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ABSTRACT

Stochastic dynamics of several systems can be modeled via piecewise determin-

istic time evolution of the state, interspersed by random discrete events. Within this

general class of systems we consider time-triggered stochastic hybrid systems (TTSHS),

where the state evolves continuously according to a linear dynamical system. Discrete

events occur based on an underlying renewal process (timer), and the intervals between

successive events follow an arbitrary continuous probability density function. Moreover,

whenever the event occurs, the state is reset based on a linear affine transformation

that allows for inclusion of state-dependent and independent noise terms.

Traditional analysis of stochastic hybrid systems (SHS) relies heavily on various

Monte Carlo simulation techniques, which come at a significant computational cost.

Since one is often interested in computing only the lower-order moments of the state

variables, much time and effort can be saved by directly computing these statistical

moments without having to run Monte Carlo simulations. Unfortunately, moment

calculations in SHS can be non-trivial due to the problem of unclosed dynamics: the

time evolution of lower-order moments of the state space depends on higher-order

moments. In such cases, moments are usually approximated by employing closure

schemes, that close the system of differential equations by approximating higher-order

moments as nonlinear functions of lower-order moments.

The key contribution of this thesis is to develop novel methods for different

classes of TTSHS for obtaining exact analytical expressions for the steady-state mo-

ments, along with derivation of necessary and sufficient conditions for the stability of

statistical moments. The method developed here is applied to a wide range of problems

from systems biology to nano sensors. Moreover, we used TTSHS as an efficient tool

to design a controller in the presence of disturbance, noise, and random discrete events

xvii



in a system. Finally, for SHS models which cannot be solved analytically, we develop a

new moment closure approach to approximate their moments with low approximation

error.
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PREFACE

In chapter 1 we introduce a method for deriving moment dynamics of TTSHS

systems. Our approach relies on embedding a Markov chain based on phase-type

processes to model timing of events. In this case, we show that the time evolution of

moments can be computed exactly by solving a system of linear differential equations.

In chapter 2 we use this method to study noisy expression inside individual cells. The

contribution of this part is quantifying how cell cycle-related noise sources combine

with stochastic expression to drive intercellular variability in protein molecular counts.

Derived formulas lead to many counterintuitive results, such as increasing randomness

in the timing of cell division can lower noise in the level of a protein. In chapter 3

we used a variation of TTSHS in chapter 1 to study cell-cycle dependent expression of

genes. In our model, a protein is synthesized in random bursts, and the frequency with

which bursts occur varies within the cell cycle. Our model reveals an interesting trade-

off: cell-cycle dependencies that amplify the noise contribution from bursty expression

also attenuate the contribution from partitioning errors. We investigate existence of

optimum strategies for coupling expression to the cell cycle that minimize the stochastic

component. Intriguingly, results show that a zero production rate throughout the cell

cycle, with expression only occurring just before cell division minimizes noise from

bursty expression for a fixed mean protein level. We provide examples of regulatory

proteins that are expressed only towards the end of cell cycle, and argue that such

strategies enhance robustness of cell-cycle decisions to the intrinsic stochasticity of

gene expression.

In chapter 4 we introduce an alternative approach to calculate the statistical

moments of these systems in steady-state. The proposed method is unable to provide

transient behavior of the system but, on the bright side, is applicable to a wide class of
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stochastic hybrid systems. Moreover, the new method provides explicit conditions for

the existence and convergence of statistical moments. We show that this broad class

of systems is conveniently suited to capture the moments of unstable gene products,

and derive unique formulas connecting its mean and variance to underlying model

parameters and noise mechanisms. In addition, through a nano sensor example we

show that the applicability of this framework is beyond systems biology. In chapter 5

we use an adaptation of the results in chapter 4 to design controller for a class of linear

systems. The system is subject to external disturbances that affect the plant. The

control law is applied to the system in random discrete time intervals, and the control

law can contain noise and uncertainty due to faulty actuators, noise in the system, etc.

Our objective is how to design the control law to have finite statistical moments of the

system and reach to desired performance specifications. We derive exact solutions of

the first two moments of the system, and use them to derive the stability conditions.

We further design a control law that steers the system to a desired mean and variance.

