 

to assume a good metric to be the average of the ones which provide the grade level as 

their output.  The metrics used to calculate this average were Flesch-Kincaid (Collins-

Thompson & Callan, 2005), ARI (Kincaid et al., 1975), Coleman-Liau (Coleman & 

Liau, 1975), Fog index (Kincaid et al., 1975) and SMOG (Laughlin, 1969). 

To determine the target reading level, the system takes as input the article in 

which the graph appeared.  After running Style & Diction, the results are parsed in 

order to extract the measurements from the five metrics noted above.  The average is 

calculated to identify the target reading level of the desired summary.  In our first 

experiment, we generated the graphic summary at the target reading level and then 

measured how closely the generated summary matched the reading level of the article 

when assessed using the same tool. 
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For evaluating how well the system does on such a task, we used a set of 11 

line graphs, which will be used throughout the evaluations of readability-aware 

generated text.  For each one of the graphs, we ran the system five times, generating 

five slightly different summaries at the reading level identified for the article in which 

the graph appeared.  These five summaries differ since, on each iteration of the 

system, the lexical choice randomly selects lexical items from the pool of appropriate 

options.  Therefore, since the lexical items also affect the final reading level of the 

text, these five different runs had slightly different reading level measurements.  Table 

8-1 shows the results of this experiment.  The grades used are represented by the 

ranges of grades used during system development.  These ranges are 4th – 5th, 6th – 8th, 

9th – 10th, and 11th – College. 

The results presented in Table 8-1 show that there was only one graph where 

the system generated summaries that were far from the target reading level.  In this 

case, the generated summary had a lower reading level than the target.  This graph, 

shown in Figure 8-1, had only one trend and few outstanding visual features (there 

was no extreme volatility or steepness of the trend, for example).  Given that only a 

few propositions were selected for this graph, the graph search was unable to perform 

more grammatical modifications than it did, yielding a lower readability level than the 

target one. 
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Table 8-1: Results from matching the generated summaries reading level with the 

reading level of the surrounding text. 

Graph Target reading level 

bands 

Summary reading level achieved 

(average of five runs) 

L3 9th -10th grade 8.8 

L6 6th - 8th grade 6.5 

L17 6th - 8th grade 8.7 

L18 6th - 8th grade 7.1 

L21 11th - College grade 10.7 

L23 6th -8th grade 8.2 

L26 11th - College grade 10.9 

L28 9th - 10th grade 7.2 

L42 9th - 10th grade 9.5 

L89 6th - 8th grade 7.3 

L95 6th - 8th grade 7.3 

8.1.2 Being able to generate summaries at distinguished reading levels for all 

graphs 

This evaluation concentrated on the difference between the reading levels of 

the generated summaries when the system is configured to generate summaries at all 

grade levels for each of the 11 line graphs presented above.  The results are presented 

in the next section. 

Since each graph contains a different number of selected propositions and, 

therefore, different summary lengths, a way for evaluating its scalability across 

different graph types was to evaluate how well the system would perform when 
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configured to generate, for each graph, summaries at the four different grade bands 

available. 

 

Figure 8-1: Graph named L28 used in the experiment. 

Using the same rationale as in the previous experiment, we generated each 

summary five different times and averaged their readability measurements.  The same 

set of metrics described in the previous section were considered for this phase. 

Table 8-2: Experiment results for generating summaries for all graphs at all available 

grade level bands. Grade level bands marked with an * are the ones from 

the article in which the graph appeared. 

Graph Grade level bands 
Summary reading level achieved 

(average of five runs) 

L3 4th – 5th grade 6.1 
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Graph Grade level bands 
Summary reading level achieved 

(average of five runs) 

6th – 8th grade 7.8 

9th – 10th grade* 9.4 

11th – College grade 10.19 

L6 

4th – 5th grade 4.7 

6th – 8th grade* 6.1 

9th – 10th grade 11.6 

11th – College grade 12.2 

L17 

4th – 5th grade 6.5 

6th – 8th grade* 8.6 

9th – 10th grade 12.6 

11th – College grade 12.6 

L18 

4th – 5th grade 5.4 

6th – 8th grade* 7.3 

9th – 10th grade 9.9 

11th – College grade 10.5 

L21 

4th – 5th grade 5.2 

6th – 8th grade 7.1 

9th – 10th grade 10.8 

11th – College grade* 10.8 

L23 

4th – 5th grade 6.5 

6th – 8th grade* 7.8 

9th – 10th grade 10.9 
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Graph Grade level bands 
Summary reading level achieved 

(average of five runs) 

11th – College grade 11.6 

L26 

4th – 5th grade 5.2 

6th – 8th grade 6.8 

9th – 10th grade 10.2 

11th – College grade* 10.2 

L28 

4th – 5th grade 5.6 

6th – 8th grade 7.7 

9th – 10th grade* 11.2 

11th – College grade 11.6 

L42 

4th – 5th grade 3.9 

6th – 8th grade 6.1 

9th – 10th grade* 8.9 

11th – College grade 9.8 

L89 

4th – 5th grade 4.4 

6th – 8th grade* 7.3 

9th – 10th grade 11.7 

11th – College grade 11.7 

L95 

4th – 5th grade 5.0 

6th – 8th grade* 7.4 

9th – 10th grade 10.8 

11th – College grade 10.8 
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The overall grade level average for 4th – 5th grade is 5.2; for 6th – 8th it is 7.29; 

for 9th – 10th it is 10.73; and for 11th – College it is 11.08. 

Even though the reading levels are constantly increasing, for some line graph 

summaries, the reading levels remained the same for the last two grade bands (9th – 

10th and 11th – College).  This result (bolded in Table 8-2) can be explained by the fact 

that such graphs had few propositions selected by the content determination phase, so 

there were fewer options for aggregation and grammatical combinations.  By 

comparing the summaries for graphs L26 and L89 below, we can notice that both had 

about the same number of propositions but graph L26 could not aggregate the last 

sentence (The minimum value comes about on 10/2005.) due to the constraint on 

embedded relative clauses.  Having that isolated sentence probably lowered the 

measures making L26 have a slightly lower reading level than 11 for the 11th – college 

grade level band.  The heuristic probably decided to aggregate all the possible 

propositions for graph L89 since not aggregating them could have resulted in a grade 

level far lower than desired. 

(Summary for graph L89) 

A line graph, which presents the share of new homes sold before completion in 

percent consisting of a changing trend composed of a rising trend from 1996 to 1999 

followed by a stable trend through 2006, is shown by the image. The top value of 

78.09 percent is reached by the graph which has the lowest value of 62.65 percent. 

(Summary for graph L26) 

A line graph, which presents the number of consumer confidence and consists 

of a trend that changes and that starts to reverse at the end composed of a falling 

trend from 5/2005 to 10/2005 followed by a rising trend through 4/2006, is revealed 
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by the drawing.  The highest value of 111.07, which comes about on 4/2006, is 

reached by the graph which has the minimum value of 87.09.  The minimum value 

comes about on 10/2005. 

These results show that the system successfully produces summaries that are 

close to the target reading levels that were given as input to it.  Some exceptions exist 

where the reading level of the produced text is out of the expected range, however the 

majority of the time the summaries are within the range.  Thus, we conclude that the 

methodology is fairly accurate. 

8.1.3 Being able to match human readers’ perception of text complexity 

Even though we confirmed that the system was doing a good job at generating 

text at different reading levels according to automated tools, we still did not know if 

these different reading levels were also perceived by humans to be different from each 

other and, even more, if their ordering of simplest to most complex matched human 

judgement. 

To evaluate whether the different readability levels generated by the system 

were also perceived the same way by humans, an evaluation with human subjects 

through crowd-sourcing was performed.  The main idea was to be able to measure 

how well human readers would “rank” or “order” line graph summaries based on their 

readability levels and compare that to the ordering the system was aiming for when 

generating them. 

With that in mind, an experiment using Amazon Mechanical Turk was 

performed in order to measure how well the system was doing in generating text 

whose reading level was indeed ranked from least to most complex by humans.  

Appendix C shows the Human Intelligent Task provided to the turkers.  The following 
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subsections detail the task turkers (crowd-sourcing workers who log in to execute a 

task) were asked to undertake, the analysis of the data done in collaboration with a 

team of statisticians at IBM Watson Analytics research team (Chu, Y., Li, L., Shyr, J. 

Y., personal communication, September 30, 2015 - October 15, 2015) and the 

evaluation of the results.  

8.1.3.1 Defining the HIT (Human Intelligence Task) 

The main idea behind the task (called a HIT in Mechanical Turk) was to 

identify whether human readers would order the summaries of a line graph from 

simplest to most complex in the same order the system generated them.  For the tasks, 

10 graphs9 were used.  A control task was used to make sure the turkers understood 

the task, and only the answers from turkers who got the control question right were 

considered.  Below is the experiment task the same way it was shown to the turkers.  

This same configuration was used for all graphs, only changing the order in which the 

summaries at different reading levels were presented from one graph to another.  Each 

graph could be answered by nine different turkers and each turker could only answer 

one HIT per graph but an individual turker could perform the HIT associated with one 

or more different graphs. 

 

                                                 

 
9 One of the graphs, L17 was not included in this experiment because it was very 

similar to another graph which was already part of the experiment.  We wanted to get 

representative examples of graphs with varying salient visual features and intended 

messages to be able to evaluate how these would affect the results. 
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8.1.3.2 Analyzing the data collected from the experiment 

After the experiment was run, a total of 90 HITs were undertaken (10 graphs, 9 

turkers per graph).  Each one of these HITs produced an ordering which corresponded 

to the grade level the turkers believed the summaries belonged to.  It is important to 

notice that the instructions on the task clearly stated that they could only choose each 

grade level once.  This requirement was posed in order to somehow force them to 

order the summaries as best they could, instead of just repeating grade levels for the 

summaries that could be similar in readability.  This requirement posed a challenge, 

however, since choosing the wrong grade level for one summary forcibly led them to 

choose a wrong grade level for at least one other summary. 

The challenge that came with the added constraint regarding associating a 

unique grade level to each summary was more accentuated when evaluating the 

results.  Since this would affect the results, just counting how many associations were 

made correctly did not seem to be the right approach.  We needed, instead, to 

determine how close the results were to the system’s ordering and how well the 

summaries were categorized regarding their grade levels.  If we could at least see if a 

summary written at 4th grade level was classified as a 7th grade level instead of College 

level, we would like this to count as a positive result. 

