BORDER SECURITY AS A LABOR SCREENING DEVICE:

A NEW MODEL OF IMMIGRATION ECONOMICS

by

Jesse D. Melvin

A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Economics

Summer 2018

© 2018 Melvin All Rights Reserved

BORDER SECURITY AS A LABOR SCREENING DEVICE:

A NEW MODEL OF IMMIGRATION ECONOMICS

by

Jesse D. Melvin

Approved:

Michael A. Arnold, Ph.D. Chair of the Department of Economics

Approved:

Bruce W. Weber, Ph.D. Dean of the Alfred Lerner College of Business and Economics

Approved:

Douglas J. Doren, Ph.D. Interim Vice Provost for the Office of Graduate and Professional Education

	I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
Signed:	
	Michael A. Arnold, Ph.D. Professor in charge of dissertation
	I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
Signed:	
	Desmond J. Toohey, Ph.D. Member of dissertation committee
	I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
Signed:	
	Saul D. Hoffman, Ph.D. Member of dissertation committee
	I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
Signed:	
	Breck L. Robinson, Ph.D. Member of dissertation committee

TABLE OF CONTENTS

LIST C	OF TA	BLES	
LIST C	DF FIG	jURES	
ABSTI	RACT		
Chapt	ter		
1	INTR	ODUCTION	
2	LITER	ATURE REVIEW	
	2.1.	Economics Literature Regarding Immigration	
		2.1.1 Effect on Native Employment and Wages	
		2.1.2 Economic Assimilation of Immigrants	
	2.2	Economics Literature Regarding Labor Signaling/Screening	
	2.3	Demographic Literature Regarding Immigration	
3	MOD)EL	
	3.1	Migration-Decision Utility Function	
	3.2	Immigration Control Policy as Labor Screening Device: A Simple	
	22	Example	
	3.3 3.4	Equilibrium Model: Exogenous Wage-Setting	
		3.4.1 Exogenous Immigration Control Policy	
		3.4.2 Exogenous Wage-Setting	
		3.4.3 Solving the Equilibrium Model	
		3.4.4 Interpreting the Model	
		3.4.5 Optimal Government Behavior	
	3.5	Equilibrium Model: Endogenous Wage-Setting	
		3.5.1 Endogenous Wage-Setting	
		3.5.2 Solving the Equilibrium Model	
		3.5.3 Interpreting the Model	
	_	3.5.4 Optimal Government Behavior	
	3.6	Expansions of the Model	

		3.6.1	Deportation Risk	110
		3.6.2	Multiple-Nation Model	117
л				122
4	DACI	GROON		152
	4.1	Histori	cal U.S. Immigration (21 st century)	146
	4.2	Conter	nporary U.S. Immigration (21 st century)	146
		121	The Migrants	146
		4.2.1	Logal Daths of Migration	
		4.2.2	Legal Patilis of Migration	
		4.2.3		
5	EMP	IRICAL A	NALYSIS	164
	5.1	Homel	and Security Act of 2002	
	5.2	Data		
	5.3	Metho	d	
	5.4	Entire	U.S. Labor Market	
		5.4.1	Comparative Statistics	169
		5.4.2	Results	172
	5.5	Exoger	nous-Wage U.S. Labor Market	176
		5.5.1	Defining the Market	
		5.5.2	Results	186
	5.6	Endoge	enous-Wage U.S. Labor Market	193
		5.6.1	Defining the Market	193
		5.6.2	Results	198
	57	Intern	rating the Results	202
	5.7	interp		
REFE	ERENC	ES		208
Арр	endix			
Δ			OSITIVE DENOMINATOR IN LABOR SCREENING FEFECT	212
R	PRO		OVERNMENT WEI FARE MAXIMUM	21/
C	ORD	ERING O	DF NATIONS	
-				

D	PROOF THAT WJ-1 - WJ	218
Е	26 DESTINATION-NATION SIMULATION	222
F	TEMPORARY WORKER VISA PREFERENCE CATEGORIES	224

G	REGRESSION OUTPUT	226
---	-------------------	-----

LIST OF TABLES

Table 1.1	Summary of Model	. 3
Table 1.2	Summary of Government Response	. 5
Table 3.1	Summary of Discrete Example	41
Table 4.1	U.S. Population, by Place of Origin (1790)1	33
Table 4.2	U.S. Immigrant Population, by Nation of Origin (1850)1	35
Table 4.3	U.S. Immigrant Population, by Region of Origin (1920) 1	38
Table 4.4	U.S. Immigrant Population, by Region of Origin (1990) 1	42
Table 4.5	U.S. Immigrant Population, by Region of Origin (2015) 1	47
Table 4.6	Employed Workers in the United States, by Occupation (2016) 1	48
Table 4.7	Family Preference System of U.S. Legal Migration (FY 2014) 1	51
Table 4.8	Permanent Worker Visa Preference Categories1	54
Table 4.9	U.S. Refugee Admissions (FY 2016) 1	57
Table 5.1	Characteristics of Workers in the United States, by Origin of Birth 1	70
Table 5.2	Migrant Workers in the United States, by Year of Arrival (1998-2015) 1	71
Table 5.3	Comparison of Average Hourly Wages, 1998-2015 1	72
Table 5.4	Regression Results: Impact of Post-2002 Entry on Migrants 1	74
Table 5.5	Effective Minimum Wage Rates by State and Year (1998-2015) 1	79
Table 5.6	U.S. Minimum Wage Laborers, by Sector1	83
Table 5.7	Occupations Included in Minimum Wage Analysis	34

Table 5.8 I	mpact of Post-2002 Entry by Migrants Earning Approximately Minimum Nage
Table 5.9 I	mpact of Post-2002 Entry by Migrants in Minimum Wage Demographic 188
Table 5.10	Impact of Post-2002 Entry by Migrants in Leisure Industry 190
Table 5.11	Impact of Post-2002 Entry by Migrants in Minimum Wage Occupations 192
Table 5.12	Immigrant Laborers, by Occupation 195
Table 5.13	Occupations Included in Endogenous-Wage Analysis 196
Table 5.14	Impact of Post-2002 Entry by Hispanic Migrants Working in Agriculture 198
Table 5.15	Impact of Post-2002 Entry by Migrants Working in Migrant-Intensive Occupations

LIST OF FIGURES

Figure 4.1	Persons Obtaining Legal U.S. Permanent Resident Status (1820 - 1860) 134
Figure 4.2	Persons Obtaining Legal U.S. Permanent Resident Status (1860 - 1920) 137
Figure 4.3	Persons Obtaining Legal U.S. Permanent Resident Status (1920 - 2000) 138
Figure 4.4	Population of Immigrants who Entered U.S. Illegally (1969 - 2000) 144
Figure 4.5	Annual FY Budgets for CBP and ICE (2003 - 2016) 161
Figure 5.1	Increase in Marginal Productivity of Minimum Wage Laborer

ABSTRACT

I present a new model of immigration that describes the migrationdecision process on an individual level, based on Spence's (1973) signaling model. The model allows for an explanation of phenomena such as chain migration and the positive selectivity of migrants, and specifically examines the positive relationship between a nation's immigration control policy and the productivity of the migrants entering that nation. The logic is straightforward: the personal cost of migrating into a nation rises as that nation's border security becomes stricter and more strongly enforced, which deters individuals who are less motivated and/or capable to migrate. I develop two distinct models based on the assumption of exogenous wage-setting (e.g. minimum wage markets) or endogenous wage-setting. Once these models have been developed, I proceed to model for optimal government behavior under the particular conditions. Using data from the Current Population Survey (CPS), I present empirical evidence of the direct relationship between border strictness and migrant productivity by using the implementation of the Homeland Security Act of 2002 as a natural experiment. The passage of the Act exogenously initiated a dramatic

increase in the efficacy and strictness of immigration control policy in the United States, causing the personal cost of migrating to rise significantly. Difference-indifference regression results for the entire U.S. market reveal that migrants who entered the nation after 2002 have a wage rate that is approximately 3.0 - 4.5%higher relative to their counterparts, and work 0.6 – 1.0 additional hours per week, ceteris paribus. Afterward, I perform this analysis on subsamples of the data relating to exogenous and endogenous-wage markets. Through differencein-difference as well as difference-in-difference-in-indifference analysis, I find that migrants working in minimum wage sectors (e.g. exogenous-wage) experienced an even stronger screening effect, whereas those working in migrant-intensive sectors (endogenous-wage) were less impacted by the screening effect of the Homeland Security Act, in concordance with the models presented in this paper. Lastly, I find that migrants who entered the U.S. before coming of age – such as DREAMers – tended to have a larger productivity premium than other migrants.

Chapter 1

INTRODUCTION

The migration of individuals to new communities and geographic areas has always been an important element of society. Along with immigrants come new ideas, different skill sets, and a larger pool of laborers. All of these have a powerful impact on the lives of the domestic population as well as the migrants themselves, and governments have implemented international immigration control policies as a result. These measures include physical border security to prevent illegal entry, obstacles to legal immigration (e.g. financial, bureaucratic, etc.), and deportation practices targeting undocumented residents.

Within the field of economics, researchers have focused mainly on the question of how migration and immigration control policies affect the welfare and wages of the host population and laborers. This has been accomplished through the application of simple supply and demand models, with the assumption that migrant labor is a close substitute to native labor with the same type of skills. Therefore, when these researchers examine the economic effects of changes in international immigration control policies they do so solely through the lens of labor supply expansion/restriction. One issue with this type of analysis is that it automatically assumes that there is no differentiation amongst individuals within a particular skill category (as determined by education, work experience at home, work experience abroad, etc.). The migrants are all assumed to have identical productivity, motivation, and ability and therefore have identical reactions to immigration control policies.

By introducing laborer heterogeneity, my research aims to investigate the effect of international immigration control policies on the *composition* of the migrant labor force, rather than just the *size* of the migrant labor force. This is be accomplished by adopting Spence's labor screening model and applying it to a modified version of Everett Lee's classic push-pull migration model (Spence 1973, Lee 1966). Then, I empirically test for the existence of a labor screening effect using CPS data and the passage of the Homeland Security Act as a natural experiment.

I begin this paper with a review of the academic literature on immigration and labor screening in Chapter 2. I start with a discussion of the fundamental and most recent papers in the field of immigration economics, with a focus on the impact of immigrants on the native labor force and economy, as well as migrants' economic assimilation over time. I follow this with a brief review of Spence's labor signaling article, upon which the framework of the model in this

paper is founded. Then, I discuss the article by Everett Lee that provided the framework for the fundamental Push-Pull demographic model of immigration.

In Chapter 3, I present a new model of international immigration economics. I begin developing the model by laying out the migration-decision utility function, which is populated by variables and relationships laid out in the classic Push-Pull model of immigration. Then I present a simple two-nation example of immigration control as a labor screening device with specificallyvalued exogenous variables. I go on to complete the model more generally by defining the distribution of the centerpiece variable - motivation/ability - and then solving for the steady state equilibrium of the model under the assumption of exogenous wage-setting in Section 3.4 and endogenous wage-setting in Section 3.5.

	Response		
	Exogenous-Wage	Endogenous-Wage	
		Migrant	Migrant Wage
Shock (increase)	Migrant Quality	Quality	Rate
Immigration Control Policy	+	+	+
Overall Productivity in Receiving Country	0	-	+
Migrant Wage Rate in Receiving Country	-	n/a	n/a
Migrant Homeland Conditions	+	+	+
Distance and/or Ethnic Costs	+	+	+

Table 1.1Summary of Model

For each of the models, I interpret the differential impacts of changes to immigration control policy, technological productivity shocks, homeland conditions, and so on. A summary of these effects can be found in Table 1.1 above. The model implies that the labor screening effect exists: there should be a positive relationship between the amount or strictness of a nation's immigration control policy and the conditional quality of migrants entering that nation. I also find that, in endogenous-wage markets, a nation with higher level of overall productivity should attract a migrant pool that has – on average – a lower level of motivation/ability. Conversely, both models indicate that there is a direct relationship between the living conditions of the migrants' sending country and the quality of the individuals who decide to relocate to another country. In other words, migrants arriving from nations with a relatively higher standard of living will tend to be relatively more productive individuals. And finally, migrants who find themselves at a greater distance from their destination nation – either physically or culturally – tend to be more motivated and capable individuals.

I conclude Sections 3.4 and 3.5 by expanding the model to incorporate a social welfare equation that is a function of the size of the migrant population, the average productivity of the migrants, and natives' attitudes toward these factors. After making reasonable assumptions of the form of the function (e.g.

	Optimal Government Response (in terms of immigration control)		
Shock (increase)	Exogenous-Wage	Endogenous-Wage	
Overall Productivity in Receiving Country	0	+	
Per-unit Cost of Border Security	-	-	
Migrant Wage Rate in Receiving Country	+	n/a	
Migrant Homeland Conditions	-	-	
Distance and/or Ethnic Costs	-	-	

Table 1.2Summary of Government Response

native citizens desire a migrant pool of labors that are relatively more productive), I go on to solve for the optimal level of immigration control policy that maximizes the social welfare function. Then, I investigate the differential impacts on the optimal level of border security that are caused by shocks to important exogenous variables and parameters; a summary of these relationships can be found in Table 1.2 above. The models imply that the government of the receiving nation should increase its immigration control policy in response to a more productive economy (endogenous-wage market) or migrants earning a higher wage rate in the receiving nation (exogenous-wage market). Both models agree that border security follows the Law of Demand: there is an inverse relationship between price of border control and optimal quantity demanded of border control. Interestingly, based on the assumptions and economic principles laid out in this paper, both models imply that a nation should be expected to loosen its border control for individuals from economically/politically healthy countries, and make its immigration control policy stricter for migrants hailing from nations experiencing significant hardship.

I finish Chapter 3 with a discussion of two expansions of the exogenouswage model, presented in Section 3.6. I begin by examining the labor screening effect of an active deportation mechanism in the receiving country. Earlier in the chapter, it was assumed that a migrant would always be able to circumvent border security if they paid the associated costs. In Sub-section 3.6.1, I introduce a Von-Neumann Morgenstern migration-decision utility function, in which there is now the possibility that a migrant's relocation "investment" is wasted as they are returned to their home country. I also assume that the likelihood of successfully entering the receiving nation is positively correlated with an individual's motivation/ability characteristic. After these additional effects have been introduced to the model, I find that the labor screening effect is even more pronounced, indicating that an active find-and-remove deportation program may be more effective as a screening measure than inert measures (such as building a wall).

For the second part of Section 3.6, I expand the framework of the model to include a variety of potential migrant-receiving nations, which more accurately represents the situation in other continents such as Europe. After solving for the steady state equilibrium, I find that the model implies that the

nation with the highest wage rate offered to migrants (denoted as Nation 0) experiences a positive labor screening effect, as witnessed with the two-nation model. However, this screening effect is more pronounced: the direct relationship between immigration control policy and migrant productivity is of a greater magnitude for Nation 0 than it is for the receiving nation in the twonation model. Conversely, if there are any other receiving nations other than Nation 0 in the multi-nation model, the model implies that the labor screening effect is indeterminate/negligible for these countries.

In Chapter 4, I provide a background discussion on immigration in the United States. I begin the chapter with a detailed history of migration, starting with Native Americans travelling over the Asiatic footbridge and the Europeans that crossed the Atlantic, and ending with the large wave of undocumented migrants that characterized American migration in the second half of the twentieth century. Afterward, I provide an overview of contemporary immigration in the 21st century by looking at a profile of the migrants that live here, as well as going over the legal paths available for foreigners to become lawful residents of the United States. I finish the chapter by discussing the various federal agencies responsible for enforcing the myriad of immigration laws, and their effectiveness in the past fifteen years.

In Chapter 5, I conduct a comprehensive empirical analysis in order to show that immigration control policy has a significant and positive labor screening effect on the productivity of incoming migrants. The centerpiece of this analysis is the passage of the Homeland Security Act of 2002, which was put into legislation following the September 11 attacks in order to protect the national security of the United States. The Act had a huge impact on the federal government's attitude, strategy, and funding toward the closing of the nation's porous borders, which were seen as a security threat. Therefore, there was a concerted (and successful) attempt to make illegal migration into the U.S. a more difficult endeavor. In addition to this, the Act made the vetting and bureaucratic process much longer and costlier for legal migrants and travelers, in the name of public safety. Therefore, the passage of the Homeland Security Act of 2002 significantly and exogenously increased the cost of migrating into the U.S., thereby providing the framework for a difference-in-difference natural experiment analysis.

Using Current Population Survey data from the U.S. Census between the years of 1998 and 2015, I begin the empirical analysis by examining the entire U.S. labor market as a whole, thereby avoiding any potential issues of market "closedness." After controlling for a host of demographic, geographic, and temporal variables, the difference-in-difference regression results revealed that migrants that entered the United States after 2002 earned a wage rate that is

approximately 3.0-4.5% higher than migrants who entered on or before that year. I also find that those post-2002 migrants also tended to work a longer workweek: to the magnitude of two-thirds to one additional hour per week.

Then, for Section 5.5, I conduct the labor screening analysis for a more narrowly selected subset of the population: individuals working in an exogenouswage market, as defined by those earning a wage determined by a binding price floor (i.e. minimum wage). I use four different methods to determine who belongs to this subset. The first and most direct method identified individuals earning within 50 cents of their particular state's effective minimum wage rate, in their year of observation, as minimum wage workers. The full sample difference-in-difference-indifference estimation produced the exact results expected from the model presented in this paper: a positive screening effect (as measured in hours worked per week) exists for everyone, and it is more pronounced for workers earning close to minimum wage. The restricted sample difference-in-difference estimation produced insignificant results, which could be a result of out-selection by successful workers (i.e. getting a raise may remove worker from sample) or a much smaller sample size. The second method identified minimum wage workers as those belonging to the common demographic group: uneducated, under 26 years old, and working part-time. The restricted-sample DID and full-sample DIDID regressions revealed that, while the general labor market experienced a labor screening effect, the effect was

negligible on those belonging to this particular demographic. Just as with the prior method, this could be attributable to the removal of capable/successful workers from the subsample (i.e. a worker moving from part-time to full-time status is removed from the sample).

For the next two approaches of determining which workers belong to a minimum wage market, I use the industrial sector that a worker belongs to (Method 3), and the classification of an individual's particular occupation (Method 4), as the defining characteristics. Since two-thirds of all minimum wage workers belong to the Leisure and Hospitality sector, I define laborers in that particular sector as belonging to an exogenous-wage market in Method 3. For Method 4, individuals that work in an occupation that is substantially populated by minimum wage workers belong to the exogenous-wage subset of the population. The DID and DIDID estimations using both two methods all produced results that are congruent with each other, as well as the implications of the model: individuals working in an exogenous-wage (minimum wage) market experienced a positive post-2002 screening effect on hours worked per week, and this screening effect was of a larger magnitude than for the entire labor market.

For Section 5.6, I conduct the labor screening analysis for migrants who work in a market with endogenous wage-setting, in which there is a stable

information feedback loop between the migrant workers and their employers such that wages are determined by previous migrants' performance. Thus, I define migrants as belonging to endogenous-wage market if they are working in a sector or occupation that has a history of employing a high fraction of migrant workers. For Method 1, I denote an individual as belong to an endogenous-wage market if they are Hispanic individual working in the agricultural sector. For Method 2, a laborer belongs to the subset if they are working in one of the eight occupations employs the highest share of migrant workers. For both methods, the wage rate regression results for the DID and DIDID analyses were congruent with each other as well as the model in this paper: migrants belonging to endogenous-wage markets experienced a significant and positive post-2002 screening effect, but this wage premium was smaller than for migrant laborers in general. The estimations for hours worked per week produced somewhat similar results: endogenous-wage migrants experienced a positive labor screening effect, but the magnitude of the weekly-hours premium was not significantly different from the average laborer.

Overall, the empirical results presented in Chapter 5 support the labor screening effect that is implied by the model presented in Chapter 3. The exogenous increase in immigration control policy appears to have caused a significant increase in migrants' productivity, as measured by their wage rate and weekly hours worked. As predicted by the model, this labor screening effect was

more pronounced for individuals working in an exogenous-wage market, and less pronounced for those working in an endogenous-wage market. Also, the fact that a host of statistically significant results were obtained for migrants working in a variety of sectors and occupations indicates that the measured labor screening effect occurred within-class. In other words, the wage and weekly-hours premiums observed for the entire U.S. labor market were not driven by cross-sectoral shifts (e.g. employment growth in high-wage positions held by migrants), but rather by a change in the quality of migrants themselves.

And finally, I find that the labor screening impact of the HSA Act of 2002 was much stronger for individuals who moved to U.S. before they were old enough to enter the labor force. This has important political ramifications: the United States has been embroiled in an intense debate over Deferred Action for Childhood Arrivals (DACA). The executive order signed by President Obama determined that migrants who entered the U.S. before their 16th birthday may have a two-year deferment from deportation and may apply for a work visa. President Trump ordered that the program stop receiving applications by March 2018, however migrants are still able to apply due to a federal court order. The estimation results presented in this paper would indicate that these DREAMers have not only been screened by U.S. immigration control policy, but the screening effect was even more pronounced for these individuals, resulting in a more productive class of workers.

Chapter 2

LITERATURE REVIEW

2.1. Economics Literature Regarding Immigration

2.1.1 Effect on Native Employment and Wages

One of the most widely debated aspects of immigration is its effect on the employment opportunities of the native population. There is a particularly strong political interest in the topic, as there is a commonly held belief that immigrant workers "steal" job opportunities from native workers. This phenomenon is tentatively supported by factor-demand and supply economic theory. Employers consider migrant labor and native labor, within a skill group, to be close substitutes. Therefore, when an influx of immigrants causes the wage rate of migrant labor to decrease, we expect employers to substitute some of their native laborers for migrant laborers.

This has led to research in which economists measure the impact of migrant workers on the employment (or the unemployment rate) of the domestic labor force. This has typically been accomplished by calculating the correlation between native employment and the relative number of immigrants in a particular geographic area, which researchers assume to be a closed labor market. Since immigrants tend to cluster in metropolitan areas, the trend is to examine this correlation in major cities.

The results of these studies vary, but there is a general consensus: an increase in immigrant labor negatively impacts the employment of domestic labor, but the relationship is very weak. A metadata review conducted by Friedberg and Hunt (1995) found that there is no evidence that immigration causes an "economically significant" reduction in native employment. More recently, Kerr and Kerr (2011) collected a survey of North American and European studies conducted since 1991 that examined the correlation between the immigrants' share of population and native employment. Out of 16 total studies, nine of them found evidence of a negative correlation. Four of the studies found no statistically significant correlation and, surprisingly, three studies found evidence of a positive employment effect. Out of the studies that found a negative correlation, five of them calculated and reported an employment elasticity (the percentage change in employment in response to a 1% increase in immigrants' share of population). Of these five studies, the average employment elasticity is approximately -0.13, implying that immigration has a relatively small effect.

Economists have also examined the impact of immigration on the wages of the domestic labor force. The theory is simple: an increase in the number of immigrants within a closed labor market leads to an increase in the labor supply in that market, which causes wages to decrease. Therefore, we expect to see a negative correlation between migrant labor supply and natives' wage rate.

Many studies have examined this relationship, typically by using a spatial fixed-effects model regressing logged wage rate on the share of immigrant population and a set of controls. The overall results of these wage studies are very similar to that of employment: there is a general consensus of a negative, but small, correlation. A survey of the literature conducted by Borjas (1994) found that there is "only a weak negative correlation." A summary of several UK studies (Dustmann 2008) reports that there is no evidence for negative average wage impacts. More recently, Kerr and Kerr (2011) collected and reported the wage elasticities that were calculated in 29 different studies. Out of these, only 11 studies reported a wage elasticity that was statistically significantly negative, while 5 studies reported a significantly positive elasticity.

There are several empirical concerns regarding the validity of these spatial correlation results. One of these issues is in regard to the endogeneity of the choice of location for immigrants. When deciding on their destination, new migrants are naturally attracted to areas with higher wages, leading to a

spurious positive correlation between immigrant share of population and wages in a labor market.

Researchers have utilized several methods in an attempt to avoid the endogeneity issue. The most prevalent is the application of a natural experiment, in which there is an exogenous influx of immigrants into a particular labor market. Perhaps the most famous of these studies is the one conducted by Card (1990), wherein he examined the effect of the 1980 Mariel boatlift. The politically inspired exodus of Cubans caused Miami's population to rapidly rise by 7%, and this sudden rise in the low-skill labor supply had almost no impact on the market. Low-skill non-Cuban laborers experienced virtually no change in their wage rate or unemployment rate, and even native Cuban laborers were not "substantially effected." The Hunt study (1992) reviewed the 1962 repatriation of Algerians into France following Algerian Independence, and the Friedberg (2001) study examined the mass migration of Jews into Israel following the breakup of the Soviet Union. Both of these studies also concluded that immigration had a very weak adverse impact on natives' wages and employment. In addition to these natural experiment studies, researchers perform analyses that use past immigrant populations and migration trends as an instrumental variable (e.g. Altonji and Card 1991, Card 2001, Peri 2007). The results of these "chain migration" studies also support the finding of immigration having a weak negative impact on similar-skill native workers.

The other major empirical issue with these spatial correlation studies is the assumption that the labor markets being observed are actually "closed." Borjas, Freeman, and Katz (1996) found that the magnitude of the wage elasticity grows significantly larger as the geographic area under examination grew larger. This indicated that there is a significant flow of labor between regions in response to economic conditions, and these flows can create a severe bias in locality-specific studies. Researchers have directly investigated how "open" spatial labor markets actually are by examining how native laborers reacted to a change in immigration population/share, in terms of geographic location. Studies by Card and DiNardo (2000) and Card (2001) showed that metropolitan natives did not emigrate in response to increased immigration, and research by Peri (2007) revealed the same lack of response in a cross-state analysis. However, an analysis of U.S. rural counties (Partridge et al. 2008) found a significant out-migration response by native laborers, a rare and important find, considering that the recent growth rate of the immigrant population ratio is significantly higher in rural counties than in metropolitan counties. Despite the recent research by Partridge, the general consensus is that native laborers (particularly urban) do not geographically respond to changes in immigration.

In terms of capital mobility, economists originally looked to changes in cross-industry composition to explain the "absorption" of new migrant laborers. The general argument is that as the share of immigrant workers increases, there

will be an expansion in the sectors of industry that are more likely to hire immigrants (or individuals or the same skill composition). For example, if new immigrants are highly likely to be high school dropouts, than an increase in immigrant population should cause an expansion in sectors such as agriculture and textile manufacturing. However, research by Card (2005) and Card and Lewis (2007) found "limited evidence" that increased immigration causes changes in industry composition; claiming that most of the response that occurs is withinindustry. In a study utilizing detailed plant-level data, Lewis (2004) tracked the adoption of numerous manufacturing technologies between 1988 and 1993. He found that plants located in geographic regions with a relatively high share of low-skill population had significantly slower adoption of automating technologies. In other words, his results confirmed that of the other researchers: industries will change their in-house composition of capital and technology in response to changes in migrant labor supply such that wages remain relatively constant.

In response to the trend of case studies in the literature, Borjas (2003) introduced a new structural approach to the problem of assessing the wage impact of migrants, by using a nested CES production function to determine the impact of a supply shock (caused by immigration) to wages in the U.S. labor market as a whole. Using data from the U.S. Census PUMS and the CPS from 1970 to 2001, he classified workers into distinct education-experience groups.

He then used variation in the supply of these worker groups to determine the differential wage impact on groups with similar education but different experience. His analysis found a wage elasticity around -0.3 to -0.4: a 10% increase in immigration in a particular class (as defined by education and experience) of labor will cause a 3-4% decrease in wages for that particular group.

All of the studies in the economics literature until the mid-1990's had operated under the assumption that native and migrant labor were perfect substitutes. Jaeger (1996) was the first to test this assumption, using 1980/1990 PUMS data on a national scale to calculate substitutability between broad skill categories in which native and migrant labor is disaggregated. His analysis supported the assumption: native and migrant labor were virtually perfect substitutes.

Using a multi-city model of production and consumption, Ottaviano and Peri (2006) studied the issue from a different angle, examining whether there are complementarities among similarly skilled ethnic groups. As they describe it: "Who can deny that Italian restaurants, French beauty shops, German breweries, Belgian chocolate stores, Russian ballets, Chinese markets, and Indian tea houses all constitute valuable consumption amenities that would be inaccessible to Americans were it not for their foreign-born residents? Similarly the skills and

abilities of foreign-born workers and thinkers may complement those of native workers and thus boost problem solving and efficiency in the workplace." Analyzing 1970/1980/1990 PUMS data using reduced-form regressions, they found that native citizens living in cities with an increasing share of foreign-born residents experienced higher wages.¹

Ottaviano and Peri (2012) re-estimated the substitutable/complimentary nature of migrant and native labor, this time using a general equilibrium approach of the nested-CES methodology introduced by Borjas (2003). They found that the substantial increase in U.S. immigration during the 1990-2004 period caused a significant increase in the real wage earned by skill groups that comprise 90% of the labor force, and this wage increase was in the range of 0.7 to 3.4%. High school dropouts were the only group of workers that experienced a negative wage effect, which was fairly negligible.

2.1.2 Economic Assimilation of Immigrants

For political as well as economic reasons, there has been interest in how immigrants fare upon arrival in a new country. The two elements of particular interest are the earnings and labor market status of the migrants. Virtually all of

¹ In order to deal with endogeneity issues, the authors also employ instrumental variables on which they successfully conduct exogeneity tests.

the research around the world agrees: newly arrived immigrants have lower employment ratios and lower earnings/wages than their labor market counterparts.² This could be explained by a lack of local labor market information, imperfectly transferable human capital, language barriers, and other cultural differences. However, the negative gap in employment and earnings appears to diminish over time as immigrants begin to assimilate into their new environment. The foundational cross-sectional analysis by Chiswick (1978) found that, after 10 to 15 years of residence, U.S. male migrant earnings matched that of American-born men with similar education and age. After those 15 years, average migrant earnings surpassed that of their American counterparts.

Subsequent research seemed to bolster these findings, until Borjas (1985) pointed out that a cross-sectional analysis like the one performed by Chiswick cannot control for cohort effects. He argues that a decline in the "quality" of cohorts since the mid-20th century is causing an overstatement of the effect of residence duration on earnings. In his longitudinal study, he finds that there is a

² Out of a survey of 29 American and European studies collected by Kerr and Kerr (2011), 19 of the studies found a significant negative wage gap. Only 5 found significant positive results. In terms of labor market status, Angrist and Kugler (2003) report that immigrants into the EU have lower participation and employment rates than natives. Research by Nekby (2002), Vilhelmsson (2000), and Ekberg (1999) on Nordic labor markets has revealed that non-Nordic immigrants have significantly lower participation and employment rates. Recent American studies have found comparable results (e.g. Chiswick et al. 2007, Card 2001, Borjas 1995).

positive years-since-migration effect, but of a significantly smaller magnitude. Beyond cohort effects, other researchers argue that there is another econometric issue, this time in the form of sample selection. Over time, a significant fraction of migrants decide to permanently re-migrate, thusly removing themselves from the samples of these assimilation studies. Studies have shown that these out-migrants tend to have significantly lower earnings than "permanent" immigrants (e.g. Edin et al. 2000, Bellamare 2003). This negative selectivity of out-migration causes an overstatement of the effect of residence duration on earnings in analyses that do not account for this. When accounting for the negative selectivity of outmigration Lubotsky (2007) found, using confidential longitudinal Social Security data, that the actual rate of earnings growth is only half as large as reported in similar repeated-crosssectional studies.

In his paper, "Self-Selection and the Earnings of Immigrants," Borjas (1987) set out to model the migration-decision and assimilation process using the earnings framework laid out by Roy (1951). In some ways the model he presents is similar to the model I present in this paper: it pays attention to the characteristics of the origin-country, host-country, and personal characteristics of the potential migrants. However, he stresses that the quality of incoming immigrants "depends <u>entirely</u>" on the ratio of variances in the incomes between the two nations. He argues that it is possible for migrants to positively self-select

or negatively self-select, and that this determination is mostly governed by conditions in the sending nation. Using data from the 1970/1980 U.S. Census, Borjas compares the earnings of working age male immigrants from 41 different origin-nations to the earnings of natives (i.e. white, non-Hispanic, non-Asian men). He constructed a country-specific set of variables by using socioeconomics measures such as "party legitimacy," gross national product per person, income distribution variance, and distance from the United States. He found that migrants with equal skillsets coming from different nations tended to have significant earnings differentials that are mostly attributable to variations in economic and political conditions in the origin-nation. Further research by Grogger and Hanson (2011) confirmed these findings, and found evidence that migrants tend to exhibit positive selectivity in general.

Researchers have also examined the economic assimilation of migrants through the lens of investment in human capital that is specific to the host nation, with particular interest in migrants learning the primary language of their new home. Lazaer (1997) argued that when a society is predominantly comprised of individuals from one culture, individuals belonging to minority groups will assimilate more quickly out of necessity. Using U.S. Census data, he showed that the likelihood of an immigrant learning English decreased with the percentage of the local community that spoke his or her native language. Researchers went on develop a formal language model that they empirically

tested using 1990 PUMS U.S. Census data and found that language proficiency rates were higher for those who live in areas with few origin-language speakers, as well as for migrants with a low chance of return migration and with less access to origin-language media (Chiswick and Miller 1998). In their international study using survey data from the U.S. Census, the German Socio-Economic Panel, and the National Immigrant Survey of Spain, Isphording and Otten (2013) they find that there is an inverse relationship between migrants' host-nation language skills and the 'linguistic distance' between the migrant's native language and the language of the host-nation. Applying this to international trade flow panel data using a gravity model, they find that linguistic distance actually has an inverse relationship with bilateral trade volume.

There is also interest in the intergenerational economic assimilation of immigrant families. Researchers first tackled the problem by analyzing cross-sections of the 1970 U.S. Census, and found that 'second-generation' American men had significantly higher wages than first-generation immigrants or third-generation³ Americans (Chiswick 1977, Carliner 1980). In other words, the children of immigrants tended to earn a higher wage than their children or their parents, even after controlling for the wage effects of age and education. The reasoning: while an arriving immigrant has the motivation/ability to face the

³ The category of 'third-generation' Americans included grandchildren of immigrants, greatgrandchildren of immigrants, and so on.

difficult challenges of migration, they do not possess human capital assets specific to their host-nation (e.g. language fluency). However, those immigrants pass on that 'lift yourself by your bootstraps' attitude to their children. Therefore, the second generation has the advantage of growing up in the hostnation and developing nation-specific human capital, while also carrying the work ethic imparted by their parents. However, since the third generation did not personally witness the challenges overcome by their grandparents and instead grew up comfortably, they do not have the same enthusiasm and motivation in the labor market, resulting in a lower wage rate.

Subsequent research focused on the persistence of intergenerational income persistence through the lens of family endowments, particularly through education and other human capital assets. These researchers developed a quantitative measure in order to determine income mobility among families: intergenerational wage correlation ρ . The intergenerational wage correlation measures the relationship between the conditional wage differential (relative to the average) of one family's generation to the generation that precedes it. In other words, if the nth generation worker in a family earns a wage that is 1% higher than the average worker of the same age and education, the (n+1)th generation worker can be expected to earn a wage that is ρ % higher than average. Using data from the NAS-NRC Twin sample, Behrman and Taubman (1985) found that the 'third generation' does not suffer from the problem
described above,⁴ and that the intergenerational wage correlation coefficient was approximately 0.2. Subsequent research seemed to bolster these findings, with the results implying an intergenerational wage correlation that is small enough that "almost all the earnings advantages or disadvantages of ancestors are wiped out in three generations." (Becker and Tomes 1986) Overall, it appeared that there was significant income mobility among U.S. families.

Further research into the matter revealed that these intergenerational wage correlation computations were significantly biased downward due to measurement error and unrepresentative samples. By using longitudinal data from the Panel Study of Income Dynamics, rather than performing a cross-section analysis, Solon (1992) computed an intergenerational correlation coefficient exceed 0.4, at least double the previous estimates. Researchers conducted more studies with U.S. longitudinal data, and they also computed a p coefficient of 0.4 or higher (Mazumder 2006, Zimmerman 1992). International researchers computed this measure of intergenerational income for German families, and found that there was significant income persistence in the European nation as well, although the issue is more pronounced in the U.S. (Couch and Dunn 1997). In an attempt to determine why this intergenerational income persistence exists, Swedish researchers employed an innovative dataset

⁴ They determined that grandparents' education does not affect educational attainment, which was previously believed to have a negative effect.

with information regarding respondent's biological parents *and* their adopted parents. They discovered that pre-birth factors (i.e. nature) and post-birth factors (i.e. nurture) both play a significant role in the human capital asset endowment process (Bjorkland et al 2007).

Along this line of reasoning, Borjas (1992) explains that intergenerational skill endowment among immigrants depends on parental inputs *as well as* the quality of the ethnic environment in which parents invest in their children, which he deemed 'ethnic capital.' In other words, an individual's skillset is not only determined by their parents' skills, but also by the average skills of their parents' ethnic group. Using data from the National Longitudinal Surveys of Youth, Borjas determined that ethnic capital does have a significant effect on skillset acquisition and wages. Taking it a step further, he found that this ethnic capital externality had an impact even when comparing individuals belonging to the same local neighborhood (Borjas 1995). Overall, Borjas argues convincingly that ethnic capital should be recognized as a substantial component of intergenerational skill/income persistence. Since immigrants have a very strong tendency to congregate in ethnic communities, this ethnic capital externality is an important determinant in migrants' intergenerational economic assimilation.

Another body of literature has focused on the consequences of high skill immigration. Modern growth theory states that when an economy receives

individuals possessing relatively high human capital, they tend to generate large and positive externalities through innovation, to the benefit of everyone in their market. Using data from the 2003 National Survey of College Graduates, Hunt and Gauthier-Loiselle (2010) investigated the issue by examining patent issuances. They found that migrant college graduates patent at double the rate of natives, therefore a 1% increase in foreign-born college graduates should result in a 6% increase in patents per capita. However, using 1940-2000 panel data on U.S. states from the U.S. Patent and Trademarks Office and other sources, they revealed that a 1% increase resulted in 15% more patents overall, indicating that there were positive externalities to those in their particular labor market. A study by Kerr and Lincoln (2010) found that cities with higher H-1B admissions for science and engineer employment led to a significantly higher number of patents filed by inventors with Indian or Chinese surnames. For most of their specifications, there was a negligible effect on native employment within science and engineering occupations.

2.2 Economics Literature Regarding Labor Signaling/Screening

The concept of labor signaling and screening was introduced by Michael Spence (1973) in the article "Job Market Signaling." He first describes a world of information asymmetry in which firms cannot directly observe a potential employee's productivity (which varies), yet the individuals know all information about themselves. In the absence of any sort of screening/signaling strategy, we expect to see a pooled equilibrium in which firms hire all workers at the same wage rate, despite the fact that they have varying productivities. Assuming that the firms are risk-neutral, this wage rate is equal to the unconditional expected marginal productivity of the worker pool.

Firms and potential employees can avoid this "blind" hiring by utilizing a labor signaling strategy. A signal is an observable characteristic that an individual has the power to change. In order for a person to alter this attribute, they must incur *signaling costs*, which differ from person to person. While Spence notes that there are many different types of signals, educational attainment is the most widely recognized (and the one he uses in the article for purposes of illustration). Formal education is an easily observed trait; a firm can simply request to see an applicant's diploma or school transcript. In order to obtain further education, an individual must pay the associated costs. These include explicit monetary costs (e.g. tuition, academic supplies), implicit monetary costs such as foregone wages, and psychic costs. It is an important assumption of the model that these signaling costs are negatively correlated with a worker's productivity. In other words, the costs of successfully obtaining further education are lower for individuals with high capability and motivation.

Due to the existence of this negative correlation, firms are able to separate the high-productivity workers from the low-productivity workers and offer them two different wage schedules (equal to their marginal productivity). They accomplish this by offering the high-wage positions only to those who have obtained a particular level of education, and the low-wage offer to the rest. Therefore, the high productivity individuals will pursue an education to send a signal to employers, and achieve a higher wage as a result. If the required education level is set high enough, low-productivity individuals will observe a wage differential that is smaller than the cost of obtaining the education. Therefore, these workers will choose not to incur the costs of signaling and will accept the lower wage offer.

2.3 Demographic Literature Regarding Immigration

Within the demographic literature, the dominant framework regarding immigration is the Push-Pull model that was popularized by Lee (1966). The model establishes a dichotomy of motivating influences: positive factors that *pull* migrants into a new location, and negative factors that *push* migrants out of their current location. Acting as the connection between the place of origin and the destination are the *intervening obstacles*, which must be overcome by the migrant if he or she wishes to relocate. And lastly, Lee recognizes that potential migrants have varying *personal factors* that influence – or even make possible – the choice of migration.

The various "push" factors include religious strife, an oppressive political environment, and military action (such as civil war). Out of the total volume of international migration, a minority is principally caused by push factors. These refugees are moving out of necessity rather than opportunity. Therefore, these imperiled individuals tend to move to the nearest or safest location, regardless of their individual characteristics or the economic opportunities in their new home. (UI-Haq and UI-Haq 1979) Thus, we expect immigrants who are primarily influenced by "push" factors to have lower productivity, since they do not exhibit the properties pertaining to a labor screening process. This "push" factor effect has interesting ramifications when it comes to interpreting the results of various studies. Studies such as Card's Mariel Boatlift examine situations in which immigrants have been "pushed." Therefore, those results may be biased since these individuals were not screened by immigration control policy.

There are several types of "pull" factors as well, including religious freedom and family reunification. However, the "pull" factor of paramount importance is the pursuit of an advanced standard of living. This typically means moving to a location where one can obtain a higher likelihood of employment, better upward mobility, and/or significantly higher wages. (e.g. Bade 2003,

Borjas 1990) This has led to, in most cases, individuals leaving less-developed regions and gravitating toward those that are more economically advanced (Doerschler 2006). In addition to being the most prevalent form of migration, this type of migration is relevant to the analysis in this paper because the individuals are *deliberating* relocation, not being *forced* into relocation. Therefore, a potential migrant is taking the costs of migration into consideration. This allows for the labor screening process I have described, since low motivation/ability individuals are less likely to suffer the higher costs of migration.

A person who has decided to migrate faces a myriad of "intervening obstacles." In the framework of the analysis in this paper, these "intervening obstacles" are the source of the costs of migration that potential migrants face when relocating. These obstacles include any physical barriers to movement, such as overall distance and the intervening terrain (e.g. mountains, oceans, rivers, etc.). There are often monetary costs, such as payments to smugglers (for illegal immigration) or bureaucratic processing fees (for legal immigration). There are also the psychological costs that arise from familial separation, cultural displacement, and the uncertainty associated with international immigration. To bring the thesis of this paper into focus, it is important to realize that the primary goal of immigration control policy is to create additional intervening obstacles. Border walls and immigration checkpoints are obvious examples of creating physical barriers to illegal immigration. These supplementary obstacles lead to even higher costs of migration.

Central to this analysis is the existence of varying "personal factors" that potential migrants possess. Examples include marriage status, parental status, land-owning status, age, physical build, intelligence, education, work experience, personal wealth, etc. While many of these characteristics will be accounted for in the empirical analysis, I will focus on one broad characteristic for the theoretical framework of this paper: motivation/ability. This attribute describes an individual's desire to improve their lot in life, and their capability to actually do so. As stated before, I assume that an individual with a high degree of motivation/ability will have relatively high workplace productivity and relatively low personal costs of migration.

Chapter 3

MODEL

I begin this section by developing the foundations of the model: the migration-decision utility function and migrants' marginal productivity function, with the "motivation/ability" attribute as the centerpiece. I then demonstrate the labor screening effect of immigration control policy through a discrete and specific example. In order to solve the model more generally, I establish the motivation/ability variable along a uniform distribution. With this done, I first solve the model under the assumption of exogenous wage-setting, like we would expect to see in sectors where migrants are earning minimum wage, or where the wage rate is virtually determined by external factors (e.g. the native labor force). I then solve the model under endogenous wage-setting, in which there is a feedback loop between average migrant productivity and the wage rate offered to migrants. With both models, I find a positive labor screening effect: there is a direct relationship between average migrant productivity and the level of immigration control policy. I go on to discuss the effects of shocks to "push"

and "pull" factors, such deteriorating homeland conditions or improvements productivity in productivity.

After establishing a linear welfare function for nation j, I model optimal government behavior in response to changes in various conditions, such as the cost of implementing immigration control policy, social attitudes regarding migrants, or a widening wage-gap. Afterward, I examine and discuss three possible expansions of the model, beginning with rejection and deportation of illegal immigrants. I show that an active deportation mechanism has an even greater effect on migrant productivity than inert immigration control measures (such as building a wall) through its state-contingent impact on the migrationdecision utility function, as well as its differential screening impact on low vs. high motivation/ability individuals. Next, I expand the original model to include more than one destination-nation and solve for the general form, as well as illustrate through a simple discrete example. Finally, I discuss the implications of introducing error terms into the utility and productivity functions.

3.1 Migration-Decision Utility Function

In order to develop the model, I begin by constructing a utility function for an individual who is considering migrating to another nation. We assume that the individual calculates an expected utility for every possible location choice, and subsequently chooses the nation destination that affords the best outcome. For the purposes of illustration, we will imagine a Mexican laborer making this decision. Potential migrant i chooses country j that maximizes

$$U_i = max(U_{MEX,i}, U_{US,i}, U_{CAN,i}, \dots, U_{Ii})$$

For the sake of simplicity, I assume that the expected utility of each nationchoice, U_{ji} is a function of two elements. The first is the migrant's expected real wage rate that he or she could earn in nation j's labor market, W_{ij}. It is very important to note that this wage rate is *conditional* on the individual's personal characteristics (e.g. educational attainment, work experience, gender), and is adjusted for the cost-of-living in that nation. The second element of the potential migrant's nation-choice utility function is the expected cost of migration, C_{ji}. The expected cost of migration is different for each destinationnation, as well as for each individual under consideration. Continuing with the example, our Mexican laborer observes the following:

$$U_{MEX,i} = f(W_{MEX,i})$$

$$U_{US,i} = f(W_{US,i}) - C_{US,i}(P_{US}, D_{US,i}, E_{US,i}, M_i)$$

$$U_{CAN,i} = f(W_{CAN,i}) - C_{CAN,i}(P_{CAN}, D_{CAN,i}, E_{CAN,i}, M_i)$$

•••

$$U_{Ji} = f(W_{Ji}) - C_{Ji}(P_J, D_{Ji}, E_{Ji}, M_i)$$

The costs of migration take multiple factors into account, and it is important to note that these costs are monetary, physical, and emotional.

The variable P_i represents the strictness of nation j's immigration control policy, and is pivotal to the analysis in this paper. The costs that are incurred through immigration control policy manifest both in legal and illegal immigration. When obtaining legal residency documentation, there is a myriad of bureaucratic obstacles that require time, energy, and money to overcome. Illegal migration comes with an even greater variety of costs. In order to cross protected borders undetected, some migrants are forced to cross dangerous terrain such as desert or ocean, and these migrants face a significant chance of serious injury or death. In 2009 alone, the United States Border Patrol reported that 417 migrants perished while crossing the U.S.-Mexican border. In order to avoid the difficulties of making the trip alone, some migrants pay "coyotes" (i.e. people-smugglers) a significant monetary fee in order to circumvent border security. Regardless of the method used to relocate, we assume that the costs of migration rise as immigration control policy becomes stricter. In addition to all this, as the effectiveness/strictness of immigration agencies increases, the risk of deportation increases. Not only does this render an unsuccessful migrant's "investment" wasted, but they also incur the physical and emotional costs that are inherent in the arrest and detainment process.

The variable D_{jh} represents the distance between nation j and the potential migrant's home location, h. As the distance between the two nation increases, the cost of migrating increases due to several factors. The most obvious is the monetary/temporal/physical cost of actually transporting the migrant's person to the new nation. Other factors include significant temperature or climate change and the toll of long-distance familial separation.

The variable E_{ji} represents "ethnic differences." This variable captures all of the culture-shock effects of relocating to a new country. Perhaps the most significant of these is the struggle of dealing with international language barriers. Combined with a lack of knowledge of local institutions and customs, migrants can find it very difficult to adapt to a new labor market. This is very costly for an individual, especially when factoring in the emotional discomfort associated with an uncertain economic future. In addition to this, belonging to a minority or "foreign" ethnic group potentially leaves a migrant vulnerable to the actions of xenophobic natives. Therefore, the greater the difference between migrant i's ethnic/cultural/lingual characteristics and that of the population of nation j, the greater the costs of migrating to that particular nation.

The last variable, M_i, represents the motivation/ability of the individual making this decision. This catch-all variable encompasses an individual's personal drive and enthusiasm for a better life, as well as their ability to

complete demanding tasks. Therefore, I assume that this motivation/ability attribute is positively correlated with the migrants' marginal productivity, θ_{ij} . I model marginal productivity as:

 $\theta_{ji} = f(M_i) + K_j$

where $\partial \theta_i / \partial M_i > 0$ and $K_j > 0$.

In addition to this, I also assume that M_i is negatively correlated with the expected costs of migration. This is in accordance with Spence's labor screening model, I am simply substituting the "cost of education" with the "cost of migration". In order to illustrate this inverse relationship, consider a migrant that is relatively more physically and mentally capable than others. This individual is less likely to incur serious injury during a border crossing, or suffer setbacks in the process of legal immigration. Therefore, that migrant's expected costs of migration are going to be lower than other potential migrants.

There are many forms that the utility and marginal productivity functions could take. For the sake of simplicity, I will assume that the functions are strictly linear for the rest of this analysis. The utility and marginal productivity functions are written as:

$$U_{ji} = W_{ji} - (\alpha P_j + \beta D_{jh} + \gamma E_{ji})(1 - M_i)$$

 $\theta_{ji} = \delta M_i + K_j$

3.2 Immigration Control Policy as Labor Screening Device: A Simple Example

Now that I have established the foundation of the model, I will demonstrate the ability of a nation to screen potential migrants by utilizing stricter immigration control policies. I will do so through a specific example. Suppose there are three equally large groups of potential migrants that are all of the same nation (Mexico) and ethnicity. The groups vary by the motivation/ability attribute, such that Group 1 laborers have M_i = -0.5, Group 2 laborers have M_i = 0, and Group 3 laborers have M_i = 0.5. For the sake of simplicity, all of these individuals have identified the U.S. as the best relocation choice; thus the ultimate decision is whether to stay in Mexico or migrate to the United States. I will assume that D_{j/MEX} and E_{j,I} are the same for all individuals, and will standardize their values to 1. I will also arbitrarily assign a value of 1 to the parameters α , β , γ , δ and K_{US}. And finally, we observe wages rates for the two countries such that W_{MEX} = 1.5 and W_{US} = 4.

Let's begin the analysis by assuming the United States has immigration policy such that $P_{US} = 0$. If this is the case, then for Group 1 individuals, the utility of migrating to the United States is $U_{US} = 4 - (0 + 1 + 1)(1 + 0.5) = 1$. Therefore, the laborers of Group 1 will choose not to migrate, since doing so yields a lower utility than staying in Mexico, where $U_{MEX} = 1.5$. For the workers of Group 2, migrating to the U.S. yields a utility of $U_{US} = 4 - (0 + 1 + 1)(1) = 2$. For group 3

individuals, migration confers a utility of $U_{US} = 4 - (0 + 1 + 1)(1 - 0.5) = 3$. Thus, the members of both Group 2 and Group 3 will decide to move to the United States.

Keep in mind that all three groups are equally sized, and that $\theta_i = M_i + 1$. Therefore, the average marginal productivity of the migrants entering the United States is $E(\theta) = 0.5(0 + 1) + 0.5(0.5 + 1) = 1.25$. This is higher than the average marginal productivity of all the potential migrants, $E(\theta) = 1$. This is a basic demonstration of the positive selectivity of migrants in general. Even without any immigration control policy, the expected "distance" and "ethnic differences" costs incurred by the Group 1 individuals were too high to justify the wage increase. These migration costs are smaller for Group 2 and 3 individuals, thus leading these higher productivity individuals to migrate into the U.S.

Table 3.1	Summary of Discrete Example						
$P_j = 0$				$P_j = 1$			
	Group 1	Group 2	Group 3		Group 1	Group 2	Group 3
Motivation	-0.5	0	0.5	Motivation	-0.5	0	0.5
Migration Cost	3	2	1	Migration Cost	4.5	2	1.5
U _{US}	1	2	3	U _{US}	-0.5	1	2.5
U _{MEX}	1.5	1.5	1.5	U _{MEX}	1.5	1.5	1.5
Decision	Stay	Migrate	Migrate	Decision	Stay	Stay	Migrate
Productivity	0.5	1	1.5	Productivity	0.5	1	1.5
Average M	igrant Proc	luctivity =	1.25	Average Migrant Productivity = 1.5			

In order to illustrate the impact of a change in immigration control policy in this example, we now assume that the United States has implemented new immigration policy such that $P_{US} = 1$. Group 1 individuals are now even more disinterested in migrating, with an expected utility of $U_{US} = 4 - (1 + 1 + 1)(1 + 0.5)$ = -0.5. With the new policy, Group 2 workers now expect a utility of $U_{US} = 4 - (1 + 1 + 1)(1) = 1$, and Group 3 observes an expected utility of $U_{US} = 4 - (1 + 1 + 1)(1) = 1$, and Group 3 observes an expected utility of $U_{US} = 4 - (1 + 1 + 1)(1) = -0.5) = 2.5$. Therefore, the implementation of stricter immigration control policy has caused Group 2 to stay in Mexico, while Group 3 will still migrate to the United States. Now that Group 2 has been "screened" by the increase in immigration control policy; the average productivity of the migrant labor force in the United States has risen from 1.25 to 1.5. This is a demonstration of the positive correlation between a nation's immigration control policy and the average productivity of its incoming migrants.

3.3 Distribution of Motivation/Ability Attribute

In the "simple example" of labor screening that I just provided, I grouped the laborers into three discrete groups, differentiated by the motivation/ability characteristic. This allowed for an easy demonstration, but is not representative of reality. One can safely assume that the motivation/ability attribute follows a continuous distribution. For the purpose of this analysis, I establish that the motivation/ability variable follows a continuous and uniform distribution bounded between M_L and M_H :

 $M_i \sim [M_L, M_H]$

I assume that $M_H \leq 1$, since a motivation/ability attribute exceeding 1 would lead to the highly improbable situation in which individuals migrate to nation j despite receiving any benefits for doing so (recall that the motivation/ability modifier is $(1 - M_i)$). This supposition also allows for the assumption that the wage rate in nation j is higher than the utility of the next best alternative, $W_{ij} > U_{ALT}$, as long as any individuals are migrating to nation j.

3.4 Equilibrium Model: Exogenous Wage-Setting

3.4.1 Exogenous Immigration Control Policy

The example of labor screening that I just described makes two assumptions. The first assumption is that a nation's immigration control policy is exogenously determined. In other words, the government of a nation does not consider labor market information when making legislative decisions regarding border security or legal paths to residency/citizenship. Based on historical evidence in the U.S., this assumption is rather weak. Over the past century, the United States Congress has passed three Acts which significantly reformed the nation's immigration control policy (refer to section on History of Immigration for more details). The first Act was passed with the purpose of maintaining ethnic homogeneity, the second was ratified in order to promote multiculturalism and family reunification, and the third Act was passed in response to the security threat of the September 11 terrorist attacks. Therefore, it is relatively safe to assume that a nation's immigration control policy is set exogenously.

3.4.2 Exogenous Wage-Setting

The second assumption that I am making is that the wage rate offered by firms in this market is exogenously determined. This is a rather strong assumption. It is assumed that firms will offer a wage rate that is equal to average marginal productivity, and the average marginal productivity of incoming migrants is determined by the wage rate being offered (among other things). The existence of this feedback loop weakens the validity of the assumption of exogeneity.

That being said, there are several reasonable arguments to be made in defense of the assertion of exogeneity of wage setting for migrants. The first argument requires the assumption that firms are unable to discern migrant laborers from native laborers. If we assume that employers cannot tell the laborers apart, then they will pay both groups the same wage rate, ceteris

paribus. Keep in mind that incoming migrants often make up an insignificant share of the overall labor force. In 2009, just over 1.1 million immigrants entered the United States (source: OECD), which was less than 1% of the total labor force. Therefore, the wage rate offered to these incoming migrants would be virtually decided by the average productivity of the overall labor force. Since the domestic labor force and its attributes are external to this particular immigration model, it is safe to say that, under the given assumptions, the wage rate is set exogenously.

Another potential argument to be made in favor of exogenous wage setting, particularly for low-skill laborers, is that the wage is set through wage floor legislation. If the natural equilibrium price is below the minimum wage for a particular set of laborers, firms will be forced to pay the legislated wage rate rather than set their wages according to the marginal productivity of those laborers. Many urban immigrants tend to be clustered in these low-wage labor markets, such as food service and preparation industry. Therefore, this model is an especially good fit for laborers in this sector.

3.4.3 Solving the Equilibrium Model

Under the assumptions that every variable in the model except M_i is exogenously determined, finding the equilibrium results is fairly straightforward.

In order to do so, I must first identify which migrants will actually migrate. We know that the individual will migrate to country j if doing so confers a higher utility then the next best alternative nation: $U_{ji} > U_{ALT}$.⁵ After substituting equation (1) in for U_{ji} , we say that an individual migrates if:

$$W_{ji} - (\alpha P_j + \beta D_{jh} + \gamma E_{ji})(1 - M_i) > U_{ALT}$$

I rearrange this inequality so that we can determine what level of the motivation/ability attribute is necessary in order for an individual to actually migrate to country j:

$$-(\alpha P_j + \beta D_{jh} + \gamma E_{ji})(1 - M_i) > U_{ALT} - W_{ji}$$

$$\alpha P_j M_i + \beta D_{jh} M_i + \gamma E_{ji} M_i > U_{ALT} - W_{ji} + \alpha P_j + \beta D_{jh} + \gamma E_{ji}$$

$$M_i > \frac{U_{ALT} - W_{ji} + \alpha P_j + \beta D_{jh} + \gamma E_{ji}}{\alpha P_j + \beta D_{jh} + \gamma E_{ji}}$$

Now we know the exact range of the motivation/ability attribute that is necessary for an individual's utility to be higher in country j than the individual's best alternative location. Using this information, I identify the minimum level of the motivation/ability attribute of incoming migrants as:

(3)
$$M_{min} = 1 - \frac{W_{ji} - U_{ALT}}{\alpha P_j + \beta D_{jh} + \gamma E_{ji}}$$

⁵ Initially, I simplify the model by assuming that there are only two nations. Thus, U_{ALT} represents the utility derived by remaining in one's home country. I will expand the model to include more than just two nations in a later section.

Now that the minimum level of motivation/ability has been determined for incoming migrants, I define the number of incoming immigrants, I, as the range of the motivation/ability distribution that lies above this. Therefore:

I now proceed to calculating average migrant marginal productivity. According to equation (2), average migrant productivity is equal to:

$$E(\theta_{ji}) = \delta E(M_i) + K_j$$

Keeping in mind that M_i follows a uniform distribution, average migrant marginal productivity is equal to:

$$E(\theta_{ji}) = 0.5\delta(M_{min} + M_{max}) + K_j$$

We can automatically infer that $M_{max} = M_H$, since all individuals with $M_i > M_{min}$ migrate. Therefore, average migrant productivity is defined as:

(4)
$$E(\theta_{ji}) = 0.5\delta(M_{min} + M_H) + K_j$$

In the instance in which the minimum level of the motivation/ability attribute that is necessary in order for an individual to migrate, M_{min} , is below the entire distribution of M_i

(M_{min} < M_L), all of the potential migrants in the model will decide to move to

nation j. Therefore, M_L can be substituted in for M_{min} and average migrant productivity is:

$$E(\theta_{ji}) = 0.5\delta(M_L + M_H) + K_j \qquad \text{if } M_{min} < M_L$$

Next, let's examine the instance in which the minimum level of the motivation/ability attribute is necessary in order for an individual to migrate falls within the distribution of M_i ($M_H > M_{min} > M_L$). In this case, I substitute equation (3) in for M_{min} and find that average migrant productivity is:

(5)
$$E(\theta_{ji}) = 0.5\delta \left(1 - \frac{W_{ji} - U_{ALT}}{\alpha P_j + \beta D_{jh} + \gamma E_{ji}} + M_H\right) + K_j$$
 if $M_H > M_{min}$
> M_L

In the instance in which M_{min} is higher than the entire distribution of motivation/ability distribution ($M_{min} < M_I$), nobody migrates to nation j. Therefore:

$$E(\theta_{ji})$$
 is undefined if $M_{min} > M_H$

Since every other variable in this equation is externally chosen, this model (operating under the assumptions of exogenous wage-setting and immigration control policy) has now been completely solved.

3.4.4 Interpreting the Model

Now that the model has been solved, we can examine the relationships between the variables in this model, such as the impact of immigration control policy on the productivity of incoming migrants. In order to conduct this comparative statics analysis, I do so through the three different sets of initial conditions described above: (1) some individuals are migrating and some are staying, (2) nobody is migrating, and (3) everybody is migrating.

Scenario 1: Some Initial Migration

Necessary Conditions $[M_H > M_{min}^* > M_L]$

Let's begin with the first scenario, in which some laborers initially decide to migrate to nation j and some decide to remain in their home country. In order for this to be the case, there needs to be some individuals with a motivation/ability attribute level that is high enough to grant them a relatively higher utility in nation j. Conversely, there needs to be some individuals with a low enough motivation/ability such that the adjusted costs of migration are too high to justify moving to a new country. In other words, those at the top of the motivation/ability distribution are migrating and those at the bottom are not migrating. In terms of the mathematical model I have developed, I say that some people will migrate to country j if the initial minimum level of the motivation/ability attribute necessary to migrate is less than the upper limit of the motivation distribution, yet greater than the lower limit of the distribution: $M_H > M_{min}^* > M_L$. After substituting for M_{min} using equation (3), we find that some laborers initially migrate to country j if:

$$M_H > 1 - \frac{W_{ji} - U_{ALT}}{\alpha P_j + \beta D_{jh} + \gamma E_{ji}} > M_L$$

Comparative Statics: Impact of Immigration Control Policy on Number of Migrants

With Scenario 1, the initial minimum level of the motivation/ability attribute that is necessary for an individual to choose to migrate falls between the lower and upper bound of the distribution. Recalling that the initial number of incoming immigrants is: $I_j = M_H - M_{min}$, and substituting equation (3) in for M_{min} :

(6)
$$I_j = M_H - 1 + \frac{W_{ji} - U_{ALT}}{\alpha P_j + \beta D_{jh} + \gamma E_{ji}}$$

By taking the partial derivative of equation (6), I find the differential impact of immigration control policy on the number of incoming migrants:

$$\frac{\partial I_j}{\partial P_j} = -\alpha \frac{W_{ji} - U_{ALT}}{(\alpha P_j + \beta D_{jh} + \gamma E_{ji})^2}$$

Since it is assumed that $\alpha > 0$, $W_{ji} > U_{ALT}$, and the costs of migration are positive $(\alpha P_j + \beta D_{jh} + \gamma E_{ji} > 0)$, there is an inverse relationship between the number of migrants and the level of immigration control policy: $\partial I/\partial P_j < 0$. This is not a surprising result at all, given that the purpose of immigration control policy is to prevent, deter, or filter immigrants. An increase in P_j causes migration to be more costly, thus reducing overall migration.

Comparative Statics: Impact of Immigration Control Policy on Migrant Productivity

With Scenario 1, the initial minimum level of the motivation/ability attribute that is necessary for an individual to choose to migrate falls below the upper bound of that variable's distribution. Therefore, some immigration occurs $(M_H - M_L > l_j^* > 0)$ and, recalling equation (5), average migrant marginal productivity is:

$$E(\theta_{ji}) = 0.5\delta \left(1 - \frac{W_{ji} - U_{ALT}}{\alpha P_j + \beta D_{jh} + \gamma E_{ji}} + M_H\right) + K_j$$

In order to find the differential impact of immigration control policy on average migrant productivity, I take the partial derivative of this equation with respect to P_j:

(7)
$$\frac{\partial E(\theta_{ji})}{\partial P_{j}} = 0.5\alpha\delta \frac{W_{ji} - U_{ALT}}{\left(\alpha P_{j} + \beta D_{jh} + \gamma E_{ji}\right)^{2}}$$

With equation (7), we observe direct evidence of the labor screening effect of immigration control policy in this model, since there is a positive relationship between immigration policy and migrant productivity: $\partial E(\theta_{ij})/\partial P_j >$ 0. We know this to be true because there is a direct relationship between the costs of migration and immigration policy ($\alpha > 0$), we have assumed that the wage offered in nation j is higher than at home ($W_{ji} - U_{ALT} > 0$), the costs of migration are positive ($\alpha P_j + \beta D_{jh} + \gamma E_{ji} > 0$), and the relationship between motivation/ability and productivity is positive ($\delta > 0$).

Since it is the centerpiece of this analysis, let's examine how the variables and parameters in this model impact the magnitude of this labor screening effect, beginning with P_j itself. Taking the partial derivative of equation (7) with respect to P_j yields:

$$\frac{\partial^2 E(\theta_{ji})}{\partial P_j^2} = -\alpha^2 \delta \frac{W_{ji} - U_{ALT}}{\left(\alpha P_j + \beta D_{jh} + \gamma E_{ji}\right)^3}$$

Thus, we find that there is an inverse relationship between the magnitude of the labor screening effect and the level of immigration control policy: $\partial^2 E(\theta_{ij})/\partial P_j^2 < 0$. In other words, a nation with a relatively strict immigration policy will see a relatively smaller productivity impact from an incremental change to its policy. One could say that, in terms of its labor screening properties, immigration control policy exhibits diminishing marginal returns.

Nearly the same exact relationship⁶ applies to all but one of the other parameters and variables that comprise the costs of migration: β , D_{jh} , γ , and E_{ji} . This is due to the fact that these factors impact a potential migrant in the same way that a change in P_j would. An individual is going to consider the dangers of traveling a long distance (D_{jh}) in the same way that they will consider the dangers of border security (P_j), and thus their differential impact on the labor screening effect will match.

The exception to this is the migrants' cost multiplier to immigration policy: α . Suppose there is a shock to this parameter, perhaps due to a stronger "coyote" network between the origin-nation and nation j, improved forgery

$$\label{eq:alpha} \begin{split} ^{6} & \partial^{2}E(\theta_{i})/\partial P_{j}\partial\beta \ = \ -\alpha D_{jh} \left(W_{ji} - U_{ALT}\right) \left(\alpha P_{j} + \beta D_{jh} + \gamma E_{ji}\right)^{-3} > 0 \\ & \partial^{2}E(\theta_{i})/\partial P_{j}\partial D_{jh} \ = \ -\alpha\beta \left(W_{ji} - U_{ALT}\right) \left(\alpha P_{j} + \beta D_{jh} + \gamma E_{ji}\right)^{-3} > 0 \\ & \partial^{2}E(\theta_{i})/\partial P_{j}\partial\gamma \ = \ -\alpha E_{ji} \left(W_{ji} - U_{ALT}\right) \left(\alpha P_{j} + \beta D_{jh} + \gamma E_{ji}\right)^{-3} > 0 \\ & \partial^{2}E(\theta_{i})/\partial P_{j}\partial E_{ji} \ = \ -\alpha\gamma \left(W_{ji} - U_{ALT}\right) \left(\alpha P_{j} + \beta D_{jh} + \gamma E_{ji}\right)^{-3} > 0 \end{split}$$

techniques, and so on. Taking the partial derivative of the labor screening effect with respect to α , I find:

$$\frac{\partial^2 E(\theta_{ji})}{\partial P_j \partial \alpha} = 0.5\delta \frac{W_{ji} - U_{ALT}}{\left(\alpha P_j + \beta D_{jh} + \gamma E_{ji}\right)^2} - \alpha\delta \frac{P_j(W_{ji} - U_{ALT})}{\left(\alpha P_j + \beta D_{jh} + \gamma E_{ji}\right)^3}$$

$$\frac{\partial^2 E(\theta_{ji})}{\partial P_j \partial \alpha} = \delta (W_{ji} - U_{ALT}) \frac{0.5(\alpha P_j + \beta D_{jh} + \gamma E_{ji}) - \alpha P_j}{(\alpha P_j + \beta D_{jh} + \gamma E_{ji})^3}$$

Since $W_{ji} - U_{ALT} > 0$, and all of the other parameters are positive, we cannot ascertain the sign of this relationship. In the case that immigration control policy costs composes the majority of migration costs, such that $\alpha P_j > \beta D_{jh} + \gamma E_{ji}$, there is an inverse relationship between the labor screening effect and the policy cost multiplier: $\partial^2 E(\Theta_{ij})/\partial P_j \partial \alpha < 0$. Otherwise, there is a direct relationship between the two. The reason for the conflicting results: the parameter α determines the differential impact of P_j (positive substitution effect), as well as being a component of overall costs of migration (negative income effect).

Lastly, let's examine how a shock to δ , the relationship between motivation/ability and migrant productivity, impacts the magnitude of the labor screening effect. As we can see in equation (4), if the two attributes are independent of one another ($\delta = 0$), then average migrant productivity reduces to E(θ_{ij}) = K_j. Therefore, when $\delta = 0$, there is no labor screening effect in this model: $\partial E(\theta_{ij})/\partial P_j = 0$. In order to find the exact impact, I derive equation (7) with respect to δ :

$$\frac{\partial^2 E(\theta_{ji})}{\partial P_j \partial \delta} = 0.5 \alpha \frac{W_{ji} - U_{ALT}}{\left(\alpha P_j + \beta D_{jh} + \gamma E_{ji}\right)^2}$$

Unlike the other variables, the relationship between $\partial E(\Theta_{ij})/\partial P_j$ and δ is linear as well as direct. In other words, the stronger the relationship between motivation/ability and productivity, the stronger the labor screening effect of P_j will be, at a constant rate. Due to this fact, and the fact that $\partial E(\Theta_{ij})/\partial P_j = 0$ when $\delta = 0$, it is obvious that this parameter is very important in the labor screening process. This is because it is the connection between a migrants' decisionmaking process (M_i) and his or her workplace productivity (Θ_i), which is the conceptual foundation of the labor screening process.

Comparative Statics: Impact of Other Parameters and Variables

Let's begin by analyzing the impact of a shock to the utility that an individual derives by remaining in their home country, U_{ALT} . In order to determine the relationship between origin-nation conditions and the number of immigrants, I take the partial derivative of equation (6) with respect to U_{ALT} :

$$\frac{\partial I_j}{\partial U_{ALT}} = -\frac{1}{\alpha P_j + \beta D_{jh} + \gamma E_{ji}}$$

Since the costs of migration are positive, we can clearly see that there is an inverse relationship between U_{ALT} and I_j . This makes perfect sense: if conditions are worse at home, then there is greater incentive to move elsewhere (and vice versa). Thus, we can identify U_{ALT} as the "push" factor in this model.

In order to find the relationship between origin-nation conditions and the productivity of the workers that actually migrate, I take the partial derivative of equation (5) with respect to U_{ALT} and find:

$$\frac{\partial E(\theta_{ji})}{\partial U_{ALT}} = -\frac{0.5\delta}{\alpha P_j + \beta D_{jh} + \gamma E_{ji}}$$

Since $\delta > 0$ and the costs of migration are also positive, we find that there is a direct relationship between the utility derived at home and average migrant productivity: $\partial E(\theta_{ij})/\partial U_{ALT} > 0$. This result is due to the fact that an increase in wages at home leads to a smaller wage premium for migrating to nation j. This smaller wage premium causes the individuals who were barely better off by migrating to no longer migrate. Since these individuals were the ones with a relatively lower level of motivation/ability, the average productivity of those who do actually migrate increases.⁷

⁷ This inverse relationship between homeland conditions and the productivity of those who leave was identified by Anwar-ul-Huq (1979), who argued that a significant decrease in conditions at home would push out all kinds of individuals as a matter of necessity. Otherwise, the migrant pool consists mostly of those who seek economic opportunity, and these tend to be more capable and motivated people.

Next, let's examine the impact of a shock to the wage offered to migrants in nation j, W_{ij} . When we take the partial derivatives of average migrant productivity and the immigrant population and with respect to W_{ij} , I find that the relationships between these variables exactly mirrors that for U_{ALT} , but with a reverse sign:

$$\frac{\partial I_j}{\partial W_{ji}} = \frac{1}{\alpha P_j + \beta D_{jh} + \gamma E_{ji}}$$

$$\frac{\partial E(\theta_{ji})}{\partial W_{ji}} = \frac{0.5\delta}{\alpha P_j + \beta D_{jh} + \gamma E_{ji}}$$

This is the case because the only importance that U_{ALT} and W_{ij} serve in this model is the difference of the two: the wage premium ($W_{ji} - U_{ALT}$). Therefore, a one unit decrease in one variable has exactly the same impact as a one unit increase in the other variable. Also, notice that there is a positive relationship between the number of immigrants and the wage being offered: $\partial I_j / \partial W_{ij} > 0$. Thus, we can identify W_{ij} as the "pull" factor in this model.

When we examine the impact of a shock to one of the parameters or variables comprising the costs of migration, we find a result that is virtually identical to the impact of P_{i} .⁸ An increase in any of the migration cost factors will

⁸ $\partial E(\theta_{ij})/\partial \alpha =$	$0.5\delta P_{j}\left(W_{ji}-U_{ALT}\right)\left(\alpha P_{j}+\beta D_{jh}+\gamma E_{ji}\right)^{-2}$
$\partial E(\theta_{ij})/\partial D_{jh} =$	$0.5\delta\beta \left(W_{ji}-U_{ALT}\right)\left(\alpha P_{j}+\beta D_{jh}+\gamma E_{ji}\right)^{-2}$
$\partial E(\theta_{ij})/\partial \beta = 0$	$0.5\delta D_{jh}$ (W _{ji} – U _{ALT}) (αP _j + βD _{jh} + γE _{ji}) ⁻²

cause an increase in immigrant productivity and a decrease in the number of incoming migrants. This is due to the fact that the costs of migration are linear in this model, so that there is effectively no difference between the various components.

Next, let's examine the impact of labor productivity shocks, beginning with the correlation between motivation/ability and productivity, δ . The parameter only has an impact on $E(\Theta_{ij})$, since there is no connection between migrant productivity and wage rate under the assumption of exogenous wagesetting. Individuals make their migratory decisions based on the wage premium and adjusted costs of motivation, and these remain unaffected. Therefore, the parameter has zero impact on the number (or composition) of incoming migrants: $\partial I_j/\partial \delta = 0$. However, it does have an influence on migrant productivity. Taking the partial derivative of equation (2) yields:

$$\frac{\partial E(\theta_{ji})}{\partial \delta} = 0.5(M_{min} + M_H)$$

Therefore, we know that:

$$\frac{\partial E(\theta_{ji})}{\partial \delta} > 0 \qquad if \quad M_{min} + M_H > 0$$

$$\begin{split} \partial E(\theta_{ij})/\partial E_{ji} &= 0.5\delta\gamma \left(W_{ji} - U_{ALT}\right) \left(\alpha P_{j} + \beta D_{jh} + \gamma E_{ji}\right)^{-2} \\ \partial E(\theta_{ij})/\partial\gamma &= 0.5\delta\gamma \left(W_{ji} - U_{ALT}\right) \left(\alpha P_{j} + \beta D_{jh} + \gamma E_{ji}\right)^{-2} \end{split}$$

$$\frac{\partial E(\theta_{ji})}{\partial \delta} = 0 \qquad if \quad M_{min} + M_H = 0$$
$$\frac{\partial E(\theta_{ji})}{\partial \delta} < 0 \qquad if \quad M_{min} + M_H < 0$$

Put another way, if the average migrant has a positive motivation/ability, then an increase in δ will lead to an increase in average productivity. However, if the majority of the motivation/ability distribution of those who migrate is falls below zero, then there is an inverse relationship between the two.

Under the current assumption of exogenous wage-setting, a shock to K_j will have no impact on migration decisions: $\partial I_j / \partial K_j = 0$. This is due to the disconnect between $E(\Theta_{ij})$ and W_{ij} , that I described earlier for the δ parameter. In terms of its impact on average marginal migrant productivity, I derive equation (4) with respect to K_j and find that $\partial E(\Theta_{ij}) / \partial K_j = 1$. This is due to the fact that K_j is merely a constant in the productivity function, which bears no link to the migration decisions made by individuals under the current assumptions.

Scenario 2: Zero Initial Migration

Necessary Conditions $[M_{min}^* > M_H]$

Let's move onto the second scenario, in which nobody decides to migrate initially. In order for this to be the case, all of the potential migrants have a motivation/ability attribute level that is too low to grant them a relatively higher utility in the new nation. Let's put this in terms of the mathematical model I have developed. Nobody will migrate to country j if the initial minimum level of the motivation/ability attribute necessary to migrate is equal to or surpasses the upper limit of the motivation distribution: M_{min} * > M_{H} . After substituting for M_{min} using equation (3), I find that nobody migrates to country j if:

$$1 - \frac{W_{ji} - U_{ALT}}{\alpha P_j + \beta D_{jh} + \gamma E_{ji}} > M_H$$

Solving for the initial level of immigration control policy, P_j, I find that nobody migrates to country j if:

$$P_j^* > \frac{W_{ji} - U_{ALT}}{\alpha (1 - M_H)} - \frac{\beta D_{jh} + \gamma E_{ji}}{\alpha}$$

Thus, I have identified the necessary conditions for the initial level of immigration control policy for Scenario 2. If nation j's government decides to lower P_j beyond this point, then individuals at the top of the motivation/ability distribution will begin to migrate to the nation. Therefore, for the rest of this section, I denote the minimum level of immigration control policy at which zero individuals will migrate as:

$$P_j^H = \frac{W_{ji} - U_{ALT}}{\alpha (1 - M_H)} - \frac{\beta D_{jh} + \gamma E_{ji}}{\alpha}$$

Comparative Statics: Impact of Immigration Control Policy on Number of Migrants

With Scenario 2, the initial level of immigration control policy is so high that there are no individuals migrating to nation j: $I_j^* = 0$. Therefore, any differential change in P_j will have no impact on the number of incoming migrants: $\partial I_j / \partial P_j = 0$.

However, a nation with a significant enough drop in P_j can entice potential migrants to make the journey. Let's suppose that the initial M_{min}^* is exactly λ_H higher than M_H , such that:

$$M_{min}^* - \lambda_H = M_H$$

Substituting for M_{min}*, we get:

$$(U_{ALT} - W_{ji})(\alpha P_j^* + \beta D_{jh} + \gamma E_{ji})^{-1} + 1 - \lambda_H = M_H$$

where P_j^* is the initial level of immigration control policy. When we solve for P_j^* we find:

$$P_{j}^{*} = \alpha^{-1} \left((U_{ALT} - W_{ji}) (M_{H} - 1 + \lambda_{H})^{-1} - \beta D_{jh} - \gamma E_{ji} \right)$$

Recall that the maximum level of immigration control policy at which individuals will migrate is:

$$P_{j}^{H} = \alpha^{-1} \left((U_{ALT} - W_{ji}) (M_{H} - 1)^{-1} - \beta D_{jh} - \gamma E_{ji} \right)$$
Taking the difference of the between P_H and the initial level of P* yields the change in immigration control policy that is necessary to entice individuals to begin migrating to country j:

$$\begin{split} P_{j}^{H} - P_{j}^{*} &= \alpha^{-1} \left(\left(U_{ALT} - W_{ji} \right) (M_{H} - 1)^{-1} - \beta D_{jh} - \gamma E_{ji} \right) - \alpha^{-1} \left(\left(U_{ALT} - W_{ji} \right) (M_{H} - 1 + \lambda_{H})^{-1} - \beta D_{jh} - \gamma E_{ji} \right) \\ P_{j}^{H} - P_{j}^{*} &= \alpha^{-1} \left(\left(U_{ALT} - W_{ji} \right) (M_{H} - 1)^{-1} - (M_{H} - 1 + \lambda_{H})^{-1} \right) \\ P_{j}^{H} - P_{j}^{*} &= -\alpha^{-1} \lambda_{H} \left(\left(W_{ji} - U_{ALT} \right) (M_{H}^{2} - 2M_{H} + M_{H} \lambda_{H} - \lambda_{H} + 1)^{-1} \right) \\ \end{split}$$
Therefore, if $\Delta P_{j} > -\alpha^{-1} \lambda_{H} \left(W_{ji} - U_{ALT} \right) \left(M_{H}^{2} - 2M_{H} + M_{H} \lambda_{H} - \lambda_{H} + 1)^{-1} \right)$
therefore, if $\Delta P_{j} > -\alpha^{-1} \lambda_{H} \left(W_{ji} - U_{ALT} \right) \left(M_{H}^{2} - 2M_{H} + M_{H} \lambda_{H} - \lambda_{H} + 1)^{-1} \right)$

 $(M_{H}^{2} - 2M_{H} + M_{H}\lambda_{H} - \lambda_{H} + 1)^{-1}$, nation j successfully begins enticing individuals to migrate.

In order to measure the total effect on migration, ΔI_j , one simply needs to compute the number of incoming migrants since this scenario begins with $I_j^* = 0$. Recall that the number of immigrants (when migration occurs) is:

$$I_j = M_H - M_{min}$$

After substituting for M_{min}, I find that the number of migrants is equal to:

$$I_j = M_H - (U_{ALT} - W_{ji})(\alpha P_j + \beta D_{jh} + \gamma E_{ji})^{-1} - 1$$

Therefore, for scenario 2 (where initial migration is zero), when P_j has been lowered enough to prompt migration:

$$\Delta I_j = M_H - (U_{ALT} - W_{ji})(\alpha P_j + \beta D_{jh} + \gamma E_{ji})^{-1} - 1$$

Since the current level of immigration control policy as the initial level plus the shock, it is defined as:

$$P_j = P_j^* + \Delta P_j$$

Substituting for P_j yields:

$$\Delta I_j = I_j = M_H - (U_{ALT} - W_{ji})(\alpha P_j^* + \alpha \Delta P_j + \beta D_{jh} + \gamma E_{ji})^{-1} - 1$$

Since $U_{ALT} - W_{ji} < 0$, there is an inverse relationship between the number of migrants and the change in immigration control policy. This is exactly what is expected: looser/easier border security and legal migration processes are going to lead to more individuals willing to overcome the hurdles of immigration. We also find that there is an inverse relationship between our initial level of immigration control policy and the number of migrants. This is due to the fact that the gap between P_j* and P_H must be "covered" before any laborers consider migrating. The higher the initial level of immigration control policy, the larger that this gap is. When the gap is larger, it means that a larger amount of the change in policy, ΔP_j , is dedicated to overcoming this gap and therefore has a smaller impact on the number of migrants. *Comparative Statics: Impact of Immigration Control Policy on Migrant Productivity*

Let's move onto the impact that a change in immigration control policy has on average migrant productivity. Differentially speaking, a shock to P_j will not cause a change in the average productivity of incoming migrants, since it is undefined (there are no migrants). This is because an infinitesimal change in P_j leads to an infinitesimal change in M_{min} , after which M_{min} will still exceed M_H (and there is zero migration). The same impact is observed for the all of the other variables and parameters in the model. Since average migrant productivity starts as undefined in Scenario 2, it is also impossible to calculate the total impact of a shock to P_j .

Comparative Statics: Impact of Other Parameters and Variables

In Scenario 2, infinitesimal changes in any of the parameters and variables result in the same impact as a change in P_j . In terms of the impact on the number of incoming migrants, the differential effect is equal to zero. This is because the scenario begins with $I_j^* = 0$. Since marginal productivity starts as undefined in Scenario 2 (as there are no migrants), we say that the differential impact of any of the parameters/variables is also undefined.

64

However, there can be a change in I_j with a significant finite change in the other variables and parameters. For example, suppose that the costs of migration fell significantly (due to decreasing distance or ethnic differences), or that conditions at home worsened considerably, or that the wage offered in nation j skyrocketed. In all three of these cases, some individuals will start to see nation j as the better choice and migration to that nation will begin.

Scenario 3: Complete Initial Migration

Necessary Conditions $[M_{min}^* < M_L]$

In the third scenario, we have a situation in which all potential migrants are initially moving to nation j, because doing so grants them a higher utility. In other words, the minimum level of motivation/ability that a person would need to have in order to migrate is lower than the entire distribution of that characteristic: $M_{min}^* < M_L$. After substituting equation (3) in for M_{min} , I find that all potential migrants initially migrate if:

$$1 - \frac{W_{ji} - U_{ALT}}{\alpha P_j + \beta D_{jh} + \gamma E_{ji}} < M_L$$

Solving for P, I find that everybody migrates if:

$$P_j < \frac{W_{ji} - U_{ALT}}{\alpha (1 - M_L)} - \frac{\beta D_{jh} + \gamma E_{ji}}{\alpha}$$

Therefore, I denote the maximum level of immigration control policy at which all individuals will migrate as:

$$P_L = \frac{W_{ji} - U_{ALT}}{\alpha (1 - M_L)} - \frac{\beta D_{jh} + \gamma E_{ji}}{\alpha}$$

Comparative Statics: Impact of Immigration Control Policy on Number of Migrants

In Scenario 3, the entire distribution of individuals is migrating to nation j. Therefore, the number of immigrants in scenario 3 is:

$$I_i = M_H - M_L$$

Differentially, a shock to P_j will have no impact on the number of migrants: $\partial I_j / \partial P_j = 0$. An infinitesimal change will still result in the entire distribution migrating.

It is possible for a nation to increase its immigration control policy significantly enough such that some migrants start to become screened. Let's suppose that the initial M_{min}^* is exactly λ_L lower than M_L , such that:

 $M_{min}^* + \lambda_L = M_L$

After substituting for M_{min}*, and solving for P_j*:

$$P_j^* = \frac{\left(U_{ALT} - W_{ji}\right)}{\alpha(M_L - 1 - \lambda_L)} - \frac{\beta D_{jh} - \gamma E_{ji}}{\alpha}$$

Recall the maximum level of immigration control policy at which all individuals will migrate:

$$P_j^L = \frac{\left(U_{ALT} - W_{ji}\right)}{\alpha(M_L - 1)} - \frac{\beta D_{jh} - \gamma E_{ji}}{\alpha}$$

Taking the difference of the two yields the change in policy that is necessary for screening to take place:

$$P_{j}^{L} - P_{j}^{*} = \frac{(U_{ALT} - W_{ji})}{\alpha(M_{L} - 1)} - \frac{\beta D_{jh} - \gamma E_{ji}}{\alpha} - \frac{(U_{ALT} - W_{ji})}{\alpha(M_{L} - 1 - \lambda_{L})} + \frac{\beta D_{jh} - \gamma E_{ji}}{\alpha}$$
$$P_{j}^{L} - P_{j}^{*} = \frac{\lambda_{L} (U_{ALT} - W_{ji})}{\alpha(M_{L}^{2} - 2M_{L} - 2M_{L}\lambda_{L} + \lambda_{L} + 1)}$$

Therefore, if $\Delta P_j < \alpha^{-1}\lambda_L (U_{ALT} - W_{ji}) (M_L^2 - 2M_L - M_L\lambda_L + \lambda_L + 1)^{-1}$, then M_L

still exceeds $M_{\mbox{\scriptsize min}}$ and all potential migrants will continue to move to nation j.

 $\Delta P_j \geq \alpha^{-1}\lambda_L ((U_{ALT} - W_{ji}) ((M_L^2 - 2M_L - M_L\lambda_L + \lambda_L + 1)^{-1}, nation j successfully begins screening migrants.$

In order to measure the total effect on migration in the latter case, I take the difference between the I_j^* and I_j :

$$\Delta I_{j} = I_{j} - I_{j}^{*} = (M_{H} - M_{min}) - (M_{H} - M_{L})$$

$$\Delta I_j = M_L - M_{min}$$

After substituting for M_{min} , I find that the change in the number of migrants is equal to:

$$\Delta I_j = M_L - \frac{U_{ALT} - W_{ji}}{\alpha P_j + \beta D_{jh} + \gamma E_{ji}} - 1$$

After substituting for P_j:

$$\Delta I_j = M_L - \frac{U_{ALT} - W_{ji}}{\alpha P_j^* + \alpha \Delta P_j + \beta D_{jh} + \gamma E_{ji}} - 1$$

Just as expected, there is an inverse relationship between the change in the number of migrants and the change in immigration control policy. We also find this same relationship with the initial level of immigration control policy and change in migration. This is due to the fact that the gap between P_j^* and P^L must be "covered" before any laborers consider migrating. The higher the initial level of immigration control policy, the smaller that this gap is. Therefore, a smaller amount of the change in policy, ΔP_j , is dedicated to overcoming this gap and more screening (decrease in I_j) occurs.

Comparative Statics: Impact of Immigration Control Policy on Migrant
Productivity

For Scenario 3, the entire distribution of potential migrants is initially migrating to nation j. Therefore, we know that $M_{min} = M_L$. Substituting this into equation (4) yields an average migrant marginal productivity of:

$$E(\theta_{ji}) = 0.5\delta(M_L + M_H) + K_j$$

Differentially, a change in the level of immigration control policy will have no impact on the average productivity of the migrants: $\partial E(\theta_{ij})/\partial P_j = 0$. This is because M_{min} initially is not being decided by the level of immigration control policy in Scenario 3, but rather is defined as the lower bound of the motivation distribution. An infinitesimal change in P_j will not change this in any way; the entire distribution of individuals will continue to migrate, and average migrant productivity remains constant.

However, as discussed earlier, it is possible that a significant enough increase in P_j,

 $\Delta P_j \geq \alpha^{-1}\lambda_L (U_{ALT} - W_{ji}) (M_L^2 - 2M_L - M_L\lambda_L + \lambda_L + 1)^{-1}$, can cause some migrants to become screened. In order to find the impact on average migrant productivity, I take the difference between initial and the new migrant productivity (recall equation (5)):

 $\Delta E(\theta_{ji}) = E(\theta_{ji}) - E(\theta_{ji})^*$

69

$$\Delta E(\theta_{ji}) = 0.5\delta \left(\frac{U_{ALT} - W_{ji}}{\alpha P_j + \beta D_{jh} + \gamma E_{ji}} + 1 + M_H \right) + K_j - 0.5\delta(M_L + M_H) - K_j$$
$$\Delta E(\theta_{ji}) = 0.5\delta \left(\frac{U_{ALT} - W_{ji}}{\alpha P_j + \beta D_{jh} + \gamma E_{ji}} + 1 - M_L \right)$$

After substituting for P_j:

$$\Delta E(\theta_{ji}) = 0.5\delta \left(\frac{U_{ALT} - W_{ji}}{\alpha P_j^* + \alpha \Delta P_j + \beta D_{jh} + \gamma E_{ji}} + 1 - M_L \right)$$

Since $W_{ji} > U_{ALT}$, there is a direct relationship between the change in immigration control policy and change in average migrant productivity. The same exists for the initial level of immigration control policy. This is due to the fact that the migrants at the bottom end of the distribution now find migration to be too costly to justify moving. There is a direct relationship for the initial level as well. A higher initial P_j* leads to a smaller gap with P^L, meaning that the change in immigration control policy would have a greater impact on the actual screening process.

Comparative Statics: Impact of Other Parameters and Variables

In Scenario 3, infinitesimal changes in any of the parameters or variables result in the same impact as a change in P_j . In terms of the impact on the number of incoming migrants, the differential effect is equal to zero. This is

because the scenario begins with $I_j^* = M_H - M_L$; a constant in which none of the parameters/variables have an impact. We observe the same differential impact with average migrant productivity, which has a constant value of $E(\theta_{ij}) = 0.5\delta(M_L + M_H) + K_i$.

However, there can be a change in I_j and $E(\Theta_{ij})$ with a significant finite change in the other variables and parameters. For example, suppose that the costs of migration rose significantly (due to increasing ethnic differences), or that nation j's wage premium falls dramatically. In these instances, some individuals at the bottom of the motivation will choose not to migrate.

3.4.5 Optimal Government Behavior

Let's suppose that the government of nation j is aware of the labor screening process, has full information, and wishes to determine the optimal level of immigration control policy. In order to model this behavior, I first need to establish a linear welfare function for the government of nation j. I establish social welfare as a linear function of the number of immigrants, average migrant productivity, and the level of immigration control policy:

(8) $\dot{G}_{j} = \psi \dot{I}_{j} + \varphi \dot{E} (\theta_{ji}) - \Omega P_{j}$

The parameter ψ determines the valuation that the citizens/government of nation j place on new migrants. The sign of this factor is uncertain and entirely circumstantial. For example, following World War 2, the commonwealth of Australia wanted to boost its population for strategic as well as economic purposes. In that case, we would expect ψ to have a positive value. However, this is an extremely rare occurrence. Throughout history, many nations have viewed migrants through an isolationist lens, and wish to maintain a homogenous ethnic culture or an insulated economy. Here we would see ψ take a negative value. And then, there are countries with mixed or neutral attitudes toward migrants, such as the United States, where we might consider the parameter to be insignificant (zero).

We can be certain of the sign of ϕ , which indicates the valuation that nation j places on the average productivity of its migrant population. Across the board, we expect this to have a positive value; nations always prefer to have individuals with a higher productivity. Having high productivity laborers simply leads to a relatively higher economic output for nation j, thus raising the standard of living. There are other elements as well. For example, lower productivity individuals tend to have higher unemployment rates (a real problem for migrants in the European Union), which leads to higher rates of impoverishment and crime. Therefore, we can be sure that $\phi > 0$.

The parameter Ω is the cost multiplier for the level of immigration control policy for nation j. This obviously has a positive value; the government must pay

72

more money if it wishes to have stricter border security and legal migration processes. I have modeled this cost function as linear for the sake of simplicity, but it may be more accurate if this process exhibited some form of diseconomy of scale (e.g. $c(P_j) = P_j^{\Omega}$ where $\Omega > 1$). Since I have placed no resource restrictions on the government in this model, this immigration control policy cost will as the constraining factor in this optimization problem. Also, I will assume a lower bound of zero for the immigration control policy variable, thereby disallowing the illogical case in which a nation sets a negative P_j in an effort to increase its welfare through negative costs.

Now that I have established the social welfare function for nation j, let's determine exactly what the optimal level of immigration control policy is for government to choose. Let's begin with scenario 1, in which there are some individuals initially migrating. I begin by recalling equation (8) and substituting in for I_i and $E(\theta_{ii})$ with the equations for scenario 1:

$$\begin{aligned} G_j &= \psi \left(M_H - 1 + \frac{W_{ji} - U_{ALT}}{\alpha P_j + \beta D_{jh} + \gamma E_{ji}} \right) \\ &+ \Phi \left(0.5\delta \left(M_H + 1 - \frac{W_{ji} - U_{ALT}}{\alpha P_j + \beta D_{jh} + \gamma E_{ji}} \right) + K_j \right) - \Omega P_j \end{aligned}$$

In order to find the level of immigration control policy that maximizes G_j, I derive with respect to P_i and set equal to zero:

$$\frac{\partial G_j}{\partial P_j} = 0.5 \Phi \alpha \delta \frac{W_{ji} - U_{ALT}}{\left(\alpha P_j + \beta D_{jh} + \gamma E_{ji}\right)^2} - \psi \alpha \frac{W_{ji} - U_{ALT}}{\left(\alpha P_j + \beta D_{jh} + \gamma E_{ji}\right)^2} - \Omega = 0$$

After some rearrangement, I find that the optimal (see Appendix B for proof of maximum) level of immigration control policy is set at:

(9)
$$P_j^0 = \hat{P}_j^0 = \sqrt{\frac{(W_{ji} - U_{ALT})(0.5\Phi\delta - \psi)}{\alpha\Omega} - \frac{\beta D_{jh} + \gamma E_{ji}}{\alpha}} \quad if \ P_L > \hat{P}_j^0 > 0$$

 $P_j^0 = 0 \qquad \qquad if \ \hat{P}_j^0 \le 0$

$$P_j^0 = P_H \qquad \qquad if \ \hat{P}_j^0 \ge P_H$$

Notice that there are two possible corner solutions to this optimization problem. The first, $P_j^o = 0$, occurs due to the constraining assumption that a nation cannot have negative immigration control policy, and the fact that nation j has no incentive to have a positive P_j level below P_L . Recall that P_L is the maximum level of immigration control policy at which all individual migrate. If \dot{P}_j^o is less than P_L , nation j can reduce its costs with no change in migration by setting $P_j = 0$.

The second corner solution, $P_j^{\circ} = P_H$, is due to the fact that nation j has no incentive to raise its policy beyond P_H . Recall that P_H is the minimum level of immigration control policy in which zero individuals migrate. Raising P_j beyond this point would yield no difference in migration behavior, but costs Ω per additional unit. Let's take a look at how the various variables and parameters differentially impact the optimal level of immigration control policy, assuming we are not at a corner solution. I begin with the term $(0.5\phi\delta - \psi)$ in equation (9). This term indicates the relative valuations that nation j places on the size of the migrant population and the average screened productivity of that population. Keep in mind that we expect all the terms in this equation to be positive (see footnote on previous page). I derive equation (9) with respect to the variables/parameters in this term:

$$\frac{\partial P_j^0}{\partial \Phi} = 0.5\delta \sqrt{\frac{W_{ji} - U_{ALT}}{\alpha \Omega (0.5\Phi \delta - \psi)}}$$

$$\frac{\partial P_j^0}{\partial \delta} = 0.5 \Phi \sqrt{\frac{W_{ji} - U_{ALT}}{\alpha \Omega (0.5 \Phi \delta - \psi)}}$$

$$\frac{\partial P_j^0}{\partial \psi} = -\sqrt{\frac{W_{ji} - U_{ALT}}{\alpha \Omega (0.5 \Phi \delta - \psi)}}$$

Whenever nation j has a relatively high ϕ (strongly values average productivity) and/or a high δ (strong correlation between productivity/motivation), this term becomes larger and nation j is better off by engaging in more screening by having stricter immigration control policy: $\partial P_j^o / \partial \phi > 0$ and $\partial P_j^o / \partial \delta > 0$. Conversely, if nation j has a relatively high value of ψ (strongly values large immigrant population), we expect the government to entice potential migrants by lowering their immigration control policy: $\partial P_j^o / \partial \psi <$ 0. The magnitude of these effects are directly correlated with the wage premium, and inversely correlated with α and Ω .

Next, let's examine the impact of a change in the per-unit cost of immigration policy, Ω , on the optimal level of immigration policy, P_j° . I derive equation (9) with respect to this parameter and find:

$$\frac{\partial P_j^0}{\partial \Omega} = -\sqrt{\frac{(W_{ji} - U_{ALT})(0.5\Phi\delta - \psi)}{\alpha\Omega^3} - \alpha^{-1} (\beta D_{jh} + \gamma E_{ji})}$$

As we would expect to see, there is an inverse relationship between the per-unit cost of P_j, and the optimal level of P_j. The intuition behind this is simple: when the "marginal cost" of immigration control policy rises, the government needs "marginal benefit" to rise in order to achieve optimality.⁹ Since P_j exhibits diminishing marginal returns, this means that nation j responds optimally by decreasing its immigration control policy. Therefore, if technological/productivity advances or changes in input prices lead to a decrease in Ω , we would expect to see nation j impose more costs on migrants through stricter immigration control policy.

What should the government of nation j do if there is an increase in the wage rate offered to migrants, or if conditions in the migrants' homeland

⁹ Through the perspective of marginal analysis of immigration control policy: Marginal Benefit = α (0.5 ϕ δ – ψ) (W_{ji} – U_{ALT}) (α P_j + β D_{jh} + γ E_{ji})⁻² Marginal Cost = Ω

significantly worsen? In other words, what is the optimal policy response when there is a change in the wage premium? I derive equation (9) with respect to the two variables in question:

$$\frac{\partial P_j^0}{\partial W_{ji}} = 0.5 \sqrt{\frac{0.5\Phi\delta - \psi}{\alpha\Omega(W_{ji} - U_{ALT})}}$$

$$\frac{\partial P_j^0}{\partial U_{ALT}} = -0.5 \sqrt{\frac{0.5\Phi\delta - \psi}{\alpha\Omega(W_{ji} - U_{ALT})}}$$

Under the weak assumption that nation j places relatively more value on migrant productivity, $0.5\phi\delta > \psi$, I find that there is a direct relationship between optimal immigration policy and the wage premium in nation j. In other words, P_j^o has a positive correlation with the migrants' wage rate, and a negative relationship with their homeland conditions. The reason for this: when the wage premium increases, more migrants with relatively lower motivation/ability decide to enter nation j. The government of nation j optimally responds by tightening its immigration control policy in order to partially screen these new migrants. Through a marginal perspective, a hike in the wage premium causes the marginal benefit of immigration control policy to rise. It follows that that stronger immigration policy would be enacted. Now, let's discuss the relationship between the non-policy costs of migration ($\beta D_{jh} + \gamma E_{ji}$) and $P_{j^{0}}$. In order to do so, I take the derivative of equation (9) with respect to this term:

$$\frac{\partial P_j^0}{\partial (\beta D_{jh} + \gamma E_{ji})} = -\frac{1}{\alpha}$$

A one unit increase in the non-policy costs of migration will cause the government of nation j to decrease its optimal immigration policy by a factor of $1/\alpha$. This inverse linear relationship exists because individuals treat policy costs the same as distance and ethnic costs, since the costs of migration are modelled linearly. So, in effect, the government is really setting the optimal level of total migration costs, but can only achieve this through its utilization of P_j. Recall that the costs of migration are: $\alpha P_j + \beta D_{jh} + \gamma E_{ji}$. Rearranging, we find that $P_j = \alpha^{-1} (\beta D_{jh} + \gamma E_{ji})$. Thus, for every unit of non-policy migration costs being incurred by migrants, the government can forgo enacting $1/\alpha$ units of P_j. In other words, these non-policy costs act as a negative income effect for optimal immigration control policy.

