Arts and Science-Enginerring Curricula

- Chemical Engineering

- Civil Engineering
- Electrical Engineering
- Mechanical Engineering

This five-year program leads to the degree of Bachelor of Arts or Bachelor of Science and the degree of Bachelor of Chemical, Civil, Electrical, or Mechanical Engineering

The Arts Engineering Program serves to both broaden the engineer's knowledge of the liberal arts and provide him or her with additional professional expertise. Many employers recognize the utility of hiring engineers who have extra proficiency in the language arts, the social sciences, and the humanities. Increasingly they search for employees with knowledge in some field that is interrelated with modern engineering, for example, economics, law, communication, mathematics and computer science and many of the biological and physical sciences. Yet some Arts-Engineering students have opted for this five-year program mainly for the personal satisfaction it can provide. These students, while committed to engineering as a profession, seek to enrich their nonworking hours with artistic or cultural knowledge acquired while in the College of Arts and Science.

In this program, students pursue courses in both the College of Arts and Science and the College of Engineering. It has attracted all kinds of students, among them freshmen who are undecided between a career in engineering or some field in Arts and Science. After sampling courses in both colleges, they can decide to contin-
ue in the program or switch to a four-year engineering or Arts and Science program. Conversely, a significant number of students who graduate as Arts-Engineers transferred into the program at some later time in their college career, either seeking to enrich their engineering studies or, if they were originally Arts and Science majors, deciding to become engineers.

The five-year Arts and Science-Engineering program assumes that all requirements will be fulfilled in the engineering department of the student's choice. A minimum of thirty additional credits in Arts and Science is required The additional courses are selected in consultation with an Arts and Science adviser in such a way as to fulfill all requirements in that college. Since many courses taken as part of the engineering curricula are also applicable to Arts and Science degrees, all requirements for both degrees can usually be met within the framework of the "bachelor's-plus-30."

For his or her degree in the College of Arts and Science the student must fulfill the following requirements.

Second Writing Course: Must be passed with a grade of C or better; the course may also simultaneously fulfill one of the group or elective courses listed below.

Language: Must pass in an intermediate-level language course or pass a proficiency test at the intermedi-
ate level. Note that credits earned in meeting the language requirements cannot be counted toward fulfilling the group requirements or the Arts and Science electives below.

Group Requirements

Group A: Analysis and appreciation of the creative arts and humanities (12 credits, in at least two departments or programs).

Group B: The study of culture and institutions over time (12 credits in at least two departments or programs).

Group C: Empirically based study of human beings and their environment (12 credits in at least two departments or programs).

Group D: The study of natural phenomena through experiment and analysis. Automatically satisfied by means of the engineering curriculum.

Consult the latest listing of courses fulfilling group requirements available at the Arts and Science Dean's Office, 127 Memorial Hall.
NOTE: The above groups differ from General Education groups of the College of Engineering. (See page 199.) This requires the student to make careful course selection in order to have courses that satisfy both curricula simultaneously.
Area of Concentration: 15 credits of Arts and Science electives to be used for acquiring some depth of knowledge in a field chosen by the student in consultation with an Arts and Science adviser. It is recognized that the 15 credits designated for specialization may well be insufficient to qualify the student for an official major in most departments of the College of Arts and Science. Hence no major is required. Arts-Engineers whose "Area of Concentration" falls short of a major will graduate with a B.A. from the College of Arts and Science.

However, some students do manage to major in an Arts and Science department either by taking more than the minimum number of Arts and Science courses, or by specializing in a scientific or mathematical field, several of whose courses are also required for their engineering program. Some science departments give B.A. and B.S. degrees. Arts-Engineers majoring in such a department can attain either degree by following the appropriate departmental requirements. But there is one exception. While a few departments do not require a language proficiency for a B.S., nevertheless all Arts-Engineers must fulfill the language requirement.