The Pearson correlation coefficient did not seem to be the right approach since 

it would not allow us to take into account the closeness to the desired output noted 

above.  Spearman correlation produced the same results as Pearson when applied to 

our data.  This might be because the set of values were already the summaries’ ranks, 

so when applying both formulas the same results were obtained. 

We decided then to consult with a SME (subject matter expert) and ask what 

they thought a good statistical formula or approach would be for this data in order to 
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measure the aspects we were looking for.  From correspondence with three 

statisticians from the Watson Analytics team at IBM (Chu, Y., Li, L., Shyr, J. Y., 

personal communication, September 30, 2015 - October 15, 2015), this was the initial 

response from the statistics team: 

“The question you have isn't something that immediately fits into a standard protocol 

we usually handle here. After discussing with some co-workers, I wrote a document about how 

we would tackle it in two ways (because we don't know if you care the position or ordering 

more) based on the nine records you had. Please take a look and see if they make sense. Please 

also let me know if you have any questions.” 

After some clarifying email and analysis of the document, the ordering 

approach was indeed the one we were looking for.  The approach is explained in the 

next subsection and the results of applying it to our data follows. 

Additionally, we evaluated how good the ordering provided by the turkers was 

by calculating the nDCG (normalized Cumulative Discounted Gain) scores for each 

graph.  This score is used in Information Retrieval in order to assess how well a search 

engine returned results for a query based on relevance labels associated with the 

search results.  In this scenario, the different reading level texts were associated to 

relevance orderings and the expected DCG was used to normalize the DCG of the 

provided orderings.  In Information Retrieval, however, search results can be judged 

as irrelevant to the search query at all (usually having a relevance label of 0).  That is 

different from the scenario of this work since all the documents had some relevance 

which represented the ordering of the summaries grade levels.  The nDCG results 

were higher than the percentages found by applying the pairwise relationship approach 

explained next.  The results of the nDCG analysis follows the pairwise relationship 
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and a table on which the formula was used to calculate the results is shown for graph 

L3.  nDCG is a good measure to compare results across queries (or graphs, in this 

scenario). 

8.1.3.3 The pairwise relationship approach 

There are six distinct pairwise relationships among the four outcomes in the 

data containing the results from the tasks.  The method is to count the number of times 

the orderings among the pairs are in the desired direction for each of the six pairs and 

combine them over all pairs. 

For an example where the expected ordering is 3  4  1  2, the six pairwise 

relationships are: 𝟑 ≻ 𝟒;  𝟑 ≻ 𝟏;  𝟑 ≻ 𝟐;  𝟒 ≻ 𝟏;  𝟒 ≻ 𝟐;  𝟏 ≻ 𝟐, where ≻  

represents that 3 should come before 4 in the assignment of grade levels. For nine 

possible orderings that could represent a response from nine different participants, the 

following table shows how the pairwise relationship measurement would be obtained. 

Table 8-3: Table with an example of the Pairwise relationship approach proposed by 

the statistics team from Watson Analytics (count indicates the number of 

correct pairwise relationships). 

 Pairwise relationship  

Responses 𝟑 ≻ 𝟒 𝟑 ≻ 𝟏 𝟑 ≻ 𝟐 𝟒 ≻ 𝟏 𝟒 ≻ 𝟐 𝟏 ≻ 𝟐 count 

  (1) 4 3 1 2  x x x x x 5 

(2) 3 4 1 2 x x x x x x 6 

(3) 4 3 1 2  x x x x x 5 

(4) 3 2 1 4 x x x    3 
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 Pairwise relationship  

Responses 𝟑 ≻ 𝟒 𝟑 ≻ 𝟏 𝟑 ≻ 𝟐 𝟒 ≻ 𝟏 𝟒 ≻ 𝟐 𝟏 ≻ 𝟐 count 

(5) 4 3 2 1  x x x x  4 

(6) 3 4 1 2 x x x x x x 6 

(7) 4 1 3 2   x x x x 4 

(8) 4 3 1 2  x x x x x 5 

(9) 2 1 3 4 x      1 

count 4 7 8 7 7 6 39 

Prob (%) 44.4% 77.8% 88.9% 77.8% 77.8% 66.7% 72.2% 

The result of 72.2% can then be used to assess how good the overall results are 

(100% being the perfect ordering).  This overall measure is based on an equal weight 

for each pair since no pair is more important than another.  If it was the case some pair 

was more important than others, then different weights could be given and a weighted 

average could be used. 

Appendix D contains all of the valid responses and the pairwise relationship 

results for each response.  It also shows the calculation for finding the nDCG for graph 

L3, as an example. 

8.1.3.4 Results using the pairwise relationship approach 

Looking at the overall results, available in Appendix D, a total number of 348 

pairwise relationships were valid.  From these, 252 were correct.  This yielded an 

overall average of 72%, which represents how well the system’s text complexity 

rankings compared with human judgement.   
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When examining the graphs individually, we notice a big discrepancy in the 

results.  Half of the graphs had their correct pairwise relationship count above 80%, 3 

out of 10 graphs were between 65 – 70% and 2 out of 10 were between 45 – 55%.  By 

examining the graph images for these sets there was no conclusion about what could 

have caused such a discrepancy on the set of results.  Characteristics that were 

examined were the set of outstanding visual features of the graphics and the number of 

propositions selected by the content determination algorithm. 

A possible explanation for such discrepancy could be the fact that the lexical 

items that belonged to lower grade levels could also be used in higher grade levels.  In 

cases where the summaries for different grades used similar lexical items, it is possible 

that the participants judged a summary to belong to a lower grade level than it was 

classified by the system. 

8.1.3.5 Results using nDCG score 

Table 8-4: Results of applying nDCG to results from turkers. 

Graph Average nDCG 

L3 0.9598 

L6 0.9860 

L18 0.8975 

L21 0.8893 

L23 0.9451 

L26 0.9752 

L28 0.9888 
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L42 0.9365 

L89 0.9851 

L95 0.9798 

The results of applying nDCG are higher than the ones gotten from the 

pairwise relationship approach.  Although the nDCG score is a useful metric for 

evaluating relevance ranking, it might not be the most appropriate metric for 

evaluating the results of the task described in Section 8.1.3.2 since it penalizes top 

ranked results more and we would like to penalize misplaced assigned summary 

grades according to their distance from the target reading level. 

8.1.4 Being able to generate text at reading levels that are indeed appropriate to 

readers at different reading levels 

The last evaluation was to assess if readers at different reading levels indeed 

prefer summaries generated at their reading levels.  Two groups of participants were 

recruited for this experiment: (1) students from a fifth grade elementary school in the 

Austin, Texas area and (2) undergraduate students in an introductory CS course at a 

University. 

Participants were presented with two summaries for each of nine different 

graphs.  For this experiment, participants had access to the graph images.  Since one of 

the graphs proved to be misleading in a previous experiment regarding the description 

of its intended message (the segmentation did not recognize a slight drop in a rising 

trend) we decided to remove that graph. 

One of the summaries was generated for the 4th – 5th grade level and the other 

for the 11th – College grade level.  The participants were asked to select the summary 

they liked the best and to provide comments about what they did not like in either 
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summary.  Instructions for the experiment were as follows (the example below was 

used for college students. For the fifth graders the instructions were written at their 

reading level): 

 
1. This package contains a set of trials, each consisting of a line graph and initial 

summaries that convey the high-level content of the graph. Please take as long as you 

need for each trial. You will have about 45 minutes. Once the 45 minutes are up, 

please complete the trial you are working on and stop. 

2. The trails are designed to evaluate the generation of summaries that are intended to 

possess the same text complexity level of the article’s text. This initiative aims to 

leverage the user’s experience when reading an automatically generated summary of 

a graph. 

3. Each trial is composed of a graphic and two automatically generated summaries. You 

should read the graphic and the summaries present on it. Summaries from a given 

graphic have the exact same content but their text complexity changes based on 

different reading levels. You will be asked to choose the initial summary you preferred 

and provide us with details on why you prefer one over the other. 

We hope you enjoy participating in this experiment and we profoundly appreciate 

your collaboration. 

SIGHT System Team. 

 

Then the participants were provided with a line graph image and two 

summaries, one generated at the 4th – 5th grade level and another generated at the 

11th – college grade level. They were then asked the following questions: 

 

College students: 

 

Please answer the following questions: 

1) Which summary did you prefer?     

2) Why did you prefer this summary? 
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3) Please tell us what you DID NOT like on either summary. You can also 

circle the passages that you think should be written differently and let us 

know why. 

5th graders: 

 

Questions: 
1) Which summary did you like more? ______    

 

2) Why did you like that summary better? (space for answer was provided) 

 

3) Do you think one of the summaries would be easier for a classmate of yours to 

understand? _____ Yes  _____ No 

 

If yes, which summary do you think your classmate would prefer? ______ 

 

4) If there is anything in either summary that you did not like, please circle or 

underline the part(s) on the summaries in the previous page. 

 

5) If you circled anything, please tell us why you did not like those parts on: 

 

SUMMARY 1 (space for answer was provided) 

 

SUMMARY 2 (space for answer was provided) 

8.1.4.1 Experiment performed with 5th graders 

Sixteen 5th graders were recruited to take part in this experiment.  Each trial 

package contained five different graphs, randomly selected; each 5th grader had 30 

minutes to work on as many graphs as they could.  The children received a small 

school supply kit for their participation.  Table 8-5 shows the results of the experiment 

performed with 5th graders.  These results show that the majority of the children 

preferred the summary generated at the 4th – 5th grade level.  Besides stating which 
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summary they preferred, they were asked to also provide the reason for the choice.  

Some of the comments from the children who chose the 4th – 5th grade level summary 

were: 

“it has more information and it stays on topic. It explains about it and it has more 

details.” (participant A) 

“It was informal but still easy to understand. Also the words used caught my attention” 

(participant B) 

“It didn't give big confusing words” (participant C) 

“I prefer active voice” (participant A) 

“it explained better than the other” (participant D) 

“It was easier to understand. The summary also uses descriptive words.” (participant 

E) 

“Because this summary made more sense than the other” (participant F) 

“Because I think a kid like me would understand it better” (participant G) 

Some of the comments from the kids who chose the summary generated at the 

11th – College grade level were: 

“Because it explains more about the graph” (participant H) 

“I did not like how direction was used in the summary” (participant I) 

“it gives more info and uses bigger words” (participant J) 
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“It gives a lot of information about the barrels. It tells you the dates of the barrels.” 