Next, in chapter 6 we expand our work and consider two families of mutu-

ally independent discrete events, with one family of resets occurring at exponentially-

distributed times. Our results are illustrated on protein concentration where we as-

sumed a protein is expressed in bursts at exponentially-distributed time intervals, de-

cays within the cell cycle, and is randomly divided among daughter cells when generally-

distributed cell-division events occur. Moreover, in chapter 7 we extend our analysis to

the systems in which random resets can change both dynamics and states of the sys-

tem. We demonstrate our method on protein concentration in the presence of random

gene switching times and random synthesis events. We observe that randomness in

gene-switching time increases the total noise in protein concentration. Since the noise

in gene switching time intervals is a function of the number of steps that needs to be

taken before transcription starts, we discuss how noise in protein sheds light on the

underlying gene expression mechanisms.

Finally, in chapter 8 we study stochastic hybrid systems in which their exact

solution is not available. We extend the Linear Noise Approximation (LNA) method

xx



to these systems. The LNA method is obtained by small noise approximation of the

probability distribution solution of the master equation, and is widely used in discrete-

state continuous-time models. We prove that LNA is only directly applicable to a small

sub-class of SHS, and we show that for this sub-class, LNA is equivalent to calculating

moments directly by linearizing nonlinearities of the system. For the systems where

direct application of LNA fails to give meaningful results, we provide a novel method

for approximating moments.
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NOTATION

The set of real numbers is denoted by R. Constant vectors are indicated by a

hat, e.g. â, and matrices are denoted by capital letters. Further, transpose of a matrix

A is given by A> and the n-dimensional identity matrix is denoted by In. We show zero

vectors and matrices with the same notation, e.g. A = â = 0. Random variables are

indicated by boldsymbol letters. The expected value of a random variable x is denoted

by 〈x〉 and the expected value in steady-state is denoted by 〈x〉 ≡ limt→∞〈x(t)〉. Sim-

ilarly for time varying variable x, the steady-state value is presented by x. Moreover,

the conditional expectation of x given another random variable y is denoted 〈x|y〉.

Finally, the name of species is denoted by capital non-italic letters.
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Chapter 1

MOMENT DYNAMICS OF STOCHASTIC HYBRID SYSTEMS WITH
RENEWAL TRANSITIONS

We study a class of stochastic hybrid systems (SHS) that couple continuous

linear dynamics with random discrete events that occur based on an underlying re-

newal process. Such systems have been referred to in literature as time-triggered

stochastic hybrid systems (TTSHS) [1–4], and are an important sub-class of piecewise-

deterministic Markov processes (PDMP) [5–8] with applications in different disciplines.

For example, TTSHS have been shown to arise ubiquitously in networked control sys-

tems, where a dynamical system is controlled over a noisy communication network,

and signals are received at discrete random times [9–17]. Other TTSHS applications

include modeling disturbances in nanosensors [18], capturing stochastic effects in cellu-

lar biochemical processes [19–22], and neuroscience [23]. First, we study TTSHS where

the continuous dynamics was modeled by a linear time-invariant system, and the time

intervals between successive discrete events are restricted to follow a phase-type distri-

bution (i.e., mixture and/or sum of exponential random variables).

1.1 Model Formulation

Here, we identify a class of SHS known as time-triggered SHS (TTSHS) that
have closed moments. The main ingredients of TTSHS are as follows:

1. A continuous state x(t) ∈ R×1 that evolves according to a set of ordinary differ-
ential equations (ODEs) as

dx(t)

dt
= â+ Ax(t), (1.1)

where A ∈ Rn×n and â ∈ Rn×1 are a constant matrix and vector. While exact
moment computations can be easily extended to linear stochastic differential
equations, we prefer to work with ODEs for the sake of simplicity.
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2. Stochastic events occur at discrete times ts, s ∈ {1, 2, . . .}, and the intervals
ts − ts−1 are independent and identical random variables drawn from a given
probability density function. These events can be referred to as renewal transi-
tions, as their timing is determined by an underlying renewal process.

3. A reset map defining the change in x when the event occurs

x 7→ x+, (1.2)

where x+ denotes the state of the system just after the event. While prior work
has considered a deterministic linear reset map

x 7→ Jx (1.3)

[9,11,24], we allow for both state-dependent and state-independent noise sources
in x+. We assume x+ to be a random variable, whose average value is related to
its value just before the event by a linear affine map

〈x+〉 = Jx+ r̂, (1.4)

where J ∈ Rn×n and r̂ ∈ Rn×1 are a constant matrix and vector, receptively.
Furthermore, the covariance matrix of x+ is defined by

〈x+x
>
+〉 − 〈x+〉〈x+〉> = Qxx>Q> +Bxĉ> + ĉx>B> +D. (1.5)