DEGREE: BACHELOR OF ARTS or BACHELOR OF SCIENCE -BACHELOR OF CHEMICAL ENGINEERING MAJOR: NONE REQUIRED-CHEMICAL ENGINEERING

UNIVERSITY REQUIREMENTS

E 110 Critical Reading and Writing ... $3^{\text {1S }}$
Three credits in an approved course or courses stressing 3^{1-4}
multicultural, ethnic, and/or gender-related content.\#

ARTS AND SCIENCE COLLEGE REQUIREMENTS

Skill Requirements

Writing:
A writing course involving significant writing experience including two papers with a combined minimum of 3,000 words to be submitted for extended faculty critique of both composition and content.
Foreign Language :
Completion of the intermediate-level course (107 or 112) in a given language or, for students with more than 4 years of high school foreign language or the equivalent, satisfactory performance on a proficiency test in that language.
Breadth Requirements (See page 74)

Group A

12Understanding and appreciation of the creative arts and humanities. Twelve credits representing at least two areas
Group B
The study of culture and institutions over time. Twelve credits representing at least two areas
Group C.
Empirically based study of human beings and their environment. Twelve credits representing at least two areas
The above groups differ from the General Education groups of the College of Engineering. This requires careful course selection in order to have courses that satisfy both curricula simultaneously

AREA OF CONCENTRATION REQUIREMENTS

Area of Concentration:

Fifteen credits of Arts and Science electives to be used for 15
acquiring some depth of knowledge in a field chosen in consultation with an Arts and Science adviser.
Arts-Science Courses Completed... 1-5
The liberal arts component is listed as 51 credit hours. The absolute minimum required to satisfy the requirements listed above is 45 ; this assumes that the foreign language requirement is satisfied from high school work, the writing course is in one of the Groups A, B, or C, and that nine credits of the Area of Concentration are also from one of the Groups A, B, or C Thus, students without language skills and concentrating in science or mathematics will need more than 51 credit hours to complete all of these requirements.

ENGINEERING COLLEGE REQUIREMENTS

Mathematics

M 241	Analytic Geometry and Calculus A	$4^{1 F}$
M 242	Analytic Geometry and Calculus B	$4^{\text {15 }}$
M 243	Analytic Geometry and Calculus C	$4^{2 \mathrm{~F}}$
M 302	Ordinary Differential Equation	3^{25}

