Arts and Science-Engineering Curricula

- Chemical Engineering
- Civil Engineering
- Electrical Engineering
- Mechanical Engineering

This five-year program leads to the degree of Bachelor of Arts or Bachelor of Science and the degree of Bachelor of Chemical, Civil, Electrical, or Mechanical Engineering.

The Arts-Engineering Program serves to both broaden the engineer's knowledge of the liberal arts and provide him or her with additional professional expertise. Many employers recognize the utility of hiring engineers who have extra proficiency in the language arts, the social sciences, and the humanities. Increasingly they search for employees with knowledge in some field that is interrelated with modern engineering, for example, economics, law, communication, mathematics and computer science and many of the biological and physical sciences. Yet some Arts-Engineering students have opted for this five-year program mainly for the personal satisfaction it can provide. These students, while committed to engineering as a profession, seek to enrich their nonworking hours with artistic or cultural knowledge acquired while in the College of Arts and Science.

In this program, students pursue courses in both the College of Arts and Science and the College of Engineering. It has attracted all kinds of students, among them freshmen who are undecided between a career in engineering or some field in Arts and Science. After sampling courses in both colleges, they can decide to contin-
ue in the program or switch to a four-year engineering or Arts and Science program. Conversely, a significant number of students who graduate as Arts-Engineers transferred into the program at some later time in their college career, either seeking to enrich their engineering studies or, if they were originally Arts and Science majors, deciding to become engineers.

The five-year Arts and Science-Engineering program assumes that all requirements will be fulfilled in the engineering department of the student's choice. A minimum of thirty additional credits in Arts and Science is required. The additional courses are selected in consultation with an Arts and Science adviser in such a way as to fulfill all requirements in that college. Since many courses taken as part of the engineering curricula are also applicable to Arts and Science degrees, all requirements for both degrees can usually be met within the framework of the "bachelor's-plus-30."

For his or her degree in the College of Arts and Science the student must fulfill the following requirements

Second Writing Course: Must be passed with a grade of C or better; the course may also simultaneously fulfill one of the group or elective courses listed below.

Language: Must pass in an intermediate-level language course or pass a proficiency test at the intermedi-
ate level. Note that credits earned in meeting the language requirements cannot be counted toward fulfilling the group requirements or the Arts and Science electives below.

Group Requirements

Group A: Analysis and appreciation of the creative arts and humanities (12 credits, in at least two departments or programs).

Group B: The study of culture and institutions over time (12 credits in at least two departments or programs).

Group C: Empirically based study of human beings and their environment (12 credits in at least two departments or programs).

Group D: The study of natural phenomena through experiment and analysis. Automatically satisfied by means of the engineering curriculum.

Consult the latest listing of courses fulfilling group requirements available at the Arts and Science Dean's Office, 127 Memorial Hall.
NOTE: The above groups differ from General Education groups of the College of Engineering. (See College General Education Program in the College of Engineering section.) This requires the student to make careful course selection in order to have courses that satisfy both curricula simultaneously.
Area of Concentration: 15 credits of Arts and Science electives to be used for acquiring some depth of knowledge in a field chosen by the student in consultation with an Arts and Science adviser. It is recognized that the 15 credits designated for specialization may well be insufficient to qualify the student for an official major in most departments of the College of Arts and Science. Hence no major is required. Arts-Engineers whose "Area of Concentration" falls short of a major will graduate with a B.A from the College of Arts and Science.

However, some students do manage to major in an Arts and Science department either by taking more than the minimum number of Arts and Science courses, or by specializing in a scientific or mathematical field, several of whose courses are also required for their engineering program. Some science departments give B.A. and B.S. degrees. Arts-Engineers majoring in such a department can attain either degree by following the appropriate departmental requirements. But there is one exception. While a few departments do not require a language proficiency for a B.S., nevertheless all Arts-Engineers must fulfill the language requirement.