Here Q ∈ Rn×n and B ∈ Rn×n are constant matrices, and ĉ ∈ Rn×1 is a constant
vector. MoreoverD ∈ Rn×n is a constant symmetric positive semi-definite matrix.
Intuitively, (1.5) formalizes the noise added to the state during the reset (event),
with Q = B = D = ĉ = 0 implying that x+ is simply a deterministic linear
function of x. A constant state-independent noise can be incorporated through a
nonzero matrix D with Q = B = ĉ = 0. The generality of (1.5) allows for state-
dependent noise terms that can potentially be quadratic (nonzero Q) or linear
(nonzero B and ĉ) functions of the state, and we will see an example of it later
in the manuscript. In the following sections, we show how statistical moments of
x(t) can be computed exactly for TTSHS illustrated in Fig. 1.1.

Our goal is to connect moments of the continuous state to the statistics of the

time interval τ s ≡ ts− ts−1. The key contribution of this chapter is to model arrival of

events using phase-type processes [25], and show that the resulting systems has closed

moment dynamics. More specifically, the time derivative of an appropriately selected

vector of moments depends only on itself, and not on higher-order moments. As a

consequence, moments can be computed exactly by solving a system of differential

equations.
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1.2 Embedded Markov Chain for Event Timing

Our strategy for exact moment computations relies on two steps: i) Modeling the

timing of stochastic events through a phase-type distribution, which can be represented

by embedding a continuous-time Markov chain (Fig. 1.2) and ii) Showing that the

time evolution of moments in the resulting system becomes automatically closed at

some high-order moment. Here we focus on phase-type distributions that consists of a

mixture of Erlang distributions [25], and use them as a practical tool for modeling the

timing of stochastic events in TTSHS.

Recall that an Erlang distribution of the shape m and the rate k is

f(τ) =
kmτm−1e−kτ

(m− 1)!
. (1.6)

For this distribution mean is m/k. This Erlang distribution can be written as the sum

of m independent and identical random variables that follow exponential distributions

with rate k

f(τ) = ke−kτ , (1.7)

where each random variable has a mean of 1/k.

Here, the interval τ s is assumed to have an Erlang distribution of shape mi and

rate ki with probability pi, i = {1, . . . , I} and can be represented by a continuous-time

Markov chain with states Sij, i = {1, . . . , I}, j = {1, . . . ,mi} (Fig. 1.2) [26]. Let

𝒙 ⟼ 𝒙+ 𝒕𝑠 

𝑑𝒙

𝑑𝑡
= 𝑎 + 𝐴𝒙 

𝑠 = {1,2, … } 

Figure 1.1: Schematic of a linear time-triggered stochastic hybrid system.
The state evolves according to a set of ordinary differential equation and
events occur in random times. Whenever the event occurs x changes via
(1.2).
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Figure 1.2: A continuous-time Markov chain model for timing of events
in TTSHS. The time interval τ s ≡ ts − ts−1 between two successive
stochastic events is assumed to follow a mixture of Erlang distributions.
After an event occurs, a state Si1, i = {1, . . . , I} is chosen with probability
pi. The system transitions through states Sij, j = {1, . . . ,mi} residing
for an exponentially distributed time in each state. The next event occurs
after exit from Simi and the above process is repeated.

Bernoulli random variables sij = 1 if the system resides in state Sij and 0 otherwise.

The probability of transition Sij → Si(j+1) in the next infinitesimal time interval (t, t+

dt] is given by kisijdt, implying that the time spent in each state Sij is exponentially

distributed with mean 1/ki. To summarize, just after an event occurs a state Si1, i =

{1, . . . , I} is chosen with probability pi and the next event occurs after transitioning

through mi exponentially distributed steps (after an Erlang distribution of rate ki

and shape mi which is selected with probability pi). Based on this formulation, the

probability of a stochastic event occurring in the time interval (t, t + dt] is given by∑I
j=1 kjsjjdt, and whenever the event occurs, the state is reset as per (1.2). For a

mixture of Erlang distributions, the moment are given by

〈τ qs〉 =
I∑
i=1

pi
kqi

(mi + q − 1)!

(mi − 1)!
, q ∈ {1, 2, . . .} (1.8)

[26]. Given a specific distribution of timing of events, the above equation can in prin-

ciple be used to construct a complex enough appropriate Markov chain that matches

some lower orders moments of the given distribution [27].
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Table 1.1: Stochastic events in the TTSHS with timing of events described by the
embedded Markov Chain in Fig. 1.2.