Next, let's move onto the impact of the individual's policy cost multiplier, α . I derive equation (9) with respect to α and find:

$$\frac{\partial P_j^0}{\partial \alpha} = 0.5 \sqrt{\frac{(0.5\Phi\delta - \psi)(W_{ji} - U_{ALT})}{\alpha^3 \Omega}} + \frac{\beta D_{jh} + \gamma E_{ji}}{\alpha^2}$$

Unlike the other parameters and variables, we cannot be certain whether there is a direct or inverse relationship here. The first overall term represents the decision-making being made on the margin. This term is inversely correlated because an increase in α means that the impact of P_j is more pronounced on migrants (this can be seen as a negative substitution effect of sorts). Therefore, nation j does not need to set such strict immigration policy in order to achieve optimality. The second term is the income effect discussed in the previous paragraph, and this term is positively correlated with α . The reason: if α rises, the non-policy costs of migration ($\beta D_{jh} + \gamma E_{ji}$) will "replace" a relatively smaller amount of P_i when the government is setting the optimal level.

Let's move onto the impact of productivity shocks, beginning with the relationship between the parameter δ , and the optimal level of immigration control policy, P_i^o . I derive equation (9) with respect to δ :

$$\frac{\partial P_j^0}{\partial \delta} = \frac{0.25\Phi}{\sqrt{\frac{(0.5\Phi\delta - \psi)(W_{ji} - U_{ALT})}{\alpha\Omega}}}$$

I find that there is a direct relationship between the two, under the assumptions that have been made. Since nation j values higher migrant productivity, the marginal benefit of immigration control policy increases whenever there is a stronger connection between motivation/ability and productivity. In other words, there is a stronger connection between migrant productivity and the costs of migration, which is the mechanism through with nation j "screens" its migrants.

A shock to the constant in the productivity function, K_j , has zero impact on the optimal level of immigration control policy: $\partial P_j^o / \partial K_j = 0$. This is due to the fact that migrant productivity is not a factor in the decision-making of whether to migrate in the exogenous wage-setting model. A change in K_j results only in a change in $E(\Theta_{ij})$ and has zero impact on the costs of migration, the wage premium, or any other migration-determining factors.

3.5 Equilibrium Model: Endogenous Wage-Setting

3.5.1 Endogenous Wage-Setting

In the previous model, I assumed that the wage rate being offered to incoming migrants was decided by a process external to the model. Now, I model this wage rate as being determined by the hiring firms using their current information regarding the migrant population. This means that this phenomenon must now be modeled as a multi-stage game with a feedback loop between the decisions of potential migrants and the wage being offered to those who migrate. Firms offer a particular wage rate, which causes some migrants to enter nation j. After hiring the migrants for one period, the firms learn their average marginal productivity, and offer a new wage rate to the incoming migrants based on this information. This new wage rate causes a different group of individuals to migrate, and the process continues until a steady-state equilibrium is reached.

I believe that the assumption of endogenous wage-setting is a very valid one and that this model is a better fit to reality than the previous model for some labor sectors. Firms use information about laborers when making payroll decisions, so we should model them as doing so. One of the arguments in favor of exogenous wage-setting was that firms cannot tell migrants apart from other workers, thus the domestic workforce virtually determines the migrants' wage rate. This is a very strong assumption for labor markets where a significant portion of the workers are migrants. Even in sectors that are dominated by domestic laborers, employers can use various physical, personal, and legal characteristics (e.g. ethnicity, primary language, residency or citizenship status, etc.), to discern whether a person is an immigrant or a native, and offer a wage rate accordingly.

The other argument in favor of exogenous wage-setting was the existence of a binding price floor. While this may definitely be the case in certain industries, e.g. food service and preparation, the majority of immigrants work in sectors that earn higher than minimum wage. (Orrenius and Zavodny 2007) Thus, it is safe to assume that, for most industries, firms will offer immigrants a

81

wage rate based on their average marginal productivity rather than one that is mandated by the government.

3.5.2 Solving the Equilibrium Model

I begin by defining firms' wage-setting behavior. Firms choose wage rate W_{ii} that is equal to the expected marginal productivity of the migrants:

$$W_{ji} = E(\theta_{ji})$$

Recalling equation (4), we say that firms set:

 $W_{ji} = 0.5\delta(M_{min} + M_H) + K_j$

In order to begin solving the steady state equilibrium of this model, I substitute this wage equation in for W_{ij} in equation (3), the minimum level of motivation/ability attribute necessary to choose to migrate to nation j:

$$M_{min} = 1 - \frac{0.5\delta(M_{min} + M_H) + K_j - U_{ALT}}{\alpha P_j + \beta D_{jh} + \gamma E_{ji}}$$

I rearrange and solve to determine the steady-state minimum level of the attribute necessary to migrate:

(10)
$$\overline{M}_{min} = \frac{U_{ALT} - 0.5\delta M_H - K_j + \alpha P_j + \beta D_{jh} + \gamma E_{ji}}{0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji}}$$

Notice the change when we switch from exogenous to endogenous wagesetting. The decision to migrate is now impacted by the parameters and variables involved in migrants' productivity: δ , K_j, and M_H.

Now that I have determined the steady-state level of M_{min} , I calculate expected migrant marginal productivity in order to solve the model. I do so by substituting the above equation for \dot{M}_{min} into the firm's wage-setting equation:

$$\overline{W}_{ji} = 0.5\delta \left(\frac{U_{ALT} - 0.5\delta M_H - K_j + \alpha P_j + \beta D_{jh} + \gamma E_{ji}}{0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji}} + M_H \right) + K_j$$

We know that firms set the wage rate equal to expected marginal productivity. Therefore, when assuming an interior solution, the steady-state expected marginal productivity in this model is:

$$(11) \ \bar{E}(\theta_{ji}) = 0.5\delta\left(\frac{U_{ALT} - 0.5\delta M_H - K_j + \alpha P_j + \beta D_{jh} + \gamma E_{ji}}{0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji}} + M_H\right) + K_j$$

$$if \ M_H >$$

$$\overline{M}_{min} > M_L$$

And then, just like the previous model, there are the two corner solutions for scenarios 2 and 3:

$$\begin{split} \bar{E}(\theta_{ji}) &= 0.5\delta(M_L + M_H) & \text{if } \bar{M}_{min} < M_L \\ \bar{E}(\theta_{ji}) \text{ is undefined} & \text{if } \bar{M}_{min} > M_H \end{split}$$

In order to determine the steady-state population of incoming migrants, I substitute equation (10) in for \dot{M}_{min} :

(12)
$$I_{j} = M_{H} - \frac{U_{ALT} - 0.5\delta M_{H} - K_{j} + \alpha P_{j} + \beta D_{jh} + \gamma E_{ji}}{0.5\delta + \alpha P_{j} + \beta D_{jh} + \gamma E_{ji}} \qquad if M_{H}$$
$$> \overline{M}_{min} > M_{L}$$

And the two corner solutions:

$$I_j = 0 \qquad \qquad if \ \overline{M}_{min} < M_L$$

$$I_j = M_H - M_L \qquad \qquad if \ \overline{M}_{min} > M_H$$

3.5.3 Interpreting the Model

Now that the endogenous wage-setting model has been solved, we can examine the relationships between the variables and parameters in this model. In order to conduct this comparative statics analysis, I do so through the three different sets of initial conditions described in the previous section: (1) some individuals are migrating and some are staying, (2) nobody is migrating, and (3) everybody is migrating.

Scenario 1: Some Initial Migration

Necessary Conditions $[M_H > M_{min} > M_L]$

In the first scenario, we have a situation in which some migrants are initially moving to nation j, and some are staying in their home country. This occurs because the minimum level of the motivation/ability attribute needed to migrate falls between the upper and lower bounds of that attribute's distribution: $M_H > M_{min}^* > M_L$. Assuming that we are initially in long-run equilibrium, I substitute in for the steady state value of M_{min} and find that there is some initial migration if:

$$M_H > \frac{U_{ALT} - 0.5\delta M_H - K_j + \alpha P_j + \beta D_{jh} + \gamma E_{ji}}{0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji}} > M_L$$

Comparative Statics: Impact of Immigration Control Policy on Number of Migrants

In the fully exogenous model, we found that an increase in immigration control policy causes a decrease in the number of migrants, as expected. To see if this is also the case under endogenous wage-setting, I derive equation (12) with respect to P_i and find:

$$\frac{\partial \bar{I}_j}{\partial P_j} = -\alpha \frac{0.5\delta + 0.5M_H + K_j - U_{ALT}}{\left(0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji}\right)^2}$$

In order to determine the nature of this relationship, recall that α , δ , and the costs of migration are positively valued. Under these assumptions, I find that

there is an inverse relationship between immigration control policy and the size of the immigrant population: $\partial \dot{I}_j / \partial P_j < 0$. The proof of this can be found in Appendix A.

When comparing the magnitude of this relationship to the exogenous wage-setting model, I find that the immigration control policy has a smaller impact under the endogenous model. Under the exogenous model, a rise in P_j simply causes M_{min} to rise and migrant population to fall, and that's it. Under the endogenous model, the rise in M_{min} causes expected migrant productivity to rise, thereby leading the wage rate to rise. This wage rate increase entices more individuals to migrate to nation j, causing M_{min} to actually decrease. This counter-effect leads to P_j having a smaller labor-screening impact on the steadystate (equilibrium) \dot{M}_{min} than it would have under exogenous wage-setting.

Comparative Statics: Impact of Immigration Control Policy on Migrant Productivity

Let's move onto the relationship between nation j's immigration control policy and the productivity of that nation's migrants. In order to do so, I derive equation (11) with respect to P_j and find:

(13)
$$\frac{\partial \bar{E}(\theta_{ji})}{\partial P_j} = 0.5\delta\alpha \frac{0.5\delta + 0.5M_H + K_j - U_{ALT}}{\left(0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji}\right)^2}$$

We observe a positive labor screening effect in this model: $\partial \bar{E}(\theta_{ij})/\partial P_j > 0$, since there is a positive correlation between the two variables because $0.5\delta + 0.5\delta M_H$ + $K_j - U_{ALT} > 0$ (refer to Appendix A for proof), and the rest of the parameters/variables are positively valued. *Relative to the exogenous wagesetting model, this effect is of a lesser magnitude* due to the fact that responsive wage-setting counters some of the initial screening effect.¹⁰

Let's move onto an examination of the magnitude of this labor screening effect and how the various variables and parameters impact this, beginning with immigration control policy itself. Does the labor screening impact of immigration control policy fall as P_j rises, as with the exogenous model? I derive equation (13) with respect to P_j:

$$\frac{\partial^2 \bar{E}(\theta_{ji})}{\partial P_j^2} = -\delta \alpha^2 \frac{0.5\delta + 0.5M_H + K_j - U_{ALT}}{\left(0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji}\right)^3}$$

Since all of the terms in this equation are positive, immigration control policy exhibits diminishing marginal returns in terms of labor screening impact: $\partial^2 \bar{E}(\theta_{ii})/\partial P_i^2 < 0$. As a nation expands its immigration control policy, the ability of

 $^{^{10}}$ Recall the labor screening effect under exogenous wages: $\partial E(\theta_{ij})/\partial P_j = 0.5\delta\alpha \left(W_{ji} - U_{ALT}\right) \left(\alpha P_j + \beta D_{jh} + \gamma E_{ji}\right)^{-2}$

And the effect under endogenous wages: $\partial \dot{E}(\theta_{ij})/\partial P_j = 0.5\delta \alpha (0.5\delta + 0.5\delta M_H + K_j - U_{ALT}) (0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji})^{-2}$

We know that the labor screening effect has a smaller magnitude under the endogenous model due to the addition of 0.5 δ in the denominator, and the fact that $0.5\delta + 0.5\delta M_H + K_j \ge W_{ij} = 0.5\delta M_{min} + 0.5\delta M_H + K_j$.

incremental changes to policy to filter out immigrants lessens. Relative to the exogenous wage-setting model, immigration control policy has diminishing returns of a lower magnitude.

The same relationship applies to all but one of the other parameters and variables that comprise the costs of migration: β , D_{jh} , γ , and E_{ji} . An increase in any of the factors of the costs of migration will cause a decrease in the magnitude of the labor screening effect, due to the diminishing impact of migration costs. The relationship is identical because these costs impact a potential migrant in the same way that a change in P_j would, based on the linear nature of these costs.

Unlike the other migration cost parameters and variables, a change in the parameter α has an uncertain impact on the magnitude of the labor screening impact. Taking the partial derivative of equation (13) with respect to α :

$$\frac{\partial^2 \bar{E}(\theta_{ji})}{\partial P_j \partial \alpha} = 0.5\delta \frac{0.5\delta + 0.5M_H + K_j - U_{ALT}}{\left(0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji}\right)^2} - \delta \alpha P_j \frac{0.5\delta + 0.5M_H + K_j - U_{ALT}}{\left(0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji}\right)^3}$$

 $\frac{\partial^2 \bar{E}(\theta_{ji})}{\partial P_j \partial \alpha} = \delta(0.5\delta + 0.5M_H + K_j)$

$$-U_{ALT})\frac{0.5(0.5\delta+\alpha P_j+\beta D_{jh}+\gamma E_{ji})-\alpha P_j}{\left(0.5\delta+\alpha P_j+\beta D_{jh}+\gamma E_{ji}\right)^3}$$

Since all of the parameters and variables in this equation are positive, we cannot determine the nature of this relationship. If the costs of migration or δ are relatively high, such that

 $\alpha P_j(0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji})^{-1} > 0.5$, then there is an inverse relationship between the magnitude of the labor screening effect and the parameter α : $\partial^2 \bar{E}(\theta_{ij})/\partial P_j \partial \alpha$ < 0. Otherwise, there is a direct relationship between the two. The reason for the conflicting results: the parameter α determines the differential impact of P_j (positive substitution effect), as well as being a component of overall costs of migration (negative income effect).

Finally, let's determine the impact of a shock to δ on the magnitude of the labor screening effect. As explained in the exogenous wage-setting model, this parameter is extremely important. When there is no connection between motivation/ability and marginal productivity ($\delta = 0$), the labor screening effect collapses to zero. In order to determine the differential impact, I derive equation (13) with respect to δ :

$$\frac{\partial^2 \bar{E}(\theta_{ji})}{\partial P_j \partial \alpha} = 0.5\alpha \frac{0.5\delta + 0.5M_H + K_j - U_{ALT}}{\left(0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji}\right)^2}$$

Based on the proof found in Appendix A, we find that there is always a direct relationship between $\partial \bar{E}(\theta_{ij})/\partial P_j$ and δ . In other words, the stronger the

relationship between migrants' motivation/ability and productivity, the larger the magnitude of the labor screening effect.

Comparative Statics: Impact of Other Parameters and Variables

I begin by examining the impact of a change to the utility afforded to a potential migrant by remaining in their home country. In order to do so, I derive equations (11) and (12) with respect to U_{ALT} :

$$\frac{\partial \bar{I}}{\partial U_{ALT}} = -\frac{1}{0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji}}$$
$$\frac{\partial \bar{E}(\theta_{ji})}{\partial U_{ALT}} = \frac{0.5\delta}{0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji}}$$

As we would expect to see, when conditions in the next best alternative country worsen, there is an increase in the number of people migrating to nation j. Thus, this variable remains an effective "push" factor in the endogenous wage-setting model. This increase in migration is due to relatively lower motivation individuals now finding it worthwhile to make the move. Thus, poorer conditions at home will cause average migrant productivity in nation j to drop. When compared to the exogenous wage-setting model, we see that the impact of a shock to U_{ALT} is smaller under the endogenous wage-setting. This is because firms will respond to the initial shock to M_{min} by changing W_{ij}, which will have a partially reversing effect on M_{min}. Ergo, when equilibrium is achieved, the impact will be smaller.

When we examine the impact of a shock to one of the parameters or variables comprising the costs of migration, we find a result that is virtually identical to the impact of P_j.¹¹ An increase in any of the migration cost factors will cause an increase in immigrant productivity and a decrease in the number of incoming migrants. This is due to the fact that the costs of migration are linear in this model, so that there is effectively no difference between the various components.

Let's move onto the impact of a shock to the parameter linking an individual's motivation/ability and their marginal productivity, δ . In the exogenous wage-setting model, this only impacted average productivity. In this model, the population size of immigrants is also affected. This is due to the fact that there is now a link between migrant's decision-making and their productivity: the offered wage rate. I derive equations (11) and (12) with respect to δ :

 $\begin{array}{lll} {}^{11} \partial E(\theta_{ij})/\partial \alpha &=& 0.5 \delta P_j \left(W_{ji} - U_{ALT}\right) \left(\alpha P_j + \beta D_{jh} + \gamma E_{ji}\right)^{-2} \\ \partial E(\theta_{ij})/\partial D_{jh} &=& 0.5 \delta \beta \left(W_{ji} - U_{ALT}\right) \left(\alpha P_j + \beta D_{jh} + \gamma E_{ji}\right)^{-2} \\ \partial E(\theta_{ij})/\partial \beta &=& 0.5 \delta D_{jh} \left(W_{ji} - U_{ALT}\right) \left(\alpha P_j + \beta D_{jh} + \gamma E_{ji}\right)^{-2} \\ \partial E(\theta_{ij})/\partial E_{ji} &=& 0.5 \delta \gamma \left(W_{ji} - U_{ALT}\right) \left(\alpha P_j + \beta D_{jh} + \gamma E_{ji}\right)^{-2} \\ \partial E(\theta_{ij})/\partial \gamma &=& 0.5 \delta \gamma \left(W_{ji} - U_{ALT}\right) \left(\alpha P_j + \beta D_{jh} + \gamma E_{ji}\right)^{-2} \end{array}$

$$\begin{aligned} \frac{\partial \bar{I}}{\partial \delta} &= \frac{0.5}{0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji}} \left(M_H \\ &- \frac{U_{ALT} - 0.5\delta M_H - K_j + \alpha P_j + \beta D_{jh} + \gamma E_{ji}}{0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji}} \right) \\ \frac{\partial \bar{E}(\theta_{ji})}{\partial \delta} &= \frac{0.5 \left(U_{ALT} - 0.5\delta M_H - K_j + \alpha P_j + \beta D_{jh} + \gamma E_{ji} \right)}{0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji}} + 0.5M_H \\ &- \frac{0.25\delta}{0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji}} \left(M_H \\ &+ \frac{U_{ALT} - 0.5\delta M_H - K_j + \alpha P_j + \beta D_{jh} + \gamma E_{ji}}{0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji}} \right) \end{aligned}$$

I find that there is an inverse relationship between the number of immigrants

and δ , if:

$$\frac{U_{ALT} - 0.5\delta M_H - K_j + \alpha P_j + \beta D_{jh} + \gamma E_{ji}}{0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji}} > M_H$$

Recalling that $M_H = 1$, this simplifies to:

$$U_{ALT}-K_j>\delta$$

Therefore, the impact of a shock to δ on the number of immigrants is uncertain.

In terms of average migrant productivity, I find that there is an inverse relationship if:

$$U_{ALT} - K_j > \delta \qquad if \ 0.5 > \frac{0.25\delta}{0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji}}$$
$$U_{ALT} - K_j < \delta \qquad if \ 0.5 < \frac{0.25\delta}{0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji}}$$

We can be more certain of the impact of a shock to the migrants' productivity modifier in country j, the constant K_j. I take the derivative of equations (11) and (12) with respect to this variable:

$$\frac{\partial \bar{I}_j}{\partial K_j} = \frac{1}{0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji}}$$
$$\frac{\partial \bar{E}(\theta_{ji})}{\partial K_j} = 1 - \frac{0.5\delta}{0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji}}$$

There is a direct relationship between migrants' productivity in nation j and the number of migrants entering that country: $\partial i/\partial K_j > 0$. The logic behind this is straightforward: an increase in K_j causes expected marginal productivity of migrants to rise, which causes firms in nation j to offer a higher wage rate, thereby enticing more migrants to pursue a higher utility in nation j. We can also see that there is a direct correlation between K_j and steady-state $\bar{E}(\Theta_{ij})$, although this is a little less obvious due to two opposing forces.¹² When K_j increases, it has the obvious one-to-one impact on the productivity of migrants to enter the nation. Since these individuals are coming from the lower end of the motivation/ability distribution, this results in the migrant pool having a lower

 $^{^{12}}$ In order for $\partial \dot{E}(\theta_{ij})/\partial K_j > 0$, the positive impact of the one-to-one relationship with the productivity function must outweigh the negative impact of the lower motivation migrants: $1 > 0.5\delta (0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji})^{-1}$

Since the costs of migration are positive, the ratio on the right must be less than unitary, thus confirming that there is a direct relationship.

motivation/ability on average, which has a negative effect on average productivity. Therefore, a one-unit increase in K_j will always result in a positive, but less than one-unit, change in steady-state average productivity: $0 < \partial \bar{E}(\Theta_{ij})/\partial K_j < 1$.

Scenario 2: Zero Initial Migration

Necessary Conditions $[M_{min}^* > M_H]$

Let's move onto the second scenario, in which nobody decides to migrate initially. In order for this to be the case, all of the potential migrants have a motivation/ability attribute level that is too low to grant them a relatively higher utility in the new nation: M_{min} * > M_{H} . Assuming that we are initially in long-run equilibrium, I substitute in for the steady state value of M_{min} and find that there is zero initial migration if:

$$\frac{U_{ALT} - 0.5\delta M_H - K_j + \alpha P_j + \beta D_{jh} + \gamma E_{ji}}{0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji}} > M_H$$

Solving for the initial level of immigration control policy, P_j^* , I find that nobody migrates to country j if:

$$P_{j}^{*} > \frac{\frac{0.5\delta}{M_{H}(U_{ALT} + 1 - 0.5M_{H} - K_{j}) - 1} - \beta D_{jh} - \gamma E_{ji}}{\alpha}$$

For the rest of this analysis, I denote the minimum level of immigration control policy at which zero individuals will migrate as:

$$P_{j}^{H} > \frac{\frac{0.5\delta}{M_{H}(U_{ALT} + 1 - 0.5M_{H} - K_{j}) - 1} - \beta D_{jh} - \gamma E_{ji}}{\alpha}$$

Comparative Statics: Impact of Immigration Control Policy on Number of Migrants

With Scenario 2, the initial level of immigration control policy is so high that there are no individuals migrating to nation j: $I_j^* = 0$. Therefore, any differential change in P_j will have no impact on the number of incoming migrants: $\partial I_j / \partial P_j = 0$.

However, a nation with a significant enough drop in P_j can entice potential migrants to make the journey. In order to find what change is needed, let's suppose that the initial M_{min}^* is exactly λ_H higher than M_H , such that:

$$M_{min}^* - \lambda_H = M_H$$

Substituting in for long-run equilibrium M_{min}*:

$$\frac{U_{ALT} - 0.5\delta M_H - K_j + \alpha P_j^* + \beta D_{jh} + \gamma E_{ji}}{0.5\delta + \alpha P_j^* + \beta D_{jh} + \gamma E_{ji}} - \lambda_H = M_H$$

where P_j^* is the initial level of immigration control policy. Solving for P_j^* :

$$=\frac{U_{ALT}-0.5\delta M_H-K_j-\alpha P_j^*-\beta D_{jh}-\gamma E_{ji}-(M_H+\lambda_H)(0.5\delta+\beta D_{jh}+\gamma E_{ji})}{\alpha (M_H+\lambda_H-1)}$$

Recall that the maximum level of immigration control policy at which individuals will migrate is:

$$P_{j}^{H} > \frac{\frac{0.5\delta}{M_{H}(U_{ALT} + 1 - 0.5M_{H} - K_{j}) - 1} - \beta D_{jh} - \gamma E_{ji}}{\alpha}$$

 P_j^*

Taking the difference of the between P_H and the initial level of P^* yields the change in immigration control policy that is necessary to entice individuals to begin migrating to country j:

$$\begin{split} P_{j}^{H} - P_{j}^{*} \\ &= \frac{\frac{0.5\delta}{M_{H}(U_{ALT} + 1 - 0.5M_{H} - K_{j}) - 1} - \beta D_{jh} - \gamma E_{ji}}{\alpha} \\ &- \frac{U_{ALT} - 0.5\delta M_{H} - K_{j} - \alpha P_{j}^{*} - \beta D_{jh} - \gamma E_{ji} - (M_{H} + \lambda_{H}) (0.5\delta + \beta D_{jh} + \gamma E_{ji})}{\alpha (M_{H} + \lambda_{H} - 1)} \end{split}$$

Therefore, if $\Delta P_{j} > \alpha^{-1} (((0.5\delta M_{H}^{-1}(U_{ALT} + 1 - 0.5\delta M_{H} - K_{j}) - 1)^{-1} - \beta D_{jh} - \gamma E_{ji}) - (U_{ALT} - 0.5\delta M_{H} - K_{j} - \beta D_{jh} - \gamma E_{ji} - (M_{H} + \lambda_{H}) (0.5\delta + \beta D_{jh} + \gamma E_{ji})) (M_{H} + \lambda_{H} - 1)^{-1}), \end{split}$

then M_{min} still exceeds M_{H} and no migration occurs. Otherwise, nation j

successfully begins enticing individuals to migrate.

In order to measure the total effect on migration, ΔI_j , I compute the total number of incoming migrants since this scenario begins with $I_j^* = 0$. After substituting for M_{min} in the migrant size equation, I find that the change in the number of migrants is:

$$\Delta I_j = M_H - \frac{U_{ALT} - 0.5\delta M_H - K_j + \alpha P_j + \beta D_{jh} + \gamma E_{ji}}{0.5\delta + \alpha P_j^* + \alpha \Delta P_j + \beta D_{jh} + \gamma E_{ji}}$$

Comparative Statics: Impact of Immigration Control Policy on Migrant Productivity

Since average migrant productivity is initially undefined in Scenario 2, a change in P_j, of any magnitude, will result in an indeterminate change in $E(\theta_{ij})$. The same is observed for the all of the other variables and parameters in the model.

Comparative Statics: Impact of Other Parameters and Variables

In Scenario 2, infinitesimal changes in any of the parameters and variables result in the same impact as a change in P_j . In terms of the impact on the number of incoming migrants, the differential effect is equal to zero. This is because the scenario begins with $I_j^* = 0$. Since marginal productivity starts as
undefined in Scenario 2 (as there are no migrants), we say that the differential impact of any of the parameters/variables is also undefined.

However, with a significant enough change in the other variables and parameters, there can be a change in I_j. For example, suppose that the costs of migration fell significantly (due to decreasing distance or ethnic differences), or that conditions at home worsened considerably, or that the wage offered in nation j skyrocketed. In all three of these cases, some individuals will start to see nation j as the better choice and migration to that nation will begin.

Scenario 3: Complete Initial Migration

Necessary Conditions $[M_{min}^* < M^L]$

In the third scenario, we have a situation in which all potential migrants are initially moving to nation j, because doing so grants them a higher utility. In other words, the minimum level of motivation/ability that a person would need to have in order to migrate is lower than the entire distribution of that characteristic: $M_{min}^* < M^L$. After substituting equation (3) in for M_{min} , I find that all potential migrants initially migrate if:

$$\overline{M}_{min} = \frac{U_{ALT} - 0.5\delta M_H - K_j + \alpha P_j^* + \beta D_{jh} + \gamma E_{ji}}{0.5\delta + \alpha P_j^* + \beta D_{jh} + \gamma E_{ji}} < M_j^L$$

Solving for P*, I find that everybody migrates if:

$$P_{j}^{*} > \frac{U_{ALT} - 0.5\delta(M_{H} + M_{L}) - K_{j} + (1 - M_{L})(\beta D_{jh} + \gamma E_{ji})}{\alpha(M_{L} - 1)}$$

For the rest of this analysis, I denote the maximum level of immigration control policy at which all individuals migrate as:

$$P_{j}^{L} = \frac{U_{ALT} - 0.5\delta(M_{H} + M_{L}) - K_{j} + (1 - M_{L})(\beta D_{jh} + \gamma E_{ji})}{\alpha(M_{L} - 1)}$$

Comparative Statics: Impact of Immigration Control Policy on Number of Migrants

In Scenario 3, the entire distribution of individuals is migrating to nation j. Therefore, the number of immigrants in scenario 3 is:

$$I_j = M_H - M_L$$

Since M_H and M_L are given constants, shock to P_j will have no differential impact on the number of migrants: $\partial I_j / \partial P_j = 0$.

It is possible for a nation to increase its immigration control policy significantly enough such that some migrants start to become screened. Let's suppose that the initial M_{min}^* is exactly λ_L lower than M_L , such that:

 $M_{min}^* + \lambda_L = M_L$

I substitute for long run-equilibrium M_{min}^* , and solve for P_j^* :

$$\frac{U_{ALT} - 0.5\delta M_H - K_j + \alpha P_j^* + \beta D_{jh} + \gamma E_{ji}}{0.5\delta + \alpha P_j^* + \beta D_{jh} + \gamma E_{ji}} + \lambda_L = M_L$$

$$P_{j}^{*} = \frac{U_{ALT} - 0.5\delta(M_{H} + M_{L}) - K_{j} + (1 - M_{L})(\beta D_{jh} + \gamma E_{ji}) + \lambda_{L}(0.5\delta + \alpha P_{j}^{*} + \beta D_{jh} + \gamma E_{ji})}{\alpha(M_{L} - 1)}$$

Recall that the maximum level of immigration control policy at which all individuals will migrate is:

$$P_{j}^{L} = \frac{U_{ALT} - 0.5\delta(M_{H} + M_{L}) - K_{j} + (1 - M_{L})(\beta D_{jh} + \gamma E_{ji})}{\alpha(M_{L} - 1)}$$

Taking the difference of the two yields the change in policy that is necessary for screening to take place:

$$P_j^L - P_j^* = \frac{-\lambda_L (0.5\delta + \alpha P_j^* + \beta D_{jh} + \gamma E_{ji})}{\alpha (M_L - 1)}$$

Therefore, if $\Delta P_j < -\lambda_L (0.5\delta + \alpha P_j + \beta D_{jh} + \gamma E_{ji})\alpha^{-1}(M_L - 1)^{-1}$, then M_L still exceeds M_{min} and all potential migrants will continue to move to nation j. Otherwise, the significant rise in P_j successfully allows nation j to begin screening migrants.

In order to calculate the total impact on the number of migrants, I recall that the initial migrant population is $I_j = M_H - M_L$, and subtract the new formula, after substituting for M_{min} and P_j :

$$\Delta I_j = (M_H - M_L) - \left(M_H - \frac{U_{ALT} - 0.5\delta M_H - K_j + \alpha P_j^* + \beta D_{jh} + \gamma E_{ji}}{0.5\delta + \alpha P_j^* + \beta D_{jh} + \gamma E_{ji}}\right)$$

$$\Delta I_j = \frac{U_{ALT} - 0.5\delta M_H - K_j + \alpha P_j^* + \beta D_{jh} + \gamma E_{ji}}{0.5\delta + \alpha P_j^* + \beta D_{jh} + \gamma E_{ji}} - M_L$$

Comparative Statics: Impact of Immigration Control Policy on Migrant Productivity

For Scenario 3, the entire distribution of potential migrants is initially migrating to nation j. Therefore, we know that $M_{min} = M_L$, and $E(\theta_{ij}) = 0.5\delta(M_L + M_H) + K_j$. This means that a infinitesimal change in the level of immigration control policy will have zero impact on the average marginal productivity of the migrants: $\partial E(\theta_{ij})/\partial P_j = 0$. This is because M_{min} initially is not being decided by the level of immigration control policy in Scenario 3, but rather is defined as the lower bound of the motivation/ability distribution.

However, we know that a significant enough increase in P_j can cause some migrants to become screened. In order to find the impact on average migrant productivity, I take the difference between initial and new steady-state migrant productivity:

$$\Delta \bar{E}(\theta_{ji}) = \bar{E}(\theta_{ji}) - \bar{E}(\theta_{ji}^*)$$

I substitute equation (11) for $\dot{E}(\theta_{ij})$ and $0.5\delta(M_L + M_H)$ in for $E(\theta_{ij})^*$:

$$\Delta \bar{E}(\theta_{ji}) = 0.5\delta \left(\frac{U_{ALT} - 0.5\delta M_H - K_j + \alpha P_j^* + \beta D_{jh} + \gamma E_{ji}}{0.5\delta + \alpha P_j^* + \beta D_{jh} + \gamma E_{ji}} + M_H \right)$$
$$- 0.5\delta (M_L + M_H)$$

After substituting for P_j:

$$\Delta \bar{E}(\theta_{ji}) = 0.5\delta \left(\frac{U_{ALT} - 0.5\delta M_H - K_j + \alpha \Delta P_j + \alpha P_j^* + \beta D_{jh} + \gamma E_{ji}}{0.5\delta + \alpha \Delta P_j + \alpha P_j^* + \beta D_{jh} + \gamma E_{ji}} + M_H \right)$$
$$- 0.5\delta (M_L + M_H)$$

There is a direct relationship between the change in immigration control policy and change in average migrant productivity. The same exists for the initial level of immigration control policy. This is due to the fact that the migrants at the bottom end of the distribution now find migration to be too costly to justify moving. There is a direct relationship for the initial level as well. A higher initial P_j^* leads to a smaller gap with P_L , meaning that the change in immigration control policy would have a greater impact on the actual screening process.

Comparative Statics: Impact of Other Parameters and Variables

In Scenario 3, infinitesimal changes in any of the parameters or variables result in the same impact as a change in P_j. In terms of the impact on the number of incoming migrants, there is no differential impact. This is because the scenario begins with $I_j^* = M_H - M_L$; a constant in which none of the parameters/variables have an impact. Except for a change in the productivity constant, we observe the same differential impact with average migrant productivity, which has a constant value of $E(\Theta_{ij}) = 0.5\delta(M_L + M_H) + K_i$.

However, there can be a change in I_j and $E(\Theta_{ij})$ with a significant finite change in the other variables and parameters. For example, suppose that the costs of migration rose significantly (due to increasing ethnic differences), or that nation j's wage premium falls dramatically. In these instances, some individuals at the bottom of the motivation will choose not to migrate.

3.5.4 Optimal Government Behavior

Now that I have discussed the impact of a change in one of the variables and parameters in this model on \dot{I}_j and $\dot{E}(\theta_{ij})$, it is time to examine their impact on the optimal immigration policy implemented by nation j. Just like the other endogenous variables in this model, this level of P_j^o changes from period to period until long-run equilibrium is achieved. For the remainder of this section, I

103

investigate the impact of a shock to one of the exogenous variables/parameters on this steady-state optimal level of immigration control policy: $\dot{P_j}^{o}$.

I begin by recalling equation (8), to find the steady-state welfare function for nation j:

$$\dot{\mathbf{G}}_j = \psi \dot{\mathbf{I}}_j + \varphi \dot{\mathbf{E}} (\theta_{ji}) - \Omega P_j$$

I then substitute equations (11) and (12) in for $\dot{E}(\theta_{ij})$ and $\dot{I}_{j},$ respectively:

$$\dot{\mathbf{G}}_{j} = \psi \left(M_{H} - \frac{U_{ALT} - 0.5\delta M_{H} - K_{j} + \alpha P_{j} + \beta D_{jh} + \gamma E_{ij}}{0.5\delta + \alpha P_{j} + \beta D_{jh} + \gamma E_{ij}} \right) + \phi \left(0.5\delta \left(\frac{U_{ALT} - 0.5\delta M_{H} - K_{j} + \alpha P_{j} + \beta D_{jh} + \gamma E_{ij}}{0.5\delta + \alpha P_{j} + \beta D_{jh} + \gamma E_{ij}} + M_{H} \right) + K_{j} \right) - \Omega P_{j}$$

I find the optimal level of immigration control policy for nation j by deriving this welfare function with respect to P_j, setting it equal to zero, and solving for P_j:

$$\frac{\partial \dot{G}_{j}}{\partial P_{j}} = \psi \left(\alpha \frac{U_{ALT} - 0.5\delta M_{H} - K_{j} + \alpha P_{j} + \beta D_{jh} + \gamma E_{ij}}{(0.5\delta + \alpha P_{j} + \beta D_{jh} + \gamma E_{ij})^{2}} - \alpha \frac{1}{0.5\delta + \alpha P_{j} + \beta D_{jh} + \gamma E_{ij}} \right) + 0.5\delta \varphi \left(\frac{\alpha}{0.5\delta + \alpha P_{j} + \beta D_{jh} + \gamma E_{ij}} - \alpha \frac{U_{ALT} - 0.5\delta M_{H} - K_{j} + \alpha P_{j} + \beta D_{jh} + \gamma E_{ij}}{(0.5\delta + \alpha P_{j} + \beta D_{jh} + \gamma E_{ij})^{2}} \right) - \Omega = 0$$

$$\frac{\partial \dot{G}_{j}}{\partial P_{j}} = \alpha \frac{0.5\delta\varphi - \Psi}{0.5\delta + \alpha P_{j} + \beta D_{jh} + \gamma E_{ij}} \left(1 - \frac{U_{ALT} - 0.5\delta M_{H} - K_{j} + \alpha P_{j} + \beta D_{jh} + \gamma E_{ij}}{0.5\delta + \alpha P_{j} + \beta D_{jh} + \gamma E_{ij}} \right) - \Omega = 0$$

$$P_{j} = \mp \frac{\sqrt{\alpha^{3}\Omega(\delta\varphi - 2\psi)(2K_{j} - 2U_{ALT} - \delta M_{H} + \delta)} + \alpha\Omega(2\beta D_{jh} + 2\gamma E_{ij} + \delta)}{2\Omega\alpha^{2}}$$

Therefore, the optimal level of immigration control policy under the assumptions of endogenous wage-setting and non-negative P_j:¹³

(10) P_j^o

$$= \frac{\sqrt{\alpha^3 \Omega(\delta \varphi - 2\psi) (2K_j - 2U_{ALT})} + \alpha \Omega(2\beta D_{jh} + 2\gamma E_{ij} + \delta)}{2\Omega \alpha^2} \quad if \ P_L > \hat{P}_j^0 > 0$$
$$if \ \hat{P}_j^0 = 0 \quad if \ \hat{P}_j^0 \le 0$$
$$P_j^0 = P_H \quad if \ \hat{P}_j^0 \ge P_H$$

Just as with the exogenous-wage model, there are two possible corner solutions to this optimization problem. The first, $P_j^o = 0$, occurs due to the constraining assumption that a nation cannot have negative immigration control policy, and the fact that nation j has no incentive to have a positive P_j level below P_L . Recall that P_L is the maximum level of immigration control policy at which all individuals migrate. If \dot{P}_j^o is less than P_L , nation j can reduce its costs with no change in migration by setting $P_j = 0$. The second corner solution, $P_j^o = P_H$, is due to the fact that nation j has no incentive to raise its policy beyond P_H . Recall that P_H is the minimum level of immigration control policy in which zero individuals migrate. Raising P_j beyond this point would yield no difference in migration behavior, but costs Ω per additional unit.

 $^{^{13}}$ Note: This requires the assumption that $\delta\varphi$ - 2ψ > 0 and Kj - Ualt > 0.

First, let's determine the impact of a shock to productivity on the optimal level of immigration control policy, beginning with K_j. Recall that a rise in K_j represents an increase in the productivity of all migrants moving to nation j, potentially spurned through technological advance or improving market conditions. I derive equation (10) with respect to K_j:

$$\frac{\partial P_j^0}{\partial K_j} = \frac{\alpha(\delta \varphi - 2\psi)}{2\sqrt{\alpha^3 \Omega(2K_j - 2U_{ALT})(\delta \varphi - 2\psi)}}$$

Since all of the terms and parameters are positively valued, I find that there is a direct relationship between the productivity of workers in nation j and the optimal level of immigration control policy set by nation j: $\partial P_j^o / \partial \delta < 0$. In other words, we would expect to see a nation with technological advances (that cause the value of migrant labor to rise) to more strictly enforce their border and customs protection.

Next, I examine the impact of an increase in the parameter δ , which is the correlation between a migrants' productivity and their level of motivation/ability. To do so, I derive (10) with respect to δ :

$$\frac{\partial P_j^0}{\partial \delta} = \frac{\alpha \delta (2K_j - 2U_{ALT})}{4\sqrt{\alpha^3 \Omega (2K_j - 2U_{ALT})(\delta \varphi - 2\psi)}} + \frac{1}{2\alpha}$$

Just as observed with the exogenous-wage setting model, there is a positive relationship between the parameter δ and the optimal level of immigration control policy: $\partial P_j^o / \partial \delta < 0$.

Now, let's examine how a shock to one of the variables or parameters in the model impacts the optimal level of immigration control policy for nation j. I begin with ψ , the valuation that the members of nation j place on the presence of migrants. To do so, I derive (10) with respect to ψ :

$$\frac{\partial P_j^0}{\partial \psi} = \frac{\alpha (U_{ALT} - K_j)}{\sqrt{2} \sqrt{-\alpha^3 \Omega (U_{ALT} - K_j) (\delta \varphi - 2\psi)}}$$

Since $K_j > U_{ALT}$, $\delta \phi > 2\psi$, and all parameters are positively valued, I find that there is the expected inverse relationship between the society's valuation of the size of the migrant population and the strictness of immigration control policy: $\partial P_j^{o}/\partial \psi < 0$.

Next, I determine the effect on P_j^o of a change in society's valuation of the productivity of migrants. I derive equation (10) with respect to φ :

$$\frac{\partial P_j^0}{\partial \varphi} = \frac{\alpha \delta (2K_j - 2U_{ALT})}{4\sqrt{\alpha^3 \Omega (2K_j - 2U_{ALT})(\delta \varphi - 2\psi)}}$$

As expected, there is a direct relationship between the optimal level of immigration control policy and society's desire for high-productivity migrants: $\partial P_j^{o}/\partial \phi < 0.$ Next, let's examine the impact of a change in the per-unit cost of immigration policy, Ω , on the optimal level of immigration policy, P_j^{o} . I derive equation (10) with respect to this parameter and find:

$$\frac{\partial P_j^0}{\partial \Omega} = \frac{\sqrt{\alpha^3 \Omega(K_j - U_{ALT})} \left(\delta \varphi - 2\psi\right)}{2\sqrt{2}\alpha^2 \Omega}$$

Under the assumptions that we have made for this model, optimal policy follows the Law of Demand; there is an inverse relationship between the cost of immigration control and the optimal amount of immigration control: $\partial P_j^o / \partial \Omega < 0$.

Oftentimes, immigration is driven by changing conditions in a potential migrant's native country. In order to determine nation j's optimal government policy in response to a shock in the migrants' homeland utility, I derive (10) with respect to U_{ALT} :

$$\frac{\partial P_j^0}{\partial U_{ALT}} = \frac{\alpha(\delta\varphi - 2\psi)}{2\sqrt{\alpha\Omega(2K_j - 2U_{ALT})(\delta\varphi - 2\psi)}}$$

Under the assumptions made for this model, there is a direct relationship between the optimal level immigration control policy for nation j and living conditions in the sending country: $\partial P_j^o / \partial U_{ALT} < 0$. In other words, according to this model we expect to see a nation tighten up its borders and more strictly enforce its legal migration practices in response to a neighboring country experiencing significant hardship, since the drop in U_{ALT} drives less productive people to nation j. On the converse side, if the sending nation experiences political stability and economic growth, we would expect nation j to loosen up its borders and spend fewer resources to screen migrants.

Finally, let's discuss the relationship between the non-policy costs of migration ($\beta D_{jh} + \gamma E_{ji}$) and P_{j^0} . In order to do so, I take the derivative of equation (9) with respect to this term:

$$\frac{\partial P_j^0}{\partial (\beta D_{jh} + \gamma E_{ji})} = -\frac{1}{\alpha}$$

A one unit increase in the non-policy costs of migration will cause the government of nation j to decrease its optimal immigration policy by a factor of $1/\alpha$, exactly like the exogenous wage-setting model. This negative linear relationship exists because individuals in this model treat policy costs the same as distance and ethnic costs. The government of nation j is determining the optimal level of total migration costs, but achieves this through its utilization of P_j. Recall that the costs of migration are: $\alpha P_j + \beta D_{jh} + \gamma E_{ji}$. Since the optimal total migration cost does not change with a shock to non-policy costs, the government can forgo enacting $1/\alpha$ units of P_j for every unit of non-policy migration costs act as a negative income effect for the optimal level of immigration control policy for nation j.

109

3.6 Expansions of the Model

3.6.1 Deportation Risk

So far in this model, there is no mechanism to account for the fact that the government of nation j may engage in the rejection or deportation of a portion of the incoming migrants. We could assume that potential migrants take this risk into consideration when calculating their costs of migration. An increase in P_j leads to a higher risk of rejection/deportation, which causes the incurred policy costs of migration (α P_j) to rise. However, this is a naïve way to model for deportation risk since we are dealing with a multiple-outcome situation.

In order to properly model for deportation risk, I begin by transforming the migrants' utility function into a Von Neumann – Morgenstern expected utility function. For the sake of simplicity, I use the exogenous wage-setting model. Therefore, If migrant i chooses to migrate to nation j, he or she has an expected utility of:

$$E(U_{ji}) = (1 - R_{ji})W_{ji} + R_{ji}U_{ALT} - (\alpha P_j + \beta D_{jh} + \gamma E_{ji})(1 - M_i)$$

where R is the risk of rejection/deportation that the individual faces when he or she tries to migrate to nation j. In other words, it is the percentage chance that the person will be forced to return home after making the attempt to relocate. The value of R should be inversely related to the potential migrant's motivation/ability, and directly related to the level of immigration control policy implemented by nation j (with diminishing returns). I model this as:

(14)
$$R_{ji} = \frac{(1 - M_i)P_j}{P_j + 1}$$

For this section I assume that the distribution of the motivation/ability attribute is between zero and one: M_i ~[0,1]. Therefore, the value of R will never be negative, never exceed one, and those at the very top end of the motivation distribution will always have a chance to enter the nation. It also will simplify calculations later in this section.

Now that I have detailed the expected utility function and the risk of rejection function, I move onto solving the expanded model. Migrant i will only relocate to nation j if the expected utility of doing so exceeds that which can be obtained at home, $E(U_{ji}) > U_{ALT}$:

$$(1 - R_{ji})W_{ji} + R_{ji}U_{ALT} - (\alpha P_j + \beta D_{jh} + \gamma E_{ji})(1 - M_i) > U_{ALT}$$
$$\left(1 - \frac{(1 - M_i)P_j}{P_j + 1}\right)W_{ji} + \frac{(1 - M_i)P_j}{P_j + 1}U_{ALT} - (\alpha P_j + \beta D_{jh} + \gamma E_{ji})(1 - M_i)$$
$$> U_{ALT}$$

$$M_{i} > \frac{(U_{ALT} - W_{ji})}{\alpha P_{j} + \beta D_{jh} + \gamma E_{ij} + \frac{P_{j}(W_{ji} - U_{ALT})}{P_{j} + 1} + 1$$

Thus, I have identified the minimum level of motivation/ability needed to migrate to nation j:

(15)
$$M_{min} = 1 - \frac{(W_{ji} - U_{ALT})}{\alpha P_j + \beta D_{jh} + \gamma E_{ij} + \frac{P_j(W_{ji} - U_{ALT})}{P_j + 1}}$$

Comparing this solution to the one calculated in the original exogenous wage-setting model,¹⁴ we see that nothing has fundamentally changed. All of the relationships between the variables have changed slightly in magnitude but still maintain the same orientation. As we might expect to see, the direct relationship between M_{min} and P_j is more pronounced with the addition of deportation risk. Thus, the labor screening impact has a higher magnitude. Also, due to an inflated denominator (for the negatively valued term) we observe a higher M_{min} under the expanded model, which we also expect to see. This means that there will be fewer immigrants, and the workers that do decide to migrate will have a higher average marginal productivity. Thus, we observe that the risk of deportation acts as an effective labor screening device, even for our risk-neutral migrants. If the individuals in this model are risk averse, this effect would be even more pronounced.

¹⁴ Original minimum level of motivation/ability attribute: $M_{min} = 1 - \frac{W_{ji} - U_{ALT}}{\alpha P_j + \beta D_{jh} + \gamma E_{ji}}$

The alteration to the nation-decision utility function is not the only impact that an active deportation system will have on the migration process. It is important to also model for the effect of the actual deportation/rejection mechanism that is forcefully preventing migrants from entering the labor force of nation j and returning them home.

Lets' begin with a simple discrete example. Suppose there are 4 laborers each that belong to Groups 1, 2, and 3, with a motivation of $M_i = 0$, $M_i = 0.5$, and $M_i = 1$, respectively. I assign unitary value to P_j , δ , and K_j , and I suppose that M_{min} = 0 so that the entire distribution of individuals decides to migrate. Recalling equation (14), the risk of rejection/deportation under these circumstances is $R = 0.5(1 - M_i)$. Therefore, two out of the four Group 1 individuals would be deported, one individual would be rejected from Group 2, and all of Group 3 successfully enters nation j. Thus, the deportation mechanism causes the immigrant population to fall from 12 to 9, and causes the average productivity of the migrants to rise from 1.5 to 1.6. This is a particularly interesting result, since we are observing a labor screening process that is entirely separated from M_{min} , which was the *sole* determining factor for I_j and E(Θ_{ij}) in the basic model.

Now that I have exhibited the basic properties of the deportation/rejection mechanism, I will solve for the generalized model in which M_i is uniformly distributed between 0 and 1. In order to do so, I can no longer

take the difference between M_{min} and M_{H} . Instead, I aggregate the density of "successful" migrations between M_{min} and M_{H} . Recalling that the probability of a successful migration is 1-R, the size of the migrant population is:

$$I_{j} = \int_{M_{min}}^{M_{H}} (1 - R_{ji}) dM_{i} = \int_{M_{min}}^{1} (1 - \frac{(1 - M_{i})P_{j}}{P_{j} + 1}) dM_{i}$$
$$= F_{I}(1) - F_{I}(M_{min})$$
$$I_{j} = 1 + \frac{P_{j}(-0.5)}{P_{j} + 1} - M_{min} - \frac{M_{min}P_{j}(0.5M_{min} - 1)}{P_{j} + 1}$$
$$I_{j} = 1 + \frac{P_{j}(-0.5)}{P_{j} + 1} - M_{min} \left(1 + \frac{P_{j}(0.5M_{min} - 1)}{P_{j} + 1}\right)$$

To illustrate, let's continue with the situation in which $M_{min} = 0$, and that $P_j = 1$. The entire distribution of individuals chooses to migrate; those at the bottom end have a success rate of 50% and those at the top have a 100% success rate. Therefore, the migrant population size would be F(1) - F(0) = 1 - 0.25 = 0.75. In other words, a quarter of the incoming migrants would be deported, with the majority of the rejectees belonging to the lower end of the motivation/ability distribution.

I now move onto generally solving for I_{j} by substituting equation (15) in for M_{min} :

$$I_{j} = 1 + \frac{P_{j}(-0.5)}{P_{j} + 1} - \left(\frac{(U_{ALT} - W_{ji})}{\alpha P_{j} + \beta D_{jh} + \gamma E_{ij} + \frac{P_{j}(W_{ji} - U_{ALT})}{P_{j} + 1} + 1\right)$$
$$\left(\frac{P_{j}\left(0.5\left(\frac{(U_{ALT} - W_{ji})}{\alpha P_{j} + \beta D_{jh} + \gamma E_{ij} + \frac{P_{j}(W_{ji} - U_{ALT})}{P_{j} + 1} + 1\right) - 1\right)}{1 + \frac{P_{j}(W_{ji} - W_{ALT})}{P_{j} + 1}}\right)$$

When we compare this result to that found in the basic model,¹⁵ we find that I_j is smaller with the deportation mechanism, and is more severely impacted by a change in P_j. This is due to the combined effects of fewer individuals choosing to migrate, as well as the physical rejection of some of those who do decide to relocate.

This deportation process does not happen uniformly, as individuals with lower motivation/ability have a higher rejection rate. In order to calculate for the actual labor screening impact of the deportation mechanism, I move onto solving for the average productivity of the migrants who successfully relocate to nation

¹⁵ Under the exogenous wage-setting model, where $M_H = 1$:

 $I_j = (W_{ji} - U_{ALT}) (\alpha P_j + \beta D_{jh} + \gamma E_{ji})^{-1}$

j. In order to calculate this, I take the "total" marginal productivity of all successful migrants and divide it by the number of migrants:

$$E(\theta_{ji}) = \frac{\int_{M_{min}}^{1} (1 - R_{ji}) \theta_{ji} dM_{i}}{\int_{M_{min}}^{1} (1 - R_{ji}) dM_{i}} = \frac{\int_{M_{min}}^{1} \left(1 - \frac{(1 - M_{i})P_{j}}{P_{j} + 1}\right) \theta_{ji} dM_{i}}{\int_{M_{min}}^{1} \left(1 - \frac{(1 - M_{i})P_{j}}{P_{j} + 1}\right) dM_{i}}$$

Recall from equation (2) that $\theta_{ij} = \delta M_i + K_j$:

$$E(\theta_{ji}) = \frac{\int_{M_{min}}^{1} \left(1 - \frac{(1 - M_i)P_j}{P_j + 1}\right) (\delta M_i + K_j) dM_i}{\int_{M_{min}}^{1} \left(1 - \frac{(1 - M_i)P_j}{P_j + 1}\right) dM_i} = \frac{F_{\theta}(1) - F_{\theta}(M_{min})}{F_I(1) - F_I(M_{min})}$$

$$E(\theta_{ji}) = \frac{F_{\theta}(1) - F_{\theta}(M_{min})}{F_{I}(1) - F_{I}(M_{min})} = \frac{F_{\theta}(1)}{F_{I}(1) - F_{I}(M_{min})} - \frac{F_{\theta}(M_{min})}{F_{I}(1) - F_{I}(M_{min})}$$

$$= \frac{\left(0.5\delta + K_{j} + \frac{P_{j}}{P_{j}+1}\left(0.33\delta + 0.5(K_{j}-1) - K_{j}\right)\right)}{1 + \frac{P_{j}(-0.5)}{P_{j}+1} - M_{min}\left(1 + \frac{P_{j}(0.5M_{min}-1)}{P_{j}+1}\right)} - \frac{M_{min}\left(0.5\delta M_{min} + K_{j} + \frac{P_{j}}{P_{j}+1}\left(0.33\delta M_{min}^{2} + 0.5M_{min}(K_{j}-\delta) - K_{j}\right)\right)}{1 + \frac{P_{j}(-0.5)}{P_{j}+1} - M_{min}\left(1 + \frac{P_{j}(0.5M_{min}-1)}{P_{j}+1}\right)}$$

Now that I have solved for average migrant productivity, let's continue with the example of $M_{min} = 0$ and $P_j = 1$, in which the size of the migrant population is 0.75. We will also assume unitary value for δ and K_j. Plugging in these values, I find that the average marginal productivity of the "successful" migrants is $E(\theta_{ji}) = \frac{0.5 + 1 + 0.5(0.33 - 1)}{0.75} = 1.56$. Keep in mind that the entire distribution of potential migrants attempted to relocate, and these individuals have an average productivity of $E(\theta_{ji}) = E(M_i) + 1 = 1.5$. Therefore, even in the absence of any effect from M_{min} , we observe that an active deportation mechanism is an effective labor screening device and leads to higher average productivity in migrants who successfully integrate into the labor market of nation j.

3.6.2 Multiple-Nation Model

When I established the nation-decision utility function in the beginning of this model, I allowed migrant i the option to choose from many nations. However, for the rest of the analysis I assumed that U_{ALT} was solely provided by the migrants' wages/conditions at home. Effectively, the migrants in the model had two choices: either migrate to nation j, or stay at home. While that assumption may hold validity in some circumstances (e.g. Mexico and United States), in other cases (such as the recent E.U. migration) it is not well supported; potential migrants often have several options to choose from. For this reason, I wish to expand the model by introducing more than one nation receiving migrants. In other words, I wish to explore the possibility of U_{ALT} being provided by a nation other than the migrants' homeland. For the sake of simplicity, I assume that motivation/ability is distributed Mi[~][0,1] for this section.

Solving the Model

Recall that, in order for migrant i to migrate to nation j, the following inequality must hold:

$$W_{ji} - (\alpha P_j + \beta D_{jh} + \gamma E_{ji})(1 - M_i) > U_{ALT}$$

In this expansion, I replace U_{ALT} with the utility function for the next best alternative nation-choice:

$$W_{ji} - (\alpha P_j + \beta D_{jh} + \gamma E_{ji})(1 - M_i)$$

> $W_{ALT,i} - (\alpha P_{ALT} + \beta D_{ALT,h} + \gamma E_{ALT,i})(1 - M_i)$

$$W_{ji} - W_{ALT,i} > (\alpha P_j + \beta D_{jh} + \gamma E_{ji} - \alpha P_{ALT} + \beta D_{ALT,h} + \gamma E_{ALT,i})(1 - M_i)$$

$$M_i > 1 - \frac{W_{ji} - W_{ALT,i}}{\alpha P_j + \beta D_{jh} + \gamma E_{ji} - \alpha P_{ALT} + \beta D_{ALT,h} + \gamma E_{ALT,i}}$$

Thus, I identify the lower bound of the motivation/ability distribution of the migrants moving to nation j as:

$$M_{min,j} = 1 - \frac{W_{ji} - W_{ALT,i}}{\alpha P_j + \beta D_{jh} + \gamma E_{ji} - \alpha P_{ALT,i} - \beta D_{ALT,h} - \gamma E_{ALT,i}}$$

In order to determine what nation is the "next best alternative," I work sequentially, beginning with the nation that offers the highest wage (which I will denote as nation 0). We know for certain that the individuals at the top of the distribution, with M_i virtually equal to one, will choose nation 0 as their

destination. This is because the adjusted costs of migration are virtually zero, making the wage rate the only important component of utility. Therefore, the upper bound for nation 0 is $M_H = 1$. To find the "next best alternative," I calculate $M_{min,0}$ using each of the other nations as the alternative. The nation with the highest M_{min} within the "available" range of M_i ~[0,1] is the next best alternative, which I now denote as nation 1. Thus, we can solve for nation 0:

(16)
$$I_0 = 1 - M_{min,0} = \frac{W_{0i} - W_{1i}}{\alpha P_0 + \beta D_{0h} + \gamma E_{0i} - \alpha P_{1i} - \beta D_{1h} - \gamma E_{1i}}$$

(17)
$$E(\theta_{0i}) = 0.5 \frac{W_{0i} - W_{1i}}{\alpha P_0 + \beta D_{0h} + \gamma E_{0i} - \alpha P_{1i} - \beta D_{1h} - \gamma E_{1i}} + 1 + K_0$$

We know that the upper bound of the distribution that is migrating to nation 1 is the lower bound of nation 0: $M_{max,1} = M_{min,0}$. To find the lower bound for nation 1, I repeat the same process as before. I begin by calculating $M_{min,1}$ for each possible nation, except nation 0. Then, I pick the highest $M_{min,1}$ within the available range of M_i ~[0, $M_{min,0}$] to find the "next best alternative," nation 2. At this point, we can solve for nation 1:

$$I_1 = M_{max,1} - M_{min,1} = M_{min,0} - M_{min,1}$$

$$I_{1} = \frac{W_{1i} - W_{2i}}{\alpha P_{1} + \beta D_{1h} + \gamma E_{1i} - \alpha P_{2i} - \beta D_{2h} - \gamma E_{2i}} - \frac{W_{0i} - W_{1i}}{\alpha P_{0} + \beta D_{0h} + \gamma E_{0i} - \alpha P_{1i} - \beta D_{1h} - \gamma E_{1i}}$$

$$E(\theta_{1i}) = 0.5\delta \left(2 - \frac{W_{0,i} - W_{1i}}{\alpha P_0 + \beta D_{0h} + \gamma E_{0i} - \alpha P_1 - \beta D_{1h} - \gamma E_{1i}} - \frac{W_{1i} - W_{2,i}}{\alpha P_1 + \beta D_{1h} + \gamma E_{1i} - \alpha P_{2i} - \beta D_{2h} - \gamma E_{2i}}\right) + K_1$$

Once I have solved for nation 1, I continue the exact same process for nation 2 and so on until I reach the final "viable" location, nation J. We know that we have reached nation J when all of the $M_{min,J}$ calculations fall outside of the available range of the M_i distribution: $M_i \sim [0, M_{min,J-1}]$. This means that the rest of the nations can be ignored as none of the individuals in the model have an incentive to relocate there. At this point, nation J has a lower bound of zero.

Now that I have defined nations 1 through J, I can solve for the general form of the "center-of-distribution" nation j where 0 < j < J, as well as the bottom-of-distribution nation J:

(18)
$$I_{j} = \frac{W_{ji} - W_{j+1,i}}{\alpha P_{j} + \beta D_{jh} + \gamma E_{ji} - \alpha P_{j+1,i} - \beta D_{j+1,h} - \gamma E_{j+1,i}} - \frac{W_{j-1,i} - W_{ji}}{\alpha P_{j-1} + \beta D_{j-1,h} + \gamma E_{j-1,i} - \alpha P_{j} - \beta D_{jh} - \gamma E_{ji}}$$
(19)
$$E(\theta_{ji}) = 0.5\delta \left(2 - \frac{W_{j-1,i} - W_{ji}}{\alpha P_{j-1} + \beta D_{j-1,h} + \gamma E_{j-1,i} - \alpha P_{j} - \beta D_{jh} - \gamma E_{ji}} - \frac{W_{ji} - W_{ji}}{\alpha P_{j-1} + \beta D_{j-1,h} + \gamma E_{j-1,i} - \alpha P_{j} - \beta D_{jh} - \gamma E_{ji}} - \frac{W_{ji} - W_{ji}}{\alpha P_{j-1} + \beta D_{j-1,h} + \gamma E_{j-1,i}} - \alpha P_{j} - \beta D_{jh} - \gamma E_{ji}} - \frac{W_{ji} - W_{ji}}{\alpha P_{j-1} + \beta D_{j-1,h} + \gamma E_{j-1,i}} - \alpha P_{j} - \beta D_{jh} - \gamma E_{ji}} - \frac{W_{ji} - W_{ji}}{\alpha P_{j-1} + \beta D_{j-1,h} + \gamma E_{j-1,i}} - \alpha P_{j} - \beta D_{jh} - \gamma E_{ji}} - \frac{W_{ji} - W_{ji}}{\alpha P_{j-1} + \beta D_{j-1,h} + \gamma E_{j-1,i}} - \alpha P_{j} - \beta D_{jh} - \gamma E_{ji}} - \frac{W_{ji} - W_{ji}}{\alpha P_{j-1} + \beta D_{j-1,h} + \gamma E_{j-1,i}} - \alpha P_{j} - \beta D_{jh} - \gamma E_{ji}} - \frac{W_{ji} - W_{ji}}{\alpha P_{j-1} + \beta D_{j-1,h} + \gamma E_{j-1,i}} - \alpha P_{j} - \beta D_{jh} - \gamma E_{ji}} - \frac{W_{ji} - W_{ji}}{\alpha P_{j-1} + \beta D_{j-1,h}} - \frac{W_{ji} - W_{ji}}{\alpha P_{j-1} + \beta D_{j-1,h}} - \frac{W_{ji} - W_{ji}}{\alpha P_{j-1} + \beta D_{ji}} - \frac{W_{ji} - W_{ji}}{\alpha P_{j-1,h}} - \frac{W_{ji} - W_{ji}}{\alpha P_{j-1} + \beta D_{ji}} - \frac{W_{ji} - W_{ji}}{\alpha P_{j-1} + \beta D_{ji}} - \frac{W_{ji} - W_{ji}}{\alpha P_{j-1} + \beta D_{ji}} - \frac{W_{ji} - W_{ji}}{\alpha P_{ji}} - \frac{W_{ji} - W_{ji}}{\alpha P_{$$

$$-\frac{W_{ji} - W_{j+1,i}}{\alpha P_{j} + \beta D_{jh} + \gamma E_{ji} - \alpha P_{j+1,i} - \beta D_{j+1,h} - \gamma E_{j+1,i}}\right) + K_{j}$$

where $j \neq 0$ $j \neq J$

(20)
$$I_J = 1 - \frac{W_{Ji} - W_{J-1,i}}{\alpha P_J + \beta D_{Jh} + \gamma E_{Ji} - \alpha P_{J-1} - \beta D_{J-1,h} - \gamma E_{J-1,i}}$$

(21)
$$E(\theta_{Ji}) = 0.5\delta\left(2 - \frac{W_{J+1,i} - W_{Ji}}{\alpha P_{J+1} + \beta D_{J+1,h} + \gamma E_{J+1,i} - \alpha P_J - \beta D_{Jh} - \gamma E_{Ji}}\right) + K_J$$

Solving the Model: A Simple Example

I illustrate with a simple example, in which the exogenous variables and parameters have unitary value. For a more detailed 26-nation simulation of the process, refer to Appendix A.5. Let's suppose that a group of Syrian individuals have been displaced by war, are considering migration, and face the following nation-choice utility functions:

 $U_{SYR,i} = -1$ $U_{TURK,i} = 1 - (1 + 1 + 1)(1 - M_i)$ $U_{GER,i} = 3 - (1 + 4 + 2)(1 - M_i)$ $U_{ITA,i} = 2 - (1 + 2.5 + 2)(1 - M_i)$

... and so on (we'll assume these are the four best options) ...

Let's start with the individuals at the top of the motivation distribution.

Since these migrants have adjusted costs of migration of virtually zero, they will always pursue the option in which they achieve the highest wage rate: Germany. The next order of business is determining the bottom end of the range of German-bound migrants. In order for a migrant to wish to migrate to Germany, the utility in doing so must be higher than the next best alternative: Turkey.¹⁶ I set this up and solve for M_i:

 $U_{GER,i} > U_{TURK,i}$

 $3 - (1 + 4 + 2)(1 - M_i) > 1 - (1 + 1 + 1)(1 - M_i)$

 $M_i > 0.5$

Therefore, the German-bound migrants have a motivation/ability attribute between 0.5 and 1. Thus, the population size is $I_{GER} = 0.5$ and, assuming unitary value for parameters and variables, $E(\theta_{GER,j}) = 1.75$.

 $^{^{16}}$ I know that this is the next best alternative through direct comparison. When I compare $U_{GER,I}$ to $U_{ITA,I}$ I find that individuals will choose Germany over Italy if: $3 - (1 + 4 + 2)(1 - M_i) > 2 - (1 + 2.5 + 2)(1 - M_i)$

M_i > 0.33

And I find that individuals choose Germany over remaining in Syria if: $3 - (1 + 4 + 2)(1 - M_i) > -1$ M_i > 0.33

When we compare this to the motivation/ability required to choose Germany over Turkey ($M_i > 0.5$), we find that there are individuals (M_i ~[0.33,0.5]) who would choose to live in Turkey, but not in Italy or Syria. In other words, Turkey has the "highest" M_{min} and is revealed to be the "next best alternative."

Since Turkey is the next best alternative, we know that those with M_i that is just below 0.5 consider Turkey to be the best option. Thus, this is the upper bound of the Turkey-bound migrants. In order to calculate the low end of this range, I compare to the next best alternative, Syria,¹⁷ and solve for M_i:

 $U_{TURK,i} > U_{SYR,i}$

$$1 - (1 + 1 + 1)(1 - M_i) > -1$$

 $M_i > 0.33$

Therefore, the population of migrants relocating to Turkey is M_i ~[0.33,0.5].

Thus, the population size is $I_{TURK} = 0.17$ and $E(\theta_{TURK,j}) = 1.41$.

The remainder of the potential migrant population, M_i ~[0,0.33], will decide to remain in Syria despite the poor conditions there. We know that 0 is the lower bound for Syria, thus excluding Italy from the final solution, by comparing the utility functions of Syria and Italy. Migrants will choose to live in Italy over Syria if:

 $U_{ITA,i} > U_{SYR,i}$

 $2 - (1 + 2.5 + 2)(1 - M_i) > -1$

 $M_i > 0.45$

 $^{^{17}}$ In order to determine that Syria is the next best alternative, I compare the utility derived in Turkey to that of Italy and find that individuals choose Italy over Turkey if: $2-5.5(1 - M_i) > 1 - 3(1 - M_i)$ $M_i > 0.6$

Since migrants with motivation/ability above 0.5 are migrating to Germany, we know that Italy is the inferior choice, and Syria is the next best alternative.

We know that individuals in this range are already migrating to Turkey and Germany, thus none decide to move to Italy. Therefore, the population size for Syria in this example is $I_{SYR} = 0.33$ and the average productivity of these individuals is $E(\theta_{SYR,j}) = 1.17$.

Interpreting the Results

I will begin by analyzing the impact of a change in immigration control policy on migrant population and productivity on nation 0, the highest-wage nation. I take equations (16) and (17) and derive by P_0 :

$$\frac{\partial I_0}{\partial P_0} = \frac{-\alpha (W_{0i} - W_{1i})}{(\alpha P_0 + \beta D_{0h} + \gamma E_{0i} - \alpha P_1 - \beta D_{1h} - \gamma E_{1i})^2}$$

$$\frac{\partial E(\theta_0)}{\partial P_0} = \frac{0.5\delta\alpha(W_{0i} - W_{1i})}{(\alpha P_0 + \beta D_{0h} + \gamma E_{0i} - \alpha P_1 - \beta D_{1h} - \gamma E_{1i})^2}$$

Just as with the simple model, we find an inverse correlation between migrant population and immigration control policy, and a direct one with average migrant productivity. We know this is true because the wage gap has to be positive by definition (nation 0 is highest-wage), and the costs of migration to nation 1 must be lower than nation 0 in order for lower M_i individuals to choose nation 1 (see first part of Appendix A.3 for proof). If only one nation (the migrants' homeland) has lower costs of migration than nation 0, the situation effectively reverts to the 2-nation model.

The magnitude of the labor screening effect is a different story. When we compare to the 2-nation model¹⁸, we see that the labor screening effect is more pronounced for nation 0 in the multi-nation model. This is due to the subtraction of nation 1's costs of migration in the denominator, thus inflating the fraction. Migrants are now comparing nation 0 to another nation with migration costs, as opposed to their home country (with zero migration costs). This means that, when making the comparison to nation 1, migrants in the multi-nation model experience a smaller "cost-of-migration differential." Since the labor screening effect exhibits diminishing marginal returns (from Section 1.3), a decrease in the cost-of-migration differential effectively increases the screening power of nation O's immigration control policy. Conceptually speaking, it is because the migrants that are on the margin of $M_{min.0}$ are more easily swayed to pursue the next best alternative nation. These migrants on the margin are interested in a high-wage, high-cost location, and with the multi-nation model, they can "shop around" between nations 0 and 1.

¹⁸ Labor screening under the 2-Nation Model (recall that $U_{ALT} = W_{1i}$ in the 2-nation model): $\partial I_j / \partial P_j = -\alpha (W_{ji} - W_{1i}) (\alpha P_j + \beta D_{jh} + \gamma E_{ji})^{-2}$ $\partial E(\Theta_{ij}) / \partial P_i = 0.5\delta\alpha (W_{ii} - W_{1i}) (\alpha P_i + \beta D_{jh} + \gamma E_{ji})^{-2}$

All of the other relationships between the various variables and parameters and I_0 and $E(\Theta_{0i})$ maintain the same orientation as they do under the 2-nation model. The magnitudes of these effects are different, for the same reason as described above.

I move onto the analysis of labor screening effect for the general nation j. I derive equations (18) and (19) with respect to P_i :

$$\frac{\partial I_{j}}{\partial P_{j}} = \frac{-\alpha(W_{ji} - W_{j+1,i})}{\left(\alpha P_{j} + \beta D_{jh} + \gamma E_{ji} - \alpha P_{j+1,i} - \beta D_{j+1,h} - \gamma E_{j+1,i}\right)^{2}} - \frac{\alpha(W_{j-1,i} - W_{ji})}{\left(\alpha P_{j-1} + \beta D_{j-1,h} + \gamma E_{j-1,i} - \alpha P_{j} - \beta D_{jh} - \gamma E_{ji}\right)^{2}}$$

$$\frac{\partial E(\theta_j)}{\partial P_j} = 0.5\alpha\delta \left(\frac{W_{ji} - W_{j+1,i}}{\left(P_j + \beta D_{jh} + \gamma E_{ji} - \alpha P_{j+1,i} - \beta D_{j+1,h} - \gamma E_{j+1,i}\right)^2} - \frac{W_{j-1,i} - W_{ji}}{\left(\alpha P_{j-1} + \beta D_{j-1,h} + \gamma E_{j-1,i} - \alpha P_j - \beta D_{jh} - \gamma E_{ji}\right)^2} \right)$$

The correlation between the size of the immigrant population and P_j remains inverted for nation j, solidifying its effect as a "push" factor. We know this is true because α and the two wage gaps are all positively valued (see Appendix A.4 for proof). The magnitude of this relationship appears to be significantly higher under the multi-nation model relative to the two-nation model. This is due to the fact that an increase in P_j causes migrants on the margin of M_{min,j} to relocate to nation j-1, *as well as* influencing migrants on the

margin of $M_{max,j}$ to move to nation j+1. This effect on the migrants at the margin of $M_{max,j}$ is absent from the two-nation model.

Unlike the 2-nation model, the relationship between the immigration control policy and average migrant productivity is uncertain. An increase in P_j causes $M_{min,j}$ to rise, with a positive impact on $E(\Theta_{ji})$. However, it also causes $M_{max,j}$ to fall, which has a negative impact on average productivity. The magnitudes of these opposing forces are determined by the size of wage and cost gaps between nation j and its "neighbors," j-1 and j+1. Suppose that we assume that the wage and cost gaps with nations j-1 and j+1 are identical:

$$W_{j-1,i} - W_{ji} = W_{ji} - W_{j+1,i}$$
 and

$$\alpha P_{j-1} + \beta D_{j-1,h} + \gamma E_{j-1,i} - \alpha P_j - \beta D_{jh} - \gamma E_{ji} = \alpha P_j + \beta D_{jh} + \gamma E_{ji} - \alpha P_{j+1,i} - \alpha P_{j+1,i}$$

 $\beta D_{j+1,h} - \gamma E_{j+1,i}$. In this case, a differential change in P_j would have zero impact on average migrant productivity. If the wage/cost gap is higher for nation j+1 than j-1, there is a direct relationship between the two variables. The converse is true when the wage/cost gap is higher for j-1.

I now move onto the analysis of the labor screening effect for the lowwage, low-cost nation J. I take the derivative of equations (20) and (21) with respect to P_J;

$$\frac{\partial I_J}{\partial P_J} = \frac{-\alpha (W_{J-1,i} - W_{Ji})}{\left(\alpha P_J + \beta D_{Jh} + \gamma E_{Ji} - \alpha P_{J-1} - \beta D_{J-1,h} - \gamma E_{J-1,i}\right)^2}$$

$$\frac{\partial E(\theta_J)}{\partial P_J} = 0.5\delta \frac{-\alpha(W_{J-1,i} - W_{Ji})}{\alpha P_J + \beta D_{Jh} + \gamma E_{Ji} - \alpha P_{J-1} - \beta D_{J-1,h} - \gamma E_{J-1,i}}$$

The correlation between migrant population and immigrant control policy remains negative, as we would expect to see. However, differentially speaking, there is now an inverse relationship between average migrant productivity and P_J, as opposed to the direct relationship that we have normally seen. This is due to the fact that the lower bound of the motivation/ability range of individuals locating in nation J is zero: $M_{min,J} = 0$. An incremental change in P_J will have no impact on this boundary; there are no migrants "on the margin" between nation J and J+1, thus no change in migration between the two nations: $\partial M_{min,J}/\partial P_J = 0$. An increase in P_J will, however, cause a decrease in $M_{max,J}$ as individuals on the margin with nation J-1 decide to relocate to that nation: $\partial M_{max,J}/\partial P_J < 0$. Therefore, an increase in P_J causes both migrant population and average productivity to decline.

Interpreting the Results: A Simple Example

Continuing with the example from earlier, let's examine the impact of a shock to P_j for each of the three nations in question, beginning with nation 0: Germany. Let's suppose that the nation of Germany decides to lower P_j in

response to the Syrian crisis, such that P_j falls from 1 to 0.5. Now, when migrants are considering moving to Germany or Turkey, they will relocate to Germany if: $U_{GER} > U_{TURK}$ $3 - (1 + 4 + 2)(1 - M_i) > 1 - (1 + 1 + 1)(1 - M_i)$ $M_i > 0.43$

Therefore, the German-bound migrants have a motivation/ability attribute between 0.43 and 1. Thus, the decrease in immigration control policy has caused migrant population size to grow significantly to $I_{GER} = 0.57$, while average productivity has fallen to $E(\theta_{GER,j}) = 1.71$. Therefore, we observe a significant inverse relationship between I_0 and P_0 , and a significant direct relationship between $E(\theta_{OI})$ and P_0 .

Now, let's observe the impact of an incremental increase in P_j for nation 1: Turkey. Suppose Turkey raises its level of immigration control policy from 1 to 1.2. In this case, when migrants are considering whether they want to live in Germany or Turkey, they will live in Turkey if:

 $U_{TURK} > U_{GER}$

 $1 - (1.2 + 1 + 1)(1 - M_i) > 3 - (1 + 4 + 2)(1 - M_i)$ $M_i < 0.475$

Thus, the upper bound of Turkey-bound migrants falls to $M_{max,1} = 0.475$. To find the lower bound, I compare the utility earned by relocating to Turkey to that of

remaining in Syria:

 $U_{TURK} > U_{SYR}$

 $1 - (1.2 + 1 + 1)(1 - M_i) > -1$

 $M_i > 0.375$

Therefore, the Turkey-bound immigrants now have motivation/ability of M_i ~[0.375,0.475]. Thus, the small increase in P₁ has caused the migrant population to fall significantly from 0.17 to 0.1. On the other hand, average migrant productivity increased very slightly from 1.41 to 1.425. This goes to show that for "middle-of-distribution" nation j, there is a strong negative relationship between immigration control policy and the migrant population size, while the correlation between P_i and E(θ_{ii}) is rather weak.

Now let's move onto Nation J in this example: Syria. Since I have assumed a lower bound of zero for P_j, the nation is unable to lower its level of immigration control policy to entice more (higher-productivity) individuals to remain in the country. However, let's suppose that the government imposes costs on them if they choose to remain (e.g. costly documentation process, bombing campaigns, routine military checkpoints, etc.) so there is an increase in P_J from 0 to 0.5. In that case, migrants will choose to remain in Syria if:

 $U_{SYR} > U_{TURK}$

 $-1 - (0.5)(1 - M_i) > 1 - (1.2 + 1 + 1)(1 - M_i)$

 $M_i < 0.2$

Thus, the individuals who remain in Syria have a motivation/ability attribute that is between 0 and 0.2. The increase in P_J caused the "migrant" population size to fall from 0.33 to 0.2, and average marginal productivity fell from 1.17 to 1.1. Here we observe a significant inverse relationship between P_J and both I_J and $E(\Theta_{Jj})$.

Chapter 4

BACKGROUND

4.1 History of U.S. Immigration (16th – 20th century)

From the beginning, the United States has had a history of migration. The original inhabitants, the Native Americans, travelled across a land bridge that had once connected North America and northeast Asia. In the 16th century, European explorers (mostly French and Spanish) had discovered the vast resources of the United States and began establishing trading posts. By the early 17th century, European settlers (mostly British) had begun forming permanent settlements in Virginia, Massachusetts, and Maryland in pursuit of religious freedom and economic opportunity. Most of the families moving to the colonies became farmers due to the availability of cheap and productive farmland. A significant fraction of these immigrants could not afford the high monetary costs of the voyage, and voluntarily indentured themselves for a number of years in order to pay for the relocation. In addition to these European migrants, there were African slaves who were imported against their will. Through these migrant

England ¹	Africa	Ireland ²	Germany ³	Scotland	Netherlands	Other ⁴
2,110,000	757,000	300,000	270,000	150,000	100,000	219,000

Table 4.1U.S. Population, by Place of Origin (1790)

Source: Ann Arbor, Michigan: Inter-University Consortium for Political and Social Research

¹ Estimate includes Wales

² Comprised mostly of Ulster Scotch-Irish

³ Comprised of Prussia and other small independent nations

⁴ Comprised of French, Swedish, Jewish and unknown nationalities

influxes and internal increases, the official population of the colonies rose from roughly 50,000 to 250,000 between the years of 1650 and 1700 (U.S. Census Bureau 2004). The wave of migration into the colonies continued until the onset of the American Revolution, by which time the population had risen to approximately two and half million people.

Following the conflict, the newly formed United States did not see another significant influx of migrants for several more decades. Table 4.1 above shows the breakdown of the nation of origin for the United States' estimated population in 1790. As we can see, the nation was mostly inhabited by those with English ancestry, followed by the African slave population and other Northern European nations. Around this time, Congress began enacting the first immigration laws of the United States. Between 1790 and 1798, they passed three versions of the Naturalization Act, which ultimately determined that nonwhites cannot become naturalized citizens, the president was given deportation powers, and citizenship required 14 years of residence (instead of 5). With the Naturalization Law of 1802, the fourteen year residency requirement was
abolished, and citizenship rights were broadened (for white people) and better defined.¹⁹ Several years later, Congress passed the Act Prohibiting Importation of Slaves of 1807, which effectively ended the international importation of slaves.

Immigrant inflows remained relatively low for the United States until around 1830. Figure 4.1 below presents the annual numbers of individuals who obtained legal residency status, perhaps the reliable indicator of the number of incoming migrants for this period of time, between 1820 and 1860. As we can see, immigration started to pick up in the 1830's and was in full swing by 1850. The potato famine of 1845-1849 caused widespread poverty and malnutrition, which caused millions of Irish people to either emigrate or perish from starvation. The potato blight also affected continental Europe, helping to fuel

¹⁹ Children of naturalized citizens were deemed citizens, and children birthed in a foreign nation by U.S. citizens were deemed citizens. The Law also mandated better record-keeping for incoming migrants.

widespread political turmoil culminating in the Revolutions of 1848. These push factors helped to drive hundreds of thousands of German (particularly liberals and intellectuals), British, and French individuals to the resource-abundant United States. Table 4.2 below displays the national origins of the American immigrant population in 1850.

Some of these migrants moved west to claim their own farmland, but many remained in the cities to make use of their artisanal skills or to be employed as a factory worker. Also, the conclusion of the Mexican War in 1848 and the California Gold Rush of 1949 led to significant migration to the west coast, resulting in California's statehood in the year 1850. Following the Civil War, several states (California, Louisiana, and New York) individually began passing legislation that affected immigration practices. The matter was brought to the U.S. Supreme Court in the case of Chy Lung v. Freeman, which ruled that the power to determine immigration laws rested with the federal government, rather than the individual states.

This power was exercised with the passage of the Page Act of 1875,

 Table 4.2
 U.S. Immigrant Population, by Nation of Origin (1850)

Ireland	Germany ¹	England ²	Canada	France	Scotland	Other
1,611,304	1,276,075	477,455	249,970	109,870	108,518	305,505
Source: U.S. Census Bureau						

¹ Comprised of Prussia and other small independent nations

² Includes Wales

which was passed in response to increasing Asian migration into California, whose residents argued that the new wave of immigration was depressing their wages. The legislation banned the importation of contract laborers from Asia, as well as any individuals considered to be criminals in their native country. Congress took it a step further in 1882 by passing the Chinese Exclusion Act, which outright outlawed any migrant laborers from China for the next thirty years. In order to better execute these new immigration practices, the federal government established Ellis Island as a national immigration station in 1890, and Angel Island a couple decades later.

Beginning in the 1880's a new form of technology was radically changing the phenomenon of global immigration: the advent of the steam-powered ocean liner. These ships significantly lowered the monetary cost of travelling abroad, while also reducing the amount of travel time and the risk of perishing at sea. At the same time, improved agricultural practices in Southern and Eastern Europe led to a significant surplus of labor in the region. In parts of Scandinavia and Northern Europe, economic conditions had plummeted and unemployment was rampant. All across the European continent, millions of Jews (and other minority religions) were suffering from religious persecution. Meanwhile, the U.S. economy was growing at an incredible pace and gainful employment was nearly guaranteed upon arrival. There was also the promise of religious and political

136

freedom, and the existence of ethnic urban communities ensured that one could find a home among their own people.

All of these factors led to the United States experiencing the largest wave of migration to date, with tens of millions of individuals entering between 1880 and 1915. Figure 4.2 below shows the annual number of migrants filing for residency status between 1860 and 1920. As we can see, there was a large influx of migrants in the 1880's, a brief lull in the 90's, and then migration skyrocketed in the early 20th century. Table 4.3 on the next page displays the breakdown of the U.S. migrant population by region of origin in the according to the 1920 Census, and gives us a snapshot of where this new wave of migrants came from. Unlike the previous wave of migration (which was composed almost entirely of Protestants from Northern Europe and African slaves), there was a large degree

Eastern Europe ¹	Western Europe ²	British Isles	Southern Europe ³	Scandinavia
3,731,327	2,740,767	2,172,723	1,939,600	1,328,426
Canada	Latin America	Asia ⁴	Africa	Other
1,138,174	588,843	237,950	16,126	26,756

Table 4.3U.S. Immigrant Population, by Region of Origin (1920)

Source: U.S. Census Bureau

¹ Comprised mostly of migrants from Poland and the Russian Empire.

² Roughly 80% of these migrants hailed from Germany and Austria.

³ Nearly 1.8 million of these migrants hailed from Italy alone.

⁴ This is a significant underestimation, since Asian laborers were not legally permitted to enter the United States between 1882 and 1912.

of heterogeneity in the composition of the incoming migrants.

Dubbed by some as the "New Immigrants," most of these migrants were Catholic or Jewish. And, unlike the previous wave of migrants, these new arrivals tended to be poor, unskilled, and uneducated²⁰ individuals. They also tended to behave differently when they arrived in the United States. Whereas the previous wave of migrants typically sought new farmland and established rural communities, these "new immigrants" tended to stay in or near whatever port city they arrived in (usually New York City) and obtained employment in a manufacturing plant. The United States was a land of abundant resources, and had developed significant physical capital by the turn of the century. An influx of unskilled workers was the missing component that the U.S. industrial sectors needed to expand, and the massive wave of "New Immigration" supplied them.

²⁰ Many of these new arrivals were illiterate in their own language.

By the beginning of the 20th century, the United States economy had become the largest in the world.

Tensions mounted between the various ethnic groups in the "melting pot." The established Anglo-Saxon Protestant communities resented the new arrivals, who often practiced a different religion, spoke a different language, and were blamed for lower wage rates being offered to workers. These attitudes led to the institution of mandatory literacy tests for newly arriving migrants over the age of 16, which would exclude many of the uneducated individuals arriving from Southern and Eastern Europe. Several years later, Congress passed the Immigration Act of 1924, which set annual quotas for European migrants according to their nation of origin. The legislation set the quota for each nation at 2% of the U.S. immigrant population from that nation in 1890. This significantly reduced the amount of migrants allowed to enter from Southern and Eastern Europe, while favoring nations with an Anglo-Saxon Protestant heritage. The law also prevented all Asians and Arabs from legally migrating into the country, and severely restricted the entry of Africans.

Figure 4.3 on the next page displays the number of migrants seeking legal residency status after WW1 through the 20th century. With the onset of the Great Depression and World War Two, immigration into the United States dropped to nearly zero. After WW2, many American soldiers legally brought

139

back European "war wives" with the passage of the War Brides Act of 1945. The United States also accepted a significant number of refugees, orphans, and families that had been displaced by the war. The Displaced Persons Act of 1948 opened the doors for approximately half a million of these individuals to obtain residency status. Outside of these two channels, many migrants entered the United States through the national quota system established by the Immigration Act of 1924. Most of these incoming migrants easily found employment upon arrival, since many factory positions had become vacant when their female laborers returned to the homestead after the war. As we can see in the graph above, there remained a slow and steady growth in this legal migration over the next couple decades. These migrant inflows were determined by the national origins quota system, and so they were primarily composed of Caucasian individuals. According the 1960 U.S. Census, approximately 85% of all foreignborn U.S. residents hailed from Europe or Canada.

There was a substantial shift in these legal migration practices with the passage of the Hart-Celler Act of 1965. The legislation abolished the discriminatory practice of national origin quotas and replaced it with a "category" system. First priority was given to relatives of U.S. citizens and legal permanent residents, and immediate family members were accepted without a numerical restriction. The Act also established the "work visa" system, which was the first immigration control policy that focused on the skill-sets of incoming migrants in order improve the economic well-being of the nation by bridging the gap in any labor shortages recognized by the Secretary of Labor. The landmark piece of legislation also limited immigration from the Americas for the first time in history, while opening the (previously closed) door for migrants from Asia and the Middle East. Also, for the first time in U.S. history, the Hart-Cellar Act placed numerical restrictions on incoming migrants from the western hemisphere.

As expected, the Hart-Cellar Act had several substantial long-term impacts on immigration into the United States. The abolishment of the national

141

Latin America ¹	Asia	Eastern Europe	Western Europe	Southern Europe
8,407,837	4,979,037	1,231,372	1,090,582	1,054,141
British Isles	Canada	Africa	Scandinavia	Other
809,972	744,830	363,819	158,299	119,269

Table 4.4 U.S. Immigrant Population, by Region of Origin (1990)

Source: U.S. Census Bureau

¹ The majority (4.3 million) of these migrants hail from Mexico.

quotas system led to a significant diversification in the ethnic composition of legal migrants. Table 4.4 above displays the breakdown of U.S. immigrant population in 1990, by region. As we can see, millions of Europeans continued to migrate to the nation, albeit at a significantly lower rate compared to the pre-WW2 period. The numbers of individuals migrating from Canada, Scandinavia, and the British Isles also experienced a significant decline. Overall, the Act caused a significant drop in migration from nations that are predominantly Caucasian.

In the second half of the 20th century, the most significant sources of migration were Latin American countries. More than 4 million of these migrants travelled from Mexico in particular, a populous nation that shares a long border with the United States. This trend in Mexican migration began with the Bracero Program, in which the U.S. federal government imported Mexican laborers to assist in agricultural production during World War Two. The program remained in operation until 1964, by which time millions of contracts had been awarded. Although the labor-contracts were short-term, the Bracero Program had a longlasting impact by developing Mexican communities north of the border. Once strong communication networks were established, migrants in the United States could relay information about labor market conditions and optimal migration routes back to their friends and family in Mexico. Since there was an enormous discrepancy in wages between the two nations, this sparked a decades-long trend in northward migration from Mexico. Staying true to their historic origins, most of these Hispanic migrants were relatively uneducated laborers and sought employment in the agricultural sectors.

Recall that the Hart-Cellar Act of 1965 placed numerical restrictions on the number of migrants legally allowed to enter from Latin American countries. This coincided with the growing influx of individuals wanted to relocate from these nations, and by the 1970's, those numerical legal limits were reached. As one might expect, migrants reacted by entering the U.S. without legal authorization. Figure 4.4 on the next page presents the annual number of migrants who entered the nation illegally for the last three decades of the 20th century. The population of undocumented migrants rose to approximately 3 million by 1980, levelled out after the 1980's recession, and then rapidly rose during the 90's to exceed 8 million individuals. The U.S. federal government reacted by implementing the Immigration Reform and Control Act (IRCA) of 1986, which instituted two major policies. First, it granted legal amnesty to

143

nearly 3 million undocumented migrants who had been residing in the United States for five years. Second, the law required employers to attest to their workers' immigration status and made it illegal for firms to knowingly hire unauthorized migrants. While the amnesty portion of the IRCA of 1986 may have reduced crime levels among migrants (Baker 2015), there was no discernable impact on migration trends.

The second biggest source of American migrants in the second half of the

20th century came from across the Pacific Ocean. Before the Hart-Cellar Act,

Asian migration had been severely suppressed by United States legislation,

starting with the Page Act of 1875, which prohibited Chinese laborers from

bringing their family with them. Subsequently, the Chinese Exclusion Act of 1882 and the Geary Act 1892 virtually outlawed any migration from China. Migrants started pouring in from other Asian countries until Congress passed The Immigration Act of 1924, which effectively banned all Asian immigration for the next thirty years.²¹

Following the Hart-Cellar Act, a large amount of Japanese and Taiwanese migrants and a smaller amount of Hong Kong students joined the wave of Post-Korea/Vietnam 'war brides' moving to the United States. Incidentally, there were very few Chinese migrants taking advantage of the new legislation until 1978, because the People's Republic of China had banned emigration to the United States. Once these restrictions were lifted, an exponentially growing tide of individuals, many of them university students and skilled professionals swept into the United States. The Chinese-born population of the U.S. grew from 286,120 in 1980 to 529,837 in 1990, to nearly 1 million at the turn of the century. Unlike the Asian migrants of the 19th century, many of these laborers were well educated and technically skilled, and entered the nation through the family reunification or work visa channels. Therefore, while Latin American migrants tended to work in rural areas, these Asian immigrants typically worked and settled in urban communities.

²¹ This does not include the Philippines, who had become U.S. nationals in 1898 after the conclusion of the Spanish-American War. Therefore, they were not subject to exclusion laws.

4.2 Contemporary U.S. Immigration (21st century)

4.2.1 The Migrants

The number of foreign-born individuals residing within the United States has continued to grow into the 21st century, with a migrant population exceeding 43 million - or 13.4% of the total population - in 2015 (U.S. Census Bureau). Nearly one-half of them have attained U.S. citizenship status, while approximately 11 million of these migrants – roughly a quarter of the total migrant population – are residents who do not have legal authorization. Around two thirds of the migrant population are labor force participants, and 16.5% live below the poverty line. Following historic trends of 'chain migration,' most new arrivals tend to settle in communities whose members share the same national origins, ethnicity, and language.

Table 4.5 on the next page presents the makeup of these migrants in 2015, according to their region of birth. While a significant fraction of immigrants hail from Europe, they no longer dominate the demographic landscape as they did in the early 20th century. Latin America is now the largest sender, with border-sharing Mexico providing 11.5 million alone. Asian migrants make up the second largest demographic group, with millions of individuals who hail from China. Compared to the migration numbers from the 20th century, there has been a marked increase in migrants entering the United States from the

Asia ¹	Mexico	Europe/Canada	Carribean	Central America ²
11,615,903	11,576,253	5,012,135	4,153,579	3,393,853
South America	Middle East ³	Africa ⁴	Canada	Other
2,892,436	1,743,272	1,704,261	829,623	236,795

Table 4.5 U.S. Immigrant Population, by Region of Origin (2015)

Source: Pew Research Center, using 2015 American Community Survey (1% IPUMS) data

¹ Three largest sources are China (2.7 million), India (2.4 million), and the Philippines (2 million)

² This figure does not include Mexico

³ This includes the nations of Afghanistan, Iran, Iraq, Israel, Palestine, Jordan, Kuwait, Lebanon, Saudi Arabia, Syrua, Turkey, Yemen, Algeria, Egypt, Morocco, and Sudan

⁴ Specifically, Sub-Saharan Africa

Caribbean islands, the Middle East, and sub-Saharan Africa.

In the past, the migrant stereotype has been a young, usually uneducated, male leaving his country in search for economic opportunity. However, in 2016, a slight majority (52%) of the migrants in the United States were female (Migration Policy Institute). The average migrant in 2016 was 44.4 years old, which is actually higher than the average 36.1 years of age for U.S. born individuals. The ideal of the uneducated migrant does have some factual backing: nearly 30% of immigrant adults do not have a high school diploma or its equivalent (GED), compared to the 9% of U.S. citizens without one. However, between the years of 2012 and 2016, almost half (47%) of all new migrants were college-educated. This is significantly higher than U.S. citizens educational attainment, in which only 32% obtained a college degree. Certain countries, especially nations from South and East Asia have an even higher sending rate for college educated (e.g. 78% of Indian migrants have a college degree.) According to the Migration Policy Institute, approximately 22% of households in the United States speak a primary language at home that is not English. Spanish is certainly the most prevalent, comprising 62% of these households, followed by Mandarin and Cantonese Chinese (5%) and a smattering of dozens of other languages. Despite the fact that over a fifth of American households speak a non-English primary language, only nine percent of American residents are classified as Limited English Proficient (LEP). An individual was classified as LEP if they spoke English "well", "not well," or "not at all." This indicates a significant degree of linguistic assimilation on the part of foreigners in the United States.

Table 4.6 below presents the shares of civilian labor force working in broad occupational categories in 2016, separated by nativity. While the most migrants belong to the first category (Management, Business, Science,

Occupation	Foreign-Born	Native-Born	
Management, Business, Science, and Arts	31.6%	38.8%	
Service	24.1%	16.8%	
Sales and Office	16.6%	24.7%	
Natural Resources, Construction, and Maintenance	12.9%	8.0%	ì
Production, Transportation, and Material Moving	14.9%	11.6%	;

Table 4.6 Employed Workers in United States, by Occupation (2016)

Source: Migration Policy Institute, using numbers tabulated from the American Community Survey of the U.S. Census Bureau and Arts), they are underrepresented in this occupation-type relative to U.S. citizens (31.6% compared to 38.8%). They also comprise a relatively smaller share of Sales and Office jobs as well. Compared to the native population, migrants hold a significant larger share of service positions, especially within the restaurant and hospitality industries. There is a positive differential for migrants in the last two categories, indicating that jobs that require physical labor (e.g. resource extraction, construction, manufacturing, transportation) also tend to be more migrant-intensive.

4.2.2 Legal Paths of Migration

The current legislation governing immigration practices in the United States provides foreigners several different paths to legal residency. These individuals are deemed 'lawful permanent residents' (LPR) and are issued a 'green card' indicating their legal migration status. Each category of legal migration serves a different purpose, whether it be economic, humanitarian, or political in nature. Several of these paths offer migrants the opportunity for a long-term residency. In order to maintain diversity in the immigrant population, no single country can send more than 7% of the total incoming migrants in a single year. Lawful permanent resident may apply for U.S. citizenship after a five year tenure in the country. Applicants for naturalized U.S. citizenship need to be 18 years or older, demonstrate "good moral character," pass a battery of language (speaking, reading, and writing) and civics tests, and pay an administrative fee. A lawful permanent resident may apply for citizenship after three years if they are the spouse of a U.S. citizen or a victim of violence against women. Foreign-born persons who serve in the U.S. military during wartime are instantly eligible to become a citizen, and are not subject to the same set of restrictions.

Family Unification

Obtaining a family unification visa is the path to permanent residency that has benefitted the most migrants in recent years, with over half a million individuals – just under two thirds of all incoming lawful permanent residents – joining their families in the United States each year. There is a multi-tiered system to the family unification process, and some components of the mechanism are costly (both temporally and monetarily). In order for an individual to move to the U.S., they must have a sponsor that will petition for the individual's relocation, confirm the legitimacy of the relationship, meet minimum income standards, and sign paperwork stating that the sponsor is financially responsible for the migrant upon arrival. The top tier of the system grants lawful permanent residency to any 'immediate relatives' of a U.S. citizen. In order to be considered an 'immediate relative,' the foreign-born individual must either be a parent, unmarried minor child, or spouse to an American citizen. The interesting aspect of this particular category of family unification is that there is no numerical limit to the number of immediate relatives that can relocate to the United States, as long as their sponsor is an American citizen.

The system gets a little more complicated as we move to potential migrants who are not immediate relatives, or sponsors that are not U.S. citizens. These individuals fall under the 'family preference system,' which technically has

Category	Sponsor	Relationship	Quota
1	U.S. citizen	Unmarried adult children	23,400 ¹
2A	LPR	Spouses and minor children	87,900
2B	LPR	Unmarried adult children	26,300
3	U.S. citizen	Married adult children	23,400 ²
4	U.S. citizen	Brothers and Sisters	65,000 ³

Table 4.7 Family Preference System of U.S. Legal Migration (FY 2014)

Source: William A. Kandel, Permanent Legal Migration to the United States, (CRS Report No. R42866) (Washington, DC: Congressional Research Service, 2014)

¹ Plus any unused visas from the 4th preference.

² Plus any unused visas from 1st and 2nd preference.

³ Plus any unused visas from the all other family-based preferences.

an annual numerical limit equal to 480,000 minus the number of 'immediate relatives' that moved to the United States. However, the Immigration and Naturalization Act has a clause that sets an overall floor of 226,000 'family preference' migrants, and in recent years this floor has been binding due to the high amount (exceeding 254,000) of 'immediate relatives' that have been relocating. The breakdown of the five 'family preference categories are summarized in Table 4.7 on the previous page.