(participant K) 

Note the comment of participant J (who preferred bigger words).  This 

comment reaffirms the decision in SIGHT to generate at the level of the article being 

read.  Despite this student being in 5th grade, s/he seems to prefer reading at a higher 

grade level.  Thus, each reader may prefer material at different reading levels.  

Assuming all the children would prefer to read text at the school grade level they are 

currently at is an erroneous assumption.  Some children might read more frequently 

than others, increasing their ability to absorb more complex text, while other read at 

below their grade level. 

The overall results from the experiment show that 78.08% of the time the 

children preferred the summary that was generated at the 4th – 5th grade level. 

Table 8-5: Results from reading level experiment with 5th graders. 

Line graph 
Preferred summary generated 

at the 4th – 5th grade level 

Preferred summary generated 

at the 11th – College grade level 

L6 9 3 

L17 10 1 

L18 1 0 

L21 6 3 

L26 5 2 

L28 8 2 

L42 7 0 

L89 7 1 
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Line graph 
Preferred summary generated 

at the 4th – 5th grade level 

Preferred summary generated 

at the 11th – College grade level 

L95 4 4 

Total 57 16 

8.1.4.2 Experiment performed with freshmen College students 

The experiment with freshmen College students was performed in the same 

fashion as the one with 5th graders.  They were presented nine different graphs that 

were randomly organized in each individual trial package.  The college students were 

given 45 minutes to work on as many graphs as they could from a package of nine 

graphs.  The students were recruited from three different Summer classes and they 

were all offered a small amount of extra points for their participation.  34 students 

took part in the experiment. 

As shown in Table 8-6, there were a total of 163 responses.  The percentage of 

students who chose the summaries generated at the 11th – College grade level was 

70.55%. 

Table 8-6: Results from reading level experiment with freshmen College students. 

Line graph 

Preferred summary 

generated at the 4th – 5th 

grade level 

Preferred summary 

generated at the 11th – 

College grade level 

L6 5 13 

L17 6 14 

L18 4 15 
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Line graph 

Preferred summary 

generated at the 4th – 5th 

grade level 

Preferred summary 

generated at the 11th – 

College grade level 

L21 6 16 

L26 5 14 

L28 5 15 

L42 5 10 

L89 6 10 

L95 6 8 

Total 48 115 

 

College students were also asked to highlight the fragments in either summary 

that they did not like and provide reasons why they didn’t.  Some of the comments by 

participants who chose the summary generated at the 4th – 5th grade level were: 

“Presents info in an order which is easier to understand” (participant A) 

“More concise and understandable; could combine some sentences” (participant B) 

“Easier to follow along with the shorter sentences” (participant C) 

“More coherent and keeps each sentence to one idea” (participant D) 

Some comments about the reasons why the participants chose the summary 

generated at the 11th – College grade level were: 

“More accurate by using less words” (participant E) 
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“More fluid, continuous conveyance of information” (participant F) 

“More flow, allows for the reader to just read that and understand clearly” (participant 

G) 

“It is more clear to understand than summary 1 because of the way the sentences are 

presented and where the words are placed” (participant H) 

“Better readability, sentence structure and flow; the sentences fit well together and 

therefore made the passage easy to read and gather information from” (participant I) 

“Grammar used is better” (participant J) 

“It gave all the information in a non overwhelming way” (participant K) 

From the results obtained from the trials performed with 5th graders and the 

ones obtained from the trials performed with college students, we can conclude that 

indeed the texts generated at their reading level were better accepted by the majority 

of the participants, in both cases.  The exceptions confirm that not every reader in a 

given grade is at the same reading level, which reinforces the choice of assessing the 

target reading level by looking at the article in which the graph appears, since 

presumably they feel comfortable with the reading level used by the venue.  Table 8-7 

shows that the results are statistically significant given p = 3.67816E-12 calculated 

using the chi-squared test. 

  



 

 

161 

 

Table 8-7: Statistical significance results. 

 5th graders College students Total Prob 

5th grader text 57 48 105 0.44 

College text 16 115 131 0.56 

Total 73 163 236  

8.1.4.3 Lexicalization analysis in the context of the previous two experiments 

Another aspect evaluated was word choice.  Remember that the previous 

experiments, performed with 5th graders and college students, asked the participants to 

underline anything that they did not like in the summaries they read.  This included the 

word choice in the summaries.  The participants indeed pointed out some words that 

they would rather replace. 

In the responses provided by 5th graders, there were seven occurrences of word 

complaints, where they complained about the use of the adjective jagged for 

describing volatility and for the word direction, referring to a trend. 

27 trials had complaints about word choice in the set of responses from the 

freshmen College students.  Some examples were regarding the opposite concepts 

(maximum used with lowest and top used with minimum in the same summary).  This 

occurs because the lexical items are selected in isolation and no coordination of 

lexicalization for opposite concepts is employed.  This is an interesting problem and it 

is mentioned in Chapter 9 in the context of future research. 
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Some complained that the word top and highest should not be used, and that 

maximum should be used instead.  The lexical item early was included in the set of 

synonyms describing the initial concept of a trend or graph.  Some participants 

complained about the use of this word. 

Some comments were: 

“summary should use first and final instead of early and last” (participant A) 

“use initial instead of early” (participant B) 

Overall, for the 5th graders, there were wording complaints 9.5% of the time 

while for freshmen College students the number of complaints went up to 16.5%.  It is 

important to notice that no agreement was found when counting the number of total 

word choice complaints (there were specific complaints that were made by only one of 

the participants throughout the responses). 

8.1.4.4 Conclusions on the experiments 

For the freshmen college students, the fact that almost 30% of the subjects 

chose the summary generated at the 4th – 5th grade level, even though they were all at 

the same grade level, was expected.  Similarly, around 22% of the 5th graders chose 

the summary that was generated at the 11th – College grade level. 

These results show that reading preferences may vary even among people from 

the same age/grade level, as noticed with the group of 5th graders.  Since there were 

subjects who preferred simple text over complex text, we can assume that reading 

skills can vary even within a grade level group.  Our contention is that readers who 

prefer simple text would read venues that use simple text structure and syntax.  Instead 
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of assessing or asking the user their grade level, our approach provides more chances 

of being successful at producing text that will be appropriate to each user.  From the 

experiments performed, we conclude that pursuing the generation of natural language 

text that fits the reading level of the surrounding text is promising. 

8.2 Evaluation of Summaries with Users with Visual Impairments 

For the purpose of evaluating the usefulness of the generated summaries, we 

performed a task-based evaluation with people with visual impairments.  We decided 

to evaluate the system by testing if users with visual impairments who had access to 

the summaries would be able to answer important questions regarding the high-level 

knowledge conveyed by the graphic, and to compare their performance to that of 

sighted users viewing the graphic in answering the same questions. 

The experiment was composed of three phases.  The first phase was concerned 

with the collection of questions to be asked of the participants.  It was important to 

collect an unbiased set of questions (i.e., not influenced by the thoughts of our project 

team concerning what is most important), and that the questions be something that 

could be answered with the graph and not require domain reasoning or information 

beyond the graphic.  To make sure of this, the first phase was subdivided into four 

sub-phases: questions collection, question filtering, minimum agreement assessment 

and rewording a question, if needed.  For the first sub-phase, we asked sighted users to 

provide us with questions that a person would be able to answer by just glancing at the 

graphic because the goal of the system is to initially provide a summary that will 

suffice for users who are reading a multimodal document containing graphics but who 

are not interested in analyzing the graphic in detail.  The second sub-phase was the 

filtering of relevant questions.  For this sub-phase, we asked another participant, who 
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did not take part in the first sub-phase, to filter the questions such that questions that 

required world knowledge or inference, and those where answering required a careful 

examination of the graphic, would not be included.  The participant had knowledge 

about Natural Language Processing but not about the project itself. 

After the questions were filtered, the set of questions to be used was restricted 

so that a question would only be included in the second phase if at least two of the 

participants posited that question.  In this way we hoped to ask the most important 

questions.  From the resulting set of questions, we could find questions that were 

worded differently but meant the same thing.  Since some questions were asked in a 

clearer way than others, we asked the participant who filtered them in the first sub-

phase to choose a clear way to state the question. 

The second phase was the evaluation with visually impaired readers, where we 

provided them with the summaries and asked the questions collected during the first 

phase.  The last phase was the collection of control answers.  Sighted participants were 

recruited and provided with the graphic images and the same questions that were 

asked of the blind users.  All the phases are described in detail next. 

8.2.1 Phase 1: Collection 

8.2.1.1 Collecting questions from sighted users 

For this phase we recruited freshmen college students from various majors to 

provide us with questions that a person would be able to answer by just glancing at the 

graphic.  By asking subjects to provide us with questions, we wanted to make sure that 

the questions were not biased by the system designers and that they reflected what 

users would actually ask. 
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Thirty-four students participated in this phase.  This task was interspersed with 

another task, which provided data for another project.  Since the second task is not 

relevant here, instructions for it were suppressed.  The instructions for this phase of 

the task were the following: 

1. This package contains a set of trials, each consisting of a graph and a task. 

For each graph you will be asked to either: A) Answer questions related to it. B) 

Provide questions about it. 

2. For the graphs which we ask you to provide questions about, we ask you to 

think of a question that a person would be able to answer by just taking a quick 

look at it. The question should be able to be answered by the high level knowledge 

the graphic conveys (without the need for calculations or detailed examination). 

For the trials in which we asked participants to provide us with questions, we 

gave them a line graph and asked them to provide us with at least two questions.  

Eleven different line graphs were used in this phase.  Figure 8-2, Figure 8-3, and 

Figure 8-4 are three examples of graphics that were used.  The graphics conveyed 

different intended messages and had different sets of visual features.  A total of 216 

questions were collected from 34 participants, an average of about 19 questions per 

graphic. 
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Figure 8-2: Example of a line graph showing a single rising trend used in the first 

phase of the experiment. 

 

Figure 8-3: Example of a line graph showing a changing trend and some volatility 

used in the first phase of the experiment. 



 

 

167 

 

Figure 8-4: Example of a line graph showing a changing trend and strong volatility 

used in the first phase of the experiment. 

8.2.1.2 Question filtering 

A native English speaker participant with knowledge of Natural Language 

Processing was recruited for the second sub-phase, which was concerned with filtering 

questions that were appropriate to be asked.  The participant was asked to filter out 

any questions which required world knowledge (the question could not be answered 

from the graph alone), careful examination of the graphic or complex calculations. 