[^0]Physics
PS 207 General Physics $4^{2 F}$
PS 208 General Physics $4^{2 S}$
MAJOR REQUIREMENTS
External to the College
Biology $4^{2 F}$Chemistry
C 111 General Chemistry \dagger
C 119 Quantitative Chemistr $3^{1 F}$
2^{15}
C 112 General Chemistry C 112 General Chemistry 3^{15}
uantilative Chemistry II 3^{15}
C 443 Physical Chemistry $3^{3 F}$
C 444 Physical Chemistry. 3^{35}
C 331 Organic Chemistry $3^{2 \mathrm{~F}}$
C 332 Organic Chemistry 3^{25}
C 333 Organic Chemistry Laboratory I $1^{1 F}$
Computer Science
CIS 106 General Computer Science for Engineers $3^{1 F}$
Within the College
MAT 302 Material Science for Engineers $4^{4 F}$
Within the Department
CHE 009 Chemical Engineering Freshman Seminar $0^{2 \mathrm{~F}}$
CHE 112 Introduction to Chemical Engineering 3^{25}
CHE 231 Chemical Engineering Thermodynamics $3^{3 \mathrm{~F}}$
CHE 341 Fluid Mechanics $3^{4 F}$
CHE 342 Heat and Mass Transfer 3^{45}
CHE 325 Chemical Engineering Thermodynamics 3^{35}
3^{45}
CHE 332 Chemical Engineering Kinetics 3^{45}
CHE 345 Chemical Engineering Laboratory I 3^{45}
CHE 443 Mass Transfer Operations $3^{5 \mathrm{~F}}$
CHE 445 Chemical Engineering Laboratory II $3^{5 \mathrm{~F}}$
CHE 432 Chemical Process Analysis $3^{5 S}$
Technical Electives
Technical Electives
The purpose of the technical electives is to advance the 6^{4}scientific or engineering background of the chemical engi-neer at the intermediate $(300-400)$ level. The technical elec-tives program is a minimum of six credits taken from coursesin the following list, normally two courses. Students shouldselect their technical electives in the spring of sophomoreyear to avoid scheduling conflicts Students should formu-late an academic plan for their technical and chemical engi-neering electives with the assistance of their academicadvisor
Biology
B 301 Cellular and Molecular Biology. 4
Genetic and Evolutionary Biology 4
305 Cell Biology 4
B 4xx Biology course chosen with the approval of the adviser. 3-4
Chemistry
C 457 Inorganic Chemistry 2
C 527 Introductory Biochemistry 3
C 6xx Chemistry course chosen with the approval of the adviser 3
Computer Science
CIS 300 Introduction to Scientific Computation 3
Mathematics
M 349 Elements of Linear Systems 3
M 389 Discrete Mathematics 3
M 426 Introduction to Numerical Analysis and 3
Algorithmic Computation
M 427 Approximation Theory 3
M 428 Algorithmic and Numerical Solution of 3
Differential Equation
M 5xx Mathematics course chosen with the approval of the 3adviser
M 6xx Mathematics course chosen with the approval of the 3adviser
Mechanical Engineering Applied Mathematics
ME 361 Applied Engineering Analysis 3
ME 863 Engineering Analysis 3
M E 864 Engineering Analysis 3
Physics
PS 419 Analytical Mechanics 3
PS 420 Analytical Mechanics 3
PS 6xx Physics course chosen with the approval of the adviser 3
Statistics
ST 450 Statistics for the Engineering and Physical Sciences 3
ST 6xx Statistics course chosen with the approval of the adviser3
-3
Electronic Materials
(please note prerequisites)
EE 314 Electronics and Instrumentation 4
EE 340 Solid State Electronics 3
EE 4xx Solid State Fabrication Laboratory 1
EE 623 Electrical Properties of Matter I 3
EE 626 Integrated Circuits 3
EE 629 Digital Structures 3
Polymeric Materials
ME 410 Experimental Mechanics for Composite Materials 3
ME 415 Finite Element Analysis 3
Chemical Engineering Technical Electives. 9^{5}
The curriculum provides three chemical engineering technicalelectives in the senior year. These courses are intended to pro-vide some flexibility in selecting a chemical engineering pro-gram at the advanced level Students should decide with theassistance of their adviser if they should conduct a program ofindependent research and then choose their course elective(s)
Chemical engineering technical electives are defined as fol-lows:Any Chemical Engineering course numbered between 470 and499; any 400- or higher-level Materials and Metallurgy course;U 401-U 402 Senior Thesis; any 600- or 800-level course inChemical Engineering. Courses at the 600 level and 800 levelare graduate courses open, with the consent of the instructor,to advanced students in senior standing.
ConcentrationsThe technical electives and chemical engineering electives canbe coupled to provide a more intense concentration in an areaof interest. The groupings beloware some examples of thisapproach.
Applied Mathematics
M 426 Introduction to Numerical Analysis and. $3^{4 S}$
Algorithmic Computation
M 389 Discrete Mathematics $3^{5 F}$
CHE 827 Chemical Engineering Problems $2-3^{5 S}$
Biology
B 301 Cellular and Molecular Biology $4^{5 S}$
C 527 Introductory Biochemistry $3^{5 F}$
CHE 620 Biochemical Engineering $3^{5 S}$