Employment-Based Immigration

The second most used channel of legal migration into the United States is the "work visa" program. Much like the family unification system, there are a multitude of visa categories available to employment-based migrants, and the potential migrant requires a sponsor. However, the sponsor in this case is a prospective U.S. employer that has already offered the individual a job.²² Depending on the visa category, some foreign nationals are granted a temporary stay, whereas others are granted lawful permanent resident status and eventually the opportunity to become a citizen.

Overall, the employment-based permanent immigration system admits 140,000 individuals per year. The law allows lawful permanent residents

²² There are a few specific situations in which no sponsor is necessary.

obtaining a work visa to bring their spouse and children under 18 years with them to the United States, and these immediate family members are counted toward the quota of 140,000. The five categories of permanent work visas are displayed in Table 4.8 on the next page. The first two categories specifically target individuals with "extraordinary" or "exceptional" ability in the arts, sciences, academia, or business. The third category is much more accessible: a potential migrant either needs a bachelor's degree or two years of work experience, with a very small (5,000) allotment to "other" workers with no defined skillset. According to the United States Citizenship and Immigration Services, there is a very long backlog of individuals applying through the third category system. The fourth and fifth categories are not targeted toward bringing in high-skill laborers, but instead allow foreigners working with the State Department or high-capital investors whose business activity will increase employment by at least ten workers. The second and third category of permanent work visas (EB-2 and EB-3) have a special requirement: it is mandatory for the sponsoring employer to obtain an approved Labor Certification from the United States Department of Labor (DOL). In order for the Labor Certification to be issued for a position, the US DOL must testimony from employers in the sector that verifies that there is an insufficient number of qualified native U.S. laborers available. The Department of Labor also must determine that the hiring of the new migrant workers will not adversely affect

Category	Description	Quota	Labor Certification Required
EB-1	Persons of extraordinary ability in the sciences, arts, education, business, or athletics; outstanding professors or researchers; and multinational executives and managers.	40,000 ¹	No
EB-2	Persons who are members of the professions holding advanced degrees or for persons with exceptional ability in the arts, sciences, or business.	40,000 ²	Yes ³
EB-3	Skilled workers with at least two years of training or experience, professionals with college degrees, or "other" workers for unskilled labor that is not temporary or seasonal.	40,000 ⁴	Yes
EB-4	"Special immigrants," which includes certain religious workers, employees of U.S. foreign service posts, retired employees of international organizations, alien minors who are wards of courts in the United States, and other classes of aliens.	10,000	No
EB-5	Business investors who invest \$1 million or \$500,000 (if the investment is made in a targeted employment area) in a new commercial enterprise that employs at least 10 full-time U.S. workers.	10,000	No

Table 4.8 Permanent Worker Visa Preference Categories

Sources:

-William A. Kandel, Permanent Legal Migration to the United States, (CRS Report No. R42866) (Washington, DC: Congressional Research Service, 2014)

-United States Immigration and Citizenship Services

¹ Plus any unused visas from the 4th and 5th preferences.

² Plus any unused visas from the 1st preference.

³ Labor certification not required if applicant can obtain a national interest waiver.

⁴ Plus any unused visas from the 1st and 2nd preference. "Other" unskilled laborers restricted to 5,000

the wages and working conditions of U.S. citizens that are "similarly employed." This certification is also required for several categories of the temporary work visa program.

The temporary work visa program for "non-immigrant workers" has over twenty different categorizations. These categorizations fulfill a broad variety of national interests, such as bringing in individuals working with the Department of Defense, artists of exceptional ability, teachers of foreign culture, laborers willing to relocate for seasonal work, etc. I present a table of many of these visa-types in Appendix A.6. Temporary employment-based visa holders must work for the firm that sponsored them, and are restricted in their ability to work for a different employer. These "non-immigrant workers" are in the country for a fixed period of time (usually between 3 and 6 months), and must leave the country if their employment is terminated or their visa expires. According to the Center for Migration Studies, approximately two-thirds of all unauthorized migrants in the United States are expired visa-holders.

Diversity Visa

The United States Immigration and Citizenship Services accepts 50,000 migrants each year from selected countries, in the name of cultural diversification. The countries are selected because they have a historical record of sending a small amount of migrants (thus countries like China and Mexico are excluded). The requirements for a diversity green card are pretty basic: one must have a high school education *or* have a couple years' experience working in an occupation with two years of training. Since the application carries no monetary costs, millions of individuals apply to the program. The winners are chosen by a randomized selection system, also known as the 'green card lottery.' Since only 50,000 people are chosen out of the millions that apply, the odds of being accepted are very small.

Refugees and Asylum-Seekers

Refugees are admitted into the United States if they are unable to return to their home nation because there is a reasonable fear that they would face persecution on the basis of race, religion, political opinion, et cetera. Other factors also come into play: such as whether the potential refugee has family in the U.S., or whether they belong to a group of special interest (as determined by the President and Congress). In 2016, the President of the United States set the maximum limit on incoming refugees at 85,000. Table 4.9 on the next page displays the numerical limits on refugee acceptance, according to their region of origin. Oftentimes, a refugee will file with U.S. Citizenship and Immigration Services in a transition country that is willing to host the individual until they are

Tabl	e 4.9	U.S. Ref	fugee Ad	missi	ions ((FY	2016	Ì
------	-------	----------	----------	-------	--------	-----	------	---

Near East / South Asia	Africa	East Asia
34,000	25,000	13,000
Europe / Centra Asia	Latin America/Caribbean	Unallocated Reserve
4,000	3,000	6,000

Source: U.S. Departments of State, Homeland Security, and Health and Human Services, Proposed Refugee Admissions for Fiscal Year 2016: Report to the Congress, (Washington, DC, 2015).

transferred to the United States. After staying in the country for twelve months, refugees may apply for a green card.

Individuals who are already residing within the United States for less than a year – and face reasonable fears of persecution in their home country – may seek asylum with the U.S. Citizenship and Immigration Services, with the same qualifying rules as those seeking refugee status. After one year of asylum status of residency, an individual may apply for a green card. In 2014, asylum status was granted to 23,533 individuals.

Deferred Action for Childhood Arrivals (DACA)

In June 2012, the Obama administration signed an executive order known as Deferred Action for Childhood Arrivals (DACA). The immigration control policy targeted individuals who either entered or remained in the country without authorization when they were under 16 years of age. The reasoning was that these individuals did not make the decision to break the law and they have already been assimilated into U.S. culture, since they were immersed throughout their childhood. The immigration policy established that these migrants, commonly known as DREAMers, could receive a two-year period of 'deferred action' from deportation and were eligible to apply for work visa permits. At the end of the two-year period, a person is eligible to reapply for DACA status. According to the Pew Research Center, approximately 800,000 individuals have received legal protection through DACA since its inception. In September 2017, President Trump began to phase the program out of existence, and the fate of many DREAMers hangs in the balance as Congress works to institute replacement legislation.

4.2.3 Immigration Enforcement

Immigration control policy in the United States has grown explosively over the past century, expanding beyond Ellis and Angel Island into a conglomerate of federal agencies with multi-billion dollar budgets that employ tens of thousands of administrative and law enforcement individuals. According to the Migration Policy Institute (Meissner et al. 2013), the immigration agencies in the United States have a de facto 'enforcement first' policy, with six main 'pillars' of enforcement:

1. Border enforcement

- 2. Visa controls and travel screening
- 3. Information and interoperability of data systems
- 4. Workplace enforcement
- 5. Intersection of criminal justice system and immigration enforcement
- 6. Detention and removal on noncitizens

The first two 'pillars,' border enforcement and visa controls and travel screening, are handled by the United States Customs and Border Protection Agency (CBP). The agency has seen an enormous amount of growth in resources and manpower in the 21st century. From 2005 to 2013, the agency's annual budget rose from \$6.3 billion to \$11.7 billion and staffing grew from 41,001 to 61,354 personnel, mostly through the hiring of additional border patrol agents. In order to stem the flow of unlawful border crossings, specifically land-crossings from Mexico into the United States, the CBP adopted a multi-faceted plan that employed resources in high-traffic border areas and points of entry, such as airports. Through a combination of physical construction of barriers (e.g. fencing), employment of advanced surveillance technology, and simply more boots on the ground,²³ the efficacy of U.S. border protection increased significantly, making illegal entry much more difficult for migrants (Amuedo-Dorantes and Pozo 2014). This, combined with a relatively improving Mexica

²³ The number of Border Patrol agents more than doubled from 2004 through 2012. In addition to this, the U.S. National Guard was activated through Operation Phalanx to work alongside Border Patrol on the Southwest border with Mexico.

economy, led to a net negative flow from Mexico for the first time in 40 years (U.S. Department of Homeland Security).

According to the Pew Hispanic Center, approximately 40 to 50% of unauthorized migrants residing in the United States entered the country lawfully but remained in the U.S. after their visa had expired. Once a migrant has gained entry to the United States, they fall under the jurisdiction of the United States Immigration and Customs Enforcement Agency (ICE). ICE is responsible for the handling of interior enforcement function represented by the last three 'pillars:' workplace enforcement, immigrant criminal justice, and detention/removal of noncitizens.

ICE's role in workplace enforcement is mostly defined by the Immigration Reform and Control Act of 1986, which mandates that firms must verify the work eligibility / lawful residency status of its employees. Initially the law was mostly ineffective, as employers realized that there was virtually zero risk in hiring undocumented workers, and the required documents were easy to counterfeit. The federal government responded by instituting E-Verify, a voluntary and much more effective employment verification system that is now being required by a substantial number of U.S. states. In the past several years, ICE has also instituted a shift in who they target in workplace enforcement. Instead of conducting massive raids and arrests, they are focusing on employers: since

160

2009, ICE has audited thousands of companies, debarred hundreds of companies and persons, and imposed tens of millions of dollars in fines for breaking 'employer sanction' laws (Meissner et al. 2013).

Ever since 9/11, immigration enforcement agencies have become increasingly interconnected with the U.S. criminal justice system. In 2005, the Department of Homeland Security and the Department of Justice enacted Operation Streamline. With this new directive, migrants caught entering the country unlawfully would now be arrested, charged, and prosecuted, rather than the previous policy of granting voluntary return. By 2011, the majority of all

federal criminal prosecutions were based on immigration-related charges²⁴ (Transactional Records Access Clearinghouse 2013). In addition to this initiative, there has also been an increased effort in the removal of undocumented residents that have committed a criminal offense (other than unlawful residency).

ICE has instituted a host of programs to this effect, which now have an annual budget exceeding a half billion. One of these, Section 287(g), allows the Department of Homeland Security to deputize local law enforcement officers. These officers received four weeks of specialized training and the authorization to identify and detain immigrant criminals, leading to the deportation of nearly half a million migrants since 2006 (U.S. Department of Homeland Security). Other programs such as the National Fugitives Operation and the Criminal Alien Program, focus on identifying violent migrant criminals and deporting them. According to ICE, these programs have led to the removal of hundreds of thousands of dangerous individuals.

Following the September 11th attacks and the decentralization of the immigration control system in 2003, the Department of Homeland Security recognized that its agencies needed to connect its databases in order to effectively carry out its mission. Thus, in 2004, a third agency

²⁴ The two most common charges are 'illegal entry' (misdemeanor) and 'illegal entry following removal' (felony).

was created under the purview of DHS: the United States Visitor Immigration Status and Information Technology (US-VISIT). The primary objective of this agency was the formation of the Automated Biometric Identification System (IDENT), which collected biological data on every single migrant that enters the nation legally, as well as migrants who have been processed by a law enforcement agency. According to the DHS, the IDENT system currently has more than 200 million fingerprints on file, making it one of the largest criminal databases in the world. This information is being integrated with the FBI and DOD biometric datasets (and the Secure Communities program), making the information available to virtually every law enforcement officer and social analyst in the federal government.

Chapter 5

EMPIRICAL ANALYSIS

In order to test whether or not immigration control policy acts as an effective labor screening device, I examine the relationship between migrants' wages and weekly hours worked and the amount of funding and effort that goes into establishing obstacles for incoming migrants. I do so by analyzing the impact of the implementation of the Homeland Security Act of 2002 on migrants who moved to the United States after the legislation had passed. This event serves as a natural experiment, since the inception of the legislation was completely unrelated to migrants' economic conditions. Therefore, this analysis does not suffer bias due to endogeneity. By examining the national labor market as a whole, this study also avoids the "closedness" issue that plagues other spatial correlation analyses in the field.

I will be conducting this analysis on three different subsets of the population, beginning with the entire U.S. labor market before moving onto the exogenous-wage labor market and the endogenous-wage labor market. According to the model presented in this paper, the labor market in which wages are set exogenously should exhibit a stronger labor screening effect than the endogenous wage market.²⁵ Before continuing, it is important to note that there is the potential for omitted variable bias, as other conditions may have changed after 2002, such as the recession that followed the Sept. 11 attacks. However, I attempt to control for these changes by employing various demographic, geographic, and temporal variables.

5.1 Homeland Security Act of 2002

The terrorist attacks on the September 11, 2001 had many far-reaching implications on the American people, including a significant shift in public attitude toward national security. Suddenly, all potential avenues of terroristic activity were under close scrutiny. By the start of 2002, politicians and their constituents began making claims that the United States border with Mexico was too porous. People feared that terrorists could easily cross the largely unprotected border. The avenue of legal migration was also viewed as a potential source of danger, and government agencies responded by increasing airport security, tightening vetting practices and even engaging in racial profiling.

²⁵ This is due to the fact that the feedback loop in the endogenous-wage market causes firms to offer migrants a wage rate that is relatively higher, which subsequently draws in relatively less productive migrants and lowers the average productivity of the migrant pool.

When the Homeland Security Act was passed in November of 2002, it included many immigration control measures that strengthened security measures – especially along the border with Mexico – and mandated harsher punishment for those caught illegally crossing into the country. The implementation of these stricter immigration control policies caused the human costs of illegal migration to increase significantly (Amuedo-Dorantes and Pozo 2014). Examples of these costs include a "significant increase" in migrants' perceived risks of death and familial separation. These migrants also faced a higher risk of deportation after successfully crossing the border, as the Homeland Security Act contained state-level legislation that allowed local and state law enforcement to act as de facto immigration agents. In fact, the number of immigrants that were returned and removed from the United States more than doubled from 2002 to 2008 (U.S. Department of Homeland Security).

5.2 Data

The data for this analysis come from the CEPR Uniform Extract of the March Current Population Survey (CPS). The CPS is a monthly survey conducted by the U.S. Census Bureau that collects extensive demographic information for non-institutionalized adults at the household level. This information includes variables of interest such as age, race, ethnicity, gender, citizenship status, and

166

language, as well as the year of arrival and nation of origin for immigrants. The interviews for the CPS are conducted on a 4/8/4 rotation schedule in which a household is surveyed for 4 months, ignored for 8, and surveyed another 4 months before leaving the rotation. The sample size is approximately 60,000 households selected at random. In March, the survey includes questions from the Annual Social and Economic Supplement, which asks respondents about information on their annual earnings among other socio-economic conditions. The data for this analysis stretches from 2015 back to 1998, which was the first year that the March supplement was instituted, for a total of 1.37 million observations.

5.3 Method

Using difference-in-difference techniques, I compare the wages of migrants who arrived in the U.S. before the passage of the Homeland Security Act with those who arrived afterward, relative to non-migrants. According to the model I present in this paper, immigrants arriving after 2002 should have a higher wage rate than their pre-2002 counterparts, after controlling for all other variables. In addition to this, I also investigate the impact of the increase in immigration control policy on the average number of hours worked per week. For the entire U.S. labor market, exogenous-wage markets, and endogenous-wage markets, I perform least-square regressions with a differencein-difference specification of:

(13)
$$y_i = \alpha + \beta (Migrant|Post_2002_entry_i) + \delta Migrant_i$$

+ $\varphi Post_2002_entry_i + \gamma X_i + \varepsilon_i$

where y_i is the market outcome variable of interest (log wage rate or hours worked), β is the coefficient of interest, and X_i is a set of controls including demographic characteristics (i.e. age, race, ethnicity, gender, rural/urban status), educational attainment, year of observation, and migrant interaction effects. Simply being a migrant, or entering the labor force after 2002, may influence a laborer's market outcome, thus I include the third and fourth terms in order to control for this variation.

For the exogenous and endogenous-wage markets, I perform differencein-difference-in-difference regression analyses in order to isolate the differential screening effect that the Homeland Security Act of 2002 had on the different types of markets. These unrestricted regressions had the following specification:

168

(14) $y_i = \alpha + \omega(Migrant|Exog_Endog_Market|Post_2002_entry_i)$ + $\beta(Migrant|Post_2002_entry_i)$ + $\vartheta(Migrant|Exog_Endog_Market_i)$ + $\mu(Exog_Endog_Market|Post_2002_entry_i) + \delta Migrant_i$ + $\varphi Post_2002_entry_i + \pi Exog_Endog_Market_i + \gamma X_i + \varepsilon_i$

Based on the implications of the model, we expect to see that the increase in immigration control policy had a stronger effect on the exogenous-wage market (ω >0) and a weaker effect on the endogenous-wage market (ω <0), since the feedback loop in the endogenous wage market causes more low-productivity migrants to enter in response to the increased wage rate.

5.4 Entire U.S. Labor Market

5.4.1 Comparative Statistics

Summary statistics of several key market and demographic characteristics are displayed separately for migrants and non-migrants in Table 5.1 on the next page. Native laborers have an average hourly wage rate that exceeds migrants' by \$2.60, a small but significant difference that could partially be explained by the fact that native laborers have an additional year and a half of educational attainment, on average. There is virtually no difference between the two populations in hours worked per week and the rate of unemployment.
Citizens and migrants are also approximately the same age, on average. In terms of race and ethnicity, there is a wide degree of separation: only a small minority of migrants are non-Hispanic Caucasian. Nearly half of all migrants identify as Hispanic, and almost a quarter are Asian. There is also a significant gender differential; males make up 8% more of the migrant labor population relative to the native laborer population.

Table 5.1CharacterisOrigin of B	Characteristics of Workers in the United States, Origin of Birth (1998-2015)							
	Native Citizens	Migrants						
Average Hourly Wage	\$24.62	\$22.02						
Average Hours per Week	39.7	39.7						
% Unemployed	4.9%	4.9%						
Average Age	39.7	39.5						
Average Years of Education	14.0	12.5						
% Residing in Rural Area	17.2%	4.3%						
% Male	50.9%	58.9%						
% White	77.1%	18.0%						
% Hispanic	7.8%	49.6%						
% Black	12.4%	8.5%						
% Asian	1.7%	23.7%						
% Other	1.1%	0.2%						
Sample Size	1,163,655	212,679						

Table 5.2 displays market and demographic characteristics for migrant

Any individuals below the age of 18 or above the age of 65, belonging to the armed services, self-employed, or with an hourly real wage exceeding \$10,000 were removed from the sample. All values estimated using CEPR Uniform Extract March CPS sampling weights.

laborers, sorted by whether they arrived in the United States before or after

January 1, 2002. Migrants who arrived after 2002 have a lower real wage rate by

\$2.67, work an hour less per week, and have a higher unemployment rate.

These market condition differentials can be explained by the fact that pre-2002

migrants are roughly 6 years older and have been residing in the country nearly

Table 5.2Migrant Workers in the United States, by YesArrival (1998-2015)							
	Entered before 2002	Entered after 2002					
Average Hourly Wage	\$22.41	\$19.74					
Average Hours per Week	39.8	38.8					
% Unemployed	4.8%	5.5%					
Average Age	40.4	34.4					
Average Years of Education	12.5	12.5					
Years Since Arrival	19.9	6.1					
% Residing in Rural Area	4.2%	5.0%					
% Male	58.1%	63.5%					
% White	18.5%	15.6%					
% Hispanic	49.7%	49.2%					
% Black	8.2%	9.8%					
% Asian	23.4%	25.2%					
% Other	0.2%	0.2%					
Sample Size	181,668	31,011					

Any individuals below the age of 18 or above the age of 65, belonging to the armed services, self-employed, or with an hourly real wage exceeding \$10,000 were removed from the sample. All values estimated using CEPR Uniform Extract March CPS sampling weights.

14 years longer, on average. The two groups have very similar educational attainment and racial/ethnic characteristics, although the new migrants tend to be slightly more male and non-white, with increases in the shares of black and Asian individuals.

5.4.2 Results

Table 5.3

I begin this section with a naïve comparison of the hourly wage earned by the four subsets of American laborers, separated by migrant status and the year of entry into the labor force. These values are displayed in Table 5.3 below, along with the differences between the temporally separated groups, and the final difference-in-difference. Workers who entered the labor force after 2002

Comparison of Average Hourly Wages, 1998-2015

	Before 2002	After 2002	Difference
Native Citizen	\$25.80	\$17.40	-\$8.40
Migrant	\$22.41	\$19.74	-\$2.67
		Difference-in-Difference:	\$5.73

Any individuals below the age of 18 or above the age of 65, belonging to the armed services, self-employed, or with an hourly real wage exceeding \$10,000 were removed from the sample. All values estimated using CEPR Uniform Extract March CPS sampling weights.

make significantly less than those who entered beforehand, for both migrants and non-migrants. However, the difference between the migrant subsamples is much smaller than for native citizens. In fact, migrants entering the workforce before/during 2002 had a considerably lower wage rate than their native counterparts, whereas migrants entering after 2002 had a relatively higher wage rate than non-migrants, resulting in a large difference-in-difference calculation of \$5.73.

This evidence suggests that the screening effect exists, but there are many underlying factors that could be driving these results. When native citizens enter the workforce, they are typically doing so between the ages of 16 and 26. In contrast, when migrants enter the labor force, they are doing so at whatever age they migrate to the new country, resulting in a higher average age and thus a higher experience level and wage rate. Other confounding factors include educational attainment, racial/ethnic makeup, geographic differentiation, and the impact of the subset of migrants who entered the country as a child. In order to control for these influences, I estimate equation (8), allowing for a more accurate calculation of the impact of the Homeland Security Act on migrants' market condition outcomes.

173

The results of these regression analyses are presented in Table 5.4 below.

For the sake of completeness, I conducted OLS regressions on two variables of

interest – migrants' wage rate and the usual number of hours worked in a week

- with six different specifications. The table shows only the key coefficient (i.e.

the effect on migrants entering the United States after the passage of the HSA of

2002) and its respective p-value for each specification. I begin with a "naïve"

I able 5.4 Regression Results: Impact of Post-2002 Entry on Migrants											
	(1)	(2)	(3)	(4)	(5)	(6)					
Coefficient estimate	0.244	0.060	0.030	0.034	0.045	0.031					
P-value	0.000	0.000	0.000	0.000	0.000	0.000					
Coefficient estimate	4.020	1.112	0.650	1.043	0.966	0.664					
P-value	0.000	0.000	0.000	0.000	0.000	0.000					
CS	No	Yes	Yes	Yes	Yes	Yes					
	No	Yes	No	Yes	No	No					
	No	No	Yes	No	Yes	Yes					
and squared	No	Yes	No	No	No	No					
effects	No	No	Yes	Yes	Yes	Yes					
	No	No	No	Yes	Yes	Yes					
squared	No	Yes	No	No	Yes	No					
	No	No	No	No	No	Yes					
	Coefficient estimate P-value Coefficient estimate P-value cs	Coefficient estimate 0.244 P-value 0.000 Coefficient estimate 4.020 P-value 0.000 Cs No and squared No effects No squared No No No No No No No Squared No	Results: Impact of Post-2002 Entry of(1)(2)Coefficient estimate0.2440.060P-value0.0000.000Coefficient estimate4.0201.112P-value0.0000.000CsNoYesNoYesNoYesNoNoeffectsNoNosquaredNoYesNo	Results: Impact of Post-2002 Entry on Migr(1)(2)(3)Coefficient estimate0.2440.0600.030P-value0.0000.0000.0000.000Coefficient estimate4.0201.1120.650P-value0.0000.0000.0000.000CsNoYesYesNoYesNorand squaredNoYesNoeffectsNoNoYesNoNoNoNosquaredNoYesNo	Results: Impact of Post-2002 Entry on Migrants(1)(2)(3)(4)Coefficient estimate0.2440.0600.0300.034P-value0.0000.0000.0000.0000.000Coefficient estimate4.0201.1120.6501.043P-value0.0000.0000.0000.0000.000Coefficient estimate4.0201.1120.6501.043P-value0.0000.0000.0000.0000.000CsNoYesYesYesNoNoYesNoYesSquaredNoNoYesYesNoNoNoYesNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo	Coefficient estimate P-value 0.244 0.000 0.060 0.000 0.030 0.000 0.034 0.000 0.045 0.000 Coefficient estimate P-value 4.020 0.000 1.112 0.650 1.043 0.966 P-value 0.000 0.000 0.000 0.000 0.000 0.000 Coefficient estimate P-value 4.020 1.112 0.650 1.043 0.966 No Yes Yes Yes Yes No Coefficient estimate 4.020 1.112 0.650 1.043 0.966 P-value 0.000 0.000 0.000 0.000 0.000 0.000 Coefficient estimate 4.020 1.112 0.650 1.043 0.966 P-value No Yes No No No No Coefficient estimate No Yes No No No No Coefficient estimate No Yes No No No No Coefficient estimate No No <					

ъ *л* •

Any individuals below the age of 18 or above the age of 65, belonging to the armed services, self-employed, or with an hourly real wage exceeding \$10,000 were removed from the sample. All parameters are estimated using CEPR Uniform Extract March CPS sampling weights, and errors are clustered by current state of residence. Demographic characteristics include experience, experience squared, and years since arrival, with dummy indicators for race/ethnicity, gender, and urban/rural status. For migrant interaction effects, new explanatory variables are introduced in which each independent variable is multiplied by a dummy indicator for whether the individual is a migrant. "Young migrants" are defined as individuals who relocated to the United States before having the chance to enter the labor force.

specification with only the DID terms, and move onto specifications that include demographic control variables, education controls (linear or indicators), temporal controls (trend or fixed effects), and migrant interaction effects.

In the second and fifth specifications, I include trend variables (linear and squared) for migrants' year of arrival. It is possible that there has been a continuous and significant relationship between migrants' year of arrival and productivity. Without the aforementioned trend variables, a binary before/after 2002 analysis would register a significant difference, even if there was not a discrete jump in productivity after 2002. In the sixth specification, migrants who were too young to work when they entered the United States before 2002 were removed from the sample, since these individuals could potentially bias the difference-in-difference results (they are migrants who entered the labor force post-2002, but were not "screened" by the Homeland Security Act).

For all six specifications, I obtain positive and statistically significant estimations of the parameter β for the hourly real wage rate and hours worked per week. With the naïve and the linear/squared time control specifications, the percentage wage differential is quite high: 24.4% and 6.0%, respectively. However, according to specifications (3) through (6) in which I employ annual fixed effects, migrants arriving after 2002 had a wage rate (or marginal productivity) that is approximately 3.0-4.5% higher relative to their counterparts,

175

ceteris paribus. For the same set of specifications, migrants who arrived after the passing of the Act work approximately 0.65-1.04 more hours per week than those who arrived beforehand, after controlling for outside factors. This is compelling evidence that the increase in immigration control policy through the Homeland Security Act of 2002 had a "screening" effect on incoming migrants, resulting in a significantly more productive class of migrants.

5.5 Exogenous-Wage U.S. Labor Market

5.5.1 Defining the Market

For the purposes of this paper, the exogenous wage-setting market is one in which the wage rate that is offered to migrants in a particular market/sector is unaffected by the decision-making of potential incoming migrants. In other words, the offered wage rate is determined by a process that is external to the migration model such that there is no feedback loop between the two variables. There is only one type of labor market that truly satisfies this condition: markets in which a binding wage floor is established by the government (i.e. minimum wage legislation).

Enacted at the federal, state, and municipal levels of government, minimum wage legislation determines a minimum hourly wage rate that employers must offer their employees. These price floors are established with the goal of ensuring a basic standard of living for all workers. According to the U.S. Bureau of Labor Statistics, a small percentage of American workers actually earn minimum wage, and these (typically young and uneducated) individuals tend to be clustered in sectors that do not require skilled labor. Since there is no question on the CPS that asks respondents if they earn minimum wage, I will use four different methods to approximately determine which subset of the population works in a labor market with binding wage floor.

For the purposes of the minimum wage analyses, the only independent variable that is analyzed is the 'hours worked per week' variable. The reason here is obvious: a worker's hourly wage rate is fixed in the minimum wage market. Any variation in a laborer's productivity cannot impact that wage rate

Figure 5.1 Increase in Marginal Productivity of Minimum Wage Laborer

that they earn. However, according to basic microeconomic theory, an increase in a worker's marginal (revenue) product of labor will incentivize a profitmaximizing employer to hire that laborer for more time per market period (see Figure 5.1 above). Keeping in mind that the model predicts a stronger screening effect for exogenous wage markets, we would expect that the passage of the Homeland Security Act of 2002 would have a relatively larger impact on weekly hours worked for migrant workers earning minimum wage.

Method 1

The first method that I employ in order to define the market is also the most straightforward: I define a worker as "minimum wage" if they have an hourly earning rate that is roughly equal to their state's effective minimum wage for their given year of observation. Using data from the United States Department of Labor, I present these minimum wage rates by year for all 50 states (plus the District of Columbia) in Table 5.5 on the next page. There are several states who have not passed any minimum wage legislation, or have a price floor that is set below the federal level. According to the Fair Labor Standards Act, any workers in these states are entitled to receive hourly compensation as determined by the U.S. Congress. In other words, those states'

Table 5.5	Effective Minimum	Wage Rates by	State and Year	(1998-2015)
-----------	-------------------	---------------	----------------	-------------

	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
Federal	\$5.15	\$5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.85	6.55	7.25	7.25	7.25	7.25	7.25	7.25
Alabama	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.85	6.55	7.25	7.25	7.25	7.25	7.25	7.25
Alaska	5.65	5.65	5.65	5.65	5.65	7.15	7.15	7.15	7.15	7.15	7.15	7.15	7.75	7.75	7.75	7.75	7.75	8.75
Arizona	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	6.75	6.90	7.25	7.25	7.35	7.65	7.80	7.90	8.05
Arkansas	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	6.25	6.25	6.55	7.25	7.25	7.25	7.25	7.25	7.50
California	5.15	5.75	5.75	6.25	6.75	6.75	6.75	6.75	6.75	7.50	8.00	8.00	8.00	8.00	8.00	8.00	9.00	9.00
Colorado	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	6.85	7.02	7.28	7.25	7.36	7.64	7.78	8.00	8.23
Connecticut	5.18	5.65	6.15	6.40	6.70	6.90	7.10	7.10	7.40	7.65	7.65	8.00	8.25	8.25	8.25	8.25	8.70	9.15
Delaware	5.15	5.65	5.65	6.15	6.15	6.15	6.15	6.15	6.15	6.65	7.15	7.15	7.25	7.25	7.25	7.25	7.75	8.25
Dist. of Columbia	6.15	6.15	6.15	6.15	6.15	6.15	6.15	6.60	7.00	7.00	7.00	7.55	8.25	8.25	8.25	8.25	9.50	10.50
Florida	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	6.40	6.67	6.79	7.21	7.25	7.25	7.67	7.79	7.93	8.05
Georgia	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.85	6.55	7.25	7.25	7.25	7.25	7.25	7.25
Hawaii	5.25	5.25	5.25	5.25	5.75	6.25	6.25	6.25	6.75	7.25	7.25	7.25	7.25	7.25	7.25	7.25	7.25	7.75
Idaho	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.85	6.55	7.25	7.25	7.25	7.25	7.25	7.25
Illinois	5.15	5.15	5.15	5.15	5.15	5.15	5.50	6.50	6.50	6.50	7.50	7.75	8.00	8.25	8.25	8.25	8.25	8.25
Indiana	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.85	6.55	7.25	7.25	7.25	7.25	7.25	7.25
Iowa	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	7.25	7.25	7.25	7.25	7.25	7.25	7.25	7.25
Kansas	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.85	6.55	7.25	7.25	7.25	7.25	7.25	7.25
Kentucky	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.85	6.55	7.25	7.25	7.25	7.25	7.25	7.25
Louisiana	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.85	6.55	7.25	7.25	7.25	7.25	7.25	7.25
Maine	5.15	5.15	5.15	5.15	5.75	6.25	6.25	6.35	6.50	6.75	7.00	7.25	7.50	7.50	7.50	7.50	7.50	7.50
Maryland	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	6.15	6.15	6.55	7.25	7.25	7.25	7.25	7.25	8.25
Massachusetts	5.25	5.25	6.00	6.75	6.75	6.75	6.75	6.75	6.75	7.50	8.00	8.00	8.00	8.00	8.00	8.00	8.00	9.00
Michigan	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	6.95	7.15	7.40	7.40	7.40	7.40	7.40	8.15	8.15
Minnesota ¹	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	6.15	6.15	6.15	6.55	7.25	7.25	7.25	7.25	8.00	9.00
Mississippi	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.85	6.55	7.25	7.25	7.25	7.25	7.25	7.25
Missouri	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	6.50	6.65	7.05	7.25	7.25	7.25	7.35	7.50	7.65
Montana	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	6.15	6.25	6.90	7.25	7.35	7.65	7.80	7.90	8.05
Nebraska	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.85	6.55	7.25	7.25	7.25	7.25	7.25	8.00
Nevada	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	6.15	6.33	6.55	7.25	7.25	7.25	7.25	7.25	7.25
New Hampshire	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	6.50	7.25	7.25	7.25	7.25	7.25	7.25	7.25
New Jersey	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	6.15	7.15	7.15	7.15	7.25	7.25	7.25	7.25	8.25	8.38
New Mexico	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	6.50	7.50	7.50	7.50	7.50	7.50	7.50	7.50
New York	5.15	5.15	5.15	5.15	5.15	5.15	5.15	6.00	6.75	7.15	7.15	7.15	7.25	7.25	7.25	7.25	8.00	8.75
North Carolina	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	6.15	6.15	6.55	7.25	7.25	7.25	7.25	7.25	7.25
North Dakota	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.85	6.55	7.25	7.25	7.25	7.25	7.25	7.25
Ohio	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	6.85	7.00	7.30	7.30	7.40	7.70	7.85	7.95	8.10
Oklahoma	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.85	6.55	7.25	7.25	7.25	7.25	7.25	7.25
Oregon	6.00	6.00	6.50	6.50	6.50	6.90	7.05	7.25	7.50	7.80	7.95	8.40	8.40	8.50	8.80	8.95	9.10	9.25
Pennsylvania	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	6.25	7.15	7.15	7.25	7.25	7.25	7.25	7.25	7.25
Rhode Island	5.15	5.65	5.65	6.15	6.15	6.15	6.75	6.75	6.75	7.40	7.40	7.40	7.40	7.40	7.40	7.75	8.00	9.00
South Carolina	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.85	6.55	7.25	7.25	7.25	7.25	7.25	7.25
South Dakota	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.85	6.55	7.25	7.25	7.25	7.25	7.25	8.50
Tennessee	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.85	6.55	7.25	7.25	7.25	7.25	7.25	7.25
Texas	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.85	6.55	7.25	7.25	7.25	7.25	7.25	7.25
Utah	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.85	6.55	7.25	7.25	7.25	7.25	7.25	7.25
Vermont	5.25	5.25	5.75	6.25	6.25	6.25	6.75	/.00	/.25	7.53	/.68	8.06	8.06	8.15	8.46	8.60	8.73	9.15
Virginia	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.85	6.55	/.25	7.25	7.25	7.25	/.25	/.25
Washington	5.15	5.75	6.50	6.72	6.90	7.01	/.16	7.35	7.63	7.93	8.07	8.55	8.55	8.67	9.04	9.19	9.32	9.47
West Virginia	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.85	0.55	7.25	7.25	7.25	7.25	7.25	7.25	8.00
Wisconsin	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.15	5.70	6.50	0.50	0.55	7.25	7.25	7.25	7.25	7.25	7.25
wyoming	5.15	5.15	5.15	2.12	5.15	5.15	5.15	5.15	5.15	2.12	D.8 D	0.55	1.25	1.25	1.25	1.25	1.25	1.25

Sources: United States Department of Labor, California Department of Industrial Relations, Connecticut Department of Labor, Delaware Laws: 140th General Assembly, Massachusetts Department of Workforce Development, Washington State Department of Labor & Industries, Tax Policy Center.

Bolded entries indicate that the state has no mimum wage legislation, or a minimum wage rate set below the federal standard.

¹ Minnesota sets a lower rate for enterprises with annual receipts of less than \$500,000. For the purposes of this analysis, I encode observations reporting either wage rate values as "minimum wage." This effective alternative minimum wage was \$5.25 in 2006 and 2007, and the federal minimum wage rate between 2008 and 2015.

effective minimum wage are equal to the federal minimum wage (and appear bolded in Table 5.5).

According to the CPS data that I have collected from 1998 to 2015, a very small fraction (<1%) of workers actually earn exactly the minimum wage. It is fairly common for an employee to be working in a minimum wage sector whilst earning a rate slightly below or above the actual price floor. There are several potential reasons for this variance, such as employers' non-compliance to the law, inaccuracies in data collection (e.g. inaccurate reporting), and the fact that many firms in these sectors offer a small wage premium just above minimum wage. Because of this variance in minimum, I encode an observation as belonging to a minimum wage market if the wage rate that the individual is earning is within \$0.50 of their state's effective minimum wage. By establishing a minimum wage range, rather than using a single price point, the subsample of "minimum wage workers" consists of 31,180 laborers, or 2.3% of the total labor pool in the dataset.

Method 2

The prevalence of minimum wage workers is not homogenous across the United States labor pool; certain demographics and geographic areas tend to have a higher incidence than others. The most important characteristic is age: as a worker grows older they continue to develop their skillset. This makes that worker more productive over time, and in turn they command a higher wage rate. Thus, young workers tend to have an undeveloped skillset and a marginal productivity that is exceeded by the minimum wage rate, causing the price floor to be binding in their case. According to the US BLS in 2015, nearly half (45%) of all minimum wage workers are under the age of 26, although that age group only comprises 19% of all hourly paid workers.²⁶

The education level of a laborer is another important determinant as to whether they will earn a minimum wage: more education leads to higher workplace productivity and wages. In 2015, high school dropouts were twice as likely to earn minimum wage compared those with a high school diploma (3% vs. 6%), whereas only 2% of college graduates earned minimum wage. Marital status also plays a significant role, with 5% of never-married workers earning minimum wage, compared to the 2% of married workers. The length of an individual's workweek is another important indicator as to whether an individual works in a minimum wage position. Only 2% of all full-time workers at their state's effective wage price floor, compared to 7% of workers who were classified as part-time.²⁷

²⁶ Source: 2015 BLS Minimum Wage Report, https://www.bls.gov/opub/reports/minimum-wage/2015/home.htm

²⁷ A laborer is considered "full-time" if they work at least 35 hours per week at their primary job.

There are other sources of variation, but the differentials are rather small and thus they are not included in this analysis.²⁸ Therefore, for Method 2, I identify the following subset of the labor pool as a minimum wage worker: individuals that are younger than 26 years old, do not have a high school diploma, and hold a part-time position. Once these restrictions have been enforced, the subsample has 18,961 observations, comprising approximately 1.3% of the entire U.S. labor market.

Method 3

The prevalence of minimum wage positions is not heterogeneous across the various industries of the United States economy. In other words, there are particular industries in which the proportion of workers earning minimum wage in much higher than most. These types of jobs tend to hire individuals who do not have any particular work skills or a high level of education (thus the low wage).

Table 5.6 on the next page presents the number of minimum wage workers that were employed in various sectors of the U.S. economy, as well as the fraction of hourly workers in that sector being paid a minimum wage rate

 ²⁸ Gender: Women (4%) vs. Men (3%)
 Ethnicity: Black (4%) vs White/Asian/Hispanic (3%)

according to the U.S. Bureau of Labor Statistics. The table specifically displays these numbers for the five industries that employed the most minimum wage workers. As we can see, the leisure and hospitality sectors employs - by far - the most of these laborers: with nearly one and a half million workers earning at/below minimum wage, or 14.5% of the laborers in the entire sector. These numbers drop off significantly as we move on to second highest sector: retail trade (with 322,000 laborers, or 2.8% of the industry). The U.S. BLS 2015 report identified that *over* two-thirds of all minimum wage workers work in the leisure/hospitality sector. Therefore, for the Method 3 analysis, I identify laborers working in that sector as belonging to an exogenously-determined wage-rate labor market. This subsample has 63,913 observations, or 4.6% of the entire U.S. labor market.

Table 5.6	U.S. Minimum Wage Laborers, by Sector (2015)	
Table 5.0	0.3. Willing wage Laborers, by Sector (2015)	

Leisure/Hospitality	Retail trade	Education/Health
1,459,000 (14.5%)	322,000 (2.8%)	213,000 (1.6%)
Public Sector	Professional Services	Other
121,000 (1.3%)	91,000 (1.4%)	117,000

Source: U.S. Bureau of Labor Statistics 2015 Minimum Wage Report, https://www.bls.gov/opub/reports/minimum-wage/2015/home.htm Note: The US BLS reports figures for laborers who earn at or below the minimum wage. The figure in parenthesis displays the percentage of hourly workers in the sector that earn at/below minimum wage.

Method 4

In addition to questions regarding a worker's industry/sector, the March CPS survey also asks respondents to describe their occupation type. The survey has an exhaustive numerically-coded list of virtually every type of worker: with hundreds of professions and occupations to choose from. There are certain types of jobs that are much more likely to hire a laborer at minimum wage, and as mentioned before, these occupations are those that require no special skills or education. As the 2015 U.S. BLS report has recognized, most of these minimum wage positions are clustered within the food service industry, with a sizable portion also working in the hospitality industry.

Table 5.7 below presents the various job-types that have been deemed minimum wage occupations for the purposes of this analysis. The majority of these occupations belong to the food service industry, with a couple occupations representing the unskilled laborers of the hospitality industry. Due to the evolving nature of the CPS survey over the decades, there have been changes to the categories that respondents can choose from. For instance, observations from the years 1998-2002 have fewer and broader occupation categories, compared to those of later years. Categories such as 'waiter's/waitresses' assistant' were broken down into more specific groupings like 'hosts/hostesses' and 'dining room attendants.' Therefore, for Method 4 analysis, I identify

Food Service Occupations		
1998-2002 Waiters/waitresses	2003-2012 Waiters/waitresses Food servers, non-restaurant	2013-2015 Waiters/waitresses Food servers, non-restaurant
Waiter's/waitresses' assistant	Hosts/hostesses Dining room attendants ¹	Hosts/hostesses Dining room attendants ¹
Cooks	Cooks	Cooks
Misc. food preparation	Food preparation workers Food prep/service, inc. fast food Food prep/service, all other	Food preparation workers Food prep/service, inc. fast food
Food counter, fountain, etc.	Counter attendants ²	Counter attendants ²
Kitchen workers	Dishwashers	Dishwashers
<u>Hospitality Occupations</u> 1998-2015 Baggage porters, bellhops, and o Laundry and dry-cleaning worke	concierges rs	
¹ Category includes cafeteria attend	ants and bartender helpers	

Table 5.7 Occupations Included in Minimum Wage Analysis

² Category includes food concession, coffee shop, and cafeteria counter

laborers working in those all of those occupations (according to the year of

observation) as belonging to a minimum wage labor market. This subsample of

workers has 64,196 observations, representing 4.7% of the entire U.S. labor

market.

5.5.2 Results

Method 1

The regression results for minimum wage workers, as defined by

individuals earning an hourly wage rate that is within \$0.50 of their state's

effective minimum wage, are displayed in Table 5.8 below. For the restricted

Table 5.0 Impact of	10st-2002 Entry by MI	grants		тррголи	hately w	I IIIIIIIIIIIIIII	wage
		(1)	(2)	(3)	(4)	(5)	(6)
Hours Worked	Coefficient estimate	3.826	-0.365	-0.342	0.026	-0.048	-0.436
(restricted sample)	P-value	0.000	0.435	0.467	0.957	0.930	0.375
Hours Worked	Coefficient estimate	3.848	0.670	0.671	0.928	0.890	0.602
(full sample)	P-value	0.000	0.000	0.000	0.000	0.000	0.000
Minwage Migrant	Coefficient estimate	2.556	2.463	2.307	1.970	1.991	1.962
(full sample)	P-value	0.000	0.000	0.000	0.000	0.000	0.000
Demographic characteri	stics	No	Yes	Yes	Yes	Yes	Yes
Years of education - line	ar	No	Yes	No	Yes	No	No
Diploma attainment		No	No	Yes	No	Yes	Yes
Year of observation - lin	ear and squared	No	Yes	No	No	No	No
Year of observation - fix	ed effects	No	No	Yes	Yes	Yes	Yes
Migrant interaction effe	cts	No	No	No	Yes	Yes	Yes
Year of arrival - linear ar	nd squared	No	No	No	No	Yes	No
"Young migrants" exclud	ded	No	No	No	No	No	Yes

Table 5.8 Impact of Post-2002 Entry by Migrants Earning Approximately Minimum Wage

Source: Center for Economic and Policy Research. 2016. March CPS Uniform Extracts, Version 1.0. Washington, DC. Note: Any individuals below the age of 18 or above the age of 65, belonging to the armed services, self-employed, or with an hourly real wage exceeding \$10,000 were removed from the sample. All parameters estimated using CEPR Uniform Extract March CPS sampling weights, and errors are clustered by current state of residence. Demographic characteristics include experience, experience squared, and years since arrival, with dummy indicators for race/ethnicity, gender, and urban/rural status. For migrant interaction effects, new explanatory variables are introduced in which each independent variable is multiplied by a dummy indicator for whether the individual is a migrant. "Young migrants" are defined as individuals who relocated to the United States before having the chance to enter the labor force. sample, with the DID specification of equation (13), I find that the number of weekly hours worked by minimum wage migrants were not significantly impacted by the passage of the Homeland Security Act of 2002 (presented in the first two rows of table 5.8). Two of the estimations produced a positive coefficient β , and the other four produced a negative coefficient β . Except for the 'naïve' specification, none of the estimated coefficients were statistically significant. This is an unexpected result, since the models presented in this paper implied that there would be a screening effect of a larger magnitude for the exogenous-wage market relative to the endogenous-wage market. However, it is possible that it could be due to the fact that the restricted sample size is very small (2.3%).

The results for the full sample, difference-in-difference-in-difference regression using specification (14) are more in line with what is expected. As we can see by the 'hours worked' coefficient β (presented in the third and fourth rows), there is a significant post-2002 screening effect on the general migrant labor market of approximately 0.6 – 0.9 additional hours worked per week. The coefficient measuring the differential screening effect experienced by minimum wage workers, ω , was also positive for all six specifications (found in the fifth and sixth rows). Since this coefficient was statistically significant (p-value \approx 0.00), these results indicate that the Homeland Security Act had a stronger screening effect for migrants earning minimum wage than the general migrant population. This implication is in concordance with the migration-decision model presented in this paper, but conflicts with the inference of the restricted sample estimations.

<u>Method 2</u>

The difference-in-difference regression results for minimum wage workers, as defined by individuals that are younger than 26 years old, do not have a high school diploma, and hold a part-time position, are displayed in Table 5.9 on the next page. For the restricted sample, we observe results that are somewhat similar to what I obtained using Method 1 subsample selection process: mixed and mostly insignificant coefficient estimates. I obtained positive estimations for the first four specifications, although the "naïve" specification was the only one to yield a statistically significant result. Specifications 5 and 6 yielded insignificant negative coefficients, indicating that individuals belonging to the minimum wage demographic were not differentially impacted by the border security screening effect.

The results obtained through the full sample difference-in-difference-indifference estimation are congruent with the findings of the restricted sample

188

		(1)	(2)	(3)	(4)	(5)	(6)
Hours Worked	Coefficient estimate	3.445	0.422	0.457	0.044	-0.130	-0.006
(restricted sample)	P-value	0.000	0.393	0.355	0.923	0.829	0.991
Hours Worked	Coefficient estimate	3.564	0.783	0.784	1.020	0.983	0.653
(full sample)	P-value	0.000	0.000	0.000	0.000	0.000	0.000
Minwage Demographic	Coefficient estimate	-1.953	0.260	-0.235	0.477	0.196	-0.021
(full sample)	P-value	0.001	0.665	0.703	0.420	0.737	0.973
Demographic characteristi	CS	No	Yes	Yes	Yes	Yes	Yes
Years of education - linear		No	Yes	Yes	Yes	Yes	Yes
Diploma attainment		No	No	No	No	No	No
Year of observation - linea	r and squared	No	Yes	No	No	No	No
Year of observation - fixed	effects	No	No	Yes	Yes	Yes	Yes
Migrant interaction effects	5	No	No	No	Yes	Yes	Yes
Year of arrival - linear and	squared	No	No	No	No	Yes	No
"Young migrants" excluded	b	No	No	No	No	No	Yes

Table 5.9 Impact of Post-2002 Entry by Migrants in Minimum Wage Demographic

Source: Center for Economic and Policy Research. 2016. March CPS Uniform Extracts, Version 1.0. Washington, DC. Note: Any individuals below the age of 18 or above the age of 65, belonging to the armed services, self-employed, or with an hourly real wage exceeding \$10,000 were removed from the sample. All parameters estimated using CEPR Uniform Extract March CPS sampling weights, and errors are clustered by current state of residence. Demographic characteristics include experience, experience squared, and years since arrival, with dummy indicators for race/ethnicity, gender, and urban/rural status. For migrant interaction effects, new explanatory variables are introduced in which each independent variable is multiplied by a dummy indicator for whether the individual is a migrant. "Young migrants" are defined as individuals who relocated to the United States before having the chance to enter the labor force.

analysis. While I still obtain a significantly positive estimate of β , the coefficient estimates for ω were all statistically insignificant. This indicates that the screening effect exists for the migrant labor population in general, but there is no differential impact on young, uneducated migrants who are working parttime. It is possible that the subsample requirement of 'must work less than 35 hours per week' is having a restrictive effect on the screening effect of these individuals. For example, suppose that a post-2002-entry migrant is working 36 hours per week instead 34 hours due to the screening effect. This person would be excluded from the 'minimum wage demographic,' potentially causing a downward-bias in the estimation of the screening effect for his group.

<u>Method 3</u>

The regression results for minimum wage workers, as defined by individuals who were classified as working in the 'Leisure' industry, are presented in Table 5.10 on the next page. When the sample has been reduced to only these laborers, we observe that migrants who entered the nation after 2002 work at least an additional hour relative to the pre-2002 migrants, for five out of the six specifications (with an extremely low p-value). This is a stronger screening effect than estimated when looking at the entire U.S. labor market. The sixth specification, in which migrants who entered the United States after 2002 as a minor are excluded, produced a positive but screening coefficient that is smaller in magnitude, but still statistically significant. I obtain similar results when estimating the full sample DIDID regression. The passage of the HSA of 2002 had a positive screening effect of 0.3 - 0.7 hours per week for the general migrant labor pool. However, for migrants working in the leisure industry, the

190

		(1)	(2)	(2)	(4)	(_)	(0)
		(1)	(2)	(3)	(4)	(5)	(6)
Hours Worked	Coefficient estimate	6.033	1.145	1.197	1.247	1.137	0.705
(restricted sample)	P-value	0.000	0.000	0.000	0.000	0.001	0.047
Hours Worked	Coefficient estimate	3.444	0.364	0.376	0.661	0.638	0.384
(full sample)	P-value	0.000	0.019	0.019	0.000	0.000	0.013
Lesiure Migrant	Coefficient estimate	2.589	2.664	2.567	2.454	2.359	1.952
(full sample)	P-value	0.000	0.000	0.000	0.000	0.000	0.000
Demographic characteri	stics	No	Yes	Yes	Yes	Yes	Yes
Years of education - line	ear	No	Yes	No	Yes	No	No
Diploma attainment		No	No	Yes	No	Yes	Yes
Year of observation - lin	ear and squared	No	Yes	No	No	No	No
Year of observation - fix	ed effects	No	No	Yes	Yes	Yes	Yes
Migrant interaction effe	ects	No	No	No	Yes	Yes	Yes
Year of arrival - linear ar	nd squared	No	No	No	No	Yes	No
"Young migrants" exclude	ded	No	No	No	No	No	Yes

Table 5.10 Impact of Post-2002 Entry by Migrants in Leisure Industry

Source: Center for Economic and Policy Research. 2016. March CPS Uniform Extracts, Version 1.0. Washington, DC. Note: Any individuals below the age of 18 or above the age of 65, belonging to the armed services, self-employed, or with an hourly real wage exceeding \$10,000 were removed from the sample. All parameters estimated using CEPR Uniform Extract March CPS sampling weights, and errors are clustered by current state of residence. Demographic characteristics include experience, experience squared, and years since arrival, with dummy indicators for race/ethnicity, gender, and urban/rural status. For migrant interaction effects, new explanatory variables are introduced in which each independent variable is multiplied by a dummy indicator for whether the individual is a migrant. "Young migrants" are defined as individuals who relocated to the United States before having the chance to enter the labor force.

screening effect is much more pronounced: I estimate a ω coefficient exceeding

two hours per week for five of the specifications. For the specification for which

'young migrants' are excluded, I estimated a smaller screening effect, but still

with a p-value \approx 0.000. Thus, both estimation methods imply the same

conclusion: there was a stronger post-2002 screening effect on migrants working

in the leisure industry.

Method 4

The regression results for minimum wage workers, as defined by individuals who work in occupations that typically pay their workers minimum wage, are presented in Table 5.11 on the next page. For the restricted sample estimation, I obtain positive and statistically significant results across the board with a level of significance never exceeding 10%. It is worth noting that these estimations produced numbers that look very similar to the entire U.S. labor market estimation, with a screening effect of approximately 0.5 - 1.1 additional hours worked per week.

For the full sample estimations, we observe positive β and ω coefficients, all with a p-value that is less than 0.001 with the exception of the naïve DIDID specification. The estimates of β look very similar to that of the restricted sample regression, with the average migrant working an additional 0.5 to 0.8 weekly hours. The positive ω coefficient estimates suggest that this screening effect was even more pronounced for individuals working in minimum wage occupations, to the tune of 1.2 - 1.5 additional hours per week. These findings support the implications of the models presented in this paper: exogenous-wage workers experience a stronger screening effect than individuals in a market with endogenously set wages.

		(1)	(2)	(3)	(4)	(5)	(6)
Hours Worked	Coefficient estimate	4.123	0.555	0.597	1.106	0.706	0.650
(restricted sample)	P-value	0.000	0.068	0.052	0.000	0.025	0.033
Hours Worked	Coefficient estimate	3.548	0.523	0.528	0.809	0.767	0.514
(full sample)	P-value	0.000	0.000	0.000	0.000	0.000	0.000
Minwage Occupation	Coefficient estimate	0.574	1.461	1.388	1.543	1.439	1.194
(full sample)	P-value	0.050	0.000	0.000	0.000	0.000	0.000
		No	Voc	Voc	Voc	Voc	Voc
		No	Vee	Ne	Vec	Ne	Ne
Years of education - linear		NO	Yes	NO	Yes	NO	NO
Diploma attainment		No	No	Yes	No	Yes	Yes
Year of observation - linear and squared		No	Yes	No	No	No	No
Year of observation - fixed effects		No	No	Yes	Yes	Yes	Yes
Migrant interaction effect	grant interaction effects No No No Yes		Yes	Yes			
ear of arrival - linear and squared		No	No	No	No	Yes	No
"Young migrants" excluded		No	No	No	No	No	Yes

Table 5.11 Impact of Post-2002 Entry by Migrants in Minimum Wage Occupations

Source: Center for Economic and Policy Research. 2016. March CPS Uniform Extracts, Version 1.0. Washington, DC. Note: Any individuals below the age of 18 or above the age of 65, belonging to the armed services, self-employed, or with an hourly real wage exceeding \$10,000 were removed from the sample. All parameters estimated using CEPR Uniform Extract March CPS sampling weights, and errors are clustered by current state of residence. Demographic characteristics include experience, experience squared, and years since arrival, with dummy indicators for race/ethnicity, gender, and urban/rural status. For migrant interaction effects, new explanatory variables are introduced in which each independent variable is multiplied by a dummy indicator for whether the individual is a migrant. "Young migrants" are defined as individuals who relocated to the United States before having the chance to enter the labor force.

5.6 Endogenous-Wage U.S. Labor Market

5.6.1 Defining the Market

For the purposes of this paper, the endogenous wage-setting market is

one in which the wage rate that is offered to migrants in a particular

market/sector is partially determined by the decisions of potential incoming migrants. In other words, the offered wage rate is determined by a process that is internal to the migration model, such that there is a feedback loop between the two variables. While I could define the endogenous-wage labor market as the U.S. economy less the minimum wage market, that analysis would not produce significantly different results from the "overall" analysis in Section 5.4. Instead, I define a labor market as endogenous-wage if the sector has a historically strong presence of migrants, *and* the workers do not typically earn minimum wage. In these types of markets, firms have a lot of information about the characteristics (and productivity) of migrants, and respond to changes in the composition of the immigrant labor pool by subsequently offering a different wage rate and work schedule.

<u>Method 1</u>

Beginning with the Bracero program in the 1940's in which the U.S. government imported Mexican workers to specifically work as farmhands, there has been a nearly-century-long trend in which Hispanic laborers have relocated to the United States in order to work in the agricultural sector. While the Hispanic migrant population has recently diversified in terms of the occupations they hold, there is still a very strong presence in the agricultural sector.

194

According to the U.S. Department of Labor, approximately four out of five hired farmworkers are Hispanic, and nearly three quarters of all farmhands were born in Latin America. Thus, there has been a very long-standing relationship between Hispanic migrant farmworkers and farm employers, such that there is certainly a strong feedback loop in that labor market. Therefore, I define a worker as belonging to an endogenous-wage market if they are of Hispanic ethnicity and are also an agricultural worker. Once these restrictions are enforced, the subsample of the labor force has a total of 6,274 observations.

Method 2

Since the subsample being used in Method 1 is relatively small, I will expand the analysis so as to include all races/ethnicities, as well as several occupations outside of (and including) agricultural work. Using public-use American Community Survey data from 2009-2011, researchers with The Center for Immigration Studies identified the economic occupations, as defined by the U.S. Census Bureau²⁹, that hire the highest shares of migrant workers. Table 5.12 on the next page displays the eight occupations in which immigrants comprise the largest percentage of workers. While many these occupations tend to pay a relatively low wage, none of them are characteristically minimum wage markets.

²⁹ These categories are congruent across the American Community Survey and the March Current Population Survey

And while these positions often require particular skills, they typically do not require advanced formal education. The occupational category with the most foreign-born workers was 'Maids and Housekeeping Cleaners:' with more than 800,000 migrant laborers (49% of the total workers in the occupation).³⁰ All eight of the occupations fall within four broad categories: personal services, agricultural work, textile work, and skill-specific construction.

As mentioned before, in 2003 there was a distinct change in how the U.S. Census Bureau categorized the hundreds of occupations that workers could hold. Some of the categories were expanded into multiple types, sometimes several

Graders/Sorters, Agricultural Products	Miscellaneous Personal Appearance Workers
50,723 (63%)	161,224 (59%)
Plasterers and Stucco Masons	Sewing Machine Operators
23,991 (56%)	120,346 (52%)
Miscellaneous Agricultural Workers	Tailors, Dressmakers, and Sewers
478,956 (52%)	46,479 (52%)
Maids and Housekeeping Cleaners	Drywall and Ceiling Tile Installers and Tapers
815,024 (49%)	83,694 (47%)

Table 5.12 Immigrant Laborers, by Occupation (2009-2011)

Source: Center for Immigration Studies, using American Community Survey Data from 2009-2011 Note: The figure in parenthesis displays the percentage of workers in the occupation that are foreignborn.

³⁰ While tempted to set the cutoff at 50%, removing maids and housekeeping cleaners would remove nearly half of the migrant observations in the subsample.

occupations were collapsed into a single category, and many of the occupations were simply relabeled. Table 5.13 below displays the occupations that I am including in the Method 2 analysis, according to the year of observation. As we can see, only a single occupation (agricultural sorters/graders) out of the eight was not relabeled or collapsed. The categories of 'Tailors' and 'Dressmakers and Seamstresses' were pooled into the occupation 'Tailors, Dressmakers, and Sewers,' and 'Maids and Housemen' was combined with 'Private Household Cleaners and Servants' to form the category 'Maids and Housekeeping

1998-2002	2003-2015
Sorters/Graders, Agricultural	Sorters/Graders, Agricultural
Hairdressers and Cosmetologists	Misc. Personal Appearance Workers
Plasterers	Plasterers and Stucco Masons
Textile Sewing Machine Operators	Sewing Machine Operators
Farm Workers	Miscellaneous Agricultural Workers ¹
Tailors Dressmakers and Seamstresses	Tailors, Dressmakers, and Sewers
Maids and Housemen Private Household Cleaners/Servants	Maids and Housekeeping Cleaners
Drywall Installers	Drywall/Ceiling Tile Installers and Tapers
¹ Category includes animal breeders.	

Table 5.13 Occupations Included in Endogenous-Wage Analysis

Cleaners.'³¹ I identify laborers working in those all of these occupations (according to the year of observation) as belonging to a minimum wage labor market. This subsample of workers has 36,851 observations, representing 2.7% of the entire U.S. labor market.

5.6.2 Results

Method 1

The regression results for endogenous-wage-market workers, as defined by Hispanic individuals who work in agriculture, are displayed in Table 5.14 on the next page. In addition to estimating the post-2002 screening effect on hours worked per week, I also present coefficient estimates for regressions where workers' log hourly wage is the dependent variable. For the restricted sample estimations, I find that there is a consistently positive screening impact on Hispanic agricultural migrants' wage rate (6.1 - 14.9%) and hours worked per week (1.5 - 1.9). While these coefficient estimates are much higher than the entire U.S. market estimations presented earlier in this chapter, several of them have a p-value exceeding 0.10. It is worth noting that this may be a result of the

³¹ The terms 'seamstress,' 'housemen,' and 'servant' have all fallen out of use in the modern lexicon.

		(1)	(2)	(3)	(4)	(5)	(6)
Log Real Hourly Wage	Coefficient estimate	0.005	0.012	0.061	0.104	0.149	0.129
(restricted sample)	P-value	0.923	0.803	0.241	0.214	0.077	0.079
Log Real Hourly Wage	Coefficient estimate	0.245	0.020	0.018	-0.013	0.020	0.003
(full sample)	P-value	0.000	0.006	0.018	0.056	0.012	0.703
Hispanic Agri. Migrant	Coefficient estimate	-0.239	-0.070	-0.107	-0.032	-0.099	-0.094
(full sample)	P-value	0.000	0.118	0.030	0.491	0.036	0.045
Hours Worked	Coefficient estimate	3.136	1.712	1.868	1.586	1.507	1.543
(restricted sample)	P-value	0.001	0.021	0.003	0.081	0.058	0.065
Hours Worked	Coefficient estimate	3.970	0.765	0.753	0.976	0.943	0.636
(full sample)	P-value	0.000	0.000	0.000	0.000	0.000	0.000
Hispanic Agri. Migrant	Coefficient estimate	-0.834	0.374	0.203	0.809	0.543	0.640
(full sample)	P-value	0.384	0.584	0.777	0.281	0.466	0.399
Demographic character	istics	No	Yes	Yes	Yes	Yes	Yes
Years of education - line	ear	No	Yes	No	Yes	No	No
Diploma attainment		No	No	Yes	No	Yes	Yes
Year of observation - linear and squared		No	Yes	No	No	No	No
Year of observation - fixed effects		No	No	Yes	Yes	Yes	Yes
Migrant interaction effects		No	No	No	Yes	Yes	Yes
Year of arrival - linear and squared		No	No	No	No	Yes	No
"Young migrants" excluded		No	No	No	No	No	Yes

Table 5.14 Impact of Post-2002 Entry by Hispanic Migrants Working in Agriculture

Source: Center for Economic and Policy Research. 2016. March CPS Uniform Extracts, Version 1.0. Washington, DC Note: Any individuals below the age of 18 or above the age of 65, belonging to the armed services, selfemployed, or with an hourly real wage exceeding \$10,000 were removed from the sample. All parameters estimated using CEPR Uniform Extract March CPS sampling weights, and errors are clustered by current state of residence. Demographic characteristics include experience, experience squared, and years since arrival, with dummy indicators for race/ethnicity, gender, and urban/rural status. For migrant interaction effects, new explanatory variables are introduced in which each independent variable is multiplied by a dummy indicator for whether the individual is a migrant. "Young migrants" are defined as individuals who relocated to the United States before having the chance to enter the labor force. sample size reduction for this particular method of estimation, which removed 99.5% of the total observations.

For the full sample DIDID estimations, I obtain results that are congruent with the implications of the model. Overall, they indicate that there is a positive screening effect on the entire migrant labor in terms of both wages and hours worked. However, the wage effect is estimated to be significantly smaller (ω <0) for Hispanic migrants working in the agricultural sector, which has been defined as an endogenous-wage market. Interestingly, it appears that the implementation of the HSA of 2002 had no remarkable differential impact (ω ≈0) on the hours that Hispanic farm laborers worked per week.

Method 2

The regression results for endogenous-wage-market workers, as defined by migrants who work in occupations that are largely worked by migrants (>45%), are displayed in Table 5.15 on the next page. For the restricted sample estimations, I find that – for all six specifications – migrants who entered the United States after 2002 experienced a wage premium (4.9 – 9.3%) and worked more hours per week (1.0 - 1.2) relative to migrants who arrived before 2002. Although the measured screening effect is large, it is worth noting that the

200

		(1)	(2)	(3)	(4)	(5)	(6)
Log Real Hourly Wage	Coefficient estimate	0.113	0.094	0.093	0.066	0.060	0.049
(restricted sample)	P-value	0.000	0.005	0.007	0.049	0.087	0.147
Log Real Hourly Wage	Coefficient estimate	0.250	0.021	0.019	-0.011	0.020	0.020
(full sample)	P-value	0.000	0.005	0.011	0.120	0.012	0.012
High-Migrant Occupation	Coefficient estimate	-0.137	-0.074	-0.076	-0.057	-0.074	-0.066
(full sample)	P-value	0.000	0.003	0.001	0.011	0.001	0.004
Hours Worked	Coefficient estimate	2.074	1.204	1.192	0.977	1.023	0.996
(restricted sample)	P-value	0.001	0.033	0.028	0.167	0.141	0.151
Hours Worked	Coefficient estimate	4.025	0.793	0.778	0.997	0.958	0.653
(full sample)	P-value	0.000	0.000	0.000	0.000	0.000	0.000
High-Migrant Occupation	Coefficient estimate	-1.951	-0.927	-0.930	-0.616	-0.667	-0.542
(full sample)	P-value	0.001	0.098	0.089	0.251	0.203	0.301
Demographic characteristi	CS	No	Yes	Yes	Yes	Yes	Yes
Years of education - linear		No	Yes	No	Yes	No	No
Diploma attainment		No	No	Yes	No	Yes	Yes
Year of observation - linear and squared		No	Yes	No	No	No	No
Year of observation - fixed effects		No	No	Yes	Yes	Yes	Yes
Migrant interaction effects		No	No	No	Yes	Yes	Yes
Year of arrival - linear and squared		No	No	No	No	Yes	No
"Young migrants" excluded		No	No	No	No	No	Yes

Table 5.15 Impact of Post-2002 Entry by Migrants in Migrant-Intensive Occupations

Source: Center for Economic and Policy Research. 2016. March CPS Uniform Extracts, Version 1.0. Washington, DC Note: Any individuals below the age of 18 or above the age of 65, belonging to the armed services, selfemployed, or with an hourly real wage exceeding \$10,000 were removed from the sample. All parameters estimated using CEPR Uniform Extract March CPS sampling weights, and errors are clustered by current state of residence. Demographic characteristics include experience, experience squared, and years since arrival, with dummy indicators for race/ethnicity, gender, and urban/rural status. For migrant interaction effects, new explanatory variables are introduced in which each independent variable is multiplied by a dummy indicator for whether the individual is a migrant. "Young migrants" are defined as individuals who relocated to the United States before having the chance to enter the labor force.

introduction of migrant interaction variables caused several of these estimations

to be statistically insignificant at a 10% level of confidence.

The results of the full sample, difference-in-difference-in-difference regression estimations are also presented in the table above, and they look rather similar to the DIDID coefficient estimates obtained in the Hispanic agricultural demographic analysis. There was a general labor screening effect on all post-2002 migrants, particularly on hours worked per week with a p-value that is approximately zero for all six specifications. A statistically significant positive wage premium was estimated for most of the specifications, although the fourth generated an insignificantly negative coefficient. The differential screening effect on migrants in migrant-intensive occupations was congruent with the Hispanic agricultural analysis and the theoretical model presented in this paper: migrants working in these types of jobs experienced a relatively lower wage premium than other migrants arriving after 2002 ($\omega < 0$). Just as observed in the Method 1 endogenous-wage analysis, it appears that there was no differential impact on weekly hours worked, as all six specifications produced statistically insignificant ω coefficient estimates.

5.7 Interpreting the Results

In this subsection, I summarize the regression results presented in the three previous subsections, beginning with the difference-in-difference estimations before moving onto the difference-in-difference-in-difference specifications. Then, I draw three broad conclusions that can be inferred from the totality of these analyses.

For the first difference-in-difference analysis in which I examine the United States labor market as a whole, I find that migrants who entered the United States after 2002 earn a higher wage rate and work more hours per week relative to those who entered beforehand. The coefficient estimates in this analysis were extremely significant, with consistent p-values of approximately zero. When I restrict the sample to subsamples of particular labor markets or types of workers, most of the regressions also generated results that imply a positive post-2002 screening effect on migrants. The DID estimations in the endogenous-wage labor markets (i.e. Hispanic farmworkers and individuals in migrant-intensive occupations) determined that there was a significant wage premium and hike in weekly hours worked, although the level of significance of these estimates was worse than for the entire U.S. labor market.

For the exogenous-wage market, the DID regression results were mixed. I find that migrants working in the leisure industry and/or minimum-wage occupations that entered after the implementation of the HSA of 2002 worked roughly one additional hour per week, with statistical significance in eleven out of the twelve specifications. However, for migrants that are earning at or close to minimum wage, I obtain positive and negative β coefficient estimates, none of

203

which are significant at α =0.10. The same type of results are observed when the sample is restricted to young, uneducated, part-time employees: only one coefficient estimate is positive and significant, while a couple other regressions produced negative estimates. These results are not what one would expect to see based on the inferences of the model. However, there may be an empirical explanation. In both instances (Method 1 and 2), a "successful" or relatively productive worker may take themselves out of the subsample. If a worker earning approximately minimum wage shows aptitude in their job, management may respond by giving them a raise instead of only increasing their hours. Or instead, they may decide to give the individual a full-time position with the company. In either case, laborers that are relatively more productive have a higher likelihood of being removed from the subsample, causing a downward bias in in the estimations.

The difference-in-difference-in-difference regression results for the exogenous-wage and endogenous-wage markets produced results that are in line with the models presented in this paper. The β coefficient estimates implied that, on the whole, migrants arriving after 2002 experienced a wage premium and worked longer hours. For workers in an exogenous-wage market, specifically those earning approximately minimum wage or working in a minimum wage-intensive sector or occupation, this screening effect is even more strongly pronounced: ω >0. Hispanic farmworkers and migrants in migrant-

intensive occupations, representing the endogenous-wage market, had a different experience. For them, the screening effect was significantly reduced in terms of their wage premium, and there was no discernable differential impact on hours worked per week. These results are congruent with interpretation of the exo-wage and endo-wage models: when there is a feedback information loop (i.e. endogenous wages), the initial rise in productivity brought about by additional border security causes wages to rise, enticing less productive migrants to enter the nation. Thus, we expect endogenous-wage markets to have a smaller screening response to a change in immigration control policy.

By comparing the results obtained in the six endogenous/exogenous labor market analyses to those obtained when looking at the U.S. labor market as a whole, one can infer that there may have been sectoral shifts that helped to drive the extremely significant results obtained in the latter. After restricting the subsample to a particular group of individuals or labor market, the β coefficients representing the screening effect are often smaller and always less significant, with p-values commonly between 0.01 and 0.1 (as opposed to p-value \approx 0 for the entire U.S. analysis). This could indicate that the powerful results for the total U.S. analysis were in part driven by sectoral changes in the migrant labor market: relatively strong growth of migrant employment in high-wage occupations/industries would drive the estimate for β for the entire U.S. labor market upward.
The H1-B visa program, which allows migrants working in specialized occupations requiring advanced education, underwent serious changes starting in 1999 that allowed many more (tens of thousands annually) of these highearning migrants to enter the United States. While the education control variable in the entire U.S. analysis would pick up some of this variation, the H1-B policy change could cause an upward bias in the estimation of β . However, the fact that statistically significant results were obtained in the occupation-specific regressions imply that the passage of the Homeland Security Act of 2002 did cause a positive within-class screening effect on the unobservable abilities of migrants entering the United States, as these analyses are unaffected by crosssectoral shifts in the migrant labor economy.

The comparative results of the sixth specification, in which 'young migrants' are removed from the sample, can also provide insight for the current political situation regarding DACA (Deferred Action for Childhood Arrivals) and the DREAMers. Recall that DACA was an executive order signed by President Obama in 2012 and rescinded by President Trump in 2018 that allowed migrants meeting certain circumstances to lawfully remain in the United States. Among other requirements, these migrants must have entered the country while under 16 years of age and could not be older than 30 on June 15, 2012. In other words, DREAMers were individuals who were relocated to the U.S. before having a chance to enter the labor force, and entered the nation between 1982 and 2017.

206

In my empirical analyses, the 'young migrants' that are excluded in the sixth specification were individuals who arrived in the U.S. before entering the labor force, including arrivals from 1942 until 2017.

I find that, when 'young migrants' are removed from the sample, the coefficient estimate measuring the post-2002 screening effect tends to decrease. For the regressions in which significant results were obtained, the estimated β coefficient for the sixth specification was lower than the estimates obtained through other three fixed effect models by approximately 16%, on average. In other words, the existence of 'young migrants' in the sample causes the measured labor screening effect of immigration control policy to increase. This implies that individuals entering the nation as children or young adults, such as DREAMers, are relatively more strongly 'screened' than their parents, even though they probably did not make the decision to migrate themselves. This finding is in congruence with the intergenerational mobility theory discussed in the literature review: individuals who witness their parents facing hardship in exchange for economic opportunity tend to embody those values themselves and earn a relatively higher wage rate.

207

REFERENCES

- Altonji, Joseph and David Card. 1991. "The Effects of Immigration on the Labor Market Outcomes of Less-Skilled Natives." *Immigration, Trade and the Labor Market*, University of Chicago Press: 201-234.
- Amuedo-Dorantes, Catalina and Susan Pozo. 2014. "On the Intended and Unintended Consequences of Enhanced U.S. Border and Interior Immigration Enforcement: Evidence from Mexican Deportees." *Demography*, 51 (6): 2255-2279.
- Anwar-ul-Haq and Anwar-ul-Haq. 1979. "Perspectives on Migration Research: A Review of Theory, Evidence, Methodology and Research Priorities." *Pakistan Economic and Social Review* 17(2): 66-81.
- Bade, Klaus J. 2003. *Migration in European History*. Translated by Allison Brown. Malden, MA: Blackwell Publishing Ltd.
- Baker, Scott R. 2015. "Effects of Immigrant Legalization on Crime." *American Economic Review*, 105(5): 210-13.
- Becker, Gary S., and Nigel Tomes. 1986. "Human Capital and the Rise and Fall of Families." *Journal of Labor Economics* 4(3): 1-39.
- Behrman, Jere, and Paul Taubman. 1985. "Intergenerational Earnings Mobility in the United States: Some Estimates and a Test of Becker's Intergenerational Endowments Model." *The Review of Economics and Statistics*: 144-151.
- Bellemare, C. 2003. "Economic Assimilation and Out Migration of Immigrants in West Germany Earnings" Discussion Paper 65, *Tilburg University, Centre for Economic Research*.
- Björklund, Anders, Markus Jäntti, and Gary Solon. 2007. "Nature and Nurture in the Intergenerational Transmission of Socioeconomic status: Evidence from Swedish Children and their Biological and Rearing Parents." *The BE Journal* of Economic Analysis & Policy, 7(2).
- Borjas, George J. Borjas. 2003. "The labor demand curve is downward sloping: Reexamining the impact of immigration on the labor market." *The Quarterly Journal of Economics* 118(4): 1335-1374.
- ———. 1995. "Ethnicity, Neighborhoods, and Human-Capital Externalities." *American Economic Review*, 85(3): 365-90.

- ———. 1994. "The Economics of Immigration." *Journal of Economic Literature*, 32: 1667-1717.
- ———. 1992. "Ethnic Capital and Intergenerational Mobility." The Quarterly Journal of Economics 107(1): 123-150.
- ———. 1990. Friends Or Strangers: The Impact of Immigrants on the American Economy. New York: Basic Books.
- ———. 1987. "Self-Selection and the Earnings of Immigrants." *The American Economic Review*: 531-553.
- ———. 1985. "Assimilation, changes in cohort quality, and the earnings of immigrants." *Journal of Labor Economics*, 3(4): 463-489.
- Borjas, George J., Richard B. Freeman, and Lawrence Katz. 1996. "Searching for the Effect of Immigration on the Labor Market." *American Economic Review*, 86(2): 246-251.
- Card, David. 2005. "Is the New Immigration Really So Bad?" *The Economic Journal* 115 (507): F300-F323.
- ———. 2001. "Immigrant Inflows, Native Outflows, and the Local Market Impacts of Higher Immigration." *Journal of Labor Economics* 19 (1): 22-64.
- ———. 1990. "The Impact of the Mariel Boatlift on the Miami Labor Market." *Industrial and Labor Relations Review*, 43 (2): 245-247.
- Card, David and Ethan G. Lewis. 2007. "The Diffusion of Mexican Immigrants during the 1990s: Explanations and Impacts." In *Mexican Immigration to the United States*, edited by G. J. Borjas, 193-227.
- Card, David and John DiNardo. 2000. "Do Immigrant Inflows Lead to Native Out-Flows?, American Economic Review Papers and Proceedings, 90, 2, 360-367." *American Economic Review Papers and Proceedings* 90 (2): 360-367.
- Carliner, Geoffrey. 1980. "Wages, earnings and hours of first, second, and third generation American males." *Economic Inquiry* 18(1): 87-102.
- Chiswick, Barry R. 1977. "Sons of Immigrants: Are they at an Earnings Disadvantage?" *The American Economic Review*, 67(1): 376-380.
- ———. 1978. "The Effect of Americanization on the Earnings of Foreign-born Men." *Journal of Political Economy*, 86(5): 897-921.
- Chiswick, Barry R., and Paul W. Miller. 1998. "English Language Fluency among Immigrants in the United States." *Research in Labor Economics*, 17(9): 151-200.

- Couch, Kenneth A., and Thomas A. Dunn. 1997. "Intergenerational Correlations in Labor Market Status: A Comparison of the United States and Germany." *Journal of Human Resources* 32(1): 210-232.
- Doerschler, Peter. 2006. "Push-Pull Factors and Immigrant Political Integration in Germany." *Social Science Quarterly*, 87 (5): 1100-1116.
- Dustmann, Christian; Tommaso Frattini; Ian Preston. 2013. "The Effect of Immigration along the Distribution of Wages." *The Review of Economic Studies*, 80 (1): 145-173.
- Edin, Per-Anders; Robert LaLonde; Olof Åslund. 2000. "Emigration of Immigrants and Measures of Immigrant Assimilation: Evidence from Sweden." *Swedish Economic Policy Review* 7: 163-204.
- Friedberg, Rachel M. 2001. "The Impact of Mass Migration on the Israeli Labor Market." *Quarterly Journal of Economics* 111: 1373-1408.
- Friedberg, Rachel M. and Jennifer Hunt. 1995. "The Impact of Immigrants on Host Country Wages, Employment and Growth." *The Journal of Economic Perspectives*, 9 (2): 23-44.
- Grogger, Jeffrey and Gordon H. Hanson. 2011. "Income Maximization and the Selection and Sorting of International Migrants." *Journal of Development Economics*, 95: 42-57.
- Hunt, John. 1992. "The Impact of the 1962 Repatriates from Algeria on the French Labor Market, Industrial and Labor Relations Review, 45, 556-572." *Industrial and Labor Relations Review* 45: 556-572.
- Hunt, Jennifer and Marjolaine Gauthier-Loiselle. 2010. "How Much does Immigration Boost Innovation?." *American Economic Journal: Macroeconomics*, 2(2): 31-56.
- Isphording, Ingo Eduard, and Sebastian Otten. 2013. "The Costs of Babylon— Linguistic Distance in Applied Economics." *Review of International Economics* 21(2): 354-369.
- Kerr, Sari Pekkala and William R. Kerr. 2011. "Economic Impacts of Immigration: A Survey." Finnish Economic Papers, Finnish Economic Association, 24 (1): 1-32.
- Kerr, William R., and William F. Lincoln. 2010. "The Supply Side of Innovation: H-1B Visa Reforms and US Ethnic Invention." *Journal of Labor Economics*, 28(3): 473-508.
- Lazear, Edward P., 1999. "Culture and language." *Journal of Political Economy*, 107(6), 95-126.

Lee, Everett S. 1966. "A Theory of Migration." Demography, 3 (1): 47-57.

- Lewis, Ethan. 2005. "The Impact of Immigration on New Technology Adoption in U.S. Manufacturing." *Federal Reserve Bank of Philadelphia*.
- Lubotsky, D. 2007. "Chutes Or Ladders? A Longitudinal Study of Immigrant Earnings." *Journal of Political Economy*, 115 (5): 820-867.
- Mazumder, Bhashkar. 2005. "Fortunate Sons: New Estimates of Intergenerational Mobility in the United States Using Social Security Earnings Data." *Review of Economics and Statistics*, 87.2: 235-255.
- Meissner, D. M., Kerwin, D. M., Chishti, M., & Bergeron, C. 2013. "Immigration Enforcement in the United States: The Rise of a Formidable Machinery." Washington, DC: *Migration Policy Institute*.
- Partridge, Mark D., Dan S. Rickman, and Kamar Ali. 2008. "Recent Immigration and Economic Outcomes in Rural America." *American Journal of Agricultural Economics* 90 (5): 1326-1333.
- Peri, Giovanni. 2007. "Immigrants' Complementarities and Native Wages: Evidence from California." *NBER Working Paper 12956*.
- Roy, A.D. 1951. "Some Thoughts on the Distribution of Earnings. *Oxford Economic Papers,* 3: 135-146.
- Spence, A.M. 1973. "Job Market Signaling." *Quarterly Journal of Economics*, 87 (3): 355-374.
- Transactional Records Access Clearinghouse (TRAC), "Going deeper" Tool, "Federal Criminal Enforcement, FY 2011." *Syracuse University.*
- United States Census Bureau. 2004. "Colonial and Pre-Federal Statistics."
- Zimmerman, Barry J., Bandura, A., & Martinez-Pons, M. 1992. "Self-Motivation for Academic Attainment: The Role of Self-efficacy Beliefs and Personal Goal Getting." *American Educational Research Journal*, 29(3): 663-676.

Appendix A: Proof of Positive Denominator in Labor Screening Effect

In order to find the inverse correlation that we would expect, the parenthesed term in the numerator must be positive: $0.5\delta + 0.5\delta M_H + K_j - U_{ALT} > 0$ Or: $0.5\delta + 0.5\delta M_H + K_j > U_{ALT}$

I show this to be true by starting with the fact that, in order for *any* migrants to enter nation j ($M_{min} < M_H$), the following must be true:

 $W_{ij} - (\alpha P_j + \beta D_{jh} + \gamma E_{ji})(1 - M_H) > U_{ALT}$

We know that firms offer $W_{ij} = 0.5\delta (M_{min} + M_H) + K_j$:

$$0.5\delta(M_{min} + M_H) - (\alpha P_j + \beta D_{jh} + \gamma E_{ji})(1 - M_H) > U_{ALT}$$

I substitute for U_{ALT} in the original inequality under investigation (we can do this since the formula substituted in is larger than U_{ALT} , so the conclusion is valid if the inequality holds):

$$\begin{split} 0.5\delta + 0.5\delta M_{H} + K_{j} &> U_{ALT} \\ 0.5\delta + 0.5\delta M_{H} + K_{j} &> 0.5\delta (M_{min} + M_{H}) + K_{j} - (\alpha P_{j} + \beta D_{jh} + \gamma E_{ji})(1 - M_{H}) \\ 0.5\delta - 0.5\delta M_{min} + K_{j} &> -(\alpha P_{j} + \beta D_{jh} + \gamma E_{ji})(1 - M_{H}) \end{split}$$

The inequality holds, since M_{min} and M_{H} both have an upper bound of 1, and the rest of the parameters and variables have a positive value. Therefore, the conclusion that there is an inverse correlation between immigration control policy and the number of migrants is valid.

Appendix B: Proof of Government Welfare Maximum

In order to ensure that this is a maximum, the government welfare function should be concave down. I take the second derivative and find:

$$\begin{split} \partial^2 G_j / \partial P_j^2 \; = \; 2 \psi \alpha^2 \; (W_{ji} - U_{ALT}) \; (\alpha P_j + \beta D_{jh} + \gamma E_{ji})^{-3} \; - \; \varphi \delta \alpha^2 \; (W_{ji} - U_{ALT}) \; (\alpha P_j + \beta D_{jh} + \gamma E_{ji})^{-3} \end{split}$$

$$\partial^2 G_j / \partial P_j^2 = \alpha^2 (2\psi - \phi \delta) (W_{ji} - U_{ALT}) (\alpha P_j + \beta D_{jh} + \gamma E_{ji})^{-3}$$

We know that α , the wage premium, and the costs of migration are all positive. Therefore, in order for the second derivative to be negative, the term $(2\psi - \phi\delta)$ needs to be negative. This is extremely likely, since ϕ and δ both have positive values and, historically speaking, it is very rare for ψ to be positive.

For the rest of this paper, I make the assumption that nation j has a neutral or mixed attitude toward migrants: $\psi = 0$.

Therefore, $\phi \delta > 2\psi$.

In the exceptional case where $2\psi > \varphi\delta$ (nation j very strongly desires more immigrants), the government welfare function is concave up and the government will choose a corner solution of zero immigration policy: $P_j = 0$.

Appendix C: Ordering of Nations

Let's start with nation 1. I begin by proving that the costs of migration in nation 1 are lower than that of nation 0. I start with the fact that migrants with $M_i = M_{max,1}$ have the same utility in either nation:

$$W_0 - C_0(1 - M_{max,1}) = W_1 - C_1(1 - M_{max,1})$$

I substitute W_1 for $(W_0 + \alpha)$ where $\alpha > 0$, since $W_0 > W_1$:

$$W_0 - C_0 (1 - M_{max,1}) = W_0 + \alpha - C_1 (1 - M_{max,1})$$

Solving for C₁:

$$C_1 = C_0 - \frac{\alpha}{1 - M_{max}}$$

Therefore: $C_1 < C_0$, and we know that:

$$\frac{W_0 - W_1}{C_0 - C_1} > 0$$

I now introduce nation 2 by comparing M_{max} to M_{min} for nation 1. We know that:

 $M_{max,1} > M_{min,1}$

Substituting and simplifying, I find that:

$$0 < \frac{W_0 - W_1}{C_0 - C_1} < \frac{W_1 - W_2}{C_1 - C_2}$$

Since we know that the first fraction is positive, the second fraction must be

positive too.

When we repeat the process for nation 2, comparing $M_{max,2} > M_{min,2}$, we get:

$$0 < \frac{W_0 - W_1}{C_0 - C_1} < \frac{W_1 - W_2}{C_1 - C_2} < \frac{W_2 - W_3}{C_2 - C_3}$$

And the process reiterates until there are no more viable nations. Recalling that $M_{min,J}=0$, we are left with:

$$0 < \frac{W_1 - W_0}{C_1 - C_0} < \frac{W_1 - W_2}{C_1 - C_2} < \dots < \frac{W_{j-1} - W_j}{C_{j-1} - C_j} < \frac{W_j - W_{j+1}}{C_j - C_{j+1}} < \dots \frac{W_{J-1} - W_J}{C_{J-1} - C_J}$$

< 1

Appendix D: Proof that $W_{j-1} - W_j > 0$

There are two instances in which a particular nation is excluded from position j:

(1) $M_{min,j-2/j} > M_{min,j-2/j-1}$

When calculating the M_{min} for nation j-2, the M_{min} calculation is higher for nation j then j-1. In this case, the particular nation would take the position of j-1 rather than j, since it is the "next best alternative" for nation j-2.

(2) $M_{min,j-1/j} > M_{min,j-2/j}$

The M_{min} calculation between j and j-1 is larger than that between j and j-2. In this case, migrants' derived utility is higher in nation j-2 when $M_i > M_{min,j-2/j-1}$, and higher in nation j-1 when $M_i < M_{min,j-1/j}$, and we know by definition that $M_{min,j-2/j-1} > M_{min,j-1/j}$. Thus, zero migrants would prefer nation j over j-1 or j-2. Therefore, nation j either needs to be moved to position j+1 or higher, or is not a "viable nation" at all.

I begin by defining:

$$W_j = W_{j-1} + x$$

$$C_j = C_{j-1} + y$$

Recalling the inequality found at the end of Appendix A.3, we know that:

$$1 > \frac{x}{y} > 0$$

Therefore, we know that x and y have the same sign. Also, we know that |y| > |x|.

Suppose that x > 0:

(1) $M_{min,j-2/j} > M_{min,j-2/j-1}$

$$\frac{W_{j-2} - W_j}{C_j - C_{j-2}} + 1 > \frac{W_{j-2} - W_{j-1}}{C_{j-1} - C_{j-2}} + 1$$

$$\frac{W_{j-2} - W_{j-1} - x}{C_{j-1} - C_{j-2} + y} > \frac{W_{j-2} - W_{j-1}}{C_{j-1} - C_{j-2}}$$

$$\frac{W_{j-2} - W_{j-1} - x}{C_{j-1} - C_{j-2} + y} > \frac{W_{j-2} - W_{j-1}}{C_{j-1} - C_{j-2}}$$
$$W_{j-2} - W_{j-1} - x > \frac{(W_{j-2} - W_{j-1})(C_{j-1} - C_{j-2} + y)}{C_{j-1} - C_{j-2}}$$

$$x > \frac{y(W_{j-2} - W_{j-1})}{C_{j-2} - C_{j-1}}$$

(2) $M_{min,j-1/j} > M_{min,j-2/j}$

$$\frac{W_{j-1} - W_j}{C_j - C_{j-1}} + 1 > \frac{W_{j-2} - W_j}{C_j - C_{j-2}} + 1$$

$$\frac{-x}{y} > \frac{W_{j-2} - W_j}{C_j - C_{j-2}}$$

$$x < \frac{y(W_{j-2} - W_{j-1})}{C_{j-2} - C_{j-1}}$$

Therefore, if x > 0 the nation in question either (1) needs to be moved "down" to position j-1 (or higher), or (2) needs to be moved "up" to position j+1 or higher, or is simply not a "viable nation."

In the case that x < 0, the exclusion condition for (2) becomes:

$$x > \frac{y(W_{j-2} - W_{j-1})}{C_{j-2} - C_{j-1}}$$

Therefore, iff x < 0 and the condition $\frac{W_{j-1}-W_j}{C_{j-1}-C_j} < \frac{W_j-W_{j+1}}{C_j-C_{j+1}}$ holds true, is nation j is

properly positioned.

Thus, the wage gap in question must be positive: $W_{j-1} - W_j > 0$ and $W_j - W_j = 0$

 $W_{j+1} > 0$

Appendix E: 26 Destination-nation Simulation

In order show that the wage gap is positive, I randomly generated wage rate $[W_{ji} \sim N(100, 20)]$ and migration cost data $[C_{ji} \sim N(70, 20)]$ for 26 destination nations. For the lowest-wage nation (A), I reduced the costs of migration to zero so that it may represent the origin-nation. I picked the highest-wage nation (I) as nation 0, then found the country (Z) with the highest M_{min} between 0 and 1 for nation 1. I then calculated M_{min,1} for every country except I, and picked one the highest one between 0 and M_{min,1} (Y) as nation 2. Repeating the same process, I determined that nation A is nation 3. This is also the last "viable" nation, as there are no more M_{min,3} calculations that are between zero and M_{min,2}.

			Nation 0: I	Nation 1: Z	Nation 2: Y	Nation 3: A
Nation	Wage	Costs	Mmin,0	Mmin,1	Mmin,2	Mmin,3
Α	68.32	0.00	0.34	0.19	0.16	
В	77.17	109.31	6.42	2.44	1.45	0.92
С	125.00	81.74	0.49	1.41	0.48	0.31
D	129.81	100.99	2.83	0.94	0.58	0.39
E	76.61	43.48	-0.03	-0.70	-21.54	0.81
F	78.45	66.48	-0.70	-5.70	2.27	0.85
G	106.93	104.97	5.39	1.68	0.98	0.63
н	122.32	95.73	-2.61	1.27	0.68	0.44
1	133.68	98.88				
J	102.72	65.40	0.08	-1.99	1.16	0.47
К	84.22	95.08	-12.03	3.08	1.43	0.83
L	117.92	74.72	0.35	13.66	0.60	0.34
м	95.31	57.56	0.07	-1.01	1.83	0.53
N	93.69	87.23	-2.43	3.59	1.29	0.71
0	137.63	55.84	1.09	1.52	-1.87	-0.24
Р	89.25	64.59	-0.30	-3.18	1.84	0.68
Q	69.16	105.24	11.13	2.88	1.61	0.99
R	112.58	91.90	-2.02	1.87	0.86	0.52
S	88.25	102.64	13.06	2.39	1.31	0.81
Т	86.76	83.63	-2.08	5.26	1.49	0.78
U	112.35	78.94	-0.07	4.15	0.81	0.44
V	86.71	58.48	-0.16	-1.69	2.40	0.69
W	123.55	70.75	0.64	-0.47	0.32	0.22
X	104.04	49.70	0.40	0.00	1.38	0.28
Y	105.93	44.78	0.49	0.24		
Z	128.19	73.91	0.78			

Thus, the four viable nations are:

Rank	Nation	Wage	Costs	I	E(⊖)
0	-	133.68	98.88	0.22	1.89
1	Z	128.19	73.91	0.54	1.51
2	Y	105.93	44.78	0.08	1.20
3	А	68.32	0.00	0.16	1.08

As we can see, the wage rates of the viable nations are ranked in descending

order. In other words, the wage gap discussed in 1.D is positive: $W_{j-1} - W_j > 0$.

Appendix F: Temporary Worker Visa Preference Categories

Category	Description
H-1B	To work in a specialty occupation. Requires a higher education degree or its equivalent. Includes fashion models of distinguished merit and ability and government-to-government research and development, or co- production projects administered by the Department of Defense.
H-1B1	To work in a specialty occupation. Requires a post-secondary degree involving at least four years of study in the field of specialization. (Note: This is not a petition-based visa. For application procedures, please refer to the website for the U.S. Embassy in Chile or the U.S. Embassy in Singapore.)
H-2A	For temporary or seasonal agricultural work. Limited to citizens or nationals of designated countries, with limited exceptions, if determined to be in the United States interest.
H-2B	For temporary or seasonal non- agricultural work. Limited to citizens or nationals of designated countries, with limited exceptions, if determined to be in the United States interest.
H-3	To receive training, other than graduate medical or academic, that is not available in the trainee's home country or practical training programs in the education of children with mental, physical, or emotional disabilities
L	To work at a branch, parent, affiliate, or subsidiary of the current employer in a managerial or executive capacity, or in a position requiring specialized knowledge. Individual must have been employed by the same employer abroad continuously for 1 year within the three preceding years

Table A.1 Temporary Worker Visa Preference Categories

0	For persons with extraordinary ability or achievement in the sciences, arts, education, business, athletics, or extraordinary recognized achievements in the motion picture and television fields, demonstrated by sustained national or international acclaim, to work in their field of expertise. Includes persons providing essential services in support of the above individual.
P-1	To perform at a specific athletic competition as an athlete or as a member of an entertainment group. Requires an internationally recognized level of sustained performance. Includes persons providing essential services in support of the above individual.
P-2	For performance under a reciprocal exchange program between an organization in the United States and an organization in another country. Includes persons providing essential services in support of the above individual.
P-3	To perform, teach or coach under a program that is culturally unique or a traditional ethnic, folk, cultural, musical, theatrical, or artistic performance or presentation. Includes persons providing essential services in support of the above individual.
Q-1	For practical training and employment and for sharing of the history, culture, and traditions of your home country through participation in an international cultural exchange program.