The first exclusion criterion was the need for world knowledge in order to 

answer the questions.  Examples of questions that were omitted from the next phase of 

the experiment are: 

1. Why has there been growth in bottled water? (Referring to the line 

graph shown in Figure 8-2); 
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2. How does this inverse relationship impact society? (Referring to the 

line graph shown in Figure 8-3); 

3. Do you think this percent change is similar to other sea levels in 

other parts of the world? (Referring to the line graph shown in Figure 

8-4). 

Since such questions cannot be answered by just having access to the 

information conveyed in the graphic, they were eliminated by the participant 

performing the filtering.   

Examples of questions that were excluded based on the second exclusion 

criterion (required a detailed examination of the graphic) are:  

1. What was the amount spent on bottled water in 2004? (Referring to 

the line graph shown in Figure 8-2); 

2. What is the lowest percentage of his approval rating? (Referring to 

the line graph shown in Figure 8-3);  

3. What year had the highest sea level, in inches, in Seattle? (Referring 

to the line graph shown in Figure 8-4). 

The last exclusion criterion was the need for a complex calculation in order to 

answer the question.  It should be noted that questions that still required some quick 

calculations were left in by the participant performing the filtering.  Examples of 

questions that required calculation but were still left in are: 

1. From 01 to 05 bottled water sales have grown by how much? 

(Referring to the line graph shown in Figure 8-2);  

2. From 1900 to 2003, what is the total difference between sea levels in 

inches? (Referring to the line graph shown in Figure 8-4). 



 

 

169 

And an example of a question that required complex calculation and was 

eliminated is: 

1. What was the percentage increase between sea levels from 1900 to 

2003? (Referring to the line graph shown in Figure 8-4). 

8.2.1.3 Choosing/Rewording unclear questions 

After filtering the initial set of questions, a total of 125 questions that were 

considered appropriate by the participant were grouped by meaning.  Questions that 

were worded differently but meant the same thing were grouped together so that we 

could assess the agreement between participants about which questions they thought 

reflected the knowledge one could acquire from the graphic.  Only questions that had 

been provided by at least two participants were used. 

Since some questions (in the same group of meaning) were worded better than 

others and therefore were clearer, we asked the participant who filtered the question to 

either choose one question from each meaning group (the one that was clearer) or, if 

none was clear enough, we asked the participant to rewrite it such that the person 

reading the questions would not need access to the graphic in order to understand it.  

This was necessary because there were some questions that made references to the 

graphic or to the context of the previous question they provided, making the question 

unclear if standing alone.  After filtering and choosing/rewriting the appropriate 

questions, we had a total of twenty-one questions about nine different graphics.  These 

questions were used for the following phases of the experiment: assessing the 

usefulness of the summaries for visually impaired users and collecting control answers 

from sighted users who would answer the questions by viewing the graphic image. 
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8.2.2 Phase 2: Evaluation of the summaries with visually impaired users 

For this phase we recruited four blind users with the help of the Delaware 

Association for the Blind.  Given a line graph, the participants would have access to 

the summary generated by the system and would be asked one to three questions about 

the graphic.  Navigation instructions were provided before the participants started 

listening to the task instructions. 

Demographic information indicated that all four participants had been using 

the Internet for reading news for more than seven years and all of them use screen 

readers as their main reading tool (options were braille, screen magnifier, screen 

reader, or other).  All of them had some college education (two of them had some 

graduate education, one of them had a Master’s degree) and all of them were native 

English speakers. 

For this phase we collected answers for all 36 trials.  The participants had up to 

45 minutes to perform their task of answering the questions.  Instructions provided to 

the participants were: 

 

Navigation instructions: At the end of each paragraph, the screen reader will pause. 

Please use the key combination Control plus down arrow to move to the next 

paragraph, the combination Control plus up arrow to move to the previous 

paragraph, and the combination Control plus right arrow to read the current 

paragraph. 

 
SIGHT System Line graph summary evaluation - Experiment 
Instructions      

First you will be asked to answer a small survey that collects demographic 

information. Then you will be presented with a set of trials. Each trial contains a 

summary of an informational graphic from some popular media available online 

(newspaper or magazine). For each trial, you will be presented with a summary of a 
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graphic and then asked to answer one to three questions based on that summary. The 

summary may or may not provide all of the information needed to answer the 

question, please just answer as best as you can. You may not understand some 

questions. At the end of each trial you will have a space to comment. Please let us 

know anything about the summary you would change or add. The question might ask 

you to calculate something. You may use a calculator if you wish or just give an 

approximate answer. You will also be able to give us comments on the questions at the 

end of the trial. Our intention is to measure how well the summary delivered the 

information that you needed to answer the questions. You can listen to each summary 

as many times as you wish before proceeding to answer the questions related to that 

summary. After answering the questions for a summary you will have the space for 

comments. At the end, you will be asked some questions regarding your overall 

experience and any additional comments you may have to help us improve the system. 

You have the choice of typing your answers and comments yourself, or having your 

spoken responses recorded. If you choose to type your answers and comments, please 

do so after each question when the screen reader reads “Empty Paragraph” or 

“Edit”. In order to move the cursor to the empty paragraph and be able to edit the 

field, please press the key combination Control plus Space bar. 

The results and comments provided by the participants in this phase were 

analyzed by comparing with the control answers provided by sighted users during 

phase 3 of the experiment, described in the next section. 

8.2.3 Collection of control answers from sighted users 

The focus of this phase was to assess whether users would be able to correctly 

answer the question viewing the graphic for baseline purposes.  We wanted to know if 
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sighted users could answer the question by glancing at the graphic, but allowed them a 

more careful look at the graphic if they wanted and we recorded this information along 

with the correctness of their response.  The results are also presented for both cases: 

percentage of correct answers from sighted participants by just glancing the graph and 

percentage of correct answers from sighted participants after being able to examine the 

graph carefully. 

For this phase, 24 freshmen college students from various majors were 

recruited.  The participants for this phase could not have participated in any of the 

previous phases of the experiment.  As in the first phase, a different task was mixed 

amongst the trials in order to avoid task fatigue.  The instructions for this phase were: 

1. Same from Phase 1 (see page 164). 

2. For the graphics about which we ask you to answer questions, please study the 

graphic such that you may be able to answer the questions about it. You will 

then be asked to answer one to three questions about the graphic. You may not 

understand some questions or feel that they cannot be easily answered with the 

graphic. At the end of each question, you will have a space to make comments 

on it. Please let us know anything about the question you could not understand. 

The question might ask you to calculate something. You may use a calculator, 

if you wish, or just give an approximate answer. ATTENTION! While 

answering a question about a graphic you can go back to the image or just 

provide the closest answer you can remember. If you choose to go back, please 

let us know you did so in the space designated for it.  In the cases where you do 

go back to the graphic, we ask you to estimate how difficult the question was to 

answer even with the graphic. 
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Even though participants were told they could go back to the graph if they 

needed to, we were able to see from the results, described in the next section, that most 

of the questions did not cause them to go back to the image; the exceptions were the 

questions which required some simple calculation. 

8.2.4 Evaluation results 

As described in the previous section, the four participants with visual 

impairments received a package with nine trials.  Each trial had a line graph summary 

and one to three questions that they were asked.  For the collection of control answers, 

24 sighted participants received a package with the same number of trials and the 

same graphics.  The set of graphics contained 3 graphics that overlapped with the 

graphics used to identify features (described in Chapter 4).  In order to make a clear 

distinction of the results, the graphics which overlapped will be signaled in the table 

showing the final results. 

Table 8-8, Table 8-9 and Table 8-10 show the total number of questions 

answered by graph (since participants could stop before finishing the whole package), 

the number of those answers that were wrong or incomplete, and the percentage of 

correct answers.  There is also a distinction made in the result presentation when 

considering the control answers from sighted participants when they went back to 

carefully analyze the graphic before answering the questions and when they answered 

by just glancing at the graphic (the main purpose of the experiment, since the 

summaries try to capture this type of information).  The graphics which were also used 

in the experiment to identify features are marked with an * close to their codes. 

Analyzing these numbers, we notice that line graphs L17 (Figure 8-5) and L26 

(Figure 8-6) have considerably lower scores in the correct answers column.  Although 
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the sighted participants did better with these two line graphs, we note that they often 

went back to the image to search for the answers (16 out of 27 went back to the image 

for the line graph L17 and 9 out of 15 went back to the image for the line graph L26).  

The questions, followed by the answers, for this line graph were: 

1. Question 1: How many pension plans were defined in 1985? Answer: 

114,396  

2. Question 2: How many more pension plans were defined in 1985 

than in 2004? Answer: 83,158  

3. Question 3: What is the percent decline of pension plans from 1985 

to 2004? Answer: Approximately 73% 

 

Figure 8-5: Example of a line graph used in the experiment (graph L17). 
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Summary generated for the graph in Figure 8-5: 

The image shows a line graph, which presents the number of private-sector 

defined benefit pension plans. The line graph shows a falling trend from 1985 to 2004. 

The falling trend has a starting value of 114,396 and an ending value of 31,238. 

Summary generated for the graph in Figure 8-6: 

The image shows a slightly volatile line graph, which presents the number of 

consumer confidence in addition to conveying a trend that changes and that starts to 

reverse at the end that consists of a falling trend from 5/2005 to 10/2005, followed by 

a rising trend until 4/2006, then a falling trend through 5/2006. The first segment is 

the falling trend that has starting value of 103.1. The second segment is the rising 

trend. The third segment is another falling trend that has ending value of 103.2. 

 

Figure 8-6: Example of a line graph used in the experiment (graph L26). 
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Table 8-8: Phase 2 Experiment results - test with visually impaired participants 

(Correct in %). 

Graph 

code 

# of questions 

answered 

# of wrong or 

incomplete answers 

% Correct 

answers 

L3 4 0 100 

L6 12 2 83.3 

*L17 12 9 25 

L18 8 2 75 

L21 8 1 87.5 

*L26 8 5 37.5 

L28 12 0 100 

L89 8 1 87.5 

*L95 8 0 100 

Table 8-9: Phase 3 Experiment results - control answers collected from sighted users 

from just glancing at the graphic (Correct in %). 

Graph 

code 

# of questions 

answered 

# of answers that 

required going back 

to the graph 

% Correct 

answers 

L3 9 3 66.7 

L6 23 4 62.5 

*L17 27 14 25.9 

L18 17 12 5.6 

L21 19 7 50 

*L26 15 6 18.8 

L28 29 8 53.3 

L89 20 11 35 

*L95 19 15 20 
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Table 8-10: Phase 3 Experiment results - control answers collected from sighted users 

after carefully examining the graph (Correct in %). 