DEGREE: BACHELOR OF ARTS or BACHELOR OF SCIENCE -BACHELOR OF CHEMICAL ENGINEERING MAJOR: NONE REQUIRED-CHEMICAL ENGINEERING

CURRICULUM

UNIVERSITY REQUIREMENTS

ENGL 110 Critical Reading and Writing $3^{1 \mathrm{~S}}$
Three credits in an approved course or courses stressing 3^{1-4} multicultural, ethnic, and/or gender-related content. \#

ARTS AND SCIENCE COLLEGE REQUIREMENTS
Skill Requirements
Writing:
A writing course involving significant writing experience including two papers with a combined minimum of 3,000 words to be submitted for extended faculty critique of both composition and content.
Foreign Language:
Completion of the intermediate-level course (107 or 112) in a given language. Students with four or more years of high school work in a single foreign language may attempt to fulfill the requirement in that language by taking an exemption examination.

Breadth Requirements (See page 80)
Group A
Understanding and appreciation of the creative arts and humanities. Twelve credits representing at least two areas.
Group B.. 12

The study of culture and institutions over time. Twelve credits representing at least two areas.
Group C.
Empirically based study of human beings and their environment. Twelve credits representing at least two areas
The above groups differ from the General Education groups of the College of Engineering. This requixes careful course selection in order to have courses that satisfy both curricula simultaneously.

AREA OF CONCENTRATION REQUIREMENTS

Area of Concentration:
Fifteen credits of Arts and Science electives to be used for 15 acquiring some depth of knowledge in a field chosen in consultation with an Arts and Science adviser.
Arts-Science Courses Completed ... 1-5
The liberal arts component is listed as 51 credit hours. The absolute minimum required to satisfy the requirements listed above is 45 ; this assumes that the foreign language requirement is satisfied from high school work, the writing course is in one of the Groups A, B, or C, and that nine credits of the Area of Concentration are also from one of the Groups A, B, or C. Thus, students without language skills and concentrating in science or mathematics will need more than 51 credit hours to complete all of these requirements

ENGINEERING COLLEGE REQUIREMENTS

Mathematics

MATH 241	Analytic Geometry and Calculus A	$4^{1 \mathrm{~F}}$
MATH 242	Analytic Geometry and Calculus B	4^{15}
MATH 243	Analytic Geometry and Calculus C	$4^{2 \mathrm{~F}}$
MATH 302	Ordinary Differential Equations	3^{25}