Stochastic events Reset Transition intensity (h)

Phase-type evolution
sij(t) 7→ sij(t)− 1,

si(j+1)(t) 7→ si(j+1)(t) + 1
kisij, j ∈ {1, . . . ,mi − 1}

Events changing x
x 7→ x+,

sjmj(ts) 7→ 0,
si1(ts) 7→ si1(ts) + 1

pi
∑n

j=1 kjsjmj , i&j ∈ {1, . . . , I}

1.3 Moment Dynamics of TTSHS

The overall model is now given by the linear system

dx(t)

dt
= â+ Ax(t). (1.9)

together with stochastic transitions associated with the embedded Markov chain illus-

trated in Table 1.1. The theorem below outlines the main result.

Theorem 1 Consider the TTSHS where timing of events are modeled through the

Markov chain in Fig. 1.2, and reset are given by (1.2). Then, the time evolution of

vector ν consisting of all the first and second order moments of stochastic processes x

and sij, and the third order moments of form 〈x2sij〉, i = {1, . . . , I}, j = {2, . . . ,mi}

is given by a linear dynamical system

ν̇ = âν + Aνν, (1.10)

for an appropriate vector aν and matrix Aν.
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Proof: Based on Theorem 1 of [28], time derivative of the expected value of the

elements of any vector of continuously differentiable functions ϕ(x, sij) ∈ RF is given

by

d〈ϕf (x, sij)〉
dt

= 〈(Lϕf )(x, sij)〉 , f = {1, . . . , F}, (1.11)

where the extended generator (Lϕf ) for this SHS is

(Lϕf )(x, sij) =

〈 ∑
Events

h×∆ϕf (x, sij)

〉
+

〈
∂ϕf (x, sij)

∂x
(â+ Ax)

〉
. (1.12)

Here, ∆ϕf is the change in ϕf whenever an event occurs and
∂ϕf (x,sij)

∂x
∈ R1×n de-

notes the gradient of ϕf (x, sij) with respect to x. Moreover, h denotes the transition

intensities for the events and determine how often these events occur [28,29].

Using the transition intensities shown in Table I, the dynamics of the means

can be written by choosing ϕ to be x and silj in (1.12). For example suppose that

ϕf is selected to be sij j ∈ {2, . . . ,mi} then there are two reactions that affect sij.

First one is the reaction of arriving to the state Sij which happens with the transition

intensity kisi(j−1). For this reaction the change ∆ϕf (x, sij) is +1. The other one is the

reaction of leaving the state Sij which happens with the transition intensity kisij. For

this reaction the change ∆ϕf (x, sij) is −1. The moment dynamics can be compactly

derived as

d〈x〉
dt

= â+ A〈x〉+
I∑
j=1

kj
(
(J − In)〈xsjmj〉+ r̂〈sjmj〉

)
, (1.13a)

d〈si1〉
dt

= pi

〈
I∑
j=1

kjsjmj

〉
− ki〈si1〉, i = {1, . . . , I}, (1.13b)

d〈sij〉
dt

= ki〈si(j−1)〉 − ki〈sij〉, i = {1, . . . , I}, j = {2, . . . ,mi}. (1.13c)

Note that the first equation is not closed since it depends on the second order moments

of the form 〈xsij〉. The time evolution of the moments 〈xsij〉 depends on third order

moments of the form 〈xs2
ij〉 and 〈sijsrqxb〉. However, using the fact that sij are

Bernoulli random variables

〈sqij〉 = 〈sij〉, 〈sqijxb〉 = 〈sijxb〉, q&b ∈ {1, 2, . . .}. (1.14)
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Moreover, since only one of the states sij can be 1 at a time

〈sijsrqxb〉 = 0, if i 6= r or j 6= q. (1.15)

Exploiting (1.14)-(1.15), moment dynamics of 〈xsij〉 becomes automatically closed and

given by

d〈xsi1〉
dt

= â〈xsi1〉+ A〈xsi1〉 − ki〈xsi1〉 (1.16a)

+ pi

I∑
j=1

kj
(
(J − In)

〈
xsjmj

〉
+ r̂〈sjmj〉

)
, i = {1, . . . , I},

d〈xsij〉
dt

= â〈xsij〉+ A〈xsij〉 − ki〈xsij〉 (1.16b)

+ ki〈xsi(j−1)〉, i = {1, . . . , I}, j = {2, . . . ,mi}.