Graph 

code 

# of questions 

answered 

# of wrong or 

incomplete answers 

after carefully 

examining the 

graphic 

% Correct 

answers 

L3 9 0 100 

L6 23 4 82.6 

*L17 27 6 77.7 

L18 17 4 76.4 

L21 19 2 89.4 

*L26 15 6 60 

L28 29 5 82.7 

L89 20 2 90 

*L95 19 0 100 

Even though 3 out of 4 visually impaired users decided to listen to the 

summary more than once, they still had difficulties memorizing the answers to some 

of the questions.  Line graph L26 (Figure 8-6) had two questions and the summary did 

not provide the answer for one of them.  The questions for this graph were:  

1. Question 1: What is the difference in consumer confidence in May 

of 2005 and May of 2006? Answer: 0.1  

2. Question 2: Which month had the lowest consumer confidence in 

2005 and 2006? Answer: October 2005 

Line graph L28 showed an interesting result.  For that graph, all of the answers 

provided by users with visual impairments were correct, while not all of the answers 

provided by sighted users for the same graph were correct.  Figure 8-7shows the graph 

followed by its summary: 
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Figure 8-7: Example of a line graph used in the experiment (graph L28). 

Summary generated for the graph in Figure 8-7: 

The image shows a line graph, which presents IRS's percentage of returns e-

filed. The line graph shows a rising trend from 1996 to 2005. The rising trend has a 

starting value of 12.6 percent and an ending value of 51.1 percent. 

For this graph, one of the questions was: By how much did the percentage of 

retiring e-files grow from 1996 to 2005?  Some of the sighted users decided not to go 

back before answering it and all of the users with visual impairments remembered the 

values and were able to answer the question correctly. 

The average percent of correct answers from the visually impaired users was 

75%, while the average percentage of correct answers from sighted users was 80.87%. 

From instances where sighted users got the answers wrong, we noticed that most of 

the time the questions asked for specific numbers for which they preferred to guess the 

answer instead of going back to view the graphic image again.  For some questions 
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where blind users performed better than sighted, we could see from the sighted users’ 

comments that they thought the questions were hard and/or the information was not 

easily accessible.  For example, there were cases where the question asked for 

maximum or minimum values and those were not annotated, making an interpolation 

necessary, whereas the system provided these numbers in some of the summaries. 

From the comments provided by the blind participants, we could see that 

individual preferences were stated (one participant declared that he would prefer the 

summary to have less information than what was provided, allowing the user to ask for 

more if he/she preferred).  This consideration is aligned with our intention of 

providing follow-up responses as described in Chapter 9.  Most of the comments 

provided by the blind participants stated that the summaries were clear and concise.  

The participants, in general, appreciated the clarity with which the information was 

delivered to them. 

By analyzing the statistical significance of the data, we noticed that the null 

hypothesis is true when comparing right and wrong answers coming from blind and 

sighted participants.  This result shows that the visual impairment was not a factor 

when the blind participants answered a question wrong or right when compared to 

sighted participants.  Another possibility is that the amount of input data is not enough 

to draw conclusions, which would require that a large number of blind participants be 

recruited and a larger experiment be performed.  Table 8-11 shows the statistical 

significance results where a p-value of 0.09908 is yielded. 
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Table 8-11: Statistical significance data for blind and sighted users’ answers. 

 Blind users Sighted users Total Prob 

Correct answers 60 149 209 0.81 

Wrong answers 20 29 49 0.19 

Total 80 178 258  

 

8.3 Thought Experiment 

Another possible experiment might contain the same tasks, but compare the 

results of our system with those obtained from a baseline.  Such baseline does not 

exist.  One possibility could be to provide them with summaries generated using 

Benetech (Benetech, 2016) guidelines for line graph description as they are made 

available. 

 

8.4 Summary 

This chapter presented the evaluation of the generated summaries for line 

graphs at different reading levels and the usefulness of the summaries content for 

visually impaired users.  It describes four different experiments performed in order to 

capture how well the system is able to adapt its generated text to a target reading level 

and how these different text complexities affect the understanding of it by readers at 

different reading levels. 

The results for the automatic adaptation of the generated summaries to the 

desired reading levels was achieved successfully.  In addition, experiments with 

human subjects were performed in order to assess if the perception human readers had 
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about different text complexities was in accordance with the decisions the system 

made to generate summaries at different grade levels.  Results show that users agreed 

with the same order of text complexity generated by the system more than 70% of the 

time.  In order to assess whether summaries generated at different reading levels 

would be preferred by users at that reading level, evaluations were also performed 

with 5th graders and college students.  Conclusions were that not all users have the 

same reading preferences with regards to readability level, even when they are at the 

same school grade level.  This confirmed our contention that the generated text should 

follow the reading level of the article in which the graph appears, since presumably the 

user is comfortable with the reading level used by the venue. 

The final evaluation presented in this chapter was performed with visually 

impaired users.  The goal was to assess how well the system could deliver useful 

information so that these users could perform specific tasks.  In this specific case, the 

task was to verify how well they could answer questions related to the graphic by 

having access to the summaries when compared to how well sighted users were able to 

answer the same questions when looking at the graphic images.  The results show that 

the system successfully provides the information needed by visually impaired users in 

order for them to be able to answer important questions about the graphic. 

The system generates a summary that aims to deliver the most important 

information conveyed by the graphic.  The summaries are adapted to the reading level 

of the articles in which the graphics appear, granting access to users at different 

reading levels.  We envision that in the future SIGHT might be used for generating 

Alt-text for informational graphics. 
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CONCLUSIONS AND FUTURE RESEARCH 

This thesis presented the work done on the SIGHT system in order to provide 

sight-impaired users with access to line graphs which are available in popular media.  

Prior to this work, the SIGHT system provided generated textual summaries for simple 

bar charts found online.  From the accessibility perspective, this work contributed by 

allowing visually impaired users to also, through the use of the system, have access to 

line graphs which are part of multimodal documents from newspapers and magazines. 

Modifications were made and a functionality was added in order to ease the 

way users can install and use the system.  Instead of having to install the whole system 

locally, a Chrome plugin was made available which allows the browser to submit a 

request to a server running the system.  The image of the line graph is then sent to the 

server and the generated summary is sent back to the client once the request is 

completed on the server side. 

The majority of the contributions of this work are to the Natural Language 

Generation field of research.  The content determination component, for example, was 

expanded in order to consider additional information about the graph.  For this version 

of the SIGHT system, secondary messages with non-trivial probabilities identified by 

the Intention Recognition Module are also considered when deciding on the content of 

the summaries.  Additionally, by using a graph-based approach for content 

determination which considers the importance of the features being described, the 

system allows the summaries of different graphs to be customized based on its 

Chapter 9 
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particular characteristics: the more salient features a graphic has, the more detailed is 

the summary that describes it. 

Another contribution is the text organization phase where the content selected 

during the previous phase defines the ordering in which the propositions will be 

presented in the summary.  Once again, the presence of a candidate message with non-

trivial probability, or the number of salient features present in a specific trend of the 

graphic, might lead the organization module to emphasize that piece of information in 

the summary by conveying the most important trend first. 

The most interesting and challenging contribution regards the micro planning 

phase employed during this work.  For this phase, two main contributions were made.  

The first is the aggregation module and the decision about aggregating text differently 

for different reading levels.  For this aspect, the system learned the characteristics of 

text that make it complex using a decision tree with annotated corpora.  Based on 

these learned characteristics, the system uses a graph search in order to find a goal 

node (a realized summary) which is close in reading level to the target reading level.  

The search is guided by a heuristic which reflects the measurements of the 

characteristics obtained in the learning phase. 

The second contribution of the micro planning phase is the way the system 

decides on the lexical items that can be appropriate to the context of line graphs and 

also be suitable to the target reading level.  Due to the lack of a readily available set of 

synonyms that are appropriate for describing line graphs and to the need for a set of 

synonyms from which the system can pick lexical items, a novel approach was 

developed.  For lexicalization, an initial set of seed words is used in order to expand 

synonyms using a thesaurus.  After this first step, the system filters the synonyms that 
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are appropriate for describing line graphs by considering co-occurrence in the 5-gram 

Google Books corpus and top word-vector similarity from word2vec. 

The evaluations presented in the previous chapter show that the system 

successfully generates text at different reading levels, that these different texts are also 

perceived by human judges as belonging to different grade levels, and that human 

readers at different reading levels also prefer text that is generated at their respective 

reading levels.  The system is also able to successfully deliver the most important 

message of line graphs to users who are visually impaired, allowing them to perform 

tasks sighted users did while accessing the graphic images. 

We consider this work to be a valuable resource for research in the area of 

graph accessibility and Natural Language Generation.  The next section addresses 

issues that can still be explored in both areas. 

9.1 Future Work from the Natural Language Generation Perspective 

9.1.1 Pronominalization 

An important feature of coherent and understandable text is the 

pronominalization of referring expressions, which avoids reintroduction of entities 

every time they are mentioned.  The experiment mentioned in Chapter 5 showed that 

the reintroduction of entities or the repetition of referring expressions (when a pronoun 

cannot be used) in fact jeopardized the understanding of some passages in the 

summaries.  The participants would usually complain that a given summary was 

confusing because it could be “better presented” and they would additionally provide 

us with comments regarding the reintroduction of the referring expressions.  From 

these results, we concluded that it would be valuable to include a pronominalization 



 

 

185 

phase after the aggregation phase so that even the summaries that are at a lower grade 

level would not repeat the referring expression when using multiple non-aggregated 

sentences. 

The propositions chosen by the content determination framework contain the 

information about their “parents” (features such as volatility and steepness point to the 

trend of the graphic they belong to).  This relationship is the clue used to define 

discourse focus.  Such information can be used by a pronominalization module, when 

implemented. 

9.1.2 Coordinated lexicalization in a summary 

Two aspects can be explored with regards to the coordination of lexical items 

within a summary.  The first is the ability to choose different lexical items to describe 

the same concept in the summary by using a different referring expression when, for 

example, reintroducing an entity.  One example is that trend and segment can both be 

used to describe the concept trend, but caution is needed in order to assure that the 

reader understands that they are both referring to the same entity. 

The second aspect is the coordination of contrasting concepts.  The results of 

the experiment performed with 5th graders and college students showed that 

participants would prefer to see top vs bottom, maximum vs minimum, first vs last, 

higher vs lower, instead of seeing randomly selected lexical items being used to 

realize opposite concepts.  This is an interesting topic for future work on the 

lexicalization phase. 
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9.2 Future Work from the Accessibility Perspective 

9.2.1 Grouped Bar Charts 

Another important aspect in the extension of the SIGHT system is to handle 

other types of graphics.  Multiple line graphs, grouped bar charts, and pie charts, are 

all graphs that possess a different set of intended messages and are used for different 

purposes, opening the problem of how a system should describe them. 