[^0]
Bisc
CHEM 527 Introductory Biochemistry 4^{55}
3^{55}
CHEG 620 Biochemical Engineering 3^{55}
Chemistry
CHEM 457 Inorganic Chemistry. 3^{45}
CHEM 527 Introductory Biochemistry $3^{5 \mathrm{~F}}$
CHEG 606 Introduction to Catalysis 3^{55}
CHEG 610 Industrial and Engineering Chemistry. 3^{55}
CHEG 836 Applied Chemical Kinetics $3^{5 \mathrm{~F}}$
Electronic Materials
ELEG 314 Electronics and Instrumentation $4^{4 F}$
LEG 340 Solid State Electronic 3^{45}
ELEG 4xx Solid State Fabrication Laboratory $1^{5 F}$
CHEG 667 Solid State Device Fabrication $3^{5 S}$
Polymeric Materials
MEEG 213 Principles of Mechanics I $4^{4 W}$
MEEG 415 Finite Element Analysis $3^{5 k}$
MEEG 410 Experimental Mechanics for Composite Materials $3^{5 W}$
CHEG 601 Structure and Proper ties of Polymer Materials 3
OI
CHEG 603 Polymerization Reaction Engineering $3^{4 F}$
CHEG 602 Polymer Process Analysis and Design. 3^{45}CHEG 604 Introduction to Polymer Science and Engineering II3
CREDITS TO TOTAL A MINIMUM OF 160
DEGREE: BACHELOR OF ARTS OT BACHELOR OF SCIENCE -BACHELOR OF CIVIL ENGINEERING
MAJOR: NONE REQUIRED-CIVIL ENGINEERING
CURRICULUM CREDITS*
UNIVERSITY REQUIREMENTS
ENGL 110 Critical Reading and Writing 3^{15}
Three credits in an approved course or courses stressing 3^{1-4}
multicultural, ethnic, and/or gender-related content.\#
ARTS AND SCIENCE COLLEGE REOUIREMENTS
Skill Requirements
Writing: 3
A writing course involving significant writing experienceincluding two papers with a combined minimum of 3,000words to be submitted for extended faculty critique of bothcomposition and content
Foreign Language: $0-12$Completion of the intermediate-level course (107 or 112) in agiven language. Students with four or more years of high schoolwork in a single foreign language may attempt to fulfill the requixe-ment in that language by taking an exemption examination.
Breadth Requirements (See page 80)
Group A 12
Understanding and appreciation of the creative arts andhumanities. Twelve credits representing at least two areas
Group B12The study of culture and institutions over time Twelve creditsrepresenting at least two areas
Group C12Empirically based study of human beings and their environ-
ment. Twelve credits representing at least two areas
The above groups differ from the General Education groups ofthe College of Engineering. This requires careful course selectionin order to have courses thạt satisfy both curricula simultaneously
AREA OF CONCENTRATION REQUIREMENTS
Area of Concentration.
Fifteen credits of Arts and Science electives to be used for 15
acquiring some depth of knowledge in a field chosen in con-sultation with an Arts and Science adviser
Arts-Science Courses Completed 1-5The liberal arts component is listed as 51 credit hours. Theabsolute minimum required to satisfy the requirements listedabove is 45 ; this assumes that the foreign language requirementis satisfied from high school work, the writing course is in oneof the Groups A, B, or C, and that nine credits of the Area ofConcentration are also from one of the Groups A, B, or CThus, students without language skills and concentrating in sci-ence or mathematics will need more than 51 credit hours tocomplete all of these requirements.
ENGINEERING COLLEGE REQUIREMENTS
Mathematics
MATH 241 Analytic Geometry and Calculus A $4^{1 F}$
MATH 242 Analytic Geometry and Calculus B 4^{15}
ATH 243 Analytic Geometry and Calculus C ${ }^{2} 2$
Physics
PHYS 208 General Physics. $4^{2 F}$
MAJOR REQUIREMENTS
External to the College
CHEM 103 General Chemistry $4^{1 F}$
CHEM 104 General Chemistry 4^{15}
CISC 106 General Computer Science for Engineers $3^{2 F}$
GEOL 107 General Geology 1 $4^{2 F}$
ENGL 410 Technical Writing 3^{35}
STAT 450 Statistics for the Engineering and Physical Sciences 3^{35}
Within the College
EGGG 125 Introduction to Engineering (MASC) $9^{1 F}$
EGGG 132 Engineering Graphics/Analysis $2^{1 F}$
MECH 305 Fluid Mechanics 3^{35}
MECH 306 Fluid Mechanics Laboratory $1^{3 S}$
MASC 302 Material Science for Engineers $4^{3 E}$
Within the Department
CIEG 211 Statics $3^{2 \mathrm{~F}}$
CIEG 212 Strength of Materials 3^{25}
CIEG 213 Materials Laboratory $1{ }^{25}$
CIEG 331 Introduction to Environmental Engineering $3^{3 \mathrm{~F}}$
CIEG 301 Analysis of Structures $4^{3 F}$
CIEG 311 Dynamics $3^{3 \mathrm{~F}}$
CIEG 351 Transportation Engineering 3^{35}
CIEG 381 Civil Engineering Analysis 3^{35}
CIEG 420 Soil Mechanics $4^{4 \mathrm{~F}}$
CIEG 461 Senior Design Project 3^{45}
CIEG 482 Systems Design and Operation. 3^{45}
One of:
CIEG 402 Steel Design $3^{4 F}$
CIEG 403 Concrete Design 3