[^1]Chemistry
C 457 Inorganic Chemistry $3^{4 S}$
C 527 Introductory Biochemistry $3^{5 \mathrm{~F}}$
CHE 606 Introduction to Catalysis 3^{55}
CHE 610 Industrial and Engineering Chemistry 3^{55}
CHE 836 Applied Chemical Kinetics $3^{5 F}$
Electronic Materials
EE 314 Electronics and Instrumentation $4^{4 \mathrm{~F}}$
EE 340 Solid State Electronics 3^{45}
EE 4xx Solid State Fabrication Laboratory $1^{5 \mathrm{~F}}$
CHE 667 Solid State Device Fabrication 3^{55}
Polymeric Materials
ME 213 Principles of Mechanics I
ME 213 Principles of Mechanics I $4^{4 W}$ $4^{4 W}$
ME 415 Finite Element Analysis $3^{5 \mathrm{~F}}$
ME 410 Experimental Mechanics for Composite Materials $3^{5 W}$
CHE 601 Structure and Properties of Polymer Materials 3or
CHE 603 Polymerization Reaction Engineering $3^{4 F}$
CHE 602 Polymer Process Analysis and Design 3^{45}
or
CHE 604 Introduction to Polymer Science and Engineering II..... 3
CREDITS TO TOTAL A MINIMUM OF 160
DEGREE: BACHELOR OF ARTS or BACHELOR OF SCIENCE -BACHELOR OF CIVIL ENGINEERING MAJOR: NONE REQUIRED--CIVIL ENGINEERING
CURRICULUM CREDITS*
UNIVERSITY REQUIREMENTS
Three credits in an approved course or courses stressing 3^{1-4} multicultural, ethnic, and/or gender-related content.\#
ARTS AND SCIENCE COLLEGE REQUIREMENTSSkill Requirements
Writing:3
A writing course involving significant writing experienceincluding two papers with a combined minimum of 3,000words to be submitted for extended faculty critique of bothcomposition and content.
Foreign Language: 0-12
Completion of the intermediate-level course (107 or 112) in agiven language or, for students with more than 4 years of highschool foreign language or the equivalent, satisfactory perfor-mance on a proficiency test in that language.
Breadth Requirements (See page 74)
Group A 12
Understanding and appreciation of the creative arts andhumanities. Twelve credits representing at least two areas
Group B 12
The study of culture and institutions over time. Twelve creditsrepresenting at least two areas
Group C 12
Empirically based study of human beings and their environment. Twelve credits representing at least two areas.The above groups differ from the General Education groups ofthe College of Engineering. This requires careful course selectionin order to have courses that satisfy both curricula simultaneously

AREA OF CONCENTRATION REQUIREMENTS

Area of Concentration

Fifteen credits of Arts and Science electives to be used for 15 acquiring some depth of knowledge in a field chosen in consultation with an Arts and Science adviser

Arts-Science Courses Completed 1-5
The liberal arts component is listed as 51 credit hours. The absolute minimum required to satisfy the requirements listed above is 45 ; this assumes that the foreign language requirement is satisfied from high school work, the writing course is in one of the Groups A, B, or C, and that nine credits of the Area of Concentration are also from one of the Groups A, B, or C Thus, students without language skills and concentrating in science or mathematics will need more than 51 credit hours to complete all of these requirements