Grouped bar charts, specifically, have been the object of study for recognizing 

their intended messages presented in (Burns et al., 2010; Burns, Carberry, & Schwartz, 

2013a, 2013b).  Exploring this type of graph might unveil a completely different set of 

challenges from the Natural Language Generation perspective.  Specifically, it is 

anticipated that these graphs pose challenges for organizing a summary due to their 

complexity.  Therefore, enabling the SIGHT system to also generate summaries for 

grouped bar charts will actually contribute to both fields of research (accessibility and 

NLG). 

9.2.2 Follow up responses 

Our plans for future work on the SIGHT system includes the extension of the 

generation module to allow the user to access follow-up information about the graphic.  

Since the initial summary only delivers the most important information (intended 

message + secondary messages + outstanding visual features), follow-up responses 

should be able to deliver relevant in-depth information based upon a request from the 

user.  Challenges here involve the continuous nature of line graphs and methods for 

identifying what additional information to provide. 
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PROPOSITION REALIZATION TEMPLATES 

Each of the proposition templates below can be used to realize one or more 

propositions from the set listed in Section 7.4.  They show the semantic representation 

of the different templates using the notation root_predicate(set_of_arguments).  The 

set of propositions which use the template is listed next.  The possible realizations a 

template is allowed is also listed.  It uses the notation <arg1> show-predicate <arg2> 

where <x> means realization of x; xy means the already-existing realization of x and it 

is of syntactic category y; [[x]] means that x is an optional argument.  The base 

lexicon of the root predicate used to perform synonym expansion – described in 

Section 7.7. 

Some propositions such as graph_volatility, trend_volatility and 

trend_steepness are complex as they show to have more constraints with the types of 

lexicon used to describe these phenomena of the graph.  This also affects the number 

of possible ways these propositions can be realized. 

Show template 

show(arg1, arg2) 

type arg1: entity 

type arg2: entity 

Set of propositions which use this template: 

graph_type, graph_overall_behaviour, composed_trend 

Possible realizations: 
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- As a sentence:  

<arg1> show-predicate <arg2> 

<arg1> is an NP  

<arg2> is an NP  

- As a subordinating conjunction:  

arg1NP which shows <arg2> 

<arg2> is an NP 

Base lexicon: 

Show-predicate:  verb(show) 

______________________________________________________________ 

Type template 

type(arg1, arg2). 

type arg1: entity 

type arg2: entity 

Set of propositions which use this template: 

trend_description 

Possible realizations: 

- As a sentence:  

<arg1> type-predicate <arg2> 

<arg1> is an NP  

<arg2> is an NP 

- As a subordinating conjunction:  

arg1NP which is <arg2> 

<arg2> is an NP 
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Base lexicon: 

Type-predicate:  verb(is) 

______________________________________________________________ 

Present template 

present(arg1, arg2, [[arg3]]) 

type arg1: entity 

type arg2: entity 

type arg3 (optional): unit and scale 

Set of propositions which use this template: 

entity_description 

Possible realizations: 

- As a sentence:  

<arg1> present-predicate <arg2> 

<arg1> is an NP  

<arg2> is an NP 

<arg3> is a PP 

- As a subordinating conjunction:  

arg1NP which presents <arg2>[[<arg3>]] 

<arg2> is an NP 

<arg3> is a PP 

Base lexicon: 

Present-predicate:  verb(present) 

______________________________________________________________ 

Volatile template 
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volatile(arg1, [[arg2]]) 

type arg1: entity 

type arg2 (optional): volatility degree 

Set of propositions which use this template: 

graph_volatility, trend_volatility 

Possible realizations: 

- As a sentence:  

<arg1> is [[arg2]] volatile-word  

<arg1> is an NP 

<arg2> is degree_ADV_ADJ 

volatile-word is volatile_adjective 

<arg1> shows [[arg2]] volatile-word 

<arg1> is an NP 

<arg2> is degree_ADV_Noun 

volatile-word is volatile_noun 

- As an adjective:  

 [[arg2]] volatile {arg1}NP 

 <arg2> is degree_ADV_ADJ 

volatile-word is volatile_adjective  

- As a subordinating conjunction:  

{arg1}NP which is | show [[arg2]] volatile-word 

{arg1}NP which is [arg2] volatile-word 

<arg2> is degree_ADV_ADJ  

volatile-word is volatile_adjective 
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{arg1}NP which shows [[arg2]] volatile-word 

<arg2> is degree_ADV_Noun 

volatile-word is volatile_noun 

Base lexicon: 

Volatile-word:  adjective(jagged) 

______________________________________________________________ 

Steep template 

steep(arg1, [[arg2]]) – The rising trend is steep. 

type arg1: entity 

type arg2 (optional): steepness degree 

Set of propositions which use this template: 

trend_steepness 

Possible realizations: 

- As a sentence:  

<arg1> is [[arg2]] steep-word  

<arg1> is an NP 

<arg2> is degree_ADV_ADJ 

steep -word is steep _adjective 

<arg1> shows [[arg2]] steep -word 

<arg1> is an NP 

<arg2> is degree_ADV_Noun 

steep -word is steep _noun 

- As an adjective:  

 [[arg2]] steep {arg1}NP 
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 <arg2> is degree_ADV_ADJ 

steep -word is steep _adjective  

- As a subordinating conjunction:  

{arg1}NP which is | show [[arg2]] steep -word 

{arg1}NP which is [arg2] steep -word 

<arg2> is degree_ADV_ADJ  

steep -word is steep _adjective 

{arg1}NP which shows [[arg2]] steep -word 

<arg2> is degree_ADV_Noun 

steep -word is steep _noun 

Base lexicon: 

Steep-word:  adjective(steep) 

__________________________________________________________ 

Value template 

value(arg1, arg2, [[arg3]]) 

type arg1: entity 

type arg2: entity 

type arg3 (optional): unit and scale 

Set of propositions which use this template: 

graph_initial_value, graph_end_value, trend_initial_value, 

trend_end_value 

Possible realizations: 

- As a sentence:  

<arg1> have-predicate <arg2>[[arg3]] 
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<arg1> is an NP  

<arg2> is an NP 

<arg3> is a PP 

- As a subordinating conjunction:  

arg1NP which has <arg2>[[<arg3>]] 

<arg2> is an NP 

<arg3> is a PP 

Base lexicon: 

Have-predicate:  verb(have) 

______________________________________________________________ 

Date template 

date(arg1, arg2, arg3) 

Set of propositions which use this template: 

graph_initial_date, graph_end_date, trend_initial_date, trend_end_date 

type arg1: entity 

type arg2: entity 

type arg3: entity 

Possible realizations: 

- As a sentence:  

<arg1> have-predicate <arg2><arg3> 

<arg1> is an NP  

<arg2> is an NP 

<arg3> is a PP 

- As a subordinating conjunction:  
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arg1NP which has <arg2><arg3> 

<arg2> is an NP 

<arg3> is a PP 

Base lexicon: 

Have-predicate:  verb(have) 

______________________________________________________________ 

Value_change template 

value_change(arg1, arg2, arg3, [[arg4]])  

type arg1: entity 

type arg2: entity 

type arg3: entity 

type arg4 (optional): unit and scale 

Set of propositions which use this template: 

graph_absolute_change, graph_rate_change, trend_absolute_change, 

trend_rate_change 

Possible realizations: 

- As a sentence:  

<arg1> show-predicate <arg2><arg3>[[arg4]] 

<arg1> is an NP  

<arg2> is an NP 

<arg3> is a NP 

<arg4> is a PP 

- As a subordinating conjunction:  

arg1NP which shows <arg2><arg3>[[<arg4>]] 
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<arg2> is an NP 

<arg3> is a NP 

<arg4> is a PP 

Base lexicon: 

Show-predicate:  verb(show) 

______________________________________________________________ 

Date_change template 

date_change(arg1, arg2, arg3) 

Set of propositions which use this template: 

graph_overall_period_years, graph_overall_period_months, 

graph_overall_period_days, trend_overall_period_years, 

trend_overall_period_months, trend_overall_period_days 

Possible realizations: 

- As a sentence:  

<arg1> span-predicate <arg2><arg3> 

<arg1> is an NP  

<arg2> is an NP 

<arg3> is a NP 

- As a subordinating conjunction:  

arg1NP which spans <arg2><arg3> 

<arg2> is an NP 

<arg3> is a NP 

Base lexicon: 

Span-predicate:  verb(span) 
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______________________________________________________________ 

Max_min_value template 

max_min_value(arg1, arg2, arg3,[[arg4]]) 

Set of propositions which use this template: 

maximum_point_value, minimum_point_value 

Possible realizations: 

- As a sentence:  

<arg1> have-predicate <arg2><arg3>[[arg4]] 

<arg1> is an NP  

<arg2> is an NP 

<arg3> is a PP 

<arg4> is an NP 

- As a subordinating conjunction:  

arg1NP which has <arg2><arg3>[[arg4]] 

<arg2> is an NP 

<arg3> is a PP 

<arg4> is an NP 

Base lexicon: 

Have-predicate:  verb(have) 

______________________________________________________________ 

Max_min_date template 

max_min_date(arg1, arg2) – The maximum value occurs in 1982. 

Set of propositions which use this template: 

maximum_point_date, minimum_point_date 
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Possible realizations: 

- As a sentence:  

<arg1> occur-predicate <arg2> 

<arg1> is an NP  

<arg2> is an PP 

- As a subordinating conjunction:  

arg1NP which occur <arg2> 

<arg2> is an PP 

Base lexicon: 

Occur-predicate:  verb(occur) 
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READING LEVEL BASED LEXICON 

The following table shows the reading level based lexicon created by the steps 

described in Section 7.7.  For the generation of summaries, the lexical item used to 

describe a concept is randomly chosen before the graph search algorithm starts 

searching for the best aggregation plan.  The reader will notice that the lexicon for the 

higher grade levels include the items from the lower grade levels.  This is due to the 

assumption that if a lexical item is introduced at a lower grade level, it is appropriate 

to use it at a higher grade level. 