Thus (1.13) and (1.16) represent a closed set of equations that can be used to obtain

the mean dynamics 〈x〉. A similar approach can be taken for obtaining the second

order moments. Briefly, the time evolution of 〈xxT 〉 would depend on moments of

the form 〈xxTsij〉. Moment dynamics of 〈xxTsij〉 can be closed automatically using

(1.14)-(1.15). �

1.4 Conclusion

In summary, our results show that if timing of events in TTSHS can be modeled

via a phase-type process (as in Fig. 1.2), then time evolution of moments can be

obtained by solving a linear systems of differential equations. Next, we use TTSHS

model for capturing random fluctuations in the level of a protein.
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Chapter 2

FLUCTUATIONS IN PROTEIN LEVELS FROM STOCHASTIC
EXPRESSION AND NOISY CELL-CYCLE PROCESSES

The level of a protein can deviate considerably from cell-to-cell, in spite of

the fact that cells are genetically-identical and are in the same extracellular environ-

ment [30–32]. This intercellular variation or noise in protein counts has been implicated

in diverse processes such as corrupting functioning of gene networks [33–35], driving

probabilistic cell-fate decisions [36–41], buffering cell populations from hostile changes

in the environment [42–45], and causing clonal cells to respond differently to the same

stimulus [46–48]. An important source of noise driving random fluctuations in protein

levels is stochastic gene expression due to the inherent probabilistic nature of biochem-

ical processes [49–52]. Recent experimental studies have uncovered additional noise

sources that affect protein copy numbers. For example, the time taken to complete cell

cycle (i.e., time between two successive cell-division events) has been observed to be

stochastic across organisms [53–60]. Moreover, given that many proteins/mRNAs are

present inside cells at low-copy numbers, errors incurred in partitioning of molecules

between two daughter cells are significant [61–63]. Finally, the time at which a partic-

ular gene of interest is duplicated can also vary between cells [64, 65]. We investigate

how such noise sources in the cell-cycle process combine with stochastic gene expression

to generate intercellular variability in protein copy numbers (Fig. 2.1).

Prior studies that quantify the effects of cell division on the protein noise level

have been restricted to specific cases. For example, noise computations have been

done in stochastic gene expression models, where cell divisions occur at deterministic

time intervals [61,66,67]. We formulate a mathematical model that couples stochastic

expression of a stable protein with random cell-division events that follow a general
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Figure 2.1: Sample trajectory of the protein level in a single cell with dif-
ferent sources of noise. Stochastically expressed proteins accumulate
within the cell at a certain rate. At a random point in the cell cycle,
gene duplication results in an increase in production rate. Stochastic
cell-division events lead to random partitioning of protein molecules be-
tween two daughter cells with each cell receiving, on average, half the
number of proteins in the mother cell just before division. The steady-
state protein copy number distribution obtained from a large number of
trajectories is shown on the right. The total noise in the protein level, as
measured by the squared Coefficient of Variation (CV 2) can be broken
into contributions from individual noise mechanisms.

class of probability distributions. Moreover, at the time of cell division, proteins are

randomly partitioned between two daughter cells based on a framework that allows the

partitioning errors to be higher or lower than as predicted by binomial partitioning.

For this class of models, we derive an exact analytical formula for the protein noise

level as quantified by the steady-state squared Coefficient of Variation (CV 2). This

formula is further decomposed into individual components representing contributions

from different noise sources. A systematic investigation of this formula leads to novel

insights, such as identification of regimes where increasing randomness in the timing

of cell-division events decreases the protein noise level.
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2.1 Coupling Gene Expression to Cell Division

We consider the standard model of stochastic gene expression [68, 69], where

mRNAs are transcribed at exponentially distributed time intervals from a constitutive

gene with rate kx. Assuming short-lived mRNAs, each transcription event results in a

burst of proteins [69–71]. The corresponding jump in protein levels is shown as

x(t) 7→ x(t) + u, (2.1)

where x(t) is the protein population count in the mother cell at time t, u is a random

burst size drawn from a positively-valued distribution and represents the number of

protein molecules synthesized in a single-mRNA lifetime. Motivated by observations in

E. coli and mammalian cells, where many proteins have half-lives considerably longer

than the cell doubling time, we assume a stable protein with no active degradation

[72–74]. Thus, proteins accumulate within the cell till the time of cell division, at

which point they are randomly partitioned between two daughter cells.