[^1]| One of: | | |
| :---: | :---: | :---: |
| $\text { CIEG } 431$
 or | Water Supply Engineering | 3^{45} |
| CIEG 432 | Wastewater Engineering | 3 |
| One of:
 CIEG 441 or | Hydrology | 3^{48} |
| CIEG 442 | Hydraulic Engineering | 3 |
| Technical Electives \dagger | | |
| TechnicalElectives $12^{3,4}$ | | |
| Four courses: Three additional design points must be satisfied; see current department technical elective listing. | | |
| CREDTS TO TOTAL M MIMMUM OF 161 | | |
| DEGREE: BACHELOR OF ARTS OT BACHELOR OF SCIENCE -BACHELOR OF ELECTRICAL ENGINEERING MAJOR: NONE REQUIRED-ELECTRICAL ENGINEERING | | |
| CURRICULUM CREDITS* | | |
| UNIVERSTTY REOUREMENTS | | |
| ENGL 110 Critical Reading and Writing ... 3^{15} Three credits in an approved course or courses stressing 3^{1-4} multicultural, ethnic, and/or gender-related content.\# | | |
| ARTS AND SCIENCE COLIEGE REQUPEMENTS | | |
| Skill Requirements | | |
| Writing ... 3 | | |
| A writing course involving significant writing experience including two papers with a combined minimum of 3,000 words to be submitted for extended faculty critique of both composition and content. | | |
| Foreign Language.
 Completion of the intermediate-level course (107 or 112) in a given language. Students with four or more years of high school work in a single foreign language may attempt to fulfill the requirement in that language by taking an exemption examination. | | |
| Breadth Requirements (See page 80) | | |
| Group A .. 12 | | |
| Understanding and appreciation of the creative arts and humanities. Twelve credits representing at least two areas | | |
| Group B
 The study of culture and institutions over time Twelve credits representing at least two areas. | | |
| Group C
 Empirically based study of human beings and their environment. Twelve credits representing at least two areas. | | |
| The above groups differ from the General Education groups of the College of Engineering. This requires careful course selection in order to have courses that satisfy both curricula simultaneously. | | |
| AREA OF CONCENTRATION REQUPEMENTS | | |
| Area of Con
 Fifteen cre
 acquirin
 sultation | itration:
 its of Arts and Science elective some depth of knowledge in with an Arts and Science advis | $\text { on- } 15$ |

DEGREE: BACHELOR OF ARTS OR BACHELOR OF SCIENCE -BACHELOR OF ELECTRICAL ENGINEERING MAJOR: NONE REQUIRED-ELECTRICAL ENGINEERING

drkiculum

3^{15} multicultural, ethnic, and/or gender-related content.\#
MAEMENTS

ment

A writing course involving significant writing experience including two papers with a combined minimum of 3,000 words to be submitted for extended faculty critique of both

Completion of the intermediate-level course (107 or 112) in a given language. Students with four or more years of high school work in a single foreign language may attempt to fulfill the requirement in that language by taking an exemption examination

Breadth Requirements (See page 80)

Orop A

12The study of culture and institutions over time Twelve credits representing at least two areas.

Empirically based study of human beings and their environment. Twelve credits representing at least two areas

The above groups differ from the General Education groups of the College of Engineering. This requires careful course election in order to have courses that satisfy both curricula imultaneously
acquiring some depth of knowledge in a field chosen in consultation with an Arts and Science adviser

Arts-Science Courses Completed

1.5The liberal arts component is listed as 51 credit hours. The absolute minimum required to satisfy the requirements listed above is 45 ; this assumes that the foreign language requirement is satisfied from high school work, the writing course is in one of the Groups A, B, or C, and that nine credits of the Area of Concentration are also from one of the Groups A, B, or C Thus, students without language skills and concentrating in science or mathematics will need more than 51 credit hours to complete all of these requirements.