 

Grade level based lexicon 

Consist 

4th – 5th consist of 

contain 

include 

6th – 8th consist of 

contain 

include 

9th – 10th involve 

contain 

is composed of 

consist of 

Appendix B 
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Grade level based lexicon 

include 

11th - college involve 

contain 

is composed of 

consist of 

include 

Decrease 

4th – 5th reduce 

6th – 8th reduce 

9th – 10th reduce  

decline 

11th - college lower 

reduce 

decline 

Falling 

4th – 5th decreasing 

6th – 8th decreasing 

9th – 10th decreasing 

11th - college decreasing 

lowering 

Final 

4th – 5th last 

6th – 8th last 
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Grade level based lexicon 

9th – 10th final 

last 

11th - college final 

last 

finished 

Graph 

4th – 5th graph 

6th – 8th graph  

diagram 

9th – 10th graph  

diagram 

11th - college graph  

diagram 

Image 

4th – 5th image 

6th – 8th image 

9th – 10th picture 

image 

drawing 

11th - college drawing 

reflection 

image 

picture 
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Grade level based lexicon 

Increase 

4th – 5th increase 

6th – 8th extend 

increase 

9th – 10th extend 

rise 

increase 

11th - college extend 

rise 

increase 

Initial 

4th – 5th first 

early 

6th – 8th first 

early 

9th – 10th primary 

original 

first 

early 

11th - college initial 

first 

early 

primary 
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Grade level based lexicon 

original 

Jagged 

4th – 5th variable 

6th – 8th variable 

9th – 10th variable 

jagged 

11th - college variable 

jagged 

Maximum 

4th – 5th top 

6th – 8th highest 

top 

9th – 10th highest 

top 

11th - college maximal 

maximum 

top 

highest 

Minimum 

4th – 5th minimum 

6th – 8th minimum 

9th – 10th least 

lowest 
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Grade level based lexicon 

minimum 

11th - college least 

lowest 

minimum 

minimal 

Occur 

4th – 5th is found 

6th – 8th come about 

is found 

occur 

9th – 10th come about 

take place 

is found 

occur 

11th - college come about 

is present 

arise 

take place 

is found 

occur 

Present 

4th – 5th give 

6th – 8th give 
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Grade level based lexicon 

present 

9th – 10th give 

present 

11th - college give 

present 

Rising 

4th – 5th rising 

6th – 8th rising 

9th – 10th rising 

ascending 

11th - college growing 

ascending 

increasing 

rising 

Show 

4th – 5th show 

6th – 8th show 

reveal 

9th – 10th demonstrate 

show 

reveal 

11th - college demonstrate 

show 
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Grade level based lexicon 

reveal 

Span 

4th – 5th span 

6th – 8th span 

cover 

9th – 10th span 

cover 

11th - college span 

extend 

cover 

Stable 

4th – 5th solid 

6th – 8th solid 

constant 

9th – 10th solid 

steady 

constant 

11th - college solid 

steady 

constant 

Steep 

4th – 5th sharp 

high 
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Grade level based lexicon 

6th – 8th sharp 

high 

9th – 10th sharp 

high 

11th - college Sharp 

precipitous 

steep 

high 

Trend 

4th – 5th direction 

6th – 8th trend 

direction 

9th – 10th trend 

direction 

orientation 

11th - college trend 

direction 

orientation 

drift 
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HUMAN INTELLIGENT TASK 

 

 

Instructions 
This HIT contains three parts: 

1) Fragment evaluation warm-up: Read two fragments of text and choose which one 
you consider has the highest grade level from the two. 

2) Read summaries and rank them from easiest to hardest by associating them with 
different grade levels. 

3) Provide requested explanation about some of your answers. 

Attention: FOR YOUR HIT TO BE ACCEPTED, PLEASE MAKE SURE THAT YOU DO THE 
FOLLOWING: WHILE ASSOCIATING SUMMARIES TO READING LEVELS, MAKE SURE 
YOU USE EACH GRADE LEVEL ONLY ONCE (DO NOT REPEAT A GRADE LEVEL FOR 
DIFFERENT SUMMARIES); ADDITIONALLY, MAKE SURE YOU PROVIDE A MEANINGFUL 
EXPLANATION FOR YOUR ANSWERS AT THE END OF THE TASK (ITEMS 6 AND 7). 

Here are some additional instructions: 

 Read the summaries and rank them from easiest to hardest by associating it 
to the appropriate grade level. The judgement of grade level should be made 
based on the comparison across summaries. For example, the summary that 
you perceive to be the easiest one should be associated with the 4th grade 
level. 

 Because you are ranking the summaries, each grade level should be used only 
once. This means that no grade level can be repeated across answers. 

 You will always be given 4 (four) summaries and 4 (four) grade levels. 
 The summaries are NOT ordered in any way. 
 If you believe any two summaries are really similar in terms of their ranking, 

you must still assign them two different grade levels. 

Appendix C 
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1. Given the following two fragments of text, please choose which fragment you 
consider to have a higher grade level when compared to the other: 

Fragment 1: Eyes turn light into sight with help from the brain and they work in the 
same way for people. By looking at this page you may think you see words and 
pictures but, believe it or not, you don’t; all you see is light bouncing off the page and 
that is possible by the secret in the rules of light. 

Fragment 2: With help from the brain, eyes turn light into sight. Eyes work in the 
same way for people. Look at this page. You may think you see words and pictures. 
Believe it or not, you don’t. All you see is light bouncing off the page. How is this 
possible? The secret is in the rules of light. 

Select the fragment that you believe has the highest grade level: 
 

 (Dropbox with options: Fragment 1 and Fragment 2) 
 

2. First summary 

A line graph which presents the number of annual difference from Seattle's 1899 sea 
levels in inches and consists of a changing trend composed of a stable trend from 
1900 to 1928 followed by a rising trend through 2003 and shows much variability is 
shown by the image. A steady drift which has an initial value of 1.97 inches is given 
by the first segment. An increasing drift which has a final value of 8.9 inches is given 
by the second segment. The maximal value of 11 inches is reached by the graph 
which has the minimal value of 0.03 inches. 
 
Select the grade level that best fits the summary above, in your opinion (remember 
that you can only use each grade level once):  
(Dropbox with options: 4th grade, 7th grade, 10th grade, College level) 
 
3. Second summary 
There is an image. The image shows a line graph. The graph gives the number of 
annual difference from Seattle's 1899 sea levels in inches. The graph consists of a 
changing trend composed of a stable trend from 1900 to 1928 followed by a rising 
trend through 2003. The graph is highly variable. The first segment shows a direction. 
The direction is solid. The direction has a first value of 1.97 inches. The second 
segment shows a direction. The direction is rising. The direction has a last value of 8.9 
inches. The graph has the top value of 11 inches. The graph has the minimum value 
of 0.03 inches. 
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Select the grade level that best fits the summary above, in your opinion (remember 
that you can only use each grade level once):  
(Dropbox with options: 4th grade, 7th grade, 10th grade, College level) 

 
4. Third summary 
A highly variable line diagram which presents the number of annual difference from 
Seattle's 1899 sea levels in inches and consists of a changing trend composed of a 
stable trend from 1900 to 1928 followed by a rising trend through 2003 is shown by 
the picture. A direction which is solid and has an original value of 1.97 inches are 
given by the first segment. A rising direction which has a last value of 8.9 inches is 
given by the second segment. The diagram which has the least value of 0.03 inches 
has the top value of 11 inches. 
 
Select the grade level that best fits the summary above, in your opinion (remember 
that you can only use each grade level once):  
(Dropbox with options: 4th grade, 7th grade, 10th grade, College level) 

 
 5. Forth summary 
There is an image. The image reveals highly variable a line diagram which presents 
the number of annual difference from Seattle's 1899 sea levels in inches and consists 
of a changing trend composed of a stable trend from 1900 to 1928 followed by a 
rising trend through 2003. The first segment reveals a solid trend. A first value of 1.97 
inches is reached by the trend. 
The second segment reveals a rising trend which has a last value of 8.9 inches. The 
diagram which has the minimum value of 0.03 inches has the highest value of 11 
inches. 
 
Select the grade level that best fits the summary above, in your opinion (remember 
that you can only use each grade level once):  
(Dropbox with options: 4th grade, 7th grade, 10th grade, College level) 

 
6. Briefly explain what made you choose the summary you associated with 4th grade 
level 
(Text box provided for answer) 
 
7. Briefly explain what made you choose the summary you associated with college 
level 
(Text box provided for answer) 
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ANALYSIS OF THE RESULTS OF THE MECHANICAL TURK 

EXPERIMENT 

Graph L3:  

 

The desired outcome for this line graph’s summaries ordering was: 4  1  3  2.  

The six pairwise relationships are: 𝟒 ≻ 𝟏;  𝟒 ≻ 𝟑;  𝟒 ≻ 𝟐;  𝟏 ≻ 𝟑;  𝟏 ≻ 𝟐;  𝟑 ≻ 𝟐. 

Table D-1: Results of applying the pairwise relationship approach to line graph L3. 

 Pairwise relationships  

Responses 𝟒 ≻ 𝟏 𝟒 ≻ 𝟑 𝟒 ≻ 𝟐 𝟏 ≻ 𝟑 𝟏 ≻ 𝟐 𝟑 ≻ 𝟐 count 

  (1) 4 1 3 2 x x x x x x 6 

(2) 4 1 3 2 x x x x x x 6 

(3) 4 3 2 1 x x x   x 4 

(4) 3 1 4 2    x  x x 3 

(5) 4 1 3 2 x x x x x x 6 

(6) 3 1 4 2    x  x x 3 

(8) 2 1 3 4    x   1 

Count 4 5 7 4 5 6 29 

Appendix D 
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 Pairwise relationships  

Responses 𝟒 ≻ 𝟏 𝟒 ≻ 𝟑 𝟒 ≻ 𝟐 𝟏 ≻ 𝟑 𝟏 ≻ 𝟐 𝟑 ≻ 𝟐 count 

Prob (%) 57.1% 71.4% 100% 57.1% 71.4% 85.7% 69% 

 

The nDCG formulae used for calculation is the following: 

 

 
 

 
 

 

i rel i log2 i rel i/log2 i 2ˆrel i - 1/log2 (i+1) 

1 2 0 N/A 1.892789261 

2 4 1 4 6.460148371 

3 3 1.585 1.893 4 

4 1 2 0.5 0 

L3       

Ideal (iDCG) 4 1 3 2 8.393  

response 1 4 1 3 2 8.393 1 

response 2 4 1 3 2 8.393 1 

response 3 4 3 2 1 8.131 0.969 

response 4 3 1 4 2 8.131 0.969 

response 5 4 1 3 2 8.393 1 

response 6 3 1 4 2 8.131 0.969 

response 8 2 1 3 4 6.893 0.821 

nDCG      0.961 
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Graph L6: 

 

The desired outcome for this line graph’s summaries ordering was: 3  4  1  2.  