Source: United States Department of State - Bureau of Consular Affairs

Appendix G: Regression Output

Specification (1), Entire U.S. Labor Market

Linear regress	sion			Number o F(3, 50) Prob > F R-square Root MSE	f obs = = d = =	1,375,615 468.84 0.0000 0.0378 .71539
		(Std.	Err. adj	usted for	51 clusters	in state)
 lnwage 	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant post911entry post911ent~t 	1789108 4058013 .2443614 2.982956	.0208638 .0109555 .0132829 .0189798	-8.58 -37.04 18.40 157.17	0.000 0.000 0.000 0.000	2208171 4278061 .2176818 2.944834	1370046 3837966 .271041 3.021078
Linear regression		(Std.	Err. adj	Number o F(3, 50) Prob > F R-square Root MSE usted for	f obs = = d = 51 clusters	1,376,334 533.45 0.0000 0.0236 10.397 in state)
hoursworked	Coef.	Robust Std. Err.		P> t	[95% Conf.	Interval]
migrant post911entry post911ent~t _cons	6275083 -5.018331 4.023865 40.47215	.1560116 .1406891 .1745813 .1182521	-4.02 -35.67 23.05 342.25	0.000 0.000 0.000 0.000	9408669 -5.300913 3.673208 40.23464	3141498 -4.735748 4.374522 40.70967

Specification (2), Entire U.S. Labor Market

Linear regression	Number of obs	=	1,375,615
	F(14, 50)	=	
	Prob > F	=	

R-squared	=	0.2738
Root MSE	=	.6215

	 I	Robust				
lnwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	.0719664	.0051407	14.00	0.000	.0616411	.0822918
post911entry	0723596	.0038536	-18.78	0.000	0800997	0646196
post911ent~t	.0181346	.0069283	2.62	0.012	.0042187	.0320505
yearseduc	.1010469	.0024886	40.60	0.000	.0960484	.1060455
exp	.0360258	.0007624	47.25	0.000	.0344945	.0375571
exp_sq	0006276	.0000132	-47.39	0.000	0006542	000601
female	2464368	.0050028	-49.26	0.000	2564852	2363885
white	.1064268	.0121011	8.79	0.000	.082121	.1307326
black	0507494	.0162781	-3.12	0.003	0834449	0180538
asian	.1168612	.0217318	5.38	0.000	.0732115	.1605108
hispanic	.0232692	.0198/82	1.1/	0.24/	01665/4	.0631958
years_sinc~1	.004/219	.0004//4	9.89	0.000	.003/631	.0056807
rural		.0142321	-11.98	0.000	1991092	14193/3
year		.3269113	7.92	0.000	1.931802	3.245044
year_sq	-2504 774	.0000013	-7.92	0.000	00000009	-1035 065
Linear regress	sion			Number F(13, 5 Prob > R-squar Root MS	of obs = 50) = F = ced = SE =	1,376,334 0.1148 9.8993
		(Std.	Err. adj	justed fo	or 51 clusters	in state)
	l	Robust				
hoursworked	Coef.	Std. Err.	t 	P> t	[95% Conf.	Interval]
migrant	.0365837	.0904761	0.40	0.688	1451429	.2183103
post911entry	-1.257838	.073261	-17.17	0.000	-1.404987	-1.110689
post911ent~t	.7130374	.1340383	5.32	0.000	.4438136	.9822613
yearseduc	.5140983	.0270987	18.97	0.000	.459669	.5685277
exp	.564869	.0113541	49.75	0.000	.5420637	.5876742
exp_sq	0105649	.0001905	-55.46	0.000	0109475	0101822
female	-4.777614	.1194686	-39.99	0.000	-5.017574	-4.537654
white	0336716	.1657066	-0.20	0.840	3665031	.2991599
black	2309035	.1635369	-1.41	0.164	5593771	.0975701
asian	/110509	.1862928	-3.82	0.000	-1.085231	3368708
nispanic	.10/5/27	.2103316	U.51	U.611 0 105	3148908	.5300362
years_sinc~l		.0018932	-1.31	0.195	0062912	.0013139
rural	1 -7 036951	.U/02342 3 9566/4	2.35 -2.06	0.023	.UZ0Z434 _15 60315	- 1005527
year woor co	1 - 1.9300JL	000044	-2.00	0.045	0000301	.1903331
Year_2d	1 8026 429	3866 437	2.05	0.040	260 4628	15792 4
					200.7020	

(Std. Err. adjusted for 51 clusters in state)

Specification (3), Entire U.S. Labor Market

Linear regression

Number of obs	=	1,375,615
F(34, 50)	=	4083.63
Prob > F	=	0.0000
R-squared	=	0.2885
Root MSE	=	.61519

(Std. Err. adjusted for 51 clusters in state)

		Robust				
lnwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	+	0067952	10 31	0 000	0563867	 0836838
nost911entry	-0689519	0041862	-16 47	0 000	- 0773601	- 0605437
post911ent~t	0299543	0055831	5 37	0 000	0187404	0411682
hsgrad	2634568	.005257	50.12	0.000	.2528977	.2740158
assocarad	4456565	0067982	65 56	0 000	432002	459311
bachgrad	7063531	.0096429	73.25	0.000	. 6869848	.7257215
mastgrad	.8837125	.0145473	60.75	0.000	.8544934	.9129316
doctorgrad	1.115152	.0127299	87.60	0.000	1.089583	1.14072
exp	.0307746	.0004892	62.91	0.000	.0297921	.0317571
exp sq	0006131	.0000119	-51.67	0.000	000637	0005893
female	2424658	.0050457	-48.05	0.000	2526004	2323313
white	.0862186	.011587	7.44	0.000	.0629455	.1094917
black	0482985	.0165958	-2.91	0.005	0816321	0149649
asian	.1176587	.0217156	5.42	0.000	.0740417	.1612757
hispanic	0147903	.0182527	-0.81	0.422	051452	.0218714
years sinc~l	.0081892	.0004012	20.41	0.000	.0073834	.0089949
rural	1670353	.0126502	-13.20	0.000	192444	1416266
vear						
1999	.0296578	.0044939	6.60	0.000	.0206315	.0386842
2000	.0437704	.0040796	10.73	0.000	.0355762	.0519646
2001	.0615078	.0050118	12.27	0.000	.0514412	.0715743
2002	.068626	.0042439	16.17	0.000	.0601019	.07715
2003	.0737965	.0049711	14.85	0.000	.0638118	.0837812
2004	.0662444	.0050265	13.18	0.000	.0561484	.0763404
2005	.0550193	.0047325	11.63	0.000	.0455139	.0645247
2006	.0485835	.0057264	8.48	0.000	.0370818	.0600853
2007	.0506171	.0083452	6.07	0.000	.0338553	.0673788
2008	.0573816	.0071191	8.06	0.000	.0430825	.0716808
2009	.0396988	.0068346	5.81	0.000	.025971	.0534266
2010	.0565063	.0062916	8.98	0.000	.0438694	.0691433
2011	.0409959	.0068218	6.01	0.000	.027294	.0546978
2012	.0273835	.0077952	3.51	0.001	.0117263	.0430407
2013	.0137867	.0076215	1.81	0.076	0015215	.0290949
2014	.0150748	.0096917	1.56	0.126	0043915	.0345412
2015	.0149366	.0091727	1.63	0.110	0034873	.0333606
_cons	 1.951551	.0153564	127.08	0.000	1.920707	1.982395

Linear regression

Number of obs	=	1,376,334
F(34, 50)	=	3597.66
Prob > F	=	0.0000
R-squared	=	0.1227
Root MSE	=	9.8548

(Std. Err. adjusted for 51 clusters in state)

hoursworked	Coef.	Robust Std. Err.			[95% Conf.	Interval]
migrant	+	088469				028106
nost 911 opt rv	-1 286775	0755081	-17 04	0.000	-1 /38/38	-1 135113
post911entry	6500583	1/32788	1 51	0.000	3622744	0370/22
bearad	1 783030	1075001	a 03	0.000	1 38705	2 180829
assocarad	2 /1986	1983657	12 20	0.000	2 021/31	2 818289
bachgrad	L 112301	1668535	24 65	0.000	3 777169	1 117139
mastgrad	5 027321	1962847	24.00	0.000	1 633072	5 /2157
doctorgrad	8 395625	3097027	27.01	0.000	7 773569	9 017682
auccorgrau	5517253	0110331	50 01	0.000	5295646	5738861
ovn sa	-0103638	0001731	-59.88	0.000	- 0107115	- 0100162
exp_sq fomalo	0103038	1187892	-39.00	0.000	0107113	0100102
remare	-4.740070	1572104	-39.90	0.000	- 50/1052	1274275
black	-2250009	150266	-1.42	0.237	- 5420772	.12/42/5
	2230900	170200	-1.42	0.101	-1 220020	- 5100625
asian	0790014	.1/9202	-4.91	0.000	- 1550574	3190033
uspanic	-0050767	.2130314	-0.11	0.912	- 0101196	- 0000347
years_sinc~1	0030767	.0023102	-2.02	0.049	0101100	0000347
fulal	.2332201	.0032413	3.07	0.003	.0000331	.4224232
vear						
1999	.1132456	.059296	1.91	0.062	005854	2323451
2000	.1435715	.0882951	1.63	0.110	0337744	. 3209174
2001	.1009955	.092171	1.10	0.278	0841353	.2861264
2002	1286008	.0686954	-1.87	0.067	2665795	.0093779
2003	3041418	.0830273	-3.66	0.001	4709069	1373766
2004	3348535	.1024144	-3.27	0.002	5405589	1291481
2005	2175847	.0847405	-2.57	0.013	387791	0473784
2006	0439383	.0937625	-0.47	0.641	2322658	.1443893
2007	.0118135	.082689	0.14	0.887	1542723	.1778993
2008	0211793	.0826461	-0.26	0.799	1871788	.1448202
2009	-3725973	0789702	-4 72	0 000	- 5312135	- 2139811
2010	7538585	.0826513	-9.12	0.000	9198685	5878486
2011	7330479	.079988	-9.16	0.000	8937085	5723872
2012	5760617	.0847063	-6.80	0.000	7461994	40,592,41
2013	450973	.0993293	-4.54	0.000	6504819	2514642
2014	- 4033786	.099816	-4 04	0.000	6038649	- 2028924
2015	1967885	.0923805	-2 13	0.038	3823403	0112368
2010		.0520000	2.10	0.000	.0020100	.0112000
_cons	34.84489	.2120274	164.34	0.000	34.41902	35.27076

Specification (4), Entire U.S. Labor Market

Linear regression			Numbe	er of	e ok	os =	1,3	375,615
			F(49)	, 50)		=		•
			Prob	> F		=		•
			R-sq	uared	ł	=		0.2803
			Root	MSE		=		.61873
	(Std.	Err.	adjusted	for	51	clusters	in	state)

lnwage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
<pre>migrant post911entry post911ent~t yearseduc migrantyea~c exp migrantexp exp_sq migrantexp~q female migrantfem~e 1.migrant</pre>	.7712442 0707972 .033843 .112753 0420036 .0367186 0127246 0006868 .0003163 2501089 .016607 0	.0494547 .0039406 .0081144 .0013176 .0026633 .0006661 .0009193 .000019 .0000208 .004809 .0074099 (omitted)	15.59 -17.97 4.17 85.58 -15.77 55.13 -13.84 -36.17 15.20 -52.01 2.24	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.029	.6719115 0787121 .0175447 .1101066 0473531 .0353808 0145711 000725 .0002745 259768 .0017239	.8705769 0628823 .0501412 .1153995 0366541 .0380565 0108781 0006487 .0003581 2404498 .0314901
wbhao Black Hispanic Asian Other	15193 0624254 .0327421 0983478	.0089992 .0216678 .016077 .0118949	-16.88 -2.88 2.04 -8.27	0.000 0.006 0.047 0.000	1700054 1059464 .0004504 1222394	1338546 0189043 .0650338 0744561
migrant# wbhao 1#Black 1#Hispanic 1#Asian 1#Other	0061478 1578541 0327837 .0103428	.0198614 .0228033 .0188859 .0509891	-0.31 -6.92 -1.74 0.20	0.758 0.000 0.089 0.840	0460406 2036558 0707173 0920719	.033745 1120523 .0051498 .1127574
years_sinc~l rural migrantrural	.0062695 1649927 .0822124	.0007423 .0123455 .019896	8.45 -13.36 4.13	0.000 0.000 0.000	.0047785 1897893 .0422502	.0077605 1401961 .1221747
year 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015	.0302908 .0409151 .0562655 .0625805 .0696354 .0640272 .0509271 .0418678 .0457825 .0522617 .0364528 .0525574 .0360523 .0227458 .0070817 .0110225 .0140424	.0049548 .0044386 .0054058 .0043537 .0047499 .0046321 .0039005 .0052176 .0080408 .0066146 .0067872 .0061876 .0060371 .0074747 .007144 .0095385 .0084675	$\begin{array}{c} 6.11\\ 9.22\\ 10.41\\ 14.37\\ 14.66\\ 13.82\\ 13.06\\ 8.02\\ 5.69\\ 7.90\\ 5.37\\ 8.49\\ 5.97\\ 3.04\\ 0.99\\ 1.16\\ 1.66\end{array}$	0.000 0.001 0.253 0.104	.0203388 .0319998 .0454076 .0538358 .0600949 .0547233 .0430928 .0313879 .0296321 .0389759 .0228204 .0401291 .0239264 .0077324 0072674 008136 0029651	.0402427 .0498303 .0671234 .0713251 .0791758 .0733311 .0587615 .0523476 .0619329 .0655475 .0500852 .0649856 .0481783 .0377593 .0214309 .0301811 .03105
migrant#year 1 1999 1 2000 1 2001 1 2002 1 2003 1 2004 1 2005	0171708 .0104625 .027369 .0323948 .0130047 .0075911 .0243837	.0089023 .0111014 .0124349 .0071133 .0126274 .0124869 .0113734	-1.93 0.94 2.20 4.55 1.03 0.61 2.14	0.059 0.350 0.032 0.000 0.308 0.546 0.037	0350516 0118352 .0023927 .0181073 0123581 0174896 .0015395	.00071 .0327603 .0523454 .0466824 .0383675 .0326718 .0472278

1 2006		.0379078	.0100102	3.79	0.000	.0178018	.0580139
1 2007		.0306461	.0088088	3.48	0.001	.0129531	.0483391
1 2008		.024431	.0099897	2.45	0.018	.004366	.044496
1 2009		.0181487	.0136869	1.33	0.191	0093421	.0456396
1 2010		.0229796	.0103091	2.23	0.030	.0022731	.0436861
1 2011		.0207727	.0116852	1.78	0.082	0026977	.0442432
1 2012		.0232386	.0112244	2.07	0.044	.0006937	.0457836
1 2013		.0346999	.0122826	2.83	0.007	.0100297	.0593702
1 2014		.0285496	.0123927	2.30	0.025	.0036582	.0534411
1 2015		.0119718	.016379	0.73	0.468	0209264	.0448699
_cons	:	.8874796	.0255574	34.73	0.000	.8361462	.9388131

Linear regression

=	1,376,334
=	•
=	
=	0.1184
=	9.8791
	= = = =

(Std. Err. adjusted for 51 clusters in state)

hoursworked	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	6.738927	.6305383	10.69	0.000	5.472454	8.005401
post911entry	-1.203721	.0713174	-16.88	0.000	-1.346966	-1.060476
post911ent~t	1.042666	.1500274	6.95	0.000	.7413271	1.344005
yearseduc	.6230173	.0192582	32.35	0.000	.5843361	.6616985
migrantyea~c	3512176	.0301366	-11.65	0.000	4117488	2906864
exp	.593179	.0108261	54.79	0.000	.5714341	.6149239
migrantexp	2324491	.0137321	-16.93	0.000	2600307	2048674
exp_sq	0115314	.0002059	-55.99	0.000	0119451	0111178
migrantexp~q	.0053535	.0002776	19.29	0.000	.0047959	.005911
female	-4.89083	.1130984	-43.24	0.000	-5.117995	-4.663665
migrantfem~e	.7686449	.1105749	6.95	0.000	.5465486	.9907411
1.migrant	0	(omitted)				
whhao						
Black	0785456	0776211	-1 01	0 316	- 2344521	077361
Hispanic	.0591471	.2332626	0.25	0.801	4093746	.5276688
Asian	2873001	.2815503	-1.02	0.312	8528104	.2782102
Other	.1194335	.1585059	0.75	0.455	198935	.4378019
migrant#						
wbhao						
1#Black	5597478	.1433701	-3.90	0.000	8477151	2717805
1#Hispanic	540765	.1569938	-3.44	0.001	8560963	2254337
1#Asian	3743392	.2670391	-1.40	0.167	9107031	.1620248
1#Other	7355336	.4358223	-1.69	0.098	-1.610908	.1398413
years sinc~l	.0088269	.0037515	2.35	0.023	.0012918	.016362
rural	.2273314	.0877453	2.59	0.013	.0510897	.4035731
migrantrural	.8303317	.2765222	3.00	0.004	.2749205	1.385743
l						
year						

1999	.0990913	.0656096	1.51	0.137	0326895	.2308721
2000	.1116998	.0908265	1.23	0.225	0707306	.2941301
2001	.0531104	.098185	0.54	0.591	1441	.2503208
2002	1476019	.0780837	-1.89	0.065	3044377	.009234
2003	3388732	.0864319	-3.92	0.000	5124767	1652697
2004	3498298	.1061803	-3.29	0.002	5630993	1365603
2005	2250891	.0925326	-2.43	0.019	4109462	039232
2006	1111937	.1069071	-1.04	0.303	325923	.1035355
2007	0102472	.089434	-0.11	0.909	1898806	.1693862
2008	0434478	.095344	-0.46	0.651	2349518	.1480561
2009	3411045	.0919847	-3.71	0.001	5258611	1563479
2010	6700069	.0975662	-6.87	0.000	8659744	4740395
2011	6713802	.0901842	-7.44	0.000	8525206	4902399
2012	5030165	.0963522	-5.22	0.000	6965456	3094873
2013	3793571	.1146606	-3.31	0.002	6096598	1490545
2014	3426775	.1095818	-3.13	0.003	562779	1225761
2015	132977	.1003743	-1.32	0.191	3345848	.0686307
migrant#vear						
1 1999	.0654131	.1597571	0.41	0.684	2554684	.3862946
1 2000	.2052425	.2098845	0.98	0.333	2163229	.6268078
1 2001	.3144794	.1620985	1.94	0.058	011105	.6400638
1 2002	.0636964	.1678702	0.38	0.706	2734809	.4008737
1 2003	.1448027	.1695165	0.85	0.397	1956811	.4852866
1 2004	.0273746	.2014288	0.14	0.892	377207	.4319563
1 2005	0398953	.1235498	-0.32	0.748	2880523	.2082617
1 2006	.3194029	.1750113	1.83	0.074	0321176	.6709234
1 2007	.0324967	.1164815	0.28	0.781	2014632	.2664567
1 2008	0193173	.1719346	-0.11	0.911	3646581	.3260235
1 2009	3349765	.1604913	-2.09	0.042	6573328	0126203
1 2010	6711416	.1511802	-4.44	0.000	974796	3674873
1 2011	6189805	.1318664	-4.69	0.000	883842	354119
1 2012	6540796	.1551614	-4.22	0.000	9657303	3424288
1 2013	6531197	.1516072	-4.31	0.000	9576318	3486077
1 2014	5312053	.1616927	-3.29	0.002	8559747	206436
1 2015	5730828	.1309879	-4.38	0.000	8361798	3099858
_cons	27.89892	.3991018	69.90	0.000	27.0973	28.70054

Specification (5), Entire U.S. Labor Market

Linear regres	sion			Number of	obs =	1,375,615
				F(49, 50)	=	
				Prob > F	=	
				R-squared	=	0.2909
				Root MSE	=	.61416
		(Std.	Err. ad	justed for	51 clusters	in state)
lnwage	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Intervall
	+					
migrant post911entry	.0317949 0635805	.0206432 .0037507	1.54 -16.95	0.130 0.000	0096682 0711139	.073258 056047

post911ent~t	.0446021	.0060608	7.36	0.000	.0324286	.0567757
hsgrad	.2520617	.0060711	41.52	0.000	.2398675	.2642559
assocgrad	.4176748	.007278	57.39	0.000	.4030565	.4322932
bachgrad	.6587619	.0123818	53.20	0.000	.6338924	.6836314
mastgrad	.7958327	.0183266	43.43	0.000	.7590227	.8326426
doctorgrad	1.026432	.0190285	53.94	0.000	.9882118	1.064652
migranthsg~d	0623704	.0061664	-10.11	0.000	0747559	0499848
migrantass~d	0262546	.0137894	-1.90	0.063	0539514	.0014422
migrantbac~d	.0030273	.012282	0.25	0.806	0216418	.0276964
migrantmas~d	.1582786	.021529	7.35	0.000	.1150362	.2015209
migrantdoc~d	.0457642	.0199053	2.30	0.026	.0057832	.0857453
exp	.0234073	.0012054	19.42	0.000	.0209863	.0258284
migrantexp	0015799	.0016707	-0.95	0.349	0049357	.0017759
exp sq	000667	.000018	-36.97	0.000	0007033	0006308
migrantexp~g	.0002537	.000018	14.10	0.000	.0002175	.0002898
female	2466366	.0048353	-51.01	0.000	2563486	2369247
migrantfem~e	.0249048	.0067433	3.69	0.001	.0113606	.0384491
1.migrant	0	(omitted)				
2	•	. ,				
wbhao	1402002	0001550	15 55	0 000	1 (0 7 0 0 4	1040001
Black	1423923	.0091559	-15.55	0.000	160/824	1240021
Hispanic	062/801	.0244876	-2.56	0.013	1119649	0135954
Asian	.0192981	.0163604	1.18	0.244	0135629	.052159
Other	0869131	.0118465	-/.34	0.000	110/0/4	0631188
migrant#						
wbhao						
1#Black	.0398333	.0177406	2.25	0.029	.0042002	.0754664
1#Hispanic	125705	.0220395	-5.70	0.000	1699726	0814374
1#Asian	0389857	.0141635	-2.75	0.008	0674338	0105376
1#Other	.0199001	.0536457	0.37	0.712	0878505	.1276507
vears sincal		0014277	12 61	0 000	0151328	0208681
years_sinc i	-1684479	0127779	-13 18	0.000	- 1941131	- 1427827
migrantrural	0793794	0155672	5 10	0.000	0481117	1106471
		.01000/2	0,10	0.000		
year						
1999	.0310711	.0049593	6.27	0.000	.02111	.0410322
2000	.0422085	.0043465	9.71	0.000	.0334783	.0509386
2001	.0576285	.0052063	11.07	0.000	.0471713	.0680856
2002	.0642462	.0043286	14.84	0.000	.0555519	.0729405
2003	.0720533	.0051077	14.11	0.000	.0617943	.0823124
2004	.0651062	.0049725	13.09	0.000	.0551186	.0750938
2005	.0512073	.004038	12.68	0.000	.0430967	.0593178
2006	.0428693	.0052622	8.15	0.000	.0323	.0534387
2007	.0451272	.007738	5.83	0.000	.029585	.0606694
2008	.0528503	.0066758	7.92	0.000	.0394416	.066259
2009	.0360287	.006751	5.34	0.000	.022469	.0495884
2010	.0515803	.0057921	8.91	0.000	.0399466	.063214
2011	.035426	.0060074	5.90	0.000	.0233598	.0474922
2012	.0215003	.0077546	2.77	0.008	.0059247	.0370759
2013	.0058407	.0071471	0.82	0.418	0085147	.0201961
2014	.007936	.0099534	0.80	0.429	0120561	.027928
2015	.0105375	.0089429	1.18	0.244	0074249	.0284999
migrant#year						
1 1999	0226939	.0089798	-2.53	0.015	0407303	0046575
1 2000	001599	.0090666	-0.18	0.861	0198099	.0166118
1 2001	.0066344	.0098726	0.67	0.505	0131952	.0264641
1 2002	.0008123	.0076765	0.11	0.916	0146065	.0162311

1 2003		027862	.0126843	-2.20	0.033	0533391	002385
1 2004		0409208	.0116134	-3.52	0.001	0642469	0175946
1 2005		0303601	.0091853	-3.31	0.002	0488094	0119108
1 2006		0294437	.0088796	-3.32	0.002	047279	0116084
1 2007		0404232	.0116227	-3.48	0.001	063768	0170784
1 2008		0592615	.0111646	-5.31	0.000	0816862	0368368
1 2009		074429	.0149802	-4.97	0.000	1045176	0443403
1 2010		0739388	.0132058	-5.60	0.000	1004633	0474142
1 2011		0821064	.015999	-5.13	0.000	1142414	0499714
1 2012		0912688	.0172223	-5.30	0.000	1258608	0566768
1 2013		0910649	.0158096	-5.76	0.000	1228193	0593105
1 2014		1022784	.0163212	-6.27	0.000	1350604	0694964
1 2015		124487	.0195555	-6.37	0.000	1637653	0852087
entry_year		0076068	.0011226	-6.78	0.000	0098616	005352
entry_year~q		3.88e-06	5.69e-07	6.83	0.000	2.74e-06	5.03e-06
_cons	T	1.862676	.0259041	71.91	0.000	1.810646	1.914705

Linear regression

Number of obs	=	1,376,334
F(49, 50)	=	
Prob > F	=	
R-squared	=	0.1246
Root MSE	=	9.8444

(Std. Err. adjusted for 51 clusters in state)

hoursworked		Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	+-	3.410245	.4293464	7.94	0.000	2.547877	4.272612
post911entry	Ì	-1.175312	.069429	-16.93	0.000	-1.314764	-1.035859
post911ent~t	Ì	.9661468	.1497851	6.45	0.000	.6652945	1.266999
hsgrad	Ì	2.444585	.1289077	18.96	0.000	2.185666	2.703504
assocgrad		3.088487	.144307	21.40	0.000	2.798638	3.378336
bachgrad		4.862807	.1565985	31.05	0.000	4.54827	5.177345
mastgrad		5.82899	.2073469	28.11	0.000	5.412521	6.245459
doctorgrad	I	9.141177	.309406	29.54	0.000	8.519717	9.762638
migranthsg~d	1	-1.850905	.1476028	-12.54	0.000	-2.147374	-1.554436
migrantass~d		-2.050897	.2210795	-9.28	0.000	-2.494948	-1.606846
migrantbac~d	1	-2.468691	.2332755	-10.58	0.000	-2.937239	-2.000144
migrantmas~d	1	-2.525614	.3050123	-8.28	0.000	-3.138249	-1.912978
migrantdoc~d		-1.988359	.262414	-7.58	0.000	-2.515433	-1.461285
exp		.6086812	.0143608	42.38	0.000	.5798366	.6375257
migrantexp		2515456	.0147647	-17.04	0.000	2812013	2218899
exp_sq		0112932	.0001956	-57.73	0.000	0116862	0109003
migrantexp~q		.0049672	.0002657	18.69	0.000	.0044335	.0055009
female		-4.856355	.1126793	-43.10	0.000	-5.082678	-4.630032
migrantfem~e		.847779	.1134545	7.47	0.000	.619899	1.075659
1.migrant	 	0	(omitted)				
wbhao							
Black		.0187584	.0784011	0.24	0.812	1387149	.1762316
Hispanic		.0962406	.22774	0.42	0.674	3611886	.5536698
Asian		3965989	.2700043	-1.47	0.148	9389185	.1457207
Other		.2352278	.1554482	1.51	0.137	0769991	.5474548
migrant#	:						
wbhao	I						

1#Black	3436106	.1485832	-2.31	0.025	6420488	0451724
1#Hispanic	3706864	.177653	-2.09	0.042	7275129	0138599
1#Asian	3594682	.2854267	-1.26	0.214	9327646	.2138281
1#Other	6956212	.4239599	-1.64	0.107	-1.54717	.1559273
years_sinc~l	0228817	.0095323	-2.40	0.020	0420279	0037356
rural	.243675	.0891576	2.73	0.009	.0645966	.4227534
migrantrural	.7601806	.2728118	2.79	0.008	.212222	1.308139
year 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014	.1019392 .1158942 .060652 138028 3267613 3475385 2251713 1047124 0129821 0391747 3468873 6799749 6773046 5110583 3867372 3648671	.0659316 .0902986 .0962583 .0760662 .0834279 .1040035 .0904945 .1040507 .085986 .0942904 .0914808 .0950447 .0892932 .0946246 .114978 .1099323	1.55 1.28 0.63 -1.81 -3.92 -3.34 -2.49 -1.01 -0.15 -0.42 -3.79 -7.15 -7.59 -5.40 -3.36 -3.32	0.128 0.205 0.532 0.076 0.000 0.002 0.016 0.319 0.881 0.680 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002	0304883 0654759 1326886 2908115 4943312 5564357 4069348 3137043 18569 2285625 530632 8708778 8566552 7011174 6176772 5856725	.2343667 .2972642 .2539925 .0147555 1591913 1386413 0434078 .1042796 .1597259 .1502131 1631426 4890719 497954 3209992 1557972 1440616
migrant#year 1 1999 1 2000 1 2001 1 2002 1 2003 1 2004 1 2005 1 2006 1 2007 1 2008	.1143458 .3012859 .4291162 .2122354 .3218186 .2469469 .2307228 .5992478 .3841247 .3547861	.1577696 .2223148 .1655033 .1608561 .1645073 .1960153 .1444099 .1723916 .1416476 .1941577	0.72 1.36 2.59 1.32 1.96 1.26 1.60 3.48 2.71 1.83	0.472 0.181 0.012 0.193 0.056 0.214 0.116 0.001 0.009 0.074	2025437 1452465 .0966929 1108537 0086041 1467615 0593331 .252989 .099617 0351911	.4312353 .7478183 .7615394 .5353245 .6522413 .6406553 .5207786 .9455066 .6686323 .7447634
1 2008	.3547861	.1941577	1.83	0.074	0351911	.7447634
1 2009	.0748032	.1660556	0.45	0.654	2587292	.4083356
1 2010	1961084	.141232	-1.39	0.171	4797813	.0875645
1 2011	0894417	.1467659	-0.61	0.545	3842297	.2053462
1 2012	1041532	.18381	-0.57	0.573	4733464	.2650399
1 2013	086105	.1736818	-0.50	0.622	4349551	.2627452
1 2014	.0706891	.1507414	0.47	0.641	2320839	.373462
1 2015	.056328	.1683877	0.33	0.739	2818886	.3945446
entry_year entry_year~q cons	0000181 34.10328	.0081103 4.12e-06 .2316578	4.41 -4.39 147.21	0.000	0000264 33.63798	-9.82e-06 34.56857

Specification (6), Entire U.S. Labor Market

Linear regression

Number of obs = 1,364,949

F(49, 50)	=	
Prob > F	=	
R-squared	=	0.2902
Root MSE	=	.61398

lnwage	Coef	Robust Std Err	+	P> +	[95% Conf	Intervall
+						
migrant	.2709537	.0143077	18.94	0.000	.2422159	.2996915
post911entry	0636863	.0037393	-17.03	0.000	0711969	0561757
post911ent~t	.0307495	.0061767	4.98	0.000	.0183431	.0431559
hsgrad	.2723052	.0050024	54.44	0.000	.2622576	.2823527
assocgrad	.4468584	.0056578	78.98	0.000	.4354944	.4582224
bachgrad	.7028645	.0091553	76.77	0.000	.6844756	.7212534
mastgrad	.8553081	.0131981	64.81	0.000	.8287989	.8818173
doctorgrad	1.100986	.0128025	86.00	0.000	1.075271	1.1267
migranthsg~d	0821192	.0050676	-16.20	0.000	0922977	0719407
migrantass~d	0525136	.0140364	-3.74	0.000	0807065	0243207
migrantbac~d	0444391	.0085175	-5.22	0.000	0615469	0273313
migrantmas~d	.0945479	.0163354	5.79	0.000	.0617372	.1273585
migrantdoc~d	0390245	.0146917	-2.66	0.011	0685336	0095153
exp	.0309869	.0006141	50.46	0.000	.0297534	.0322204
migrantexp	0131249	.0009938	-13.21	0.000	015121	0111288
exp_sq	0006689	.0000182	-36.81	0.000	0007054	0006324
migrantexp~q	.0003206	.000019	16.84	0.000	.0002823	.0003588
female	2461992	.0048451	-50.81	0.000	255931	2364674
migrantfem~e	.0187361	.0067935	2.76	0.008	.0050909	.0323813
1.migrant	0	(omitted)				
wbhao						
Black	1424841	.0091962	-15.49	0.000	1609553	1240129
Hispanic	0594589	.0246295	-2.41	0.019	1089287	0099891
Asian	.0301781	.0159053	1.90	0.064	0017686	.0621249
Other	0868148	.0119203	-7.28	0.000	1107573	0628722
migrant#						
wbhao						
1#Black	.0408895	.0193404	2.11	0.040	.0020432	.0797359
1#Hispanic	1355058	.0223382	-6.07	0.000	1803733	0906382
1#Asian	0523794	.0148187	-3.53	0.001	0821436	0226153
1#Other	.0178112	.0586863	0.30	0.763	1000637	.1356861
years sinc~l	.0103154	.0006304	16.36	0.000	.0090492	.0115816
rural	1695731	.0127777	-13.27	0.000	1952379	1439083
migrantrural	.0796229	.015451	5.15	0.000	.0485886	.1106572
year						
1999	.0312188	.0049555	6.30	0.000	.0212653	.0411722
2000	.0424483	.0043456	9.77	0.000	.0337198	.0511767
2001	.058125	.0051866	11.21	0.000	.0477073	.0685426
2002	.0649391	.0043506	14.93	0.000	.0562006	.0736777
2003	.0728573	.0051577	14.13	0.000	.0624978	.0832169
2004	.0661011	.004996	13.23	0.000	.0560662	.0761359
2005	.0521734	.004032	12.94	0.000	.0440749	.0602719
2006	.0441206	.0053072	8.31	0.000	.0334608	.0547805
2007	.0464264	.0078015	5.95	0.000	.0307566	.0620963
2008	.0544349	.0067102	8.11	0.000	.0409571	.0679128
2009	.0375575	.0067529	5.56	0.000	.0239939	.051121

2 2	010 011	.0531663 .0372247	.0057773 .0060421	9.20 6.16	0.000 0.000	.0415622 .0250888	.0647703 .0493607
2	012	.023446	.0077519	3.02	0.004	.0078759	.0390162
2	013	.0080335	.0071631	1.12	0.267	006354	.022421
2	014	.0100215	.0099125	1.01	0.317	0098884	.0299313
2	015	.0128294	.0089489	1.43	0.158	0051449	.0308037
	l						
migrant#	year						
1 1	999	0152019	.0089399	-1.70	0.095	0331583	.0027545
1 2	000	.0142262	.0089981	1.58	0.120	0038471	.0322994
1 2	001	.0298874	.0111196	2.69	0.010	.007553	.0522219
1 2	002	.0325524	.0079467	4.10	0.000	.016591	.0485137
1 2	003	.0126341	.0129841	0.97	0.335	0134453	.0387136
1 2	004	.009557	.0135066	0.71	0.482	0175718	.0366858
1 2	005	.031584	.0116648	2.71	0.009	.0081546	.0550133
1 2	006	.0416229	.0093799	4.44	0.000	.0227828	.060463
1 2	007	.0418299	.0077618	5.39	0.000	.0262398	.05742
1 2	008	.0281122	.0095238	2.95	0.005	.0089831	.0472412
1 2	009	.0241682	.0122453	1.97	0.054	0004272	.0487636
1 2	010	.0305352	.009571	3.19	0.002	.0113113	.0497591
1 2	011	.0315952	.0108376	2.92	0.005	.0098272	.0533632
1 2	012	.0297382	.0115152	2.58	0.013	.0066093	.0528671
1 2	013 j	.0397721	.0126591	3.14	0.003	.0143456	.0651986
1 2	014	.0312683	.011132	2.81	0.007	.0089091	.0536276
1 2	015 I	.0165515	.0152735	1.08	0.284	0141262	.0472291
	cons	1.982314	.0152496	129.99	0.000	1.951684	2.012943

Linear regression

Number of obs	=	1,365,655
F(49, 50)	=	
Prob > F	=	
R-squared	=	0.1242
Root MSE	=	9.8386

(Std. Err. adjusted for 51 clusters in state)

hoursworked		Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant post911entry post911ent~t	 	4.090267 -1.177593 .6636862	.3844497 .0694628 .146316	10.64 -16.95 4.54	0.000 0.000 0.000	3.318077 -1.317113 .3698018 2.102411	4.862457 -1.038072 .9575707
assocgrad bachgrad mastgrad		2.333946 2.96433 4.679648 5.583974	.1202272 .1395391 .1424485 .1845689	21.24 32.85 30.25	0.000	2.102411 2.684058 4.393532 5.213257	2.609481 3.244603 4.965764 5.954692
doctorgrad		8.835242	.2792238	31.64	0.000	8.274404	9.396079
migranthsg~d		-1.721266	.1376117	-12.51	0.000	-1.997667	-1.444865
migrantass~d		-2.04858	.2116912	-9.68	0.000	-2.473774	-1.623385
migrantbac~d		-2.515595	.2363063	-10.65	0.000	-2.99023	-2.04096
migrantmas~d		-2.597157	.2870189	-9.05	0.000	-3.173651	-2.020662
migrantdoc~d		-2.205001	.2606781	-8.46	0.000	-2.728588	-1.681413
exp		.5783957	.0103288	56.00	0.000	.5576497	.5991416
migrantexp		2841581	.0166433	-17.07	0.000	317587	2507291
exp_sq		0112906	.0001967	-57.39	0.000	0116858	0108955
migrantexp~q		.0060309	.0003074	19.62	0.000	.0054133	.0066484
female		-4.858505	.1127962	-43.07	0.000	-5.085063	-4.631947
migrantfem~e		.792158	.1186869	6.67	0.000	.5537684	1.030548

1.migrant	0	(omitted)				
wbhao	 					
Black	.0183765	.0784291	0.23	0.816	139153	.1759061
Hispanic	.1305497	.2227486	0.59	0.560	3168541	.5779535
Asian	3679261	.2662548	-1.38	0.173	9027147	.1668624
Other	.235802	.1554513	1.52	0.136	0764312	.5480353
migrant#						
wbhao						
1#Black	4513547	.1346905	-3.35	0.002	7218885	180821
1#Hispanic	6120421	.161362	-3.79	0.000	9361471	287937
1#Asian	4064781	.2531028	-1.61	0.115	9148501	.1018939
1#Other	7174614	.4551586	-1.58	0.121	-1.631674	.1967515
years_sinc~l	.0082077	.0043762	1.88	0.067	0005821	.0169975
rural	.2450466	.0892694	2.75	0.008	.0657437	.4243495
migrantrural	.7575299	.2831705	2.68	0.010	.1887651	1.326295
year						
1999	.1013855	.065978	1.54	0.131	0311353	.2339063
2000	.1143508	.0904862	1.26	0.212	067396	.2960977
2001	.0578155	.0963115	0.60	0.551	1356317	.2512628
2002	1416964	.0761034	-1.86	0.069	2945546	.0111618
2003	3302091	.0835568	-3.95	0.000	4980379	1623804
2004	3509079	.1041134	-3.37	0.001	5600257	14179
2005	2297593	.090414	-2.54	0.014	4113612	0481575
2006	1109018	.1039695	-1.07	0.291	3197306	.097927
2007	019603	.0859914	-0.23	0.821	1923218	.1531158
2008	046742	.0939428	-0.50	0.621	2354317	.1419477
2009	3546581	.0911338	-3.89	0.000	5377058	1716105
2010	6880813	.0946179	-7.27	0.000	8781269	4980358
2011	6865211	.0887609	-7.73	0.000	8648026	5082397
2012	5211022	.0942116	-5.53	0.000	7103317	3318727
2013	3980674	.1144389	-3.48	0.001	6279248	16821
2014	3764111	.1091179	-3.45	0.001	5955808	1572414
2015	166508	.1000635	-1.66	0.102	3674914	.0344754
migrant#year						
1 1999	.0793819	.158321	0.50	0.618	2386152	.397379
1 2000	.2388551	.2158183	1.11	0.274	1946287	.6723389
1 2001	.3317188	.164199	2.02	0.049	.0019155	.6615222
1 2002	.1195513	.1625831	0.74	0.466	2070064	.4461089
1 2003	.2591135	.1538532	1.68	0.098	0499098	.5681368
1 2004	.2096381	.1969353	1.06	0.292	185918	.6051942
1 2005	.2109304	.1320063	1.60	0.116	054212	.4760729
1 2006	.5633421	.1741541	3.23	0.002	.2135433	.9131409
1 2007	.2812249	.1189124	2.36	0.022	.0423823	.5200676
1 2008	.1623454	.1606859	1.01	0.317	1604018	.4850926
1 2009	0687908	.1544073	-0.45	0.658	3789269	.2413453
1 2010	446294	.1457079	-3.06	0.004	738957	153631
1 2011	348625	.1248861	-2.79	0.007	5994661	0977838
1 2012	4330985	.1475723	-2.93	0.005	7295061	1366909
1 2013	4508415	.1629966	-2.77	0.008	7782299	1234531
1 2014	2569489	.1619285	-1.59	0.119	5821919	.0682941
1 2015	2568827	.1384589	-1.86	0.069	5349857	.0212203
_cons	33.62722	.2309611	145.60	0.000	33.16332	34.09112

Specification (1), Exogenous-wage, Method 1, Restricted sample

Linear regress		Number o: F(3, 50) Prob > F R-squared Root MSE	f obs d	= = = =	31,180 200.42 0.0000 0.0386 12.252		
		(Std.	Err. ad	justed for	51 clu	sters	in state)
hoursworked	Coef.	Robust Std. Err.	t	P> t	[95%	Conf.	Interval]
migrant post911entry post911ent~t cons	2.009349 -4.730649 3.82615 36.24275	.3178898 .2205009 .3702531 .3116833	6.32 -21.45 10.33 116.28	0.000 0.000 0.000 0.000	1.370 -5.173 3.082 35.61	849 538 475 672	2.64785 -4.28776 4.569825 36.86879

Specification (1), Exogenous-wage, Method 1, Full sample

Number of obs	=	1,376,334
F(6, 50)	=	464.77
Prob > F	=	0.0000
R-squared	=	0.0263
Root MSE	=	10.382
	Number of obs F(6, 50) Prob > F R-squared Root MSE	Number of obs = F(6, 50) = Prob > F = R-squared = Root MSE =

				(Std.	Err. a	adjusted	for 51 c	lusters	in state)
hoursworked	 	Coef.	Robu Std.	st Err.	t	P> t	[95	% Conf.	Interval]
migrant post911entry post911ent~t minwage post911min~e post911min~t		5676735 -4.863412 3.847511 -3.611898 5416633 2.555662 40.52908	.1496 .1418 .1724 .2266 .3092 .3452 .1173	651 005 498 482 232 742 507	-3.79 -34.30 22.31 -15.94 -1.75 7.40	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	$\begin{array}{c}86\\5.1\\5.1\\5.2\\4.0\\1.1\\1.1\\40\\$	82847 48227 01135 67134 62756 62159 29337	2670622 -4.578598 4.193886 -3.156662 .0794298 3.249166 40.76479
	<u> </u>								

Specification (2), Exogenous-wage, Method 1, Restricted sample

Linear regression	Number of obs	=	31,180
	F(14, 50)	=	
	Prob > F	=	•
	R-squared	=	0.0990
	Root MSE	=	11.863

hoursworked		Coef.	Robust Std. Er	r. t	P> t	[95% Con	f. Interval]
migrant post911entry post911ent~t yearseduc exp exp_sq female white black asian hispanic years_sinc~1 rural year	.98 .01 .02 .036 .071	75871 33465 52609 11293 77603 31534 54896 02647 47987 79178 12355 35523 11408 71911	.310467 .386968 .464446 .05732 .035327 .000701 .256634 .662787 .591535 .767957 .761086 .010915 .280324 14.3878	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 0.003 4 0.931 5 0.435 4 0.220 5 0.000 5 0.000 6 0.000 6 0.128 7 0.166 9 0.556 9 0.746 7 0.000 6 0.345	$\begin{array}{c} .3639947\\743785\\ -1.298129\\0440194\\ .6468024\\0145619\\ -4.57036\\ -2.357718\\ -1.552932\\ -2.621666\\ -1.077453\\0254772\\ .5510315\\ -42.61792\end{array}$	1.61118 .810715 .5676071 .186278 .7887182 011745 -3.539431 .3047788 .823335 .4633097 1.979923 .0183727 1.677128 15.1797
year_sq _cons	.00 139	33891 13.81 	.003582 14447.4 	8 0.96	0.349 0.340	0038058	.010584 42932.42

(Std. Err. adjusted for 51 clusters in state)

Specification (2), Exogenous-wage, Method 1, Full sample

	200020000000000000000000000000000000000
LINPAL	
TTICAT	TCGTCDDTOIL
	2

Number of obs	=	1,376,334
F(17, 50)	=	
Prob > F	=	•
R-squared	=	0.1157
Root MSE	=	9.8945

(Std. Err. adjusted for 51 clusters in state)

hoursworked		Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant		.016717	.0975701	0.17	0.865	1792582	.2126923
post911entry		-1.173373	.0711243	-16.50	0.000	-1.31623	-1.030516
post911ent~t		.6700655	.1300768	5.15	0.000	.4087986	.9313324
minwage		-1.683488	.1866515	-9.02	0.000	-2.058388	-1.308587
post911min~e		-1.293057	.3035645	-4.26	0.000	-1.902785	68333
post911min~t		2.463315	.401161	6.14	0.000	1.657559	3.269071
yearseduc		.5026965	.026301	19.11	0.000	.4498693	.5555236
exp		.5580119	.0102531	54.42	0.000	.537418	.5786059
exp sq		0104936	.0001876	-55.93	0.000	0108705	0101168
female		-4.760072	.1185834	-40.14	0.000	-4.998253	-4.52189
white		0436029	.1639119	-0.27	0.791	3728298	.2856239
black		2290147	.1609387	-1.42	0.161	5522696	.0942402
asian		7228424	.1862437	-3.88	0.000	-1.096924	3487609
hispanic		.1034334	.2083862	0.50	0.622	3151226	.5219894
years sinc~l		.0043891	.0026883	1.63	0.109	0010106	.0097888
rural		.1879079	.0758092	2.48	0.017	.0356407	.3401751
year		-8.365126	3.898173	-2.15	0.037	-16.19484	5354144
year sq		.0020764	.0009716	2.14	0.037	.000125	.0040279
cons		8454.647	3908.174	2.16	0.035	604.8488	16304.44

Specification (3), Exogenous-wage, Method 1, Restricted sample

Linear regression

Number of obc	_	21 100
Number of obs	_	JI, IOU
F(30, 50)	=	512.76
Prob > F	=	0.0000
R-squared	=	0.1005
Root MSE	=	11.856

(Std. Err. adjusted for 51 clusters in state)

 hoursworked	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	.9801381	.3091547	3.17	0.003	.3591826	1.601094
post911entry	.0605854	.3818379	0.16	0.875	7063586	.8275293
post911ent~t	3420245	.4668573	-0.73	0.467	-1.279735	.595686
yearseduc	.0725588	.0570853	1.27	0.210	0421004	.1872181
exp	.720541	.0354349	20.33	0.000	.649368	.7917141
exp_sq	0132014	.0007034	-18.77	0.000	0146141	0117887
female	-4.063416	.255732	-15.89	0.000	-4.577069	-3.549764
white	-1.01053	.6566277	-1.54	0.130	-2.329406	.3083453
black	3554661	.5852904	-0.61	0.546	-1.531056	.8201242
asian	-1.085566	.7618566	-1.42	0.160	-2.6158	.4446683
hispanic	.4700903	.7498187	0.63	0.534	-1.035965	1.976145
years_sinc~l	0032287	.0109274	-0.30	0.769	025177	.0187196
rural	1.111733	.2803237	3.97	0.000	.548686	1.674779
year						
1999	.4507361	.7268908	0.62	0.538	-1.009267	1.910739
2000	.6791371	.6432969	1.06	0.296	6129627	1.971237
2001	.2192515	.7304159	0.30	0.765	-1.247832	1.686335
2002	0132112	.605141	-0.02	0.983	-1.228673	1.20225
2003	0541528	.4683769	-0.12	0.908	9949155	.8866099
2004	2217241	.5976332	-0.37	0.712	-1.422106	.9786575
2005	1017459	.7099981	-0.14	0.887	-1.527819	1.324327
2006	2499165	.6719668	-0.37	0.712	-1.599602	1.099769
2007	2520854	.5994542	-0.42	0.676	-1.456125	.9519538
2008	6794085	.6175538	-1.10	0.277	-1.919802	.5609848
2009	6080213	.6374165	-0.95	0.345	-1.88831	.6722675
2010	-1.841969	.7101446	-2.59	0.012	-3.268337	4156021
2011	-2.232223	.6475213	-3.45	0.001	-3.532808	9316382
2012	7450222	.4697947	-1.59	0.119	-1.688633	.1985882
2013	8937863	.5648044	-1.58	0.120	-2.028229	.2406567
2014	-1.64489	.6201611	-2.65	0.011	-2.89052	3992593
2015	-1.015416	.5799268	-1.75	0.086	-2.180233	.1494014
_cons	31.76816	.9098172	34.92	0.000	29.94073	33.59558

Specification (3), Exogenous-wage, Method 1, Full sample

Linear	regression	Number of obs	=	1,376,334
		F(37, 50)	=	5186.97
Prob > F	=	0.0000		
-----------	---	--------		
R-squared	=	0.1235		
Root MSE	=	9.8506		

(Std. Err. adjusted for 51 clusters in state)

	 	Robust				
hoursworked	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	3880092	.0999886	-3.88	0.000	5888422	1871762
post911entry	-1.205613	.0745726	-16.17	0.000	-1.355396	-1.055829
post911ent~t	.671481	.1345902	4.99	0.000	.4011486	.9418134
minwage	-1.606227	.186768	-8.60	0.000	-1.981361	-1.231092
post911min~e	-1.123912	.2880176	-3.90	0.000	-1.702413	545412
post911min~t	2.307318	.3799103	6.07	0.000	1.544246	3.07039
hsgrad	1.719802	.1938768	8.87	0.000	1.330389	2.109215
assocgrad	2.327959	.1916661	12.15	0.000	1.942986	2.712932
bachgrad	3.995717	.1574067	25.38	0.000	3.679556	4.311877
mastgrad	4.89696	.1827507	26.80	0.000	4.529895	5.264026
doctorgrad	8.25476	.2940193	28.08	0.000	7.664205	8.845315
exp	.5430349	.009529	56.99	0.000	.5238952	.5621745
exp sq	0103018	.0001704	-60.44	0.000	0106441	0099594
female	-4.72383	.1180099	-40.03	0.000	-4.960859	-4.4868
white	1961626	.1556477	-1.26	0.213	5087903	.116465
black	2226183	.1559217	-1.43	0.160	5357962	.0905596
asian	8897425	.179253	-4.96	0.000	-1.249783	5297023
hispanic	0278744	.213531	-0.13	0.897	4567641	.4010152
years_sinc~l	.0073008	.0024678	2.96	0.005	.0023441	.0122575
rural	.2639553	.0826268	3.19	0.002	.0979944	.4299162
year						
1999	.1179085	.0585414	2.01	0.049	.0003246	.2354925
2000	.144968	.0867221	1.67	0.101	0292184	.3191544
2001	.103346	.091481	1.13	0.264	0803991	.287091
2002	1266074	.0680158	-1.86	0.069	2632212	.0100063
2003	3020542	.0820852	-3.68	0.001	4669271	1371813
2004	3364741	.1008813	-3.34	0.002	5391002	1338481
2005	213573	.0842704	-2.53	0.014	382835	044311
2006	0504349	.0928155	-0.54	0.589	2368603	.1359905
2007	.0151382	.0824051	0.18	0.855	1503773	.1806537
2008	0136561	.0818738	-0.17	0.868	1781045	.1507924
2009	3608722	.0785988	-4.59	0.000	5187426	2030018
2010	7401064	.0806973	-9.17	0.000	9021918	578021
2011	7192314	.0793568	-9.06	0.000	8786243	5598385
2012	5549956	.0829871	-6.69	0.000	7216802	388311
2013	4367806	.0963932	-4.53	0.000	630392	2431692
2014	3896752	.0988481	-3.94	0.000	5882173	191133
2015	1799277	.0912439	-1.97	0.054	3631964	.0033411
_cons	 34.88435	.216555	161.09	0.000	34.44939	35.31932

Specification (4), Exogenous-wage, Method 1, Restricted sample

Linear regression	Number of obs	=	31,180
	F(49, 50)	=	
	Prob > F	=	
	R-squared	=	0.1053

Root	MSE	=	11.829

hoursworked	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
	+					
migrant	6.016505	1.157278	5.20	0.000	3.692044	8.340966
post911entry	.1201072	.3780116	0.32	0.752	6391515	.8793659
post911ent~t	.0264376	.4844789	0.05	0.957	9466669	.9995422
yearseduc	.283629	.047486	5.97	0.000	.1882506	.3790075
migrantyea~c	3444541	.0526588	-6.54	0.000	4502224	2386859
exp	.8183695	.031972	25.60	0.000	.7541518	.8825871
migrantexp	3206295	.0495881	-6.47	0.000	4202302	2210288
exp_sq	0157184	.0006272	-25.06	0.000	0169781	0144586
migrantexp~q	.0076055	.0009547	1.97	0.000	.005688	.009523
iemale	-4.040326	.2860205	-14.13	0.000	-4.614815	-3.46583/
migrantiem~e	1468092	.4401/51	-0.33	0.740	-1.030927	./3/3084
1.mlgrant	U	(omitted)				
wbhao						
Black	.7484955	.2900001	2.58	0.013	.1660131	1.330978
Hispanic	1.415973	.5741045	2.47	0.017	.2628504	2.569096
Asian	1769841	.4087733	-0.43	0.667	9980295	.6440612
Other	1.089066	.6529736	1.67	0.102	2224704	2.400602
migrant#						
wbhao						
1#Black	9959165	.9718847	-1.02	0.310	-2.948004	.9561714
1#Hispanic	2004411	1.19327	-0.17	0.867	-2.597195	2.196313
l#Asian	0065455	.7416646	-0.01	0.993	-1.496223	1.483132
I#Other	-3.3/044/	5.443342	-0.62	0.539	-14.30372	1.562826
years sinc~l	0050306	.0122132	-0.41	0.682	0295615	.0195003
rural	1.102545	.2958695	3.73	0.000	.508274	1.696817
migrantrural	.7514631	.8244101	0.91	0.366	9044134	2.407339
vear						
1999	2795173	830974	0 34	0 738	-1 389543	1 948578
2000	3772774	.6752851	0.56	0.579	9790728	1.733627
2001	0103707	.7739623	-0.01	0.989	-1.56492	1.544178
2002	6365125	.5991587	-1.06	0.293	-1.839958	.5669331
2003	5704385	.5615994	-1.02	0.315	-1.698444	.557567
2004	6181988	.6074012	-1.02	0.314	-1.8382	.6018024
2005	2725039	.695984	-0.39	0.697	-1.670429	1.125421
2006	-1.027041	.7604582	-1.35	0.183	-2.554466	.5003842
2007	8125097	.6599973	-1.23	0.224	-2.138153	.5131338
2008	-1.113024	.7115679	-1.56	0.124	-2.542251	.3162017
2009	6993609	.7637236	-0.92	0.364	-2.233345	.8346231
2010	-1.929901	.6914494	-2.79	0.007	-3.318718	5410843
2011	-2.537293	.6057584	-4.19	0.000	-3.753995	-1.320592
2012	7135812	.55328	-1.29	0.203	-1.824877	.3977144
2013	9071527	.6423167	-1.41	0.164	-2.197284	.3829783
2014	-1.974711	.6544383	-3.02	0.004	-3.289189	660233
2015	-1.372061	.5952624	-2.30	0.025	-2.56768	176441
migrant#vear						
1 1999	1.267525	1.122155	1.13	0.264	986389	3.521438
1 2000	1.928049	.749418	2.57	0.013	.4227985	3.433299
1 2001	1.378982	1.458498	0.95	0.349	-1.550497	4.308461

1 2002	1	3.033837	1.410645	2.15	0.036	.2004727	5.867201
1 2003	1	2.531244	1.160159	2.18	0.034	.2009972	4.861492
1 2004	Ì	2.135241	1.241084	1.72	0.092	3575495	4.628031
1 2005	Ì	1.046723	.8410077	1.24	0.219	6424909	2.735937
1 2006	Ì	3.468526	1.320385	2.63	0.011	.8164556	6.120597
1 2007	Ì	2.782131	1.033943	2.69	0.010	.7053949	4.858867
1 2008	Ì	2.073074	1.181979	1.75	0.086	3010002	4.447147
1 2009	i	.6570249	1.293327	0.51	0.614	-1.940699	3.254748
1 2010	Ì	.7313393	.9169613	0.80	0.429	-1.110432	2.57311
1 2011	Ì	1.333324	1.017346	1.31	0.196	7100757	3.376724
1 2012	Ì	.2058602	1.05763	0.19	0.846	-1.918453	2.330174
1 2013	Ì	.2111736	1.171836	0.18	0.858	-2.142528	2.564875
1 2014	Ì	1.304496	1.06963	1.22	0.228	8439189	3.452912
1 2015	Ì	1.449093	1.007928	1.44	0.157	5753904	3.473577
	Ì						
cons	1	27.83319	.8948006	31.11	0.000	26.03593	29.63045

Specification (4), Exogenous-wage, Method 1, Full sample

Linear regression	Number of obs	=	1,376,334
	F(49, 50)	=	
	Prob > F	=	•
	R-squared	=	0.1192
	Root MSE	=	9.8746

hoursworked	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	 6.656373	.6355005	10.47	0.000	5.379932	7.932813
post911entry	-1.130187	.0731439	-15.45	0.000	-1.2771	9832726
post911ent~t	.9275158	.1442015	6.43	0.000	.6378784	1.217153
minwage	-1.670902	.1880975	-8.88	0.000	-2.048707	-1.293097
post911min~e	-1.136205	.2892902	-3.93	0.000	-1.717261	5551483
post911min~t	1.969704	.3751114	5.25	0.000	1.216271	2.723138
yearseduc	.6229143	.0170326	36.57	0.000	.5887034	.6571253
migrantyea~c	3576172	.0300884	-11.89	0.000	4180515	2971828
exp	.5968964	.0109624	54.45	0.000	.5748779	.618915
migrantexp	2384527	.0144003	-16.56	0.000	2673766	2095289
exp_sq	0114465	.0002047	-55.93	0.000	0118575	0110354
migrantexp~q	.0053039	.0002807	18.89	0.000	.00474	.0058677
female	-4.873679	.1121953	-43.44	0.000	-5.099029	-4.648328
migrantfem~e	.7757597	.1086319	7.14	0.000	.5575662	.9939532
1.migrant	I 0	(omitted)				
wbhao	l					
Black	066236	.0777094	-0.85	0.398	2223199	.089848
Hispanic	.0398931	.2349123	0.17	0.866	4319421	.5117283
Asian	3343823	.2826183	-1.18	0.242	9020378	.2332732
Other	.1289105	.1568234	0.82	0.415	1860785	.4438994
migrant# wbhao	 					
1#Black	5751638	.1439296	-4.00	0.000	864255	2860727

1#Hispanic 1#Asian 1#Other	5057795 3296121 7573843	.1601613 .2637871 .4373294	-3.16 -1.25 -1.73	0.003 0.217 0.089	8274729 8594441 -1.635786	1840861 .2002198 .1210178
years_sinc~l rural migrantrural	 .0078529 .2373513 .8163501	.0023773 .0872556 .2745017	3.30 2.72 2.97	0.002 0.009 0.005	.0030779 .0620933 .2649971	.0126279 .4126094 1.367703
year 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015	.1039002 .1145098 .0546822 1456787 336166 3485913 2185724 1135561 001465 0310023 3219956 6482386 6488047 4722136 3537606 3151662 100453	.0653638 .0902256 .0978443 .0779224 .0862505 .1059 .0920409 .1066533 .0894645 .0952235 .0915563 .0967784 .0890983 .0947342 .1116333 .108712 .0998597	1.59 1.27 0.56 -1.87 -3.90 -3.29 -2.37 -1.06 -0.02 -0.33 -3.52 -6.70 -7.28 -4.98 -3.17 -2.90 -1.01	0.118 0.210 0.579 0.067 0.000 0.002 0.021 0.292 0.987 0.746 0.001 0.000 0.000 0.000 0.000 0.003 0.006 0.319	0273868 0667136 1418439 3021905 5094052 5612978 4034419 3277754 1811597 2222644 5058918 8426237 8277638 6624929 5779827 5335206 3010272	.2351872 .2957332 .2512082 .010833 1629268 1358849 0337028 .1006633 .1782296 .1602598 1380993 4538536 4698455 2819344 1295385 0968117 .1001211
migrant#year 1 1999 1 2000 1 2001 1 2002 1 2003 1 2004 1 2005 1 2006 1 2007 1 2008 1 2009 1 2010 1 2011 1 2012 1 2013 1 2014 1 2015	.0721229 .1958183 .3166873 .0594961 .1391534 .0191691 -0356609 .3207805 .0366378 -0003561 -3217153 -6547564 -5985728 -6284982 -6325266 -5057732 -5414523	.1563913 .2067819 .1617536 .1671225 .1687575 .2005061 .1241538 .1783659 .118137 .1739939 .1654109 .1574865 .1355032 .1568311 .1566577 .1722361 .1357831	$\begin{array}{c} 0.46\\ 0.95\\ 1.96\\ 0.36\\ 0.82\\ 0.10\\ -0.29\\ 1.80\\ 0.31\\ -0.00\\ -1.94\\ -4.16\\ -4.42\\ -4.01\\ -4.04\\ -2.94\\ -3.99\end{array}$	0.647 0.348 0.056 0.723 0.414 0.924 0.775 0.078 0.758 0.998 0.057 0.000 0.000 0.000 0.000 0.005 0.000	2419983 2195153 0082044 2761793 199806 3835593 2850311 037478 2006474 3498332 6539528 9710772 870739 9435027 9471829 8517195 8141806	.3862441 .6111519 .641579 .3951715 .4781128 .4218976 .2137094 .6790389 .2739231 .3491209 .0105222 3384355 3264065 3134937 3178703 1598269 268724
_cons	28.1293	.4009894	70.15	0.000	27.32389	28.93471

Specification (5), Exogenous-wage, Method 1, Restricted sample

Linear regression

Number of obs	=	31,180
F(49, 50)	=	
Prob > F	=	•
R-squared	=	0.1056
Root MSE	=	11.827

 hoursworked	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	2.266835	1.575119	1.44	0.156	8968837	5.430554
post911entry	.10629	.3813234	0.28	0.782	6596205	.8722005
post911ent~t	0476034	.5375425	-0.09	0.930	-1.127289	1.032082
yearseduc	.2860373	.0471757	6.06	0.000	.1912822	.3807925
migrantyea~c	3418105	.0530523	-6.44	0.000	4483691	2352519
exp	.8163046	.0321351	25.40	0.000	.7517594	.8808499
migrantexp	3160702	.049986	-6.32	0.000	4164701	2156703
exp_sq	0156792	.0006296	-24.91	0.000	0169437	0144147
migrantexp~q	.0076075	.0009439	8.06	0.000	.0057117	.0095033
female	-4.039862	.2856508	-14.14	0.000	-4.613608	-3.466115
migrantfem~e	1382482	.435698	-0.32	0.752	-1.013373	.736877
1.migrant	0	(omitted)				
wbhao						
Black	.7473659	.2895464	2.58	0.013	.1657947	1.328937
Hispanic	1.355517	.5602333	2.42	0.019	.2302559	2.480779
Asian	2083593	.4142019	-0.50	0.617	-1.040308	.6235897
Other	1.093972	.653701	1.67	0.100	2190253	2.406969
migrant#						
	1 005604	0744042	1 0 2	0 207	2 062752	0515420
1#BLACK	-1.003604	.9/44042	-1.03	0.307	-2.902733	· ୬୦エ୦4୦୬ ୦ ୦୦୦୦۸୦
1#Acian	123022	7060834	-0.11	0.910	-2.302300	1 135196
1#ASian 1#Othor	-3 346677	5 420106	-0.62	0.540	_1/ 23328	7 530027
I#OUNEI	-3.340077	5.420100	-0.02	0.340	-14.23320	1.339921
years_sinc~l	2970799	.070999	-4.18	0.000	4396856	1544743
rural	1.108604	.2949195	3.76	0.000	.5162406	1.700967
migrantrural	.7617861	.8251271	0.92	0.360	8955305	2.419103
year						
1999	.3049494	.8435588	0.36	0.719	-1.389388	1.999287
2000	.3954453	.6743599	0.59	0.560	9590465	1.749937
2001	.0321365	.///9299	0.04	0.967	-1.530382	1.594655
2002	60/3521	.60/0/09	-1.00	0.322	-1.82669	.6119856
2003	5201/34	.565/145	-0.92	0.362	-1.656444	.6160977
2004	508295	.0113008	-0.93	0.357	-1./90531	.0399400
2005	- 0700027	-7662344	-0.31	0.757	-2 50002	1.19000
2000	- 7522127	.7002344	-1.12	0.211	-2.00903	. 5002244
2007	-1 037436	7192021	-1.13	0.205	-2.09173	. 30/3243
2008	- 6221416	7681/38	-1.44	0.133	-2.401995	9207207
2009	-1 8/317	607012	-0.81	0.422	-3 244968	- 4413726
2010	-2 445591	6096675	-4 01	0.011	-3 670144	-1 221038
2011	- 6167949	5521254	-1 12	0.000	-1 725771	4921816
2012	- 8004893	6479182	-1 24	0.200	-2 101871	5008927
2013	-1 868662	6623422	-2 82	0.007	-3 199015	- 5383086
2015	-1.257066	.6015352	-2.09	0.042	-2.465285	0488468
migrant#vear						
1 1999	1.540037	1.148408	1.34	0.186	7666088	3.846683
1 2000	2.486856	.7957241	3.13	0.003	.8885968	4.085114
1 2001	2.202834	1.503105	1.47	0.149	8162411	5.221909
1 2002 I	4.15903	1.500592	2.77	0.008	1.145002	7.173059
1 2003 I	3.908131	1.325797	2.95	0.005	1.245189	6.571074
1 2004	3.791569	1.457356	2.60	0.012	.8643842	6.718754

1 2005		2.994226	1.048943	2.85	0.006	.8873621	5.101089
1 2006	1	5.690018	1.550298	3.67	0.001	2.576153	8.803883
1 2007	1	5.294133	1.281876	4.13	0.000	2.71941	7.868856
1 2008	1	4.870052	1.473939	3.30	0.002	1.909559	7.830546
1 2009	1	3.731711	1.774675	2.10	0.041	.1671716	7.29625
1 2010	1	4.082487	1.420032	2.87	0.006	1.230269	6.934704
1 2011	1	4.961925	1.55516	3.19	0.002	1.838295	8.085556
1 2012	Ì	4.110299	1.725382	2.38	0.021	.6447685	7.57583
1 2013	1	4.396308	1.817655	2.42	0.019	.7454418	8.047175
1 2014	1	5.751254	1.70956	3.36	0.001	2.317502	9.185005
1 2015	1	6.095481	1.690855	3.60	0.001	2.699299	9.491664
	1						
entry year	1	.2865525	.0701284	4.09	0.000	.1456956	.4274095
entry year~q	1	0001425	.0000349	-4.08	0.000	0002126	0000723
cons		27.74075	.8991925	30.85	0.000	25.93467	29.54683

Specification (5), Exogenous-wage, Method 1, Full sample

Linear regression	Number of obs	=	1,376,334
	F(50, 50)	=	•
	Prob > F	=	
	R-squared	=	0.1253
	Root MSE	=	9.8405

hoursworked	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
	+					
migrant	2.969325	.3891351	7.63	0.000	2.187725	3.750926
post911entry	-1.109929	.071418	-15.54	0.000	-1.253376	9664819
post911ent~t	.8904002	.1464179	6.08	0.000	.5963112	1.184489
minwage	-1.609656	.1885065	-8.54	0.000	-1.988282	-1.231029
post911min~e	-1.038393	.2832297	-3.67	0.001	-1.607277	4695098
post911min~t	1.990782	.3580393	5.56	0.000	1.271639	2.709925
hsgrad	2.342034	.1206836	19.41	0.000	2.099634	2.584435
assocgrad	2.939451	.1301495	22.59	0.000	2.678038	3.200864
bachgrad	4.652141	.1292593	35.99	0.000	4.392517	4.911766
mastgrad	5.569329	.1700119	32.76	0.000	5.227851	5.910808
doctorgrad	8.835426	.2521501	35.04	0.000	8.328967	9.341884
migranthsg~d	-1.794562	.1388773	-12.92	0.000	-2.073505	-1.515618
migrantass~d	-1.97605	.2048222	-9.65	0.000	-2.387448	-1.564653
migrantbac~d	-2.334598	.2096894	-11.13	0.000	-2.755771	-1.913424
migrantmas~d	-2.351891	.272432	-8.63	0.000	-2.899087	-1.804695
migrantdoc~d	-1.77189	.2552037	-6.94	0.000	-2.284482	-1.259299
exp	.5818562	.0104856	55.49	0.000	.5607952	.6029171
migrantexp	2279968	.014135	-16.13	0.000	2563878	1996058
exp_sq	0112147	.0001957	-57.31	0.000	0116077	0108217
migrantexp~q	.0049254	.0002667	18.47	0.000	.0043897	.0054612
female	-4.841137	.112035	-43.21	0.000	-5.066166	-4.616108
migrantfem~e	.8547993	.1129373	7.57	0.000	.6279581	1.08164
1.migrant	0	(omitted)				
wbhao						
Black	.0289486	.0784941	0.37	0.714	1287114	.1866087
Hispanic	.1135084	.2270898	0.50	0.619	3426148	.5696316
Asian	4044038	.2663938	-1.52	0.135	9394715	.1306639

<pre>migrant#j wbhao i ##lack 3519416 .1485689 -2.37 0.0226503510535321 i##lspanic 3725396 .1784404 -2.09 0.04273094780141315 i##sipanic 3725396 .1784404 -2.09 0.04273094780141315 i#spanic 7125909 .4263648 -1.67 0.101 -1.56897 .143788 years_sinc~1 013268 .0127629 -1.04 0.304038903 .012367 rural .253603 .0887052 2.866 0.006 .0754334 .4317727 migrantrual .7464159 .2707804 2.76 0.008 .2025375 1.290294 year</pre>	Other	.2429068	.153912	1.58	0.121	0662347	.5520482
wbhao	migrant#						
1#Black 3519416 .1485689 -2.37 0.022 650311 650371 1#Hispanic 3725396 .1784404 -2.09 0.042 7309478 013135 1#other 7125309 .4263648 -1.67 0.101 -1.56897 .143788 years_sinc~1 013268 .0127629 -1.04 0.304 038903 .012367 migrantrural .7464159 .2707804 2.76 0.008 .2025375 1.290294 year - - 0.604474 .0962833 0.63 0.529 0246361 .238612 2000 .1064879 .0657805 1.62 0.112 0256361 .238612 2001 .0610474 .0962833 0.63 0.529 1323433 .254438 2002 137348 .0760541 181 .0762 1328426 .204651 .238612 2003 3252784 .0862989 -0.080 .401186 .0389265 .0912457 .316002 .558298	wbhao						
<pre>1##ispanic3725396 .1784404 -2.09 0.04273094780141315 1#Asian3479873 .2797811 -1.24 0.2199099441 .2139695 1#Other7125909 .4263648 -1.67 0.101 -1.56897 .143788 years_sinc~1013268 .0127629 -1.04 0.304038903 .012367 rural .253603 .0887052 2.86 0.006 .0754334 .4317727 migrantrural .7464159 .2707804 2.76 0.008 .2025375 1.290294 year </pre>	1#Black	3519416	.1485689	-2.37	0.022	650351	0535321
1#Åsian3479873 .2797811 -1.24 0.2199099411 .2139685 1#Other7125909 .4263648 -1.67 0.101 -1.56897 .143788 years_sinc~1013268 .0127629 -1.04 0.304038903 .012367 rural .253603 .0887052 .2.86 0.006 .0754334 .4317727 migrantrural .7464159 .2707804 2.76 0.008 .2025375 1.290294 year 1999 .1064879 .0657805 1.62 0.1120256361 .238612 2000 .1181542 .0899175 1.31 0.1950624505 .298759 2001 .0610474 .0962833 0.63 0.5291323433 .254438 20021377368 .0760541 -1.81 0.0762904961 .0150224 20033252784 .0834928 -3.90 0.00049297871575781 20043469362 .1040017 -3.44 0.0184019660389285 20052200625 .0901811 -2.44 0.0184019660389285 20061090384 .1039076 -1.05 0.2993177429 .0996661 2007005667 .0962189 -0.08 0.9401799032 .1667699 20080294816 .0941158 -0.31 0.7552185187 .159555 2009305625 .0912457 -3.62 0.00151834914729 20106509744 .0881162 -7.47 0.0008496114809877 20124842887 .0933832 -51.9 0.0008496114809877 20124842887 .0933832 -51.9 0.0008491854726856 20132653187 .1118697 -3.27 0.00259031561406219 2014345433 .1084262 -3.15 0.0035593247123764 20151263415 .1003098 -1.26 0.2143278196 .0751367 1 2002179055 1.163468 1.10 0.72959031561406219 20144892867 .093382 2.517 0.013 .0.839351 .723869 20151263415 .1003098 -1.26 0.2143278196 .0751367 1 2002179655 1.63468 1.10 0.72914928015733 1 20032763775 .169002 1.65 0.016610694 .6178243 1 20041898786 .2056367 0.92 0.3602215481310851 .4848311 1 20065342604 .198834 2.69 0.010134890633781 1 20032783775 .169002 1.65 0.1060610694 .6178243 1 20042874458210372 1.36 0.179134284371896 1 20102870478210372 1.36 0.179134284311955 1 20032783775 .169002 1.65 0.10663998833361 3343062 2 0014183519 .1.98778029 0.361582604921559 1 20132784378210372 136 0.1793428483139564 1	1#Hispanic	3725396	.1784404	-2.09	0.042	7309478	0141315
1#0ther 7125909 .4263648 -1.67 0.101 -1.56897 .143788 years_sinc~1 013268 .0127629 -1.04 0.304 038903 .012367 migrantrural .7464159 .2707804 2.86 0.006 .0754334 .4317727 migrantrural .7464159 .2707804 2.76 0.006 .2025375 1.290294 year - - .0181542 .0899175 1.31 0.195 0624505 .238759 2001 .10610474 .0962833 0.63 0.529 1323433 .254438 2002 3177368 .0760541 -1.81 0.076 2904961 .0150224 2004 3469362 .1040017 -3.34 0.002 4558298 1389426 2005 2204625 .091181 -2.44 0.018 4011966 0389285 2006 1093384 .1039076 -1.26 0.000 618485 4726856 2007 065667	1#Asian	3479873	.2797811	-1.24	0.219	9099441	.2139695
years_sinc-1013268 .0127629 -1.04 0.304038903 .012367 rural .253603 .0887052 2.86 0.006 .0754334 .4317727 migrantrural .7464159 .2707804 2.76 0.008 .2025375 1.290294 year 1999 .1064879 .0657805 1.62 0.1120256361 .238612 2000 .1181542 .0899175 1.31 0.1950624505 .298759 2001 .0610474 .0962833 0.63 0.5291323433 .254438 20021377368 0.760541 -1.81 0.0762904961 .0150224 20032557284 .0834928 -3.90 0.00049297871575781 20043463362 .1040017 -3.34 0.0025558298 -1380426 2005220625 .0901811 -2.44 0.01840119660389285 20061090384 .1039076 -1.05 0.2993177429 .099661 20070065667 .0862989 -0.08 0.9401799031667699 20080294816 .0941158 -0.31 0.7552185187 .155555 2009305625 .0912457 -3.62 0.00151383494726856 20106609353 .0937238 -7.05 0.0008491854726856 20116609353 .0937238 -7.05 0.00067185442967231 20124842887 .0933832 -5.19 0.00067185442967231 20133653187 .1118697 -3.27 0.00259001561406219 20143415443 .1084262 -3.15 0.0035593247123764 20151263415 .1003098 -1.26 0.2143278196 .0731367 migrant#year 1 1999 .1111813 .1518117 0.73 0.4671937415 .4461041 1 2000 .2761763 .219705 1.626 0.2151651453 .71747979 1 20014093614 .1593223 2.57 0.013 .0893531 .723667 1 2002 .179055 .163468 1.10 0.279418281 .0731367 1 2003 .27783775 .163002 1.65 0.1660610694 .6178243 1 20041788778 .153229 1.15 0.2541301951 .4848311 1 2005176873 .1533229 1.15 0.2541301951 .4848311 1 20063178458 .210372 1.36 0.17941849215733 1 2003274458 .210372 1.36 0.199418422642633 1 2004287458 .210372 1.36 0.19941842242633 1 2005176873 .153322915 0.2541308514848311 1 2006287458 .210372 1.35 0.16490648287458 1 2010285014 .211578135 0.19490788826049 1 2010285014 .211578135 0.194908988267539 1 20132744588 .210372 1.36 0.199588015663988 .2607539 1 20140285379 .0.135914 2.11 0.040000	1#Other	7125909	.4263648	-1.67	0.101	-1.56897	.143788
rural 253603 .0887052 2.866 0.006 .0754334 .4317727 migrantrural .7464159 .2707804 2.76 0.008 .2025375 1.290294 year 1999 .1064879 .0657805 1.62 0.1120256361 .238612 2000 .1181542 .0899175 1.31 0.1950624505 .298759 2001 .0610474 .0962833 0.63 0.5291323433 .254438 20021377368 0.760541 -1.81 0.0762904961 .0150224 20032252784 .0834928 -3.90 0.00042927871575781 20043469362 .1040017 -3.34 0.00255582981380426 20052200625 .0901811 -2.44 0.01840119660389285 20061090384 .1039076 -1.05 0.2993177429 .0996661 20072006567 .0862989 -0.08 0.9401799032 .1667699 20082294816 .0941158 -0.31 0.7552185187 .155555 2009305525 .0912457 -3.62 0.001513834914729 20106609353 .0937238 -7.05 0.0008491854726856 20116609353 .0937238 -7.05 0.0008491854726856 20116609353 .0937238 -7.05 0.0008491854726856 20116609353 .0937238 -7.05 0.0008491854726856 20116609353 .0937238 -5.19 0.00067185442967231 20133653187 .1118697 -3.27 0.00259001561406219 20143415443 .1084262 -3.15 0.0035593247123764 20151263415 .1013098 -1.26 0.2143278196 0.751367 migrant#year 1 1999 .1111813 .1518117 0.73 0.4671937415 .4161041 1 20002761763 .2197205 1.626 0.2151651453 .7174979 1 2001 .4093614 .1533223 2.57 0.013 .0893531 .7233697 1 2003 .27783775 .163002 1.65 0.1062163278196733767 1 20032783775 .169002 1.65 0.10622343184891601694 1 2005176873 .153229 1.15 0.25431384914848311 2007311896 .1646644 1.89 0.064018422 .6426343 1 2004287458 .210372 1.36 0.1791348961484831 1 2005176873 .153229 1.05 0.2543138951 .484831 1 2005176873 .153229 1.05 0.2543138951484831 1 2005176873 .153229 1.05 0.2543138951484831 1 2005274458 .210372 1.36 0.1791348961484831 1 2005176873 .153229 1.05 0.2543138951484831 1 2005274458 .210372 1.36 0.17934893639368312826049334831 2 0014285014211578135 0.1847099683 .	years sinc~l	 013268	.0127629	-1.04	0.304	038903	.012367
<pre>migrantrural .7464159 .2707804 2.76 0.008 .2025375 1.290294</pre>	rural	.253603	.0887052	2.86	0.006	.0754334	.4317727
year 1999 .1064879 .0657805 1.62 0.1120256361 .238612 2000 .1181542 .0899175 1.31 0.1950624505 .298759 2001 .0610474 .0962833 0.63 0.5291323433 .24438 2002 1377368 .0760541 -1.81 0.0762904961 .0150224 2003 3252784 .0834928 -3.90 0.00049297871575781 2004 3469362 .1040017 -3.34 0.00255582981380426 2005 200625 .0901811 -2.44 0.01840119660389285 2006 1090384 .1033076 -1.05 0.2993177429 .0996661 2007 0065667 .0862989 -0.08 0.9401799032 .1667699 2008 0294816 .094158 -0.31 0.7552185187 .159555 2009 3305625 .0912457 -3.62 0.001518384914729 2010 6609353 .0937238 -7.05 0.00083496114809877 2012 4842887 .0933832 -5.19 0.00067185442967231 2013 3653187 .1118697 -3.27 0.0025091561406219 2014 3415443 .1084262 -3.15 0.0035593247123764 2015 1263415 .1003098 -1.26 0.2143278196 .0751367 migrant#year 1 1999 .1111813 .1518117 0.73 0.4671937415 .4161041 1 2000 .2761763 .2197205 1.26 0.2151651453 .7174979 1 2001 .4093614 .1593223 2.57 0.013 .0895531 .7293697 1 2002 .179055 .163468 1.10 0.2791492801 .50739 1 2003 .2783775 .169002 1.65 0.106661064 .6178243 1 2004 .1898766 .2056367 0.92 0.360221549 .602912 1 2005 .176873 .1533229 1.15 0.2541310851 .4848311 1 2006 .5342604 .198834 2.69 0.010 .1348906 .9336301 1 2007 .311996 .1646644 1.89 0.064018422 .6426333 1 2008 .2874458 .2110372 1.36 0.1791364348 .7113265 1 2009 080328 .2109769 -0.04 0.9704317925 .4157266 1 2010 2850014 .211578 -0.92 0.3615826049 .215901 1 2012 2018274 .236203 -0.88 0.3856639988 .2607539 1 2013 1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 504575 .2676334 -0.19 0.851588015 .4871001 1 2015 .0718976 .2296167 -0.31 0.7555330964 .3893011 2014 .0286379 .0135914 2.11 0.040 .0013389 .055937 entry_yearq .0286379 .0135914 2.11 0.040 .0013389 .055937 entry_yearq .0286379 .0135914 2.11 0.040 .0013389 .05599582	migrantrural	.7464159	.2707804	2.76	0.008	.2025375	1.290294
1999 1.1064879 .0657805 1.62 0.112 0256361 .238612 2000 1.181542 .0899175 1.31 0.195 0624505 .298759 2001 1.0610474 .0962833 0.63 0.529 1323433 .2524438 2002 1.3469362 .1040017 -3.34 0.000 4929787 1575781 2004 1.3469362 .1040017 -3.34 0.002 5558298 1380426 2005 12200625 .0901811 -2.44 0.018 4011966 0389285 2006 1109384 .1039076 -1.05 0.299 3177429 .0996661 2007 10065667 .0862989 -0.08 0.940 1799032 .1667699 2010 16609353 .0937238 -7.05 0.000 618349 14729 2011 16579744 .0881162 -7.47 0.000 6718544 2967231 2013 1.3653187 .1118697 -3.27 0.002 5900156 1460219 2014 1.24842843 <td< td=""><td>year</td><td> </td><td></td><td></td><td></td><td></td><td></td></td<>	year	 					
2000 .1181542 .0899175 1.31 0.1950624505 .298759 2001 .0610474 .0962833 0.63 0.5291323433 .254438 2002 1377368 .0760541 -1.81 0.0762904961 .0150224 2003 3252784 .0834928 -3.90 0.00049297871575781 2004 3469362 .1040017 -3.34 0.00255582981380426 2005 2200625 .090181 -2.44 0.0184011966039285 2006 1090384 .1039076 -1.05 0.2993177429 .0996661 2007 0065667 .0962989 -0.08 0.9401799032 .1667699 2008 0294816 .0941158 -0.31 0.7552185187 .159555 2009 3305625 .0912457 -3.62 0.001513834914729 2010 6609353 .0937238 -7.05 0.0008491854726856 2011 6579744 .0881162 -7.47 0.00084396114409877 2012 4842887 .0933832 -5.19 0.00067185442967231 2013 3653187 .1118697 -3.27 0.00259001561406219 2014 3415443 .1084262 -3.15 0.0035593247123764 2015 1263415 .1003098 -1.26 0.2143278196 .0751367 i rigrant#year migrant#year 1 1999 .111181 .1518117 0.73 0.4671937415 .4161041 1 2000 .2761763 .2197205 1.26 0.2151651453 .7174979 1 2001 .4093614 .1593223 2.57 0.013 .0893531 .7293697 1 2002 .179055 .163468 1.10 0.2791492801 .50739 1 2003 .2783775 .169002 1.65 0.1060610694 .6178243 1 2004 .1898786 .205667 0.92 0.3662231549 .602912 1 2005 .176673 .1533229 1.15 0.2541310851 .4484311 1 2006 .5342604 .198834 2.69 0.010 .1348906 .9336301 1 2007 .311896 .1646644 1.89 0.0640188422 .642633 1 2008 .22743458 .2110372 1.36 0.1791364348 .7113265 1 2009 008038 .2109769 -0.04 0.9704317925 .415726 1 2010 2850014 .211578 -1.35 0.1847099683 .139964 1 2011 1833519 .1987758 -0.92 0.3615826049 .215901 1 2012 2016224 .230203 -0.88 0.385663988 .2607539 1 2013 1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 0504575 .2676334 -0.19 0.851582015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 2 014 0504575 .2676334 -0.19 0.851582015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893	1999	.1064879	.0657805	1.62	0.112	0256361	.238612
2001 .0610474 .0962833 0.63 0.5291323433 .254438 2002 1377368 .0760541 -1.81 0.0762904961 .0150224 2003 2552784 .0834928 -3.90 0.0004929787157781 2004 3469362 .1040017 -3.34 0.00255582981380426 2005 2200625 .0901811 -2.44 0.01840119660389285 2006 1090384 .1039076 -1.05 0.2993177429 .0996661 2007 0065667 .0862989 -0.08 0.9401799032 .1667699 2008 0294816 .0941158 -0.31 0.7552185187 .1595555 2009 3305625 .0912457 -3.62 0.001513834914729 2010 6603953 .0937238 -7.05 0.0008491854726856 2011 6579744 .0881162 -7.47 0.0008491854726856 2013 3653187 .118697 -3.27 0.00259001561406219 2014 3415443 .1084262 -3.15 0.0035593247123764 2015 1263415 .100308 -1.26 0.2143278196 .0751367 migrant#year 1 1999 .1111813 .1518117 0.73 0.4671937415 .4161041 1 2000 .2761763 .2197205 1.26 0.2151651453 .7174979 1 2001 .4093614 .1593223 2.57 0.013 .0893531 .7293697 1 2002 .179055 .163468 1.10 0.2791492801 .50739 1 2003 .2783775 .169002 1.65 0.1060610694 .6178243 1 2004 .1898786 .205637 0.92 0.3602231549 .602912 1 2005 .176873 .1533229 1.15 0.2541310851 .4848311 1 2006 .5342604 .198834 2.69 0.010 .1348906 .933631 1 2007 .311896 .1646644 1.89 0.0640184822 .6426343 1 2008 .2274375 .169002 1.65 0.1060610694 .6178243 1 2009 080328 .2109769 -0.04 0.9704317922 .4157268 1 2010 2850014 .211578 -1.35 0.1847099683 .1399654 1 2010 285014 .211578 -1.35 0.1847099683 .1398654 1 2010 833519 .1987758 -0.92 0.3615826049 .215901 1 2012 -2016224 .230203 -0.88 0.385663988 .2607539 1 2013 1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 -0718976 .2296167 -0.31 0.7555330964 .3893011 rentry_year .0286379 .0135914 2.11 0.040 .0013389 .055937 entry_year .0286379 .0135914 2.11 0.040 .33.3681 34.34062	2000	.1181542	.0899175	1.31	0.195	0624505	.298759
2002 1377368 .0760541 -1.81 0.0762904961 .0150224 2003 3252784 .0834928 -3.90 0.00049297871575781 2004 3469362 .104017 -3.34 0.00255582981380426 2005 2200625 .0901811 -2.44 0.01840119660389285 2006 1090384 .1039076 -1.05 0.2993177429 .0996661 2007 0065667 .0862989 -0.08 0.9401799032 .1667699 2008 0294816 .0941158 -0.31 0.7552185187 .1595555 2009 3305625 .0912457 -3.62 0.001513834914729 2010 6609353 .093728 -7.05 0.000849185426856 2011 6579744 .0881162 -7.47 0.00083496114809877 2012 4442887 .0933832 -5.19 0.00067185442967231 2013 3653187 .1118697 -3.27 0.0025901561406219 2014 3415443 .1084262 -3.15 0.0035593247123764 2015 1263415 .1003098 -1.26 0.2151651453 .774979 1 2001 .4093614 .1593223 2.57 0.013 .0893531 .7293697 1 2002 .179055 .163468 1.10 0.2791492201 .50739 1 2003 .2783775 .169002 1.65 0.1060610694 .6178243 1 2004 .1898786 .2056367 0.92 0.3602231549 .602912 1 2005 .176873 .1533229 1.15 0.2541310851 .44848311 2 006 .5342604 .198342 2.69 0.010 .1484906 .936301 1 2007 .311896 .1646644 1.89 0.0640188422 .6426343 1 2008 .2874458 .210372 1.36 0.1791364348 .7113265 1 2009 0080328 .2109769 -0.04 0.9704317925 .415726 1 2009 .0080328 .2109769 -0.04 0.9704317925 .415726 1 2010 .2850014 .211578 -1.35 0.1847099683 .1399654 1 2011 .1833519 .198775 .2676334 -0.19 0.8515826049 .215901 1 2012 .200555 .2676354 -0.92 0.3615826049 .215901 1 2014 .0054575 .2676334 -0.19 0.851588015 .4871001 1 2015 .0718976 .2296167 -0.31 0.7555330964 .3893011 2014 .0054575 .2676334 -0.19 0.851588015 .4871001 1 2015 .0718976 .2296167 -0.31 0.7555330964 .3893011 2014 .0054575 .2676334 -0.19 0.851588015 .4871001 1 2015 .0718976 .2296167 -0.31 0.7555330964 .3893011 2014 .0054575 .2676334 -0.19 0.851588015 .4871001 1 2015 .00718376 .2296167 -0.31 0.7555330964 .285937 entry_year .0080143 6	2001	.0610474	.0962833	0.63	0.529	1323433	.254438
2003 3252784 .0834928 -3.90 0.00049297871575781 2004 3469362 .1040017 -3.34 0.00255582981380426 2005 2200625 .0901811 -2.44 0.01840119660389285 2006 1090384 .1039076 -1.05 0.2993177429 .0996661 2007 0065667 .0862989 -0.08 0.9401799032 .1667699 2008 0294816 .0941158 -0.31 0.7552185187 .1595555 2009 3305625 .0912457 -3.62 0.001513834914729 2010 6699353 .0937238 -7.05 0.0008491854726856 2011 6579744 .0881162 -7.47 0.00083496114809877 2012 4842887 .0933832 -5.19 0.00067185442967231 2013 3653187 .1118697 -3.27 0.00259001561406219 2014 3415443 .1084262 -3.15 0.0035593247123764 2015 1263415 .1003098 -1.26 0.2143278196 .0751367 migrant#year 1 1999 .1111813 .1518117 0.73 0.4671937415 .4161041 1 2000 .2761763 .2197205 1.26 0.2151651453 .7174979 1 2001 .4093614 .1593223 2.57 0.013 .0893531 .7293697 1 2002 .179055 .163468 1.10 0.2791492801 .50739 1 2003 .2783775 .169002 1.65 0.1060610694 .6178243 1 2004 .1898786 .2056367 0.92 0.3602231549 .602912 1 2005 .176873 .1533229 1.15 0.2541310851 .4484311 1 2006 .5342604 .198344 2.69 0.010 .1348906 .933631 1 2007 .311896 .1646644 1.89 0.0640188422 .6426343 1 2008 .2874458 .210372 1.36 0.1791364348 .7113265 1 2009 0080328 .2109769 -0.04 0.9704317925 .4157268 1 2010 .2850014 .211578 -1.35 0.1847099683 .139964 1 2011 1833519 .198775 -0.92 0.3615826049 .215901 1 2012 .2016224 .23023 -0.88 0.3856639988 .2607539 1 2013 .219375 .2296167 -0.91 0.8355639988 .2607539 1 2014 .0504575 .22676334 -0.19 0.851588015 .4471001 1 2015 .0718976 .2296167 -0.31 0.7555330964 .3893011 1 2015 .0718976 .2296167 -0.31 0.7555330964 .3893011 1 2015 .0718976 .2296167 -0.31 0.7555330964 .3893011 1 2015 .0718976 .2296167 -0.31 0.7555330964 .3439051 1 2015 .00718976 .2296167 -0.31 0.7555330964 .3439051 1 2015 .00718376 .2296167 -0.31 0.7555330964 .3439051	2002	1377368	.0760541	-1.81	0.076	2904961	.0150224
2004 3469362 .1040017 -3.34 0.002 5558298 1380426 2005 2200625 .0901811 -2.44 0.018 4011966 0389285 2006 1090384 .1039076 -1.05 0.299 3177429 .09966161 2007 0065667 .0862989 -0.08 0.940 1799032 .1667699 2008 0294816 .0941158 -0.31 0.755 2185187 .159555 2009 3305625 .0912457 -3.62 0.001 518349 14726856 2011 6579744 .0881162 -7.47 0.000 6718544 2967231 2013 3553187 .1118697 -3.27 0.002 5900156 1406194 2014 3415443 .1084262 -3.15 0.003 5593247 123764 2015 1263415 .1003098 -1.26 0.214 3278196 .0751367 migrant#year - - 4093614 .1593223 2.57 0.013 .0893531 .7293697	2003	3252784	.0834928	-3.90	0.000	4929787	1575781
2005 2200625 .0901811 -2.44 0.018 4011966 0389285 2006 1090384 .1039076 -1.05 0.299 3177429 .0996661 2007 065667 .0862989 -0.08 0.940 1799032 .1667699 2008 0294816 .0941158 -0.31 0.755 2185187 .159555 2009 3609353 .0937238 -7.05 0.000 849185 4726866 2011 6609353 .0937238 -7.07 0.000 8349611 4809877 2012 4842887 .0933832 -5.19 0.000 6718544 2967231 2013 3653187 .1118697 -3.27 0.002 5593247 123764 2015 1263415 .1003098 -1.26 0.214 3278196 .0751367 migrant#year 1 1999 .1111813 .151817 0.73 0.467 1937415 .4161041 1 20001 .276176	2004	3469362	.1040017	-3.34	0.002	5558298	1380426
2006 1090384 .1039076 -1.05 0.299 3177429 .0996661 2007 0065667 .0862989 -0.08 0.940 1799032 .1667699 2008 0294816 .0941158 -0.31 0.755 2185187 .1595555 2009 3305625 .0912457 -3.62 0.001 5138349 14729 2010 6609353 .0937238 -7.05 0.000 849185 4726856 2011 6579744 .0881162 -7.47 0.000 849185 4726856 2013 3653187 .1118697 -3.27 0.002 5900156 14006219 2014 3415443 .1084262 -3.15 0.003 5593247 123764 2015 1263415 .1003098 -1.26 0.214 3278196 .0751367 migrant#year - - 1937415 .4161041 .4093614 .1593223 2.57 0.013 .0893531 .7293697 1 2000 .278775 .163068 1.10 0.279 1492801 .	2005	2200625	.0901811	-2.44	0.018	4011966	0389285
2007 0065667 .0862989 -0.08 0.9401799032 .1667699 2008 0294816 .0941158 -0.31 0.7552185187 .159555 2009 3305625 .0912457 -3.62 0.001513834914729 2010 6609353 .0937238 -7.05 0.00083496114809877 2012 4842887 .0933832 -5.19 0.00067185442967231 2013 3653187 .1118697 -3.27 0.00259001561406219 2014 3415443 .1084262 -3.15 0.0035593247123764 2015 1263415 .1003098 -1.26 0.2143278196 .0751367 migrant#year 1 1999 .111813 .1518117 0.73 0.4671937415 .4161041 1 2000 .2761763 .2197205 1.26 0.2151651453 .7174979 1 2001 .4093614 .1593223 2.57 0.013 .0893531 .7293697 1 2002 .179055 .163468 1.10 0.2791492801 .50739 1 2003 .2783775 .1690002 1.65 0.1060610694 .6178243 1 2004 .1898786 .2056367 0.92 0.3602231549 .602912 1 2005 .176873 .1533229 1.15 0.2541310851 .4484811 1 2006 .5342604 .198834 2.69 0.010 .1348906 .9336301 1 2007 .311896 .1646644 1.89 0.0640188422 .6426343 1 2008 .2874458 .2110372 1.36 0.1791364348 .7113265 1 2009 0080328 .2109769 -0.04 0.9704317925 .4157268 1 2010 .2850014 .211578 -1.35 0.1847099683 .1399654 1 2012 .2054575 .2676334 -0.92 0.3615826049 .215901 1 2013 .1973212 .2455937 -0.80 0.4266639988 .2607539 1 2014 .6193755 .2676334 -0.919 0.3615826049 .215901 1 2015 .00718776 .2296167 -0.31 0.755533064 .3893011 2014 .0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 .0718976 .2296167 -0.31 0.755533064 .3893011 2014 .0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 .0718976 .2296167 -0.31 0.755533064 .3893011 2014 .0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 .0718976 .2296167 -0.31 0.755533064 .3893011 2014 .0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 .0718976 .2296167 -0.31 0.755533064 .3893011 2014 .0206479 .0135914 2.11 0.040 .0013389 .055937 entry_year .0286379 .0135914 2.11 0.04000028 -7.10e-07 _00054 -7.10e-07	2006	1090384	.1039076	-1.05	0.299	3177429	.0996661
2008 0294816 .0941158 -0.31 0.7552185187 .1595555 2009 3305625 .0912457 -3.62 0.001513834914729 2010 6609353 .0937238 -7.05 0.00083496114809877 2012 4842887 .0933832 -5.19 0.00067185442967231 2013 3653187 .1118697 -3.27 0.0025901561406219 2014 3415443 .1084262 -3.15 0.0035593247123764 2015 1263415 .1003098 -1.26 0.2143278196 .0751367 .0751367 .000 .2761763 .2197205 1.26 0.2143278196 .0751367 1 2000 .2761763 .2197205 1.26 0.2151651453 .7174979 1 2001 .4093614 .1593223 2.57 0.013 .0893531 .7293697 1 2002 .179055 .163468 1.10 0.2791492801 .50739 1 2003 .278375 .1690002 1.65 0.1060610694 .6178243 1 2004 .1898786 .2056367 0.92 0.3602231549 .602912 1 2005 .176873 .1533229 1.15 0.2541310851 .4484831 1 2006 .5342604 .198834 2.69 0.010 .1348906 .9336301 1 2007 .311896 1.646644 1.89 0.0640188422 .6426343 1 2008 .2874458 .2110372 1.36 0.1791364348 .7113265 1 2009 0080328 .2109769 -0.04 0.9704317925 .4157268 1 2010 .2850014 .211578 -1.35 0.1847099683 .1399654 1 2011 1833519 .1987758 -0.92 0.3615826049 .215901 1 2012 .2016224 .230203 -0.88 0.3856639988 .2607539 1 2013 .207475 .2676334 -0.19 0.851583054 .3139654 1 2014 .0504575 .2676334 -0.19 0.851583054 .34871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 2014 .0504575 .2676334 -0.19 0.851588015 .4471001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 2014 .0504575 .2676334 -0.19 0.851588015 .4471001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 2014 .0266379 .0135914 2.11 0.040 .0013389 .055937 entry_year .0286379 .0135914 2.11 0.040 .0013389 .055937 entry_year .0286379 .0135914 2.11 0.040 .0013389 .055937	2007	0065667	.0862989	-0.08	0.940	1799032	.1667699
2009 305625 .0912457 -3.62 0.001513834914729 2010 6609353 .0937238 -7.05 0.0008491854726856 2011 6579744 .0881162 -7.47 0.00083496114809877 2012 4842887 .0933832 -5.19 0.00067185442967231 2013 3653187 .1118697 -3.27 0.00259001561406219 2014 3415443 .1084262 -3.15 0.0035593247123764 2015 1263415 .1003098 -1.26 0.2143278196 .0751367 migrant#year 1 1999 .1111813 .1518117 0.73 0.4671937415 .4161041 1 2000 .2761763 .2197205 1.26 0.2151651453 .7174979 1 2001 .4093614 .1593223 2.57 0.013 .0893531 .7293697 1 2002 .179055 .163468 1.10 0.2791492801 .50739 1 2003 .2783775 .1690002 1.65 0.1060610694 .6178243 1 2005 .176873 .1533229 1.15 0.2541310851 .4848311 1 2006 .5342604 .198834 2.69 0.010 .1348906 .936301 1 2007 .311896 .1646644 1.89 0.0640188422 .6426343 1 2008 .2874458 .2110372 1.36 0.1791364348 .7113265 1 2009 080328 .2109769 -0.04 0.9704317925 .4157268 1 2010 2850014 .211578 -1.35 0.1847099683 .1399654 1 2010 2850014 .211578 -1.35 0.1847099683 .1399554 1 2012 2016224 .230203 -0.88 0.3856639988 .2607539 1 2013 .1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 .0504575 .2676334 -0.19 0.851588015 .487100 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 2014 .0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 2014 .0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 2014 .0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 2014 .0286379 .0135914 2.11 0.040 .0013389 .055937 entry_year .0286379 .0135914 2.11 0.04000028 -7.10e-07 cons 33.85436 .2420943 139.84 0.000 33.3681 34.34062	2008	0294816	.0941158	-0.31	0.755	2185187	.1595555
2010 6609353 .0937238 -7.05 0.0008491854726856 2011 6579744 .0881162 -7.47 0.0008349611480987 2012 4842887 .0933832 -5.19 0.00067185442967231 2013 3653187 .1118697 -3.27 0.00259001561406219 2014 3415443 .1084262 -3.15 0.0035593247123764 2015 1263415 .1003098 -1.26 0.2143278196 .0751367 migrant#year 1 1999 .1111813 .1518117 0.73 0.4671937415 .4161041 1 2000 .2761763 .2197205 1.26 0.2151651453 .7174979 1 2001 .4093614 .1593223 2.57 0.013 .0893531 .7293697 1 2002 .179055 .169408 1.10 0.2791492801 .50739 1 2003 .2783775 .1690002 1.65 0.1060610694 .6178243 1 2004 .1898786 .2056367 0.92 0.3602231549 .602912 1 2005 .176873 .1533229 1.15 0.2541310851 .4848311 1 2006 .5342604 .198834 2.69 0.010 .1348906 .9336301 1 2007 .311896 .1646644 1.89 0.0640188422 .6426343 1 2008 .2874458 .2110372 1.36 0.1791364348 .7113265 1 2009 0080328 .2109769 -0.04 0.9704317925 .4157268 1 2010 2850014 .211578 -1.35 0.1847099683 .1399654 1 2010 2850014 .21578 -1.35 0.1847099683 .1399654 1 2012 2016224 .230203 -0.88 0.3856639988 .2607539 1 2013 1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 0504575 .2676334 -0.19 0.8515826049 .215901 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 2014 0504575 .2676334 -0.19 0.851583015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 2014 0504575 .2676334 -0.19 0.851583016 .2959682 1 2014 0586379 .0135914 2.11 0.04000028 -7.10e-07 _cons 33.85436 .2420943 139.84 0.000 33.3681 34.34062	2009	3305625	.0912457	-3.62	0.001	5138349	14729
2011 6579744 .0881162 -7.47 0.00083496114809877 2012 4842887 .0933832 -5.19 0.00067185442967231 2013 3653187 .1118697 -3.27 0.00259001561406219 2014 3415443 .1084262 -3.15 0.0035593247123764 2015 1263415 .1003098 -1.26 0.2143278196 .0751367 migrant#year 1 1999 .1111813 .1518117 0.73 0.4671937415 .4161041 1 2000 .2761763 .2197205 1.26 0.2151651453 .7174979 1 2001 .4093614 .1593223 2.57 0.013 .0893531 .7293697 1 2002 .179055 .163468 1.10 0.2791492801 .50739 1 2003 .2783775 .1690002 1.65 0.1060610694 .6178243 1 2004 .1898786 .2056367 0.92 0.3602231549 .602912 1 2005 .176873 .1533229 1.15 0.2541310851 .4848311 1 2006 .5342604 .198834 2.69 0.010 .1348906 .9336301 1 2007 .311896 .1646644 1.89 0.0640188422 .6426343 1 2008 .2874458 .2110372 1.36 0.1791364348 .7113265 1 2009 0080328 .2109769 -0.04 0.9704317925 .4157268 1 2010 2850014 .211578 -1.35 0.1847099683 .1399654 1 2011 1833519 .1987758 -0.92 0.3615826049 .215901 1 2012 .2016224 .230203 -0.88 0.3856639988 .2607539 1 2013 .1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 .0718976 .2296167 -0.31 0.7555330964 .3893011 2014 .0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 .0718976 .2296167 -0.31 0.7555330964 .3893011 2014 .0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 .0718976 .2296167 -0.31 0.7555330964 .3893011 2014 .0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 .0718976 .2296167 -0.31 0.7555330964 .3893011 2015 .000143 6.78e-06 -2.11 0.04000028 -7.10e-07 _cons 33.85436 .2420943 139.84 0.000 33.3681 34.34062	2010	6609353	.0937238	-7.05	0.000	849185	4726856
2012 4842887 .0933832 -5.19 0.00067185442967231 2013 3653187 .1118697 -3.27 0.00259001561406219 2014 3415443 .1084262 -3.15 0.0035593247123764 2015 1263415 .1003098 -1.26 0.2143278196 .0751367 migrant#year 1 1999 .1111813 .1518117 0.73 0.4671937415 .4161041 1 2000 .2761763 .2197205 1.26 0.2151651453 .7174979 1 2001 .4093614 .1593223 2.57 0.013 .0893531 .7293697 1 2002 .179055 .163468 1.10 0.2791492801 .50739 1 2003 .2783775 .1690002 1.65 0.1060610694 .6178243 1 2004 .1898786 .2056367 0.92 0.3602231549 .602912 1 2005 .176873 .1533229 1.15 0.2541310851 .4848311 1 2006 .5342604 .198834 2.69 0.010 .1348906 .9336301 1 2007 .311896 .1646644 1.89 0.0640188422 .6426343 1 2008 .2874458 .2110372 1.36 0.1791364348 .7113265 1 2009 0080328 .2109769 -0.04 0.9704317925 .4157268 1 2010 2850014 .211578 -1.35 0.1847099683 .1399654 1 2012 .2016224 .230203 -0.88 0.3856639988 .2607539 1 2013 .1933212 .2455937 -0.80 0.4266906106 .2959682 1 2014 .0504575 .2676334 -0.19 0.8515826049 .215901 1 2015 .0718976 .2296167 -0.31 0.7555330964 .3893011 2014 .0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 .0718976 .2296167 -0.31 0.7555330964 .3893011 2014 .0286379 .0135914 2.11 0.040 .0013389 .055937 entry_year~q .0000143 6.78e-06 -2.11 0.04000028 -7.10e-07 _cons 33.85436 .2420943 139.84 0.000 33.3681 34.34062	2011	6579744	.0881162	-7.47	0.000	8349611	4809877
2013 3653187 .1118697 -3.27 0.00259001561406219 2014 3415443 .1084262 -3.15 0.0035593247123764 2015 1263415 .1003098 -1.26 0.2143278196 .0751367 migrant#year 1 1999 .1111813 .1518117 0.73 0.4671937415 .4161041 1 2000 .2761763 .2197205 1.26 0.2151651453 .7174979 1 2001 .4093614 .1593223 2.57 0.013 .0893531 .7293697 1 2002 .179055 .163468 1.10 0.2791492801 .50739 1 2003 .2783775 .1690002 1.65 0.1060610694 .6178243 1 2004 .1898786 .2056367 0.92 0.3602231549 .602912 1 2005 .176873 .1533229 1.15 0.2541310851 .4848311 1 2006 .5342604 .198834 2.69 0.010 .1348906 .9336301 1 2007 .311896 .1646644 1.89 0.0640188422 .6426343 1 2008 .2874458 .2110372 1.36 0.1791364348 .7113265 1 2009 0080328 .2109769 -0.04 0.9704317925 .4157268 1 2010 2850014 .211578 -1.35 0.1847099683 .1399654 1 2011 1833519 .1987758 -0.92 0.3615826049 .215901 1 2012 2016224 .230203 -0.88 0.3856639988 .2607539 1 2013 1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 entry_year~q 0000143 6.78e-06 -2.11 0.040 -0013389 .055937 entry_year~q 0000143 6.78e-06 -2.11 0.040000028 -7.10e-07 _cons 33.85436 .2420943 139.84 0.000 33.3681 34.34062	2012	- 4842887	.0933832	-5.19	0.000	6718544	2967231
20143415443 .1084262 -3.15 0.0035593247123764 20151263415 .1003098 -1.26 0.2143278196 .0751367 migrant#year 1 1999 .1111813 .1518117 0.73 0.4671937415 .4161041 1 2000 .2761763 .2197205 1.26 0.2151651453 .7174979 1 2001 .4093614 .1593223 2.57 0.013 .0893531 .7293697 1 2002 .179055 .163468 1.10 0.2791492801 .50739 1 2003 .2783775 .1690002 1.65 0.1060610694 .6178243 1 2004 .1898786 .2056367 0.92 0.3602231549 .602912 1 2005 .176873 .1533229 1.15 0.2541310851 .4848311 1 2006 .5342604 .198834 2.69 0.010 .1348906 .9336301 1 2007 .311896 .1646644 1.89 0.0640188422 .6426343 1 2008 .2874458 .2110372 1.36 0.1791364348 .7113265 1 2009 0080328 .2109769 -0.04 0.9704317925 .4157268 1 2010 2850014 .211578 -1.35 0.1847099683 .1399654 1 2011 1833519 .1987758 -0.92 0.3615826049 .215901 1 2012 2016224 .230203 -0.88 0.3856633988 .2607539 1 2013 .1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 2016 .0286379 .0135914 2.11 0.040 .0013389 .055937 entry_year~q 0000143 6.78e-06 -2.11 0.040000028 -7.10e-07 _cons 33.85436 .2420943 139.84 0.000 33.3681 34.34062	2013	-3653187	1118697	-3 27	0 002	- 5900156	- 1406219
2015 1263415 .1003098 -1.26 0.2143278196 .0751367 migrant#year 1 1999 .1111813 .1518117 0.73 0.4671937415 .4161041 1 2000 .2761763 .2197205 1.26 0.2151651453 .7174979 1 2001 .4093614 .1593223 2.57 0.013 .0893531 .7293697 1 2002 .179055 .163468 1.10 0.2791492801 .50739 1 2003 .2783775 .1690002 1.65 0.1060610694 .6178243 1 2004 .1898786 .2056367 0.92 0.3602231549 .602912 1 2005 .176873 .1533229 1.15 0.2541310851 .4848311 1 2006 .5342604 .198834 2.69 0.010 .1348906 .9336301 1 2007 .311896 .1646644 1.89 0.0640188422 .6426343 1 2008 .2874458 .2110372 1.36 0.1791364348 .7113265 1 2009 0080328 .2109769 -0.04 0.9704317925 .4157268 1 2010 2850014 .21578 -1.35 0.1847099683 .1399654 1 2011 1833519 .1987758 -0.92 0.3615826049 .215901 1 2012 2016224 .230203 -0.88 0.3856639988 .2607539 1 2013 1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 2015 .00718976 .2296167 -0.31 0.7555330964 .3893011 2016 .0286379 .0135914 2.11 0.040 .0013389 .055937 entry_year~q .00286379 .0135914 2.11 0.040 .0013389 .055937	2014	-3415443	1084262	-3 15	0 003	- 5593247	- 123764
<pre>migrant#year 1 1999 .1111813 .1518117 0.73 0.4671937415 .4161041 1 2000 .2761763 .2197205 1.26 0.2151651453 .7174979 1 2001 .4093614 .1593223 2.57 0.013 .0893531 .7293697 1 2002 .179055 .163468 1.10 0.2791492801 .50739 1 2003 .2783775 .1690002 1.65 0.1060610694 .6178243 1 2004 .1898786 .2056367 0.92 0.3602231549 .602912 1 2005 .176873 .1533229 1.15 0.2541310851 .4848311 1 2006 .5342604 .198834 2.69 0.010 .1348906 .9336301 1 2007 .311896 .1646644 1.89 0.0640188422 .6426343 1 2008 .2874458 .2110372 1.36 0.1791364348 .7113265 1 2009 0080328 .2109769 -0.04 0.9704317925 .4157268 1 2010 2850014 .211578 -1.35 0.1847099683 .1399654 1 2011 1833519 .1987758 -0.92 0.3615826049 .215901 1 2012 2016224 .230203 -0.88 0.3856639988 .2607539 1 2013 1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 -0718976 .2296167 -0.31 0.75555330964 .3893011 mentry_year .0286379 .0135914 2.11 0.040 .0013389 .055937 entry_year .0286379 .0135914 2.11 0.040000028 -7.10e-07 _cons 33.85436 .2420943 139.84 0.000 33.3681 34.34062</pre>	2015	1263415	.1003098	-1.26	0.214	3278196	.0751367
1 1999 1111813 .1518117 0.73 0.467 1937415 .4161041 1 2000 .2761763 .2197205 1.26 0.215 1651453 .7174979 1 2001 .4093614 .1593223 2.57 0.013 .0893531 .7293697 1 2002 .179055 .163468 1.10 0.279 1492801 .50739 1 2003 .2783775 .1690002 1.65 0.106 0610694 .6178243 1 2004 .1898786 .2056367 0.92 0.360 2231549 .602912 1 2005 .176873 .1533229 1.15 0.254 1310851 .4848311 1 2006 .5342604 .198834 2.69 0.010 .1348906 .9336301 1 2007 .311896 .1646644 1.89 0.064 0188422 .6426343 1 2009 0080328 .2109769 -0.04 0.970 4317925 .4157268 1 2010 2850014 .211578 <td< td=""><td>migrant#year</td><td> </td><td></td><td></td><td></td><td></td><td></td></td<>	migrant#year						
1 2000 .2761763 .2197205 1.26 0.2151651453 .7174979 1 2001 .4093614 .1593223 2.57 0.013 .0893531 .7293697 1 2002 .179055 .163468 1.10 0.2791492801 .50739 1 2003 .2783775 .1690002 1.65 0.1060610694 .6178243 1 2004 .1898786 .2056367 0.92 0.3602231549 .602912 1 2005 .176873 .1533229 1.15 0.2541310851 .4848311 1 2006 .5342604 .198834 2.69 0.010 .1348906 .9336301 1 2007 .311896 .1646644 1.89 0.0640188422 .6426343 1 2008 .2874458 .2110372 1.36 0.1791364348 .7113265 1 2009 0080328 .2109769 -0.04 0.9704317925 .4157268 1 2010 2850014 .211578 -1.35 0.1847099683 .1399654 1 2011 1833519 .1987758 -0.92 0.3615826049 .215901 1 2012 2016224 .230203 -0.88 0.3856639988 .2607539 1 2013 1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 2014 0000143 6.78e-06 -2.11 0.040 .0013389 .055937 entry_year .0286379 .0135914 2.11 0.040 .0013389 .055937 entry_year .0286379 .0135914 2.11 0.040 .001389 .055937 entry_year .0286379 .0135914 2.11 0.040 .0013389 .055937 entry_year .0286379 .0135914 2.11 0.040 .0013389 .055937 entry_year .0286379 .0135914 2.11 0.040 .0013389 .055937 entry_year .0000143 6.78e-06 -2.11 0.040 .001389 .055937 entry_year .0286379 .0135914 2.11 0.040 .00028 -7.10e-07 00028 -7.10e-07	1 1999	.1111813	.1518117	0.73	0.467	1937415	.4161041
1 2001 .4093614 .1593223 2.57 0.013 .0893531 .7293697 1 2002 .179055 .163468 1.10 0.2791492801 .50739 1 2003 .2783775 .1690002 1.65 0.1060610694 .6178243 1 2004 .1898786 .2056367 0.92 0.3602231549 .602912 1 2005 .176873 .1533229 1.15 0.2541310851 .4848311 1 2006 .5342604 .198834 2.69 0.010 .1348906 .9336301 1 2007 .311896 .1646644 1.89 0.0640188422 .6426343 1 2008 .2874458 .2110372 1.36 0.1791364348 .7113265 1 2009 0080328 .2109769 -0.04 0.9704317925 .4157268 1 2010 2850014 .211578 -1.35 0.1847099683 .1399654 1 2011 1833519 .1987758 -0.92 0.3615826049 .215901 1 2012 2016224 .230203 -0.88 0.3856639988 .2607539 1 2013 1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 2015 0718976	1 2000	.2761763	.2197205	1.26	0.215	1651453	.7174979
1 2002 .179055 .163468 1.10 0.2791492801 .50739 1 2003 .2783775 .1690002 1.65 0.1060610694 .6178243 1 2004 .1898786 .2056367 0.92 0.3602231549 .602912 1 2005 .176873 .1533229 1.15 0.2541310851 .4848311 1 2006 .5342604 .198834 2.69 0.010 .1348906 .9336301 1 2007 .311896 .1646644 1.89 0.0640188422 .6426343 1 2008 .2874458 .2110372 1.36 0.1791364348 .7113265 1 2009 0080328 .2109769 -0.04 0.9704317925 .4157268 1 2010 2850014 .211578 -1.35 0.1847099683 .1399654 1 2011 1833519 .1987758 -0.92 0.3615826049 .215901 1 2012 2016224 .230203 -0.88 0.3856639988 .2607539 1 2013 1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011	1 2001	.4093614	.1593223	2.57	0.013	.0893531	.7293697
1 2003 .2783775 .1690002 1.65 0.1060610694 .6178243 1 2004 .1898786 .2056367 0.92 0.3602231549 .602912 1 2005 .176873 .1533229 1.15 0.2541310851 .4848311 1 2006 .5342604 .198834 2.69 0.010 .1348906 .9336301 1 2007 .311896 .1646644 1.89 0.0640188422 .6426343 1 2008 .2874458 .2110372 1.36 0.1791364348 .7113265 1 2009 0080328 .2109769 -0.04 0.9704317925 .4157268 1 2010 2850014 .211578 -1.35 0.1847099683 .1399654 1 2011 1833519 .1987758 -0.92 0.3615826049 .215901 1 2012 2016224 .230203 -0.88 0.3856639988 .2607539 1 2013 1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 	1 2002	.179055	.163468	1.10	0.279	1492801	.50739
1 2004 .1898786 .2056367 0.92 0.3602231549 .602912 1 2005 .176873 .1533229 1.15 0.2541310851 .4848311 1 2006 .5342604 .198834 2.69 0.010 .1348906 .9336301 1 2007 .311896 .1646644 1.89 0.0640188422 .6426343 1 2008 .2874458 .2110372 1.36 0.1791364348 .7113265 1 2009 0080328 .2109769 -0.04 0.9704317925 .4157268 1 2010 2850014 .211578 -1.35 0.1847099683 .1399654 1 2011 1833519 .1987758 -0.92 0.3615826049 .215901 1 2012 2016224 .230203 -0.88 0.3856639988 .2607539 1 2013 1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 	1 2003	.2783775	.1690002	1.65	0.106	0610694	.6178243
1 2005 .176873 .1533229 1.15 0.2541310851 .4848311 1 2006 .5342604 .198834 2.69 0.010 .1348906 .9336301 1 2007 .311896 .1646644 1.89 0.0640188422 .6426343 1 2008 .2874458 .2110372 1.36 0.1791364348 .7113265 1 2009 0080328 .2109769 -0.04 0.9704317925 .4157268 1 2010 2850014 .211578 -1.35 0.1847099683 .1399654 1 2011 1833519 .1987758 -0.92 0.3615826049 .215901 1 2012 2016224 .230203 -0.88 0.3856639988 .2607539 1 2013 1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 	1 2004	.1898786	.2056367	0.92	0.360	2231549	.602912
1 2006 .5342604 .198834 2.69 0.010 .1348906 .9336301 1 2007 .311896 .1646644 1.89 0.0640188422 .6426343 1 2008 .2874458 .2110372 1.36 0.1791364348 .7113265 1 2009 0080328 .2109769 -0.04 0.9704317925 .4157268 1 2010 2850014 .211578 -1.35 0.1847099683 .1399654 1 2011 1833519 .1987758 -0.92 0.3615826049 .215901 1 2012 2016224 .230203 -0.88 0.3856639988 .2607539 1 2013 1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 	1 2005	.176873	.1533229	1.15	0.254	1310851	.4848311
1 2007 .311896 .1646644 1.89 0.0640188422 .6426343 1 2008 .2874458 .2110372 1.36 0.1791364348 .7113265 1 2009 0080328 .2109769 -0.04 0.9704317925 .4157268 1 2010 2850014 .211578 -1.35 0.1847099683 .1399654 1 2011 1833519 .1987758 -0.92 0.3615826049 .215901 1 2012 2016224 .230203 -0.88 0.3856639988 .2607539 1 2013 1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 	1 2006	.5342604	.198834	2.69	0.010	.1348906	.9336301
1 2008 .2874458 .2110372 1.36 0.1791364348 .7113265 1 2009 0080328 .2109769 -0.04 0.9704317925 .4157268 1 2010 2850014 .211578 -1.35 0.1847099683 .1399654 1 2011 1833519 .1987758 -0.92 0.3615826049 .215901 1 2012 2016224 .230203 -0.88 0.3856639988 .2607539 1 2013 1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 	1 2007	.311896	.1646644	1.89	0.064	0188422	.6426343
1 2009 0080328 .2109769 -0.04 0.9704317925 .4157268 1 2010 2850014 .211578 -1.35 0.1847099683 .1399654 1 2011 1833519 .1987758 -0.92 0.3615826049 .215901 1 2012 2016224 .230203 -0.88 0.3856639988 .2607539 1 2013 1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 	1 2008	.2874458	.2110372	1.36	0.179	1364348	.7113265
1 2010 2850014 .211578 -1.35 0.1847099683 .1399654 1 2011 1833519 .1987758 -0.92 0.3615826049 .215901 1 2012 2016224 .230203 -0.88 0.3856639988 .2607539 1 2013 1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 	1 2009	0080328	.2109769	-0.04	0.970	4317925	.4157268
1 2011 1833519 .1987758 -0.92 0.3615826049 .215901 1 2012 2016224 .230203 -0.88 0.3856639988 .2607539 1 2013 1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 entry_year .0286379 .0135914 2.11 0.040 .0013389 .055937 entry_year~q 0000143 6.78e-06 -2.11 0.040000028 -7.10e-07 _cons 33.85436 .2420943 139.84 0.000 33.3681 34.34062	1 2010	2850014	.211578	-1.35	0.184	7099683	.1399654
1 2012 2016224 .230203 -0.88 0.3856639988 .2607539 1 2013 1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 entry_year .0286379 .0135914 2.11 0.040 .0013389 .055937 entry_year~q 0000143 6.78e-06 -2.11 0.040000028 -7.10e-07 _cons 33.85436 .2420943 139.84 0.000 33.3681 34.34062	1 2011	1833519	.1987758	-0.92	0.361	5826049	.215901
1 2013 1973212 .2455937 -0.80 0.4266906106 .2959682 1 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 entry_year .0286379 .0135914 2.11 0.040 .0013389 .055937 entry_year~q 0000143 6.78e-06 -2.11 0.040000028 -7.10e-07 _cons 33.85436 .2420943 139.84 0.000 33.3681 34.34062	1 2012	2016224	.230203	-0.88	0.385	6639988	.2607539
1 2014 0504575 .2676334 -0.19 0.851588015 .4871001 1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 entry_year .0286379 .0135914 2.11 0.040 .0013389 .055937 entry_year~q 0000143 6.78e-06 -2.11 0.040000028 -7.10e-07 _cons 33.85436 .2420943 139.84 0.000 33.3681 34.34062	1 2013	1973212	.2455937	-0.80	0.426	6906106	.2959682
1 2015 0718976 .2296167 -0.31 0.7555330964 .3893011 entry_year .0286379 .0135914 2.11 0.040 .0013389 .055937 entry_year~q 0000143 6.78e-06 -2.11 0.040000028 -7.10e-07 _cons 33.85436 .2420943 139.84 0.000 33.3681 34.34062	1 2014	0504575	.2676334	-0.19	0.851	588015	.4871001
entry_year .0286379 .0135914 2.11 0.040 .0013389 .055937 entry_year~q 0000143 6.78e-06 -2.11 0.040000028 -7.10e-07 _cons 33.85436 .2420943 139.84 0.000 33.3681 34.34062	1 2015	0718976	.2296167	-0.31	0.755	5330964	.3893011
entry_year~q 0000143 6.78e-06 -2.11 0.040000028 -7.10e-07 _cons 33.85436 .2420943 139.84 0.000 33.3681 34.34062	entry year	 .0286379	.0135914	2.11	0.040	.0013389	.055937
_cons 33.85436 .2420943 139.84 0.000 33.3681 34.34062	entry year~a	0000143	6.78e-06	-2.11	0.040	000028	-7.10e-07
		33.85436	.2420943	139.84	0.000	33.3681	34.34062