ENGINEERING COLLEGE REQUREMENTS

Physics
PHYS 207 General Physics ... $4^{1 \text { IF }}$
PHYS 208 General Physics

MAJOR REQUIREMENTS

External to the College

Mathematics
MATH 242 Analytic Geometry and Calculus B $4^{\text {1F }}$
MATH 243 Analytic Geometry and Calculus C 4^{15}
MATH 341 Differential Equations \& Linear Algebra L.................... $3^{2 \mathrm{~F}}$
MATH 342 Differential Equations \& Linear Algebra II $3^{2 \text { S }}$
Chemistry
CHEM 103 General Chemistry .. $4^{1 F}$
CISC 180 Introduction to Computer Science I........................... $3^{1 \mathrm{~F}}$
CISC 181 Introduction to Computer Science II $3^{\text {is }}$
ENGL 301 Problems in Composition .. $3^{3 \mathrm{~F}}$
PHIL 367 Ethics in the Engineering Profession... $1^{4 \mathrm{~F}}$

Within the Deparment

ELEG 210 Introduction to Combinational Logic...................... 2^{25}
ELEG 211 Introduction to Sequential Cixcuits................................... 2^{25}
ELEG 205 Linear Circuit Theory ... $4^{3 \mathrm{~F}}$
ELEG 220 Microprocessor Based Systems I..................................... 2^{3}
ELEG 309 Electronic Circuit Analysis I .. 4^{35}
ELEG 221 Microprocessor Based Systems II.................................... 2^{35}
ELEG 302 Electrical Properties of Materials $4^{3 \mathrm{~S}}$
ELEG 305 Signal Processing I... $3^{4 \mathrm{~F}}$
ELEG 312 Electronic Circuit Analysis II .. $4^{4 \mathrm{~F}}$
ELEG 320 Field Theory .. $3^{4 \sqrt{7}}$
ELEG 306 Signal Processing II .. 4^{4}
ELEG 310 Random Signals and Noise .. 3^{45}
ELEG 340 Solid State Electronics... 3^{45}

ELEG 413 Field Theory II .. $4^{5 \mathrm{~F}}$
ELEG 433 Energy Systems .. 3^{55}
ELEG 310 may be taken in the senior year (s) and ELEG 413 and/or ELEG 433 in the junior year (s) when appropriate to a plan for a technical concentration.

Design Requirement

In addition to the design content of the normal program, every student must take at least one course in their senior year in which one design project is at least 50% of the coursework Regularly offered courses that presently meet this requirement are ELEG 420, 422, 650 and 664 . The design requirement may also be met with special projects carried out in conjunction with faculty research with the prior approval of the Depar tmental Undergraduate Representative. Students must consult with their advisers for the proper selection of design courses.

[^2]
Technical Electives

Technical Electives

Each student must select a concentration to structure their technical elective program. Four concentrations are now defined (computer engineering, systems and signals engineering, electronic devices and materials engineering, and power systems engineering). Students with a special interest may define their own concentrations in conjunction with their adviser. With some exceptions, upper-level engineering, computer science, physics, science and mathematics courses are acceptable technical electives However, students planning their own programs of concentration should realize that there must be a theme holding together at least most of the courses chosen. Any special concentrations must be approved by the Departmental Undergraduate Representative prior to the start of the senior year.

Each of the four regular concentrations specifies 15 , or more, of the 21 technical elective credits in the core program Students should note that the requirement for a senior design project will, in some cases, fur ther constrain the choice of technical electives.