ENGINEERING COLLEGE REQUIREMENTS

Mathematics

M 241 Analytic Geometry and Calculus A $4^{1 F}$
M 242 Analytic Geometry and Calculus B 4^{15}
M 243 Analytic Geometry and Calculus C $4^{2 \mathrm{~F}}$
M 302 Ordinary Differential Equations 3^{25}
Physics
PS 207 General Physics $4^{1 \mathrm{~F}}$
PS 208 General Physics $4^{2 F}$
MAJOR REQUIREMENTS
External to the College
C 103 General Chemistry $4^{1 F}$
C 104 General Chemistry 4^{15}
CIS 106 General Computer Science for Engineers $3^{2 \mathrm{~F}}$
GEO 107 General Geology I $4^{2 \mathrm{~F}}$
E 410 Technical Writing $3^{3 S}$
ST 450 Statistics for the Engineering and Physical Sciences 3^{35}
Within the College
EG 125 Introduction to Engineering (MAE) $2^{1 F}$
EG 132 Engineering Graphics/Analysis $2^{1 F}$
MEC 305 Fluid Mechanics 3^{35}
MEC 306 Fluid Mechanics Laboratory 1^{35}
MAT 302 Material Science for Engineers $4^{3 F}$
Within the Department
CE 211 Statics. $3^{2 F}$
CE 212 Strength of Materials 3^{25}
CE 213 Materials Laboratory 1^{25}
CE 331 Introduction to Environmental Engineering $3^{3 F}$
CE 301 Analysis of Structures $4^{3 \mathrm{~F}}$
CE 311 Dynamics $3^{3 F}$
CE 351 Transportation Engineering 3^{35}
CE 381 Civil Engineering Analysis 3^{35}
CE 420 Soil Mechanics $4^{4 \mathrm{~F}}$
CE 461 Senior Design Project 3^{45}
CE 482 Systems Design and Operation 3^{45}
CE 402 Steel Design $3^{4 F}$
or
CE 403 Concrete Design 3
One of: CE 431 Water Supply Engineering 3^{45}
oICE 432 Waste Water Engineering3

[^2]| One of: | | |
| :---: | :---: | :---: |
| CE 441 | Hydrology | $3^{4 S}$ |
| or | | |
| CE 442 | Hydraulic Engineering | 3 |

Technical Electives \dagger
Technical Electives .. $12^{3,4}$
Four courses: Three additional design points must be satisfied; see current department technical elective listing.

CREDITS TO TOTAL A MINIMUM OF 161

DEGREE: BACHELOR OF ARTS or BACHELOR OF SCIENCE -bachelor of electrical engineering
 MAJOR: NONE REQUIRED-ELECTRICAL ENGINEERING

CURRICULUM
 CREDITS*
 UNIVERSITY REQUIREMENTS

E 110 Critical Reading and Writing .. $3^{1 \text { S }}$
Three credits in an approved course or courses stressing 3^{1-4}
multicultural, ethnic, and/or gender-related content.\#

ARTS AND SCIENCE COLLEGE REQUIREMENTS

Skill Requirements
\qquad
A writing course involving significant writing experience including two papers with a combined minimum of 3,000 words to be submitted for extended faculty critique of both composition and content
Foreign Language 0-12
Completion of the intermediate-level course (107 or 112) in a given language or, for students with more than 4 years of high school foreign language or the equivalent, satisfactory performance on a proficiency test in that language

Breadth Requirements (See page 74)
Group A12

Understanding and appreciation of the creative arts and
humanities. Twelve credits representing at least two areas.
Group B12

The study of culture and institutions over time Twelve credits representing at least two areas.

Group C12

Empirically based study of human beings and their environment. Twelve credits representing at least two areas
The above groups differ from the General Education groups of the College of Engineering. This requires careful course selection in order to have courses that satisfy both curricula simultaneously.

AREA OF CONCENTRATION REQUIREMENTS

Area of Concentration:

Fifteen credits of Arts and Science electives to be used for
acquiring some depth of knowledge in a field chosen in consultation with an Arts and Science adviser.
Arts-Science Courses Completed, 1-5

The liberal arts component is listed as 51 credit hours. The absolute minimum required to satisfy the requirements listed above is 45 ; this assumes that the for eign language requirement is satisfied from high school work, the writing course is in one of the Groups A, B, or C, and that nine credits of the Area of Concentration are also from one of the Groups A, B, or C . Thus, students without language skills and concentrating in science or mathematics will need more than 51 credit hours to complete all of these requirements.