Specification (6), Exogenous-wage, Method 1, Restricted sample

Linear regression

Number of obs	=	30,636
F(49, 50)	=	
Prob > F	=	
R-squared	=	0.1052
Root MSE	=	11.846

Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
+ 7.905769 .1200174	1.30381 .3780803	6.06 0.32	0.000	5.286989 6393793	10.52455 .8794141
4355519 .2836491	.4864501	-0.90 5.97	0.375	-1.412616 .1882963	.5415118
3607019 .8183339	.0319745	-6.41 25.59	0.000	4/3/46/ .7541112	24/65/2 .8825565
0157182 .0094106	.0006271	-25.07	0.000	0169778	0144587
-4.040423 267715	.2860017 .4334493	-14.13 -0.62	0.000 0.540	-4.614874 -1.138324	-3.465972 .6028936
0 	(omitted)				
.7485518 1.413986 1804799 1.089236	.2899931 .5739604 .4080328 .65299	2.58 2.46 -0.44 1.67	0.013 0.017 0.660 0.102	.1660836 .2611528 -1.000038 2223329	1.33102 2.566819 .6390781 2.400805
-1.040946 8154238 1544528 -3.777703	.8954723 1.113773 .6634817 5.379541	-1.16 -0.73 -0.23 -0.70	0.251 0.468 0.817 0.486	-2.839555 -3.052503 -1.487095 -14.58283	.7576629 1.421655 1.178189 7.027422
 0037509 1.102696 .6105212	.0124582 .2958736 .8641468	-0.30 3.73 0.71	0.765 0.000 0.483	0287739 .5084168 -1.125169	.0212721 1.696976 2.346211
<pre> . 2798005 . 3772144010149463639935701946617985727240471.02695281248151.11279469930051.929692.53675713070490690941.9741951.371693</pre>	.8309334 .675202 .773883 .5992803 .561601 .6074671 .6960788 .7605453 .6600599 .7116542 .7637788 .6915784 .6058317 .5534833 .6424728 .6545945	$\begin{array}{c} 0.34 \\ 0.56 \\ -0.01 \\ -1.02 \\ -1.02 \\ -0.39 \\ -1.35 \\ -1.23 \\ -1.56 \\ -0.92 \\ -2.79 \\ -4.19 \\ -1.29 \\ -1.41 \\ -3.02 \\ -2.30 \end{array}$	0.738 0.579 0.990 0.293 0.315 0.314 0.697 0.183 0.224 0.124 0.364 0.007 0.000 0.204 0.164 0.004 0.25	-1.389178 9789687 -1.564539 -1.840089 -1.698203 -1.838119 -1.67052 -2.554553 -2.138251 -2.542193 -2.233395 -3.318766 -3.753598 -1.824774 -2.197354 -3.288986 -2.567359	1.948779 1.733397 1.54424 .5672907 .5578141 .6021478 1.125711 .5006478 .5132878 .3166058 .8347944 5406138 -1.319901 .3986335 .3835352 6594031 - 1760264
	Coef. 7.905769 .1200174 -4355519 .2836491 -3607019 .8183339 -4334894 -0157182 .0094106 -4.040423 267715 0 .7485518 1.413986 -1804799 1.089236 .1804799 1.089236 .1804799 1.089236 .1544528 -3.777703 0037509 1.102696 .6105212 .2798005 .3772144 0101494 6363993 5701946 .6179857 .2724047 1.026952 .3772144 .6363993 5701946 .6179857 .2724047 1.026952 .8124815 1.112794 .6993005 -1.92969 -2.53675 .7130704 -9069094 -1.974195 -1.371693	Robust Coef. Std. Err. 7.905769 1.30381 .1200174 .3780803 -4355519 .4864501 .2836491 .0474732 -3607019 .0562815 .8183339 .0319745 .4334894 .0482299 -0157182 .0006271 .0094106 .00088 -4.040423 .2860017 267715 .4334493 0 (omitted) .7485518 .2899931 1.413986 .5739604 1804799 .4080328 1.089236 .65299 .0154528 .6634817 -3.777703 5.379541 0037509 .0124582 1.102696 .2958736 .6105212 .8641468 .2798005 .8309334 .3772144 .675202 .0101494 .773883 .6363993 .5992803 .5701946 .561601 .6179857 .6074671 .2724047 .6960788 1.026952 .7605453 .8124815 .6600599 1.112794 .7116542 .6093005 .7637788 -1.92969 .6915784 .2.53675 .6058317 .7130704 .5534833 .9069094 .6424728 .1.97495 .6545945 .1.371693 .592855	Robust Coef. Std. Err. t 7.905769 1.30381 6.06 .1200174 .3780803 0.32 4355519 .4864501 -0.90 .2836491 .0474732 5.97 3607019 .0562815 -6.41 .8183339 .0319745 25.59 4334894 .0482299 -8.99 0157182 .0006271 -25.07 .0094106 .00088 10.69 -4.040423 .2860017 -14.13 267715 .4334493 -0.62 0 (omitted) 0 .7485518 .2899931 2.58 1.413986 .5739604 2.46 1804799 .4080328 -0.44 1.089236 .65299 1.67 -1.040946 .8954723 -1.16 8154238 1.113773 -0.73 1544528 .6634817 -0.23 -3.777703 5.379541 -0.70 0037509 .0124582 -0.3	Robust Coef. Std. Err. t P> t 7.905769 1.30381 6.06 0.000 .1200174 .3780803 0.32 0.752 .4355519 .4864501 -0.90 0.375 .2836491 .0474732 5.97 0.000 .3607019 .0562815 -6.41 0.000 .8183339 .0319745 25.59 0.000 .0157182 .0006271 -25.07 0.000 .0094106 .00088 10.69 0.000 -4.040423 .2860017 -14.13 0.000 -267715 .4334493 -0.62 0.540 0 (omitted) 0 0 0 1.413986 .5739604 2.46 0.017 -1.804799 .4080328 -0.44 0.660 1.089236 .65299 1.67 0.102 -1.040946 .8954723 -1.16 0.251 8154238 1.113773 -0.70 0.468 1544528	Robust Coef. Std. Err. t P> t [95% Conf. 7.905769 1.30381 6.06 0.000 5.286989 .1200174 .3780803 0.32 0.752 6393793 4355519 .4864501 -0.90 0.375 -1.412616 .2836491 .0474732 5.97 0.000 4737467 .8183339 .0319745 25.59 0.000 530362 0157182 .006271 -25.07 0.000 0169778 .0094106 .00088 10.69 0.000 0169778 .0094106 .00088 10.69 0.000 0169778 .0094106 .00088 10.69 0.001 0169778 .0094106 .00088 10.69 0.001 138324 .000617 .4334493 -0.62 0.540 -1.138324 .1413986 .5739604 2.46 0.017 .2611528 .184928 .6634817 -0.23 0.817 -1.487095 .3777

migrant#vear	- 1						
1 1999	1	1.215766	1.150819	1.06	0.296	-1.095722	3.527254
1 2000	i	1.998541	.7457138	2.68	0.010	.5007307	3.496351
1 2001	i	1.448698	1.479561	0.98	0.332	-1.523088	4.420484
1 2002	Ì	3.008652	1.418934	2.12	0.039	.1586392	5.858665
1 2003	1	2.679136	1.140168	2.35	0.023	.3890405	4.969231
1 2004	1	2.585756	1.32265	1.95	0.056	0708653	5.242377
1 2005	1	1.864337	.8845265	2.11	0.040	.0877137	3.640961
1 2006		4.049353	1.415241	2.86	0.006	1.206757	6.891948
1 2007		3.145509	.9727225	3.23	0.002	1.191739	5.09928
1 2008		2.461729	1.219496	2.02	0.049	.0122994	4.911158
1 2009		1.495757	1.227366	1.22	0.229	9694798	3.960994
1 2010		1.252431	.939366	1.33	0.188	6343415	3.139203
1 2011		1.861934	.9687056	1.92	0.060	0837689	3.807636
1 2012	1	.4555787	1.066287	0.43	0.671	-1.686122	2.597279
1 2013		.385854	1.213339	0.32	0.752	-2.051208	2.822916
1 2014		1.625145	1.130736	1.44	0.157	6460045	3.896295
1 2015		1.879473	.9809125	1.92	0.061	0907483	3.849693
	3	27.83292	.8947799	31.11	0.000	26.0357	29.63014

Specification (6), Exogenous-wage, Method 1, Full sample

Linear regression	Number of obs	=	1,365,655
	F(49, 50)	=	
	Prob > F	=	
	R-squared	=	0.1249
	Root MSE	=	9.8345

hoursworked		Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant post911entry post911ent~t minwage post911min~e post911min~t	 	3.92594 -1.107748 .6015125 -1.577819 -1.070038 1.961707	.3983204 .0713553 .1287621 .1880387 .2845364 .3563113	9.86 -15.52 4.67 -8.39 -3.76 5.51	0.000 0.000 0.000 0.000 0.000 0.000 0.000	3.12589 -1.251069 .3428862 -1.955506 -1.641546 1.246035	4.72599 9644267 .8601388 -1.200132 4985301 2.67738
hsgrad assocgrad bachgrad mastgrad doctorgrad		2.343504 2.941155 4.65375 5.571019 8.836971	.1205233 .1299241 .129252 .1699609 .2518852	19.44 22.64 36.01 32.78 35.08	0.000 0.000 0.000 0.000 0.000	2.101426 2.680195 4.394139 5.229642 8.331045	2.585582 3.202115 4.91336 5.912395 9.342897
migrantnsg~d migrantass~d migrantbac~d migrantmas~d migrantdoc~d exp migrantexp exp_sq migrantexp~q female		-1.757202 -2.102367 -2.56638 -2.669308 -2.294328 .5818744 2902577 0112146 .0059773 -4.841351	.1391404 .2164705 .2316417 .2700511 .2584009 .0104849 .0173094 .0001957 .0003097 .1120193	-12.63 -9.71 -11.08 -9.88 -8.88 55.50 -16.77 -57.31 19.30 -43.22	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	-2.036673 -2.537161 -3.031647 -3.211721 -2.813342 .5608148 3250246 0116076 .0053552 -5.066348	-1.47773 -1.667573 -2.101114 -2.126894 -1.775315 .602934 2554908 0108215 .0065994 -4.616353
migrantfem~e		.7973156	.1167893	6.83	0.000	.5627375	1.031894

1.migrant	0	(omitted)				
wbhao Black Hispanic Asian Other	.0286195 .1021902 4249046 .243033	.0784722 .2238576 .2669199 .1538724	0.36 0.46 -1.59 1.58	0.717 0.650 0.118 0.121	1289966 347441 9610289 0660288	.1862355 .5518214 .1112198 .5520949
migrant# wbhao 1#Black 1#Hispanic 1#Asian 1#Other	4589567 5675025 3440512 7327593	.1350949 .162595 .2480062 .4559897	-3.40 -3.49 -1.39 -1.61	0.001 0.001 0.172 0.114	7303027 8940841 8421863 -1.648642	1876106 2409208 .154084 .1831229
years_sinc~1 rural migrantrural	.2539471 .7434832	.0886882 .2813798	4.59 2.86 2.64	0.000 0.006 0.011	.0758116 .1783152	.4320825 1.308651
year 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015	.1059925 .1172114 .0596771 1394455 3273033 3494912 2230865 1124516 0105149 0340811 3356259 6664397 66391 4907057 3723637 348812 1343567	.0657723 .0898281 .0960076 .075914 .08331 .1038029 .0898959 .1036895 .0859976 .0937188 .0906593 .0937623 .0937623 .0876327 .0926573 .1114948 .1080156 .0994467	1.61 1.30 0.62 -1.84 -3.93 -3.37 -2.48 -1.08 -0.12 -0.36 -3.70 -7.11 -7.58 -5.30 -3.34 -3.23 -1.35	0.113 0.198 0.537 0.072 0.000 0.001 0.016 0.283 0.903 0.718 0.001 0.000 0.000 0.000 0.000 0.002 0.002 0.183	0261149 0632137 1331599 2919233 4946364 5579854 4036479 320718 1832461 2223208 5177204 8547668 8399254 6768134 5963076 5657678 3341013	.2381 .2976365 .252514 .0130322 1599701 1409969 0425252 .0958148 .1622163 .1541587 1535314 4781127 4878946 3045979 1484198 1318562 .065388
migrant#year 1 1999 1 2000 1 2001 1 2002 1 2003 1 2004 1 2005 1 2006 1 2007 1 2008 1 2009 1 2010 1 2011 1 2012 1 2013 1 2014 1 2015	.0833423 .2285872 .3338429 .1155923 .253002 .197458 .2055744 .5540359 .2733305 .1660395 .0748233 449564 3516432 4328384 4581659 260534 261824	.1542633 .212111 .163682 .1616502 .1526948 .1959139 .1320462 .1767034 .1183844 .1601614 .1588099 .1527093 .1256408 .1487034 .166835 .1757392 .14111	0.54 1.08 2.04 0.72 1.66 1.01 1.56 3.14 2.31 1.04 -0.47 -2.94 -2.80 -2.91 -2.75 -1.48 -1.86	0.591 0.286 0.047 0.478 0.104 0.318 0.126 0.003 0.025 0.305 0.640 0.005 0.007 0.005 0.008 0.144 0.069	2265046 1974503 .005078 2090916 0536944 1960466 0596483 .1991166 .0355483 1556541 3938023 7562896 6040001 731518 793264 6135166 5452518	.3931892 .6546247 .6626079 .4402762 .5596985 .5909625 .4707971 .9089552 .5111126 .4877331 .2441558 -1428384 -0992863 -1341588 -1230679 .0924486 .0216037
_cons	33.85483	.2421628	139.80	0.000	33.36843	34.34123

Specification (1), Exogenous-wage, Method 2, Restricted sample

1 2 2 2 2 2	rogroggion	
LI LIEAT	PULESSION	
TTTCGT	10910001011	
	2	

Number of obs	=	18,961
F(3, 50)	=	374.51
Prob > F	=	0.0000
R-squared	=	0.0691
Root MSE	=	8.4621

(S	td.	Err.	adjusted	for	51	clusters	in	state)

hoursworked		Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant		3.399085	.2039193	16.67	0.000	2.989501	3.808669
post911entry		-3.043817	.1963339	-15.50	0.000	-3.438165	-2.649469
post911ent~t		3.445092	.4370817	7.88	0.000	2.567188	4.322997
cons		22.72649	.2745094	82.79	0.000	22.17512	23.27785

Specification (1), Exogenous-wage, Method 2, Full sample

Linear regres	sior	1					Numbe F(7, Prob R-squ Root	r of 50) > F ared MSE	obs	= = = =	1,376,33 5536.5 0.000 0.054 10.23
				(Std	. Err.	adj	usted	for 5	1 cl:	usters	in state
hoursworked	 +	Coef.	Rob Std.	ust Err.		: 	P> t		[95%	Conf.	Interval
<pre>migrant post911entry post911ent~t minwagedemo mi~o_migrant minwaged~911 mi~1_migrantcons</pre>	- - - -	6373058 -4.439733 3.564527 -20.54823 2.390976 2.52152 -1.952781 40.58296	.156 .158 .201 .167 .307 .257 .573 .117	59584 6767 .3972 73399 71897 7039 81618 74857	-4. -27. 17. -122. 7. 9. -3. 345.)6 98 70 79 78 78 41 43	0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000	- - -	.952 4.758 3.160 20.88 1.77 2.00 3.104 40.34	5661 8444 0009 8435 3968 3906 4011 4699	322045 -4.12102 3.96904 -20.2121 3.00798 3.03913 801551 40.8189

Specification (2), Exogenous-wage, Method 2, Restricted sample

Linear regressio	on			Numbe	er of (obs =	18,961
				F(14	, 50)	=	
				Prob	> F	=	
				R-sq	uared	=	0.2048
				Root	MSE	=	7.8232
		(Std.	Err.	adjusted	for 5	l clusters	in state)
hoursworked	Coef.	Robust Std. Err.		P>lt		[95% Conf.	Intervall

	+												
migrant	.71	67347	.449	4572	1	.59	0.1	17		18602	66	1	.619496
post911entry	38	303468	.208	8023	-1	.82	0.0	75		79973	85	.(0390449
post911ent~t	.42	220927	.489	8326	0	.86	0.3	93	-	.5617	65	-	1.40595
yearseduc	.46	529159	.06	5472	7	.07	0.0	00		33141	14	• [5944204
exp	1.8	326511	.099	0891	18	.43	0.0	00	1	.6274	84	2.	.025537
exp_sq	06	506875	.005	5312	-10	.97	0.0	00		07179	72	(0495777
female	78	325739	.176	2122	-4	.44	0.0	00	-1	.1365	06	4	4286413
white	47	704269	.661	3828	-0	.71	0.4	80	-1	.7988	53	• {	8579996
black	.75	509087	.619	2378	1	.21	0.2	31		49286	71	1	.994684
asian	-1.9	938767	.755	4907	-2	.57	0.0	13	-3	.4562	15	4	4213194
hispanic	1.3	363842	.657	4631	2	.07	0.0	43		.0432	89	2	.684396
years sinc~l	(022391	.031	6808	-0	.71	0.4	83		08602	39	. (0412418
_ rural	.32	266408	.231	2109	1	.41	0.1	64		13776	01	. '	7910416
year	11.	.76676	13	.271	0	.89	0.3	80	-1	4.888	82	38	8.42234
year sq	00)29587	.003	3067	-0	.89	0.3	875		00960	04	. (0036829
_cons	-116	587.21	1331	4.99	-0	.88	0.3	884	-3	8431.	16	15	5056.75

Specification (2), Exogenous-wage, Method 2, Full sample

Linear regression	Number of obs	=	1,376,334
	F(17, 50)	=	
	Prob > F	=	
	R-squared	=	0.1345
	Root MSE	=	9.7882

(Std. Err. adjusted for 51 clusters in state)

			Robust				
hoursworked		Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	Ì	1104543	.0977958	-1.13	0.264	3068829	.0859744
post911entry	1	-1.221956	.0817897	-14.94	0.000	-1.386236	-1.057677
post911ent~t	1	.7833885	.1442754	5.43	0.000	.4936028	1.073174
minwagedemo	1	-15.66849	.1632538	-95.98	0.000	-15.9964	-15.34059
mi~o migrant	1	1.283739	.3064663	4.19	0.000	.6681835	1.899295
minwaged~911	1	1861945	.2159833	-0.86	0.393	6200098	.2476207
mi~1 migrant	1	.2601262	.5980285	0.43	0.665	9410494	1.461302
yearseduc	1	.4377373	.0218295	20.05	0.000	.3938916	.4815831
exp	Ι	.4985852	.0090909	54.84	0.000	.4803256	.5168448
exp sq	1	0095439	.0001591	-60.00	0.000	0098634	0092245
female	1	-4.760956	.1187524	-40.09	0.000	-4.999478	-4.522435
white	1	004669	.1655553	-0.03	0.978	3371966	.3278585
black	Ι	2366979	.1602133	-1.48	0.146	5584958	.0851
asian	Ι	6853726	.1811435	-3.78	0.000	-1.04921	3215351
hispanic	1	.0145764	.2073986	0.07	0.944	4019959	.4311487
years sinc~l	1	.0062211	.0026726	2.33	0.024	.0008531	.0115891
rural	1	.1773003	.0770166	2.30	0.026	.0226079	.3319927
year	Ι	-7.441315	3.716156	-2.00	0.051	-14.90543	.0228035
year sq	Ι	.0018451	.0009261	1.99	0.052	000015	.0037052
_cons		7533.993	3724.773	2.02	0.048	52.56625	15015.42

Specification (3), Exogenous-wage, Method 2, Restricted sample

Linear regression

Number of obs	=	18,961
F(30, 50)	=	267.36
Prob > F	=	0.0000
R-squared	=	0.2057
Root MSE	=	7.8218

(Std. Err. adjusted for 51 clusters in state)

hoursworked	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	.7003378	.4353917	1.61	0.114	1741722	1.574848
post911entry	4195212	.2380387	-1.76	0.084	897636	.0585937
post911ent~t	.4570722	.4899649	0.93	0.355	5270512	1.441196
yearseduc	.4615503	.0653427	7.06	0.000	.3303058	.5927949
exp	1.822735	.1006361	18.11	0.000	1.620601	2.024868
exp_sq	0605506	.0055779	-10.86	0.000	0717541	0493471
female	7811445	.1770215	-4.41	0.000	-1.136703	4255863
white	4596369	.6657308	-0.69	0.493	-1.796797	.8775228
black	.7550998	.621096	1.22	0.230	4924083	2.002608
asian	-1.94303	.7514928	-2.59	0.013	-3.452448	4336123
hispanic	1.380776	.6600932	2.09	0.042	.0549392	2.706612
years_sinc~l	0226264	.0315964	-0.72	0.477	0860896	.0408369
rural	.3283321	.2288642	1.43	0.158	1313552	.7880194
year						
1999	7448814	.4365456	-1.71	0.094	-1.621709	.1319463
2000	.2354792	.4074698	0.58	0.566	582948	1.053906
2001	4327926	.4739346	-0.91	0.366	-1.384718	.519133
2002	4217095	.3833614	-1.10	0.277	-1.191713	.3482945
2003	6491215	.3922297	-1.65	0.104	-1.436938	.1386951
2004	909954	.4447281	-2.05	0.046	-1.803217	0166914
2005	4246642	.4618421	-0.92	0.362	-1.352301	.502973
2006	4138701	.290829	-1.42	0.161	9980173	.170277
2007	9134553	.3950312	-2.31	0.025	-1.706899	1200117
2008	7996767	.5327002	-1.50	0.140	-1.869637	.2702831
2009	-1.28723	.4299992	-2.99	0.004	-2.150909	4235515
2010	-1.550404	.3544629	-4.37	0.000	-2.262364	8384444
2011	-1.374015	.4404425	-3.12	0.003	-2.25867	4893605
2012	-1.509183	.5670536	-2.66	0.010	-2.648144	3702229
2013	-1.417994	.4286029	-3.31	0.002	-2.278869	5571199
2014	-1.587909	.3962197	-4.01	0.000	-2.38374	7920784
2015	-2.086402	.4321751	-4.83	0.000	-2.954451	-1.218352
_cons	11.78712	1.042879	11.30	0.000	9.692434	13.8818

Specification (3), Exogenous-wage, Method 2, Full sample

Linear regression			Numbe F(38) Prob	er of o , 50) > F	bs = = =	1,3 13	376,334 3059.52 0.0000
			R-squ Root	MSE	=		9.7451
	(Std.	Err.	adjusted	for 51	clusters	in	state)

hoursworked	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	7499548	.1187117	-6.32	0.000	9883942	5115154
post911entry	-1.264555	.089392	-14.15	0.000	-1.444104	-1.085006
post911ent~t	.7837397	.1578738	4.96	0.000	.4666409	1.100838
minwagedemo	-16.36229	.1847873	-88.55	0.000	-16.73345	-15.99114
mi~o migrant	1.512248	.3116018	4.85	0.000	.8863774	2.138119
minwaged~911	021872	.2202225	-0.10	0.921	464202	.420458
mi~1 migrant	2346927	.6109803	-0.38	0.703	-1.461883	.9924974
_ hsgrad	0184474	.1067411	-0.17	0.863	2328431	.1959484
assocgrad	.6351623	.1021743	6.22	0.000	.4299391	.8403855
bachgrad	2.256735	.0809383	27.88	0.000	2.094165	2.419304
mastgrad	3.217967	.1092447	29.46	0.000	2.998543	3.437392
doctorgrad	6.567646	.1806291	36.36	0.000	6.204842	6.930451
exp	.4859654	.0084011	57.85	0.000	.4690913	.5028394
exp_sq	0094545	.0001474	-64.13	0.000	0097506	0091583
female	-4.689602	.1171732	-40.02	0.000	-4.924951	-4.454253
white	1088718	.1557913	-0.70	0.488	4217879	.2040442
black	2020571	.1578504	-1.28	0.206	519109	.1149948
asian	7539063	.1716262	-4.39	0.000	-1.098628	409185
hispanic	2676336	.214615	-1.25	0.218	6987005	.1634334
years_sinc~l	.0110062	.0025331	4.35	0.000	.0059185	.016094
rural	.2390895	.0847327	2.82	0.007	.0688989	.4092801
year						
1999	.1201024	.0587373	2.04	0.046	.0021251	.2380797
2000	.1654855	.0870953	1.90	0.063	0094504	.3404215
2001	.1108663	.0901201	1.23	0.224	0701453	.2918778
2002	1116823	.0650034	-1.72	0.092	2422456	.0188809
2003	2825787	.0755223	-3.74	0.000	4342698	1308877
2004	3122651	.0977952	-3.19	0.002	5086926	1158376
2005	2037599	.0834406	-2.44	0.018	3713554	0361645
2006	0347611	.0892125	-0.39	0.698	2139496	.1444275
2007	.0170499	.079726	0.21	0.832	1430844	.1771842
2008	0160247	.07963	-0.20	0.841	1759663	.1439168
2009	3572007	.0764307	-4.67	0.000	5107163	2036851
2010	7311347	.0826021	-8.85	0.000	8970459	5652235
2011	711943	.0810848	-8.78	0.000	8748066	5490794
2012	552917	.0840934	-6.58	0.000	7218236	3840103
2013	441923	.0939333	-4.70	0.000	6305936	2532524
2014	4010441	.1010425	-3.97	0.000	6039938	1980943
2015	1894813	.0919683	-2.06	0.045	3742052	0047575
_cons	37.23887	.222865	167.09	0.000	36.79123	37.68651

Specification (4), Exogenous-wage, Method 2, Restricted sample

Linear regression		Number of obs	. =	18,961
		F(49, 50)	=	
		Prob > F	=	
		R-squared	=	0.2118
		Root MSE	=	7.7973
	(Std. Err.	adjusted for 51 c	lusters in	state)
	Robust			

hoursworked	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	4.178698	1.492726	2.80	0.007	1.180469	7.176927
post911entry	2534664	.2989811	-0.85	0.401	8539875	.3470548
post911ent~t	.0444389	.456773	0.10	0.923	8730166	.9618944
yearseduc	.5168508	.0885184	5.84	0.000	.3390564	.6946452
migrantyea~c	0883551	.1132075	-0.78	0.439	315739	.1390289
exp	2.219178	.1310605	16.93	0.000	1.955935	2.48242
migrantexp	-1.04966	.2051858	-5.12	0.000	-1.461788	6375325
exp sq	0890008	.0074511	-11.94	0.000	1039668	0740348
migrantexp~q	.0613165	.0116925	5.24	0.000	.0378315	.0848015
female	5425867	.1668358	-3.25	0.002	8776863	2074871
migrantfem~e	-1.4829	.2976343	-4.98	0.000	-2.080716	8850839
1.migrant	0	(omitted)				
 wbhao						
Black	1.098787	.2498918	4.40	0.000	.596865	1.60071
Hispanic	1.701197	.3195253	5.32	0.000	1.059411	2.342982
Asian	-1.04257	.6178778	-1.69	0.098	-2.283614	.1984745
Other	.4406113	.6569571	0.67	0.506	8789258	1.760148
migrant#1						
wbhao						
1#Black	4766015	1.017558	0.47	0.642	-1.567223	2.520426
1#Hispanic	1.124414	.9683347	1.16	0.251	8205434	3.069372
1#Asian	5598626	1.227416	-0.46	0.650	-3.0252	1.905475
1#0ther	-2.162777	1.840444	-1.18	0.246	-5.859417	1.533864
	2.102777	1.010111	1.10	0.210	0.000117	1.000001
years_sinc~l	0243338	.0354982	-0.69	0.496	0956341	.0469666
rural	.3624564	.2323351	1.56	0.125	1042023	.8291151
migrantrural	5899919	.6201741	-0.95	0.346	-1.835648	.6556645
year						
1999 1	7270419	.4511789	-1.61	0.113	-1.633261	.1791776
2000	.0553646	.4534317	0.12	0.903	8553797	.9661089
2001	5092863	.4800865	-1.06	0.294	-1.473568	.4549958
2002	3794829	.4022	-0.94	0.350	-1.187325	.4283595
2003	749685	.3879778	-1.93	0.059	-1.528961	.0295913
2004	-1.030847	.5541221	-1.86	0.069	-2.143834	.0821396
2005	4258916	.5111713	-0.83	0.409	-1.452609	.6008262
2006	6606352	.3721237	-1.78	0.082	-1.408068	.0867972
2007	-1.403108	.4905667	-2.86	0.006	-2.38844	4177759
2008	-1.020285	.6036487	-1.69	0.097	-2.232749	.1921792
2009	-1.508972	.5261781	-2.87	0.006	-2.565832	4521118
2010	-1.933364	. 4480939	-4.31	0.000	-2.833387	-1.033341
2011	-1.815408	.5754985	-3.15	0.003	-2.97133	6594848
2012	-1.877443	.6153312	-3.05	0.004	-3.113372	6415135
2013	-1.655127	. 608028	-2.72	0.009	-2.876387	433867
2014	-1.475066	.5201077	-2.84	0.007	-2.519733	- 4303987
2015	-2.30666	.5126652	-4.50	0.000	-3.336379	-1.276942
migrant #woar						
1 1000 I	- 5878877	7898111	_0 74	0 461	-2 169337	1 003561
1 2000 I	1 266806	926090444	1 27	0.404	_ 5933010	3 126015
1 2000	1.200000	7123/32	1.3/	0.111	-1 063175	J.IZUJIJ 1 700300
1 2001	- 5862730	7862851	-0 75	0.000	-2 165574	T 1 20222
1 2002	5002/39	9280121	0.75	0.400	_1 362082	2 361050 2 361050
1 2003		0500121	0.54	0.392	-1.2502902	2.304932
1 2005 V	- 4000903	-0JUU0J4 7525201	-0 60	0.393	-1.230/08	2.104103
1 2000	404022/	./JJJZØL 1 020175	-0.60	0.349	-1.200120 _1.20070	1.UJ0003
T ZUUD	./∠030⊥3	I.UZUI/J	∪./⊥	0.400	-1.322/2	2.1/3442

1	2007	2.226671	.8970986	2.48	0.016	.4247953	4.028546
1	2008	.8304585	.7957883	1.04	0.302	7679293	2.428846
1	2009	.4618456	.8354526	0.55	0.583	-1.21621	2.139901
1	2010	1.33122	.742111	1.79	0.079	1593535	2.821794
1	2011	1.575738	.9005689	1.75	0.086	2331076	3.384584
1	2012	1.29669	1.29742	1.00	0.322	-1.309255	3.902636
1	2013	.7808569	.9911432	0.79	0.435	-1.209913	2.771627
1	2014	8271853	1.043006	-0.79	0.431	-2.922124	1.267753
1	2015	.7107802	.9469529	0.75	0.456	-1.191231	2.612791
	_cons	9.883509	1.148658	8.60	0.000	7.576363	12.19066

Specification (4), Exogenous-wage, Method 2, Full sample

Linear regression	Number of obs	=	1,376,334
	F(49, 50)	=	
	Prob > F	=	
	R-squared	=	0.1374
	Root MSE	=	9.7723

hoursworked	Coef.	Robust Std. Err.		 P> t	[95% Conf.	Interval]
	+					
migrant	5.645127	.6345277	8.90	0.000	4.370641	6.919614
post911entry	-1.175211	.0799375	-14.70	0.000	-1.33577	-1.014652
post911ent~t	1.02048	.153152	6.66	0.000	.7128652	1.328095
minwagedemo	-15.14772	.2028684	-74.67	0.000	-15.5552	-14.74025
mi~o_migrant	438851	.3213981	-1.37	0.178	-1.084398	.206696
minwaged~911	2954896	.2088758	-1.41	0.163	7150289	.1240497
mi~l_migrant	.4768193	.5864003	0.81	0.420	7010004	1.654639
yearseduc	.539902	.0172497	31.30	0.000	.5052551	.574549
migrantyea~c	2993099	.0304162	-9.84	0.000	3604025	2382172
exp	.535999	.0116779	45.90	0.000	.5125433	.5594546
migrantexp	2191925	.0151085	-14.51	0.000	2495388	1888462
exp_sq	0104456	.0002179	-47.94	0.000	0108832	010008
migrantexp~q	.0048806	.000288	16.94	0.000	.0043021	.0054591
female	-4.874951	.1118806	-43.57	0.000	-5.099669	-4.650232
migrantfem~e	.7833414	.1048985	7.47	0.000	.5726466	.9940363
1.migrant	0	(omitted)				
wbhao	100005	0741055	1 7 5	0 007	0700005	0100005
Black	1296225	.0/41855	-1./5	0.08/	2/86285	.0193835
Hispanic	0559648	.2328/39	-0.24	0.811	5237058	.411//63
Asian	4122498	.2885105	-1.43	0.159	9917403	.1672407
Other	.0761098	.1582752	0.48	0.633	2417952	.3940148
migrant#						
wbhao						
1#Black	- 5114527	.1327488	-3.85	0.000	7780865	2448189
1#Hispanic	4513473	.1568765	-2.88	0.006	7664431	1362516
1#Asian	2699623	.2656645	-1.02	0.314	8035651	.2636405
1#Other	6217977	.418246	-1.49	0.143	-1.461869	.2182741
years sinc~l	.0088343	.0024753	3.57	0.001	.0038626	.0138061
rural	.2135583	.0884261	2.42	0.019	.0359492	.3911674

migrantrural	.8284397	.2628599	3.15	0.003	.3004701	1.356409
woor						
1000 I	1128209	0672271	1 68	0 1 0 0	- 0222088	2478506
2000	1376039	0928869	1 / 8	0.145	- 048965	32/1728
2000	.1570059	.0920009	1.40	0.145	- 1212022	2/00211
2001	1270495	.0340739	1 74	0.000	1313032	.2490211
2002	2107224	.0/33372	-1.74	0.000	2/30323	.0197333
2003	3197224	.0826575	-3.87	0.000	485/448	15369999
2004	3345607	.104/419	-3.19	0.002	5449409	1241804
2005	218//0/	.091/024	-2.39	0.021	4029604	034581
2006	10/6388	.105147	-1.02	0.311	3188326	.1035551
2007	0083407	.08/964/	-0.09	0.925	185023	.1683415
2008	0501885	.0955514	-0.53	0.602	2421092	.141/322
2009	3429247	.0905334	-3.79	0.000	524/663	161083
2010	6713351	.0978455	-6.86	0.000	8678635	4748066
2011	6762919	.090219	-7.50	0.000	8575021	4950817
2012	5047067	.0956226	-5.28	0.000	6967704	312643
2013	3965072	.1096045	-3.62	0.001	6166544	17636
2014	3685289	.1119743	-3.29	0.002	5934359	1436218
2015	150668	.1017139	-1.48	0.145	3549663	.0536303
migrant#vear						
1 1999	.0123529	.1555472	0.08	0.937	3000727	.3247786
1 2000	.1299131	.2072025	0.63	0.534	2862655	.5460916
1 2001	.2708066	.1546694	1.75	0.086	0398561	.5814692
1 2002	0163238	.1603163	-0.10	0.919	3383286	.305681
1 2003	.0837763	.1635471	0.51	0.611	2447177	. 4122704
1 2004	0079608	.1891683	-0.04	0.967	3879165	.3719948
1 2005	0800377	.1229917	-0.65	0.518	3270738	.1669983
1 2006	.2544998	.1787638	1.42	0.161	1045579	. 6135575
1 2007	0372762	.1180324	-0.32	0.753	2743512	.1997988
1 2008	0893781	.1698676	-0.53	0.601	4305673	.2518111
1 2009	3770793	.1592743	-2.37	0.022	6969912	0571674
1 2010	-7013859	1539404	-4 56	0 000	-1 010584	- 3921875
1 2010	- 6462928	1380126	-4 68	0 000	- 9234993	- 3690862
1 2012	-6913321	1559551	-4 43	0 000	-1 004577	- 3780871
1 2013	6938069	.149711	-4.63	0.000	9945102	3931035
1 2014	5414492	.1696481	-3 19	0.002	8821974	2007009
1 2015	-5776247	1320315	-4 37	0 000	- 8428177	- 3124317
T 2013		. 1020010	J/	0.000	.07201//	. JIZIJI/
_cons	30.116	.4247502	70.90	0.000	29.26286	30.96914

Specification (5), Exogenous-wage, Method 2, Restricted sample

Linear regres	sio	n				Number c	of obs	=		18,961
						F(49, 50))	=		
						Prob > F	•	=		
						R-square	ed	=		0.2119
						Root MSE		=		7.7974
				(Std.	Err. adj	usted for	51 clust	ers	in	state)
hoursworked		Coef.	Robu Std.	st Err.	t	P> t	[95% Co	onf.	Inte	erval]
	+									
migrant		3.041743	1.576	429	1.93	0.059	124608	32	6.	208094
post911entry	1	2564114	.2992	781	-0.86	0.396	857529	91	.3	447064

post911ent~t	1300773	.6006687	-0.22	0.829	-1.336556	1.076401
yearseduc	.5185563	.0888767	5.83	0.000	.3400422	.6970704
migrantyea~c	0764471	.1119085	-0.68	0.498	3012219	.1483277
exp	2.220364	.1314113	16.90 5 16	0.000	1.956416	2.484311
avn sa	-1.034463	.2043239	-11 90	0.000	-1.403201	0430040
migrantevn~g	0090090	0117105	-11.90	0.000	1041252	0853472
female	- 5409787	1674782	-3 23	0.000	- 8773685	- 2045889
migrantfem~e	-1.478802	.2980022	-4.96	0.000	-2.077357	8802471
1.migrant	0	(omitted)				
wbhao						
Black	1.100114	.2497561	4.40	0.000	.5984636	1.601764
Hispanic	1.6/3169	.3248483	5.15	0.000	1.020692	2.325646
Other	.4389732	.6556556	-1.88 0.67	0.506	8779498	1.755896
 migrant						
wbhao						
1#Black	.4701161	1.002438	0.47	0.641	-1.543339	2.483571
1#HISpanic	- 5204034	.9003031 1 220727	-0.42	0.231	-2 000273	3.092624
1#ASian 1#Other	-2.20306	1.855289	-1.19	0.241	-5.929517	1.523398
years_sinc~l	1053606	.1004247	-1.05	0.299	3070696	.0963484
rural	.3636956	.2321166	1.5/	0.123	1025243	.8299154
Inigrantiurai	J094J20	.01/9492	-0.95	0.343	-1.03004	.031/340
year						
1999	7314551	.4488005	-1.63	0.109	-1.632897	.1699872
2000	.0562489	.45298	0.12	0.902	8535882	.966086
2001	5100897	.4783453	-1.07	0.291	-1.470875	.4506951
2002	382/008	.4034288	-0.95	0.34/	-1.193011	.42/6098
2003 2004	-1 024305	5556136	-1.94	0.038	-2 140288	.0240237
2005	4176451	.511321	-0.82	0.418	-1.444664	.6093733
2006	6502413	.3748354	-1.73	0.089	-1.40312	.1026377
2007	-1.392816	.4887247	-2.85	0.006	-2.374448	4111831
2008	-1.008667	.6036718	-1.67	0.101	-2.221177	.2038439
2009	-1.496078	.5257861	-2.85	0.006	-2.552151	440006
2010	-1.9194/4	.4515289	-4.25	0.000	-2.826397	-1.012552
2011	-1 860599	6185835	-3.01	0.003	-3 103061	- 6181376
2012	-1.636319	.6152252	-2.66	0.010	-2.872035	4006024
2014	-1.457113	.5182951	-2.81	0.007	-2.498139	4160865
2015	-2.286047	.5192787	-4.40	0.000	-3.329049	-1.243045
migrapt#voar						
1 1999 I	- 49104	8119709	-0 60	0 548	-2 121932	1 139852
1 2000	1.388138	.9290187	1.49	0.141	4778513	3.254127
1 2001	.5260663	.7937237	0.66	0.511	-1.068175	2.120307
1 2002	3471692	.9532122	-0.36	0.717	-2.261752	1.567414
1 2003	.7815198	.9306082	0.84	0.405	-1.087662	2.650701
1 2004	.8232966	.9505568	0.87	0.391	-1.085953	2./32546
1 2005 1 2006	UIZ9526 1 230949	.90903 1 400125	-U.UI 0 88	0.387	-1.939221 -1.581286	T 043183 7 043183
1 2007	2.816003	1.327071	2.12	0.039	.1505025	5.481503
1 2008	1.500082	1.344456	1.12	0.270	-1.200338	4.200502
1 2009	1.196893	1.486161	0.81	0.424	-1.788149	4.181934
1 2010	2.128945	1.241295	1.72	0.093	3642705	4.62216

1 2011	Ι	2.45402	1.410253	1.74	0.088	3785573	5.286598
1 2012		2.241502	1.4767	1.52	0.135	7245368	5.207541
1 2013		1.802214	1.766798	1.02	0.313	-1.746504	5.350932
1 2014		.274227	2.145685	0.13	0.899	-4.035509	4.583963
1 2015		1.87029	1.816042	1.03	0.308	-1.777338	5.517919
entry year		.0598052	.108495	0.55	0.584	1581133	.2777238
entry year~q		0000296	.0000542	-0.55	0.587	0001384	.0000792
cons		9.85247	1.152891	8.55	0.000	7.536821	12.16812

Specification (5), Exogenous-wage, Method 2, Full sample

Linear regression	Number of obs	=	1,376,334
	F(50, 50)	=	
	Prob > F	=	
	R-squared	=	0.1432
	Root MSE	=	9.7391

hoursworked	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	1.335053	.3835308	3.48	0.001	.5647085	2.105397
post911entry	-1.123339	.0772032	-14.55	0.000	-1.278407	968272
post911ent~t	.9833671	.1527234	6.44	0.000	.676613	1.290121
minwagedemo	-16.11475	.1989155	-81.01	0.000	-16.51428	-15.71521
mi~o_migrant	.4720268	.3282785	1.44	0.157	1873399	1.131394
minwaged~911	1820798	.2048511	-0.89	0.378	5935354	.2293758
mi~1 migrant	.1955743	.5792188	0.34	0.737	967821	1.35897
_ hsgrad	0242747	.1060705	-0.23	0.820	2373236	.1887743
assocgrad	.6326326	.0981874	6.44	0.000	.4354173	.8298478
bachgrad	2.294879	.0921752	24.90	0.000	2.10974	2.480018
mastgrad	3.277641	.1163617	28.17	0.000	3.043922	3.511361
doctorgrad	6.520038	.1895662	34.39	0.000	6.139283	6.900793
migranthsg~d	.1112138	.0876786	1.27	0.211	0648939	.2873214
migrantass~d	1051454	.1480477	-0.71	0.481	402508	.1922173
migrantbac~d	4448068	.1672853	-2.66	0.011	7808093	1088043
migrantmas~d	5471752	.2602195	-2.10	0.041	-1.069841	0245089
migrantdoc~d	.0584111	.235131	0.25	0.805	4138634	.5306855
exp	.5274777	.0108468	48.63	0.000	.5056913	.5492641
migrantexp	217521	.0146609	-14.84	0.000	2469683	1880738
exp_sq	0103769	.0001995	-52.03	0.000	0107775	0099763
migrantexp~q	.0046612	.0002725	17.11	0.000	.0041139	.0052085
female	-4.809149	.1108434	-43.39	0.000	-5.031784	-4.586513
migrantfem~e	.8470589	.1073548	7.89	0.000	.6314305	1.062687
1.migrant	0	(omitted)				
wbhao						
Black	0751821	.0719595	-1.04	0.301	2197171	.0693529
Hispanic	0993107	.2063647	-0.48	0.632	5138065	.3151851
Asian	5013507	.2669899	-1.88	0.066	-1.037616	.0349143
Other	.1261133	.1553708	0.81	0.421	1859581	.4381848
migrant#						
wbhao						

<pre>1#isspanic 2/54085 .1616608 -1.00 0.0956001138 .0492988 1#Asian 2749753 .2784873 -0.99 0.3288343335 .2843829 1#other 5312569 .4050653 -1.31 0.196 -1.344854 .2823407 years_sinc-1 0001511 .0135633 -0.01 0.9910273938 .0270915 rural .2147137 .0880547 2.44 0.018 .0378506 .3915769 migrantrural .757106 .2599793 2.91 0.005 .2345267 1.278894 year 1999 .116963 .0654996 1.79 0.0600145966 .248522 2000 .1484999 .0903769 1.64 0.1070330275 .3300273 2001 .0749596 .0932985 0.80 0.4261124358 .262351 2002111679 .0724317 -1.54 0.1292571623 .0338042 2003 I250188 0.782148 -3.77 0.0005182593110987 20043146215 .101385 -3.10 0.0035182593110987 2005 I2012075 .0886088 -2.27 0.0283791835 -0232315 2006 I00826093 .1001687 -0.82 0.413283804 .1185854 2007 I .0049301 .083297 0.06 0.5531623768 .1722371 2008 I019088 0.918468 -0.21 0.8362035677 .1653918 2009 I3198673 .0883854 -3.62 0.001497394614234 2010 I646415 .0880285 -7.34 0.00082322544696047 2012 I4794386 0.933259 -5.15 0.000 I8237554596388 2011 I646415 .0880285 -7.34 0.00158025141522291 2014 I3516009 .1093739 -3.21 0.0025712848131917 2015 I139505 .0989667 -1.41 0.1653382855 .0592755 migrant#year I 1999 I .0362296 .1489917 0.24 0.8092630289 .3354882 1 2000 I .1838944 .2226329 0.83 0.413263277 .6310659 1 2001 I .328946 .155127 2.13 0.38 0.413263277 .6310659 1 2001 I .328946 .155127 2.13 0.38 0.413263277 .6310659 1 2004 I .08837 .206213 0.43 0.669322609 .3354882 1 2004 I .08837 .206213 0.43 0.669322609 .3252689 .3034882 1 2005 I .049859 .157052 0.92 0.752265018 .3653195 1 2006 I .372957 .2046326 1.120 0.43 0.6692264028 .3653195 1 2006 I .372957 .2046326 1.120 0.43 0.669221409 .4914079 1 2005 I .0498899 .1570582 0.32 0.752265018 .3653195 1 2006 I .372957 .2046326 1.120 0.74 0.988 0.45076 .224793 1 2013 I436607 .221498 0.73 0.7112641667 .384557 1 2003 I .163946 .0149713 0.27 0.71 I26108218 .655375 1 2006 I .372957 .204632</pre>	1#Black	2456829	.1349377	-1.82	0.075	5167133	.0253475
IFACIAN	l#Hispanic	2/54085	.1616608	-1./0	0.095	6001138	.0492968
IFOCHER 0312569 .4030653 -1.31 0.196 -1.348854 .282340/ years_sinc-1 .0001511 .0135633 -0.01 0.991 0273938 .0270915 migrantrural .2147137 .0860547 2.44 0.018 .0378566 .3915769 1999 .1169633 .0654996 1.79 0.005 .2345267 1.278694 year . . .0484999 .9093769 1.64 0.107 0330275 .3300273 2000 1484999 .0724317 .1.54 0.129 2571623 .0338042 2003 22850188 .0782148 -3.77 0.000 .4521179 13791835 .022315 2004 3146215 .101385 -3.10 0.003 .5182593 1019837 2005 021075 .086088 -0.82 0.413 28304 .1185854 2006 082093 .1001687 -0.82 0.413 28304 .1182834 2010 64	l#Asian	2/49/53	.2/848/3	-0.99	0.328	8343335	.2843829
<pre>years_sinc-10001511 .0135633 -0.01 0.9910273938 .0270915 rural .2147137 .0880547 2.44 0.018 .0378506 .3915769 migrantrural .7567106 .2599793 2.91 0.005 .2345267 1.278894 'year' 'year' 'year' '1999 .1169633 .0654996 1.79 0.0800145966 .2485232 2000 .1484999 .0903769 1.64 0.1070330275 .3300273 2001 .0749596 .0932985 0.80 0.4261124358 .2623551 2002111679 .0724317 -1.54 0.1292571623 .0338042 20032950188 .0782148 -3.77 0.0004521791379197 20043146215 .101385 -3.10 0.003 .51825931109837 20052012075 .0886088 -2.27 0.02837918350232315 200620826093 .1001687 -0.82 0.413283804 .1188584 2007 .0049301 .083297 0.06 0.9531623768 .1722371 2008019088 .0918468 -0.21 0.8362035677 .1653918 20093198673 .0883854 -3.62 0.001497394614234 2010646415 .088028 -7.34 0.00082322544696047 20124794366 .0931259 -5.15 0.0008232544696047 20124794366 .0931259 -5.15 0.0008232544696047 20124794366 .0931259 -5.15 0.000823254469638 2011464615 .0931259 -5.15 0.0008232544696647 20124794366 .0931259 -5.15 0.0008232544696647 2012479436 .0931259 -5.15 0.0008232544696647 2012479436 .0931259 -5.15 0.0008232544696647 2012479436 .0931259 -5.15 0.000823254469667 2012479436 .0931259 -5.15 0.000823254469667 2012479436 .0931259 -5.15 0.000823254469667 20133851609 .1093739 -3.21 0.0025712848131911 2015139505 .0989667 -1.41 0.1653382855 .0592755 1 20001838944 .2226329 0.83 0.4132632776310659 1 20013298946 .155127 2.13 0.038 .01831286414765 1 2002 .0.00195516149 0.37 0.7112641667 .3845577 1 2003163245 .1.711252 0.95 0.3451804756289523429 1 2004 .0.88537 .2060213 0.43 0.669222609523429 1 2004 .0.88537 .2060213 0.43 0.669222409491479 1 200807779 .223767 -0.67 0.38864500762547333 1 20071349994 .177448 0.35 0.727367993525618 1 2004134994 .177448 0.35 0.727656018 .</pre>	1#Other	5312569 	.4050653	-1.31	0.196	-1.344854	.2823407
rural .2147137 .0880547 2.44 0.018 .0378506 .3915769 migrantrural .7567106 .2599793 2.91 0.005 .2345267 1.278894 year 1999 .1169633 .0654996 1.79 0.0800145966 .2485232 2000 .1484999 .093769 1.64 0.1070330275 .3300273 2001 .0749556 .0932985 0.80 0.4261124358 .2623551 2002 111679 .0724317 -1.54 0.1292571623 .0338042 2003 2950188 .0782148 -3.77 0.00045121791379197 2004 3146215 .101385 -3.10 0.00351825931109837 2005 2012075 .0886088 -2.27 0.02837918350232315 2006 0826093 .1001687 -0.82 0.411283804 .1185854 2007 .0049301 .083297 0.06 0.9531623768 .1722371 2008 019088 .0918468 -0.21 0.8362035677 .1653918 2009 3198673 .0883854 -3.62 0.001497394614234 2010 6484137 .0939528 -6.90 0.00082322544696047 2012 4794386 .0931259 -5.15 0.00066648742923897 2013 3662402 .1065496 -3.44 0.00158025144596388 2011 646415 .0880285 -7.34 0.00066648742923897 2013 3662402 .1065496 -3.44 0.00158025141522291 2014 3516009 .1093739 -3.21 0.00257128481319171 2015 139505 .0989667 -1.41 0.1653382855 .0592755 1 2000 .1838944 .1252629 0.83 0.4132630289 1 1999 .0362296 .1489917 0.24 0.8092630289 1 2001 .3289464 .155127 2.13 0.038 .0183128 .64147657 1 2002 .6061955 .16149 0.37 0.7112630289 1 2004 .088537 .204626 1.82 0.074380209 .7840123 1 2005 .0498589 1.57052 0.325 0.7272656018 .3653195 1 2006 .372957 .2046326 1.82 0.074380209 .7840123 1 2007 .1349994 1.774448 0.76 0.450224169 .7845577 1 2008 .07779 .221409 .4914079 1 2001 2828945 .157127 2.13 0.038 .048128 .64147657 1 2003 .163245 .1711252 0.95 0.34518047 .50666 1 2004 .088537 .2046326 1.82 0.074380209 .7840123 1 2007 .1349994 .1774488 0.75 0.727265018 .3653195 1 2006 .372957 .2046326 1.82 0.074380209 .7840123 1 2010 4738341 .264366 -1.65 0.1059668289 .05951607 1 2014 438846507 .221029 -1.74 0.0888285883 .0592869 1 2012	years_sinc~l	0001511	.0135633	-0.01	0.991	0273938	.0270915
<pre>migrantrural .7567106 .2599793 2.91 0.005 .2345267 1.278894 year 1999 .1169633 .0654996 1.79 0.0800145966 .2485232 2000 .1484999 .0903769 1.64 0.1070330275 .3300273 2001 .0749596 .0932985 0.80 0.4261124358 .2623551 2002 111679 .0724317 -1.54 0.1292571623 .0338042 2003 2950188 .0782148 -3.77 0.00045211791379197 2004 3146215 .101385 -3.10 0.00351825931109837 2005 2012075 .0886088 -2.27 0.022837918350232315 2006 0826093 .1001687 -0.82 0.413283804 .1185854 2007 .0049301 .083297 0.06 0.953163376812234 2008 019088 .0918468 -0.21 0.8362035677 .1653918 2009 3198673 .0883854 -3.62 0.001497394614234 2010 646415 .0880255 -7.34 0.00083705354596338 2011 646415 .0880255 -7.14 0.00083705354596338 2011 646415 .0880255 -7.14 0.00083705354596388 2011 646415 .0880255 -1.515 0.00066648742923897 2013 3662402 .1065496 -3.344 0.00158025141522291 2014 3516009 .1093739 -3.21 0.00257128481319171 2015 139505 .099667 -1.41 0.1653382855 .0592755 migrant#year 11999 .0362296 .1489917 0.24 0.809 -2.630289 .3354882 12000 .1838944 .2226329 0.83 0.413263277 .6310659 12001 .328946 .155127 2.13 0.038 .0161736426167 .3845577 12003 .163245 .1711252 0.95 0.34518047 .5502649 12004 .088537 .2060213 0.43 0.669322489 .5023429 12005 .0498589 .1500582 0.32 0.7522656018 .3653195 12006 .3729957 .2046326 1.82 0.0740380209 .7840123 12009 134994 .1774448 0.76 0.455221409 .4914079 12008 .077798 .2219480 0.35 0.727367993 .5235952 12009 1951372 .2239767 -0.87 0.388648075 .226739 12014 2822829 .289057 -0.98 0.334862858 .0592869 12012 4238375 .240825 -1.76 0.0859225450256974 12014 2822829 .289057 -0.98 0.334862858 .25984367 12014 2822829 .280957 -0.98 0.334862855 .2984367 12015 3064083</pre>	rural	.2147137	.0880547	2.44	0.018	.0378506	.3915769
year 1999 .1169633 .0654996 1.79 0.0800145966 .2485232 2000 .1484999 0.903769 1.64 0.1070330275 .3300273 2001 .0749596 .0932985 0.80 0.4261124358 .2623551 2002 111679 .0724317 -1.54 0.1292571623 .038642 2003 2950188 0.782148 -3.77 0.00045211791379197 2004 3146215 .101385 -3.10 0.0035182533109837 2005 2012075 .0886088 -2.27 0.02837918350232315 2006 0826093 .1001687 -0.82 0.413283804 .1185854 2007 .0049301 .083297 0.06 0.9531633768 .1722371 2008 019088 .0918468 -0.21 0.8362035677 .1653918 2009 3198673 .0883854 -3.62 0.001497394614234 2010 6483437 .0939528 -6.90 0.000832322544696047 2012 4794386 .0931259 -5.15 0.000682322544696047 2012 4794386 .0931259 -5.15 0.00058025141522291 2014 3516009 .1093739 -3.21 0.00257128481319171 2015 139505 .0989667 -1.41 0.1653382855 .0592755 migrant#year 1 1999 .0362296 .1489917 0.24 0.809 -22630289 .3354882 1 2000 .1838944 .2226329 0.83 0.413263277 .6310659 1 2001 .3289946 .155127 2.13 0.038 .018128 .6414765 1 2002 .0601955 .16149 0.37 0.711 -2641667 .3848577 1 2003 .163245 .1711252 0.95 0.34518047 .50666 1 2004 .088537 .2060213 0.43 0.66922630289 .3354882 1 2005 .0498589 1.570582 0.32 0.7522665018 .3653195 1 2006 .3729957 .2046326 1.82 0.0740380209 .7840123 1 2007 .134994 1.774448 0.76 0.4550221409 .4914079 1 2008 .077798 .221948 0.35 0.727367993 .5235952 1 2009 151372 .2233767 -0.87 0.3886480707 .254733 1 2010 438537 .2046326 -1.76 0.085920548 .052859 1 2011 3846507 .2210229 -1.74 0.0888285883 .0592869 1 2012 .438375 .2408245 -1.76 0.085921409 .4914079 1 2018 .7438375 .2408245 -1.76 0.085921409 .4914079 1 2018 .7438375 .2408245 -1.76 0.085921409 .4914079 1 2014 282292 .2890957 -0.98 0.3348628583 .0592869 1 2012 .438376 .240825 -1.719 0.238862858 .2984367 1 2015 .3084083 .258115 -1.119 0.2388628475 .2100309 entry_year~q	migrantrural	.7567106	.2599793	2.91	0.005	.2345267	1.278894
<pre>1999 .1169633 .0654996 1.79 0.0800145966 .2445232 2000 .1484999 .0903769 1.64 0.1070330275 .3300273 2001 .0749596 .0932985 0.80 0.4261124358 .2623551 2002 111679 .0724317 -1.54 0.1292571623 .0338042 2003 2950188 .0782148 -3.77 0.00045211791379197 2004 3146215 .101385 -3.10 0.00351825931109837 2005 2012075 .0886088 -2.27 0.02837918350232315 2006 0826093 .1001687 -0.82 0.413283804 .1185854 2007 .0049301 .083297 0.06 0.9531623768 .1722371 2008 013088 .0918468 -0.21 0.8362035677 .1653918 2009 3198673 .0883854 -3.62 0.001497394614234 2010 648415 .0880285 -7.34 0.00083705354596338 2011 646415 .0880285 -7.34 0.00083705354596338 2011 646415 .0880285 -7.34 0.00082322544696047 2012 4794386 .0931259 -5.15 0.000066648742223887 2013 3662402 .1065496 -3.444 0.0015802514152291 2014 3516009 .1093739 -3.21 0.00257128481319171 2015 139505 .0999667 -1.41 0.1653382855 .0592755 ingrant#year 1 1999 .0362296 .1489917 0.24 0.8092630289 .3354882 1 2000 .1838944 .2226329 0.83 0.413263277 .6310659 1 2001 .13298946 .15517 2.13 0.038 .014328 .6414765 1 2002 .0601955 .16149 0.37 0.7112641667 .384557 1 2003 .163245 .1711252 0.95 0.34518047 .50696 1 2004 .088537 .2060213 0.43 0.66932252689 .5023429 1 2005 .0498589 .1570582 0.32 0.7522656018 .3653195 1 2006 .3729957 .2046326 1.82 0.0740380209 .7840123 1 2007 .1349994 .1774448 0.76 0.450221409 .4914079 1 2008 .077798 .2219488 0.35 0.727367993 .523555 1 2006 .3729957 .2046326 1.82 0.0740380209 .7840123 1 2007 .134994 .1774448 0.76 0.450221409 .4914079 1 2008 .077798 .2219485 0.35 0.727367993 .523555 1 2006 .3729957 .2046326 1.82 0.0740380209 .7840123 1 2001 .4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .2890957 -0.98 0.334662895 .294367 1 2015 384083 .258115 -1.19 0.2386428076 .2547333 1 2010 4741095 .2232506 -2.12 0.03992252150256974 1</pre>	year						
2000 .1484999 .0903769 1.64 0.1070330275 .3300273 2001 .0749596 .0932985 0.80 0.4261124358 .2623551 2002 111679 .0724317 -1.54 0.1292571623 .0338042 2003 2950188 .0782148 -3.77 0.00045211791379197 2004 3146215 .101385 -3.10 0.00351825931109837 2005 2012075 .0886088 -2.27 0.02837918350232315 2006 0826093 .1001687 -0.82 0.413283804 .1185854 2007 .0049301 .083297 0.06 0.9531623768 .1722371 2008 019088 .0918468 -0.21 0.8362035677 .1653918 2009 3198673 .0883854 -3.62 0.001497394614234 2010 6483437 .0933528 -6.90 0.00083705354596338 2011 646415 .0880285 -7.34 0.00082322544696047 2012 4794386 .0931259 -5.15 0.00066648742223897 2013 3662402 .1065496 -3.44 0.00156025141522291 2014 3516009 .1093739 -3.21 0.00257128481319171 2015 139505 .0989667 -1.41 0.1653382855 .0592755 migrant#year 1 1999 .0362296 .1489917 0.24 0.8092630289 .3354882 1 2000 .1838944 .2226329 0.83 0.413263277 .6310659 1 2001 .3298946 .155127 2.13 0.038 .0183128 .6414765 1 2002 .0601955 .16149 0.37 0.7112641667 .3484557 1 2003 .163245 1.711252 0.95 0.34518047 .50696 1 2004 .088537 .2060213 0.43 0.6693252689 .5023429 1 2005 .0498589 .1570582 0.32 0.752265018 .3653195 1 2006 .3729957 .2046326 1.82 0.0740380209 .784023 1 2007 .1349994 .177448 0.76 0.450221409 .4914079 1 2008 .077798 .2219488 0.35 0.727367993 .5235952 1 2009 1951372 .2219475 -0.77 0.788628583 .0592675 1 2004 .088537 .2206221 0.747 0.08864850076 .254733 1 2011 3846507 .221929 -1.74 0.08864850076 .254733 1 2012 .4238375 .240824 -1.76 0.0559075478 .0598729 1 2013 .4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 .2822292 .289057 -0.98 0.3348628883 .0592669 1 2012 .4238375 .240824 -1.719 0.2388628475 .210039 entry_year~q .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year~q .0189786 .0149713 1.27 0.2110110921 .0490494 entry_	1999	.1169633	.0654996	1.79	0.080	0145966	.2485232
2001 .0749596 .0932985 0.80 0.4261124358 .2623551 2002 111679 .0724317 -1.54 0.1292571623 .0338042 2003 2950188 .0782148 -3.77 0.00045211791379197 2004 3146215 .101385 -3.10 0.00351825931109837 2005 2012075 .0886088 -2.27 0.02837918350232315 2006 0826093 .1001687 -0.82 0.413283804 .1185854 2007 .0049301 .083297 0.06 0.9531623768 .1722371 2008 019088 .0918468 -0.21 0.8362035677 .1653918 2009 3198673 .0883854 -3.62 0.001497394614234 2010 6484137 .0939528 -6.90 0.00083705354596338 2011 646415 .0880285 -7.34 0.00082322544696047 2012 4794386 .0931259 -5.15 0.00066648742923897 2013 3662402 .1065496 -3.44 0.0015802514152291 2014 3516009 0.03373 -3.21 0.00257124881319171 2015 139505 .0989667 -1.41 0.1653382855 .0592755 migrant#year 1 1999 .0362296 .1489917 0.24 0.809 -2630289 .3354882 1 2000 .1838944 .2226329 0.83 0.413263277 .6310659 1 2001 .3298946 .155127 2.13 0.038 .0183128 .6414765 1 2002 .0601955 .16149 0.37 0.7112641667 .384557 1 2003 .163245 .1711252 0.95 0.34518047 .50696 1 2004 .088537 .2060213 0.43 0.6693252689 .5023429 1 2005 .0498589 .1570582 0.32 0.7522656018 .3653195 1 2006 .372957 .2046326 1.82 0.0740380209 .7840123 1 2007 .1349994 .177448 0.76 0.450221409 .4914079 1 2008 .077798 .2219488 0.35 0.7273679993 .523552 1 2006 .372957 .2046326 1.82 0.0740387097 .5235853 1 2010 4741095 .2232506 -2.12 0.0399225215025674 1 2011 3846507 .2210229 -1.74 0.0888285883 .0592869 1 2012 4238375 .2408245 -1.76 0.0888285883 .0592869 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .2890957 -0.98 0.334862895 .2984367 1 2015 3084083 .258115 -1.19 0.2388268475 .210039 entry_year~q .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year~q .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year~q .0189786 .0149713 1.27 0.2110110921 .049	2000	.1484999	.0903769	1.64	0.107	0330275	.3300273
2002 111679 .0724317 -1.54 0.1292571623 .0338042 2003 2950188 .0782148 -3.77 0.00045211791379197 2004 3146215 .101385 -3.10 0.00351825931109837 2005 2012075 .0886088 -2.27 0.02837918350232315 2006 0826093 .1001687 -0.82 0.413283804 .1185854 2007 .0049301 .083297 0.06 0.9531623768 .1722371 2008 019088 .0918468 -0.21 0.8362035677 .1653918 2009 3198673 .0883854 -3.62 0.001497394614234 2010 6483437 .0939528 -6.90 0.00083705354596338 2011 646415 .0880285 -7.34 0.00082322544696047 2012 4794386 .0931259 -5.15 0.00066648742923897 2013 3662402 .1065496 -3.44 0.00158025141522291 2014 3516009 .1093739 -3.21 0.00257128481319171 2015 139505 .0898667 -1.41 0.1653382855 .0592755 1 2000 .1838944 .2226329 0.83 0.413263277 .6310659 1 2001 .3298946 .155127 2.13 0.038 .0183128 .6414765 1 2002 .0601955 .16149 0.37 0.7112641667 .3845577 1 2003 .163245 .1711252 0.95 0.34518047 .50696 1 2004 .088537 .2060213 0.43 0.6693252689 .5023429 1 2005 .0498589 .1570582 0.32 0.7522656018 .3653195 1 2006 .3729957 .2046326 1.82 0.0740380209 .7840123 1 2007 .134994 .1774448 0.76 0.450221409 .441079 1 2008 .077798 .2219488 0.35 0.7273679993 .5235952 2 010 .79788 .2219488 0.35 0.7273679993 .5235952 1 2005 .0498589 .1570582 0.32 0.7522656018 .3653195 1 2004 .088537 .2060213 0.43 0.6693252689 .5023429 1 2005 .0498589 .1570582 0.32 0.7522656018 .3653195 1 2004 .77798 .2219488 0.35 0.7273679993 .5235952 2 1 2005 .0498589 .1570582 0.32 0.7522656018 .3653195 1 2014 2822292 .2890957 -0.87 0.3886450076 .2547333 1 2010 4741095 .223576 -2.12 0.03992252150256974 1 2011 3846507 .221029 -1.74 0.0888268475 .2056974 1 2013 4383341 .264366 -1.65 0.1059668289 .0591607 1 2014 2822922 .2890957 -0.98 0.334862895 .2984367 1 2015 .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year .0189786 .0149713	2001	.0749596	.0932985	0.80	0.426	1124358	.2623551
2003 2950188 .0782148 -3.77 0.000 4521179 1379197 2004 3146215 .101385 -3.10 0.003 5182593 1109837 2005 2012075 .0886088 -2.27 0.028 3791835 0232315 2006 019088 .0918468 -0.21 0.836 2035677 .1653918 2009 3198673 .0883854 -3.62 0.001 4973946 14234 2010 646415 .088025 -7.34 0.000 8370535 4596338 2011 4794386 .0931259 -5.15 0.000 6664874 2923897 2013 3516009 .1093739 -3.21 0.002 512848 1319171 2014 351609 .0989667 -1.41 0.165 3382855 .0592755 migrant#year 162425 .171252 0.95 0.343 2630289 .3354882 1 2001 .3298946 .155127 2.13 0.038 .0183128 .6414765 <t< td=""><td>2002</td><td> 111679</td><td>.0724317</td><td>-1.54</td><td>0.129</td><td>2571623</td><td>.0338042</td></t<>	2002	111679	.0724317	-1.54	0.129	2571623	.0338042
2004 3146215 .101385 -3.10 0.003 5182593 1109837 2005 2012075 .0886088 -2.27 0.028 3791835 0232315 2006 0826093 .1001687 -0.82 0.413 283804 .1185854 2007 .0049301 .083297 0.06 0.953 1623768 .1722371 2008 019088 .0918468 -0.21 0.836 142344 .1653918 2009 3198673 .0883854 -3.62 0.001 4973946 14234 2010 646415 .080285 -7.34 0.000 8370535 459638 2012 4794386 .0931259 -5.15 0.000 664874 2923897 2013 3662402 .1065496 -3.44 0.001 5802514 1522291 2014 3516009 .193739 -3.21 0.002 5712848 1319171 2015 139505 .089667 -1.41 0.165 3382655 .0592755 1 2001	2003	2950188	.0782148	-3.77	0.000	4521179	1379197
2005 2012075 .0886088 -2.27 0.02837918350232315 2006 0826093 .1001687 -0.82 0.413283804 .1185854 2007 .0049301 .083297 0.06 0.9531623768 .1722371 2008 019088 .0918468 -0.21 0.8362035677 .1653918 2009 3198673 .0883854 -3.62 0.001497394614234 2010 6463437 .0939528 -6.90 0.00083705354596338 2011 646415 .0880285 -7.34 0.00082322544696047 2012 4794386 .0931259 -5.15 0.00066648742923897 2013 3662402 .1065496 -3.44 0.0015802514152291 2014 3516009 .1093739 -3.21 0.00257128481319171 2015 139505 .0989667 -1.41 0.1653382855 .0592755 migrant#year 1 1999 .0362296 .1489917 0.24 0.8092630289 .3354882 1 2000 .1838944 .2226329 0.83 0.413263277 .6310659 1 2001 .3298946 .155127 2.13 0.038 .0183128 .6414765 1 2002 .0601955 .16149 0.37 0.7112641667 .3845577 1 2003 .163245 .1711252 0.95 0.34518047 .50696 1 2004 .088537 .2060213 0.43 0.6693252689 .5023429 1 2005 .0498589 .1570582 0.32 0.7522656018 .3653195 1 2006 .3729957 .2046326 1.82 0.0740380209 .7840123 1 2007 .134994 .177448 0.76 0.450221409 .4914079 1 2008 .077798 .2219488 0.35 0.7273679933 .5235552 1 2009 1951372 .2239767 -0.87 0.3886450076 .2547333 1 2010 .4386507 .2210229 -1.74 0.0888285883 .059269 1 2012 .3864507 .2210229 -1.74 0.0888285883 .059269 1 2013 .3864507 .2210229 -1.74 0.0888285883 .059269 1 2014 .386341 .264366 -1.65 0.105966289 .052479 1 2015 .438375 .2408245 -1.76 0.0859075478 .0598729 1 2014 282229 .289057 -0.98 0.334662895 .2984367 1 2015 .3084083 .258115 -1.19 0.2388268475 .2100309 entry_year .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year .0189786 .0149713 1.27 0.2110100246 5.4	2004	3146215	.101385	-3.10	0.003	5182593	1109837
2006 0826093 .1001687 -0.82 0.413283804 .1185854 2007 .0049301 .083297 0.06 0.9531623768 .1722371 2008 019088 .0918468 -0.21 0.8362035677 .1653918 2009 3198673 .0883854 -3.62 0.001497394614234 2010 6483437 .0939528 -6.90 0.00083705354596338 2011 646415 .0880285 -7.34 0.00082322544696047 2012 4794386 .0931259 -5.15 0.00066648742923897 2013 3662402 .1065496 -3.44 0.0015802514152291 2014 3516009 .1093739 -3.21 0.00257128481319171 2015 139505 .0989667 -1.41 0.1653382855 .0592755 migrant#year 1 1999 .0362296 .1489917 0.24 0.8092630289 .3354882 1 2000 .1838944 .2226329 0.83 0.413263277 .6310659 1 2001 .3298946 .155127 2.13 0.038 .0183128 .6414765 1 2002 .0601955 .16149 0.37 0.711 -2641667 .584557 1 2003 .163245 .1711252 0.95 0.34518047 .50696 1 2004 .088537 .2060213 0.43 0.6693252689 .5023429 1 2005 .0498589 .1570582 0.32 0.7522256018 .3653195 1 2006 .372957 .2046326 1.82 0.074 -0380209 .7840123 1 2007 .134994 .177448 0.76 0.450221409 .4914079 1 2008 .077798 .2219488 0.35 0.7273679933 .5235952 1 2009 1951372 .2239767 -0.87 0.3886450076 .254733 1 2010 4741095 .2232506 -2.12 0.03992525150256974 1 2011 3846507 .221029 -1.74 0.0888285883 .0592869 1 2012 4238375 .2408245 -1.76 0.0859075478 .0598729 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 .222292 .229057 -0.98 0.334662895 .2984367 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .280957 -0.98 0.334662895 .2984367 1 2015 3084083 .258115 -1.19 0.2388268475 .2100309 entry_year .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year .0189786 .0149713 1.27 0.2110110921 .0490494 entry_wear .0189786 .0149713 1.27 0.2110110921	2005	2012075	.0886088	-2.27	0.028	3791835	0232315
2007 .0049301 .083297 0.06 0.9531623768 .1722371 2008 019088 .0918468 -0.21 0.8362035677 .1653918 2009 3198673 .0883854 -3.62 0.001497394614234 2010 646415 .0880285 -7.34 0.00082322544696047 2012 4794386 .0931259 -5.15 0.00066648742923897 2013 3662402 .1065496 -3.44 0.00158025141522291 2014 3516009 .1093739 -3.21 0.00257128481319171 2015 139505 .0989667 -1.41 0.1653382855 .0592755 1 2000 .1838944 .2226329 0.83 0.413263277 .6310659 1 2001 .3298946 .155127 2.13 0.038 .0183128 .6414765 1 2002 .0601955 .16149 0.37 0.7112641667 .3845577 1 2003 .163245 .1711252 0.95 0.34518047 .50696 1 2004 .088537 .2060213 0.43 0.6693252689 .5023429 1 2005 .0498589 .1570582 0.32 0.7522656018 .3653195 1 2006 .3729957 .2046326 1.82 0.0740380209 .7840123 1 2007 .1349994 .1774448 0.76 0.450221409 .4914079 1 2008 .077798 .2219488 0.35 0.7273679993 .5235952 1 2006 .372957 .2046326 1.82 0.0740380209 .7840123 1 2007 .1349994 .1774448 0.76 0.450221409 .4914079 1 2008 .077798 .2219488 0.35 0.7273679993 .5235952 1 2009 1951372 .2239767 -0.87 0.3886450076 .2547333 1 2010 4741095 .2232506 -2.12 0.0399252150256974 1 2011 .3846507 .2210229 -1.74 0.0888285883 .0592869 1 2012 4238375 .2408245 -1.76 0.039 .9252150256974 1 2013 4358341 .264366 -1.65 0.1059075478 .0598729 1 2013 4358341 .264366 -1.65 0.1059075478 .0598729 1 2013 4358341 .264366 -1.65 0.1059068289 .0951607 1 2014 .2822292 .289057 -0.98 0.334822895 .2984367 1 2015 3084083 .258115 -1.19 0.2388268475 .2100309 entry_year .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year .9.57e-06 7.47e-06 -1.28 0.2060000246 5.44e-06 _cons 36.81889 .1891412 194.66 0.000 36.43898 37.19879	2006	0826093	.1001687	-0.82	0.413	283804	.1185854
2008 019088 .0918468 -0.21 0.8362035677 .1653918 2009 3198673 .0883854 -3.62 0.001497394614234 2010 6463437 .0939528 -6.90 0.00083705354596338 2011 646415 .0880285 -7.34 0.00082322544696047 2012 4794386 .0931259 -5.15 0.00066648742923897 2013 3662402 .1065496 -3.44 0.00158025141522291 2014 3516009 .1093739 -3.21 0.00257128481319171 2015 139505 .0989667 -1.41 0.1653382855 .0592755 	2007	.0049301	.083297	0.06	0.953	1623768	.1722371
2009 3198673 .0883854 -3.62 0.001497394614234 2010 6483437 .0939528 -6.90 0.00083705354596338 2011 646415 .0880285 -7.34 0.00082322544696047 2012 4794386 .0931259 -5.15 0.00066648742923897 2013 3662402 .1065496 -3.44 0.00158025141522291 2014 3516009 .1093739 -3.21 0.00257128481319171 2015 139505 .0989667 -1.41 0.1653382855 .0592755 migrant#year 1 1999 .0362296 .1489917 0.24 0.8092630289 .3354882 1 2000 .1838944 .2226329 0.83 0.413263277 .6310659 1 2001 .3298946 .155127 2.13 0.038 .0183128 .6414765 1 2002 .0601955 .16149 0.37 0.7112641667 .3845577 1 2003 .163245 .1711252 0.95 0.34518047 .50696 1 2004 .088537 .2060213 0.43 0.6693252689 .5023429 1 2005 .0498589 .1570582 0.32 0.7522656018 .3653195 1 2006 .3729957 .2046326 1.82 0.0740380209 .7840123 1 2007 .1349944 .1774448 0.76 0.450221409 .4914079 1 2008 .077798 .2219488 0.35 0.7273679993 .5235952 1 2009 1951372 .2239767 -0.87 0.3886450076 .2547333 1 2010 4741095 .2232506 -2.12 0.03992252150256974 1 2011 3846507 .2210229 -1.74 0.0888265883 .059269 1 2012 4238375 .2408245 -1.76 0.0859075478 .0598729 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .2890957 -0.98 0.334862895 .2984367 1 2015 .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year~q -9.57e-06 7.47e-06 -1.28 0.2060000246 5.44e-06 	2008	019088	.0918468	-0.21	0.836	2035677	.1653918
2010 6483437 .0939528 -6.90 0.00083705354596388 2011 646415 .0880285 -7.34 0.00082322544696047 2012 4794386 .0931259 -5.15 0.00066648742923897 2013 3662402 .1065496 -3.44 0.00158025141522291 2014 3516009 .1093739 -3.21 0.00257128481319171 2015 139505 .0989667 -1.41 0.1653382855 .0592755 imigrant#year 1 1999 .0362296 .1489917 0.24 0.8092630289 .3354882 1 2000 .1838944 .2226329 0.83 0.413263277 .6310659 1 2001 .3298946 .155127 2.13 0.038 .0183128 .6414765 1 2002 .0601955 .16149 0.37 0.7112641667 .3845577 1 2003 .163245 .1711252 0.95 0.34518047 .50696 1 2004 .088537 .2060213 0.43 0.6693252689 .5023429 1 2005 .0498589 .1570582 0.32 0.7522656018 .3653195 1 2006 .3729957 .2046326 1.82 0.0740380209 .7840123 1 2007 .1349994 .1774448 0.76 0.450221409 .4914079 1 2008 .077798 .2219488 0.35 0.7273679993 .5235952 1 2006 .372957 .2246326 1.82 0.0740380209 .7840123 1 2007 .1349994 .1774448 0.76 0.450221409 .4914079 1 2008 .077798 .2219488 0.35 0.7273679993 .5235952 1 2009 195172 .2239767 -0.87 0.3886450076 .2547333 1 2010 4741095 .2232506 -2.12 0.03992252150256974 1 2011 3846507 .2210229 -1.74 0.0888285883 .0592869 1 2012 44238375 .2408245 -1.76 0.859075478 .0598729 1 2013 4358341 .264366 -1.65 0.105966829 .9051607 1 2014 2822292 .2890957 -0.98 0.334862895 .2984367 1 2015 3084083 .258115 -1.19 0.2388268475 .2100309 entry_year .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year .0189786 .0149713 1.27 0.2110110921 .0490494	2009	3198673	.0883854	-3.62	0.001	4973946	14234
2011 646415 .0880285 -7.34 0.00082322544696047 2012 4794386 .0931259 -5.15 0.00066648742923897 2013 3662402 .1065496 -3.44 0.00158025141522291 2014 3516009 .1033739 -3.21 0.00257128481319171 2015 139505 .0989667 -1.41 0.1653382855 .0592755 migrant#year 1 1999 .0362296 .1489917 0.24 0.8092630289 .3354882 1 2000 .1838944 .2226329 0.83 0.413263277 .6310659 1 2001 .3298946 .155127 2.13 0.038 .0183128 .6414765 1 2002 .0601955 .16149 0.37 0.7112641667 .3845577 1 2003 .163245 .1711252 0.95 0.34518047 .50696 1 2004 .088537 .2060213 0.43 0.6693252689 .5023429 1 2005 .0498589 .1570582 0.32 0.7522656018 .3653195 1 2006 .3729957 .2046326 1.82 0.074380209 .7840123 1 2007 .134994 .1774448 0.76 0.450221409 .4914079 1 2008 .077798 .2219488 0.35 0.7273679933 .5235952 1 2009 1951372 .2239767 -0.87 0.3886450076 .2547333 1 2010 4741095 .2232506 -2.12 0.03992252150256974 1 2011 3846507 .2210229 -1.74 0.0859075478 .0598729 1 2012 -4238375 .2408245 -1.76 0.0859075478 .0598729 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .2890957 -0.98 0.3348262855 .2984367 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .2890957 -0.98 0.334862895 .2984367 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .2890957 -0.98 0.334862895 .2984367 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .280957 -0.98 0.334862895 .2984367 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .280957 -0.98 0.334862895 .2984367 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .280957 -0.98 0.334862895 .2984367 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .280957 -0.98 0.334862895 .2984367 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .280957 -0.98 0.3348268475	2010	6483437	.0939528	-6.90	0.000	8370535	4596338
2012 4794386 .0931259 -5.15 0.00066648742923897 2013 3662402 .1065496 -3.44 0.00158025141522291 2014 3516009 .1093739 -3.21 0.00257128481319171 2015 139505 .0989667 -1.41 0.1653382855 .0592755 migrant#year 1 1999 .0362296 .1489917 0.24 0.8092630289 .3354882 1 2000 .1838944 .2226329 0.83 0.413263277 .6310659 1 2001 .3298946 .155127 2.13 0.038 .0183128 .6414765 1 2002 .0601955 .16149 0.37 0.7112641667 .3845577 1 2003 .163245 .1711252 0.95 0.34518047 .50696 1 2004 .088537 .2060213 0.43 0.6693252689 .5023429 1 2005 .0498589 .1570582 0.32 0.7522656018 .3653195 1 2006 .3729957 .2046326 1.82 0.0740380209 .7840123 1 2007 .1349994 .1774448 0.76 0.450221409 .4914079 1 2008 .077798 .2219488 0.35 0.7273679993 .5235952 1 2009 1951372 .2239767 -0.87 0.3886450076 .2547333 1 2010 4741095 .2232506 -2.12 0.03992252150256974 1 2012 4238375 .2408245 -1.76 0.0859075478 .0598729 1 2012 4238371 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .2890957 -0.98 0.334862895 .2984367 1 2014 2822292 .2890957 -0.98 0.334862895 .2984367 1 2014 2822292 .2890957 -0.98 0.334862895 .2984367 1 2015 .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year~q -9.57e-06 7.47e-06 -1.28 0.2060000246 5.44e-06 	2011	646415	.0880285	-7.34	0.000	8232254	4696047
2013 3662402 .1065496 -3.44 0.00158025141522291 2014 3516009 .1093739 -3.21 0.00257128481319171 2015 139505 .0989667 -1.41 0.1653382855 .0592755 migrant#year 1 1999 .0362296 .1489917 0.24 0.8092630289 .3354882 1 2000 .1838944 .2226329 0.83 0.413263277 .6310659 1 2001 .3298946 .155127 2.13 0.038 .0183128 .6414765 1 2002 .0601955 .16149 0.37 0.7112641667 .3845577 1 2003 .163245 .1711252 0.95 0.34518047 .50696 1 2004 .088537 .2060213 0.43 0.6693252689 .5023429 1 2005 .0498589 .1570582 0.32 0.7522656018 .3653195 1 2006 .3729957 .2046326 1.82 0.0740380209 .7840123 1 2007 .1349994 .1774448 0.76 0.450221409 .4914079 1 2008 .077798 .2219488 0.35 0.7273679993 .5235952 1 2009 1951372 .2239767 -0.87 0.3886450076 .2547333 1 2010 4741095 .2232506 -2.12 0.0399225215 -0256974 1 2011 3846507 .2210229 -1.74 0.0888285883 .0592869 1 2012 4238375 .246326 1.165 0.1059668289 .0951607 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .2890957 -0.98 0.334862895 .2984367 1 2014 308408 .258115 -1.19 0.2388268475 .210039 entry_year .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year .0189786 .149713 1.27 0.2110110921 .0490494 entry_year .0189786 .149	2012	4794386	.0931259	-5.15	0.000	6664874	2923897
2014 3516009 .1093739 -3.21 0.00257128481319171 2015 139505 .0989667 -1.41 0.1653382855 .0592755 i migrant#year 1 1999 .0362296 .1489917 0.24 0.8092630289 .3354882 1 2000 .1838944 .2226329 0.83 0.413263277 .6310659 1 2001 .3298946 .155127 2.13 0.038 .0183128 .6414765 1 2002 .0601955 .16149 0.37 0.7112641667 .3845577 1 2003 .163245 .1711252 0.95 0.34518047 .50696 1 2004 .088537 .2060213 0.43 0.6693252689 .5023429 1 2005 .0498589 .1570582 0.32 0.7522656018 .3653195 1 2006 .3729957 .2046326 1.82 0.0740380209 .7840123 1 2007 .1349994 .1774448 0.76 0.450221409 .4914079 1 2008 .077798 .2219488 0.35 0.7273679993 .5235952 1 2009 1951372 .2239767 -0.87 0.3886450076 .2547333 1 2010 4741095 .2232506 -2.12 0.03992252150256974 1 2011 3846507 .2210229 -1.74 0.0888285883 .0592869 1 2012 4238375 .2408245 -1.76 0.0859075478 .0598729 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .2890957 -0.98 0.334862895 .2984367 1 2015 3084083 .258115 -1.19 0.2388268475 .210039 8268475 .2100	2013	3662402	.1065496	-3.44	0.001	5802514	1522291
2015 139505 .0989667 -1.41 0.1653382855 .0592755 migrant#year 1 1999 .0362296 .1489917 0.24 0.8092630289 .3354882 1 2000 .1838944 .2226329 0.83 0.413263277 .6310659 1 2001 .3298946 .155127 2.13 0.038 .0183128 .6414765 1 2002 .0601955 .16149 0.37 0.7112641667 .3845577 1 2003 .163245 .1711252 0.95 0.34518047 .50696 1 2004 .08537 .2060213 0.43 0.6693252689 .5023429 1 2005 .0498589 .1570582 0.32 0.7522656018 .3653195 1 2006 .3729957 .2046326 1.82 0.0740380209 .7840123 1 2007 .1349994 .1774448 0.76 0.450221409 .4914079 1 2008 .077798 .2219488 0.35 0.7273679993 .5235952 1 2009 1951372 .2239767 -0.87 0.3886450076 .2547333 1 2010 4741095 .2232506 -2.12 0.03992252150256974 1 2012 4238375 .2408245 -1.76 0.0859075478 .0598729 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .2890957 -0.98 0.3348268475 .2100309 entry_year .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year~q -9.57e-06 7.47e-06 -1.28 0.206000246 5.44e-06 	2014	3516009	.1093739	-3.21	0.002	5712848	1319171
<pre>migrant#year 1 1999 .0362296 .1489917 0.24 0.8092630289 .3354882 1 2000 .1838944 .2226329 0.83 0.413263277 .6310659 1 2001 .3298946 .155127 2.13 0.038 .0183128 .6414765 1 2002 .0601955 .16149 0.37 0.7112641667 .3845577 1 2003 .163245 .1711252 0.95 0.34518047 .50696 1 2004 .088537 .2060213 0.43 0.6693252689 .5023429 1 2005 .0498589 .1570582 0.32 0.7522656018 .3653195 1 2006 .3729957 .2046326 1.82 0.0740380209 .7840123 1 2007 .1349994 .1774448 0.76 0.450221409 .4914079 1 2008 .077798 .2219488 0.35 0.7273679993 .5235952 1 2009 1951372 .2239767 -0.87 0.3886450076 .2547333 1 2010 4741095 .2232506 -2.12 0.03992252150256974 1 2011 3846507 .2210229 -1.74 0.0888285883 .0592869 1 2012 4238375 .2408245 -1.76 0.0859075478 .0598729 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .2890957 -0.98 0.334862855 .2984367 1 2015 3084083 .258115 -1.19 0.2388268475 .2100309 entry_year .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year~q -9.57e-06 7.47e-06 -1.28 0.2060000246 5.44e-06 cons 36.81889 .1891412 194.66 0.000 36.43898 37.19879 </pre>	2015	139505	.0989667	-1.41	0.165	3382855	.0592755
1 1999 .0362296 .1489917 0.24 0.809 2630289 .3354882 1 2000 .1838944 .2226329 0.83 0.413 263277 .6310659 1 2001 .3298946 .155127 2.13 0.038 .0183128 .6414765 1 2002 .0601955 .16149 0.37 0.711 2641667 .3845577 1 2003 .163245 .1711252 0.95 0.345 18047 .50696 1 2004 .088537 .2060213 0.43 0.669 3252689 .5023429 1 2005 .0498589 .1570582 0.32 0.752 265018 .3653195 1 2006 .3729957 .2046326 1.82 0.074 0380209 .7840123 1 2007 .1349994 .1774448 0.76 0.450 221409 .4914079 1 2010 4741095 .2232506 -2.12 0.039 9225215 0256974 1 2011 3846507 .2210229 <td< td=""><td>migrant#year</td><td> </td><td></td><td></td><td></td><td></td><td></td></td<>	migrant#year						
1 2000 .1838944 .2226329 0.83 0.413263277 .6310659 1 2001 .3298946 .155127 2.13 0.038 .0183128 .6414765 1 2002 .0601955 .16149 0.37 0.7112641667 .3845577 1 2003 .163245 .1711252 0.95 0.34518047 .50696 1 2004 .088537 .2060213 0.43 0.6693252689 .5023429 1 2005 .0498589 .1570582 0.32 0.7522656018 .3653195 1 2006 .3729957 .2046326 1.82 0.0740380209 .7840123 1 2007 .1349994 .1774448 0.76 0.450221409 .4914079 1 2008 .077798 .2219488 0.35 0.7273679993 .5235952 1 2009 1951372 .2239767 -0.87 0.3886450076 .2547333 1 2010 4741095 .2232506 -2.12 0.03992252150256974 1 2011 3846507 .2210229 -1.74 0.0888285883 .0592869 1 2012 4238375 .2408245 -1.76 0.0859075478 .0598729 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .2890957 -0.98 0.334862895 .2984367 1 2015 3084083 .258115 -1.19 0.2388268475 .2100309 entry_year .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year .0208 .20060000246 5.44e-06 	1 1999	.0362296	.1489917	0.24	0.809	2630289	.3354882
1 2001 .3298946 .155127 2.13 0.038 .0183128 .6414765 1 2002 .0601955 .16149 0.37 0.711 2641667 .3845577 1 2003 .163245 .1711252 0.95 0.345 18047 .50696 1 2004 .088537 .2060213 0.43 0.669 3252689 .5023429 1 2005 .0498589 .1570582 0.32 0.752 2656018 .3653195 1 2006 .3729957 .2046326 1.82 0.074 0380209 .7840123 1 2007 .1349994 .177448 0.76 0.450 221409 .4914079 1 2008 .077798 .2219488 0.35 0.727 3679993 .5235952 1 2010 4741095 .2232506 -2.12 0.039 9225215 0256974 1 2011 3846507 .2210229 -1.74 0.088 8285883 .0592869 1 2012 4238375 .2408245 -1.76 0.085 9075478 .0598729 1 2013 4358341 .2643	1 2000	.1838944	.2226329	0.83	0.413	263277	.6310659
1 2002 .0601955 .16149 0.37 0.7112641667 .3845577 1 2003 .163245 .1711252 0.95 0.34518047 .50696 1 2004 .088537 .2060213 0.43 0.6693252689 .5023429 1 2005 .0498589 .1570582 0.32 0.7522656018 .3653195 1 2006 .3729957 .2046326 1.82 0.0740380209 .7840123 1 2007 .1349994 .1774448 0.76 0.450221409 .4914079 1 2008 .077798 .2219488 0.35 0.7273679993 .5235952 1 2009 1951372 .2239767 -0.87 0.3886450076 .2547333 1 2010 4741095 .2232506 -2.12 0.03992252150256974 1 2011 3846507 .2210229 -1.74 0.0888285883 .0592869 1 2012 4238375 .2408245 -1.76 0.0859075478 .0598729 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .2890957 -0.98 0.334862895 .2984367 1 2015 3084083 .258115 -1.19 0.2388268475 .2100309 	1 2001	.3298946	.155127	2.13	0.038	.0183128	.6414765
1 2003 1.163245 .1711252 0.95 0.345 18047 .50696 1 2004 .088537 .2060213 0.43 0.669 3252689 .5023429 1 2005 .0498589 .1570582 0.32 0.752 2656018 .3653195 1 2006 .3729957 .2046326 1.82 0.074 0380209 .7840123 1 2007 .1349994 .1774448 0.76 0.450 221409 .4914079 1 2008 .077798 .2219488 0.35 0.727 3679993 .5235952 1 2010 4741095 .2232506 -2.12 0.039 9225215 0256974 1 2011 3846507 .2210229 -1.74 0.088 8285883 .0592869 1 2012 4238375 .2408245 -1.76 0.085 9075478 .0598729 1 2013 4358341 .264366 -1.65 0.105 9668289 .0951607 1 2014 2822292 .2890957 -0.98 0.334 8268475 .2100309 - 3084083 .	1 2002	.0601955	.16149	0.37	0.711	2641667	.3845577
1 2004 .088537 .2060213 0.43 0.6693252689 .5023429 1 2005 .0498589 .1570582 0.32 0.7522656018 .3653195 1 2006 .3729957 .2046326 1.82 0.0740380209 .7840123 1 2007 .1349994 .1774448 0.76 0.450221409 .4914079 1 2008 .077798 .2219488 0.35 0.7273679993 .5235952 1 2009 1951372 .2239767 -0.87 0.3886450076 .2547333 1 2010 4741095 .2232506 -2.12 0.03992252150256974 1 2011 3846507 .2210229 -1.74 0.0888285883 .0592869 1 2012 4238375 .2408245 -1.76 0.0859075478 .0598729 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .2890957 -0.98 0.334862895 .2984367 1 2015 3084083 .258115 -1.19 0.2388268475 .2100309 entry_year .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year~q -9.57e-06 7.47e-06 -1.28 0.2060000246 5.44e-06 cons 36.81889 .1891412 194.66 0.000 36.43898 37.19879	1 2003	.163245	.1711252	0.95	0.345	18047	.50696
1 2005 .0498589 .1570582 0.32 0.7522656018 .3653195 1 2006 .3729957 .2046326 1.82 0.0740380209 .7840123 1 2007 .1349994 .1774448 0.76 0.450221409 .4914079 1 2008 .077798 .2219488 0.35 0.7273679993 .5235952 1 2009 1951372 .2239767 -0.87 0.3886450076 .2547333 1 2010 4741095 .2232506 -2.12 0.03992252150256974 1 2011 3846507 .2210229 -1.74 0.0888285883 .0592869 1 2012 4238375 .2408245 -1.76 0.0859075478 .0598729 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .2890957 -0.98 0.334862895 .2984367 1 2015 3084083 .258115 -1.19 0.2388268475 .2100309 entry_year .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year~q -9.57e-06 7.47e-06 -1.28 0.2060000246 5.44e-06 cons 36.81889 .1891412 194.66 0.000 36.43898 37.19879	1 2004	.088537	.2060213	0.43	0.669	3252689	.5023429
1 2006 .3729957 .2046326 1.82 0.0740380209 .7840123 1 2007 .1349994 .1774448 0.76 0.450221409 .4914079 1 2008 .077798 .2219488 0.35 0.7273679993 .5235952 1 2009 1951372 .2239767 -0.87 0.3886450076 .2547333 1 2010 4741095 .2232506 -2.12 0.03992252150256974 1 2011 3846507 .2210229 -1.74 0.0888285883 .0592869 1 2012 4238375 .2408245 -1.76 0.0859075478 .0598729 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .2890957 -0.98 0.334862895 .2984367 1 2015 3084083 .258115 -1.19 0.2388268475 .2100309 entry_year~q -9.57e-06 7.47e-06 -1.28 0.2060000246 5.44e-06 	1 2005	.0498589	.1570582	0.32	0.752	2656018	.3653195
1 2007 .1349994 .1774448 0.76 0.450221409 .4914079 1 2008 .077798 .2219488 0.35 0.7273679993 .5235952 1 2009 1951372 .2239767 -0.87 0.3886450076 .2547333 1 2010 4741095 .2232506 -2.12 0.03992252150256974 1 2011 3846507 .2210229 -1.74 0.0888285883 .0592869 1 2012 4238375 .2408245 -1.76 0.0859075478 .0598729 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .2890957 -0.98 0.334862895 .2984367 1 2015 3084083 .258115 -1.19 0.2388268475 .2100309 	1 2006	.3729957	.2046326	1.82	0.074	0380209	.7840123
1 2008 .077798 .2219488 0.35 0.7273679993 .5235952 1 2009 1951372 .2239767 -0.87 0.3886450076 .2547333 1 2010 4741095 .2232506 -2.12 0.03992252150256974 1 2011 3846507 .2210229 -1.74 0.0888285883 .0592869 1 2012 4238375 .2408245 -1.76 0.0859075478 .0598729 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .2890957 -0.98 0.334862895 .2984367 1 2015 3084083 .258115 -1.19 0.2388268475 .2100309 entry_year .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year~q -9.57e-06 7.47e-06 -1.28 0.2060000246 5.44e-06 cons 36.81889 .1891412 194.66 0.000 36.43898 37.19879	1 2007	.1349994	.1774448	0.76	0.450	221409	.4914079
1 2009 1951372 .2239767 -0.87 0.3886450076 .2547333 1 2010 4741095 .2232506 -2.12 0.03992252150256974 1 2011 3846507 .2210229 -1.74 0.0888285883 .0592869 1 2012 4238375 .2408245 -1.76 0.0859075478 .0598729 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .2890957 -0.98 0.334862895 .2984367 1 2015 3084083 .258115 -1.19 0.2388268475 .2100309 entry_year .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year~q -9.57e-06 7.47e-06 -1.28 0.2060000246 5.44e-06 cons 36.81889 .1891412 194.66 0.000 36.43898 37.19879	1 2008	.077798	.2219488	0.35	0.727	3679993	.5235952
1 2010 4741095 .2232506 -2.12 0.03992252150256974 1 2011 3846507 .2210229 -1.74 0.0888285883 .0592869 1 2012 4238375 .2408245 -1.76 0.0859075478 .0598729 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .2890957 -0.98 0.334862895 .2984367 1 2015 3084083 .258115 -1.19 0.2388268475 .2100309 entry_year .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year~q -9.57e-06 7.47e-06 -1.28 0.2060000246 5.44e-06 	1 2009	1951372	.2239767	-0.87	0.388	6450076	.2547333
1 2011 3846507 .2210229 -1.74 0.0888285883 .0592869 1 2012 4238375 .2408245 -1.76 0.0859075478 .0598729 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .2890957 -0.98 0.334862895 .2984367 1 2015 3084083 .258115 -1.19 0.2388268475 .2100309 entry_year .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year~q -9.57e-06 7.47e-06 -1.28 0.2060000246 5.44e-06 cons 36.81889 .1891412 194.66 0.000 36.43898 37.19879	1 2010	4741095	.2232506	-2.12	0.039	9225215	0256974
1 2012 4238375 .2408245 -1.76 0.0859075478 .0598729 1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .2890957 -0.98 0.334862895 .2984367 1 2015 3084083 .258115 -1.19 0.2388268475 .2100309 entry_year .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year~q -9.57e-06 7.47e-06 -1.28 0.2060000246 5.44e-06 	1 2011	3846507	.2210229	-1.74	0.088	8285883	.0592869
1 2013 4358341 .264366 -1.65 0.1059668289 .0951607 1 2014 2822292 .2890957 -0.98 0.334862895 .2984367 1 2015 3084083 .258115 -1.19 0.2388268475 .2100309 entry_year .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year~q -9.57e-06 7.47e-06 -1.28 0.2060000246 5.44e-06 	1 2012	4238375	.2408245	-1.76	0.085	9075478	.0598729
1 2014 2822292 .2890957 -0.98 0.334862895 .2984367 1 2015 3084083 .258115 -1.19 0.2388268475 .2100309 entry_year .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year~q -9.57e-06 7.47e-06 -1.28 0.2060000246 5.44e-06 	1 2013	4358341	.264366	-1.65	0.105	9668289	.0951607
1 2015 3084083 .258115 -1.19 0.2388268475 .2100309 entry_year .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year~q -9.57e-06 7.47e-06 -1.28 0.2060000246 5.44e-06 	1 2014	2822292	.2890957	-0.98	0.334	862895	.2984367
entry_year .0189786 .0149713 1.27 0.2110110921 .0490494 entry_year~q -9.57e-06 7.47e-06 -1.28 0.2060000246 5.44e-06 	1 2015	3084083	.258115	-1.19	0.238	8268475	.2100309
entry_year~q -9.57e-06 7.47e-06 -1.28 0.2060000246 5.44e-06 cons 36.81889 .1891412 194.66 0.000 36.43898 37.19879	entry_year	.0189786	.0149713	1.27	0.211	0110921	.0490494
_cons 36.81889 .1891412 194.66 0.000 36.43898 37.19879	entry_year~q	-9.57e-06	7.47e-06	-1.28	0.206	0000246	5.44e-06
	cons	36.81889	.1891412	194.66	0.000	36.43898	37.19879