The six pairwise relationships are: 𝟑 ≻ 𝟒;  𝟑 ≻ 𝟏;  𝟑 ≻ 𝟐;  𝟒 ≻ 𝟏;  𝟒 ≻ 𝟐;  𝟏 ≻ 𝟐. 

Table D-2: Results of applying the pairwise relationship approach to line graph L6. 

 Pairwise relationships  

Responses 𝟑 ≻ 𝟒 𝟑 ≻ 𝟏 𝟑 ≻ 𝟐 𝟒 ≻ 𝟏 𝟒 ≻ 𝟐 𝟏 ≻ 𝟐 count 

  (1) 4 3 1 2   x x x x x 5 

(2) 3 4 1 2 x x x x x x 6 

(5) 4 3 2 1   x x x x  4 

(7) 4 1 3 2   x x x x 4 

(8) 4 3 1 2  x x x x x 5 

Count 1 4 5 5 5 4 24 

Prob (%) 20% 80% 100% 100% 100% 80% 80% 
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Graph L18:  

 

The desired outcome for this line graph’s summaries ordering was: 2  1  4  3.  

The six pairwise relationships are: 𝟐 ≻ 𝟏;  𝟐 ≻ 𝟒;  𝟐 ≻ 𝟑;  𝟏 ≻ 𝟒;  𝟏 ≻ 𝟑;  𝟒 ≻ 𝟑. 

Table D-3: Results of applying the pairwise relationship approach to line graph L18. 

 Pairwise relationships  

Responses 𝟐 ≻ 𝟏 𝟐 ≻ 𝟒 𝟐 ≻ 𝟑 𝟏 ≻ 𝟒 𝟏 ≻ 𝟑 𝟒 ≻ 𝟑 count 

  (1) 4 3 1 2       x 1 

(2) 2 4 1 3 x x x  x x 5 

(3) 2 1 4 3  x x x x x x 6 

(4) 2 1 4 3  x x x x x x 6 

(5) 3 2 4 1  x x     2 

(8) 4 3 2 1 x     x 2 

(9) 3 4 2 1 x      1 

Count 6 4 3 2 3 5 23 

Prob (%) 85.7% 57.1% 42.8% 28.6% 42.8% 71.4% 54.7% 
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Graph L21:  

 

The desired outcome for this line graph’s summaries ordering was: 4  1  3  2.  

The six pairwise relationships are: 𝟒 ≻ 𝟏;  𝟒 ≻ 𝟑;  𝟒 ≻ 𝟐;  𝟏 ≻ 𝟑;  𝟏 ≻ 𝟐;  𝟑 ≻ 𝟐. 

Table D-4: Results of applying the pairwise relationship approach to line graph L21. 

 Pairwise relationships  

Responses 𝟒 ≻ 𝟏 𝟒 ≻ 𝟑 𝟒 ≻ 𝟐 𝟏 ≻ 𝟑 𝟏 ≻ 𝟐 𝟑 ≻ 𝟐 count 

  (1) 2 1 3 4    x   1 

(2) 2 1 3 4    x   1 

(3) 1 2 4 3   x  x x  3 

(4) 4 2 3 1  x x x    3 

(5) 4 1 3 2  x x x x x x 6 

Count 2 3 2 3 2 1 14 

Prob (%) 40% 60% 40% 60% 40% 20% 46.6% 
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Graph L23: 

 

The desired outcome for this line graph’s summaries ordering was: 3  4  1  2.  

The six pairwise relationships are: 𝟑 ≻ 𝟒;  𝟑 ≻ 𝟏;  𝟑 ≻ 𝟐;  𝟒 ≻ 𝟏;  𝟒 ≻ 𝟐;  𝟏 ≻ 𝟐. 

Table D-5: Results of applying the pairwise relationship approach to line graph L23. 

 Pairwise relationships  

Responses 𝟑 ≻ 𝟒 𝟑 ≻ 𝟏 𝟑 ≻ 𝟐 𝟒 ≻ 𝟏 𝟒 ≻ 𝟐 𝟏 ≻ 𝟐 count 

  (1) 3 4 1 2 x x x x x x 6 

(2) 4 3 2 1  x x x x  4 

(3) 4 3 2 1  x x x x  4 

(4) 3 4 1 2   x x x x x x 6 

(5) 3 4 2 1 x x x x x  5 

(6) 4 2 1 3    x x  2 

(7) 3 2 4 1 x x x x   4 

(8) 1 2 3 4 x     x 2 

Count 5 6 6 7 6 3 33 

Prob (%) 62.5% 75% 75% 87.5% 75% 37.5% 68.7% 
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Graph L26:  

 

The desired outcome for this line graph’s summaries ordering was: 1  2  3  4.  

The six pairwise relationships are: 𝟏 ≻ 𝟐;  𝟏 ≻ 𝟑;  𝟏 ≻ 𝟒;  𝟐 ≻ 𝟑;  𝟐 ≻ 𝟒;  𝟑 ≻ 𝟒. 

Table D-6: Results of applying the pairwise relationship approach to line graph L26. 

 Pairwise relationships  

Response 𝟏 ≻ 𝟐 𝟏 ≻ 𝟑 𝟏 ≻ 𝟒 𝟐 ≻ 𝟑 𝟐 ≻ 𝟒 𝟑 ≻ 𝟒 count 

  (1) 1 2 3 4 x x x x x x 6 

(3) 1 2 3 4 x x x x x x 6 

(6) 1 2 3 4 x x x x x x 6 

(7) 1 3 4 2 x x x   x 4 

Count 4 4 4 3 3 4 39 

Prob (%) 100% 100% 100% 75% 75% 100% 91.7% 
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Graph L28: 

 

The desired outcome for this line graph’s summaries ordering was: 2  1  4  3.  

The six pairwise relationships are: 𝟐 ≻ 𝟏;  𝟐 ≻ 𝟒;  𝟐 ≻ 𝟑;  𝟏 ≻ 𝟒;  𝟏 ≻ 𝟑;  𝟒 ≻ 𝟑. 

Table D-7: Results of applying the pairwise relationship approach to line graph L28. 

 Pairwise relationships  

Responses 𝟐 ≻ 𝟏 𝟐 ≻ 𝟒 𝟐 ≻ 𝟑 𝟏 ≻ 𝟒 𝟏 ≻ 𝟑 𝟒 ≻ 𝟑 count 

(2) 1 2 3 4  x x x x  4 

(3) 2 1 3 4 x x x x x  5 

(5) 2 3 1 4 x x x x   4 

(7) 2 1 3 4 x x x x x  5 

(8) 1 2 4 3  x x x x x 5 

(9) 2 1 4 3 x x x x x x 6 

Count 4 6 6 6 5 2 29 

Prob (%) 66.7% 100% 100% 100% 83.3% 33.3% 80.5% 
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Graph L42: 

 

The desired outcome for this line graph’s summaries ordering was: 4  1  3  2.  

The six pairwise relationships are: 𝟒 ≻ 𝟏;  𝟒 ≻ 𝟑;  𝟒 ≻ 𝟐;  𝟏 ≻ 𝟑;  𝟏 ≻ 𝟐;  𝟑 ≻ 𝟐. 

Table D-8: Results of applying the pairwise relationship approach to line graph L42. 

 Pairwise relationships  

Responses 𝟒 ≻ 𝟏 𝟒 ≻ 𝟑 𝟒 ≻ 𝟐 𝟏 ≻ 𝟑 𝟏 ≻ 𝟐 𝟑 ≻ 𝟐 count 

(4) 1 2 3 4      x x  2 

(6) 4 1 3 2 x x x x x x 6 

(8) 4 1 2 3 x x x x x  5 

(9) 3 1 4 2   x  x x 3 

Count 2 2 3 3 4 2 16 

Prob (%) 50% 50% 75% 75% 100% 50% 66.7% 
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Graph L89: 

 

The desired outcome for this line graph’s summaries ordering was: 3  4  1  2.  

The six pairwise relationships are: 𝟑 ≻ 𝟒;  𝟑 ≻ 𝟏;  𝟑 ≻ 𝟐;  𝟒 ≻ 𝟏;  𝟒 ≻ 𝟐;  𝟏 ≻ 𝟐. 

Table D-9: Results of applying the pairwise relationship approach to line graph L89. 

 Pairwise relationships  

Responses 𝟑 ≻ 𝟒 𝟑 ≻ 𝟏 𝟑 ≻ 𝟐 𝟒 ≻ 𝟏 𝟒 ≻ 𝟐 𝟏 ≻ 𝟐 count 

(2) 4 3 2 1  x x x x  4 

(3) 3 4 1 2 x x x x x x 6 

(4) 4 3 1 2   x x x x x 5 

(6) 4 3 1 2  x x x x x 5 

(8) 4 3 2 1  x x x x  4 

Count 1 5 5 5 5 3 24 

Prob (%) 20% 100% 100% 100% 100% 60% 80% 
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Graph L95: 

 

The desired outcome for this line graph’s summaries ordering was: 1  2  3  4.  

The six pairwise relationships are: 𝟏 ≻ 𝟐;  𝟏 ≻ 𝟑;  𝟏 ≻ 𝟒;  𝟐 ≻ 𝟑;  𝟐 ≻ 𝟒;  𝟑 ≻ 𝟒. 

Table D-10: Results of applying the pairwise relationship approach to line graph L95. 

 Pairwise relationship  

Responses 𝟏 ≻ 𝟐 𝟏 ≻ 𝟑 𝟏 ≻ 𝟒 𝟐 ≻ 𝟑 𝟐 ≻ 𝟒 𝟑 ≻ 𝟒 count 

(2) 1 2 3 4 x x x x x x 6 

(3) 1 2 3 4 x x x x x x 6 

(4) 1 2 4 3  x x x x x  5 

(5) 1 2 3 4 x x x x x x 6 

(6) 1 3 4 2 x x x   x 4 

(7) 1 2 3 4 x x x x x x 6 

(9) 1 3 2 4 x x x  x x 5 

Count 7 7 7 5 6 6 38 

Prob (%) 100% 100% 100% 71.4% 85.7% 85.7% 90.5% 

 

  



 

 

230 

IRB APPROVALS 

 

Appendix E 



 

 

231 

 



 

 

232 

 



 

 

233 

 



 

 

234 

 