ENGINEERING COLLEGE REQUIREMENTS

Physics

PS 207 General Physics ... $4^{1 \mathrm{~F}}$
PS 208 General Physics .. $4^{2 S}$

MAJOR REQUIREMENTS

External to the Coliege

Mathematics

M 242	Analytic Geometry and Calculus B	$4^{1 F}$
M 243	Analytic Geometry and Calculus C	4^{15}
M 367	Differential Equations \& Linear Algebra I	$3^{2 \mathrm{~F}}$
M 367	Differential Equations \& Linear Algebra II	3^{25}
Chemistry		
C 103	General Chemistry	$4^{1 F}$
CIS 180	Introduction to Computer Science I	3^{15}
CIS 181	Introduction to Computer Science II	3^{15}
E 301	Problems in Composition	$3^{3 \mathrm{~F}}$
PHL 367	Ethics in the Engineering Profession	$1^{4 F}$
Within the Department		
EE 210	Introduction to Combinational Logic	$2^{2 F}$
EE 211	Introduction to Sequential Circuits	$2^{2 S}$
EE 205	Linear Circuit Theory	$4^{3 F}$
EE 220	Microprocessor Based Systems I	$2^{3 F}$
EE 309	Electronic Circuit Analysis I	4^{35}
EE 221	Microprocessor Based Systems II	2^{35}
EE 302	Electrical Properties of Materials	4^{35}
EE 305	Signal Processing I	$3^{4 \mathrm{~F}}$
EE 312	Electronic Circuit Analysis II	$4^{4 \mathrm{~F}}$
EE 320	Field Theory	$3^{4 \mathrm{~F}}$
EE 306	Signal Processing II	4^{45}
EE 310	Random Signals and Noise	3^{45}
EE 340	Solid State Electronics	$3{ }^{45}$
EE 417	Feedback Control Systems.	$3^{5 \mathrm{~F}}$
EE 413	Field Theory II	$4^{5 \mathrm{~F}}$
EE 433	Energy Systems	$3^{5 S}$

EE 310 may be taken in the senior year (s) and EE 413 and/or EE 433 in the junior year (s) when appropriate to a plan for a technical concentration.

Design Requirement

In addition to the design content of the normal program, every student must take at least one course in their senior year in which one design project is at least 50% of the coursework Regularly offered courses that presently meet this requirement are EE 420, 422, 650 and 664 . The design requirement may also be met with special projects carried out in conjunction with faculty research with the prior approval of the Departmental Undergraduate Representative Students must consult with their advisers for the proper selection of design courses