Specification (6), Exogenous-wage, Method 2, Restricted sample

Linear regression	Number of obs	=	18,495
	F(49, 50)	=	
	Prob > F	=	
	R-squared	=	0.2126

Det	MOD		7 7055
ROOL	MSE	=	1.1855

hoursworked	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	+ 5.781343	1.481332	3.90	0.000	2.806	8.756685
post911entry	2533597	.2990782	-0.85	0.401	854076	.3473566
post911ent~t		.5543613	-0.01	0.991	-1.119907	1.107028
vearseduc	.5171008	.0886916	5.83	0.000	.3389584	.6952431
migrantyea~c	-1670645	111602	-1 50	0 141	- 3912236	0570947
avn	2 219643	1311885	16 92	0 000	1 956143	2 483143
migranteyn	-1 238386	1785427	-6 94	0.000	-1 597	- 8797726
	1 - 0000553	.1/0342/	_11 02	0.000	- 1040435	- 074067
pe_p_sq migrontovnwg	06736	0105170	£ 10	0.000	.1040433	.074007
formale	I 5425275	1660624	2 25	0.000	0770025	2071016
Iemaie minusetiem e	0420070	.1009034	-3.23	0.002	0//0933	20/1010
migrantiem~e	-1.358082	.294/601	-4.01	0.000	-1.950125	/000385
1.mlgrant	U	(omitted)				
wbhao						
Black	1.100211	.2499881	4.40	0.000	.5980952	1.602327
Hispanic	1.690097	.3153929	5.36	0.000	1.056612	2.323582
Asian	-1.062533	.616416	-1.72	0.091	-2.300641	.1755752
Other	.4405953	.6565986	0.67	0.505	8782218	1.759412
migrant# wbbao	 					
1#Black	I 5020807	1 159775	0 43	0 667	-1 827396	2 831557
1#Diack	1 1 1 5 0 2 0 0 0 7	1 16124	1 00	0.007	-1 172770	2.051557
1#nispanic	1.1J004Z	1 505004	1.00	0.323	-1.1/3//9	2 02002
1#ASIdn	-1.034775	1.525324	-0.68	0.501	-4.0984/9	2.02893
I#Other	-2.953618	2.702299	-1.09	0.280	-8.381345	2.4/4108
years sinc~l	0084113	.0415845	-0.20	0.841	0919362	.0751136
rural	.3631708	.2323687	1.56	0.124	1035555	.829897
migrantrural	8920474	.7148762	-1.25	0.218	-2.327918	.5438237
vear						
1999	7289111	.4503122	-1.62	0.112	-1.63339	.1755677
2000	.0539248	.4534274	0.12	0.906	856811	.9646606
2001	510767	.4795328	-1.07	0.292	-1.473937	.4524029
2002	3806705	.4019412	-0.95	0.348	-1.187993	4266521
2002	-751506	387316	-1 94	0 058	-1 529453	0264411
2005	-1 031921	5532882	_1 87	0.050	-2 1/3233	0703016
2004	1 - 1262990	5104916	_0.94	0.000	_1 451621	5000/25
2005	6601616	. 3104010	-0.84	0.400	1 407404	
2000		.3/2000/	-1.77	0.082	-1.40/404	.0071002
2007	-1.402706	.4903423	-2.86	0.006	-2.38/58/	41/8244
2008	-1.020648	.6027524	-1.69	0.097	-2.231312	.1900162
2009	-1.508731	.5255951	-2.87	0.006	-2.56442	4530425
2010	-1.932289	.4473853	-4.32	0.000	-2.830889	-1.033689
2011	-1.81426	.5756163	-3.15	0.003	-2.970419	6581006
2012	-1.875601	.6149697	-3.05	0.004	-3.110804	6403976
2013	-1.655878	.6070458	-2.73	0.009	-2.875166	4365907
2014	-1.473041	.5198905	-2.83	0.007	-2.517272	4288105
2015	-2.304413	.5128251	-4.49	0.000	-3.334453	-1.274374
migrant#vear						
1 1999	7077363	.7706707	-0.92	0.363	-2.255674	.8402013
1 2000	1.222484	.9414137	1.30	0.200	6684016	3.113369
1 2001	.2635291	.6938882	0.38	0.706	-1.130186	1.657244

1	2002		6494053	.7912471	-0.82	0.416	-2.238672	.9398613
1	2003		.7539418	.8666568	0.87	0.388	9867897	2.494673
1	2004	Ì	.5712626	.8886783	0.64	0.523	-1.2137	2.356225
1	2005	Ì	0725934	.831922	-0.09	0.931	-1.743558	1.598371
1	2006	Ì	1.317836	1.055109	1.25	0.217	8014127	3.437085
1	2007	Ì	1.820473	.9170236	1.99	0.053	0214235	3.662369
1	2008		.9957658	.9374065	1.06	0.293	8870706	2.878602
1	2009	Ì	.7987407	.863975	0.92	0.360	9366041	2.534085
1	2010	Ì	1.243908	.8226109	1.51	0.137	4083547	2.896171
1	2011		1.672596	1.151153	1.45	0.152	6395619	3.984755
1	2012		1.237847	1.663418	0.74	0.460	-2.103225	4.57892
1	2013		.4870908	1.173602	0.42	0.680	-1.870158	2.844339
1	2014		3695801	1.30822	-0.28	0.779	-2.997217	2.258057
1	2015		1.430074	1.169582	1.22	0.227	9191003	3.779249
	cons		9.87847	1.150977	8.58	0.000	7.566665	12.19027

Specification (6), Exogenous-wage, Method 2, Full sample

Linear regres	sion			Number of F(49, 50) Prob > F R-squarec Root MSE	E obs = = = d = =	1,365,655 0.1426 9.7346
		(Std.	Err.	adjusted for	51 clusters	s in state)
hoursworked	 Coef.	Robust Std. Err.		P> t	[95% Conf.	Interval]
post911entry post911entry minwagedemo mi~o_migrant minwaged~911 mi~1_migrant hsgrad assocgrad bachgrad doctorgrad migranthsg~d migrantbac~d migrantbac~d migrantdoc~d exp	<pre>1.903923 -1.121849 6532614 5146584 1804748 0211461 0211282 6356958 2.297555 3.280359 2682695 2682695 2682695 2682695 2682695 25503258 7408814 350606 5274339</pre>	.3532869 .0772155 .1350088 .1990906 .2881494 .2046811 .6112603 .1058806 .0978832 .0922847 .1163154 .1893994 .087255 .1534146 .1816342 .2338454 .2372541 .0108267	-14.5 4.8 -80.9 1.7 -0.8 -0.0 -0.2 6.4 24.9 28.2 34.4 3.00 -0.6 -3.00 -3.11 -1.4 48.7	0.000 3 0.000 4 0.000 3 0.000 9 0.080 8 0.382 3 0.973 0 0.843 9 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 1 0.494 1 0.164 2 0.000	-1.276941 .3820883 -16.51234 -0641067 -5915887 -1.248898 -2337956 .4390917 2.112196 3.046733 6.142356 .0930127 4138597 9151488 -1.210574 8115995 .5056878	2.61933/ 9667573 .9244345 -15.71257 1.093423 .2306392 1.206606 .1915392 .8322999 2.482914 3.513986 6.903195 .4435264 .2024247 1855027 2711891 .1414783 .54918
migrantexp exp_sq migrantexp~q female migrantfem~e 1.migrant wbhao	2766518 0103752 .005701 -4.80907 .7843071 0	.0176177 .0001991 .0003127 .1108461 .1112996 (omitted)	-15.7 -52.1 18.2 -43.3 7.0	0 0.000 0 0.000 3 0.000 9 0.000 5 0.000	312038 0107752 .0050729 -5.03171 .5607552	2412657 0099752 .0063292 -4.586429 1.007859

Hispanic	121033	.2031214	-0.60	0.554	5290142	.2869483
Asian	5346662	.2662863	-2.01	0.050	-1.069518	.0001857
Other	.1201200	.1553094	0.81	0.421	18582/5	.4380687
migrant#1						
wbhao						
1#Black	3578962	.1229625	-2.91	0.005	6048736	1109188
1#Hispanic	4357598	.1451862	-3.00	0.004	7273749	1441448
1#Asian	2625687	.2465667	-1.06	0.292	7578125	.2326751
1#Other	573518	.4378217	-1.31	0.196	-1.452909	.3058726
years_sinc~l	.0110202	.002621	4.20	0.000	.0057557	.0162846
rural	.2158281	.0880743	2.45	0.018	.0389255	.3927306
migrantrural	.7511839	.2694995	2.79	0.007	.2098782	1.29249
vear l						
1999	.1165821	.0655198	1.78	0.081	0150183	.2481826
2000	.1480029	.0903122	1.64	0.108	0333945	.3294002
2001	.0741887	.0931126	0.80	0.429	1128334	.2612107
2002	1126854	.0724417	-1.56	0.126	2581889	.0328181
2003	2962769	.0781987	-3.79	0.000	4533436	1392103
2004	3163853	.1013195	-3.12	0.003	5198915	1128791
2005	2029729	.0884759	-2.29	0.026	380682	0252637
2006	- 0846642	1000706	-0.85	0 402	- 2856618	1163335
2007	0027046	0832472	0.03	0 974	- 1645023	1699114
2008	- 0217453	0918136	-0.24	0 814	- 2061584	1626677
2009	- 3226457	0880003	-3 67	0 001	- 4993996	- 1458918
2010	- 6513226	0943497	-6.90	0 000	- 8408295	- 4618157
2010	- 649652	0881649	-7 37	0 000	- 8267365	- 4725676
2011	- 4827647	0926866	-5 21	0.000	- 6689312	- 2965981
2012	- 3700399	1063385	-3 48	0.000	- 583627	- 1564528
2013	- 3553203	1095441	-3 24	0.001	- 5753462	- 1352944
2015	1437415	.0985163	-1.46	0.151	3416173	.0541342
migrant#year						
1 1999	.0198309	.1509099	0.13	0.896	2832804	.3229423
1 2000	.1541723	.212192	0.73	0.471	2720278	.5803724
1 2001	.2789089	.1554341	1.79	0.079	0332897	.5911076
1 2002	.0337413	.1545494	0.22	0.828	2766804	.3441629
1 2003	.1808924	.146899	1.23	0.224	114163	.4759478
1 2004	.1305312	.1832277	0.71	0.480	2374925	.4985548
1 2005	.1203759	.126947	0.95	0.348	1346047	.3753565
1 2006	.4583274	.1667835	2.75	0.008	.1233329	.7933218
1 2007	.1846403	.1164779	1.59	0.119	0493123	.418593
1 2008	.0522399	.156101	0.33	0.739	2612982	.3657779
1 2009	1542408	.1521857	-1.01	0.316	4599148	.1514333
1 2010	52197	.1476975	-3.53	0.001	8186292	2253107
1 2011	431673	.1224558	-3.53	0.001	6776327	1857132
1 2012	5154124	.1487557	-3.46	0.001	8141969	2166278
1 2013	5386463	.1544925	-3.49	0.001	8489535	228339
1 2014	3235785	.1689806	-1.91	0.061	662986	.0158289
1 2015	3138137	.1338562	-2.34	0.023	5826719	0449555
	26 01600	1001000	101 60	0 000	36 13636	27 1050
	00.01008	.1091009			JU.4J020	57.1959

Specification (1), Exogenous-wage, Method 3, Restricted sample

Linear regression

Number of obs	=	63,913
F(3, 50)	=	464.28
Prob > F	=	0.0000
R-squared	=	0.0816
Root MSE	=	11.755

Specification (1), Exogenous-wage, Method 3, Full sample

Linear regres	sion			Number F(7, 5 Prob > R-squa Root M	of obs 00) F Lred ISE	= = = =	1,376,334 550.22 0.0000 0.0311 10.357
		(S	td. Err. a	djusted f	or 51 clu	sters	in state)
hoursworked	 Coe	Robust ef. Std.Er	r. t	P> t	[95%	Conf.	Interval]
migrant post911entry post911ent~t leisure leisure_mi~t leisure_po~t _cons	64302 -4.3352 3.4442 -3.688 2.1464 -2.6888 2.588 40.579	164 .147899 104 .136914 302 .199004 387 .145238 473 .27237 398 .181296 389 .308261 972 .11858	1 -4.35 8 -31.66 2 17.31 7 -25.40 4 7.88 2 -14.83 2 8.40 8 342.19	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	9400 -4.610 3.04 -3.98 1.599 -3.053 1.969 40.34	0805 0106 459 059 0394 8043 0729 1153	3459522 -4.060103 3.844013 -3.397149 2.693553 -2.324754 3.208051 40.81791

Specification (2), Exogenous-wage, Method 3, Restricted sample

Linear regres	sion					Number o	f obs	=	63,913
						F(14, 50)	=	
						Prob > F		=	
						R-square	d	=	0.1640
						Root MSE		=	11.217
				(Std.	Err. adj	usted for	51 clus	ters	in state)
hoursworked		Coof	Robi	ust Err	+	D>1+1	[05% C	onf	Intorvall
	 +				L 	F / C	[90% C		Incervarj
migrant post911entry	 –	1.006525 .9055406	.292	4301 7681	3.44 -5.10	0.001 0.000	.41916	21 23	1.593889 5486577

post911ent~t		1.144534	.2568407	4.46	0.000	.6286546	1.660414
yearseduc		.4698338	.0578056	8.13	0.000	.3537278	.5859397
exp		.882775	.0197792	44.63	0.000	.8430474	.9225027
exp sq		016277	.0004082	-39.87	0.000	0170969	015457
female		-4.102795	.1455133	-28.20	0.000	-4.395067	-3.810523
white		6014496	.4810982	-1.25	0.217	-1.567764	.3648646
black		5410794	.5117593	-1.06	0.295	-1.568978	.4868195
asian		1429137	.5659952	-0.25	0.802	-1.279749	.9939212
hispanic		.4881586	.4804518	1.02	0.315	4768572	1.453174
years sinc~l		.0025797	.0124812	0.21	0.837	0224896	.027649
rural		2697939	.2242645	-1.20	0.235	7202423	.1806545
year	1	7.289121	16.21504	0.45	0.655	-25.27974	39.85798
year sq	1	001838	.0040352	-0.46	0.651	0099429	.0062668
cons	Ι	-7200.782	16289.13	-0.44	0.660	-39918.47	25516.91

Specification (2), Exogenous-wage, Method 3, Full sample

Linear regres:	sion			Number F(17, 5 Prob > R-squar Root MS	of obs = 50) = F = ed = E =	1,376,334 0.1188 9.8769
		(Std.	. Err. ad	justed fo	or 51 clusters	in state)
hoursworked	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant post911entry post911ent~t leisure leisure_mi~t leisure_o~t yearseduc exp	0793621 8321537 .3637528 -2.412394 1.805136 -2.57045 2.663535 .4884359 .5503785	.0999222 .0726021 .1501702 .1019721 .2229848 .1706097 .3179876 .0255886 .010183	-0.79 -11.46 2.42 -23.66 8.10 -15.07 8.38 19.09 54.05	0.431 0.000 0.019 0.000 0.000 0.000 0.000 0.000 0.000	2800617 9779792 .062127 -2.617211 1.357258 -2.913129 2.024838 .4370396 .5299254	.1213375 6863281 .6653786 -2.207577 2.253015 -2.22777 3.302232 .5398322 .5708316
exp_sq female white black asian hispanic years_sinc~1 rural year year_sq _cons	0103919 -4.749385 0583898 2561863 713241 .0466149 .0053133 .1596978 -5.033984 .0012469 5110.668	.0001884 .1178076 .1634603 .1608568 .1876917 .2120669 .0026615 .0762686 3.614647 .0009012 3623.954	-55.16 -40.31 -0.36 -1.59 -3.80 0.22 2.00 2.09 -1.39 1.38 1.41	0.000 0.000 0.722 0.118 0.000 0.827 0.051 0.041 0.170 0.173 0.165	0107703 -4.986009 3867094 5792767 -1.090231 3793339 0000326 .0065079 -12.29422 0005631 -2168.257	0100135 -4.512762 .2699299 .0669042 3362512 .4725637 .0106592 .3128877 2.226248 .003057 12389.59

Specification (3), Exogenous-wage, Method 3, Restricted sample

Linear regression	Number of obs	=	63,913
	F(30, 50)	=	1120.63
	Prob > F	=	0.0000

R-squared	=	0.1653
Root MSE	=	11.209

hoursworked	Coef.	Robust Std. Err.	t	 P> t	[95% Conf.	Interval]
migrant post911entry	.985683 8728149 1 196799	.2959889 .1890912 2547601	3.33 -4.62 4.70	0.002 0.000	.3911717 -1.252616 6850985	1.580194 4930141 1.7085
yearseduc	.4715723	.0588957	8.01	0.000	.3532769	.5898677
exp	.8866522	.0201635	43.97	0.000	.8461526	.9271517
exp_sq	016353	.00041	-39.89	0.000	0171764	0155295
white	-4.10049	.4874844	-20.13	0.000	-1.584029	.3742533
black	5462562	.5187048	-1.05	0.297	-1.588105	.4955931
asian	1607236	.562804	-0.29	0.776	-1.291149	.9697014
hispanic	4806027	.4796024	1.00	0.321	4827071	1.443912
rural	2605537	.2252935	-1.16	0.743	713069	.1919616
year	1 1 2 0 5 0 0	760050	1 40	0 1 4 4	4000446	0 66500
1999	1.132592 0630041	./63053	1.48	0.144	4000446	2.66523
2000	.0030041 1.101253	6892716	1.55	0.127	- 2831902	2 485695
2001	.5488782	.6271599	0.88	0.386	7108095	1.808566
2003	.7977446	.729237	1.09	0.279	6669711	2.26246
2004	.1514277	.6987634	0.22	0.829	-1.25208	1.554935
2005	.3312853	.6577859	0.50	0.617	9899165	1.652487
2006	.3789133	.6709506	0.56	0.575	9687307	1.726557
2007	1.101566	.7726748	1.43	0.160	4503974	2.653529
2008	.834719	.7542205	1.11	0.274	6801774	2.349615
2009	0497448	./290504	0.07	0.946	-1.414596	1.514086
2010	0440970	6598007	-1.00	0.322	-2.035969	6145284
2011	5156964	.6846963	-0.75	0.455	-1.890949	.8595566
2012	5795299	.7013231	-0.83	0.413	-1.988179	.8291191
2014	223101	.7237863	-0.31	0.759	-1.676869	1.230667
2015	1553318	.8640411	-0.18	0.858	-1.890809	1.580146
cons	 24.45764	1.201718	20.35	0.000	22.04392	26.87137

Specification (3), Exogenous-wage, Method 3, Full sample

Linear regress	sion			Numbe	er of	obs	=	1,376,334
				F(38,	, 50)		=	6392.9
				Prob	> F		=	0.000
				R-squ	lared		=	0.126
				Root	MSE		=	9.835
		(Std.	Err.	adjusted	for	51 c	lusters	in state
	 I	Pobust						
hoursworked	Coef.	Std. Err.	1	t P> t	l	[95	% Conf.	Interval
hoursworked	 Coef.	(Std. Robust Std. Err.	Err.	adjusted t P> t	for 	51 ci 	lusters % Conf.	in stat Interva

migrant	4728804	.100083	-4.72	0.000	673903	2718578
post911entry	880974	.07665	-11.49	0.000	-1.03493	7270179
post911ent~t	.3763438	.1553625	2.42	0.019	.0642891	.6883986
leisure	-2.267527	.1015215	-22.34	0.000	-2.471439	-2.063615
leisure_mi~t	1.720577	.2108814	8.16	0.000	1.297009	2.144144
leisure_~911	-2.411572	.1649325	-14.62	0.000	-2.742849	-2.080295
leisure_po~t	2.567037	.3101088	8.28	0.000	1.944165	3.189908
hsgrad	1.669548	.1859173	8.98	0.000	1.296122	2.042973
assocgrad	2.229856	.1825131	12.22	0.000	1.863267	2.596444
bachgrad	3.863733	.1485208	26.01	0.000	3.56542	4.162045
mastgrad	4.749806	.1745909	27.21	0.000	4.39913	5.100482
doctorgrad	8.097747	.2882359	28.09	0.000	7.518808	8.676686
exp	.5365383	.0094988	56.48	0.000	.5174593	.5556173
exp_sq	0102183	.0001718	-59.46	0.000	0105635	0098732
female	-4.712695	.1170404	-40.27	0.000	-4.947778	-4.477613
white	2036539	.1559778	-1.31	0.198	5169445	.1096366
black	2477887	.1559721	-1.59	0.118	561068	.0654905
asian	8738372	.1813095	-4.82	0.000	-1.238008	5096663
hispanic	0799354	.217195	-0.37	0.714	5161843	.3563136
years_sinc~l	.0081557	.0024556	3.32	0.002	.0032235	.0130878
rural	.2342394	.0834879	2.81	0.007	.066549	.4019299
year						
1999	.113663	.0588559	1.93	0.059	0045526	.2318786
2000	.1463487	.0875046	1.67	0.101	0294094	.3221068
2001	.104846	.0917273	1.14	0.258	0793938	.2890858
2002	1227001	.068108	-1.80	0.078	2594991	.0140989
2003	229582	.0/8/291	-2.92	0.005	38//14	0/145
2004	2615393	.0966797	-2.71	0.009	4557263	0673524
2005	1458031	.0807942	-1.80	0.077	308083	.0164767
2006	.021164/	.0898984	0.24	0.815	1594016	.201/31
2007	.0729892	.0/83816	0.93	0.356	0844449	.2304233
2008	.0465008	.0/83618	0.59	0.556	1108936	.2038951
2009	3041//1	.0/699/9	-3.95	0.000	458832	1495222
2010	6912897	.078938	-8./6	0.000	8498414	532/3/9
2011	6689199	.0//9942	-8.58	0.000	825576	5122638
2012	51//5	.0819914	-6.31	0.000	682434/	3530654
2013	3912254	.0968522	-4.04	0.000	585/589	196692
2014	351245/	.0981356	-3.58	U.UUL	5483569	1541344
2015	14481//	.08910/3	-1.62	0.111	3239154	.0342801
_cons	35.07202	.2145561	163.46	0.000	34.64107	35.50297

Specification (4), Exogenous-wage, Method 3, Restricted sample

Linear regress	sion			Number of	obs =	63,913
				F(49, 50)	=	
				Prob > F	=	
				R-squared	=	0.1727
				Root MSE	=	11.162
		(Std.	Err. ad	justed for S	51 clusters	in state)
hoursworked	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	9.534752	1.697939	5.62	0.000	6.12434	12.94516

post911entry	7725973	.2015548	-3.83	0.000	-1.177432	3677626
post911ent~t	1.246652	.2994861	4.16	0.000	.6451168	1.848188
vearseduc	.8210674	.0520409	15.78	0.000	.7165402	.9255946
migrantvea~c	6431216	.0617414	-10.42	0.000	7671329	5191104
exp	.9777878	.0235659	41.49	0.000	.9304542	1.025121
migrantexp	3125741	.031544	-9.91	0.000	375932	2492161
evn sa l	- 0188477	0005359	-35 17	0 000	- 0199242	- 0177713
migrantovnag	0074713	0005875	12 72	0.000	0062913	0026513
fomplo	-3 693060	1012/0	-20 32	0.000	-4 047119	-3 31002
migrantformed	1 556001	.101249	-20.32	0.000	-4.04/110	1 006494
1 migrant	-1.550001	.2/40201	-5.00	0.000	-2.107279	-1.000404
I.IIIIYIAIIU	0	(ONITCLEA)				
wbhao						
Black	.3257508	.253818	1.28	0.205	1840576	.8355592
Hispanic	1.013369	.4368997	2.32	0.024	.1358305	1.890908
Asian	.6460422	.5616801	1.15	0.256	4821255	1.77421
Other	.805196	.474944	1.70	0.096	1487571	1.759149
migrant# wbhao						
1#Black	-1.110221	.7467066	-1.49	0.143	-2.610025	.3895834
1#Hispanic	3102402	.4943677	-0.63	0.533	-1.303207	.6827266
1#Asian	2867574	.7186925	-0.40	0.692	-1.730294	1.156779
1#Other	-6.194784	2.171956	-2.85	0.006	-10.55728	-1.832282
	0101040	0100000		0 41 0	0145061	0040858
years_sinc~1	.0101948	.0123376	0.83	0.413	0145861	.0349757
rural	1944163	.211022	-0.92	0.361	6182665	.2294339
migrantrural	1.111819	.7792705	1.43	0.160	4533917	2.67703
vear						
1999	1.079705	.7005828	1.54	0.130	3274565	2.486867
2000	.4590759	.6007181	0.76	0.448	7475019	1.665654
2001	.7713026	.7346728	1.05	0.299	7043312	2.246936
2002	4031438	5417548	0 74	0 460	- 6850028	1 49129
2002	6440046	7026097	0 92	0 364	- 7672285	2 055238
2003	- 0991273	6777485	-0.15	0.884	-1 460425	1 262171
2004	- 008939	6804632	-0.01	0.004	-1 37569	1 357812
2005	- 0934664	6502878	-0.14	0.990	-1 300608	1 212675
2000	0466014	.0302070	1 20	0.000	E011E41	2 414517
2007	.9400814	./30/903	1.30	0.201	5211541	2.414517
2008	.6512445	.7055895	0.92	0.360	/659/38	2.068463
2009	00048	.7012984	-0.00	0.999	-1.4090/9	1.408119
2010	/606949	.//85448	-0.98	0.333	-2.324448	.8030583
2011	6046439	.6060039	-1.00	0.323	-1.821839	.6125507
2012	6240583	.614511	-1.02	0.315	-1.85834	.6102234
2013	6819657	.6954856	-0.98	0.332	-2.07889	.7149583
2014	3829526	.6840807	-0.56	0.578	-1.756969	.9910639
2015	3059235	.8262495	-0.37	0.713	-1.965494	1.353647
migran+#vear						
1 1000 I	- 0230/21	2 723572	_0_01	0 993	-5 191397	5 116512
1 2000	3 812966	2.725572	1 65	0.105	- 8292578	8 155189
1 2000	2 981595	2.JIIZZI 1.77000/	1 69	0 100	- 5883870	6 557500
1 2001 1 2002	2.J04JJJ 1 JEOEEO	1 200710	1.00	0.100	JU039/9	0.00/000
1 2002 1 2002	1.239339	1 24064	0.90	0.3/3	-1.331843	4.0/0963
1 2003	2.43/385	1.24064	1.98 0.45	0.053	U343146	4.949484
1 2004	2.93/019	1.1966/9	2.45	0.018	.533418	5.34062
1 2005	3.267873	1.349255	2.42	0.019	.5578155	5.977931
1 2006	3.570936	1.487794	2.40	0.020	.5826148	6.559258
1 2007	2.403381	1.478498	1.63	0.110	5662702	5.373033
1 2008	2.505547	1.43146	1.75	0.086	3696257	5.38072
1 2009	1.748661	1.222036	1.43	0.159	7058699	4.203193

1 2010 1 2011 1 2012 1 2013 1 2014 1 2015	 	1.238486 1.060768 2.094395 1.947431 1.979685 2.043151	1.365761 1.429777 1.44969 1.215875 1.403727 1.493744	0.91 0.74 1.44 1.60 1.41 1.37	0.369 0.462 0.155 0.116 0.165 0.177	-1.504727 -1.811025 8173936 4947246 8397839 9571223	3.981698 3.93256 5.006183 4.389587 4.799154 5.043424
cons	 	18.72482	1.165651	16.06	0.000	16.38354	21.0661

Specification (4), Exogenous-wage, Method 3, Full sample

Linear regression	Number of obs	=	1,376,334
	F(49, 50)	=	
	Prob > F	=	
	R-squared	=	0.1221
	Root MSE	=	9.8583

(Std. Err. adjusted for 51 clusters in state)

hoursworked	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	6.244962	.6325593	9.87	0.000	4.974429	7.515494
post911entry	8070706	.0739836	-10.91	0.000	9556711	6584702
post911ent~t	.6610025	.1655794	3.99	0.000	.3284264	.9935786
leisure	-2.291348	.1065412	-21.51	0.000	-2.505342	-2.077353
leisure_mi~t	1.444341	.2104305	6.86	0.000	1.021679	1.867003
leisure_~911	-2.507622	.1674847	-14.97	0.000	-2.844025	-2.171219
leisure_po~t	2.454106	.3185263	7.70	0.000	1.814327	3.093885
yearseduc	.6030121	.0171496	35.16	0.000	.5685661	.637458
migrantyea~c	3375509	.0302789	-11.15	0.000	398368	2767339
exp	.5882736	.0106739	55.11	0.000	.5668344	.6097128
migrantexp	2299817	.0143931	-15.98	0.000	258891	2010724
exp_sq	0113253	.000198	-57.19	0.000	0117231	0109276
migrantexp~q	.0051697	.0002785	18.56	0.000	.0046103	.0057292
female	-4.858279	.1118399	-43.44	0.000	-5.082916	-4.633642
migrantfem~e	.7374671	.1065943	6.92	0.000	.5233662	.951568
1.migrant	0	(omitted)				
wbhao						
Black	0837093	.0775228	-1.08	0.285	2394185	.0719998
Hispanic	.0047044	.2402586	0.02	0.984	4778692	.4872781
Asian	3177019	.2903464	-1.09	0.279	9008798	.2654759
Other	.1380448	.1568884	0.88	0.383	1770749	.4531645
migron+#1						
where I						
1#Black	- 5695715	1/252/7	-1 00	0 000	- 8558409	- 2833021
1#Uispanic	- 4762275	1620/01	-2 9/	0.000	- 8017127	- 1507422
1#Asian	- 33/2233	2688212	_1 24	0.000	- 87/166/	2057100
1#ASian	- 7640198	.2000212	_1 75	0.220	-1 6/3155	1151159
I#OCHEI	./040190	.43/094/	1.75	0.007	1.043133	.1131139
vears sinc~1	.0080838	.0024129	3.35	0.002	.0032373	.0129304
rural	.2051611	.0878968	2.33	0.024	.0286152	.381707
migrantrural	.8361301	.2725357	3.07	0.003	.2887261	1.383534
		/				
year						

270

1999	.1007571	.0652907	1.54	0.129	0303831	.2318974
2000	.1151824	.0902624	1.28	0.208	066115	.2964798
2001	.0566243	.0978736	0.58	0.565	1399605	.2532092
2002	1420752	.0779408	-1.82	0.074	2986238	.0144734
2003	2578662	.0824776	-3.13	0.003	4235274	0922051
2004	2677582	.1002305	-2.67	0.010	4690771	0664392
2005	1435008	.0885257	-1.62	0.111	3213098	.0343082
2006	0357511	.1033841	-0.35	0.731	2434042	.1719019
2007	.0623806	.0845572	0.74	0.464	1074576	.2322188
2008	.0386587	.0913792	0.42	0.674	1448818	.2221992
2009	2578995	.0885659	-2.91	0.005	4357893	0800097
2010	5924912	.0935024	-6.34	0.000	7802962	4046862
2011	5905328	.0876477	-6.74	0.000	7665785	4144871
2012	4289301	.0931985	-4.60	0.000	6161247	2417354
2013	3018682	.1115113	-2.71	0.009	5258453	0778911
2014	2715571	.1080893	-2.51	0.015	4886609	0544533
2015	0607119	.0980668	-0.62	0.539	2576849	.1362611
migrant#year	 					
1 1999	.0638795	.1592362	0.40	0.690	2559557	.3837148
1 2000	.2018387	.2097404	0.96	0.341	2194374	.6231148
1 2001	.3102264	.1614495	1.92	0.060	0140544	.6345072
1 2002	.0600464	.1675494	0.36	0.722	2764864	.3965792
1 2003	.1240416	.1749593	0.71	0.482	2273744	.4754576
1 2004	.0044993	.2074302	0.02	0.983	4121367	.4211352
1 2005	0606913	.1185924	-0.51	0.611	2988912	.1775085
1 2006	.3072278	.1705769	1.80	0.078	035386	.6498416
1 2007	.0174397	.1170975	0.15	0.882	2177576	.252637
1 2008	0442193	.1755394	-0.25	0.802	3968006	.3083621
1 2009	351403	.16081	-2.19	0.034	6743994	0284066
1 2010	6833252	.1528076	-4.47	0.000	9902484	3764021
1 2011	6318092	.135434	-4.67	0.000	9038363	359782
1 2012	6501605	.1502625	-4.33	0.000	9519716	3483494
1 2013	6568336	.1563451	-4.20	0.000	9708619	3428053
1 2014	5304952	.1672494	-3.17	0.003	8664254	194565
1 2015	5603436	.1384196	-4.05	0.000	8383675	2823198
_cons	28.52581	.403817	70.64	0.000	27.71472	29.3369

Specification (5), Exogenous-wage, Method 3, Restricted sample

Linear regression	Number of obs	=	63,913
	F(50, 50)	=	
	Prob > F	=	
	R-squared	=	0.1727
	Root MSE	=	11.162

hoursworked	 	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant		9.684102	1.924581	5.03	0.000	5.818467	13.54974
post911entry	Ì	7703546	.201702	-3.82	0.000	-1.175485	3652242
post911ent~t		1.137122	.3223241	3.53	0.001	.489715	1.784529
yearseduc	Ι	.8213925	.0517985	15.86	0.000	.7173521	.9254328
migrantyea~c		6413103	.0615098	-10.43	0.000	7648565	5177642

exp	.9779103	.0235374	41.55	0.000	.9306341	1.025187
migrantexp	3124138	.0313258	-9.97	0.000	3753336	249494
exp_sq	0188505	.0005346	-35.26	0.000	0199243	0177767
migrantexp~q	.007503	.000586	12.80	0.000	.006326	.00868
female	-3.683635	.1813689	-20.31	0.000	-4.047925	-3.319345
migrantiem~e	-1.55/6/5	.2/42568	-5.68	0.000	-2.108536	-1.006813
1.migrant	0	(omitted)				
wbhao						
Black	.3260873	.2539253	1.28	0.205	1839368	.8361114
Hispanic	1.000058	.4400079	2.27	0.027	.1162757	1.883839
Asian	.6112767	.5653684	1.08	0.285	5242992	1.746853
Other	.8053548	.4741173	1.70	0.096	1469378	1.757647
migrant#						
wbhao						
1#Black	-1.121983	.7495449	-1.50	0.141	-2.627489	.3835219
1#Hispanic	3116862	.4956049	-0.63	0.532	-1.307138	.6837655
1#Asian	2608057	.7219173	-0.36	0.719	-1.710819	1.189208
1#Other	-6.217456	2.17869	-2.85	0.006	-10.59348	-1.841428
vears sincal	0499755	0720438	0 69	0 491	- 0947287	1946796
rural	1936902	.2105376	-0.92	0.362	6165674	.2291869
migrantrural	1.122696	.7806607	1.44	0.157	4453067	2.6907
year		7000440	1 5 4	0 1 0 0	2055002	0 406571
1999	1.080491	.7000442	1.54	0.129	3255893	2.4865/1
2000	.45/1369	.599/326	0.76	0.450	/4/4614	1.661/35
2001		./346632	1.05	0.300	/065/26	2.244656
2002	.4003495	.5419633	0.74	0.464	688215/	1.488915
2003	1020126	./02885	0.91	0.300	//11203	2.052440
2004	1039120	6915160	-0.13	0.079	-1 202000	1 25/725
2005	0141521	6519964	-0.02	0.904	-1.09624	1 209522
2000	I 9390637	7336584	1 28	0.079	- 5345325	2 41266
2007	6433244	707493	0.91	0.200	- 7777171	2 064366
2000	-0113362	7067847	-0.02	0 987	-1 430955	1 408283
2010	7704131	.7831157	-0.98	0.330	-2.343347	.802521
2011	6141378	. 607694	-1.01	0.317	-1.834727	. 6064515
2012	633986	.6141496	-1.03	0.307	-1.867542	.5995698
2013	6938696	.6972406	-1.00	0.324	-2.094318	.7065793
2014	3946972	.6865439	-0.57	0.568	-1.773661	.9842668
2015	3170611	.8286514	-0.38	0.704	-1.981456	1.347334
1 1000	 _ 0787500	2 753/80	-0 03	0 077	-5 609296	5 151701
1 2000	10787509	2.755409	-0.03	0.977	- 9804544	2 /30167
1 2000	1 2 864508	1 811077	1 58	0.120	- 7731474	6 502164
1 2001	1 1 073556	1 515867	0 71	0.482	-1 971152	4 118264
1 2002	1 2 197834	1 36736	1 61	0.114	- 5485903	4 944258
1 2003	2 645605	1 356586	1 95	0 057	- 0791777	5 370389
1 2005	2.939933	1.522929	1.93	0.059	1189599	5.998826
1 2006	3.207826	1.705492	1.88	0.066	2177564	6.633408
1 2007	1.997883	1.707881	1.17	0.248	-1.432497	5.428264
1 2008	2.05558	1.720606	1.19	0.238	-1.400359	5.511519
1 2009	1.262037	1.522063	0.83	0.411	-1.795118	4.319191
1 2010	.7088702	1.726185	0.41	0.683	-2.758274	4.176014
1 2011	.485564	1.863922	0.26	0.796	-3.258233	4.229361
1 2012	1.477119	1.894595	0.78	0.439	-2.328286	5.282524
1 2013	1.293486	1.733857	0.75	0.459	-2.189069	4.77604

entry_year 0480668 .0746747 -0.64 0.5231980554 .101921 entry_year~q .000024 .0000372 0.65 0.5210000508 .000098 cons 18.7254 1.160836 16.13 0.000 16.39379 21.05	1 2014 1 2015	 	1.307713 1.343878	1.938295 2.100918	0.67 0.64	0.503 0.525	-2.585467 -2.87594	5.200894 5.563696
	entry_year		0480668	.0746747	-0.64	0.523	1980554	.1019217
	entry_year~q		.000024	.0000372	0.65	0.521	0000508	.0000988
	_cons		18.7254	1.160836	16.13	0.000	16.39379	21.057

Specification (5), Exogenous-wage, Method 3, Full sample

Linear regression		Number of ob	s =	1,376,334
-		F(50, 50)	=	
		Prob > F	=	
		R-squared	=	0.1279
		Root MSE	=	9.8257
	(Std. Err.	. adjusted for 51	clusters	in state)

hoursworked	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	2.717485	.3885777	6.99	0.000	1.937003	3.497966
post911entry	8033343	.0720134	-11.16	0.000	9479775	6586911
post911ent~t	.6380808	.1660892	3.84	0.000	.3044809	.9716808
leisure	-2.213565	.1036025	-21.37	0.000	-2.421656	-2.005473
leisure_mi~t	1.566156	.2001137	7.83	0.000	1.164215	1.968096
leisure_~911	-2.356038	.1611857	-14.62	0.000	-2.679789	-2.032287
leisure_po~t	2.35942	.3077576	7.67	0.000	1.74127	2.977569
hsgrad	2.255552	.1169816	19.28	0.000	2.020587	2.490516
assocgrad	2.801968	.1255785	22.31	0.000	2.549736	3.0542
bachgrad	4.476934	.1270857	35.23	0.000	4.221675	4.732193
mastgrad	5.377219	.1662491	32.34	0.000	5.043298	5.711141
doctorgrad	8.625798	.2493134	34.60	0.000	8.125037	9.126559
migranthsg~d	-1.683389	.1357914	-12.40	0.000	-1.956134	-1.410644
migrantass~d	-1.815692	.1996589	-9.09	0.000	-2.216719	-1.414665
migrantbac~d	-2.144504	.2054073	-10.44	0.000	-2.557077	-1.731932
migrantmas~d	-2.152667	.2584135	-8.33	0.000	-2.671706	-1.633629
migrantdoc~d	-1.553607	.2499525	-6.22	0.000	-2.055652	-1.051563
exp	.5743636	.0102086	56.26	0.000	.553859	.5948681
migrantexp	2200707	.0140629	-15.65	0.000	2483169	1918244
exp_sq	0111138	.0001891	-58.76	0.000	0114937	0107339
migrantexp~q	.0048053	.0002636	18.23	0.000	.004276	.0053347
female	-4.825184	.111583	-43.24	0.000	-5.049305	-4.601063
migrantfem~e	.8156561	.1111344	7.34	0.000	.5924362	1.038876
1.migrant	0	(omitted)				
wbhao						
Black	.0074528	.0781004	0.10	0.924	1494164	.164322
Hispanic	.0749193	.2321022	0.32	0.748	3912716	.5411102
Asian	3867086	.2741276	-1.41	0.165	93731	.1638928
Other	.2465946	.1543645	1.60	0.116	0634557	.5566449
migrant# wbhao						
1#Black	3411902	.1459707	-2.34	0.023	6343809	0479995
1#Hispanic	3423502	.1804912	-1.90	0.064	7048775	.0201771
1#Asian	3547877	.2857867	-1.24	0.220	9288072	.2192318

1#Other	7116983	.4261219	-1.67	0.101	-1.567589	.1441928
years sinc~l	0127628	.0128388	-0.99	0.325	0385503	.0130248
rural	.2213677	.0893384	2.48	0.017	.0419263	.4008091
migrantrural	.7700176	.2694797	2.86	0.006	.2287517	1.311284
year						
1999	.1033997	.0656495	1.58	0.122	0284611	.2352605
2000	.1188732	.0899507	1.32	0.192	0617981	.2995444
2001	.0631772	.0963259	0.66	0.515	1302992	.2566535
2002	133922	.0760851	-1.76	0.084	2867435	.0188995
2003	2493424	.0800702	-3.11	0.003	4101681	0885168
2004	2682928	.098696	-2.72	0.009	4665295	0700561
2005	1467568	.0869293	-1.69	0.098	3213595	.0278459
2006	0331936	.1008143	-0.33	0.743	235685	.1692978
2007	.0563617	.0819396	0.69	0.495	1082188	.2209423
2008	.0391538	.0906761	0.43	0.668	1429745	.221282
2009	2669298	.0887278	-3.01	0.004	4451449	0887146
2010	6050261	.0907777	-6.66	0.000	7873584	4226938
2011	5993157	.0869501	-6.89	0.000	7739601	4246713
2012	4397406	.0921637	-4.77	0.000	6248569	2546243
2013	3123697	.1119394	-2.79	0.007	5372065	0875329
2014	2961312	.1081341	-2.74	0.009	5133248	0789375
2015	0846125	.0986914	-0.86	0.395	28284	.113615
migrant#year						
1 1999	.1033922	.1553162	0.67	0.509	2085695	.4153539
1 2000	.2816118	.2231653	1.26	0.213	1666289	.7298526
1 2001	.4024856	.1589131	2.53	0.015	.0832993	.7216718
1 2002	.1783276	.1643772	1.08	0.283	1518337	.5084888
1 2003	.2508858	.176852	1.42	0.162	1043319	.6061036
1 2004	.1624622	.2140191	0.76	0.451	2674079	.5923322
1 2005	.1386578	.149218	0.93	0.357	1610553	.4383709
1 2006	.5061625	.1951001	2.59	0.012	.1142925	.8980325
1 2007	.2793324	.1653711	1.69	0.097	0528252	.61149
1 2008	.2311996	.2124166	1.09	0.282	1954517	.6578509
1 2009	0527904	.2085181	-0.25	0.801	4716112	.3660305
1 2010	3292205	.2089518	-1.58	0.121	7489126	.0904716
1 2011	2329865	.1996126	-1.17	0.249	6339202	.1679473
1 2012	2424253	.2246617	-1.08	0.286	6936717	.2088211
1 2013	2398749	.2497031	-0.96	0.341	7414183	.2616685
1 2014	0907368	.2695089	-0.34	0.738	6320613	.4505877
1 2015	1081611	.2355249	-0.46	0.648	5812268	.3649046
entry year	.0284646	.0137773	2.07	0.044	.000792	.0561372
entry year~q	0000142	6.88e-06	-2.07	0.043	0000281	-4.37e-07
cons	34 07537	2422885	140 64	0 000	33 58872	34 56202

Specification (6), Exogenous-wage, Method 3, Full sample

Linear regression	Number of obs	=	62 , 653
	F(49, 50)	=	
	Prob > F	=	
	R-squared	=	0.1737
	Root MSE	=	11.172

 hoursworked	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
+ migrant	11.44745	1.816711	6.30	0.000	7.79848	15.09642
post911entry	772629	.2015567	-3.83	0.000	-1.177468	3677904
post911ent~t	.70457	.3455153	2.04	0.047	.0105821	1.398558
yearseduc	.8210823	.0520276	15.78	0.000	.7165817	.9255829
migrantyea~c	6656548	.0644663	-10.33	0.000	7951392	5361704
exp	.977756	.0235646	41.49	0.000	.9304251	1.025087
migrantexp	4415277	.0418581	-10.55	0.000	5256022	3574532
exp sq	0188474	.0005359	-35.17	0.000	0199237	0177711
migrantexp~q	.0095794	.0006482	14.78	0.000	.0082774	.0108814
female	-3.683038	.1812464	-20.32	0.000	-4.047082	-3.318994
migrantfem~e	-1.758078	.2585425	-6.80	0.000	-2.277376	-1.23878
1.migrant	0	(omitted)				
wbhao						
Black	.3258059	.2538036	1.28	0.205	1839737	.8355855
Hispanic	1.012348	.4375822	2.31	0.025	.1334382	1.891258
Asian	.6421799	.5642101	1.14	0.260	4910694	1.775429
Other 	.8051529	.474898	1.70	0.096	1487078	1.759014
migrant#						
WDNaO 1#Dlash	1 527052	7002266	1 0 4	0 0 5 7	2 1 2 4 4 0 1	0502040
1#BLACK	-1.53/053	./903300	-1.94	0.057	-3.124491	.0303849
1#Alspanic	/253389	.32/4030	-1.38	0.175	-1./84821	.3341430
1#ASidii	3014937 5 614544	2 220075	-0.39	0.700	-1.001300	1 125207
I#Other	-5.614544	2.230075	-2.52	0.015	-10.09378	-1.135307
years_sinc~l	.0110558	.0128382	0.86	0.393	0147305	.036842
rural	1943691	.2110191	-0.92	0.361	6182133	.2294752
migrantrural	1.222902	.7919052	1.54	0.129	367687	2.81349
year						
1999	1.079567	.7006768	1.54	0.130	3277839	2.486918
2000	.4590154	.6007548	0.76	0.448	7476361	1.665667
2001	.7712025	.734735	1.05	0.299	7045561	2.246961
2002	.4030595	.5418928	0.74	0.460	6853642	1.491483
2003	.643945	./026643	0.92	0.364	/6/39//	2.055288
2004	0992545	.6//8686	-0.15	0.884	-1.460/94	1.262285
2005	0089368	.6804896	-0.01	0.990	-1.3/5/4	1.35/86/
2006	0935896	.6503/46	-0.14	0.886	-1.399905	1.212/26
2007	.946/491	./308296	1.30	0.201	5211655	2.414664
2008	.6513122	./0561/9	0.92	0.360	/65963	2.068588
2009	0005/04	./0140/8	-0.00	0.999	-1.40939	1.408249
2010	/60/858	.//86/18	-0.98	0.333	-2.324/94	.8032225
2011	6045848	.6060467	-1.00	0.323	-1.821865	.6126957
2012	6240079	.61451	-1.02	0.315	-1.858288	.6102716
2013	081890/	.0955127	-0.98	0.332	-2.0/8869	./1508/6
2014 2015	3057907	.8262577	-0.37	0.578	-1.965378	1.353797
migrant#vear						
1 1999 1	- 0549493	2 798675	-0 02	0 984	-5 676253	5 566355
1 2000 1	3.78668	2.247947	1 68	0.098	7284549	8.301816
1 2000	2.978788	1.792025	1.66	0.103	6206003	6.578176
1 2001 1	1 631625	1.406508	1 16	0 252	-1 19343	4 45668
1 2002	2.59848	1.186039	2.19	0.033	.2162498	4.98071
1 2004	3.184975	1.186584	2.68	0.010	.8016518	5.568298

1 2005	1	3.705322	1.346064	2.75	0.008	1.001674	6.408971
1 2006	1	4.231666	1.433148	2.95	0.005	1.353104	7.110229
1 2007	1	2.77255	1.415799	1.96	0.056	0711655	5.616266
1 2008		2.995892	1.412905	2.12	0.039	.1579892	5.833795
1 2009		2.098755	1.181316	1.78	0.082	273987	4.471497
1 2010	I	1.736791	1.385706	1.25	0.216	-1.046482	4.520064
1 2011		1.544497	1.415737	1.09	0.281	-1.299096	4.388089
1 2012	I	2.68862	1.349285	1.99	0.052	0214989	5.398738
1 2013	I	2.425552	1.195436	2.03	0.048	.0244491	4.826655
1 2014	I	2.475456	1.351518	1.83	0.073	2391479	5.19006
1 2015		2.611473	1.488576	1.75	0.085	3784206	5.601366
_cons	1	18.72474	1.165606	16.06	0.000	16.38355	21.06593

Specification (6), Exogenous-wage, Method 3, Full sample

Linear regress	sion			Number of F(49, 50) Prob > F R-squared Root MSE	E obs = = = d = =	1,365,655 0.1276 9.8196
		(Std.	Err. ad	justed for	51 clusters	in state)
	 	Robust				
hoursworked	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	3.652408	.3936158	9.28	0.000	2.861807	4.443009
post911entry	8022525	.0720005	-11.14	0.000	9468698	6576352
post911ent~t	.3839084	.148437	2.59	0.013	.0857639	.6820529
leisure	-2.213906	.1036496	-21.36	0.000	-2.422092	-2.005719
leisure_mi~t	1.887405	.2037027	9.27	0.000	1.478256	2.296554
leisure_~911	-2.355563	.1612213	-14.61	0.000	-2.679385	-2.031741
leisure_po~t	1.952085	.3096737	6.30	0.000	1.330087	2.574083
hsgrad	2.256479	.1169144	19.30	0.000	2.02165	2.491309
assocgrad	2.80289	.1254224	22.35	0.000	2.550972	3.054809
bachgrad	4.477621	.1270304	35.25	0.000	4.222473	4.732769
mastgrad	5.3779	.1662744	32.34	0.000	5.043928	5.711872
doctorgrad	8.626345	.2490952	34.63	0.000	8.126023	9.126667
migranthsg~d	-1.640485	.135638	-12.09	0.000	-1.912922	-1.368048
migrantass~d	-1.927097	.2096096	-9.19	0.000	-2.34811	-1.506084
migrantbac~d	-2.360185	.2268371	-10.40	0.000	-2.815801	-1.90457
migrantmas~d	-2.451137	.2549878	-9.61	0.000	-2.963295	-1.938979
migrantdoc~d	-2.055328	.2559937	-8.03	0.000	-2.569506	-1.541149
exp	.5743196	.010202	56.29	0.000	.5538283	.5948109
migrantexp	2821918	.0171568	-16.45	0.000	3166522	2477314
exp_sq	0111126	.000189	-58.79	0.000	0114923	0107329
migrantexp~q	.0058593	.000305	19.21	0.000	.0052467	.0064719
female	-4.825135	.1115858	-43.24	0.000	-5.049262	-4.601008
migrantfem~e	.7569895	.1155444	6.55	0.000	.5249117	.9890674
1.migrant	0	(omitted)				
wbhao	1					
Black	.0073008	.078099	0.09	0.926	1495657	.1641672
Hispanic	.063083	.2287846	0.28	0.784	3964444	.5226104
Asian	4080816	.2743441	-1.49	0.143	9591178	.1429547

Other	.2468666	.1543166	1.60	0.116	0630875	.5568206
migrant#1						
wbhao						
1#Black	4446222	.1333774	-3.33	0.002	7125187	1767257
1#Hispanic	5380641	.1642244	-3.28	0.002	8679185	2082098
1#Asian	3539239	.2537835	-1.39	0.169	863663	.1558152
1#Other	7325783	.4558199	-1.61	0.114	-1.648119	.1829629
years_sinc~l	.0113414	.0024228	4.68	0.000	.006475	.0162078
rural	.2218942	.0893401	2.48	0.016	.0424494	.401339
migrantrural	.7701934	.28033	2.75	0.008	.2071341	1.333253
year						
1999	.1029946	.065638	1.57	0.123	0288433	.2348325
2000	.1179856	.0898538	1.31	0.195	0624911	.2984622
2001	.0618385	.0960403	0.64	0.523	1310641	.254741
2002	1356018	.0759489	-1.79	0.080	2881497	.0169461
2003	2513388	.0/98949	-3.15	0.003	4118124	0908651
2004	2/08419	.0984899	-2.75	0.008	468664/	0/30191
2005	149/014	.0866165	-1.73	0.090	3230/3/	.0242729
2008	0300093	.100371	-0.38	0.717	- 1114165	2165109
2007	03478	0902798	0.04	0.323	- 1465522	2161122
2000	- 2716584	0881129	-3.08	0.003	- 4486384	- 0946784
2010	6101625	.0908401	-6.72	0.000	7926202	4277049
2011	6048787	.086531	-6.99	0.000	7786814	4310761
2012	4457069	.0914424	-4.87	0.000	6293743	2620395
2013	3189152	.1116134	-2.86	0.006	5430974	094733
2014	3028724	.1078069	-2.81	0.007	519409	0863358
2015	0920972	.0978896	-0.94	0.351	2887142	.1045199
migrant#year						
1 1999	.0760412	.1577078	0.48	0.632	2407243	.3928067
1 2000	.2344288	.2154625	1.09	0.282	1983404	.6671981
1 2001	.328038	.1638325	2.00	0.051	0010292	.6571052
1 2002	.1150379	.1628773	0.71	0.483	2121108	.4421866
1 2003	.2039101	.1597954	1.28	0.208	1170483	.5248686
1 2004	.1497601	.204525	0.73	0.467	2610405	.5605607
1 2005	.1489663	.1246851	1.19	0.238	1014/1	.3994037
1 2006	.3069214	.1/31313	2.93	0.005	.1591367	.854/06
1 2007	.2217597	1605649	1.09	0.005	- 2309497	4140586
1 2000	- 1375192	1617076	-0.85	0.399	- 4623185	1872802
1 2010	5121142	.1504683	-3.40	0.001	- 8143386	2098898
1 2011	4197107	.1297995	-3.23	0.002	6804207	1590007
1 2012	4928751	.1452122	-3.39	0.001	7845424	2012077
1 2013	5193974	.1721873	-3.02	0.004	8652458	1735489
1 2014	3206247	.1738797	-1.84	0.071	6698723	.0286229
1 2015	3142494	.1464425	-2.15	0.037	6083877	020111
_cons	34.07732	.2419996	140.82	0.000	33.59125	34.56339

Specification (1), Exogenous-wage, Method 4, Restricted sample

Linear regression

Number of obs = 64,196
F(3, 50)	=	404.51
Prob > F	=	0.0000
R-squared	=	0.0807
Root MSE	=	10.894

(Std. Err. adjusted for 51 clusters in state)

hoursworked		Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant		4.247376	.3540353	12.00	0.000	3.536275	4.958477
post911entry		-4.914008	.1416533	-34.69	0.000	-5.198527	-4.629489
post911ent~t		4.122721	.2959227	13.93	0.000	3.528342	4.717099
cons		33.38632	.2662895	125.38	0.000	32.85146	33.92118

Specification (1), Exogenous-wage, Method 4, Full sample

Linear regres	si	on			Number F(7, 50 Prob > R-squar Root MS	of obs) F ed E	= = = =	1,376,334 547.41 0.0000 0.0404 10.307
			(Std.	Err. adj	usted fo	r 51 clust	ers	in state)
hoursworked	 +-	Coef.	Robust Std. Err.	t	P> t	[95% Cc	onf.	Interval]
<pre>migrant post911entry post911ent~t minwageocc mi~c_migrant minwageo~911 mi~1_migrantcons</pre>		6797175 -4.472576 3.548343 -7.310098 4.927093 4414321 .5743778 40.69642	.1454907 .1411621 .1842652 .194428 .2736965 .1926983 .2861779 .1159498	-4.67 -31.68 19.26 -37.60 18.00 -2.29 2.01 350.98	0.000 0.000 0.000 0.000 0.000 0.026 0.050 0.000	971944 -4.75610 3.17823 -7.70061 4.37735 828478 000427 40.4635	41)9 35 18 31 75 52	387491 -4.189044 3.91845 -6.919578 5.476829 0543862 1.149183 40.92931

Specification (2), Exogenous-wage, Method 3, Restricted sample

Linear regression	Number of obs	=	64,196
5	F(13, 50)	=	•
	Prob > F	=	•
	R-squared	=	0.1496
	Root MSE	=	10.478

hoursworked		Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant		2.399453	.2561524	9.37	0.000	1.884956	2.91395
post911entry	L	4086644	.2056494	-1.99	0.052	8217234	.0043946
post911ent~t		.5553151	.2977153	1.87	0.068	0426638	1.153294
yearseduc		.1451696	.0403334	3.60	0.001	.0641575	.2261816

exp		.6825121	.0198991	34.30	0.000	.6425436	.7224807
exp sq		0121309	.0004364	-27.80	0.000	0130074	0112544
female		-3.805144	.1811025	-21.01	0.000	-4.168899	-3.441389
white		-1.953474	.4959647	-3.94	0.000	-2.949648	9572994
black		4365744	.5203348	-0.84	0.405	-1.481698	.6085487
asian		-1.300202	.5179911	-2.51	0.015	-2.340618	2597861
hispanic		1331107	.5150717	-0.26	0.797	-1.167663	.9014414
years_sinc~l		016872	.0119273	-1.41	0.163	0408287	.0070847
rural		.2143976	.2434419	0.88	0.383	2745699	.7033652
year		8.635006	11.01258	0.78	0.437	-13.48441	30.75443
year_sq		0021754	.0027436	-0.79	0.432	0076861	.0033352
_cons		-8538.869	11050.24	-0.77	0.443	-30733.93	13656.2

Specification (2), Exogenous-wage, Method 4, Full sample

Linear regression	Number of obs	=	1,376,334
	F(18, 50)	=	
	Prob > F	=	
	R-squared	=	0.1235
	Root MSE	=	9.8508

(Std. Err. adjusted for 51 clusters in state)

hoursworked	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	1406812	.0958312	-1.47	0.148	3331639	.0518014
post911entry	984194	.0740622	-13.29	0.000	-1.132952	8354357
post911ent~t	.5233431	.1355848	3.86	0.000	.2510131	.795673
minwageocc	-4.972071	.1602544	-31.03	0.000	-5.293951	-4.65019
mi~c_migrant	3.758157	.212333	17.70	0.000	3.331674	4.184641
minwageo~911	-1.339231	.1910179	-7.01	0.000	-1.722902	9555604
mi~1 migrant	1.460918	.3035267	4.81	0.000	.8512671	2.07057
yearseduc	.4674446	.0245671	19.03	0.000	.4181002	.5167891
exp	.5368948	.0096452	55.66	0.000	.5175219	.5562677
exp sq	0101569	.000176	-57.72	0.000	0105103	0098035
female	-4.6834	.1137363	-41.18	0.000	-4.911846	-4.454954
white	0731224	.1650991	-0.44	0.660	4047337	.258489
black	2436008	.1637905	-1.49	0.143	5725837	.085382
asian	7063945	.1916075	-3.69	0.001	-1.09125	3215395
hispanic	.0186205	.2177291	0.09	0.932	4187012	.4559422
years sinc~l	.0057231	.0024883	2.30	0.026	.0007252	.010721
rural	.184591	.0768167	2.40	0.020	.0303001	.3388818
year	-6.511943	3.644089	-1.79	0.080	-13.83131	.8074246
year sq	.0016145	.0009084	1.78	0.082	0002102	.0034391
	6597.034	3654.198	1.81	0.077	-742.6378	13936.71

Specification (3), Exogenous-wage, Method 4, Restricted sample

Linear regression	
-------------------	--

=	64,196
=	419.73
=	0.0000
=	0.1508
	= = =

ROOL MSE = $10.4/2$	Root	MSE	=	10.472
---------------------	------	-----	---	--------

hoursworked	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
	2.391685	.2551513	9.37	0.000	1.879198	2.904171
post911entry	3692561	.2041001	-1.81	0.076	7792032	.0406909
post911ent~t	.5966726	.3003226	1.99	0.052	0065431	1.199888
yearseduc	.1455787	.0407859	3.57	0.001	.0636578	.2274995
exp	.6851069	.0197695	34.65	0.000	.6453987	.7248151
exp_sq	0121783	.0004311	-28.25	0.000	0130442	0113125
female	-3.812825	.1801241	-21.17	0.000	-4.174615	-3.451035
white	-1.948617	.4981963	-3.91	0.000	-2.949274	9479608
black	4362525	.5205042	-0.84	0.406	-1.481716	.609211
asian	-1.312366	.5207968	-2.52	0.015	-2.358417	2663146
hispanic	1349842	.5170442	-0.26	0.795	-1.173498	.9035297
years_sinc~l	0160844	.0119442	-1.35	0.184	040075	.0079061
rural	.2204281	.2412763	0.91	0.365	2641897	.7050458
year						
1999	1.24333	.3735076	3.33	0.002	.4931177	1.993542
2000	.6606377	.3468727	1.90	0.063	0360766	1.357352
2001	.3503258	.4100452	0.85	0.397	4732742	1.173926
2002	.562699	.2784338	2.02	0.049	.0034482	1.12195
2003	.6725327	.3809548	1.77	0.084	0926375	1.437703
2004	1055515	.5037213	-0.21	0.835	-1.117305	.9062024
2005	.0006126	.411401	0.00	0.999	8257106	.8269359
2006	.2656704	.4052497	0.66	0.515	5482975	1.079638
2007	.5278605	.5004226	1.05	0.297	4772678	1.532989
2008	.4221285	.3098757	1.36	0.179	2002751	1.044532
2009	3526382	.3495172	-1.01	0.318	-1.054664	.3493878
2010	-1.085239	.3109932	-3.49	0.001	-1.709887	4605904
2011	7032756	.4561117	-1.54	0.129	-1.619403	.2128518
2012	7142751	.4502896	-1.59	0.119	-1.618708	.1901582
2013	9565792	.4759946	-2.01	0.050	-1.912642	000516
2014	5464082	.508199	-1.08	0.287	-1.567156	.4743396
2015	5704444	.367927	-1.55	0.127	-1.309447	.1685587
_cons	28.74449	.6045443	47.55	0.000	27.53022	29.95875

Specification (3), Exogenous-wage, Method 4, Full sample

Linear regress	sion			Numbe	er of	obs	=	1,376,334
				F(38	, 50)		=	6416.71
				Prob	> F		=	0.0000
				R-sq	uared	l	=	0.1307
				Root	MSE		=	9.8101
		(Std.	Err.	adjusted	for	51 cl	lusters	in state)
hoursworked	Coef.	Robust Std. Err.		t P> t	I	[95%	g Conf.	Interval]

migrant	5259224	.0944406	-5.57	0.000	7156119	3362328
post911entry	-1.025535	.0776392	-13.21	0.000	-1.181478	8695922
post911ent~t	.5284214	.1376924	3.84	0.000	.251858	.8049848
minwageocc	-4.812726	.1469743	-32.75	0.000	-5.107933	-4.51752
mi~c_migrant	3.580441	.2030951	17.63	0.000	3.172513	3.98837
minwageo~911	-1.184114	.1840962	-6.43	0.000	-1.553882	8143459
mi~1_migrant	1.387538	.3034295	4.57	0.000	.7780815	1.996994
hsgrad	1.542772	.1793213	8.60	0.000	1.182595	1.902949
assocgrad	2.032124	.1742783	11.66	0.000	1.682075	2.382172
bachgrad	3.635801	.1401397	25.94	0.000	3.354322	3.91728
mastgrad	4.527215	.1667131	27.16	0.000	4.192361	4.862068
doctorgrad	7.886511	.2805776	28.11	0.000	7.322954	8.450067
exp	.5240654	.0090362	58.00	0.000	.5059156	.5422152
exp_sq	0100012	.0001613	-62.02	0.000	0103251	0096773
female	-4.645691	.1127891	-41.19	0.000	-4.872234	-4.419147
white	2129486	.1572273	-1.35	0.182	5287488	.1028517
black	2358927	.159019	-1.48	0.144	5552918	.0835065
asian	8624845	.1846292	-4.67	0.000	-1.233323	4916459
hispanic	1068836	.2219096	-0.48	0.632	5526021	.3388349
years_sinc~l	.0084539	.0023094	3.66	0.001	.0038154	.0130925
rural	.256346	.0841935	3.04	0.004	.0872384	.4254535
year		0.5.0.0.0.0	1 0 5	0 0 5 5	0000000	
1999	.1146544	.0588889	1.95	0.057	0036275	.2329362
2000	.1502555	.0860128	1.75	0.08/	0225064	.32301/3
2001	.104639	.091/238	1.14	0.259	0/9593/	.2888/1/
2002	1123466	.0659297	-1.70	0.095	2447704	.0200//1
2003	2034901	.0/88268	-3.37	0.001	4238244	10/16/9
2004		.09//119	-3.16	0.003	5048306	1123104
2005		.081/351	-2.31	0.025	3531204	024/81
2000		.09114/0	-0.24	0.012	2040990	.1012310
2007	00292001	.0797543	0.37	0.710	- 1504077	.1095510
2008	- 3443027	.0007595	-4.42	0.903	- 5007972	- 1070122
2009	3443027	.0779000	-4.42	0.000	907///0	- 562050
2010	-7005324	.0808009	-0.97	0.000	- 9627276	- 5272271
2011	-5470797	.0012499	-6.57	0.000	0037270	- 3798395
2012	3470797	.0032030	-0.37	0.000	- 6191892	- 2289365
2013	-3922497	09828	-3 99	0.000	- 5896495	- 1948473
2014	1 - 1916791	.09020	-2 11	0.040	- 3741095	- 00923/7
ZUIJ	•TATOICT	.09005	∠•⊥⊥	0.040	. 5 / 410 95	.0092347
_cons	35.45082	.2094797	169.23	0.000	35.03007	35.87158

Specification (4), Exogenous-wage, Method 4, Restricted sample

Linear regress	sion			Numb	er of	obs	=	64,196
				F(49	, 50)		=	•
				Prob	> F		=	
				R-sq	uarec	1	=	0.1553
				Root	MSE		=	10.447
		(Std.	Err.	adjusted	for	51 cl	usters	in state)
hoursworked	 Coef.	Robust Std. Err.	t	t P>∣t		[95%	Conf.	Interval]

migrant	8.841862	1.224917	7.22	0.000	6.381543	11.30218
post911entry	4750767	.1990152	-2.39	0.021	8748105	0753429
post911ent~t	1.106343	.2545832	4.35	0.000	.5949979	1.617689
yearseduc	.332296	.0479016	6.94	0.000	.2360829	.4285092
migrantyea~c	2842578	.0505598	-5.62	0.000	3858101	1827054
exp	.7312294	.0242015	30.21	0.000	.6826193	.7798395
migrantexp	1873292	.0333192	-5.62	0.000	2542528	1204057
exp sq	0134495	.0005197	-25.88	0.000	0144933	0124056
migrantexp~q	.004448	.0006227	7.14	0.000	.0031974	.0056987
female	-3.250832	.1747126	-18.61	0.000	-3.601752	-2.899911
migrantfem~e	-2.022256	.3165321	-6.39	0.000	-2.658029	-1.386482
1.migrant	0	(omitted)				
whhao						
Black	1 832073	2076253	8 82	0 000	1 415045	2 249101
Hispanic	1 628019	419551	3 88	0.000	7853259	2 470712
Asian	1 453484	4350376	3 34	0.000	5796848	2 327282
Other	2.041989	.502291	4.07	0.002	1.033107	3.05087
migrant# wbhao						
1#Black	-2 488926	5425977	-4 59	0 000	-3 578765	-1 399086
1#Hispanic	- 3043046	5399011	-0.56	0.576	-1 388728	7801186
1#Asian	-1 53975	4763227	-3 23	0 002	-2 496472	- 5830276
1#0ther	-1 874119	3 558208	-0.53	0 601	-9 020991	5 272752
		3.000200	0.00	0.001	5.020551	0.272702
years_sinc~l	0076099	.0116604	-0.65	0.517	0310304	.0158107
rural	.2535537	.2251917	1.13	0.266	1987572	.7058646
migrantrural	.1160609	.7235855	0.16	0.873	-1.337303	1.569425
year						
1999	1.208424	.3466747	3.49	0.001	.5121068	1.90474
2000	.6532505	.4244486	1.54	0.130	1992797	1.505781
2001	.2659428	.3978863	0.67	0.507	5332355	1.065121
2002	.368233	.3278674	1.12	0.267	290308	1.026774
2003	.7878705	.3993319	1.97	0.054	0142112	1.589952
2004	0530737	.4638484	-0.11	0.909	9847406	.8785932
2005	.0692497	.3617447	0.19	0.849	6573359	.7958353
2006	.1073638	.3716194	0.29	0.774	6390558	.8537834
2007	.7853851	.47646	1.65	0.106	171613	1.742383
2008	.4470695	.3600047	1.24	0.220	2760211	1.17016
2009	0584565	.394305	-0.15	0.883	8504414	.7335284
2010	8120548	.331514	-2.45	0.018	-1.47792	1461894
2011	2562105	.4502002	-0.57	0.572	-1.160464	.6480433
2012	5339362	.4177642	-1.28	0.207	-1.37304	.3051679
2013	6756466	.4951483	-1.36	0.179	-1.670181	.318888
2014	3134357	.5337002	-0.59	0.560	-1.385404	.7585327
2015	4373678	.39886	-1.10	0.278	-1.238502	.363766
migrant #vear						
1 1999 I	.0865629	1.019349	0.08	0.933	-1.96086	2.133986
1 2000	.1633295	1.023288	0.16	0.874	-1.892004	2.218663
1 2001	.2961221	.8608088	0.34	0.732	-1.432863	2.025107
1 2002	.6273215	.6742987	0.93	0.357	7270473	1.98169
1 2003	538441	.7369068	-0.73	0.468	-2.018562	.9416799
1 2004	2278788	.9003803	-0.25	0.801	-2.036346	1.580588
1 2005	2179954	.8498917	-0.26	0.799	-1.925053	1.489062
1 2006	.484028	.8930286	0.54	0.590	-1.309673	2.277729
1 2007	9620025	.8822958	-1.09	0.281	-2.734146	.8101407
1 2008	.007869	.891591	0.01	0.993	-1.782944	1.798682

1 2009	-1.254497	.9231001	-1.36	0.180	-3.108598	.5996039
1 2010	-1.100169	.7738855	-1.42	0.161	-2.654564	.4542255
1 2011	-1.879795	.7725753	-2.43	0.019	-3.431558	328032
1 2012	7717194	.7999044	-0.96	0.339	-2.378375	.8349357
1 2013	-1.179286	1.10029	-1.07	0.289	-3.389284	1.030711
1 2014	-1.05681	.973485	-1.09	0.283	-3.012112	.8984919
1 2015	5204231	.9459401	-0.55	0.585	-2.4204	1.379554
cons	23.77837	.710656	33.46	0.000	22.35097	25.20576

Specification (4), Exogenous-wage, Method 4, Full sample

Linear regression	Number of obs	=	1,376,334
	F(49, 50)	=	
	Prob > F	=	
	R-squared	=	0.1265
	Root MSE	=	9.8336

hoursworked	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
· · · ·	+					
migrant	5.88166/	.624/363	9.41	0.000	4.626848	/.13648/
post911entry	9621964	.0/49324	-12.84	0.000	-1.112/02	8116904
post911ent~t	.80900/8	.1511854	5.35	0.000	.5053429	1.1126/3
minwageocc	-4.748234	.1420416	-33.43	0.000	-5.033533	-4.462935
mi~c_migrant	3.085006	.1980449	15.58	0.000	2.687221	3.482791
minwageo~911	-1.367317	.1878435	-7.28	0.000	-1.744612	9900225
mi~1_migrant	1.54267	.2977726	5.18	0.000	.9445761	2.140764
yearseduc	.5771716	.0167089	34.54	0.000	.5436109	.6107324
migrantyea~c	3204715	.0298948	-10.72	0.000	380517	260426
exp	.5729366	.0103967	55.11	0.000	.5520543	.5938189
migrantexp	215799	.0140719	-15.34	0.000	2440633	1875347
exp_sq	0110508	.0001933	-57.16	0.000	0114391	0106625
migrantexp~q	.0049062	.0002745	17.87	0.000	.0043548	.0054576
female	-4.786227	.1081558	-44.25	0.000	-5.003464	-4.56899
migrantfem~e	.6800004	.0990066	6.87	0.000	.4811398	.8788609
1.migrant	0	(omitted)				
wbhao						
Black	0589069	.0764763	-0.77	0.445	2125142	.0947003
Hispanic	0082041	.2450629	-0.03	0.973	5004274	.4840192
Asian	3063369	.2925082	-1.05	0.300	8938569	.2811831
Other	.1501478	.158485	0.95	0.348	1681788	.4684744
migrant#						
wbhao						
1#Black	5898383	.1451295	-4.06	0.000	8813395	298337
1#Hispanic	4367235	.164167	-2.66	0.010	7664626	1069845
1#Asian	3310817	.2730824	-1.21	0.231	8795837	.2174204
1#0ther	798765	. 4315591	-1.85	0.070	-1.665577	.068047
1.00101			1.00	0.070	1.000077	
vears sinc~l	.0078308	.0022982	3.41	0.001	.0032147	.0124469
rural	.2265363	.0882389	2.57	0.013	.0493032	.4037694

migrantrural	.8035325	.2689117	2.99	0.004	.2634075	1.343658
year	1021002	0650520	1 57	0 1 2 4	020171	2252712
1999	.1031002	.00000000	1.37	0.124	029171	.2333/13
2000	.1213039	.0090002	1.30	0.179	05/5/1	.3002907
2001	.0569618	.0983424	0.58	0.565	1405647	.2344883
2002	1289/5	.0/6/6/2	-1.68	0.099	2831665	.0252166
2003	2934139	.083/031	-3.51	0.001	4615366	1252912
2004	31445/9	.1040231	-3.02	0.004	5233945	1055213
2005	1862/45	.0902827	-2.06	0.044	36/612/	0049363
2006	0/83/41	.1062855	-0.74	0.464	2918548	.1351066
2007	.019505	.0875034	0.22	0.825	1562507	.1952607
2008	0038448	.0952499	-0.04	0.968	1951598	.1874703
2009	2975625	.0906025	-3.28	0.002	479543	115582
2010	6262274	.0962829	-6.50	0.000	8196173	4328376
2011	620595	.0917396	-6.76	0.000	8048594	4363307
2012	4580801	.0943114	-4.86	0.000	6475102	26865
2013	3334004	.1123036	-2.97	0.005	5589689	107832
2014	3123809	.1080275	-2.89	0.006	5293606	0954012
2015	1079854	.1000702	-1.08	0.286	3089823	.0930115
migrant#vear						
1 1999	.0547118	1638977	0.33	0.740	2744864	.3839101
1 2000	1803144	2093944	0.86	0 393	- 2402666	6008955
1 2001	3028908	1634299	1 85	0 070	- 0253678	6311494
1 2002	.0020900	• 1 0 0 1 2 9 9	±. 00	0.070	.0200070	.0011101
1 2003	0409915	1745163	0 23	0 815	- 3095348	3915179
1 2003	.0409915	.1745163	0.23	0.815	3095348	.3915179
	.0409915 .0967179 - 0252569	.1745163 .1751743 206866	0.23 0.55 -0.12	0.815 0.583 0.903	3095348 25513 - 4407594	.3915179 .4485657 .3902456
1 2004	.0409915 .0967179 0252569	.1745163 .1751743 .206866	0.23 0.55 -0.12 -0.74	0.815 0.583 0.903	3095348 25513 4407594 3375916	.3915179 .4485657 .3902456 1565284
1 2004	.0409915 .0967179 0252569 0905316 2791184	.1745163 .1751743 .206866 .1230036 1819807	0.23 0.55 -0.12 -0.74	0.815 0.583 0.903 0.465 0.131	3095348 25513 4407594 3375916 0864007	.3915179 .4485657 .3902456 .1565284 6446374
1 2004 1 2005 1 2006 1 2007	.0409915 .0967179 0252569 0905316 .2791184 0139707	.1745163 .1751743 .206866 .1230036 .1819807	0.23 0.55 -0.12 -0.74 1.53 -0.12	0.815 0.583 0.903 0.465 0.131	3095348 25513 4407594 3375916 0864007 2575099	.3915179 .4485657 .3902456 .1565284 .6446374 .2295685
1 2004 1 2005 1 2006 1 2007 1 2008	.0409915 .0967179 0252569 0905316 .2791184 0139707 072598	.1745163 .1751743 .206866 .1230036 .1819807 .1212507 1794016	0.23 0.55 -0.12 -0.74 1.53 -0.12 -0.40	0.815 0.583 0.903 0.465 0.131 0.909 0.687	3095348 25513 4407594 3375916 0864007 2575099 - 4329368	.3915179 .4485657 .3902456 .1565284 .6446374 .2295685 .2877408
1 2004 1 2005 1 2006 1 2007 1 2008 1 2009	.0409915 .0967179 0252569 0905316 .2791184 0139707 072598 - 3837045	.1745163 .1751743 .206866 .1230036 .1819807 .1212507 .1794016 1688196	0.23 0.55 -0.12 -0.74 1.53 -0.12 -0.40 -2.27	0.815 0.583 0.903 0.465 0.131 0.909 0.687 0.027	3095348 25513 4407594 3375916 0864007 2575099 4329368 -7227887	.3915179 .4485657 .3902456 .1565284 .6446374 .2295685 .2877408
1 2004 1 2005 1 2006 1 2007 1 2008 1 2009 1 2009	.0409915 .0967179 0252569 0905316 .2791184 0139707 072598 3837045	.1745163 .1751743 .206866 .1230036 .1819807 .1212507 .1794016 .1688196	0.23 0.55 -0.12 -0.74 1.53 -0.12 -0.40 -2.27	0.815 0.583 0.903 0.465 0.131 0.909 0.687 0.027	3095348 25513 4407594 3375916 0864007 2575099 4329368 7227887	.3915179 .4485657 .3902456 .1565284 .6446374 .2295685 .2877408 0446203
1 2004 1 2005 1 2006 1 2007 1 2008 1 2009 1 2010 1 2011	.0409915 .0967179 0252569 0905316 .2791184 0139707 072598 3837045 7112766	.1745163 .1751743 .206866 .1230036 .1819807 .1212507 .1794016 .1688196 .1574279	0.23 0.55 -0.12 -0.74 1.53 -0.12 -0.40 -2.27 -4.52 -4.72	0.815 0.583 0.903 0.465 0.131 0.909 0.687 0.027 0.000	3095348 25513 4407594 3375916 0864007 2575099 4329368 7227887 -1.02748	.3915179 .4485657 .3902456 .1565284 .6446374 .2295685 .2877408 0446203 3950733
1 2004 1 2005 1 2006 1 2007 1 2008 1 2009 1 2010 1 2011 1 2011	.0409915 .0967179 0252569 0905316 .2791184 0139707 072598 3837045 7112766 6682303 6682303	.1745163 .1751743 .206866 .1230036 .1819807 .1212507 .1794016 .1688196 .1574279 .1415264 .1582288	0.23 0.55 -0.12 -0.74 1.53 -0.12 -0.40 -2.27 -4.52 -4.72	0.815 0.583 0.903 0.465 0.131 0.909 0.687 0.027 0.000 0.000 0.000	3095348 25513 4407594 3375916 0864007 2575099 4329368 7227887 -1.02748 9524945	.3915179 .4485657 .3902456 .1565284 .6446374 .2295685 .2877408 0446203 3950733 3839662 3609751
1 2004 1 2005 1 2006 1 2007 1 2008 1 2009 1 2010 1 2011 1 2012 1 2012	.0409915 .0967179 0252569 0905316 .2791184 0139707 072598 3837045 7112766 6682303 6789879	.1745163 .1751743 .206866 .1230036 .1819807 .1212507 .1794016 .1688196 .1574279 .1415264 .1583288	0.23 0.55 -0.12 -0.74 1.53 -0.12 -0.40 -2.27 -4.52 -4.72 -4.72 -4.29	0.815 0.583 0.903 0.465 0.131 0.909 0.687 0.027 0.000 0.000 0.000 0.000	3095348 25513 4407594 3375916 0864007 2575099 4329368 7227887 -1.02748 9524945 9970007	.3915179 .4485657 .3902456 .1565284 .6446374 .2295685 .2877408 0446203 3950733 3839662 3609751
1 2004 1 2005 1 2006 1 2007 1 2008 1 2009 1 2010 1 2011 1 2012 1 2013 1 2014	.0409915 .0967179 0252569 0905316 .2791184 0139707 072598 3837045 7112766 6682303 6789879 6952195	.1745163 .1751743 .206866 .1230036 .1819807 .1212507 .1794016 .1688196 .1574279 .1415264 .1583288 .1585548	0.23 0.55 -0.12 -0.74 1.53 -0.12 -0.40 -2.27 -4.52 -4.52 -4.72 -4.29 -4.38 -2.31	0.815 0.583 0.903 0.465 0.131 0.909 0.687 0.027 0.000 0.000 0.000 0.000 0.000	3095348 25513 4407594 3375916 0864007 2575099 4329368 7227887 -1.02748 9524945 9970007 -1.013686	.3915179 .4485657 .3902456 .1565284 .6446374 .2295685 .2877408 0446203 3950733 3839662 3609751 3767529
1 2004 1 2005 1 2006 1 2007 1 2008 1 2009 1 2010 1 2011 1 2012 1 2013 1 2014 1 2014 1 2014	.0409915 .0967179 0252569 0905316 .2791184 0139707 072598 3837045 7112766 6682303 6789879 6952195 558577	.1745163 .1751743 .206866 .1230036 .1819807 .1212507 .1794016 .1688196 .1574279 .1415264 .1583288 .1585548 .1585548	$\begin{array}{c} 0.23 \\ 0.55 \\ -0.12 \\ -0.74 \\ 1.53 \\ -0.12 \\ -0.40 \\ -2.27 \\ -4.52 \\ -4.52 \\ -4.72 \\ -4.29 \\ -4.38 \\ -3.16 \\ -3.16 \end{array}$	0.815 0.583 0.903 0.465 0.131 0.909 0.687 0.027 0.000 0.000 0.000 0.000 0.000 0.000	3095348 25513 4407594 3375916 0864007 2575099 4329368 7227887 -1.02748 9524945 9970007 -1.013686 913563	.3915179 .4485657 .3902456 .1565284 .6446374 .2295685 .2877408 0446203 3950733 3839662 3609751 3767529 203591
1 2004 1 2005 1 2006 1 2007 1 2008 1 2009 1 2010 1 2011 1 2012 1 2013 1 2014 1 2015 1 2015	.0409915 .0967179 0252569 0905316 .2791184 0139707 072598 3837045 7112766 6682303 6789879 6952195 558577 5857108	.1745163 .1751743 .206866 .1230036 .1819807 .1212507 .1794016 .1688196 .1574279 .1415264 .1583288 .1585548 .1767366 .1401723	$\begin{array}{c} 0.23 \\ 0.55 \\ -0.12 \\ -0.74 \\ 1.53 \\ -0.12 \\ -0.40 \\ -2.27 \\ -4.52 \\ -4.72 \\ -4.29 \\ -4.38 \\ -3.16 \\ -4.18 \end{array}$	0.815 0.583 0.903 0.465 0.131 0.909 0.687 0.027 0.000 0.000 0.000 0.000 0.000 0.000 0.000	3095348 25513 4407594 3375916 0864007 2575099 4329368 7227887 -1.02748 9524945 9970007 -1.013686 913563 8672551	.3915179 .4485657 .3902456 .1565284 .6446374 .2295685 .2877408 0446203 3950733 3839662 3609751 3767529 203591 3041666