The technical electives must be chosen from an area of concentration. The four concentrations follow:
Technical Electives-Computer Engineering
CISC 220 Data Structures $3^{4 F}$
CISC 360 Computer Architecture 3^{45}
ELEG 323 Digital System Desion I
ELEG 422 Digital System Design II $3^{5 \mathrm{~F}}$$3^{45}$ELEG 618 Modern Control EngineeringOrELEG 631 Digital Signal Processing$3^{5 S}$$3^{5 F}$
Technical electives chosen with the approval of an adviser: 6^{5}
Technical Electives-Systems and Signals Concentration
CISC 220 Data Structures $3^{3 S}$
MATH 426 Introduction to Numerical Analysis and 3^{4}
ELEG 403 Communication Systems Engineering $3^{5 F}$
ELEG 618 Modern Control Engineering $3^{5 S}$
ELEG 631 Digital Signal Processing 35 F
Technical electives chosen with the approval of an adviser. 6^{5}
Technical Electives--Devices and Materials ConcentrationStudents whose primary interest is in the Devices and MaterialsEngineering concentration should take:
PHYS 209 General Physics 3^{35}
PHYS 313 Physical Optics 3^{45}
ELEG 623 Electronic Properties of Matter $3^{5 \mathbf{F}}$
Students whose primary intexest is in optoelectronics and elec-tro-optics should take:
ELEG 640 Optoelectronics $3^{5 F}$
and
ELEG 642 Special Topics in Electrooptics 3^{58}
Students whose primary interest is in electronic servicesshould take:
ELEG626 Integrated Circuits $3^{5 \mathrm{~F}}$
and
ELEG 650 Semiconductor Device Design and Fabrication** 3^{55}
Technical electives chosen with the approval of an adviser 6^{5}
Technical Electives-Power Systems Concentration
MEEG 307 Thermodynamics I $3^{3 F}$
ELEG 412 Introduction to Power Systems Analysis. 4^{55}
EIEG 414 Flectrical Machines, Motors and Generators. 4^{55}
ELEG 618 Modem Control Engineering $3^{5 S}$
MEEG 408 Power Generation System Design 3^{35}
or
ELEG 323 Digital Systems Design I 3^{35}
Technical electives chosen with the approval of an adviser 6^{5}
CREDITS TO TOTAL A MINIMUM OF 158
DEGREE: BACHELOR OF ARTS or BACHELOR OF SCIENCE -BACHELOR OF ELECTRICAL ENGINEERING MAJOR: SELECTED ARTS AND SCIENCE MAJOR -MECHANICAL ENGINEERING
CURRICULUMCREDITS*
UNIVERSITY REQUIREMENTS
ENGL 110 Cxitical Reading and Writing 3^{15}
Three credits in an approved course or courses stressing 3^{1-4}
multicultural, ethnic, and/or gender-related content.\#
ARTS AND SCIENCE COLLEGE REQUIREMENTS
Skill Requirements
Writing: 3A writing course involving significant writing experienceincluding two papers with a combined minimum of 3,000words to be submitted for extended faculty critique of bothcomposition and content
Foreign Language: 0-12
Completion of the intermediate-level course (107 or 112) in agiven language. Students with four or more years of high schoolwork in a single foreign language may attempt to fulfill the require-ment in that language by taking an exemption examination.
Breadth Requirements (See page 80)
Group A12
Understanding and appreciation of the creative arts andhumanities. Twelve credits representing at least two areasGroup B12
The study of culture and institutions over time. Twelve creditsrepresenting at least two areas
Group C12
Empirically based study of human beings and their environ-ment. Twelve credits representing at least two areas.The above groups differ from the General Education groupsof the College of Engineering. This requires careful courseselection in order to have courses that satisfy both curriculasimultaneously.

AREA OF CONCENTRATION REQUIREMENTS

Area of Concentration:
Fifteen credits of Arts and Science electives to be used for 15
acquiring some depth of knowledge in a field
Arts-Science Courses Completed1.5
The liberal arts component is listed as 51 credit hours. Theabsolute minimum required to satisfy the requirements listedabove is 45 ; this assumes that the foreign language requirementis satisfied from high school work, the writing course is in oneof the Groups A, B, or C, and that nine credits of the Area ofConcentration are also from one of the Groups A, B, or C .

[^3]Thus, students without language skills and concentrating in science or mathematics will need more than 51 credit hours to complete all of these requirements.