[^3]Technical Electives
Technical Electives
Each student must select a concentration to structure theirtechnical elective program. Four concentrations are nowdefined (computer engineering, systems and signals engineer-ing, electronic devices and materials engineering, and powersystems engineering). Students with a special interest maydefine their own concentrations in conjunction with theiradviser With some exceptions, upper-level engineering, com-puter science, physics, science and mathematics courses areacceptable technical electives. However, students planningtheir own programs of concentration should realize that theremust be a theme holding together at least most of the courseschosen. Any special concentrations must be approved by theDepar tmental Undergraduate Representative prior to the start
of the senior year:
Each of the four regular concentrations specifies 15 , or morof the 21 technical elective credits in the core programStudents should note that the requirement for a senior designproject will, in some cases, further constrain the choice of tech-nical electives.
The technical electives must be chosen from an area of concen-tration. The four concentrations follow:
Technical Electives-Computer Engineering
CIS 220 Data Structures. $3^{4 \mathrm{~F}}$
CIS 360 Computer Architecture 3^{45}
EE 323 Digital System Design I 3^{45}
EE 422 Digital System Design II $3^{5 \mathrm{~F}}$
EE 618 Modern Control Engineering $3^{5 S}$
or $3^{5 \mathrm{~F}}$
Technical electives chosen with the approval of an adviser. 6^{5}
Technical Electives-Systems and Signals Concentration
CIS 220 Data Structures 3^{35}
M 426 Introduction to Numerical Analysis and $3^{4 F}$
Algorithmic Computation
$3^{5 \mathrm{~F}}$
EE 403 Communication Systems Engineering
$3^{5 S}$
$3^{5 S}$
EE 618 Modern Control Engineering $3^{5 \mathrm{~F}}$
Technical electives chosen with the approval of an adviser 6^{5}
Technical Electives-Devices and Materials Concentration
Students whose primary interest is in the Devices and Materials
Engineering concentration should take:
PS 209 General Physics 3^{35}
PS 313 Physical Optics 3^{45}
EE 623 Electronic Properties of Matter $3^{5 F}$
Students whose primary interest is in optoelectronics and elec-tro-optics should take:
EE 640 Optoelectronics $3^{5 \mathrm{~F}}$
and
EE 642 Special Topics in Electrooptics $3^{5 S}$
Students whose primary interest is in electronic services should take:
EE 626 Integrated Circuits $3^{5 \mathrm{~F}}$
EE 650 Semiconductor Device Design and Fabrication** $3^{5 S}$
Technical electives chosen with the approval of an adviser 6^{5}
Technical Electives-Power Systems Concentration
ME 307 Thermodynamics I $3^{3 F}$
EE 412 Introduction to Power Systems Analysis $4^{5 \mathrm{~F}}$
EE 414 Electrical Machines, Motors and Generators 4^{55}
EE 618 Modern Control Engineering $3^{5 S}$
ME 408 Power Generation System Design 3^{35}or
EE 323 Digital Systems Design I 3^{35}
Technical electives chosen with the approval of an adviser 6^{5}
CREDITS TO TOTAL A MINIMUM OF 158
DEGREE: BACHELOR OF ARTS or BACHELOR OF SCIENCE -BACHELOR OF ELECTRICAL ENGINEERING MAJOR: SELECTED ARTS AND SCIENCE MAJOR -MECHANICAL ENGINEERING
CURRICULUM
UNIVERSITY REQUIREMENTS
E 110 Critical Reading and Writing 3^{15}
Three credits in an approved course or courses stressing 3^{1-4}multicultural, ethnic, and/or gender-related content\#

ARTS AND SCIENCE COLLEGE REQUIREMENTS

Skill Requirements

Writing: 3
A writing course involving significant writing experienceincluding two papers with a combined minimum of 3,000words to be submitted for extended faculty critique of bothcomposition and content.
Foreign Language: 0-12
Completion of the intermediate-level course (107 or 112) in agiven language or, for students with more than 4 years of highschool foreign language or the equivalent, satisfactory perfor-mance on a proficiency test in that language
Breadth Requirements (See page 74)
Group A. 12
Understanding and appreciation of the creative arts andhumanities. Twelve credits representing at least two areas
Group B 12The study of culture and institutions over time. Twelve creditsrepresenting at least two areas.
Group C12
Empirically based study of human beings and their environ-ment. Twelve credits representing at least two areas.The above groups differ from the General Education groups ofthe College of Engineering. This requires careful course selec-tion in order to have courses that satisfy both curricula simulta-neously.
AREA OF CONCENTRATION REQUIREMENTS
Area of ConcentrationFifteen credits of Arts and Science electives to be used for15
acquiring some depth of knowledge in a field chosen in con-sultation with an Arts and Science adviser
Arts-Science Courses Completed1-5
The liberal arts component is listed as 51 credit hours. Theabsolute minimum required to satisfy the requirements listedabove is 45 ; this assumes that the foreign language requirementis satisfied from high school work, the writing course is in oneof the Groups A, B, or C, and that nine credits of the Area ofConcentration are also from one of the Groups A, B, or C.