Specification (5), Exogenous-wage, Method 4, Restricted sample

Linear regress	sion			Numbe	er of	obs	=	64,196
				F(50	, 50)		=	
				Prob	> F		=	
				R-sq	uared	l	=	0.1559
				Root	MSE		=	10.443
		(Std.	Err.	adjusted	for	51 cl	usters	in state)
hoursworked	Coef	Robust Std Err		 - P>l+		[95%	Conf	Intervall
	+							

<pre>migrant post911entry post911ent~t yearseduc migrantyea~c exp migrantexp exp_sq migrantexp~q female migrantfem~e </pre>	4.862485 4744543 .7058834 .3369072 2741854 .7299332 1800334 0134231 .0045431 -3.24429 -2.01355	1.559428 .2005402 .3064498 .0471066 .0500017 .0239431 .0327354 .000517 .0006266 .1737794 .3164998	$\begin{array}{r} 3.12 \\ -2.37 \\ 2.30 \\ 7.15 \\ -5.48 \\ 30.49 \\ -5.50 \\ -25.96 \\ 7.25 \\ -18.67 \\ -6.36 \end{array}$	0.003 0.022 0.025 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1.730282 8772511 .0903609 .2422907 3746168 .681842 2457844 0144615 .0032845 -3.593336 -2.649258	7.994687 0716575 1.321406 .4315236 173754 .7780244 1142824 0123846 .0058018 -2.895244 -1.377841
1.migrant	0	(omitted)				
wbhao Black Hispanic Asian Other	1.844561 1.476984 1.183747 2.050734	.2073559 .4229279 .4640591 .5008465	8.90 3.49 2.55 4.09	0.000 0.001 0.014 0.000	1.428075 .6275079 .2516569 1.044754	2.261048 2.326459 2.115837 3.056714
migrant#						
wbhao 1#Black 1#Hispanic 1#Asian 1#Other	-2.611444 233866 -1.373423 -1.916329	.5447466 .5213936 .4800335 3.556494	-4.79 -0.45 -2.86 -0.54	0.000 0.656 0.006 0.592	-3.7056 -1.281116 -2.337598 -9.059757	-1.517289 .813384 4092469 5.227099
years_sinc~l	2400588	.0638536	-3.76	0.000	3683125	1118051
rural migrantrural	.265205 .131895	.2243661 .7165647	1.18 0.18	0.243 0.855	1854476 -1.307368	.7158576 1.571158
year						
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015	1.219461 .6636043 .2620931 .3877759 .8196097 023011 .1064226 .1425196 .8349755 .5052864 0094584 7509128 1903871 4587554 5941699 2283631 3468096	.3456489 .4265697 .3986166 .3283617 .4006928 .4673798 .3605945 .3714747 .4765047 .3609594 .3997338 .328823 .4463836 .4190898 .493381 .5353873 .3923835	3.53 1.56 0.66 1.18 2.05 -0.05 0.30 0.38 1.75 1.40 -0.02 -2.28 -0.43 -1.09 -1.20 -0.43 -0.88	0.001 0.126 0.514 0.243 0.046 0.961 0.769 0.703 0.086 0.168 0.981 0.027 0.672 0.279 0.234 0.672 0.381	.5252043 1931861 5385519 271758 .0147946 9617711 6178527 6036094 1221124 219722 8123475 -1.411373 -1.086975 -1.300522 -1.585155 -1.30372 -1.134935	1.913717 1.520395 1.062738 1.04731 1.624425 .915749 .8306978 .8886485 1.792063 1.230295 .7934306 0904525 .7062007 .3830112 .396815 .8469939 .4413159
migrant#year 1 1999 1 2000 1 2001 1 2002 1 2003 1 2003 1 2004 1 2005 1 2006 1 2007 1 2008	.2986504 .5524168 .8724095 1.366114 .3629974 .9244086 1.144443 2.107812 .8720363 2.023594	1.027536 1.019351 .9015698 .7839287 .8153792 1.039899 1.063278 1.073745 1.018633 1.110669	0.29 0.54 0.97 1.74 0.45 0.89 1.08 1.96 0.86 1.82	0.773 0.590 0.338 0.088 0.658 0.378 0.287 0.055 0.396 0.074	-1.765217 -1.49501 9384467 2084535 -1.27474 -1.164291 9912129 0488687 -1.173949 2072509	2.362518 2.599843 2.683266 2.940681 2.000735 3.013108 3.280099 4.264493 2.918021 4.254439

1 2009		1.006003	1.141452	0.88	0.382	-1.286672	3.298677
1 2010		1.358222	1.14623	1.18	0.242	9440497	3.660493
1 2011		.7970806	1.204689	0.66	0.511	-1.622608	3.21677
1 2012		2.106687	1.183911	1.78	0.081	2712673	4.484642
1 2013		1.928979	1.388375	1.39	0.171	8596535	4.717612
1 2014		2.298888	1.338393	1.72	0.092	3893536	4.987129
1 2015	Ι	3.015695	1.436925	2.10	0.041	.1295466	5.901843
	Ι						
entry year	T	.2023859	.0696911	2.90	0.005	.0624072	.3423646
entry year~q	T	0001002	.0000348	-2.88	0.006	0001701	0000304
cons	1	23.65937	.7066628	33.48	0.000	22.24	25.07875

Specification (5), Exogenous-wage, Method 4, Full sample

Linear regression	Number of obs	=	1,376,334
	F(50, 50)	=	
	Prob > F	=	•
	R-squared	=	0.1322
	Root MSE	=	9.8017

hoursworked	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant.	+	.3867005	6.18	0.000	1.614723	3.168144
post911entrv	9539205	.0727689	-13.11	0.000	-1.100081	8077599
post911ent~t	.7674041	.1510726	5.08	0.000	.4639659	1.070842
minwageocc	-4.675803	.1385845	-33.74	0.000	-4.954158	-4.397448
mi~c migrant	3.168528	.1899415	16.68	0.000	2.787019	3.550037
minwageo~911	-1.206426	.1822216	-6.62	0.000	-1.572429	8404229
mi~1 migrant	1.439535	.2965005	4.86	0.000	.8439966	2.035074
_ hsgrad	2.090316	.1151399	18.15	0.000	1.859051	2.321582
assocgrad	2.566192	.1221366	21.01	0.000	2.320873	2.81151
bachgrad	4.208134	.1225875	34.33	0.000	3.96191	4.454358
mastgrad	5.115665	.161594	31.66	0.000	4.791094	5.440236
doctorgrad	8.376244	.2437437	34.36	0.000	7.88667	8.865818
migranthsg~d	-1.550453	.1383832	-11.20	0.000	-1.828403	-1.272502
migrantass~d	-1.658515	.1994963	-8.31	0.000	-2.059215	-1.257815
migrantbac~d	-1.967229	.203149	-9.68	0.000	-2.375266	-1.559192
migrantmas~d	-1.992388	.2608107	-7.64	0.000	-2.516241	-1.468534
migrantdoc~d	-1.406372	.2512323	-5.60	0.000	-1.910987	9017576
exp	.5600377	.0100016	55.99	0.000	.5399489	.5801264
migrantexp	2066917	.0138307	-14.94	0.000	2344714	178912
exp_sq	0108581	.0001855	-58.54	0.000	0112307	0104856
migrantexp~q	.0045693	.0002607	17.53	0.000	.0040457	.0050929
female	-4.751456	.1078956	-44.04	0.000	-4.968171	-4.534741
migrantfem~e	.756341	.1038912	7.28	0.000	.5476693	.9650126
1.migrant	0	(omitted)				
wbhao	1					
Black	.0280889	.0766076	0.37	0.715	1257821	.1819598
Hispanic	.0529324	.2365728	0.22	0.824	4222379	.5281028
Asian	3805477	.2758284	-1.38	0.174	9345654	.1734699
Other	.2537584	.1555787	1.63	0.109	0587307	.5662475
	i.					

migrant# wbhao						
1#Black	3656561	.1492027	-2.45	0.018	6653385	0659738
1#Hispanic	300016	.1845401	-1.63	0.110	6706756	.0706436
1#Asian	3466199	.2891075	-1.20	0.236	9273093	.2340696
1#Other	7439118 	.4213459	-1.77	0.084	-1.59021	.1023864
years_sinc~l	0155294	.012921	-1.20	0.235	041482	.0104233
rural	.2429947	.0895305	2./1	0.009	.06316/4	.4228219
mıgrantrural	./360682 	.266616	2.76	0.008	.2005543	1.2/1582
year	1054750	0661224	1 60	0 117	0072260	2202006
1999	12/0595	.0001234	1 41	0.117	02/3300	.2302000
2000	063000	.000/000	1.41	0.103	- 1305694	.3032314
2001	1 - 1200357	.0900243	-1 61	0.312	- 271/200	.2303003
2002	1209557	.0749309	-1.01	0.113	- 4454200	- 1201109
2003	2027000	1020414	-3.49	0.001	4454209	- 1072914
2004	-1864735	0883908	-2 11	0.004	- 3640116	- 0089353
2005	-0728634	1033891	-0 70	0.040	- 2805265	1347998
2000	016719	084525	0.20	0 844	- 1530543	1864924
2008	0005398	0940167	0 01	0 995	- 1882982	1893778
2009	3024404	.0902761	-3.35	0.002	4837654	1211155
2010	6344415	.093391	-6.79	0.000	8220229	4468602
2011	6247954	.090729	-6.89	0.000	8070299	4425609
2012	4641344	.0931643	-4.98	0.000	6512605	2770083
2013	3386081	.1122681	-3.02	0.004	5641053	113111
2014	3311137	.1076842	-3.07	0.003	5474038	1148236
2015	1260102	.1002593	-1.26	0.215	327387	.0753667
migrant#year						
1 1999	.0960171	.1586051	0.61	0.548	2225506	.4145847
1 2000	.2635096	.2222047	1.19	0.241	1828016	.7098208
1 2001	.3983773	.1606558	2.48	0.017	.0756907	.7210639
1 2002	.1646397	.1699157	0.97	0.337	176646	.5059254
1 2003	.2415181	.1753642	1.38	0.175	1107113	.5937474
1 2004	.1534792	.2117436	0.72	0.472	2718204	.5787787
1 2005	.1306408	.1539514	0.85	0.400	1785798	.4398613
1 2006	.5024871	.2056022	2.44	0.018	.089523	.9154512
1 2007	.2/301/9	.166/896	1.64	0.108	0619889	.6080247
1 2008	.2290154	.2163218	1.06	0.295	2054/98	.663510/
1 2009 1 2010		.2139386	-0.26	0.796	4854392	.3/39//4
1 2010		.2103866	-1.56	0.120	/503891	.094/589
1 2011 1 2012		.1998/05	-1.19	0.239	6394404	.1034629
L ZUIZ	23/4414	.2329U33 2/07101	-1.02	0.313	- 7440040	.2303386
1 2013	I = 0820623	2708000	-0.97	0.330	- 6250810	.2J9UJ23 1612573
1 2014	0020023	.2341776	-0.30	0.694	5630051	.4010073
± 20±0		• 2 9 1 1 / / 0	0.10	0.001		• • • • • • ± ± ± ±
entry_year	.0297507	.0138171	2.15	0.036	.0019983	.0575031
entry_year~q	0000149	6.89e-06	-2.16	0.036	0000287	-1.02e-06
	34.48952	.2334487	147.74	0.000	34.02062	34.95841

Specification (6), Exogenous-wage, Method 4, Restricted sample

Number of obs	=	63,218
F(49, 50)	=	
Prob > F	=	
R-squared	=	0.1561
Root MSE	=	10.449

			-	•		
hoursworked	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
+	10 2020	1 21 0001	0 5 2		7 944464	12 0/122
	10.3929	1000000	0.00	0.000	7.944404	12.04133
post911entry	4/5024	.1990206	-2.39	0.021	8/4/685	0/52/94
post911ent~t	.6504929	.29/0118	2.19	0.033	.0539272	1.24/059
yearseduc	.3323184	.04/8//1	6.94	0.000	.2361544	.4284824
migrantyea~c	3005651	.0511616	-5.87	0.000	4033262	1978041
exp	.7312064	.0241857	30.23	0.000	.6826279	.7797849
migrantexp	2769418	.0440568	-6.29	0.000	3654325	188451
exp_sq	0134494	.0005196	-25.88	0.000	0144931	0124057
migrantexp~q	.0058554	.0007625	7.68	0.000	.0043239	.0073869
female	-3.250798	.1746993	-18.61	0.000	-3.601692	-2.899904
migrantfem~e	-2.123101	.339127	-6.26	0.000	-2.804258	-1.441944
1.migrant	0	(omitted)				
wbhao						
Black	1.832245	.2074883	8.83	0.000	1.415492	2.248997
Hispanic	1.626344	.4220657	3.85	0.000	.7786001	2.474088
Asian	1.449144	.4388503	3.30	0.002	.5676867	2.3306
Other	2.042065	.5022411	4.07	0.000	1.033284	3.050845
migrant# wbhao						
1#Black	-2.895791	.5563926	-5.20	0.000	-4.013339	-1.778244
1#Hispanic	7572395	.5214268	-1.45	0.153	-1.804556	.290077
1#Asian	-1.653075	.500179	-3.30	0.002	-2.657714	6484363
1#Other	-2.043674	3.483547	-0.59	0.560	-9.040584	4.953236
years_sinc~l	0067025	.0107817	-0.62	0.537	0283582	.0149532
rural	.2536931	.2252585	1.13	0.265	198752	.7061382
migrantrural	.1444765	.7188363	0.20	0.842	-1.299349	1.588302
year						
1999	1.208476	.3466755	3.49	0.001	.5121578	1.904794
2000	.6532331	.4244529	1.54	0.130	1993056	1.505772
2001	.2659075	.3978577	0.67	0.507	5332133	1.065028
2002	.3683082	.3279336	1.12	0.267	2903659	1.026982
2003	.7879229	.3993761	1.97	0.054	0142475	1.590093
2004	053123	.4638542	-0.11	0.909	9848015	.8785555
2005	.0691943	.36172	0.19	0.849	6573417	.7957303
2006	.1072631	.3715482	0.29	0.774	6390133	.8535396
2007	.7855215	4765764	1.65	0.106	1717104	1.742753
2008	4472349	3599711	1 24	0 220	- 2757884	1 170258
2000	- 0584773	3943176	-0 15	0 883	- 8504875	7335328
2009	- 8120425	3315097	-2 45	0 018	-1 477899	- 1461858
2010	- 2560706	1503711	2.4J -0 57	0.010	_1 160603	610E01
2011	- 5320210	.4303/44	-0.57	0.372	-1.2722E0	.040JZ4 2056151
2012	- 67552219	10500C1	-1.20	0.20/	-1.5/3239 -1.670245	2101701
2013	0/33335	.4902304	-1.30	0.1/9	-1.0/UZ43	. 3191/01
2014	3132841	.3338233	-0.59	0.360	-1.303304	. / 58935/
2015	43/2335	.3988/98	-1.10	0.2/8	-1.23840/	.30394UI

miarant	#110.2 m							
IIIIgraiit	1000	-	0070506	1 000000	0 1 0	0 000	1 00517	0 110000
1	1999		.0972596	1.006906	0.10	0.923	-1.9251/	2.119689
1	2000		.1433203	1.002306	0.14	0.887	-1.869871	2.156512
1	2001	1	.3307253	.8494988	0.39	0.699	-1.375543	2.036994
1	2002	1	.6848782	.6689405	1.02	0.311	6587283	2.028485
1	2003		5106533	.7348915	-0.69	0.490	-1.986726	.9654197
1	2004	1	0318106	.9054982	-0.04	0.972	-1.850557	1.786936
1	2005		.0880075	.8453995	0.10	0.918	-1.610027	1.786042
1	2006		.8924254	.8543099	1.04	0.301	8235066	2.608357
1	2007		6787933	.8776766	-0.77	0.443	-2.441659	1.084072
1	2008		.424374	.9017202	0.47	0.640	-1.386784	2.235532
1	2009		-1.027557	.9723386	-1.06	0.296	-2.980557	.9254426
1	2010		8755281	.7836399	-1.12	0.269	-2.449515	.6984589
1	2011	1	-1.4418	.7633206	-1.89	0.065	-2.974974	.091375
1	2012	1	2711369	.8395574	-0.32	0.748	-1.957438	1.415164
1	2013		7336392	1.122637	-0.65	0.516	-2.988522	1.521243
1	2014	1	5686171	.9619132	-0.59	0.557	-2.500677	1.363442
1	2015		2013664	.8891241	-0.23	0.822	-1.987225	1.584492
	_cons		23.77806	.7105358	33.46	0.000	22.35091	25.20521

Specification (6), Exogenous-wage, Method 4, Full sample

Linear regression	Number of obs	=	1,365,655
	F(49, 50)	=	
	Prob > F	=	
	R-squared	=	0.1319
	Root MSE	=	9.7955

hoursworked		Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	+-	3.396626	.3906225	8.70	0.000	2.612038	4.181215
post911entry	İ	9529985	.072756	-13.10	0.000	-1.099133	8068638
post911ent~t	L	.5137671	.1336313	3.84	0.000	.2453608	.7821734
- minwageocc	L	-4.676143	.1384434	-33.78	0.000	-4.954214	-4.398071
mi~c migrant	I	3.344539	.1941446	17.23	0.000	2.954588	3.73449
minwageo~911	L	-1.206421	.1821417	-6.62	0.000	-1.572264	8405786
mi~1 migrant	L	1.193919	.3028389	3.94	0.000	.5856491	1.802189
hsgrad	I	2.090629	.11513	18.16	0.000	1.859384	2.321875
assocgrad		2.566522	.1220465	21.03	0.000	2.321384	2.811659
bachgrad	L	4.208296	.1225286	34.35	0.000	3.962191	4.454402
mastgrad	I	5.115812	.161655	31.65	0.000	4.791118	5.440505
doctorgrad		8.376224	.2435375	34.39	0.000	7.887065	8.865383
migranthsg~d	L	-1.510642	.1381149	-10.94	0.000	-1.788054	-1.23323
migrantass~d		-1.776893	.2088904	-8.51	0.000	-2.196462	-1.357324
migrantbac~d	L	-2.190373	.2242415	-9.77	0.000	-2.640775	-1.73997
migrantmas~d	L	-2.301867	.2566383	-8.97	0.000	-2.81734	-1.786394
migrantdoc~d		-1.91929	.2566593	-7.48	0.000	-2.434806	-1.403775
exp		.5600015	.0099985	56.01	0.000	.539919	.580084
migrantexp		2692812	.0168371	-15.99	0.000	3030995	235463
exp sq	L	0108573	.0001854	-58.56	0.000	0112297	0104848
migrantexp~q		.0056199	.0003008	18.68	0.000	.0050157	.0062241
female	1	-4.75142	.1078962	-44.04	0.000	-4.968136	-4.534704

migrantfem~e 1.migrant	.6962482	.1081525 (omitted)	6.44	0.000	.4790174	.9134789
wbhao Black Hispanic Asian Other	.0279365 .0449415 3967671 .2541076	.0766086 .2330198 .2763026 .1555386	0.36 0.19 -1.44 1.63	0.717 0.848 0.157 0.109	1259365 4230926 9517371 0583009	.1818095 .5129756 .158203 .5665162
migrant#						
1#Black 1#Hispanic 1#Asian 1#Other	46977 4979505 3464843 7573739	.1351036 .1664774 .2557109 .451862	-3.48 -2.99 -1.35 -1.68	0.001 0.004 0.182 0.100	7411335 8323302 8600947 -1.664965	1984065 1635707 .1671262 .1502177
years_sinc~l rural migrantrural	.0109523 .2433007 .7329204	.0022984 .0895336 .2768724	4.77 2.72 2.65	0.000 0.009 0.011	.0063359 .0634672 .1768058	.0155688 .4231342 1.289035
year 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015	.1050837 .1239989 .0624687 12273 2848814 3148931 1896175 076511 .012627 0041168 3075048 6399513 6307601 470572 3456288 3384039 1340647	.0661075 .0886867 .0965481 .0747976 .0808327 .1018908 .0881451 .1032215 .0842476 .0936296 .0897402 .0934758 .0903526 .0925116 .1119758 .1073492 .0994389	$\begin{array}{c} 1.59\\ 1.40\\ 0.65\\ -1.64\\ -3.52\\ -3.09\\ -2.15\\ -0.74\\ 0.15\\ -0.04\\ -3.43\\ -6.85\\ -6.98\\ -5.09\\ -3.09\\ -3.15\\ -1.35\end{array}$	0.118 0.521 0.107 0.001 0.003 0.036 0.462 0.881 0.965 0.001 0.000 0.000 0.000 0.000 0.003 0.003 0.184	027697 0541336 1314539 2729653 4472387 5195467 3666622 2838374 1565894 1921775 4877534 827703 8122386 656387 5705388 554021 3337936	.2378645 .3021314 .2563912 .0275054 -1225241 -1102395 -0125728 .1308155 .1818433 .1839439 -1272563 -4521996 -4492816 -2847571 -1207188 -1227867 .0656641
migrant#year 1 1999 1 2000 1 2001 1 2002 1 2003 1 2004 1 2005 1 2006 1 2007 1 2008 1 2009 1 2010 1 2011 1 2012 1 2013 1 2014 1 2015	.0675603 .21531 .3210954 .0980751 .2120643 .1562427 .1544744 .5143401 .2236009 .0952587 1342338 5079693 4235063 4861706 5217638 3170741 306252	.1606491 .2144026 .1646185 .1684551 .1580228 .2018178 .1293694 .1803792 .1207658 .1643087 .1626493 .1531942 .1303281 .1517726 .1697644 .1814989 .1467518	0.42 1.00 1.95 0.58 1.34 0.77 1.19 2.85 1.85 0.58 -0.83 -3.32 -3.25 -3.20 -3.07 -1.75 -2.09	0.676 0.320 0.057 0.563 0.186 0.442 0.238 0.006 0.070 0.565 0.413 0.002 0.002 0.002 0.002 0.002 0.003 0.087 0.042	255113 2153304 0095507 240277 105334 2491203 1053718 .1520378 0189644 234765 4609245 8156688 6852781 7910148 8627457 6816253 6010116	.3902335 .6459503 .6517415 .4364272 .5294625 .5616056 .4143206 .8766423 .4661662 .4252824 .1924569 -2002697 -1617346 .1813263 -1807819 .047477 0114924
_cons	34.49263	.2331845	147.92	0.000	34.02427	34.961

Specification (1), Endogenous-wage, Method 1, Restricted sample

Linear regress	sion			Number o F(3, 50) Prob > F R-square Root MSE	f obs	= = = =	6,268 25.57 0.0000 0.0089 .59926
		(Std.	Err. adj	usted for	51 clu	sters	in state)
 lnwage 	Coef.	Robust Std. Err.	t	P> t	[95%	Conf.	Interval]
migrant post911entry post911ent~t cons	0865057 1372859 .0053483 2.401514	.0228228 .0431919 .054699 .0296205	-3.79 -3.18 0.10 81.08	0.000 0.003 0.923 0.000	1323 2240 1045 2.342	8467 394 5179 2019	0406647 0505323 .1152146 2.461008
Linear regress	sion			Number o F(3, 50) Prob > F R-square Root MSE	f obs	= = =	6,274 13.14 0.0000 0.0034 9.7295
		(Std.	Err. adj 	usted for	51 clu	sters	in state)
 hoursworked	Coef.	Robust Std. Err.	t	P> t	[95%	Conf.	Interval]
migrant post911entry post911ent~t _cons	.3588713 -2.127318 3.135594 42.13951	.4039665 .5938886 .8826356 .446953	0.89 -3.58 3.55 94.28	0.379 0.001 0.001 0.000	4525 -3.320 1.362 41.24	5192 9179 2768 178	1.170262 9344579 4.90842 43.03724

Specification (1), Endogenous-wage, Method 1, Full sample

Linear regression	Number of obs	=	1,375,615
-	F(7, 50)	=	551.63
	Prob > F	=	0.0000
	R-squared	=	0.0398
	Root MSE	=	.71466

 lnwage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	1673845	.0196783	-8.51	0.000	2069096	1278595
post911entry	4059013	.0109461	-37.08	0.000	4278872	3839155
post911entr~t	.2445723	.0136701	17.89	0.000	.2171151	.2720295
hispagri	5818399	.0272055	-21.39	0.000	6364838	527196

hispagri_mi~t hispagri_~911 hispagri_po~t cons	.0808789 .2686155 239224 2.983354	.0377403 .0479796 .0619658 .0190407	2.14 5.60 -3.86 156.68	0.037 0.000 0.000 0.000	.0050753 .1722456 363686 2.945109	.1566824 .3649853 1147619 3.021598
Linear regressi	on			Number of F(7, 50) Prob > F R-squared Root MSE	obs = = = = =	1,376,334 353.94 0.0000 0.0239 10.395
		(Std.	Err. ad	justed for	51 clusters	in state)
 hoursworked	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant post911entry post911entr~t hispagri hispagri_mi~t hispagri_~911 hispagri_po~t cons	6910483 -5.021516 3.969871 1.668503 1.04992 2.894198 8342767 40.47101	.1741035 .142101 .1673273 .3794808 .4535037 .643165 .9494047 .1179903	-3.97 -35.34 23.73 4.40 2.32 4.50 -0.88 343.00	0.000 0.000 0.000 0.000 0.025 0.000 0.384 0.000	-1.040745 -5.306934 3.633784 .9062937 .1390306 1.602363 -2.741212 40.23402	3413511 -4.736098 4.305958 2.430713 1.960809 4.186033 1.072659 40.708

Specification (2), Endogenous-wage, Method 1, Restricted sample

Number of obs	=	6,268
F(9, 50)	=	•
Prob > F	=	•
R-squared	=	0.0520
Root MSE	=	.58645
	Number of obs F(9, 50) Prob > F R-squared Root MSE	Number of obs = F(9, 50) = Prob > F = R-squared = Root MSE =

lnwage		Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant post911entry post911ent-t yearseduc exp exp_sq female white black asian hispanic years_sinc~1	+- 	1278133 0804071 .0120201 .0222341 .0128848 0001587 1402748 0 0 0 0 0 0 0 0 0 0	.028011 .0386863 .0479159 .0017738 .0017488 .0000283 .0259022 (omitted) (omitted) (omitted) (omitted) .0008929 .0216028	-4.56 -2.08 0.25 12.53 7.37 -5.60 -5.42	0.000 0.043 0.803 0.000 0.000 0.000 0.000	184075 1581109 0842218 .0186713 .0093721 0002156 1923009	0715515 0027033 .108262 .025797 .0163974 0001018 0882487
year_sq cons	 	2.159553 0005372 -2168.381	.0218028 1.735121 .0004323 1740.935	-3.43 1.24 -1.24 -1.25	0.001 0.219 0.220 0.219	1174073 -1.325539 0014055 -5665.151	5.644646 .0003312 1328.389

Number of obs	=	6,274
F(10, 50)	=	
Prob > F	=	
R-squared	=	0.0494
Root MSE	=	9.508

(Std. Err. adjusted for 51 clusters in state)

hoursworked		Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]
migrant post911entry post911ent~t yearseduc exp exp_sq female	+ 	.1858705 067948 1.711941 .0997337 .2464904 0037432 -4.05011	.4415168 .6763794 .7182737 .0353827 .0504315 .0007716 .647831	0.42 -0.10 2.38 2.82 4.89 -4.85 -6.25	0.676 0.920 0.021 0.007 0.000 0.000 0.000	7009421 -1.426496 .2692455 .0286654 .1451958 005293 -5.351317	1.072683 1.2906 3.154636 .1708019 .347785 0021934 -2.748903
wnite black asian hispanic years_sinc~1 rural year year_sq cons		0 0 0 .0307068 2.420164 4.415661 0011091 -4356.745	(omitted) (omitted) (omitted) .021867 .6350826 30.6258 .0076319 30724.51	1.40 3.81 0.14 -0.15 -0.14	0.166 0.000 0.886 0.885 0.888	0132143 1.144563 -57.09807 0164382 -66068.74	.074628 3.695765 65.92939 .0142201 57355.25

Specification (2), Endogenous-wage, Method 1, Full sample

Linear regression	Number of obs	=	1,375,615
	F(18, 50)	=	
	Prob > F	=	
	R-squared	=	0.2734
	Root MSE	=	.6217

lnwage	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant post911entry post911entr~t hispagri_mi~t hispagri_o~11 hispagri_po~t yearseduc exp exp_sq female white	+	.0153822 .0053978 .0070417 .0392392 .0446595 .0523769 .0438198 .0023019 .0006907 .0000129 .0050045 .0121437	-4.19 -15.78 2.84 -4.34 5.37 0.74 -1.59 45.85 57.97 -48.75 -49.27 8.83	0.000 0.000 0.006 0.000 0.464 0.118 0.000 0.000 0.000 0.000 0.000 0.000	0953309 0960056 .0058742 2489409 .1502315 0665775 1577604 .100915 .0386563 0006531 2566063 .0827871	0335389 0743219 .0341615 0913122 .329634 .1438266 .0182691 .1101618 .041431 0006014 2365026 .1315699
black asian	0513105 .1046886	.0161096 .0208531	-3.19 5.02	0.002 0.000	0836677 .062804	0189534 .1465732
hispanic years_since~l	.0178247 .0022937	.0197154 .0002577	0.90 8.90	0.370 0.000	0217748 .0017762	.0574242 .0028112

r	ural	1692006	.014101	-12.00	0.000	1975233	1408779
	year	2.541797	.3218947	7.90	0.000	1.895252	3.188341
yea	r sq	0006336	.0000801	-7.91	0.000	0007945	0004726
	cons	-2548.321	322.8372	-7.89	0.000	-3196.758	-1899.883
Linear re	gressio	n			Number of	obs =	1,376,334
	-				F(18, 50)	=	•
					Prob > F	=	•
					R-squared	=	0.1155
					Root MSE	=	9.8955
			(Std.	Err. a	adjusted for	51 clusters	s in state)

hoursworked	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	0845211	.0955863	-0.88	0.381	2765119	.1074696
post911entry	-1.264126	.0747278	-16.92	0.000	-1.414221	-1.114031
post911entr~t	.7651821	.1280843	5.97	0.000	.5079172	1.022447
hispagri	2.451654	.252499	9.71	0.000	1.944495	2.958813
hispagri mi~t	1.755041	.4061155	4.32	0.000	.9393342	2.570748
hispagri_~911	1.282383	.5749291	2.23	0.030	.1276039	2.437162
hispagri_po~t	.374068	.6783217	0.55	0.584	9883812	1.736517
yearseduc	.5207196	.0233414	22.31	0.000	.4738371	.5676022
exp	.5616085	.0103858	54.07	0.000	.540748	.582469
exp_sq	0105526	.0001916	-55.08	0.000	0109374	0101679
female	-4.766973	.121777	-39.15	0.000	-5.011569	-4.522377
white	0415873	.1644103	-0.25	0.801	3718152	.2886406
black	2286006	.1643345	-1.39	0.170	5586761	.1014749
asian	6818325	.1845998	-3.69	0.001	-1.052612	3110528
hispanic	.0243176	.221177	0.11	0.913	4199295	.4685646
years_since~l	.0057698	.0027775	2.08	0.043	.0001911	.0113485
rural	.1676555	.0770163	2.18	0.034	.0129637	.3223473
year	-7.393409	3.979415	-1.86	0.069	-15.3863	.5994801
year_sq	.0018339	.0009921	1.85	0.070	0001589	.0038267
_cons	7481.052	3991.17	1.87	0.067	-535.4497	15497.55

Specification (3), Endogenous-wage, Method 1, Restricted sample

Linear regression	Number of obs	=	6,268
	F(30, 50)	=	347.69
	Prob > F	=	0.0000
	R-squared	=	0.0609
	Root MSE	=	.58458

(Std.	Err.	adjusted	for	51	clusters	in	state)

lnwage		Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant post911entry post911ent~t	+- 	1591126 1223909 .0605401	.0277121 .0384813 .05099	-5.74 -3.18 1.19	0.000 0.003 0.241	2147741 1996829 0418763	1034512 0450989 .1629565
hsgrad	Ì	.1477631	.0238255	6.20	0.000	.0999082	.1956179

assocgrad bachgrad mastgrad doctorgrad exp_sq female white black asian	.2358755 .4764619 .3616794 .2610433 .011739 0001743 1484482 0 0	.0782341 .0796638 .0800404 .148448 .0019177 .0000309 .0243209 (omitted) (omitted) (omitted)	3.01 5.98 4.52 1.76 6.12 -5.65 -6.10	0.004 0.000 0.000 0.085 0.000 0.000 0.000	.0787377 .3164523 .2009135 0371233 .0078871 0002363 1972983	.3930133 .6364714 .5224453 .5592099 .0155909 0001123 0995982
years_sinc~l rural	.006675 0706976	.000844 .0227989	7.91 -3.10	0.000 0.003	.0049798 1164906	.0083703 0249046
year 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 	.0999727 .106121 .12492 .1139487 .2086046 .1275148 .1978094 .1128132 .0641671 .0844612 .06327 .1819673 .116373 .1931685 .1850745 .1751484 .1320795 2.088235	.0376433 .0343474 .0586995 .0482394 .0461521 .0654746 .0524502 .0514951 .0524194 .0610493 .0408769 .0426817 .0604344 .0585685 .0531514 .0568192 .0555327 .0776293	2.66 3.09 2.13 2.36 4.52 1.95 3.77 2.19 1.22 1.38 1.55 4.26 1.93 3.30 3.48 3.08 2.38 26.90	0.011 0.003 0.038 0.022 0.000 0.057 0.000 0.033 0.227 0.173 0.128 0.000 0.060 0.002 0.001 0.003 0.021 0.000	.024364 .0371321 .0070186 .0170569 .1159053 0039949 .0924601 .0093822 0411205 0381599 0188335 .0962386 0050131 .0755302 .0783168 .0610237 .0205388 1.932312	.1755815 .1751098 .2428215 .2108404 .3013039 .2590244 .3031587 .2162441 .1694546 .2070823 .1453736 .2676961 .2377591 .3108067 .2918323 .289273 .2436202 2.244158
Linear regress	sion			Number F(30, 5 Prob > R-squar Root MS	of obs = 0) = F = ed = E =	6,274 161.09 0.0000 0.0561 9.489
		(Std.	Err. ad	justed fo	r 51 clusters	in state)
hoursworked	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant post911entry post911ent~t hsgrad assocgrad bachgrad doctorgrad exp exp_sq female white black	184846 3451802 1.868354 .0290503 2.666593 .0632162 0313941 -5.542317 .2186775 003612 -4.087822 0	.4451692 .6569186 .6016685 .3884741 1.142288 1.042568 1.114024 3.138158 .0519902 .0007921 .6314769 (omitted)	-0.42 -0.53 3.11 0.07 2.33 0.06 -0.03 -1.77 4.21 -4.56 -6.47	0.680 0.602 0.003 0.941 0.024 0.952 0.978 0.083 0.000 0.000 0.000	-1.078995 -1.66464 .659867 751223 .3722405 -2.030843 -2.268977 -11.84549 .1142521 0052029 -5.356181	.7093027 .9742795 3.07684 .8093235 4.960946 2.157275 2.206189 .7608591 .323103 0020211 -2.819463

cons	39.20853	.8301//5	46.12	0.000	37.5009	40.91616
		0501775	4.6 1.0	0 000		40 01 01 0
2015	.9573508	.7097032	1.35	0.183	46813	2.382832
2014	368638	.5349684	-0.69	0.494	-1.443154	.7058777
2013	1.245782	.4797095	2.60	0.012	.2822569	2.209307
2012	.1022123	.9345766	0.11	0.913	-1.77494	1.979365
2011	6667562	.5965863	-1.12	0.269	-1.865035	.5315226
2010	877156	.7496429	-1.17	0.248	-2.382858	.628546
2009	.4555419	.7743036	0.59	0.559	-1.099693	2.010776
2008	0812366	.6270895	-0.13	0.897	-1.340783	1.17831
2007	.9446295	.9568693	0.99	0.328	977299	2.866558
2006	.712139	1.043838	0.68	0.498	-1.384472	2.80875
2005	2.37915	.8248384	2.88	0.006	.7224136	4.035887
2004	.9715905	1.323766	0.73	0.466	-1.687272	3.630453
2003	.6942152	.8533246	0.81	0.420	-1.019738	2.408168
2002	4575031	.6676943	-0.69	0.496	-1.798606	.8836003
2001	.8293243	.4207549	1.97	0.054	0157868	1.674435
2000	1.160502	.5909196	1.96	0.055	026395	2.347399
1999	.8100464	.7379912	1.10	0.278	6722526	2.292345
year						
rural	2.414182	.6515831	3.71	0.001	1.105438	3.722925
vears sinc~l	.0390418	.0222432	1.76	0.085	0056349	.0837185
hispanic	0	(omitted)				
asian	0	(omitted)				

Specification (3), Endogenous-wage, Method 1, Full sample

Linear regression	Number of obs	=	1,375,615
	F(38, 50)	=	5642.17
	Prob > F	=	0.0000
	R-squared	=	0.2867
	Root MSE	=	.61599

				-		
lnwage	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant post911entry post911entr~t hispagri_mi~t hispagri_o~t hsgrad assocgrad bachgrad mastgrad doctorgrad exp exp_sq	1486573 0909 .0184565 2265389 .0618565 .1254768 1069514 .2899978 .4805943 .7541151 .9479411 1.190902 .0377616 0006146	.0156275 .0070764 .0075521 .0280537 .0237085 .0458898 .0478684 .0061949 .007434 .0104779 .0154992 .0132575 .0005992 .0000121 .0000221	-9.51 -12.85 2.44 -8.08 2.61 2.73 -2.23 46.81 64.65 71.97 61.16 89.83 63.02 -50.77	0.000 0.000 0.018 0.000 0.012 0.009 0.030 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1800461 1051134 .0032876 2828864 .0142366 .0333045 203098 .2775549 .4656627 .7330697 .91681 1.164274 .036558 0006389	1172686 0766866 .0336253 1701914 .1094765 .2176491 0108049 .3024407 .4955259 .7751606 .9790722 1.217531 .0389651 0005903
white	.0876652	.0116479	-49.42 7.53	0.000	.0642697	2327828
black asian	0496243 .0968508	.0164021 .0206545	-3.03 4.69	0.004 0.000	0825689 .0553651	0166798 .1383365

hispanic	023119	.0189533	-1.22	0.228	0611877	.0149498
years since~l	.0030835	.000282	10.94	0.000	.0025172	.0036498
rural	1652797	.0126437	-13.07	0.000	1906753	1398841
year						
1999	.0299934	.0044123	6.80	0.000	.0211311	.0388557
2000	.0441921	.0040406	10.94	0.000	.0360762	.0523079
2001	.0619232	.0049718	12.45	0.000	.0519371	.0719094
2002	.0696848	.0042778	16.29	0.000	.0610925	.078277
2003	.074736	.0049366	15.14	0.000	.0648205	.0846515
2004	.0682783	.0050269	13.58	0.000	.0581815	.078375
2005	.0579559	.0047858	12.11	0.000	.0483433	.0675685
2006	.052455	.005906	8.88	0.000	.0405925	.0643175
2007	.0554085	.0088758	6.24	0.000	.037581	.073236
2008	.0627884	.0074669	8.41	0.000	.0477907	.077786
2009	.0456505	.0070742	6.45	0.000	.0314415	.0598595
2010	.0633403	.0069087	9.17	0.000	.0494638	.0772168
2011	.0483587	.0071914	6.72	0.000	.0339143	.062803
2012	.0353867	.0080773	4.38	0.000	.019163	.0516105
2013	.0225052	.0079911	2.82	0.007	.0064547	.0385557
2014	.025793	.0095629	2.70	0.010	.0065853	.0450006
2015	.0275905	.008885	3.11	0.003	.0097444	.0454366
_cons	2.094187	.0136031	153.95	0.000	2.066864	2.121509

Number of obs=1,376,334F(38,50)=3748.38Prob > F=0.0000R-squared=0.1232Root MSE=9.8523

(Std. Err. adjusted for 51 clusters in state)

hoursworked	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	4681034	.1053169	-4.44	0.000	6796386	2565681
post911entry	-1.286775	.0782062	-16.45	0.000	-1.443856	-1.129693
post911entr~t	.7530427	.1330946	5.66	0.000	.4857142	1.020371
- hispagri	2.24152	.2584999	8.67	0.000	1.722308	2.760733
hispagri mi~t	.9882731	.3667494	2.69	0.010	.2516353	1.724911
hispagri ~911	1.677939	.5495219	3.05	0.004	.5741921	2.781687
hispagri po~t	.2026241	.7106687	0.29	0.777	-1.224796	1.630044
hsgrad	1.82349	.1748488	10.43	0.000	1.472296	2.174684
assocgrad	2.45226	.1750916	14.01	0.000	2.100578	2.803941
bachgrad	4.135329	.1431606	28.89	0.000	3.847783	4.422876
mastgrad	5.040937	.1749722	28.81	0.000	4.689495	5.392379
doctorgrad	8.402136	.2807667	29.93	0.000	7.8382	8.966073
exp	.5464449	.0096458	56.65	0.000	.5270708	.565819
exp sq	0103629	.0001728	-59.99	0.000	0107099	0100159
female	-4.732185	.1206969	-39.21	0.000	-4.974612	-4.489758
white	1928541	.1569388	-1.23	0.225	508075	.1223668
black	2236598	.1586773	-1.41	0.165	5423725	.0950529
asian	8531545	.1780773	-4.79	0.000	-1.210833	4954757
hispanic	0962503	.2242079	-0.43	0.670	5465851	.3540845
years_since~l	.0085056	.002578	3.30	0.002	.0033276	.0136836
rural	.2431342	.083611	2.91	0.005	.0751965	.4110718
	1					
year	1					

297

1999		.1128834	.0596206	1.89	0.064	006868	.2326348
2000		.1424332	.0877254	1.62	0.111	0337683	.3186348
2001	1	.102042	.0920742	1.11	0.273	0828944	.2869784
2002		1261192	.0691097	-1.82	0.074	2649301	.0126917
2003		2940161	.0861843	-3.41	0.001	4671225	1209098
2004	- I	3280337	.1053055	-3.12	0.003	539546	1165214
2005		2119063	.085456	-2.48	0.017	3835498	0402628
2006		0370427	.0965395	-0.38	0.703	230948	.1568626
2007		.0189301	.0846945	0.22	0.824	1511838	.1890441
2008		0189976	.0831076	-0.23	0.820	1859241	.147929
2009		3719849	.0799235	-4.65	0.000	532516	2114539
2010		7557826	.0819631	-9.22	0.000	9204102	5911549
2011	1	7340569	.0808743	-9.08	0.000	8964977	5716161
2012	1	5780272	.0864422	-6.69	0.000	7516515	404403
2013		4546658	.1007112	-4.51	0.000	6569501	2523815
2014	- I	4057354	.0994888	-4.08	0.000	6055646	2059062
2015		2042134	.0919146	-2.22	0.031	3888293	0195975
	- 1						
_con	s	34.72221	.2297557	151.13	0.000	34.26073	35.18369

Specification (4), Endogenous-wage, Method 1, Restricted sample

Linear regress	ion			Number c F(48, 50 Prob > F R-square Root MSE	of obs =)) > r = ed = c =	6,268 99999.00 0.0000 0.0638 .58454
		(Std.	Err. ad	justed for	51 clusters	s in state)
 lnwage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	. Interval]
<pre>migrant post911entry post911ent~t yearseduc migrantyea~c migrantexp exp_sq migrantexp~q female migrantfem~e 1.migrant </pre>	.1653001 1546109 .104482 .0470701 0267758 .0133219 0009691 0001815 .0000388 1568977 .011997 0	.2599976 .07113 .083062 .0067725 .0070207 .007056 .008291 .0001163 .0001366 .032892 .0332947 (omitted)	0.64 -2.17 1.26 6.95 -3.81 1.89 -0.12 -1.56 0.28 -4.77 0.36	0.528 0.034 0.214 0.000 0.000 0.065 0.907 0.125 0.778 0.000 0.720	3569204 2974797 0623529 .0334671 0408774 0008505 0176221 0004151 0002356 2229631 0548775	.6875207 -0117422 .2713169 .0606732 -0126742 .0274943 .0156838 .0000521 .0003132 -0908322 .0788714
wbhao Hispanic	0	(omitted)				
migrant# wbhao 1#Hispanic 	0	(omitted)				
years_sinc~l rural	.0058394 0633563	.0009134 .0458493	6.39 -1.38	0.000 0.173	.0040047 1554474	.007674 .0287348

migrantrural	0054723	.0511161	-0.11	0.915	108142	.0971974
year	1705015	0010706	0 77	0 4 4 4	0000051	6420600
1999	.1/85315	.2312/86	0.//	0.444	2860051	.6430682
2000	.103/366	.1/10556	0.61	0.547	2398387	.44/3119
2001	.0501627	.1/96081	0.28	0./81	3105908	.4109161
2002	.1960847	.2459122	0.80	0.429	2978445	.6900138
2003	.1654187	.1610826	1.03	0.309	1581252	.4889625
2004	.1737592	.1700897	1.02	0.312	1678761	.5153944
2005	.2345199	.1537373	1.53	0.133	0742706	.5433103
2006	.2499611	.2594441	0.96	0.340	2711478	.77107
2007	.1516054	.2333507	0.65	0.519	3170933	.620304
2008	0709908	.1374103	-0.52	0.608	3469875	.2050059
2009	.1236063	.1877616	0.66	0.513	2535239	.5007364
2010	.0786968	.2823518	0.28	0.782	4884234	.6458171
2011	.034483	.162382	0.21	0.833	2916708	.3606368
2012	.2532494	.1747137	1.45	0.153	0976734	.6041721
2013	.3066465	.2799611	1.10	0.279	2556719	.8689648
2014	.0877544	.1616845	0.54	0.590	2369985	.4125072
2015	.2877758	.1631684	1.76	0.084	0399576	.6155092
migrant#year						
1 1999	09093	.2595546	-0.35	0.728	6122609	.4304008
1 2000	.0016047	.2185848	0.01	0.994	4374358	.4406452
1 2001	.0871757	.2689792	0.32	0.747	4530849	.6274363
1 2002	0991855	.327711	-0.30	0.763	7574124	.5590414
1 2003	.0451094	.1857334	0.24	0.809	3279471	.4181658
1 2004	0632631	.2252201	-0.28	0.780	515631	.3891049
1 2005	0418896	.1591442	-0.26	0.793	3615401	.2777609
1 2006	1565111	.3109842	-0.50	0.617	7811413	.4681191
1 2007	1161142	.2711163	-0.43	0.670	6606674	.4284391
1 2008	.1468669	.129869	1.13	0.263	1139826	.4077163
1 2009	076955	.2119902	-0.36	0.718	5027499	.3488398
1 2010	.1045203	.3120327	0.33	0.739	5222158	.7312563
1 2011	.0787242	.2216177	0.36	0.724	3664079	.5238564
1 2012	088259	.1944221	-0.45	0.652	4787672	.3022493
1 2013	1564372	.2930154	-0.53	0.596	7449761	.4321016
1 2014	.0867046	.2130084	0.41	0.686	3411353	.5145445
1 2015	2120743	.2062121	-1.03	0.309	6262636	.202115
	1.637074	.2029757	8.07	0.000	1.229385	2.044763
Linear regress	sion			Number of	fobs =	6,274
				F(48, 50)) =	12520.52
				Prob > F	=	0.000
				R-squared		0.0607
				Root MSE	=	9.4796
		(Std.	Err. ad	justed for	51 clusters	in state)
	 	Robust				
hoursworked	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	+					
migrant	4.50035	1.316641	3.42	0.001	1.855798	7.144902
post911entry	.1356062	.7510462	0.18	0.857	-1.372915	1.644127
post911ent~t	1.5863	.8899697	1.78	0.081	2012564	3.373857
yearseduc	.2046974	.0710975	2.88	0.006	.0618939	.3475009
migrantyea~c	1264833	.0846756	-1.49	0.142	2965592	.0435926
exp	.2318983	.0841519	2.76	0.008	.0628742	.4009225

migrantexp	0127689	.0788333	-0.16	0.872	1711101	.1455724
exp_sq	0025817	.0015266	-1.69	0.097	005648	.0004846
migrantexp~q	0009764	.0014292	-0.68	0.498	003847	.0018941
female	-4.83725	.8403448	-5.76	0.000	-6.525133	-3.149368
migrantfem~e	.9232599	.5810184	1.59	0.118	2437499	2.09027
1.migrant	0	(omitted)				
-						
wbhao						
Hispanic	0	(omitted)				
-						
migrant#						
wbhao						
1#Hispanic	0	(omitted)				
years_sinc~l	.0432981	.0226176	1.91	0.061	0021307	.088727
rural	1.337217	.8809589	1.52	0.135	4322408	3.106675
migrantrural	1.205066	.6112537	1.97	0.054	0226729	2.432805
year						
1999	4.445067	1.634742	2.72	0.009	1.16159	7.728544
2000	3.488065	1.564948	2.23	0.030	.3447737	6.631356
2001	1.602332	1.567754	1.02	0.312	-1.546595	4.751258
2002	2.113997	1.254858	1.68	0.098	4064596	4.634453
2003	1.843328	2.092005	0.88	0.382	-2.358588	6.045243
2004	6.086759	3.266554	1.86	0.068	4743087	12.64783
2005	4.281941	1.292788	3.31	0.002	1.6853	6.878583
2006	4.287328	2.033551	2.11	0.040	.2028212	8.371835
2007	3.751086	1.642838	2.28	0.027	.4513496	7.050823
2008	2.05646	2.279607	0.90	0.371	-2.522266	6.635186
2009	4.516293	1.142806	3.95	0.000	2.220899	6.811687
2010	3.113962	2.033897	1.53	0.132	9712414	7.199165
2011	.5845951	1.345446	0.43	0.666	-2.117813	3.287003
2012	2.285158	1.234648	1.85	0.070	1947047	4.76502
2013	4.138476	1.512968	2.74	0.009	1.099589	7.177362
2014	2.805485	1.552381	1.81	0.077	3125651	5.923534
2015	.6341994	1.556605	0.41	0.685	-2.492335	3.760733
migrant#year						
1 1999	-4.5859	2.070951	-2.21	0.031	-8.745528	4262713
1 2000	-2.8937	1.844696	-1.57	0.123	-6.598881	.8114811
1 2001	-1.036152	1.626296	-0.64	0.527	-4.302664	2.23036
1 2002	-3.223138	1.078353	-2.99	0.004	-5.389074	-1.057202
1 2003	-1.43935	2.006226	-0.72	0.476	-5.468974	2.590274
1 2004	-6.050619	2.564941	-2.36	0.022	-11.20245	8987831
1 2005	-2.475288	1.476303	-1.68	0.100	-5.44053	.4899534
1 2006	-4.362684	1.938425	-2.25	0.029	-8.256125	4692437
1 2007	-3.567638	1.79654	-1.99	0.053	-7.176096	.0408189
1 2008	-2.860959	1.764573	-1.62	0.111	-6.405208	.6832912
1 2009	-4.94631	1.635982	-3.02	0.004	-8.232277	-1.660344
1 2010	-4.944572	1.939936	-2.55	0.014	-8.841049	-1.048096
1 2011	-1.841968	1.312818	-1.40	0.167	-4.47884	.7949042
1 2012	-2.945248	1.509694	-1.95	0.057	-5.977557	.0870612
1 2013	-3.820794	1.751336	-2.18	0.034	-7.338457	3031319
1 2014	-4.187879	2.002744	-2.09	0.042	-8.210507	1652498
1 2015	0002877	2.153264	-0.00	1.000	-4.325246	4.32467
cons	34.42889	1.456532	23.64	0.000	31.50336	37.35442
_						

Specification (4), Endogenous-wage, Method 1, Full sample

Linear regression

Number of obs	=	1,375,615
F(49, 50)	=	
Prob > F	=	
R-squared	=	0.2798
Root MSE	=	.61895

lnwage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	+ 1 756274	0466762	16 20	0 000	662522	8500259
nost911entry	-0700326	0039032	-17 94	0.000	- 0778724	- 0621928
nost 911entrat	-012706	0065029	-1 95	0.000	- 0257674	0003554
hispari	-136432	0415568	-3 28	0.000	- 2199012	- 0529628
hienaari miat	0868001	.0413300	1 58	0.002	- 023644	1072//2
higpagri_mi ^a t		0529063	1.00	0.121	- 0902443	1222442
higpagri_agri	-0.322015	.0520905	-0.69	0.749	- 1254566	0610525
nispagii_po~c	1100260	.0404200	-0.09	0.491	1254500	10010555
migrantyoarag	-0.168552	.0010372	-15 60	0.000	.1137002	- 040822
migiancyeal~c	04206552	.0030038	-13.00	0.000	0520005	040822
exp	0100510	.0009589	44./1	0.000	.0409426	.044/946
migrantexp		.0010445	-17.28	0.000	0201498	0159539
exp_sq		.0000188	-36.46	0.000	0007241	0006484
migrantexp_sq	.0003239	.0000209	15.50	0.000	.0002819	.0003658
Iemale	2500924	.004/962	-52.14	0.000	259/25/	240459
migrantiemale	.01/4556	.00/51/5	2.32	0.024	.0023562	.0325549
1.migrant	0	(omitted)				
wbhao						
Black	1518499	.0089582	-16.95	0.000	169843	1338567
Hispanic	0764323	.0199271	-3.84	0.000	116457	0364077
Asian	.013459	.0145058	0.93	0.358	0156766	.0425947
Other	098624	.0118753	-8.30	0.000	1224762	0747718
mi anant #ubbaa						
1 UDlash		00044	0 5 0		0520024	0000000
1#BLaCK	0121485	.02044	-0.59	0.555	0532034	.0289064
I#Hispanic	1444235	.0230849	-6.26	0.000	190/908	0980561
l#Asian	0196292	.0182197	-1.08	0.286	0562246	.0169662
1#Other	.0064684 	.0493434	0.13	0.896	0926407	.1055//5
years since~l	.0030332	.0003451	8.79	0.000	.0023401	.0037263
rural	1639237	.0122867	-13.34	0.000	1886022	1392451
migrantrural	.0855772	.0213099	4.02	0.000	.0427751	.1283793
year 1000	020150	0040145	C 14	0 000	000000	0400000
1999	.030152	.0049145	6.14	0.000	.0202809	.0400232
2000	.0408534	.0044427	9.20	0.000	.03193	.0497768
2001	0.0563617	.0054093	10.42	0.000	.0454968	.06/226/
2002	.0626513	.0043404	14.43	0.000	.0539332	.0/13693
2003	.0694801	.0047253	14.70	0.000	.059989	.0789713
2004	.0636754	.0046092	13.81	0.000	.0544175	.0729333
2005	.0508692	.0039039	13.03	0.000	.043028	.0587104
2006	.0419336	.0051909	8.08	0.000	.0315073	.0523599
2007	.0459058	.0080625	5.69	0.000	.0297118	.0620998
2008	.0522989	.0066232	7.90	0.000	.0389959	.065602
2009	.0365479	.0067845	5.39	0.000	.0229209	.0501749
2010	.0526705	.0062077	8.48	0.000	.040202	.065139

2011	.0362103	.0060188	6.02	0.000	.0241212	.0482995
2012	.0230206	.0074496	3.09	0.003	.0080577	.0379835
2013	.0073823	.0071067	1.04	0.304	0068919	.0216564
2014	.0115185	.0094525	1.22	0.229	0074674	.0305045
2015	.0144357	.008281	1.74	0.087	0021971	.0310684
migrant#year						
1 1999	0156731	.0088361	-1.77	0.082	033421	.0020747
1 2000	.0112351	.0107333	1.05	0.300	0103233	.0327936
1 2001	.0265847	.0123313	2.16	0.036	.0018165	.0513529
1 2002	.0313543	.0069041	4.54	0.000	.017487	.0452217
1 2003	.0117831	.0130666	0.90	0.371	0144619	.0380281
1 2004	.0102436	.0130397	0.79	0.436	0159475	.0364347
1 2005	.0287528	.0116169	2.48	0.017	.0054197	.052086
1 2006	.0443172	.0102891	4.31	0.000	.0236509	.0649836
1 2007	.0385201	.0081505	4.73	0.000	.0221492	.0548909
1 2008	.0349016	.0092075	3.79	0.000	.0164079	.0533953
1 2009	.0305504	.0122748	2.49	0.016	.0058958	.055205
1 2010	.0370373	.0100027	3.70	0.001	.0169462	.0571283
1 2011	.0362051	.0112237	3.23	0.002	.0136617	.0587485
1 2012	.0398891	.0116278	3.43	0.001	.016534	.0632443
1 2013	.0531355	.0121466	4.37	0.000	.0287384	.0775326
1 2014	.0545694	.0122912	4.44	0.000	.0298818	.0792569
1 2015	.0449979	.0155692	2.89	0.006	.0137262	.0762696
_cons	.9192936	.0228431	40.24	0.000	.8734119	.9651753
Linear regressio	n			Number c	of obs =	1,376,334

птисат	regression	

Number of obs	=	1,376,334
F(49, 50)	=	
Prob > F	=	
R-squared	=	0.1189
Root MSE	=	9.8766

hoursworked	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	 6.375828	.5916084	10.78	0.000	5.187547	7.564108
post911entrv	-1.203509	.071585	-16.81	0.000	-1.347292	-1.059726
post911entr~t	.9761974	.1353219	7.21	0.000	.7043953	1.247999
hispagri	2.917467	.2579093	11.31	0.000	2.399441	3.435493
hispagri mi~t	.2668884	.4165515	0.64	0.525	56978	1.103557
hispagri ~911	1.068186	.5830904	1.83	0.073	1029855	2.239358
hispagri po~t	.8097867	.7425996	1.09	0.281	6817685	2.301342
vearseduc	6327532	.0172479	36.69	0.000	.5981098	.6673967
migrantvear~c	340793	.0258415	-13.19	0.000	3926972	- 2888888
evn	6017142	0109897	54 75	0 000	5796407	6237877
migrantexp	-241604	014649	-16 49	0.000	- 2710274	- 2121805
avn sa	-0115299	000205	-56 25	0.000	- 0119416	- 0111181
migrantovn sq	0053846	000203	18 77	0.000	0048084	.0111101
formalo	00000040	1126706	_13 00	0.000	-5 116547	-4 659910
Iemale		.1130/00	-43.00	0.000	-3.110347	-4.039919
migrantiemale	.8155//1	.1113924	1.32	0.000	.2918389	1.039315
1.migrant	0	(omitted)				
wbhao						
Black	0779227	.0775415	-1.00	0.320	2336694	.0778239
Hispanic	.0000217	.239694	0.00	1.000	4814178	.4814611
Asian	3307701	.2850268	-1.16	0.251	9032632	.2417231

Other	.1196934	.1584018	0.76	0.453	1984659	.4378527
migrant#wbhao						
1#Black	I5504659	.1464108	-3.76	0.000	8445406	2563911
1#Hispanic	560894	.1525043	-3.68	0.001	8672078	2545802
1#Asian	- 3393359	.2666218	-1.27	0.209	8748615	.1961896
1#0ther	-7015363	4379806	-1 60	0 116	-1 581246	1781736
1#Ocher	./010000	. 137 9000	1.00	0.110	1.301240	.1/01/30
years_since~l	.0083901	.0024682	3.40	0.001	.0034325	.0133476
rural	.2273902	.0879216	2.59	0.013	.0507943	.403986
migrantrural	.5929472	.2472106	2.40	0.020	.0964101	1.089484
vear						
1999		.0656679	1.51	0.137	0326624	.2311333
2000	.1130177	.0909094	1.24	0.220	0695792	.2956147
2001	0535899	0981726	0 55	0 588	- 1435955	2507753
2002	-1465094	0780245	-1 88	0 066	- 3032263	0102075
2002	-3373451	0866559	-3 89	0.000	- 5113986	- 1632915
2003		1065992	-3.26	0.000	- 5620878	- 1338662
2004	-2225464	0020210	-2 40	0.002	- 4000045	- 0360002
2005	1 1001002	107427	-2.40	0.020	4090045	0300883
2000	1001903	.10/43/	-1.01	0.319	3239030	.1076032
2007	00/2639	.0896887	-0.08	0.936	18/4091	.1/28812
2008	0402737	.0956398	-0.42	0.6/5	2323/19	.1518245
2009	338008	.0924161	-3.66	0.001	5236312	1523848
2010	667619	.0976494	-6.84	0.000	8637537	4714843
2011	669042	.0904384	-7.40	0.000	8506928	4873912
2012	4997896	.0969608	-5.15	0.000	694541	3050382
2013	3764669	.1151891	-3.27	0.002	607831	1451027
2014	3394843	.109567	-3.10	0.003	5595562	1194125
2015	1306109	.1003426	-1.30	0.199	3321549	.070933
migrant#year						
1 1999	.0610954	.1633481	0.37	0.710	2669989	.3891897
1 2000	.1885632	.2069423	0.91	0.367	2270927	.6042191
1 2001	.315946	.1608596	1.96	0.055	0071501	.639042
1 2002	0742248	.166484	0.45	0.658	2601683	.4086178
1 2003	206426	.1806394	1.14	0.259	1563989	.5692509
1 2004	0805913	2127928	0 38	0 706	- 3468157	5079983
1 2005	0077916	1189858	0.07	0 948	- 2311984	2467817
1 2005	I 380071	1668802	2 28	0.940	0//882/	7152507
1 2000	0074774	120002	2.20	0.027	.0440024	./13239/
1 2007	0222412	.1200033	0.01	0.421	143/1/	.3300/10
1 2000	0223412	.1/09004	0.12	0.901	3309907	.3010/31
1 2009	2951/91	.1032207	-1.81	0.077	6230295	.0326/14
1 2010	6362054	.1582/4/	-4.02	0.000	9541095	3183012
1 2011	569727	.1391216	-4.10	0.000	8491608	2902931
1 2012	6093103	.1507563	-4.04	0.000	9121133	3065073
1 2013	6129688	.1588309	-3.86	0.000	9319901	2939476
1 2014	4681855	.1712459	-2.73	0.009	812143	124228
1 2015	5195497	.1407285	-3.69	0.001	8022111	2368883
cons	27.92925	.4072553	68.58	0.000	27.11125	28.74725

Specification (5), Endogenous-wage, Method 1, Restricted sample

Linear regression	Number of obs	=	6,268
	F(50, 50)	=	
	Prob > F	=	

R-squared	=	0.0693
Root MSE	=	.58328

		Robust				
Inwage	Coei.	Std. Err.	t 	P> t 	[95% Conf.	Interval]
migrant	1195849	.3848473	-0.31	0.757	8925735	.6534037
post911entry	1951371	.0746035	-2.62	0.012	3449825	0452917
post911ent~t	.1492923	.082786	1.80	0.077	0169883	.3155728
hsgrad	.2542653	.0376645	6.75	0.000	.1786139	.3299167
assocgrad	.460964	.0814237	5.66	0.000	.2974198	.6245082
bachgrad	.8897999	.0828866	10.74	0.000	.7233173	1.056283
mastgrad	.2323178	.1841192	1.26	0.213	1374966	.6021321
doctorgrad	1.119734	.1125626	9.95	0.000	.8936458	1.345823
migranthsg~d	1334563	.0386438	-3.45	0.001	2110747	055838
migrantass~d	3013068	.1217928	-2.47	0.017	5459347	0566788
migrantbac~d	5222171	.0962589	-5.43	0.000	7155588	3288754
migrantmas~d	.1730543	.2067982	0.84	0.407	242312	.5884206
migrantdoc~d	-1.151796	.1875689	-6.14	0.000	-1.528539	7750523
exp	.0143138	.0080373	1.78	0.081	0018297	.0304572
migrantexp	0038154	.0092021	-0.41	0.680	0222984	.0146677
sq	0002513	.0001316	-1.91	0.062	0005156	.0000131
migrantexp~q	.0000975	.0001478	0.66	0.513	0001995	.0003944
female	1//1355	.029525	-6.00	0.000	2364382	11/8328
migrantiem~e	.02/549/	.0312266	0.88	0.382	0351/0/	.0902/01
1.migrant	0	(omitted)				
wbhao						
Hispanic	0	(omitted)				
migrant#						
wbhao						
1#Hispanic	0	(omitted)				
years sinc~l	0086244	.016696	-0.52	0.608	0421593	.0249105
rural	0666756	.0472378	-1.41	0.164	1615556	.0282043
migrantrural	.0042548	.0516508	0.08	0.935	0994888	.1079985
vear						
1999	.1511135	.2226996	0.68	0.501	2961919	.5984188
2000	.1192816	.1617852	0.74	0.464	2056736	.4442368
2001	.0468087	.1512324	0.31	0.758	2569505	.3505679
2002	.2304185	.2338122	0.99	0.329	2392072	.7000442
2003	.2215887	.1492953	1.48	0.144	0782797	.5214571
2004	.1749856	.1371567	1.28	0.208	1005017	.450473
2005	.2332616	.1513607	1.54	0.130	0707553	.5372785
2006	.2384578	.2239189	1.06	0.292	2112965	.6882121
2007	.1626852	.2387097	0.68	0.499	3167773	.6421477
2008	0436593	.1316848	-0.33	0.742	308156	.2208375
2009	.1735945	.1808723	0.96	0.342	1896982	.5368872
2010	.1509853	.2778718	0.54	0.589	4071366	.7091073
2011	.095716	.1591737	0.60	0.550	2239939	.4154259
2012	.2978095	.1857662	1.60	0.115	075313	.6709319
2013	.3433124	.256175	1.34	0.186	1712302	.857855
2014	.1218772	.1249977	0.98	0.334	1291881	.3729424
2015	.33527	.1648281	2.03	0.047	.004203	.666337

(Std. Err. adjusted for 51 clusters in state)

migrant#year |

304

1 1999		0428289	.2499793	-0.17	0.865	544927	.4592693
1 2000		.0159851	.2101782	0.08	0.940	4061703	.4381405
1 2001		.1391982	.2454653	0.57	0.573	3538333	.6322297
1 2002		0713359	.3283751	-0.22	0.829	7308967	.588225
1 2003		.0640181	.184408	0.35	0.730	3063763	.4344125
1 2004		.0317481	.2153576	0.15	0.883	4008103	.4643065
1 2005		.0684092	.1924993	0.36	0.724	318237	.4550555
1 2006		0206333	.3088196	-0.07	0.947	6409157	.5996491
1 2007		.0238522	.3144402	0.08	0.940	6077195	.6554239
1 2008		.2917934	.1218824	2.39	0.020	.0469854	.5366014
1 2009		.0447628	.2516669	0.18	0.860	460725	.5502507
1 2010		.2260111	.3077041	0.73	0.466	3920309	.844053
1 2011		.2325111	.2798583	0.83	0.410	3296008	.794623
1 2012		.0973421	.2724612	0.36	0.722	4499123	.6445965
1 2013		.0474521	.3632268	0.13	0.897	6821104	.7770145
1 2014		.3133576	.2761202	1.13	0.262	2412462	.8679613
1 2015		.0104397	.3027855	0.03	0.973	5977228	.6186022
entry year		.0161438	.0170716	0.95	0.349	0181456	.0504332
entry year~q		-8.06e-06	8.49e-06	-0.95	0.347	0000251	8.99e-06
_cons		1.988063	.1604569	12.39	0.000	1.665776	2.31035

Number of obs = 6,274 F(49, 50) = . Prob > F = . R-squared = 0.0627 Root MSE = 9.4769

(Std. Err. adjusted for 51 clusters in state)

hoursworked	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	5.838792	1.861289	3.14	0.003	2.100284	9.577301
post911entry	.2825537	.6327044	0.45	0.657	9882704	1.553378
post911ent~t	1.507468	.7758433	1.94	0.058	0508588	3.065795
hsgrad	.4539778	.8840354	0.51	0.610	-1.32166	2.229615
assocgrad	4.950577	2.57928	1.92	0.061	23006	10.13121
bachgrad	.587085	2.42685	0.24	0.810	-4.287387	5.461557
mastgrad	6.410464	1.307227	4.90	0.000	3.784822	9.036106
doctorgrad	4.637393	4.159562	1.11	0.270	-3.717333	12.99212
migranthsg~d	5685054	.8966166	-0.63	0.529	-2.369413	1.232402
migrantass~d	-3.751512	2.830041	-1.33	0.191	-9.435817	1.932793
migrantbac~d	6698874	2.300656	-0.29	0.772	-5.290892	3.951117
migrantmas~d	-7.881222	1.204829	-6.54	0.000	-10.30119	-5.461251
migrantdoc~d	-13.51316	5.240078	-2.58	0.013	-24.03817	-2.988158
exp	.262742	.081297	3.23	0.002	.0994521	.4260319
migrantexp	0694937	.0749896	-0.93	0.359	2201147	.0811273
exp_sq	0034477	.0016491	-2.09	0.042	00676	0001355
migrantexp~q	0000179	.0014714	-0.01	0.990	0029732	.0029374
female	-4.90226	.7235762	-6.78	0.000	-6.355606	-3.448915
migrantfem~e	.9604873	.5576357	1.72	0.091	159557	2.080532
1.migrant	0	(omitted)				
wbhao	 					
Hispanic	0 	(omitted)				

migrant#| wbhao |

1#Hispanic	0	(omitted)				
	1460660	1 5 0 0 0 0 5	0.00	0 0 0 0 0	1 2 4 1 2 0 0	4670115
years_sinc~1	.1468663	.1598385	0.92	0.363	1/41/88	.46/9115
rural	1 260247	.8685323	1.42	0.161	5094957	2.979501
migrantrural	1.360247	.61/3254	2.20	0.032	.1203126	2.600182
vear						
1999	4.450886	1.611807	2.76	0.008	1.213477	7.688296
2000	3.604432	1.549387	2.33	0.024	.4923971	6.716466
2001	1.560281	1.474437	1.06	0.295	-1.401213	4.521775
2002	2.318018	1.161527	2.00	0.051	014978	4.651013
2003	2.000292	2.033182	0.98	0.330	-2.083474	6.084057
2004	5.550671	3.021338	1.84	0.072	5178653	11.61921
2005	4.256545	1.344968	3.16	0.003	1.555097	6.957993
2006	4.204825	1.871332	2.25	0.029	.4461439	7.963505
2007	3.524419	1.632387	2.16	0.036	.2456723	6.803166
2008	1.919578	2.027121	0.95	0.348	-2.152013	5.99117
2009	4.271599	1.074453	3.98	0.000	2.113497	6.4297
2010	3.117006	1.975622	1.58	0.121	851148	7.08516
2011	.6508826	1.257764	0.52	0.607	-1.875411	3.177176
2012	2.251395	1.175404	1.92	0.061	1094741	4.612264
2013	I 3.9567	1.447679	2.73	0.009	1.04895	6.86445
2014	2.606375	1.518063	1.72	0.092	442744	5.655494
2015	.5264076	1.52806	0.34	0.732	-2.542791	3.595606
migrant#year		0 017410	0 07		0 (070	5001106
1 1999	-4.5/5206	2.01/413	-2.27	0.028	-8.62/3	5231126
1 2000	-3.229547	1.839907	-1./6	0.085	-6.925109	.4660144
1 2001	-1.282503	1.636823	-0.78	0.43/	-4.5/0158	2.005152
1 2002	-3./89008	1.269596	-2.98	0.004	-6.339066	-1.23895
1 2003	-2.125602	1.906557	-1.11	0.270	-5.955034	1.70383
1 2004	-6.0665/6	2.38/91/	-2.54	0.014	-10.86285	-1.2/0303
1 2005	-3.036706	2.08/954	-1.45	0.152	-7.230484	1.15/0/2
1 2006	-5.026614	1.8/3/04	-2.68	0.010	-8./90059	-1.263168
1 2007	-4.150899	1.952659	-2.13	0.038	-8.07293	2288683
1 2008	-3.531/6/	2.10/203	-1.68	0.100	-/./6421	./006/53
I 2009	-5.6/8/3L	2.166907	-2.62	0.012	-10.03109	-1.3263/1
1 2010	-6.01655	2.653455	-2.2/	0.028	-11.3461/	6869283
1 2011	-3.00/1/5	2.205983	-1.36	0.179	-7.438022	1.4236/3
1 2012	-4.1413//	2.6/883	-1.55	0.128	-9.521965	1.23921
1 2013	-4.955986	2.926845	-1.69	0.097	-10.834/3	.922/545
1 2014	-5.434965	2.952279	-1.84	0.072	-11.364/9	.4948613
1 2015	-1.41/5/	3.288126	-0.43	0.668	-8.021967	5.186826
entrv vear	0894105	.1497307	-0.60	0.553	3901534	.2113324
entry year~q	.0000442	.0000745	0.59	0.556	0001054	.0001938
cons	36.32322	1.325805	27.40	0.000	33.66026	38.98618

Specification (5), Endogenous-wage, Method 1, Full sample

Linear regression

Number of obs	=	1,375,615
F(50, 50)	=	•
Prob > F	=	•
R-squared	=	0.2895
Root MSE	=	.61476

lnwage	 Coef.	Robust Std. Err.	t	 P> t	[95% Conf.	Interval]
migrant	+ .3558109	.0319365	11.14	0.000	.2916646	.4199572
post911entrv	0628346	.0037511	-16.75	0.000	0703689	0553004
post911entr~t	.0198273	.0075804	2.62	0.012	.0046017	.035053
hispagri	2456312	.0290849	-8.45	0.000	3040499	1872124
hispagri mi~t	.0887647	.0320102	2.77	0.008	.0244704	.1530591
hispagri ~911	.1082227	.0434167	2.49	0.016	.0210176	.1954277
hispagri po~t	0989858	.0459453	-2.15	0.036	1912696	0067019
hsgrad	.3005191	.0060088	50.01	0.000	.28845	.3125882
assocgrad	.4869109	.005925	82.18	0.000	.4750101	.4988117
bachgrad	.7626389	.0102068	74.72	0.000	.7421379	.7831399
mastgrad	.9357019	.0137747	67.93	0.000	.9080345	.9633692
doctorgrad	1.201576	.0130393	92.15	0.000	1.175386	1.227767
migranthsgrad	1087156	.0055282	-19.67	0.000	1198194	0976118
migrantasso~d	0893212	.0116341	-7.68	0.000	1126889	0659535
migrantbach~d	0970236	.0109879	-8.83	0.000	1190934	0749537
migrantmast~d	.0233328	.0155736	1.50	0.140	0079476	.0546132
migrantdoct~d	1233904	.0141125	-8.74	0.000	1517361	0950447
exp	.0410852	.0009308	44.14	0.000	.0392156	.0429548
migrantexp	0182869	.0009967	-18.35	0.000	0202888	016285
exp_sq	0006699	.0000183	-36.67	0.000	0007066	0006332
migrantexp_sq	.0002565	.0000185	13.88	0.000	.0002194	.0002936
female	2456887	.0048406	-50.76	0.000	2554114	2359661
migrantfemale	.0232146	.006973	3.33	0.002	.0092089	.0372204
1.migrant	0	(omitted)				
wbhao						
Black	1425905	.0092206	-15.46	0.000	1611106	1240703
Hispanic	0679097	.0244467	-2.78	0.008	1170124	0188071
Asian	.0210588	.0162589	1.30	0.201	0115982	.0537157
Other	0867905	.0119687	-7.25	0.000	1108305	0627506
migrant#wbhao						
1#Black	.0362921	.0181237	2.00	0.051	0001105	.0726947
1#Hispanic	11648	.0211052	-5.52	0.000	1588709	074089
1#Asian	0444337	.0142033	-3.13	0.003	0729619	0159054
1#Other	.0162193 	.0525022	0.31	0.759	0892345	.1216731
years_since~l	.0095459	.0012066	7.91	0.000	.0071225	.0119694
rural	1700708	.0128976	-13.19	0.000	1959763	1441652
migrantrural	.0916447	.0162979	5.62	0.000	.0589095	.1243799
year						
1999	.0311793	.0049301	6.32	0.000	.0212769	.0410816
2000	.0423695	.0043612	9.72	0.000	.0336097	.0511292
2001	.0583211	.0051889	11.24	0.000	.0478988	.0687433
2002	.0651945	.0043638	14.94	0.000	.0564296	.0739595
2003	.0729471	.0052143	13.99	0.000	.0624739	.0834203
2004	.0659916	.005023	13.14	0.000	.0559027	.0760805
2005	.052099	.0040617	12.83	0.000	.0439409	.060257
2006	.0442711	.0053263	8.31	0.000	.0335728	.0549694
2007	.0465224	.0077809	5.98	0.000	.030894	.0621509
2008	.0546043	.0067511	8.09	0.000	.0410443	.0681642
2009	.03/598	.0068012	5.53	0.000	.02393/3	.0512587
2010	.0531627	.005/303	9.28	0.000	.041653	.0646/24
2011	.03/35//	.0060953	6.13 2 02	0.000	.UZSI149	.0496005
ZUIZ		.00/8044		0.004	.00/9489	. U.3 77 799

2013	.0083182	.007219	1.15	0.255	0061816	.0228181
2014	.0102354	.0099966	1.02	0.311	0098435	.0303142
2015	.0129371	.0089916	1.44	0.156	0051231	.0309973
migrant#vear						
1 1999	0153796	.0090266	-1.70	0.095	0335101	.0027509
1 2000	.0119152	.0091531	1.30	0.199	0064694	.0302998
1 2001	.0242805	.0110585	2.20	0.033	.0020688	.0464923
1 2002	.0240472	.0072868	3.30	0.002	.0094114	.0386831
1 2003	0006085	.0129361	-0.05	0.963	0265913	.0253744
1 2004	0049105	.0130626	-0.38	0.709	0311476	.0213265
1 2005	.0130735	.0129656	1.01	0.318	0129686	.0391156
1 2006	.0205759	.0106282	1.94	0.059	0007715	.0419232
1 2007	.0166566	.0111149	1.50	0.140	0056683	.0389816
1 2008	.0058746	.0120331	0.49	0.628	0182946	.0300437
1 2009	0017813	.0152108	-0.12	0.907	032333	.0287704
1 2010	.0064252	.0148259	0.43	0.667	0233535	.0362038
1 2011	.0046554	.0152994	0.30	0.762	0260743	.0353852
1 2012	.0024167	.0165697	0.15	0.885	0308645	.0356979
1 2013	.0096407	.0171226	0.56	0.576	024751	.0440324
1 2014	.0015057	.0192281	0.08	0.938	037115	.0401264
1 2015	0159559	.0228291	-0.70	0.488	0618094	.0298976
entry year	0017898	.0009402	-1.90	0.063	0036783	.0000986
entry year sq	8.26e-07	4.67e-07	1.77	0.083	-1.11e-07	1.76e-06
cons	2.142764	.0078967	271.35	0.000	2.126904	2.158625

Number of obs = 1,376,334 F(51, 50) = . Prob > F = . R-squared = 0.1249 Root MSE = 9.8426

hoursworked	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant post911entry post911entr~t hispagri_mi~t hispagri_o~t hispagri_po~t hsgrad assocgrad bachgrad mastgrad doctorgrad migranthsgrad migrantbach~d migrantbach~d migrantdoct~d exp	2.881023 -1.178139 .9433112 2.52103 .1817646 1.483514 .5434315 2.390392 3.008578 4.73848 5.658689 8.926062 -1.677612 -1.859134 -2.231418 -2.243932 -1.660426 .5861767	.4027868 .069698 .1388782 .2663468 .3945216 .55393 .739279 .1214004 .131605 .1316355 .1723568 .2542774 .1346605 .1923165 .2090386 .301026 .2470645 .0104914	7.15 -16.90 6.79 9.47 0.46 2.68 0.74 19.69 22.86 36.00 32.83 35.10 -12.46 -9.67 -10.67 -7.45 -6.72 55.87	0.000 0.000 0.000 0.647 0.010 0.466 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	2.072002 -1.318131 .6643661 1.986057 6106553 .3709124 941454 2.146552 2.744242 4.474082 5.3125 8.415331 -1.948086 -2.245413 -2.651284 -2.15667 .565104	3.690044 -1.038146 1.222256 3.056004 .9741845 2.596115 2.028317 2.634231 3.272915 5.002877 6.004878 9.436793 -1.407139 -1.472855 -1.811552 -1.639304 -1.164183 .6072493
migrantexp exp_sq migrantexp_sq	2304672 0112896 .0049639	.0142285 .0001958 .0002649	-16.20 -57.65 18.74	0.000 0.000 0.000	2590459 0116829 .0044319	2018885 0108963 .0054958

female migrantfemale 1.migrant	-4.855715 .887013	.1134377 .1142574 (omitted)	-42.81 7.76	0.000 0.000	-5.083561 .6575203	-4.627868 1.116506
wbhao						
Black	.0190582	.0784175	0.24	0.809	1384479	.1765644
Hispanic	.0799813	.2317898	0.35	0.731	3855822	.5455448
Asian	3993852	.2686218	-1.49	0.143	938928	.1401575
Other	.2357101	.1553665	1.52	0.136	0763528	.547773
migrant#wbhao						
1#Black	3388908	.1497248	-2.26	0.028	639622	0381597
1#Hispanic	4416303	.1637227	-2.70	0.010	7704771	1127835
1#Asian	3530615	.2823461	-1.25	0.217	9201704	.2140474
I#Other	0034575	.4200199	-1.30	0.120	-1.520349	.1934338
years_since~l	0104918	.0127564	-0.82	0.415	0361138	.0151303
rural	.2438772	.0894077	2.73	0.009	.0642966	.4234579
migrantrural	.5466263	.24/2/69	2.21	0.032	.0499561	1.043296
year						
1999	.1020387	.066037	1.55	0.129	0306006	.234678
2000	0500710	.0905/42	1.29	0.204	0653281	.2985193
2001	-1386589	0761087	-1 82	0.558	- 2915277	.2337901
2002	3266308	.0838557	-3.90	0.000	4950599	1582017
2004	3468174	.104646	-3.31	0.002	5570051	1366297
2005	2244675	.0909207	-2.47	0.017	4070871	0418479
2006	1045532	.1046686	-1.00	0.323	3147863	.1056799
2007	0128801	.0864754	-0.15	0.882	1865709	.1608108
2008	0392619	.0944609	-0.42	0.679	2289922	.1504685
2009	346911	.0920273	-3.77	0.000	- 8704587	- 4908752
2010	6786023	.08934	-7.60	0.000	858047	4991576
2012	5119992	.0953202	-5.37	0.000	7034554	320543
2013	3885742	.1151461	-3.37	0.001	6198519	1572964
2014	3664795	.1093383	-3.35	0.002	5860919	1468671
2015	156778	.1007436	-1.56	0.126	3591274	.0455714
migrant#year	1 					
1 1999	.1016444	.1591011	0.64	0.526	2179196	.4212084
1 2000	.2694234	.2204616	1.22	0.227	1733868	.7122336
1 2001	4051342	.1592132	2.54	0.014	.085345	./249233
1 2002	3320096	1807531	1 84	0.200	- 0310437	6950629
1 2003	.2370537	.2167503	1.01	0.279	1983022	.6724095
1 2005	.2051131	.152478	1.35	0.185	101148	.5113742
1 2006	.5752544	.1933473	2.98	0.004	.1869049	.9636039
1 2007	.3544102	.1696939	2.09	0.042	.0135699	.6952505
1 2008	.2936128	.2154338	1.36	0.179	1390988	.7263243
I 2009		.2096543	0.00	0.998	4206/5	.421531
1 2010	2040003	·211013 203259	-1.34 -0.86	0.100	- 5836415	.140937 2328741
1 2012	2035591	.2278588	-0.89	0.376	661227	.2541088
1 2013	1992905	.2477262	-0.80	0.425	6968633	.2982823
1 2014	036196	.2669219	-0.14	0.893	5723243	.4999324
1 2015	0735656	.2354512	-0.31	0.756	5464833	.399352
entrv vear	.0270704	.0135249	2.00	0.051	0000953	.054236
entry year sq	0000136	6.75e-06	-2.01	0.050	0000271	-5.41e-09

Specification (6), Endogenous-wage, Method 1, Restricted sample

Linear regression	Number of obs	=	6,115
	F(49, 50)	=	
	Prob > F	=	
	R-squared	=	0.0707
	Root MSE	=	.58433

lnwage	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	+	. 2214391	-0.20	0.842		.4002716
post911entrv	1851448	.0604442	-3.06	0.004	3065504	0637391
post911ent~t	.1287598	.0717803	1.79	0.079	0154151	.2729347
hsgrad	.2495763	.0439269	5.68	0.000	.1613465	.3378061
assocarad	.4454983	.0889972	5.01	0.000	.2667421	.6242545
bachgrad	.8806937	.079242	11.11	0.000	.7215315	1.039856
mastgrad	.2391151	.186151	1.28	0.205	1347803	.6130104
doctorgrad	1.111088	.1264139	8.79	0.000	.8571784	1.364998
migranthsg~d	1234688	.0434155	-2.84	0.006	2106714	0362662
migrantass~d	2565448	.1339567	-1.92	0.061	5256047	.0125151
migrantbac~d	454381	.081024	-5.61	0.000	6171226	2916395
migrantmas~d	.1688543	.2089605	0.81	0.423	2508553	.5885639
migrantdoc~d	-1.242569	.1985524	-6.26	0.000	-1.641373	843765
exp	.0149021	.006229	2.39	0.021	.0023908	.0274134
migrantexp	0044424	.0075786	-0.59	0.560	0196644	.0107796
exp_sq	0002647	.0000997	-2.65	0.011	000465	0000643
migrantexp~q	.0001129	.0001216	0.93	0.357	0001313	.0003572
female	1761387	.0322364	-5.46	0.000	2408875	11139
migrantfem~e	.0247718	.0319604	0.78	0.442	0394225	.0889661
1.migrant	0	(omitted)				
wbhao						
Hispanic	0	(omitted)				
migrant#						
wbhao						
1#Hispanic	0	(omitted)				
vears sinc~l	.0069981	.0009059	7.72	0.000	.0051785	.0088176
rural	0655394	.0484833	-1.35	0.183	162921	.0318421
migrantrural	.0046875	.050068	0.09	0.926	0958771	.1052521
vear						
1999	.155137	.2194029	0.71	0.483	2855466	.5958207
2000	.1209296	.1605966	0.75	0.455	2016381	.4434973
2001	.045147	.1489121	0.30	0.763	2539517	.3442457
2002	.2255152	.2314298	0.97	0.335	2393252	.6903557
2003	.2131471	.1474805	1.45	0.155	0830762	.5093703
2004	.1676269	.1417185	1.18	0.242	1170232	.452277
2005	.2196136	.147687	1.49	0.143	0770243	.5162516
2006	.2298332	.2286623	1.01	0.320	2294485	.689115
2007	.1499485	.2410235	0.62	0.537	3341613	.6340584
2008	0574977	.119096	-0.48	0.631	2967091	.1817137
2009	.1615349	.1806056	0.89	0.375	201222	.5242919

2010	.1300693	.2717732	0.48	0.634	4158033	.6759419
2011	.0771434	.1553738	0.50	0.622	2349341	.3892208
2012	.2845772	.1863926	1.53	0.133	0898034	.6589578
2013	.3232034	.2588615	1.25	0.218	1967352	.8431421
2014	.1031324	.1183049	0.87	0.388	13449	.3407548
2015	.3058052	.1606399	1.90	0.063	0168495	.6284599
migrant#year						
1 1999	0621587	.2459298	-0.25	0.801	5561233	.431806
1 2000	0180098	.2062363	-0.09	0.931	4322475	.396228
1 2001	.0930637	.2335922	0.40	0.692	37612	.5622474
1 2002	1310039	.3156653	-0.42	0.680	7650363	.5030285
1 2003	0073878	.1756215	-0.04	0.967	360134	.3453583
1 2004	0545688	.1948498	-0.28	0.781	4459362	.3367986
1 2005	0294051	.1491622	-0.20	0.845	3290062	.2701961
1 2006	1363821	.278061	-0.49	0.626	694884	.4221198
1 2007	1020113	.2845749	-0.36	0.722	6735968	.4695742
1 2008	.1455019	.1213507	1.20	0.236	0982381	.389242
1 2009	0954118	.2129175	-0.45	0.656	5230691	.3322455
1 2010	.0453976	.3015557	0.15	0.881	5602948	.65109
1 2011	.047834	.2161915	0.22	0.826	3863994	.4820674
1 2012	1043727	.210706	-0.50	0.623	527588	.3188427
1 2013	1694221	.2742595	-0.62	0.540	7202884	.3814442
1 2014	.0915744	.1621463	0.56	0.575	234106	.4172547
1 2015	2189377	.2040265	-1.07	0.288	6287369	.1908615
_cons	1.994183	.1611891	12.37	0.000	1.670425	2.317941

Number of obs	=	6,121
F(49, 50)	=	
Prob > F	=	
R-squared	=	0.0616
Root MSE	=	9.4865

(Std.	Err.	adjusted	for	51	clusters	in	state)	ļ
-------	------	----------	-----	----	----------	----	--------	---

hoursworked		Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant post911entry	 	3.613375 .0661627	1.114494 .6700931	3.24 0.10	0.002 0.922	1.374848 -1.279759	5.851902 1.412084
post911ent~t	I.	1.543264	.8194625	1.88	0.065	1026753	3.189202
hsgrad		.5711841	.8506805	0.67	0.505	-1.137458	2.279826
assocgrad		5.055342	2.622355	1.93	0.060	2118126	10.3225
bachgrad		.5183676	2.401719	0.22	0.830	-4.305628	5.342363
mastgrad		6.5331	1.299641	5.03	0.000	3.922695	9.143505
doctorgrad		4.812416	4.135257	1.16	0.250	-3.493492	13.11832
migranthsg~d		5634257	.8214623	-0.69	0.496	-2.213381	1.08653
migrantass~d		-3.610899	2.962988	-1.22	0.229	-9.562236	2.340439
migrantbac~d		-1.660086	2.087407	-0.80	0.430	-5.852766	2.532594
migrantmas~d		-7.976956	1.199843	-6.65	0.000	-10.38691	-5.567
migrantdoc~d		-13.31076	5.751553	-2.31	0.025	-24.8631	-1.758431
exp		.2291798	.0851089	2.69	0.010	.0582335	.400126
migrantexp		0418443	.0863844	-0.48	0.630	2153526	.131664
exp_sq		0028493	.0016248	-1.75	0.086	0061128	.0004142
migrantexp~q		0004401	.0015863	-0.28	0.783	0036264	.0027461
female	1	-4.848479	.7291054	-6.65	0.000	-6.31293	-3.384028
migrantfem~e		.9523785	.5446248	1.75	0.086	1415326	2.04629
1.migrant		0	(omitted)				

<pre>wbhao 1#Hispanic years_sinc~l .0 rural 1. migrantrural 1. year 1999 4. 2000 3. 2001 1. 2002 2. 2003 2. 2003 2. 2004 5 2005 4. 2006 4. 2007 3. 2008 2. 2009 4. 2010 3. 2011 .8 2012 2. 2013 4. 2014 2. 2015 .7 migrant#year 1 1999 - 1 2000 -2. 1 2001 9 1 2002 -3</pre>	0 (omit)486586 .021 .290476 .918 .293543 .671 .293543 .671 .290194 1.61 .494112 1.58 .461591 1.52 .256934 1.22 .008898 2.09 5.74413 2.99 .74413 2.99	11826 2.30 35436 1.40 16631 1.93 11758 2.66 31565 2.21 25816 0.96 27345 1.84 20572 0.96 20724 1.92 .5533 3.17 14029 2.41 17884 2.40 24489 1.04	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51121 .091205 14735 3.135425 55322 2.642618 52883 7.527506 74454 6.670778 3101 4.526282 32604 4.722128 9014 6.207936 9154 11.75118 9251 6.813902 70059 8.144689
<pre>years_sinc~l .0 rural 1. migrantrural 1. year 1999 4. 2000 3. 2001 1. 2002 2. 2003 2. 2004 5 2005 4. 2006 4. 2006 4. 2006 4. 2007 3. 2008 2. 2009 4. 2008 2. 2009 4. 2010 3. 2011 .8 2012 2. 2013 4. 2014 2. 2013 4. 2014 2. 2013 4. 2014 2. 2013 4. 2014 2. 2015 .7 migrant#year 1 1999 - 1 2000 -2. 1 2001 9 1 2002 -3</pre>	0486586 .021 .290476 .918 .293543 .671 .290194 1.61 .494112 1.58 .461591 1.52 .256934 1.22 .08898 2.09 .74413 2.99 .71577 1.31 .40847 1.84 .803166 2.00	L1826 2.30 35436 1.40 L6631 1.93 L1758 2.66 31565 2.21 25816 0.96 27345 1.84 20572 0.96 20724 1.92 .5533 3.17 L4029 2.41 17884 2.40 24489 1.04	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51121 .091205 14735 3.135425 55322 2.642618 52883 7.527506 74454 6.670778 03101 4.526282 32604 4.722128 19014 6.207936 19154 11.75118 19251 6.813902 70059 8.144689
year 1999 4. 2000 3. 2001 1. 2002 2. 2003 2. 2003 2. 2004 5 2005 4. 2006 4. 2007 3. 2008 2. 2009 4. 2010 3. 2011 .8 2012 2. 2013 4. 2014 2. 2013 4. 2014 2. 2015 .7 migrant#year 1 1999 - 1 2000 -2. 1 2001 9 1 2002 -3	290194 1.61 494112 1.58 461591 1.52 256934 1.22 008898 2.09 7.74413 2.99 171577 1.31 440847 1.84 709509 1.54 083166 2.000	L1758 2.66 31565 2.21 25816 0.96 27345 1.84 30572 0.96 30724 1.92 15533 3.17 14029 2.41 17884 2.40 304489 1.04	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52883 7.527506 74454 6.670778 03101 4.526282 32604 4.722128 19014 6.207936 29154 11.75118 29251 6.813902 70059 8.144689
2015 .7 migrant#year 1 1999 - 1 2000 -2. 1 2001 9 1 2002 -3	318915 1.05 .301183 1.99 }598069 1.24 .515293 1.22 .177739 1.50 .908779 1.51	57118 4.27 96597 1.65 18696 0.69 28949 2.05 08598 2.77 10234 1.93	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14934 6.818525 12968 6.1093 35632 6.642199 31004 7.311466 18272 3.367886 58751 4.98371 17631 7.207848 46151 5.942172
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	908779 1.51 '694978 1.58 '90523 1.90 >146636 1.65 370878 1.08 .653723 1.98 .671739 2.14 .321646 1.55 .508543 1.82 .451945 1.71 .873261 1.47 .71803 1.51 .287673 1.92 .095911 1.24 .112464 1.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16151 5.942172 10609 3.945085 3.601 .8926145 29063 2.399735 .5558 -1.185957 16612 2.339165 30133 -1.353345 52155 .808862 76587 8404999 33111 0107787 3075 .0845539 53511 -1.418836 37586 .3957637 27834 0970934 53753 1170608 31212 0128485 57482 4.660721

Specification (6), Endogenous-wage, Method 1, Full sample

Linear regression	Number of obs	=	1,364,949
	F(50, 50)	=	
	Prob > F	=	

R-squared	=	0.2893
Root MSE	=	.61437

lnwage	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	.4058298	.0328477	12.35	0.000	.3398532	.4718063
post911entry	0629156	.0037462	-16.79	0.000	07044	0553912
post911entr~t	.0027438	.0071676	0.38	0.703	0116527	.0171404
hispagri	2461976	.028991	-8.49	0.000	3044278	1879673
hispagri_mi~t	.0876503	.0319919	2.74	0.009	.0233927	.151908
hispagri_~911	.1086289	.0431688	2.52	0.015	.0219217	.195336
hispagri_po~t	0939632	.0457243	-2.05	0.045	1858031	0021232
hsgrad	.3004801	.0059929	50.14	0.000	.288443	.3125172
assocgrad	.4868699	.00591	82.38	0.000	.4749993	.4987406
bachgrad	.7626128	.0101922	74.82	0.000	.7421411	.7830845
mastgrad	.935677	.0137618	67.99	0.000	.9080356	.9633183
doctorgrad	1.201565	.0130283	92.23	0.000	1.175397	1.227733
migranthsgrad	1098805	.005195	-21.15	0.000	120315	0994461
migrantasso~d	0888181	.0122146	-7.27	0.000	113352	0642843
migrantbach~d	1021365	.01046	-9.76	0.000	123146	081127
migrantmast~d	.0173237	.0158994	1.09	0.281	0146113	.0492587
migrantdoct~d	1363923	.0143673	-9.49	0.000	16525	1075347
exp	.0410882	.0009312	44.12	0.000	.0392179	.0429586
migrantexp	0226256	.0010842	-20.87	0.000	0248033	020448
exp_sq	00067	.0000183	-36.67	0.000	0007067	0006333
migrantexp_sq	.0003252	.0000191	17.01	0.000	.0002868	.0003636
female	2456918	.0048429	-50.73	0.000	255419	2359646
migrantfemale	.0170019	.0069622	2.44	0.018	.0030179	.0309859
1.migrant	0	(omitted)				
wbhao						
Black	1425775	.0092218	-15.46	0.000	1611	1240549
Hispanic	0671695	.024505	-2.74	0.008	1163894	0179497
Asian	.0225145	.0162852	1.38	0.173	0101953	.0552244
Other	0868192	.0119733	-7.25	0.000	1108683	0627701
	0270606	0106714	1 0 0	0 065	0024415	0765000
1#DIACK	1 - 124951	0216632	-5 76	0.000	- 1603620	- 0913303
1#Asjan	124001	.0210032	-3.70	0.000	- 0781033	- 0190349
1#ASian	0137706	0577155	0.24	0.002	- 1021543	1206056
I#OCHEI	.0137700	.0377133	0.21	0.012	.1021343	.1290990
years_since~l	.0073274	.0011115	6.59	0.000	.0050949	.0095598
rural	1700996	.0128937	-13.19	0.000	1959973	1442018
migrantrural	.0908561	.0163893	5.54	0.000	.0579373	.1237748
Vear						
1999	I 0312127	0049241	6 34	0 000	0213224	0411031
2000	0424498	.0043598	9.74	0.000	.0336928	.0512068
2000	0584419	0051888	11 26	0 000	0480199	068864
2002	0653453	.0043585	14.99	0.000	.056591	.0740996
2003	.0731252	.0052064	14.05	0.000	.0626679	.0835825
2003	.0662151	.0050158	13.20	0.000	.0561405	.0762897
2005	.0523634	.0040439	12.95	0.000	.044241	.0604857
2006	.0445777	.0053187	8.38	0.000	.0338947	.0552606
2007	.0468664	.0077797	6.02	0.000	.0312404	.0624924
2008	.0549961	.0067375	8.16	0.000	.0414635	.0685287
2009	.0380239	.0067898	5.60	0.000	.0243861	.0516616
---------------	-----------	----------	--------	-------	-----------	----------
2010	.0536259	.005744	9.34	0.000	.0420888	.0651631
2011	.0378593	.0060758	6.23	0.000	.0256557	.0500629
2012	.0241652	.007793	3.10	0.003	.0085125	.0398178
2013	.0089088	.0072087	1.24	0.222	0055703	.023388
2014	.0108476	.0099816	1.09	0.282	0092011	.0308963
2015	.0136141	.0089759	1.52	0.136	0044145	.0316428
migrant#year						
1 1999	0131874	.0088875	-1.48	0.144	0310384	.0046637
1 2000	.0172559	.0092583	1.86	0.068	0013401	.0358518
1 2001	.0319855	.0108402	2.95	0.005	.0102124	.0537586
1 2002	.0350293	.0070942	4.94	0.000	.0207801	.0492785
1 2003	.0138842	.0131097	1.06	0.295	0124474	.0402158
1 2004	.0144629	.0131892	1.10	0.278	0120285	.0409543
1 2005	.0387368	.0123052	3.15	0.003	.0140212	.0634525
1 2006	.0502789	.0095896	5.24	0.000	.0310176	.0695403
1 2007	.0521933	.0098512	5.30	0.000	.0324066	.07198
1 2008	.0416253	.0100778	4.13	0.000	.0213834	.0618672
1 2009	.0397591	.0136992	2.90	0.005	.0122434	.0672748
1 2010	.0486218	.0134111	3.63	0.001	.0216848	.0755587
1 2011	.0508937	.0130039	3.91	0.000	.0247746	.0770127
1 2012	.0506065	.0150377	3.37	0.001	.0204024	.0808106
1 2013	.0626738	.0151431	4.14	0.000	.032258	.0930896
1 2014	.0584174	.0167123	3.50	0.001	.0248497	.0919851
1 2015	.0486811	.0198799	2.45	0.018	.0087512	.088611
entry_year	.0007229	.0009006	0.80	0.426	0010859	.0025318
entry_year_sq	-4.30e-07	4.48e-07	-0.96	0.342	-1.33e-06	4.70e-07
_cons	2.142523	.0079	271.21	0.000	2.126655	2.15839