ENGINEERING COLLEGE REQUIREMENTS

Mathematics	
MATH 241	Analytic Geometry and Calculus A
MATH 242	Analytic Geometry and Calculus B
MATH 243	Analytic Geometry and Calculus C
MATH 302	Ordinary Differential Equations I
Physics	
PHYS 207	General Physics
PHYS 208	General Physics

MAJOR REQUIREMENTS

External to the College

Chemistry		
CHEM 103	General Chemistry	${ }^{15}$
CHEM 104	General Chemistry	4^{15}
Within the College		
EGGG 125	Introduction to Engineering (MEEG)	$3^{1 /}$
EGGG 132	Engineering Graphics/Analysis	2^{18}
MASC 302	Material Science for Engineers	4^{28}
ELEG 314	Electronics and Instrumentation	4
MECH 305	Fluid Mechanics	3^{45}
MECH 306	Fluid Mechanics Laboratory.	
Within the Department		
MEEG 213	Principles of Mechanics I	3^{25}
MEEG 214	Principles of Mechanics II	3^{25}
MEEG 313	Strength of Materia	

MEEG 361 Applied Engineering Analysis ..
MEEG 307 Thermodynamics I... $3^{4 \mathrm{~F}}$
MEEG 308 Thermodynamics II ...
MEEG 316 Materials Engineering .. $3^{4 \mathbf{F}}$

MEEG 348 Mechanical Design II ... $3^{4 S}$
MEEG 391 Engineering Science Laboratory I $4^{3 S}$
MEEG 336 Fluid Mechanics II ...
MEEG 302 Heat Transfer... $3^{4 S}$
MEEG 427 Systems Dynamics I .. $3^{5 F}$
MEEG 447 Design and Systems Synthesis I.. $3^{5 F}$
MEEG 448 Design and Systems Synthesis II $3^{5 S}$

Technical Electives \dagger

The technical electives illustrated below are for concentration in Aerospace Engineering. The technical elective selections for the other four options are given in the program description of the standard MEEG curricula

Technical Electives
A minimum of twelve credits to be selected from the 12
following courses or substitute other courses in consultation with the adviser:
MEEG 411 Structural Mechanics for Mechanical and 3
Aerospace Engineering
MEEG 413 Advanced Mechanics of Materials 3
MEEG 415 Finite Element Analysis... 3
MEEG 432 Aerodynamics ... 3

MEEG 436 Fluid Machinery... 3
MEEG 445 Senior Research ... 3-6
MEEG 616 Composite Materials Structures 3
CREDITS TO TOTAL A MINIMUM OF 161

[^4]
NOTES

[^0]: *Superior figures indicate semester (fall or spring) and/or years in which the course is normally taken, i.e., ${ }^{15}$ fall of freshman year, ${ }^{2 \mathrm{~S}}$ spring of sophomore year, etc. \# I his requirement may be fulfilled through a course taken to complete major, group, breadth, or elective requirements. See page 27

[^1]: *Superior figures indicate semester (fall or spring) and/or years in which the course is normally taken, ie ${ }^{15}$ fall of freshman year, ${ }^{25}$ spring of sophomore year, etc \#I his requirement may be fulfilled through a course taken to complete major, group, breadth, or elective requirements See page 27

[^2]: *Superior figures indicate semester (fall or spring) and/or year or years in which the course is normally taken, i.e, ${ }^{15}$ fall of freshman year, ${ }^{2} S_{\text {spring }}$ of sophomore year, etc.
 \#This requirement may be fulfilled through a course taken to complete major, group, breadth, or elective requirements See page 27 .
 情he technical elective program is under constant review by the faculty. An updated list is available in the department office. Students should check with their advisers before selecting courses and should be aware that a formal mechanism exists to provide additional flexibility in selection of their Technical Elective courses

[^3]: *Superior figures indicate semester (fall or spring) and/or year or years in which the course is nommally taken, i.e, ${ }^{15}$ fall of freshman year, ${ }^{2 S}$ spring of sophomore year, etc. \#This requirement may be fulfilled through a course taken to complete major, group, breadth, or elective requirements. See page 27
 **Courses must be taken as a sequence, ELEG 640 and ELEG 642 oì ELEG 626 and ELEG 650

[^4]: \dagger The technical elective program is under constant review by the faculty. An updated list is available in the depar tment office. Students should check with their advisers before selecting courses and should be aware that a formal mechanism exists to provide additional flexibility in selection of their Technical Elective courses