[^4]Thus, students without language skills and concentrating in science or mathematics will need more than 51 credit hours to complete all of these requirements

ENGINEERING COLLEGE REQUIREMENTS

MAJOR REQUIREMENTS

External to the College

Chemistry
C 103 General Chemistry... $4^{1 \mathrm{~F}}$
C 104 General Chemistry... $4^{\text {1S }}$
Within the College
EG 125 Introduction to Engineering (ME) $3^{1 \mathrm{~F}}$
EG 132 Engineering Graphics/Analysis ... $2^{\text {1S }}$
MAT 302 Material Science for Engineers .. $4^{2 \mathrm{~S}}$
EE 314 Electronics and Instrumentation $4^{4 \mathrm{~F}}$
MEC 305 Fluid Mechanics... $3^{4 \mathrm{~F}}$
MEC 306 Fluid Mechanics Laboratory ...
Within the Department
ME 213 Principles of Mechanics I...
ME 214 Principles of Mechanics II .. $3^{2 S}$
ME 313 Strength of Materials .. $4^{2 S}$

ME 307 Thermodynamics I ... $3^{4 \mathrm{~F}}$

ME 316 Materials Engineering $3^{4 \mathrm{~F}}$
ME 347 Mechanical Design I $3^{4 \mathrm{~F}}$
ME 348 Mechanical Design II 3^{45}
ME 391 Engineering Science Laboratory I 4^{35}
ME 336 Fluid Mechanics II 3^{45}
ME 302 Heat Transfer. $3^{4 \mathrm{~S}}$
ME 427 Systems Dynamics I $3^{5 \mathrm{~F}}$
ME 447 Design and Systems Synthesis I $3^{5 F}$
ME 448 Design and Systems Synthesis II $3^{5 S}$
Technical Electives \daggerThe technical electives illustrated below are for concentrationin Aerospace Engineering. The technical elective selections forthe other four options are given in the program description ofthe standard ME curricula
Technical Electives
A minimum of twelve credits to be selected from the 19
following courses or substitute other courses in consultationwith the adviser:
ME 411 Structural Mechanics for Mechanical and. 3
Aerospace Engineering
ME 413 Advanced Mechanics of Materials 3
ME 415 Finite Element Analysis 3
ME 432 Aerodynamics 3
ME 435 Propulsion. 3
ME 436 Fluid Machinery 3
ME 445 Senior Research 3-6
ME 616 Composite Materials Structures 3
CREDITS TO TOTAL A MINIMUM OF 161

[^0]: *Superior figures indicate semester (fall or spring) and/or years in which the course is normally taken, ie ${ }^{1}{ }^{17}$ fall of freshman year, ${ }^{2 S}$ spring of sophomore year, etc \#This requirement may be fulfilled through a course taken to complete major, group, breadth, or elective requirements. See page 24

[^1]: \dagger Students may enter Chemical Engineering after completing the eight-credit freshman Chemistry sequence, C 103-104. However, an additional three-credit Chemistry course will be required.

[^2]: \#This requirement may be fulfilled through a course taken to complete major, group, breadth, or elective requirements. See page 24

[^3]: *Superior figures indicate semester (fall or spring) and/or year or years in which the course is normally taken, i.e, ${ }^{1 \mathrm{~F}}$ fall of freshman year, ${ }^{25}$ spring of sophomore year, etc. \#This requirement may be fulfilled through a course taken to complete major, group, breadth, or elective requirements See page 24
 \dagger The technical elective program is under constant review by the faculty. An updated list is available in the department office. Students should check with their advisers before selecting courses and should be aware that a formal mechanism exists to provide additional fiexibility in selection of their Technical Elective courses

[^4]: *Superior figures indicate semester (fall or spring) and/or year or years in which the course is normally taken, i.e., ${ }^{1 \mathrm{~F}}$ fall of freshman year, ${ }^{25}$ spring of sophomore year, etc. \#This requirement may be fulfilled through a course taken to complete major, group, breadth, or elective requirements. See page 24 .
 **Courses must be taken as a sequence, EE 640 and EE 642 or EE 626 and EE 650.