Linear regression

Number of obs	=	1,365,655
F(49, 50)	=	
Prob > F	=	
R-squared	=	0.1246
Root MSE	=	9.8367

(Std. Err. adjusted for 51 clusters in state)

hoursworked	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant post911entry post911entr~t hispagri_mi~t hispagri_0~t hispagri_po~t hsgrad assocgrad bachgrad mastgrad doctorgrad migranthsgrad migrantbach~d migrantmast~d	3.809941 -1.176975 .6363845 2.524794 .1186315 1.484565 .6398562 2.391555 3.009736 4.739389 5.659607 8.926872 -1.639933 -1.985823 -2.464493 -2.5647	.4016474 .069705 .1203474 .2658917 .4018272 .5534925 .7515262 .1212812 .1313996 .1315648 .1723466 .2540024 .1388156 .2075043 .2288624 .2942192	9.49 -16.89 5.29 9.50 0.30 2.68 0.85 19.72 22.91 36.02 32.84 35.14 -11.81 -9.57 -10.77 -8.72	0.000 0.000 0.000 0.769 0.010 0.399 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	3.003209 -1.316982 .3946596 1.990735 6884622 .3728424 8696287 2.147955 2.745812 4.475133 5.313439 8.416693 -1.918753 -2.402608 -2.924177 -3.155656	4.616674 -1.036969 .8781094 3.058853 .9257253 2.596287 2.149341 2.635156 3.27366 5.003644 6.005775 9.437051 -1.361114 -1.569038 -2.00481 -1.973743
migrantdoct~d	-2.185114	.2437131	-8.97	0.000	-2.674626	-1.695602

exp	.5861356	.0104829	55.91	0.000	.5650801	.6071911
migrantexp	2935183	.0175308	-16.74	0.000	3287299	2583066
exp_sq	0112884	.0001956	-57.70	0.000	0116813	0108954
migrantexp_sq	.0060315	.0003097	19.48	0.000	.0054095	.0066536
female	-4.855662	.1134419	-42.80	0.000	-5.083517	-4.627807
migrantfemale	.8291426	.1182644	7.01	0.000	.5916015	1.066684
1.migrant	I 0	(omitted)				
wbhao	010074	0704107	0.04	0 011	1 2 0 5 0 5 1	1762000
Diack	0660507	.0704107	0.24	0.011	1303931	.1/03090
nispanic	1 1220241	.2209230	1 57	0.771	3920339	. JZ07J72
ASIAN Othor	4220241 2359467	1553233	-1.57	0.124	- 07602934	·1192472
Other	.2339107	.1000200	1.02	0.100	.0700291	.01/9220
migrant#wbhao	l					
1#Black	4461915	.1355169	-3.29	0.002	7183851	1739979
1#Hispanic	6357553	.1515781	-4.19	0.000	9402088	3313017
1#Asian	3486413	.2506265	-1.39	0.170	8520394	.1547568
1#Other	6862724	.4561279	-1.50	0.139	-1.602432	.2298875
vears since~l	I .0115816	.0025375	4.56	0.000	.006485	.0166782
rural	244465	0894091	2.73	0.009	0648816	4240484
migrantrural	.5472726	.2561066	2.14	0.038	.0328674	1.061678
-	l					
year	1016270	0.000.00	1 5 4	0 1 2 0		0040550
1999	.10163/2	.0660265	1.54	0.130	0309808	.2342553
2000	.115/65	.09048	1.28	0.207	0659694	.29/4993
2001	.058613	.096284	0.61	0.545	134//92	.2520051
2002	1402424	.0/59826	-1.85	0.071	2928579	.0123/32
2003	3285205	.0836/99	-3.93	0.000	4965965	1604445
2004	3492414	.104449	-3.34	0.002	5590334	1394493
2005	2272379	.090646	-2.51	0.015	4093058	0451699
2006	10///11	.1044407	-1.03	0.307	31/5465	.1020043
2007	0164638	.0862022	-0.19	0.849	1896061	.1366/83
2008	0433839	.0941156	-0.46	0.647	2324206	.1456527
2009		.0914932	-3.84	0.000	5351259	16/5869
2010		.0945486	-7.25	0.000	8/53956	4955828
2011	6838288	.0889409	-7.69	0.000	8624/18	5051857
2012	51/5809	.094/163	-5.46	0.000	/0/8241	32/33//
2013	394/248	.1148593	-3.44	0.001	6254265	1640231
2014	3/2/888	.1089/52	-3.42	0.001	5916/19	1539058
2015	163/923	.0999213	-1.64	0.10/	3644901	.0369055
migrant#year						
1 1999	.0756971	.1612842	0.47	0.641	2482516	.3996459
1 2000	.2250827	.2132149	1.06	0.296	203172	.6533374
1 2001	.3339562	.1633416	2.04	0.046	.0058749	.6620374
1 2002	.1297622	.1630186	0.80	0.430	1976703	.4571947
1 2003	.3132598	.165318	1.89	0.064	0187913	.6453109
1 2004	.2539175	.2088187	1.22	0.230	1655071	.6733422
1 2005	.2472708	.1250531	1.98	0.054	0039058	.4984474
1 2006	.6102099	.1700843	3.59	0.001	.2685856	.9518342
1 2007	.3324825	.1218603	2.73	0.009	.0877189	.5772462
1 2008	.1902472	.1636357	1.16	0.251	1384248	.5189193
1 2009	0445093	.1626084	-0.27	0.785	3711179	.2820993
1 2010	- 4255475	.1535477	-2.77	0.008	7339571	117138
1 2011	3167405	.1326721	-2.39	0.021	5832202	0502608
1 2012	- 4048999	.1446801	-2 80	0.007	6954985	1143014
1 2013	- 4296333	.1714202	-2.51	0.015	7739409	0853257
1 2014	- 2148146	.1737922	-1.24	0,222	5638864	.1342573
						3 6 / 6

1 2015	2274949	.1461957	-1.56	0.126	5211376	.0661479
	33.74054	.2466233	136.81	0.000	33.24518	34.2359

Specification (1), Endogenous-wage, Method 2, Restricted sample

Linear regress	sion			Number of F(3, 50) Prob > F R-squared Root MSE	obs = = = = =	36,851 91.04 0.0000 0.0087 .6358
		(Std.	Err. adj	usted for	51 clusters	in state)
 lnwage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant post911entry post911ent~t cons	0692838 2039532 .1130039 2.407137	.0210257 .0179011 .0222898 .0145723	-3.30 -11.39 5.07 165.19	0.002 0.000 0.000 0.000	1115151 2399087 .0682335 2.377868	0270525 1679977 .1577742 2.436407
Linear regress	sion			Number of F(3, 50) Prob > F R-squared Root MSE	obs = = = = =	36,948 14.79 0.0000 0.0060 11.47
		(Std.	Err. adj 	usted for	51 clusters	in state)
 hoursworked	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant post911entry post911ent~t _cons	1.310909 -2.225288 2.074008 36.8746	.3142527 .430101 .5705033 .1692745	4.17 -5.17 3.64 217.84	0.000 0.000 0.001 0.000	.6797134 -3.089171 .9281181 36.53461	1.942104 -1.361405 3.219897 37.2146

Specification (1), Endogenous-wage, Method 2, Full sample

Linear regress	ion			Number of F(7, 50) Prob > F R-squared Root MSE	obs = = = = =	1,375,615 548.52 0.0000 0.0511 .71044
		(Std.	Err. ad	justed for	51 clusters	in state)
lnwage	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant post911entry post911entr~t	1531493 4119625 .2500305	.0190851 .0108569 .0131519	-8.02 -37.94 19.01	0.000 0.000 0.000 0.000	1914828 4337692 .223614	1148159 3901559 .276447

highmigrant~c hig~c_migrant highmigra~911 hig~1_migrant _cons	5863068 .0838655 .2080093 1370266 2.993444	.0134106 .0194085 .0203935 .0246056 .018833	-43.72 4.32 10.20 -5.57 158.95	0.000 0.000 0.000 0.000 0.000	6132428 .0448825 .1670477 1864485 2.955617	5593708 .1228486 .2489709 0876048 3.031271
Linear regress	ion			Number of F(7, 50) Prob > F R-squared Root MSE	obs = = = = =	1,376,334 515.33 0.0000 0.0254 10.387
		(Std.	Err. ad	justed for	51 clusters	in state)
hoursworked	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migropt	+	1670003		0 001	0014770	_ 2270020

migrant	5642804	.1678803	-3.36	0.001	9014779	2270828
post911entry	-5.074641	.140013	-36.24	0.000	-5.355865	-4.793416
post911entr~t	4.024917	.17091	23.55	0.000	3.681635	4.3682
highmigrant~c	-3.663275	.1435874	-25.51	0.000	-3.951679	-3.374871
hig~c_migrant	1.875189	.4132958	4.54	0.000	1.04506	2.705318
highmigra~911	2.849353	.4194365	6.79	0.000	2.00689	3.691816
hig~1_migrant	-1.95091	.5799203	-3.36	0.001	-3.115714	7861056
cons	40.53788	.1193098	339.77	0.000	40.29824	40.77752

Specification (2), Endogenous-wage, Method 2, Restricted sample

Linear regression	Number of obs	=	36,851
-	F(14, 50)	=	•
	Prob > F	=	
	R-squared	=	0.0489
	Root MSE	=	.62291

(Std.	Err.	adjusted	for	51	clusters	in	state)

lnwage	 	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant post911entry post911ent~t yearseduc exp exp_sq	 	0608848 114277 .0936968 .0283612 .0133462 0001879	.028154 .0271791 .0320124 .0023302 .0015178 .0000255	-2.16 -4.20 2.93 12.17 8.79 -7.37	0.035 0.000 0.005 0.000 0.000 0.000	1174337 1688679 .029398 .0236809 .0102977 000239	0043359 0596861 .1579956 .0330416 .0163947 0001367
female white black asian hispanic years_sinc~l rural year year_sq cons		1553111 .1057775 .0360547 .0527978 .0010063 .0045887 112393 .6347149 0001586 -633.0807	.0102617 .0415129 .0479959 .0487793 .0458675 .0007562 .0141672 1.183456 .0002947 1188.252	-15.14 2.55 0.75 1.08 0.02 6.07 -7.93 0.54 -0.54 -0.53	0.000 0.014 0.456 0.284 0.983 0.000 0.000 0.594 0.593 0.597	1759223 .0223964 0603479 0451783 0911213 .0030698 1408486 -1.742327 0007505 -3019.756	1346998 .1891587 .1324572 .1507739 .0931339 .0061076 0839373 3.011756 .0004333 1753.595

Linear regression

=	36,948
=	•
=	
=	0.0903
=	10.975
	= = = =

(Std. Err. adjusted for 51 clusters in state)

hoursworked migrant .31 post911entry 96 post911ent~t 1.2					
migrant .31 post911entry 96 post911ent~t 1.2	Robu: Coef. Std. I	st Err. t	P> t	[95% Conf.	Interval]
<pre>yearseduc 04 exp .29 exp_sq 00 female -6.6 white -1.3 black .21 asian 1.0 hispanic 61 years_sinc~1 .01 rural 1.4 year -26 year sq .00</pre>	162149 .1909 693009 .4481 203864 .5492 483661 .0388 926203 .0278 055071 .0005 640903 .3425 399454 .7262 118407 .682 053788 .9883 116686 .6550 115013 .0070 477262 .3005 .20685 12.99 065005 .00322	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>0.104 0.035 0.033 0.218 0.000 0.000 0.000 0.000 0.060 0.758 0.291 0.355 0.110 0.000 0.000 0.049 0.050</pre>	0673171 -1.869499 .1005646 1262996 .2366943 0066576 -7.329 -2.858175 -1.159835 9313472 -1.927472 0027086 .8735409 -52.2406 .0000132	.6997468 0691033 2.307163 .0295674 .3485464 0043567 -5.952807 .0592669 1.583516 3.038923 .7041351 .0257111 2.080983 1731077 .0129879
_cons 26	6451.9 13003	.73 2.03	0.047	333.1388	52570.66

Specification (2), Endogenous-wage, Method 2, Full sample

Linear regression	Number of obs	=	1,375,615
	F(18, 50)	=	
	Prob > F	=	
	R-squared	=	0.2753
	Root MSE	=	.62088

lnwage	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant post911entry post911entr~t highmigrant~c hig~c_migrant highmigra~911 hig~1_migrant yearseduc exp exp_sq fom_lo	+	.0151934 .0053663 .0070256 .0095386 .0237833 .0197777 .02322 .0023464 .0006845 .0000128	-4.10 -16.07 2.96 -28.48 7.58 4.69 -3.17 44.37 58.47 -48.92 -49.91	0.000 0.000 0.005 0.000 0.000 0.000 0.003 0.000 0.000 0.000	0928376 0970244 .0066603 290806 .1324756 .0530331 12028 .0994022 .038649 0006521	0318041 0754672 .0348831 2524883 .2280159 .1324824 0270026 .1088281 .0413987 0006006
remale white black asian	2421259 .1057486 0496444 .1044022	.0048517 .0122118 .016026	-49.91 8.66 -3.10 5.13	0.000 0.000 0.003	2518708 .0812206 0818336 .063545	2323809 .1302767 0174551 .1452593
hispanic	.0181706	.0198456	0.92	0.364	0216905	.0580318

rural 1655988.0139581-11.860.00019363441375631year 2.401222.32041427.490.0001.7576513.044793year_sq 0005986.0000799-7.500.0000007590004382cons -2407.009321.5774-7.490.000-3052.916-1761.102Linear regressionNumber of obs=1,376,334F(18, 50)=.Prob > F=.R-squared=0.1151Root MSE=9.8977	years since~l	.0022615	.0002522	8.97	0.000	.001755	.002768
year 2.401222 .3204142 7.49 0.000 1.757651 3.044793 year_sq 0005986 .0000799 -7.50 0.000 000759 0004382 cons -2407.009 321.5774 -7.49 0.000 -3052.916 -1761.102 Linear regression Number of obs = 1,376,334 F(18, 50) = . Prob > F = . R-squared = 0.1151 Root MSE = 9.8977	_ rural	1655988	.0139581	-11.86	0.000	1936344	1375631
year_sq 0005986 .0000799 -7.50 0.0000007590004382 cons -2407.009 321.5774 -7.49 0.000 -3052.916 -1761.102 Linear regression Number of obs = 1,376,334 F(18, 50) = . Prob > F = . R-squared = 0.1151 Root MSE = 9.8977	year	2.401222	.3204142	7.49	0.000	1.757651	3.044793
	year_sq	0005986	.0000799	-7.50	0.000	000759	0004382
Linear regression Number of obs = 1,376,334 F(18, 50) = . Prob > F = . R-squared = 0.1151 Root MSE = 9.8977	_cons	-2407.009	321.5774	-7.49	0.000	-3052.916	-1761.102
	Linear regressio	n			Number of F(18, 50) Prob > F R-squared Root MSE	obs = = = =	1,376,334 0.1151 9.8977

(Std. Err. adjusted for 51 clusters in state)

hoursworked	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	0945098 0945097	.0906129	-1.04	0.302	2765112 -1 42926	.0874915
post911entr~t	.7926711	.1432124	5.53	0.000	.5050204	1.080322
highmigrant~c	-1.341418	.1451981	-9.24	0.000	-1.633057	-1.049779
hig~c_migrant	2.153704	.4832743	4.46	0.000	1.183019	3.124389
highmigra~911	1.303296	.3751602	3.47	0.001	.5497649	2.056828
hig~1 migrant	9268069	.5489595	-1.69	0.098	-2.029425	.1758108
yearseduc	.5105604	.0248608	20.54	0.000	.460626	.5604947
exp	.5613621	.010326	54.36	0.000	.5406217	.5821025
exp_sq	0105493	.0001899	-55.55	0.000	0109307	0101678
female	-4.770746	.1160254	-41.12	0.000	-5.00379	-4.537702
white	0435309	.1645726	-0.26	0.792	3740846	.2870228
black	2198922	.1640606	-1.34	0.186	5494175	.1096332
asian	7006128	.1868897	-3.75	0.000	-1.075992	3252337
hispanic	.0833369	.2178077	0.38	0.704	3541428	.5208166
years since~l	.0054272	.0027552	1.97	0.054	0001068	.0109612
_ rural	.1962171	.0771057	2.54	0.014	.0413457	.3510885
year	-8.40149	3.908698	-2.15	0.036	-16.25234	5506385
year sq	.0020847	.0009746	2.14	0.037	.0001271	.0040423
cons	8494.049	3920.099	2.17	0.035	620.2983	16367.8

Specification (3), Endogenous-wage, Method 2, Restricted sample

Number of obs	=	36,851
F(34, 50)	=	551.93
Prob > F	=	0.0000
R-squared	=	0.0547
Root MSE	=	.62115
	Number of obs F(34, 50) Prob > F R-squared Root MSE	Number of obs = F(34, 50) = Prob > F = R-squared = Root MSE =

lnwage		Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant		0822095	.0295162	-2.79	0.008	1414945	0229244
post911entry post911ent~t		1131754 .0932894	.0284198 .0330696	-3.98 2.82	0.000	1702582 .026867	0560926 .1597117
hsgrad		.1694994	.0105626	16.05	0.000	.1482838	.1907151

.249549 .3135239 .3324521 .3370471 .013547 000208	.0177106 .0284377 .0668539 .0814635 .0014497 .0000244	14.09 11.02 4.97 4.14 9.34 -8.54	0.000 0.000 0.000 0.000 0.000 0.000	.2139761 .2564051 .1981721 .1734229 .0106351 000257	.2851219 .3706427 .4667322 .5006714 .0164588 0001591
1538154 .0977272 .0379729 .0504783 0035929 .0047957	.009715 .0391862 .0459345 .0467755 .0438004	-15.83 2.49 0.83 1.08 -0.08 6.11	0.000 0.016 0.412 0.286 0.935 0.000	1733286 .0190195 0542893 0434731 0915686 .0032197	1343022 .1764349 .1302352 .1444296 .0843827
1120643	.0133743	-8.38	0.000	1389274	0852012
.0317069 .0123568 .090844 .0914135 .0575518 .0115038 .0094302 .031719 0038211 0042735 .0164669 .0538301 .0378062 .0056506 0035041 .0177971 .0335985 2.132132	.0224895 .020638 .0186081 .0167699 .0339077 .032148 .0342787 .0285452 .0267597 .0308604 .0303446 .040279 .0343854 .0344774 .0391893 .0368768 .0248717 .050366	1.41 0.60 4.88 5.45 1.70 0.36 0.28 1.11 -0.14 -0.14 0.54 1.34 1.10 0.16 -0.09 0.48 1.35 42.33	0.165 0.552 0.000 0.096 0.722 0.784 0.272 0.887 0.890 0.590 0.187 0.277 0.870 0.929 0.631 0.183 0.000	0134646 0290958 .0534686 .0577303 0105537 0530674 0594206 0256156 0575696 0662585 044482 0270726 0312589 0635992 0822181 0562721 0163577 2.030969	.0768783 .0538094 .1282194 .1250968 .1256574 .0760749 .078281 .0890537 .0499273 .0577115 .0774159 .1347328 .1068714 .0749004 .0752098 .0918662 .0835547 2.233295
ion			Number F(34, 5 Prob > R-squar Root MS	of obs = 0) = F = ed = E =	36,948 256.29 0.0000 0.0918 10.968
	(Std.	Err. ad	justed fo	r 51 clusters	in state)
Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
.4507701 8696309 1.192093 .3262916 .8957787 .4059345 .8899609 .1246882 .2917645 0053295 -6.715329 -1.390183 .262762	.18055 .4492676 .5257941 .259108 .6000752 .5043658 .9611208 1.553576 .0265938 .0005602 .3437279 .7199984 .6835377	2.50 -1.94 2.27 1.26 1.49 0.80 0.93 0.08 10.97 -9.51 -19.54 -1.93 0.38	0.016 0.059 0.028 0.214 0.142 0.425 0.359 0.936 0.000 0.000 0.000 0.000 0.059 0.702	.0881248 -1.772012 .1360044 1941422 3095078 607114 -1.040507 -2.995761 .2383494 0064546 -7.405727 -2.836342 -1.110164	.8134154 .0327497 2.248182 .8467254 2.101065 1.418983 2.820429 3.245138 .3451797 0042043 -6.024931 .0559761 1.635688
	.249549 .3135239 .3324521 .3370471 .013547 000208 1538154 .0977272 .0379729 .0504783 0035929 .0047957 1120643 .0123568 .090844 .0914135 .0575518 .0115038 .0094302 .031719 0038211 0042735 .0164669 .0538301 .0378062 .0056506 0035041 .0177971 .0335985 2.132132 .0156506 0035041 .0177971 .0335985 2.132132 .0164669 .0035041 .0177971 .0335985 2.132132 .0056506 0035041 .0177971 .0335985 2.132132 .0056506 .0035041 .0177971 .0335985 2.132132 .0056506 .0035041 .0177971 .0335985 2.132132 .0056506 .0035041 .0177971 .0335985 2.132132 .0056506 .0035041 .0177971 .035985 2.132132 .0056506 .0035041 .0177971 .035985 2.132132 .0056506 .0035985 2.132132 .0056506 .0035985 2.132132 .0056506 .0035985 .2.132132 .0056506 .0035985 .2.132132 .0056506 .0035985 .2.132132 .0056506 .0035985 .2.132132 .0056506 .0035985 .2.132132 .0056506 .0035985 .2.132132 .0056506 .0035985 .2.132132 .0056506 .0035985 .2.132132 .0056506 .0035985 .2.132132 .0056506 .0035985 .2.132132 .0056506 .0056506 .0035985 .2.132132 .0056506 .0035985 .2.132132 .0056506 .0035985 .2.132132 .0056506 .0035985 .2.132132 .0056506 .0035985 .2.132132 .0056506 .0035985 .2.132132 .0056506 .0035985 .2.132132 .0056506 .0035985 .2.132132 .0056506 .0056506 .0035985 .2.132132 .0056506 .0035985 .2.132132 .0056506 .0035985 .2.132132 .0056506 .0035985 .2.132132 .0056506 .0035985 .2.132132 .0056506 .0035985 .2.132132 .0056506 .0056506 .0035985 .2.132132 .0056506 .0056506 .0035985 .2.132132 .0056506 .0056506 .0035985 .2.132132 .0056506 .0056506 .0035985 .2.132132 .0056506	.249549 .0177106 .3135239 .0284377 .3324521 .0668539 .3370471 .0814635 .013547 .0014497 000208 .0000244 1538154 .009715 .0977272 .0391862 .0379729 .0459345 .0504783 .0467755 0035929 .0438004 .0047957 .0007847 1120643 .0133743 .0317069 .0224895 .0123568 .020638 .090844 .0186081 .0914135 .0167699 .0575518 .0339077 .0115038 .032148 .0094302 .0342787 .031719 .0285452 0038211 .0267597 0042735 .0308604 .0164669 .0303446 .0538301 .040279 .0378062 .0343854 .0056506 .0344774 0035041 .0391893 .0177971 .0368768 .0335985 .0248717 2.132132 .050366 .0335985 .0248717 2.132132 .050366 .0335985 .0248717 2.132132 .050366 .0335985 .0248717 2.132132 .050366 .0335985 .0248717 2.132132 .050366 .0335985 .0248717 2.132132 .050366 .0335985 .0248717 2.132132 .050366	.249549 .0177106 14.09 .3135239 .0284377 11.02 .3324521 .0668539 4.97 .3370471 .0814635 4.14 .013547 .0014497 9.34 000208 .0000244 -8.54 1538154 .009715 -15.83 .0977272 .0391862 2.49 .0379729 .0459345 0.83 .0504783 .0467755 1.08 0035929 .0438004 -0.08 .0047957 .0007847 6.11 1120643 .0133743 -8.38 .0317069 .0224895 1.41 .0123568 .020638 0.60 .090844 .0186081 4.88 .0914135 .0167699 5.45 .0575518 .0339077 1.70 .0115038 .032148 0.36 .0094302 .0342787 0.28 .031719 .0285452 1.11 0038211 .0267597 -0.14 0042735 .0308604 -0.14 .0164669 .0303446 0.54 .0538301 .040279 1.34 .0378062 .0343854 1.10 .0056506 .0344774 0.16 0035041 .0391893 -0.09 .0177971 .0368768 0.48 .0335985 .0248717 1.35 2.132132 .050366 42.33 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

asian	1.056812	.9888999	1.07	0.290	9294521	3.043076
hispanic	3638526	.6535496	-0.56	0.580	-1.676546	.9488403
years sinc~l	.0099077	.0068207	1.45	0.153	0037921	.0236075
rural	1.489209	.3031431	4.91	0.000	.8803281	2.09809
year						
1999	1851593	.3672475	-0.50	0.616	9227975	.552479
2000	.1958949	.3943758	0.50	0.622	5962323	.9880221
2001	0922329	.3339674	-0.28	0.784	7630262	.5785603
2002	4421782	.3540519	-1.25	0.218	-1.153312	.2689561
2003	5888704	.3845211	-1.53	0.132	-1.361204	.1834631
2004	7437227	.3933634	-1.89	0.064	-1.533816	.0463708
2005	-1.105396	.3967843	-2.79	0.008	-1.902361	3084313
2006	-1.054915	.3641718	-2.90	0.006	-1.786376	3234545
2007	-1.086345	.3408416	-3.19	0.002	-1.770946	4017446
2008	6770606	.3509266	-1.93	0.059	-1.381917	.0277961
2009	-1.4998	.4081665	-3.67	0.001	-2.319627	6799736
2010	-2.74435	.3810494	-7.20	0.000	-3.509711	-1.97899
2011	-2.267348	.4541843	-4.99	0.000	-3.179604	-1.355092
2012	-1.393441	.4468537	-3.12	0.003	-2.290973	4959089
2013	-2.128462	.3946056	-5.39	0.000	-2.921051	-1.335874
2014	-1.936934	.3921879	-4.94	0.000	-2.724667	-1.149202
2015	-1.059244	.3004142	-3.53	0.001	-1.662643	455844
_cons	39.42841	.8211697	48.01	0.000	37.77904	41.07777

Specification (3), Endogenous-wage, Method 2, Full sample

Linear	regression
--------	------------

Number of obs	=	1,375,615
F(38, 50)	=	5688.42
Prob > F	=	0.0000
R-squared	=	0.2889
Root MSE	=	.61503

lnwage	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant post911entry post911entr~t highmigrant~c hig~c_migrant highmigra~911 hig~1_migrant hsgrad assocgrad bachgrad mastgrad doctorgrad exp exp_sq	1436699 0916843 .0192442 2697632 .0734052 .1161664 0757035 .2819434 .4691319 .7413101 .9341375 1.177804 .0378014 0006141	.014939 .0069006 .0073034 .0079482 .0119369 .0199261 .0218403 .0058888 .0072825 .010137 .0150708 .0131233 .0005904 .0000119	-9.62 -13.29 2.63 -33.94 6.15 5.83 -3.47 47.88 64.42 73.13 61.98 89.75 64.03 -51.70	0.000 0.000 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1736757 1055446 .004575 2857276 .0494292 .0761437 119571 .2701154 .4545045 .7209493 .9038669 1.151445 .0366155 0006379	1136641 077824 .0339135 2537988 .0973812 .1561891 0318361 .2937715 .4837594 .7616709 .9644082 1.204163 .0389873 0005902
female	2365107	.0051758	-45.70	0.000	2469067	2261148
black	0862591	.011/31/	-2.92	0.000	0807622	0149929
asian	.0977062	.020192	4.84	0.000	.0571494	.1382631

hispanic	0242047	.0190214	-1.27	0.209	0624103	.0140009
years since~l	.0030405	.0002693	11.29	0.000	.0024997	.0035813
rural	162212	.0124868	-12.99	0.000	1872924	1371316
year						
1999	.0298448	.0044208	6.75	0.000	.0209654	.0387242
2000	.0440483	.0041785	10.54	0.000	.0356555	.052441
2001	.0613969	.0050136	12.25	0.000	.0513267	.071467
2002	.0692715	.0042645	16.24	0.000	.0607059	.077837
2003	.07101	.0051706	13.73	0.000	.0606245	.0813954
2004	.0642178	.0052	12.35	0.000	.0537733	.0746623
2005	.0540079	.00498	10.84	0.000	.0440052	.0640105
2006	.0487448	.0061076	7.98	0.000	.0364774	.0610123
2007	.0517202	.0090353	5.72	0.000	.0335723	.069868
2008	.0587724	.0076821	7.65	0.000	.0433423	.0742024
2009	.0416958	.0072105	5.78	0.000	.0272131	.0561785
2010	.0595186	.0069489	8.57	0.000	.0455614	.0734758
2011	.0443135	.0073385	6.04	0.000	.0295737	.0590532
2012	.0312329	.008213	3.80	0.000	.0147365	.0477292
2013	.018162	.0081014	2.24	0.029	.0018899	.0344342
2014	.0220241	.009725	2.26	0.028	.0024908	.0415574
2015	.0237566	.0090797	2.62	0.012	.0055195	.0419937
_cons	2.107187	.0135732	155.25	0.000	2.079924	2.13445

Linear regression

Number of obs=1,376,334F(38,50)=3497.64Prob > F=0.0000R-squared=0.1230Root MSE=9.8536

(Std. Err. adjusted for 51 clusters in state)

hoursworked	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant.	4706548	.0994531	-4.73	0.000	6704123	2708973
post911entrv	-1.302445	.0764487	-17.04	0.000	-1.455996	-1.148893
post911entr~t	.7779186	.1460036	5.33	0.000	.4846617	1.071175
highmigrant~c	-1.258448	.1404129	-8.96	0.000	-1.540476	9764206
hig~c migrant	1.689885	.3632855	4.65	0.000	.9602043	2.419565
highmigra~911	1.421097	.3667333	3.88	0.000	.684491	2.157702
hig~1 migrant	9303469	.5364768	-1.73	0.089	-2.007892	.1471985
hsgrad	1.750331	.1845077	9.49	0.000	1.379737	2.120926
assocqrad	2.368865	.1835573	12.91	0.000	2.00018	2.737551
bachgrad	4.049553	.1511371	26.79	0.000	3.745985	4.35312
mastgrad	4.955088	.180207	27.50	0.000	4.593132	5.317045
doctorgrad	8.318324	.2891185	28.77	0.000	7.737612	8.899035
exp	.5462914	.0095871	56.98	0.000	.5270351	.5655477
exp sq	0103562	.000172	-60.22	0.000	0107017	0100108
female	-4.730674	.1165487	-40.59	0.000	-4.964769	-4.496579
white	1961247	.156774	-1.25	0.217	5110145	.1187652
black	2143942	.1586338	-1.35	0.183	5330195	.1042311
asian	8707192	.1801755	-4.83	0.000	-1.232612	508826
hispanic	0429688	.2210941	-0.19	0.847	4870494	.4011117
years since~l	.0081135	.0025474	3.18	0.002	.0029969	.0132302
rural	.2709048	.0836764	3.24	0.002	.1028357	.4389738
year						

322

1999	.1131979	.0590344	1.92	0.061	0053761	.231772
2000	.1441715	.0882968	1.63	0.109	0331778	.3215208
2001	.1009582	.0922091	1.09	0.279	0842492	.2861657
2002	1276565	.0689248	-1.85	0.070	2660961	.0107832
2003	3188535	.084859	-3.76	0.000	4892979	1484091
2004	352767	.1043172	-3.38	0.001	5622943	1432398
2005	2354284	.086352	-2.73	0.009	4088715	0619853
2006	0619203	.0952928	-0.65	0.519	2533216	.129481
2007	0070162	.0841212	-0.08	0.934	1759786	.1619462
2008	0427265	.0835723	-0.51	0.611	2105863	.1251334
2009	3951084	.0797324	-4.96	0.000	5552556	2349613
2010	7765719	.0834637	-9.30	0.000	9442137	6089302
2011	7570006	.0818932	-9.24	0.000	9214879	5925133
2012	6024774	.0860395	-7.00	0.000	7752929	4296619
2013	4778583	.1002955	-4.76	0.000	6793077	2764089
2014	429195	.10073	-4.26	0.000	6315172	2268728
2015	224511	.0921502	-2.44	0.018	4096001	039422
_cons	34.82721	.2273862	153.16	0.000	34.37049	35.28392

Specification (4), Endogenous-wage, Method 2, Restricted sample

Linear regress	sion			Number (F(49, 5) Prob > 1 R-square Root MS1	ofobs = D) = F = ed = E =	36,851 0.0572 .62051
		(Std.	Err. ad	justed fo:	r 51 cluster	s in state)
 lnwage	Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]
<pre>migrant post911entry post911ent~t yearseduc migrantyea~c migrantexp exp_sq migrantexp~q female migrantfem~e 1.migrant </pre>	.3810519 0958992 .0658257 .0495218 0292503 .0177544 0095443 00027 .0001738 1518044 0086177 0	.0601692 .0273624 .0326389 .0031524 .0032568 .0023442 .002615 .0000479 .0000527 .0120671 .0157131 (omitted)	$\begin{array}{c} 6.33 \\ -3.50 \\ 2.02 \\ 15.71 \\ -8.98 \\ 7.57 \\ -3.65 \\ -5.64 \\ 3.30 \\ -12.58 \\ -0.55 \end{array}$	0.000 0.001 0.049 0.000 0.000 0.000 0.001 0.000 0.002 0.000 0.586	.2601986 1508582 .0002685 .04319 0357919 .013046 0147967 0003661 .000068 1760418 0401784	.5019052 0409403 .1313828 .0558537 0227087 .0224629 0042918 0001738 .0002796 127567 .022943
wbhao Black Hispanic Asian Other migrant# wbhao	0868054 0495363 001132 0946647	.0150987 .0180126 .0467323 .042075	-5.75 -2.75 -0.02 -2.25	0.000 0.008 0.981 0.029	1171321 0857157 0949965 1791747	0564788 0133568 .0927325 0101547
1#Black 1#Hispanic 1#Asian	.102475 0863726 0551083	.0323293 .0255445 .0610639	3.17 -3.38 -0.90	0.003 0.001 0.371	.0375397 1376803 1777588	.1674103 035065 .0675422

1#Other	0709129	.1156578	-0.61	0.543	3032184	.1613925
years sinc~l	.0043838	.000752	5.83	0.000	.0028733	.0058943
rural	113864	.015977	-7.13	0.000	1459548	0817732
migrantrural	.0344283	.0261305	1.32	0.194	0180562	.0869129
voar						
1999	054762	0262587	2 0 9	0 042	0020198	1075041
2000	0030766	0274326	0 11	0.012	- 0520235	0581766
2000	0954979	0283353	3 37	0.001	0385847	152411
2001	09/6599	0237111	3 99	0.001	0470347	1/22851
2002	0/11215	0306600	1 06	0.000	- 036547	1107000
2003	0411213	.0388888	_0 11	0.295	- 0947114	.110/099
2004	- 0303633	.0440000	-0.11	0.911	- 0002515	.004719
2005		.0293004	-1.34	0.100	0903313	.0196240
2000	0410075	.0342334	0.20	0.039	001/900	.0756115
2007	0410075	.0353525	-1.16	0.252	1120151	.0300002
2008	0069402	.0382841	-0.18	0.857	0838362	.0699558
2009	.0031503	.0499834	0.06	0.950	09/2442	.1035449
2010	.05568/4	.04/6613	1.1/	0.248	0400432	.151418
2011	.01363	.0361665	0.38	0.708	0590125	.0862/26
2012	0085021	.0305578	-0.28	0.782	0698/93	.0528/5
2013	0305916	.0386754	-0.79	0.433	1082735	.0470902
2014	0078505	.0440599	-0.18	0.859	0963475	.0806464
2015	.0495666	.0318604	1.56	0.126	0144269	.1135601
migrant#year						
1 1999	0734375	.037613	-1.95	0.056	1489855	.0021104
1 2000	.0374507	.0361467	1.04	0.305	0351522	.1100535
1 2001	0215725	.0498569	-0.43	0.667	1217129	.078568
1 2002	0136095	.0391356	-0.35	0.729	0922158	.0649967
1 2003	.0446445	.0450545	0.99	0.327	0458502	.1351392
1 2004	.0439334	.0466064	0.94	0.350	0496782	.1375451
1 2005	.1161578	.0289787	4.01	0.000	.0579525	.1743632
1 2006	.0539142	.0521219	1.03	0.306	0507756	.158604
1 2007	.0788837	.0399203	1.98	0.054	0012986	.1590659
1 2008	.0073086	.0354022	0.21	0.837	0637988	.0784159
1 2009	.0349751	.062492	0.56	0.578	0905437	.1604939
1 2010	.0065036	.0444738	0.15	0.884	0828246	.0958318
1 2011	.053353	.0337586	1.58	0.120	0144531	.1211591
1 2012	.0363192	.0410099	0.89	0.380	0460517	.1186901
1 2013	.053106	.0402334	1.32	0.193	0277051	.1339172
1 2014	.049818	.0472972	1.05	0.297	0451813	.1448172
1 2015	0330336	.0381476	-0.87	0.391	1096554	.0435882
_cons	1.724482	.0525784	32.80	0.000	1.618875	1.830088
Linear regress	sion			Number	of obs =	36,948
				F(49, 5	50) =	
				Prob >	F =	
				R-squar	red =	0.0953
				Root MS	SE =	10.95
		(Std.	Err. ad	justed fo	or 51 clusters	in state)
	 I	Robust.				
hoursworked	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	+	1 224105		0 010	6475406	c 007100
migrant	01.004	1.334183	2.49	0.010	.04/3480 1 703777	4202700
postattentry	0010904	.348691	-1.24	0.220	-1.103///	.4203/98

post911ent~t	.9773788	.697146	1.40	0.167	4228801	2.377638
yearseduc	.0439771	.0686242	0.64	0.525	0938586	.1818129
migrantyea~c	1323038	.0678492	-1.95	0.057	268583	.0039753
exp	.4127769	.0276679	14.92	0.000	.3572042	.4683496
migrantexp	262143	.0301449	-8.70	0.000	3226909	2015952
exp_sq	008174	.0005327	-15.35	0.000	0092438	0071041
migrantexp~q	.0055405	.0005881	9.42	0.000	.0043593	.0067216
female	-7.293653	.4176515	-17.46	0.000	-8.132531	-6.454775
migrantfem~e	1.48198	.5163888	2.87	0.006	.4447827	2.519178
1.migrant	0	(omitted)				
wbhao						
Black	1.668777	.3570803	4.67	0.000	.9515597	2.385993
Hispanic	1.382217	.4034324	3.43	0.001	.571899	2.192535
Asian	1.26859	.8326339	1.52	0.134	4038047	2.940984
Other	1.290942	.7265666	1.78	0.082	1684102	2.750294
migrant#						
1#Black	- 3754775	8001249	-0 47	0 641	-1 982576	1 231621
1#Hispanic	-1 030777	73951	-1 39	0 170	-2 516127	4545721
1#Asian	1 016922	1 232383	0.83	0.413	-1 458392	3 492236
1#Other	1.171102	2.69153	0.44	0.665	-4.234995	6.5772
	1.1/1102	2.09100	0.11	0.000	1.201990	0.0772
years_sinc~l	.0033976	.0082137	0.41	0.681	0131001	.0198953
rural	1.338834	.3388088	3.95	0.000	.6583169	2.019352
migrantrural	.8017164	.6750881	1.19	0.241	5542378	2.157671
year						
1999	3042129	.505523	-0.60	0.550	-1.319586	.7111598
2000	.2663334	.5610317	0.47	0.637	8605318	1.393199
2001	0763441	.5444836	-0.14	0.889	-1.169972	1.017283
2002	373407	.5482407	-0.68	0.499	-1.474581	.7277668
2003	756436	.6181928	-1.22	0.227	-1.998113	.4852409
2004	-1.042737	.5947052	-1.75	0.086	-2.237237	.1517639
2005	-1.360843	.6920977	-1.97	0.055	-2.750962	.0292758
2006	-1.269664	.658178	-1.93	0.059	-2.591653	.0523254
2007	-1.714559	.5096306	-3.36	0.001	-2.738182	6909356
2008	6308964	.6007379	-1.05	0.299	-1.837514	.5757212
2009	-1.212394	.6540818	-1.85	0.070	-2.526156	.1013682
2010	-2.509016	.7231534	-3.47	0.001	-3.961512	-1.05652
2011	-1.728143	.7767725	-2.22	0.031	-3.288336	1679492
2012	-1.292933	.6043919	-2.14	0.037	-2.50689	0789763
2013	-2.213918	.6643842	-3.33	0.002	-3.548373	8794634
2014	-2.157928	.5723533	-3.77	0.000	-3.307533	-1.008322
2015	-1.390095	.624961	-2.22	0.031	-2.645366	1348241
migrant#year						
1 1999	.4831417	.7540138	0.64	0.525	-1.03134	1.997623
1 2000	0687086	.8303522	-0.08	0.934	-1.73652	1.599103
1 2001	.0991324	.9938978	0.10	0.921	-1.89717	2.095435
1 2002	1150596	.796002	-0.14	0.886	-1.713877	1.483758
1 2003	.3305871	.9540807	0.35	0.730	-1.58574	2.246915
1 2004	.5316058	.8623515	0.62	0.540	-1.200478	2.26369
1 2005	.5137986	.9578155	0.54	0.594	-1.41003	2.437628
1 2006	.4946235	1.023159	0.48	0.631	-1.560451	2.549698
1 2007	1.424113	.7271589	1.96	0.056	036429	2.884654
1 2008	.0286236	.8591874	0.03	0.974	-1.697105	1.754352
1 2009	4511041	1.063429	-0.42	0.673	-2.587065	1.684857
1 2010	3015596	1.118411	-0.27	0.789	-2.547955	1.944836

1 2011	8783884	1.023781	-0.86	0.395	-2.934714	1.177937
1 2012	084563	.9672577	-0.09	0.931	-2.027357	1.858231
1 2013	.2288075	.9292169	0.25	0.807	-1.637579	2.095195
1 2014	.5256625	.8295531	0.63	0.529	-1.140544	2.191869
1 2015	.6773333	1.097983	0.62	0.540	-1.52803	2.882697
I						
_cons	37.47839	1.008254	37.17	0.000	35.45325	39.50353

Specification (4), Endogenous-wage, Method 2, Full sample

Linear	regression

Number of obs	=	1,375,615
F(49, 50)	=	
Prob > F	=	
R-squared	=	0.2818
Root MSE	=	.61809

lnwage	 Coef.	Robust Std. Err.	 t		[95% Conf.	Interval]
	+					
migrant	.7609561	.0483632	15.73	0.000	.6638157	.8580965
post911entry	0712993	.0039114	-18.23	0.000	0791555	0634431
post911entr~t	0110275	.0069692	-1.58	0.120	0250255	.0029705
highmigrant~c	2465751	.0068518	-35.99	0.000	2603374	2328128
hig~c_migrant	.0696029	.0159657	4.36	0.000	.0375348	.101671
highmigra~911	.0872686	.0194549	4.49	0.000	.0481923	.126345
hig~1_migrant	0567076	.0215229	-2.63	0.011	0999377	0134776
yearseduc	.1178192	.0016621	70.89	0.000	.1144809	.1211576
migrantyear~c	0474308	.0031097	-15.25	0.000	0536768	0411849
exp	.0428061	.0009611	44.54	0.000	.0408758	.0447365
migrantexp	0176581	.00105	-16.82	0.000	0197672	015549
exp_sq	0006845	.0000189	-36.22	0.000	0007224	0006465
migrantexp_sq	.000318	.000021	15.14	0.000	.0002758	.0003602
female	2462759	.004685	-52.57	0.000	2556861	2368657
migrantfemale	.0276116	.0076029	3.63	0.001	.0123408	.0428825
1.migrant	0	(omitted)				
wbhao						
Black	1486745	.0089176	-16.67	0.000	1665862	1307629
Hispanic	075883	.0196642	-3.86	0.000	1153797	0363863
Asian	.0162391	.0144877	1.12	0.268	0128603	.0453384
Other	0971776	.011921	-8.15	0.000	1211217	0732335
migrant#wbhao						
1#Black	0132745	.0205121	-0.65	0.520	0544743	.0279254
1#Hispanic	1410835	.0219754	-6.42	0.000	1852223	0969446
1#Asian	0199381	.0183643	-1.09	0.283	0568239	.0169477
1#Other	.0064975	.0472285	0.14	0.891	0883636	.1013587
vears since~l	.0029509	.0003376	8.74	0.000	.0022728	.0036291
rural	1608498	.0121347	-13.26	0.000	1852231	1364764
migrantrural	.0866052	.0211331	4.10	0.000	.0441581	.1290523
vear						
1999	.0302148	.0048599	6.22	0.000	.0204533	.0399762
2000	.0409993	.0045636	8.98	0.000	.0318331	.0501655

2001	.0561158	.0054013	10.39	0.000	.0452669	.0669647
2002	0626273	0043786	14.30	0.000	0538325	071422
2002	0658763	0048313	13 64	0 000	0561722	0755803
2003	0598298	00468	12 78	0.000	0501200	0602208
2004	0471764	0030007	11 00	0.000	0301449	0552001
2005	.04/1/04	.0059907	11.00	0.000	.0391440	.0332001
2006	.0384/42	.0052883	7.28	0.000	.02/8524	.0490961
2007	.0424226	.0082187	5.16	0.000	.025915	.0589303
2008	.0485314	.0067597	7.18	0.000	.0349541	.0621086
2009	.0329316	.0068351	4.82	0.000	.0192029	.0466603
2010	.0491737	.0062783	7.83	0.000	.0365634	.061784
2011	.0325722	.0061359	5.31	0.000	.020248	.0448965
2012	.0191996	.0075122	2.56	0.014	.004111	.0342882
2013	.0035159	.0071744	0.49	0.626	0108943	.0179262
2014	.0081959	.0094907	0.86	0.392	0108666	.0272585
2015	.0110272	.0082614	1.33	0.188	0055662	.0276206
migrant#voar						
	I _ 0170909	0000211	_1 01	0 061	- 0340003	0000377
1 2000		.0009211	-1.91	0.001	03499993	.0000577
1 2000	.0094401	.01030	0.09	0.373	0117624	.0300303
1 2001	.0247821	.0121/58	2.04	0.047	.0003263	.0492379
1 2002	.028/159	.0070098	4.10	0.000	.0146363	.042/955
1 2003	.0113783	.0127302	0.89	0.376	0141911	.0369477
1 2004	.0096506	.0128919	0.75	0.458	0162434	.0355447
1 2005	.0279097	.0120767	2.31	0.025	.0036529	.0521665
1 2006	.04306	.0105528	4.08	0.000	.021864	.064256
1 2007	.0375621	.0083532	4.50	0.000	.0207842	.05434
1 2008	.0342319	.0099422	3.44	0.001	.0142625	.0542013
1 2009	.0292538	.013114	2.23	0.030	.0029135	.0555942
1 2010	.0361533	.0105328	3.43	0.001	.0149974	.0573091
1 2011	0346094	.0115391	3.00	0.004	.0114325	.0577863
1 2011	0388471	0116919	3 32	0 002	0153633	062331
1 2012	0513485	012583	1 08	0.002	0260748	0766221
1 2013	.0515405	.0121007	4.00	0.000	.0200740	.0700221
1 2014	.0526997	.0131087	4.02	0.000	.0263701	.0790293
1 2015	.0439137	.0160181	2.74	0.008	.011/405	.0760869
_cons	.9405077	.0229208	41.03	0.000	.8944699	.9865454
Linear regress	ion			Number of	obs =	1,376,334
				F(49, 50)	=	•
				Prob > F	=	•
				R-squared	=	0.1186
				Root MSE	=	9.8783
		(Std.	Err. ad	justed for	51 clusters	s in state)
	 I	Robust				
hoursworked	Coef.	Std. Err.	t	P> t	[95% Conf.	. Intervall
	+					
migrant	6.634293	.6192901	10.71	0.000	5.390412	7.878174
post911entry	-1.217184	.0702233	-17.33	0.000	-1.358232	-1.076136
post911entr~t	.9967676	.14478	6.88	0.000	.7059683	1.287567
highmigrant~c	-1.077857	.14782	-7.29	0.000	-1.374762	7809514
hig~c migrant	.9109544	.4024786	2.26	0.028	.1025524	1.719356
highmigra~911	1.214106	.3774599	3.22	0.002	.4559552	1.972256
hig~1 migrant	6161134	.5301246	-1.16	0.251	-1.6809	.4486732
vearseduc	.626742	.0175807	35.65	0.000	.5914302	.6620538
migrantvear~c	3555975	.0282269	-12.60	0.000	4122929	298902
evn	6014072	.0109743	54 80	0.000	.5793647	. 6234498
migrantern	- 2409964	0146567	-16 44	0 000	- 2704352	- 2115575
migrancesp		.0110007	T ^ • J J	0.000	.2/070202	• = + + J J / J

exp_sq migrantexp_sq female migrantfemale 1.migrant	0115207 .0053528 -4.874432 .7570503 0	.0002049 .0002825 .1129979 .1021912 (omitted)	-56.22 18.95 -43.14 7.41	0.000 0.000 0.000 0.000	0119323 .0047854 -5.101395 .5517932	0111091 .0059202 -4.647469 .9623074
wbhao Black Hispanic Asian Other	0642801 .0353578 3181228 .1245308	.0773573 .2365028 .2873987 .1583459	-0.83 0.15 -1.11 0.79	0.410 0.882 0.274 0.435	2196567 439672 8953801 1935164	.0910966 .5103876 .2591344 .4425779
migrant#wbhao 1#Black 1#Hispanic 1#Asian 1#Other	5728624 515706 3427015 7416278	.1421213 .1533333 .2649227 .4355162	-4.03 -3.36 -1.29 -1.70	0.000 0.001 0.202 0.095	8583214 8236849 8748145 -1.616388	2874035 2077271 .1894114 .1331321
years_since~l rural migrantrural	.0082828 .2416044 .8174308	.0025815 .0875235 .2765286	3.21 2.76 2.96	0.002 0.008 0.005	.0030977 .0658084 .2620067	.0134679 .4174005 1.372855
year 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015	.0991676 .1121859 .0522307 1477471 3552388 3677569 2417767 1268299 0256552 0600974 3574561 6855042 6874588 5199289 3961702 3572653 147928	.0652845 .0910094 .0982834 .0781558 .0871936 .1072756 .0937537 .1074646 .0902453 .0963012 .0927715 .0987585 .0913579 .0974465 .1156294 .1105537 .1008292	1.52 1.23 0.53 -1.89 -4.07 -3.43 -2.58 -1.18 -0.28 -0.62 -3.85 -6.94 -7.52 -5.34 -3.43 -3.23 -1.47	0.135 0.223 0.597 0.065 0.000 0.001 0.013 0.244 0.777 0.535 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.149	0319601 0706119 1451774 3047276 5303723 5832263 4300865 3426789 2069181 2535241 5437931 8838664 7156559 6284186 579319 3504493	.2302954 .2949838 .2496388 .0092335 1801054 1522875 0534668 .089019 .1556077 .1333293 1711191 487142 503961 324202 1639217 1352116 .0545934
<pre>migrant#year 1 1999 1 2000 1 2001 1 2002 1 2003 1 2004 1 2005 1 2006 1 2007 1 2008 1 2009 1 2010 1 2011 1 2012 1 2013 1 2014 1 2015</pre>	<pre>.0641633 .2034969 .3131775 .0610561 .1564367 .0408251 0277599 .3317038 .0448119 004769 3222885 6572506 6036574 6385416 6374584 5046679 5365162</pre>	.1605316 .211716 .163502 .1679327 .1719983 .205352 .1213933 .1697794 .1183493 .1757396 .1627904 .1555553 .1363005 .1532089 .1563724 .1662916 .1391718	0.40 0.96 1.92 0.36 0.91 0.20 -0.23 1.95 0.38 -0.03 -1.98 -4.23 -4.43 -4.17 -4.08 -3.03 -3.86	0.691 0.341 0.061 0.718 0.367 0.843 0.820 0.056 0.707 0.978 0.053 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2582739 2217473 0152259 2762467 1890321 3716366 2715856 0093082 1928998 3577524 6492627 9696926 8774251 9462707 9515417 8386745 8160511	.3866004 .628741 .6415809 .3983589 .5019055 .4532867 .2160658 .6727157 .2825235 .3482145 .0046856 3448086 3298898 3308124 323751 1706614 2569813

Specification (5), Endogenous-wage, Method 2, Restricted sample

Linear regression	Number of obs	=	36,851
	F(50, 50)	=	
	Prob > F	=	
	R-squared	=	0.0589
	Root MSE	=	.62003

 lnwage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	.1195325	.0815367	1.47	0.149	0442389	.2833039
post911entry	0882083	.0274936	-3.21	0.002	1434308	0329857
post911ent~t	.0603024	.0345978	1.74	0.087	0091894	.1297941
hsgrad	.2069812	.0146377	14.14	0.000	.1775805	.2363818
assocgrad	.2898713	.0222959	13.00	0.000	.2450886	.334654
bachgrad	.4269001	.0499356	8.55	0.000	.3266014	.5271987
mastgrad	.3434952	.1068892	3.21	0.002	.128802	.5581885
doctorgrad	.3849842	.0671681	5.73	0.000	.2500731	.5198952
migranthsg~d	0862374	.0207331	-4.16	0.000	1278811	0445938
migrantass~d	1032234	.04536	-2.28	0.027	1943316	0121152
migrantbac~d	2332028	.0434013	-5.37	0.000	3203769	1460287
migrantmas~d	0147502	.1256901	-0.12	0.907	2672062	.2377059
migrantdoc~d	0851249	.1454752	-0.59	0.561	3773204	.2070706
exp	.0174868	.002153	8.12	0.000	.0131624	.0218113
migrantexp	0096844	.0024986	-3.88	0.000	014703	0046659
exp_sq	0002799	.0000439	-6.38	0.000	0003681	0001918
migrantexp~q	.0001608	.0000498	3.23	0.002	.0000608	.0002608
female	1480165	.0118775	-12.46	0.000	1718731	1241598
migrantfem~e	0060903	.0162896	-0.37	0.710	038809	.0266283
1.migrant	0	(omitted)				
wbhao						
Black	077848	.0149785	-5.20	0.000	1079332	0477627
Hispanic	0530243	.0186495	-2.84	0.006	0904829	0155656
Asian	0075838	.0494232	-0.15	0.879	1068534	.0916857
Other	0870498	.0396153	-2.20	0.033	1666195	0074802
migrant#						
wbhao						
1#Black	.1007591	.029502	3.42	0.001	.0415026	.1600156
1#Hispanic	0866426	.0256911	-3.37	0.001	1382447	0350405
1#Asian	0447606	.0611433	-0.73	0.468	1675705	.0780493
1#Other	0933013	.1041459	-0.90	0.375	3024845	.1158818
years_sinc~l	.0022884	.0046425	0.49	0.624	0070364	.0116132
_ rural	1165104	.0154121	-7.56	0.000	1474665	0855543
migrantrural	.0373017	.0273283	1.36	0.178	0175888	.0921922
year						
1999	.0527784	.02618	2.02	0.049	.0001943	.1053624

2000 2001 2002	.000591 .0981571 .0947925	.0276918 .0273564 .0224644	0.02 3.59 4.22	0.983 0.001 0.000	0550295 .0432103 .0496715	.0562116 .153104 .1399135
2003 2004	.0413859	.0380652	1.09 -0.16	0.282	0350704 - 0969446	.1178421
2005	0429601	.0295474	-1.45	0.152	1023078	.0163875
2006	.0075511	.0331959	0.23	0.821	0591249	.0742271
2007	038858	.0356698	-1.09	0.281	1105029	.0327868
2008	0042295	.0503024	0.03	0.933	0968058	.1052648
2010	.0534742	.0476435	1.12	0.267	0422205	.1491689
2011	.0158595	.0367825	0.43	0.668	0580203	.0897393
2012	0100044	.0299405	-0.33	0.740	0701418	.0501329
2013	0273351	.0374523	-0.73	0.469	1025602	.04789
2014	0553569	.0452494	-0.13	0.894	0969416	.0848305
2015		.0330103	1.05	0.100	0121075	.1220015
migrant#year	0710010	0007400	1 0 0	0.000	1 4 0 7 1 1 5	005040
I 1999 1 2000		.038/493	-1.86 1.12	0.069	149/115	.005949
1 2000	-0197004	0512593	-0 38	0.202	- 1226578	083257
1 2002	006447	.0400206	-0.16	0.873	0868307	.0739367
1 2003	.0561124	.0554877	1.01	0.317	0553379	.1675627
1 2004	.0626264	.0568496	1.10	0.276	0515595	.1768122
1 2005	.1373538	.0504251	2.72	0.009	.0360721	.2386356
1 2006	.0790538	.0759457	1.04	0.303	0734877	.2315952
1 2007	0225561	.0643576	1.66 0.56	0.103	0224524	.2360/96
1 2008	0663969	0763569	0.50	0.389	- 0869704	2197642
1 2010	.0492883	.0823871	0.60	0.552	116191	.2147675
1 2011	.0928043	.076509	1.21	0.231	0608686	.2464771
1 2012	.0809722	.0954477	0.85	0.400	1107401	.2726844
1 2013	.0956756	.0935614	1.02	0.311	0922479	.2835991
1 2014	.0957277	.0945879	1.01	0.316	0942577	.2857132
1 2015	.0086683 	.0938312	0.09	0.927	1/9/9/3	.19/1338
entry_year	.0031133	.0050163	0.62	0.538	0069622	.0131888
entry_year~q	-1.57e-06	2.50e-06	-0.63	0.534	-6.59e-06	3.46e-06
	2.160223	.0299497		0.000	2.100067	2.220379
Linear regress	sion			Number of	obs =	36,948
				F(50, 50)	=	•
				Prob > F	=	
				R-squared	l =	0.0960
				Root MSE	=	10.947
		(Std.	Err. ad	justed for	51 clusters	in state)
		Robust				
hoursworked	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	3.880628	1.318605	2.94	0.005	1.232131	6.529125
post911entry	6718858	.5443526	-1.23	0.223	-1.76525	.4214787
post911ent~t	1.022616	.6829329	1.50	0.141	3490954	2.394327
hsgrad	.8962576	.3081085	2.91	0.005	.2774034	1.515112
bachgrad	I 1.001385	.04∠943⊥ 7951232	2.49 1 N9	0.010	- 7332704	2.092978
mastgrad	1.040776	1.365341	0.76	0.449	-1.701591	3.783144
doctorgrad	3.802423	3.049954	1.25	0.218	-2.323589	9.928435

<pre>migranthsg~d migrantass~d migrantbac~d migrantmas~d migrantdoc~d exp migrantexp exp_sq migrantexp~q female migrantfem~e</pre>	-1.357695 -2.199634 9951964 3597483 -5.887226 .4062139 2535751 0079642 .0054309 -7.317384	.4007312 .7399172 .800832 1.697975 3.227164 .0271607 .0303791 .0005262 .0005583 .4200617 5295032	-3.39 -2.97 -1.24 -0.21 -1.82 14.96 -8.35 -15.13 9.73 -17.42 2.73	0.001 0.220 0.833 0.074 0.000 0.000 0.000 0.000 0.000 0.000	-2.162588 -3.685801 -2.603715 -3.770231 -12.36917 .35166 3145932 0090212 .0043095 -8.161103 3826633	5528032 7134662 .613322 3.050734 .5947227 .4607678 1925569 0069072 .0065524 -6.473666
1.migrant	0	(omitted)	2.15	0.009	.3020035	2.30974
tthha						
Black	1.744183	.3643554	4.79	0.000	1.012354	2.476012
Hispanic	1.652754	.4135687	4.00	0.000	.8220764	2.483431
Asian Other	1.375668	.8804854 .7252478	1.56 1.89	0.125 0.064	3928392 0853247	3.144175 2.828082
migrant# wbhao						
1#Black	4063141	.7925395	-0.51	0.610	-1.998176	1.185548
1#Hispanic	-1.174212	.722415	-1.63	0.110	-2.625226	.276801
1#Asian	.9206855	1.279466	0.72	0.475	-1.649197	3.490568
I#OUNEL	1.044020	2.101125	0.30	0.707	-4.514515	0.003903
years_sinc~l	.0952914	.0690192	1.38	0.174	0433378	.2339205
rural	1.344168	.3346119	4.02	0.000	.6720798	2.016256
migrantrurai	.8084106	.0//1808	1.19	0.238	551/59	2.10838
year						
1999	2992005	.5053862	-0.59	0.557	-1.314299	.7158976
2000	0954943	.540364	-0.18	0.860	-1.180847	.9898588
2002	4181179	.5433337	-0.77	0.445	-1.509436	.5050000
2003	7177997	.6063426	-1.18	0.242	-1.935675	.5000754
2004	-1.017106	.5896679	-1.72	0.091	-2.201489	.1672764
2005	-1.329829	.7061379	-1.88	0.065	-2.748148	.0884912
2006	-1.262093	.6520033	-1.94	0.059	-2.57168	.0474941
2007	-1.68617	.5036655	-3.35	0.002	-2.697812	6745282
2008	6298742	.5994405	-1.05	0.298	-1.833886	.5741375
2009	-1.214362	.6531423	-1.86	0.069	-2.526237	.09/5128
2010	-2.323101	7694104	-2.32	0.001	-3.903107	- 2420765
2011	-1.336486	6043597	-2.32	0.024	-2 550378	- 1225939
2012	-2 268947	6671568	-3 40	0.032	-3 60897	- 9289227
2014	-2.200748	.5853544	-3.76	0.000	-3.376467	-1.025029
2015	-1.465712	.6324155	-2.32	0.025	-2.735956	1954676
migrant#vear						
1 1999	.4000483	.7574136	0.53	0.600	-1.121262	1.921358
1 2000	221978	.8360572	-0.27	0.792	-1.901248	1.457292
1 2001	133495	1.007095	-0.13	0.895	-2.156305	1.889315
1 2002	4338377	.8560551	-0.51	0.615	-2.153275	1.285599
1 2003	1498815	.9752915	-0.15	0.878	-2.108812	1.809049
1 2004	0322653	.8488547	-0.04	0.970	-1.73724	1.672709
1 2005	1430501	1.057161	-0.14	0.893	-2.266421	1.98032
1 2006	2481642	1.163639	-0.21	0.832	-2.585402	2.089074
1 2007 1 2008	- 9082005 - 9082010	.9043369 1 060111	U.62 -0.85	0.237 0.237	-1.234U1 -3 055966	2.3/9622
T 2000	·		0.05	0.099	2.022200	1.200110

1 2009		-1.470136	1.320537	-1.11	0.271	-4.122513	1.18224
1 2010		-1.416082	1.239298	-1.14	0.259	-3.905285	1.073122
1 2011		-2.035893	1.28142	-1.59	0.118	-4.609702	.5379147
1 2012		-1.349911	1.300936	-1.04	0.304	-3.962918	1.263095
1 2013		-1.117381	1.367509	-0.82	0.418	-3.864103	1.629342
1 2014		915642	1.302816	-0.70	0.485	-3.532425	1.701141
1 2015	1	8250366	1.295941	-0.64	0.527	-3.428011	1.777938
	1						
entry year	1	0923368	.0700533	-1.32	0.193	233043	.0483693
entry year~q	1	.0000459	.0000349	1.31	0.195	0000242	.0001161
cons		37.27066	.571213	65.25	0.000	36.12334	38.41797

Specification (5), Endogenous-wage, Method 2, Full sample

Number of obs	=	1,375,615
F(50, 50)	=	
Prob > F	=	
R-squared	=	0.2916
Root MSE	=	.61385
	Number of obs F(50, 50) Prob > F R-squared Root MSE	Number of obs = F(50, 50) = Prob > F = R-squared = Root MSE =

(Std. Err. adjusted for 51 clusters in state)

lnwage	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	+	.0321237	10.66	0.000	.2778522	. 4068968
post911entrv	0643487	.0037415	-17.20	0.000	0718637	0568337
post911entr~t	.019722	.0075756	2.60	0.012	.004506	.034938
highmigrant~c	2672068	.0077514	-34.47	0.000	282776	2516375
hig~c migrant	.0836011	.0100412	8.33	0.000	.0634327	.1037694
highmigra~911	.1136943	.0200754	5.66	0.000	.0733717	.1540169
hig~1 migrant	0738254	.0213326	-3.46	0.001	1166732	0309777
hsgrad	.2927065	.0059002	49.61	0.000	.2808556	.3045574
assocgrad	.476233	.0058043	82.05	0.000	.4645746	.4878913
bachgrad	.7506867	.0100854	74.43	0.000	.7304296	.7709438
mastgrad	.9231457	.0136421	67.67	0.000	.8957448	.9505465
doctorgrad	1.189727	.0129647	91.77	0.000	1.163686	1.215767
migranthsgrad	1061327	.0059567	-17.82	0.000	1180971	0941682
migrantasso~d	0906865	.01141	-7.95	0.000	1136042	0677688
migrantbach~d	0987828	.0116677	-8.47	0.000	1222181	0753475
migrantmast~d	.0213133	.0158138	1.35	0.184	0104496	.0530761
migrantdoct~d	1249169	.014421	-8.66	0.000	1538823	0959515
exp	.0410501	.0009321	44.04	0.000	.0391779	.0429222
migrantexp	017868	.0010052	-17.77	0.000	0198871	0158489
exp_sq	0006684	.0000183	-36.53	0.000	0007052	0006317
migrantexp_sq	.0002523	.0000186	13.56	0.000	.0002149	.0002896
female	2414233	.0047428	-50.90	0.000	2509496	231897
migrantfemale	.0350407	.0068284	5.13	0.000	.0213256	.0487559
1.migrant	0	(omitted)				
wbhao						
Black	139208	.0091445	-15.22	0.000	1575754	1208407
Hispanic	068584	.0242316	-2.83	0.007	1172547	0199134
Asian	.0233588	.0161328	1.45	0.154	0090449	.0557624
Other	0853508	.0120122	-7.11	0.000	1094781	0612235

migrant#wbhao |

1#Black 1#Hispanic 1#Asian	.0346059 114804 0444345	.0180769 .0203432 .0144001	1.91 -5.64 -3.09	0.061 0.000 0.003	0017026 1556645 0733579	.0709145 0739435 0155111
l#Other	.01/1033 	.049/26/	0.34	0.732	0827757	.1169824
years_since~l rural migrantrural	.0092593 1666642 .0858669	.00116 .0127068 .0156049	7.98 -13.12 5.50	0.000 0.000 0.000	.0069294 1921865 .0545235	.0115892 1411419 .1172103
year						
1999	.0312377	.0048809	6.40	0.000	.0214342	.0410413
2001 2002	.0580616 .0651742	.0051814	11.21 14.73	0.000	.0476544	.0684688
2003	.0690786	.0053115	13.01	0.000	.0584102	.0797471
2004 2005	0619051	.0050973 .0041737	12.14	0.000	.0516669	.0721433
2006 2007	.0406221 .042851	.005434 .0079338	7.48 5.40	0.000	.0297075 .0269156	.0515367 .0587864
2008	0337982	.0068853	7.36	0.000	.0368169	.064476
2010 2011	.0495056 .0335513	.0058075	8.52	0.000	.0378409	.0611703
2012 2013	.0196331 .0042841	.0078623 .007269	2.50 0.59	0.016 0.558	.0038412 0103161	.035425 .0188844
2014 2015	.0067879 .0093828	.0100419 .00897	0.68 1.05	0.502 0.301	0133819 008634	.0269576 .0273996
migrant#year						
1 1999 1 2000	0095621	.0089248	-1.90	0.063	0348959	.000956
1 2000	.0226177	.0110268	2.05	0.046	.0004697	.0447656
1 2002	.0218894	.007176	3.05	0.004	.0074759	.0363028
1 2003 1 2004	.0014459 - 0032157	.0128862	0.11	0.911	0244368 - 0297021	.0273285
1 2005	.0145015	.0135099	1.07	0.288	0126339	.0416369
1 2006	.0221094	.0109923	2.01	0.050	.0000307	.0441881
1 2007	.0186546	.0112248	1.66	0.103	0038911	.0412003
1 2008	.0077676 - 000316	.0124489	0.62	0.535 0.984	01/2368	.032772
1 2009	.0079745	.0149642	0.53	0.596	0220821	.0380311
1 2011	.0058945	.0152674	0.39	0.701	0247711	.0365601
1 2012	.0043278	.0164941	0.26	0.794	0288015	.0374571
1 2013	.0108867	.0173189	0.63	0.532	0238993	.0456727
1 2014 1 2015	.0030762	.0192039 .0228169	0.16 -0.60	0.873 0.550	035496 0595538	.0416483 .0321042
entry_year	 0017222	.0008995	-1.91	0.061	0035289	.0000846
entry_year_sq	7.95e-07 2.155603	4.46e-07	1.78 274 71	0.081	-1.02e-07	1.69e-06 2 171364
Linear regressi	ion			Number of F(50, 50)	obs = =	1,376,334
				Prob > F	=	•
				R-squared Root MSE	=	0.1247 9.8437
		(Std	. Err. ad	justed for	51 cluster	s in state)

	I	Robust				
hoursworked	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	2.955199	.3948085	7.49	0.000	2.162203	3.748195
post911entry	-1.193007	.0682564	-17.48	0.000	-1.330104	-1.05591
post911entr~t	.9576277	.1463626	6.54	0.000	.6636498	1.251606
highmigrant~c	-1.091024	.1424967	-7.66	0.000	-1.377237	8048112
hig~c_migrant	.8608812	.3495123	2.46	0.017	.1588652	1.562897
highmigra~911	1.350844	.3660381	3.69	0.001	.615635	2.086053
hig~1_migrant	6671878	.5177117	-1.29	0.203	-1.707042	.3726668
hsgrad	2.349165	.1234455	19.03	0.000	2.101218	2.597113
assocgrad	2.955268	.1341275	22.03	0.000	2.685865	3.224671
bachgrad	4.681419	.1347189	34.75	0.000	4.410828	4.95201
mastgrad	5.599368	.1744468	32.10	0.000	5.248981	5.949755
doctorgrad	8.869715	.2577262	34.42	0.000	8.352056	9.387373
migranthsgrad	-1.77537	.1369364	-12.96	0.000	-2.050415	-1.500325
migrantasso~d	-1.948278	.1961035	-9.93	0.000	-2.342163	-1.554392
migrantbach~d	-2.31304	.2133381	-10.84	0.000	-2.741542	-1.884538
migrantmast~d	-2.321362	.2992577	-7.76	0.000	-2.922439	-1.720285
migrantdoct~d	-1.744412	.2489585	-7.01	0.000	-2.24446	-1.244364
exp	.5860105	.0104717	55.96	0.000	.5649775	.6070436
migrantexp	2302471	.01431	-16.09	0.000	2589895	2015047
exp_sq	0112821	.0001954	-57.73	0.000	0116746	0108896
migrantexp_sq	.0049652	.0002658	18.68	0.000	.0044313	.0054991
female	-4.841172	.1129166	-42.87	0.000	-5.067972	-4.614372
migrantfemale	.8402935	.1084281	7.75	0.000	.6225093	1.058078
1.migrant	0	(omitted)				
wbhao						
Black	.0328795	.0779395	0.42	0.675	1236667	.1894257
Hispanic	.1108909	.227863	0.49	0.629	3467854	.5685671
Asian	3887332	.2704176	-1.44	0.157	9318829	.1544165
Other	.2401966	.1552552	1.55	0.128	0716427	.5520359
migrant#wbhao						
1#Black	3494768	.1465324	-2.38	0.021	6437957	0551579
1#Hispanic	3797982	.1695133	-2.24	0.030	7202758	0393207
1#Asian	360281	.2806691	-1.28	0.205	9240215	.2034596
1#Other	6973816	.4240076	-1.64	0.106	-1.549026	.1542628
vears since~l	 0131114	.0128344	-1.02	0.312	0388901	.0126673
rural	.2587826	.0889998	2.91	0.005	.0800213	.4375439
migrantrural	.7478435	.2709041	2.76	0.008	.2037166	1.29197
vear						
1999	.1019295	.0656363	1.55	0.127	0299048	.2337639
2000	.1159126	.0906884	1.28	0.207	0662405	.2980657
2001	.058583	.0966765	0.61	0.547	1355974	.2527634
2002	1398526	.0762777	-1.83	0.073	2930608	.0133556
2003	3445164	.0842676	-4.09	0.000	5137728	1752599
2004	3663769	.1051731	-3.48	0.001	5776234	1551305
2005	2433722	.0917556	-2.65	0.011	4276688	0590755
2006	1228409	.104577	-1.17	0.246	33289	.0872082
2007	0309208	.0869268	-0.36	0.724	2055184	.1436767
2008	0585947	.095007	-0.62	0.540	2494219	.1322326
2009	3659011	.0922504	-3.97	0.000	5511914	1806107
2010	697982	.0955096	-7.31	0.000	8898188	5061452
2011	6964367	.0902081	-7.72	0.000	877625	5152484
2012	5315175	.0957067	-5.55	0.000	72375	339285
2013	4076003	.1154386	-3.53	0.001	6394655	1757352

2014	3835814	.1101971	-3.48	0.001	6049187	162244
2015	1734517	.101061	-1.72	0.092	3764388	.0295354
migrant#year						
1 1999	.1037441	.1566289	0.66	0.511	2108544	.4183425
1 2000	.2839861	.2249484	1.26	0.213	1678361	.7358082
1 2001	.4063498	.1614002	2.52	0.015	.082168	.7305316
1 2002	.1809072	.1642932	1.10	0.276	1490855	.5108998
1 2003	.2957157	.1718296	1.72	0.091	0494141	.6408455
1 2004	.2116117	.2093017	1.01	0.317	2087832	.6320067
1 2005	.1854673	.1518928	1.22	0.228	1196184	.490553
1 2006	.545603	.1934972	2.82	0.007	.1569525	.9342535
1 2007	.3214317	.165004	1.95	0.057	0099886	.652852
1 2008	.2854388	.2115711	1.35	0.183	1395143	.7103919
1 2009	0060408	.2077333	-0.03	0.977	4232854	.4112038
1 2010	2842694	.2086885	-1.36	0.179	7034325	.1348937
1 2011	1846454	.198798	-0.93	0.357	583943	.2146521
1 2012	2073003	.2268387	-0.91	0.365	6629192	.2483186
1 2013	1980301	.2451393	-0.81	0.423	6904069	.2943466
1 2014	044571	.2621926	-0.17	0.866	5712004	.4820584
1 2015	0626492	.2316472	-0.27	0.788	5279264	.402628
	l					
entry_year	.0289566	.0135993	2.13	0.038	.0016415	.0562717
entry_year_sq	0000145	6.79e-06	-2.14	0.038	0000281	-8.63e-07
_cons	33.80293	.2491935	135.65	0.000	33.30241	34.30345

Specification (6), Endogenous-wage, Method 2, Restricted sample

Linear regression	Number of obs	=	36,513
	F(49, 50)	=	
	Prob > F	=	
	R-squared	=	0.0591
	Root MSE	=	.61984

(Std.	Err.	adjusted	for	51	clusters	in	state)

		Robust				
lnwage	Coef.	Std. Err.	t 	P> t	[95% Conf.	Interval]
migrant	.0965106	.0402751	2.40	0.020	.0156158	.1774055
post911entry	0874484	.0272023	-3.21	0.002	1420859	0328109
post911ent~t	.048964	.0332257	1.47	0.147	0177717	.1156998
hsgrad	.2070756	.0147675	14.02	0.000	.1774142	.236737
assocgrad	.2895582	.0224515	12.90	0.000	.2444631	.3346533
bachgrad	.4270631	.0498811	8.56	0.000	.3268739	.5272522
mastgrad	.343307	.1067652	3.22	0.002	.1288629	.5577512
doctorgrad	.3823987	.0692435	5.52	0.000	.243319	.5214785
migranthsg~d	0828242	.0204565	-4.05	0.000	1239123	041736
migrantass~d	1016615	.0456989	-2.22	0.031	1934504	0098727
migrantbac~d	2256163	.0431085	-5.23	0.000	3122023	1390304
migrantmas~d	0207936	.1494726	-0.14	0.890	3210181	.2794308
migrantdoc~d	0804451	.1527534	-0.53	0.601	3872593	.2263691
exp	.0174364	.0021277	8.20	0.000	.0131628	.02171
migrantexp	0106349	.0023976	-4.44	0.000	0154506	0058193
exp sq	0002791	.0000436	-6.40	0.000	0003667	0001916
migrantexp~q	.000179	.0000491	3.65	0.001	.0000804	.0002775

female migrantfem~e 1.migrant	1482061 0053106 0	.0119379 .0160461 (omitted)	-12.41 -0.33	0.000 0.742	172184 0375403	1242282 .026919
wbhao Black Hispanic Asian Other	 0776062 0588626 0227491 0871157	.0149974 .0172218 .0459885 .0395941	-5.17 -3.42 -0.49 -2.20	0.000 0.001 0.623 0.032	1077294 0934537 1151198 1666429	047483 0242716 .0696216 0075886
migrant# wbhao 1#Black 1#Hispanic 1#Asian 1#Other	.1080482 0748089 0240755 0862069	.028723 .0248485 .0585951 .1041758	3.76 -3.01 -0.41 -0.83	0.000 0.004 0.683 0.412	.0503562 1247185 1417672 2954503	.1657401 0248993 .0936162 .1230364
years_sinc~l rural migrantrural	.0048641 1161789 .0362934	.0008469 .0154409 .0261606	5.74 -7.52 1.39	0.000 0.000 0.171	.0031629 1471929 0162516	.0065652 0851648 .0888385
year 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015	.0526894 .0005472 .0983113 .094772 .0414751 0071448 0431835 .0075997 0392653 00151 .0037854 .0528429 .0147225 010564 0288082 0062771 .0542064	.02619 .0276157 .0273942 .0223035 .0377272 .0444928 .0293018 .0334484 .0355283 .0392703 .0498808 .0472346 .0359666 .0299041 .0372143 .0446225 .0324136	2.01 0.02 3.59 4.25 1.10 -0.16 -1.47 0.23 -1.11 -0.04 0.08 1.12 0.41 -0.35 -0.77 -0.14 1.67	0.050 0.984 0.001 0.277 0.873 0.147 0.821 0.274 0.969 0.940 0.269 0.684 0.725 0.443 0.889 0.101	.0000851 0549205 .0432883 .049974 0343023 0965112 1020379 0595835 1106259 0803867 0964031 0420305 0575185 0706282 1035553 0959041 0108983	.1052936 .056015 .1533342 .1395699 .1172524 .0822217 .015671 .0747828 .0320953 .0773667 .1039739 .1477164 .0869635 .0495002 .0459389 .0833499 .119311
migrant#year 1 1999 1 2000 1 2001 1 2002 1 2003 1 2004 1 2005 1 2006 1 2007 1 2008 1 2009 1 2010 1 2011 1 2012 1 2013 1 2014 1 2015	<pre> 0739158 .0378371 0287362 0175662 .041189 .0449715 .1232248 .057148 .0831993 .0045783 .0407745 .0160969 .0629931 .0438076 .0536223 .0513936 0330225</pre>	.0375542 .0362219 .0500749 .0391934 .0450955 .0462921 .031716 .0535096 .040528 .0359262 .0637033 .0427622 .0326877 .0436388 .0415458 .0456781 .0409167	-1.97 1.04 -0.57 -0.45 0.91 0.97 3.89 1.07 2.05 0.13 0.64 0.38 1.93 1.00 1.29 1.13 -0.81	0.055 0.301 0.569 0.656 0.365 0.336 0.000 0.291 0.045 0.899 0.525 0.708 0.060 0.320 0.203 0.266 0.423	1493457 0349166 1293145 0962885 049388 048009 .0595214 0503292 .0017965 0675815 0871773 0697935 002662 0438435 029825 0403535 1152061	.001514 .1105909 .0718421 .061156 .1317659 .137952 .1869283 .1646252 .1646022 .0767382 .1687262 .1019874 .1286482 .1314588 .1370695 .1431407 .0491611
_cons	2.160678	.0304045	71.06	0.000	2.099609	2.221747

Linear regression	Number of obs	=	36,609
-	F(49, 50)	=	•
	Prob > F	=	•
	R-squared	=	0.0955
	Root MSE	=	10.955

(Std. E	Err. a	adjusted	for	51	clusters	in	state)
---------	--------	----------	-----	----	----------	----	--------

_____ Robust hoursworked | Coef. Std. Err. t P>|t| [95% Conf. Interval] _____+____+______ migrant | 2.885108 .8566363 3.37 0.001 1.164503 4.605712 post911entry | -.6830696 .5437442 -1.26 0.215 -1.775212 .4090727 post911ent~t | .9957908 .6829446 1.46 0.151 -.3759439 2.367525 .2851992 1.519774 hsgrad | .9024864 .3073284 2.94 0.005 assocgrad | 1.609007 .6406285 2.51 0.015 .3222665 2.895747 1.09 0.282 bachgrad | .8634101 .7935331 -.730448 2.457268 mastgrad | 1.026466 1.359271 0.76 0.454 -1.70371 3.756642 doctorgrad | 3.799035 3.048483 9.922092 1.25 0.218 -2.324023 migranthsg~d |-1.382249.4080072-3.390.001-2.201755-.5627424migrantass~d |-2.186587.7261582-3.010.004-3.645119-.7280555migrantbac~d |-1.165769.7778876-1.500.140-2.728202.3966647 -1.50 0.01 .3966647 migrantbac~d | -1.165769 .7778876 migrantmas~d | .0245567 1.757799 0.989 -3.506087 3.5552 -5.616671 3.207078 -1.75 0.086 -12.05828 migrantdoc~d | .8249355 exp | .4053873 .0272254 14.89 0.000 .3507035 .4600711 migrantexp | -.2568821 .0357802 -7.18 0.000 -.3287487 -.1850155 exp_sq | -.0079507 .0005278 -15.06 0.000 -.0090108 -.0068906 migrantexp~q | .0055243 .000648 8.53 0.000 .0042227 .0068258 female | -7.315596 .4197487 -17.43 0.000 -8.158686 -6.472506 migrantfem~e | 1.48466 .532293 2.79 0.007 .4155185 2.553802 1.migrant | 0 (omitted) wbhao | Black1.746128.36430694.790.0001.014396spanic1.587909.38168014.160.000.8212816Asian1.303574.81813521.590.117-.3396985 2.47786 Hispanic | 1.587909 Asian | 1.303574 Other | 1.371205 .8212816 2.354536 2.946847 1.89 0.065 -.0866918 .7258423 2.829102 migrant#| wbhao | 1#Black | -.4866477 .777977 -0.63 0.534 -2.049261 1.075965 1#Hispanic | -1.194334 .6904576 -1.73 0.090 -2.581159 .1924913 1#Asian | .9168766 1.237855 0.74 0.462 -1.569429 3.403182 1#Other | 1.012655 2.75407 0.37 0.715 -4.519057 6.544368 years_sinc~1 | -.0006234 .0077888 -0.08 0.937 -.0162677 .015021 rural | 1.348646 .3348613 4.03 0.000 .6760576 2.021235 1.11 0.270 migrantrural | .7496149 .6725501 -.6012417 2.100471 vear .5054257 -0.59 0.555.556314 0.43 0.665.5425221 -0.15 0.883-0.590.555-1.3156210.430.665-.8754084-0.150.883-1.169603 ./14, 1.359371 1999 | -.3004432 .2419812 2000 2001 | 1.009772 -.0799155 .5425221 .5472473 -0.73 0.466 -1.501405 2002 | -.4022266 .6969519 2003 | -.6980043 .6087141 -1.15 0.257 -1.920643 .524634 .588489 -1.69 0.097 -2.177596 2004 | -.9955812 .1864338 2005 | -1.306496 .702503 -1.86 0.069 -2.717515 .1045227 2006 | -1.232313 .6493207 -1.90 0.063 -2.536512 .0718862

200 200 200 200 200 200 200 200 200	07 08 09 10 11 12 13 14 15	-1.656889 5981302 -1.178048 -2.486965 -1.744719 -1.289766 -2.218455 -2.149141 -1.401776	.4990931 .5985903 .6512329 .7196484 .7687301 .6037494 .6635705 .5776557 .6189213	-3.32 -1.00 -1.81 -3.46 -2.27 -2.14 -3.34 -3.72 -2.26	0.002 0.322 0.076 0.001 0.028 0.038 0.002 0.001 0.028	-2.659347 -1.800434 -2.486088 -3.932421 -3.288759 -2.502432 -3.551276 -3.309397 -2.644916	6544308 .6041738 .129992 -1.041509 2006789 0770993 8856348 9888858 1586357
migrant#ve	ear						
1 19	99 j	.4956559	.7600917	0.65	0.517	-1.031033	2.022345
1 200	00	0378384	.8272206	-0.05	0.964	-1.69936	1.623683
1 200	01	.1262974	.9938792	0.13	0.899	-1.869968	2.122562
1 200	02	0810446	.7923485	-0.10	0.919	-1.672523	1.510434
1 200	03	.2808346	.9509874	0.30	0.769	-1.62928	2.190949
1 200	04	.4877479	.8619009	0.57	0.574	-1.243431	2.218927
1 200	05	.4950196	.942876	0.53	0.602	-1.398803	2.388842
1 200	06	.5377201	.9917668	0.54	0.590	-1.454302	2.529742
1 200	07	1.353421	.7253844	1.87	0.068	1035565	2.810398
1 200	08	0419054	.8728585	-0.05	0.962	-1.795093	1.711282
1 200	09	4484182	1.064194	-0.42	0.675	-2.585914	1.689078
1 201	10	2885923	1.091091	-0.26	0.792	-2.480114	1.902929
1 201	11	8874743	1.013455	-0.88	0.385	-2.923059	1.14811
1 201	12	1631687	.9712153	-0.17	0.867	-2.113912	1.787575
1 203	13	.2114158	.9340944	0.23	0.822	-1.664768	2.0876
1 203	14	.465383	.8416167	0.55	0.583	-1.225054	2.15582
1 203	15 	.5515435	1.057825	0.52	0.604	-1.57316	2.676247
C	ons 	37.24748	.5737297	64.92	0.000	36.09511	38.39985

Specification (6), Endogenous-wage, Method 2, Full sample

Linear

regression	Number of obs	=	1,364,949
	F(50, 50)	=	
	Prob > F	=	
	R-squared	=	0.2914
	Root MSE	=	.61346

lnwage	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
migrant	.3929845	.0330659	11.88	0.000	.3265696	.4593993
post911entry	0644262	.0037365	-17.24	0.000	0719312	0569213
post911entr~t	.0019589	.0072695	0.27	0.789	0126424	.0165602
highmigrant~c	2671521	.0077491	-34.48	0.000	2827166	2515876
hig~c_migrant	.0832756	.0104903	7.94	0.000	.0622052	.104346
highmigra~911	.1136473	.0200815	5.66	0.000	.0733124	.1539822
hig~1_migrant	0663952	.021689	-3.06	0.004	1099588	0228317
hsgrad	.292672	.0058844	49.74	0.000	.2808528	.3044911
assocgrad	.4761971	.0057892	82.26	0.000	.4645692	.4878251
bachgrad	.7506654	.0100709	74.54	0.000	.7304373	.7708934
mastgrad	.9231255	.0136293	67.73	0.000	.8957502	.9505009
doctorgrad	1.189719	.0129542	91.84	0.000	1.1637	1.215739
migranthsgrad	1072426	.0055862	-19.20	0.000	1184627	0960224

migraphagood	- 0002774	0110100	-7 64	0 000	- 1140041	- 0665506
IIIgrancasso~u	0902774	.0110120	-7.04	0.000	1140041	0005500
migrantbach~d	1041223	.0111717	-9.32	0.000	1265614	0816832
migrantmast~d	.015103	.0162094	0.93	0.356	0174545	.0476605
migrantdoct~d	1379848	.0146771	-9.40	0.000	1674645	108505
exp	.041053	.0009324	44.03	0.000	.0391802	.0429259
migrantern	-0222454	0010858	-20 49	0 000	- 0244263	- 0200646
amoar	.0222101	.0010000	26.12	0.000	.0211203	0006217
exp_sq		.0000103	-30.33	0.000	0007033	0000317
migrantexp_sq	.0003216	.0000192	16.//	0.000	.0002831	.0003602
female	241426/	.004/449	-50.88	0.000	25095/1	2318963
migrantfemale	.0295066	.0068461	4.31	0.000	.0157558	.0432573
1.migrant	0	(omitted)				
wbhao						
Black	139196	.0091458	-15.22	0.000	1575658	1208262
Hispanic	0678714	.0242876	-2.79	0.007	1166544	0190883
Asian	0247675	016165	1 53	0 132	- 0077008	0572357
Othor	-0853787	0120167	-7 10	0 000	- 1095151	- 0612424
Other	.00000707	.0120107	7.10	0.000	.1099191	.0012424
mi gwant #ubhaa	1					
migrant#wonao	0050040	0106005	1 0 0	0 077	0040400	0740000
I#Black	.0353948	.0196335	1.80	0.0//	0040403	.0/48299
l#Hispanic	1232537	.0208464	-5.91	0.000	1651249	0813825
1#Asian	0485639	.0149114	-3.26	0.002	0785143	0186135
1#Other	.0147211	.0548698	0.27	0.790	0954882	.1249303
years since~l	.0071146	.0010925	6.51	0.000	.0049202	.009309
rural	1666931	.012703	-13.12	0.000	1922078	1411784
migrantrural	.0848547	.0156235	5.43	0.000	.0534739	.1162355
voar	1					
1000	0212702	0040751	6 11	0 000	021/70/	0410621
2000	0426252	.0046731	0.41	0.000	.0214704	.0410021
2000	.0426353	.0045036	9.47	0.000	.0335896	.051681
2001	.0581/8/	.005181/	11.23	0.000	.04///1	.0685865
2002	.0653204	.0044196	14.78	0.000	.0564434	.0741974
2003	.0692521	.0053038	13.06	0.000	.0585992	.0799051
2004	.0621227	.0050904	12.20	0.000	.0518983	.0723471
2005	.0484536	.0041562	11.66	0.000	.0401057	.0568016
2006	.0409201	.0054265	7.54	0.000	.0300207	.0518195
2007	.0431851	.0079322	5.44	0.000	.0272529	.0591174
2008	051027	0068717	7 43	0 000	0372247	0648293
2000	03/2116	0068153	5 02	0 000	0205229	0479005
2009	0400551	.0000100	0 50	0.000	.0203220	.0479003
2010	.0499551	.0050192	0.00	0.000	.030207	.0010432
2011	.034038	.0061834	5.50	0.000	.0216183	.0464577
2012	.02015//	.00/8519	2.57	0.013	.004386/	.0359288
2013	.004857	.0072604	0.67	0.507	0097259	.01944
2014	.0073815	.0100289	0.74	0.465	0127621	.0275252
2015	.0100391	.0089568	1.12	0.268	0079512	.0280294
migrant#year						
1 1999	0148612	.0087781	-1.69	0.097	0324925	.0027701
1 2000	014743	009311	1 58	0 120	- 0039587	0334446
1 2000	0200001	0109300	2 70	0.120	.00000007	0510445
1 2001	1 0225605	0070511	4.0	0.000	0104050	.UJI044J
I 2002	.0323685	.00/0511	4.62	0.000	.0104039	.040/311
1 2003	.0156534	.0130164	1.20	0.235	0104907	.0417976
1 2004	.01584	.0132831	1.19	0.239	0108399	.0425199
1 2005	.0396704	.0129253	3.07	0.003	.0137092	.0656316
1 2006	.0514366	.0099529	5.17	0.000	.0314456	.0714276
1 2007	.0537675	.0100707	5.34	0.000	.03354	.073995
1 2008	.0428842	.0106784	4.02	0.000	.021436	.0643325
1 2009	.0405367	.0143638	2.82	0.007	.0116861	.0693872
1 2010	. 0494455	.0136946	3 61	0.001	. 021939	.0769519
			U • U T	<u>-</u>		

1 2011 1 2012 1 2013 1 2014 1 2015	.051445 .0515207 .062867 .0589002 .0495219	.0132423 .0151765 .0155636 .0168264 .0204139	3.88 3.39 4.04 3.50 2.43	0.000 0.001 0.000 0.001 0.019	.024847 .0210378 .0316066 .0251034 .0085194	.078043 .0820036 .0941273 .0926971 .0905244
entry_year entry_year_sq _cons	.0007101 -4.21e-07 2.155365	.0008953 4.45e-07 .0078498	0.79 -0.95 274.57	0.431 0.349 0.000	0010882 -1.32e-06 2.139598	.0025084 4.73e-07 2.171132
Linear regress:	ion			Number of F(49, 50) Prob > F R-squared Root MSE	obs = = = = =	1,365,655 0.1244 9.8377
		(Std.	Err. ad	ljusted for	51 cluster	s in state)
hoursworked	 Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]
migrant post911entry post911entr~t highmigrant~c hig~c_migrant highmigra~911 hig~1_migrant bachgrad assocgrad bachgrad doctorgrad migranthsgrad migrantbach~d migrantbach~d migrantdoct~d exp migrantexp_sq female nigrantfemale 1.migrant	3.929985 -1.191927 .6526862 -1.092017 .775959 1.351825 5419607 2.349978 2.956081 4.682014 5.599965 8.870182 -1.742631 -2.081925 -2.554132 -2.649716 -2.277764 .5859737 011281 .0060303 -4.841116 .7876611	. 3989861 .0682725 .1289243 .1429884 .3490939 .3659522 .5188004 .1233318 .1339407 .1346317 .1346317 .174443 .2574555 .1386233 .2093953 .2330479 .2935332 .2470458 .0104651 .0174568 .0001953 .000309 .1129246 .1117622 (omitted)	9.85 -17.46 5.06 -7.64 2.22 3.69 -1.04 19.05 22.07 34.78 32.10 34.45 -12.57 -9.94 -10.96 -9.03 -9.22 55.99 -16.80 -57.77 19.52 -42.87 7.05	0.000 0.000 0.000 0.001 0.001 0.301 0.0000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000000	3.128598 -1.329057 .393734 -1.379217 .0747833 .6167882 -1.584002 2.102259 2.687053 4.411598 5.249586 8.353068 -2.021064 -2.502508 -3.022222 -3.239295 -2.77397 .5649539 3282823 0116732 .0054098 -5.067932 .5631801	$\begin{array}{c} 4.731373\\ -1.054798\\ .9116383\\8048158\\ 1.477135\\ 2.086861\\ .5000805\\ 2.597697\\ 3.225109\\ 4.952429\\ 5.950344\\ 9.387297\\ -1.464198\\ -1.661342\\ -2.086041\\ -2.086041\\ -2.086041\\ -2.086041\\ -2.086041\\ -2.08138\\ -1.781558\\ .6069934\\2581561\\0108888\\ .0066509\\ -4.6143\\ 1.012142\end{array}$
wbhao Black Hispanic Asian Other migrant#wbhao 1#Black 1#Hispanic 1#Asian 1#Other	.0327218 .0996443 4092265 .2404928 4545912 5724949 3558215 7194345	.0779304 .2251951 .2714318 .1552082 .1333702 .1553929 .2490332 .4546234	0.42 0.44 -1.51 1.55 -3.41 -3.68 -1.43 -1.58	0.676 0.660 0.138 0.128 0.001 0.001 0.159 0.120	1238061 3526734 9544133 071252 7224731 8846107 8560193 -1.632573	.1892496 .5519621 .1359604 .5522377 1867093 260379 .1443764 .1937035
years_since~l	.0112408	.0025695	4.37	0.000	.0060799	.0164017

rural	.2592773	.0890174	2.91	0.005	.0804807	.438074
migrantrural	.747775	.2821711	2.65	0.011	.1810176	1.314532
year						
1999	.1015181	.0656216	1.55	0.128	0302866	.2333229
2000	.1150031	.0905952	1.27	0.210	0669627	.2969688
2001	.0572098	.0964002	0.59	0.556	1364157	.2508353
2002	141572	.0761328	-1.86	0.069	2944893	.0113453
2003	3465674	.0840856	-4.12	0.000	5154584	1776765
2004	3689725	.1049666	-3.52	0.001	5798041	1581409
2005	2463902	.0914701	-2.69	0.010	4301133	0626672
2006	1263443	.1043396	-1.21	0.232	3359167	.083228
2007	0348318	.0866382	-0.40	0.689	2088496	.1391861
2008	0630707	.0946415	-0.67	0.508	2531638	.1270225
2009	3707444	.0916871	-4.04	0.000	5549034	1865854
2010	7032383	.0955647	-7.36	0.000	8951856	511291
2011	7021312	.0897811	-7.82	0.000	8824618	5218005
2012	5376239	.0950419	-5.66	0.000	7285211	3467266
2013	4143019	.1151101	-3.60	0.001	6455072	1830965
2014	3904892	.1098194	-3.56	0.001	6110679	1699104
2015	1811044	.1002244	-1.81	0.077	3824111	.0202023
	1					
migrant#year						
1 1999	.0750184	.1589014	0.47	0.639	2441444	.3941812
1 2000	.2349827	.2175805	1.08	0.285	2020406	.672006
1 2001	.3289559	.1658075	1.98	0.053	0040782	.66199
1 2002	.115047	.1632095	0.70	0.484	2127688	.4428628
1 2003	.2667487	.1567782	1.70	0.095	0481496	.581647
1 2004	.2154757	.2016062	1.07	0.290	1894621	.6204136
1 2005	.2128391	.1286781	1.65	0.104	0456184	.4712966
1 2006	.5632315	.1726356	3.26	0.002	.2164827	.9099802
1 2007	.2794344	.1198365	2.33	0.024	.0387357	.5201331
1 2008	.1602811	.1617972	0.99	0.327	1646982	.4852604
1 2009	0756459	.1604426	-0.47	0.639	3979044	.2466126
1 2010	4525191	.151838	-2.98	0.004	7574946	1475436
1 2011	3551583	.1294616	-2.74	0.008	6151897	095127
1 2012	4412577	.1472078	-3.00	0.004	7369332	1455821
1 2013	4615555	.1705144	-2.71	0.009	8040438	1190672
1 2014	2606241	.17154	-1.52	0.135	6051723	.0839242
1 2015	2538709	.1451515	-1.75	0.086	5454163	.0376744
		2400420	125 70	0 000	22 20500	24 20505
		.2409439			33.30302	34.30305