Let cell division events occur at times ts, s ∈ {1, 2, . . .}. The cell-cycle time

τ s ≡ ts − ts−1, (2.2)

follows an arbitrary positively-valued probability distribution with the following mean

and squared coefficient of variation

〈τ s〉 = 〈ts − ts−1〉, CV 2
τ s =

〈τ 2
s〉 − 〈τ s〉2

〈τ s〉2
. (2.3)

The random change in x during cell division is given by

x 7→ x+, (2.4)

where x denotes the protein levels in the mother cell just before division and x+ denotes

the protein levels in one of the daughter cells just after division. Conditioned on x, x+

is assumed to have the following statistics

〈x+〉 =
x

2
,
〈
x2

+

〉
− 〈x+〉2 =

bx

4
. (2.5)
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The first equation implies symmetric partitioning, i.e., on average each of the daugh-

ter cells inherits half the number protein molecules just before division. The second

equation in (2.5) describes the variance of x+ and quantifies the error in partitioning

of molecules through the non-negative parameter b. For example, b = 0 represents

deterministic partitioning where x+ = x/2 with probability equal to one. A more

realistic model for partitioning is each molecule having an equal probability of being

in the each daughter cell [75–77]. This results in a binomial distribution for x+

Probability{x+ = j} =
x!

j!(x− j)!

(
1

2

)x
, j ∈ {0, 1, . . . ,x}, (2.6)

and corresponds to b = 1 in (2.5). Interestingly, recent studies have shown that par-

titioning of proteins that form clusters or multimers can result in b > 1 in (2.5),

i.e., partitioning errors are much higher than as predicted by the binomial distribu-

tion [61, 67]. In contrast, if molecules push each other to opposite poles of the cell,

then the partitioning errors will be smaller than as predicted by (2.6) and b < 1.

The model with all the different noise mechanisms (stochastic expression; ran-

dom cell-division events and partitioning errors) is illustrated in Fig. 2.2A and referred

to as the full model. We also introduce two additional hybrid models [22, 78], where

protein production and partitioning are considered in their deterministic limit (Fig.

2.2B-C). Note that unlike the full model, where x(t) takes non-negative integer values,

x(t) is continuous in the hybrid models. We will use these hybrid models for decom-

posing the protein noise level obtained from the full model into individual components

representing contributions from different noise sources.

2.2 Modeling the Cell-cycle Time Using Phase-type Distributions

In order to quantify the steady-state protein mean and noise, we need to define

the stochastic process that governs the timing of cell division. Variations in the duration

of cell cycle can result from a variety of factors, such as cell physiology, growth rate,

cell size and expression of genes that affect cell-cycle time such as FtsZ [53–60]. Given

these complexities, we take a phenomenological approach to modeling cell-cycle time,
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Figure 2.2: Stochastic models of gene expression with cell division. Arrows
denote stochastic events that change the protein level by discrete jumps as
shown in (2.1) and (2.4). The differential equation within the circle repre-
sents the time evolution of x(t) in between events. A) Model with all the
different sources of noise: proteins are expressed in stochastic bursts, cell
division occurs at random times, and molecules are partitioned between
the two daughter cells based on (2.5). The trivial dynamics dx

dt
= 0 sig-

nifies that the protein level is constant in-between stochastic events. B)
Hybrid model where randomness in cell-division events is the only source
of noise. Protein production is modeled deterministically through a dif-
ferential equation and partitioning errors are absent, i.e., b = 0 in (2.5).
C) Hybrid model where noise comes from both cell-division events and
partitioning errors. Protein production is considered to be deterministic
as in part B. Since x(t) is continuous here, x+ has a positively-valued
continuous distribution with same mean and variance as in (2.5)

and assume it to be an independent and identically distributed random variable that

is drawn from a mixture of Erlang distributions.

In Fig. 1.2 let the probability of transition Sij → Si(j+1) in the next infinitesimal

time interval [t, t + dt) be given by kisijdt = iksijdt, implying that the time spent in

each state Sij is exponentially distributed with mean 1/ik. This implies that that we

select ki = ik and mi = i. This sub-class of phase-type distributions is fairly general,

in the sense that, any positively-valued distribution with CVτ s ≤ 1 can be modeled

via a mixture of Erlang distributions [27]. For this class of phase-type distributions,

the mean, the squared coefficient of variation and the skewness of the cell-cycle time
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in terms of the Markov chain parameters are given by

〈τ s〉 =
1

k
, CV 2

τ s =
I∑
i=1

pi
i
, Skewness =

〈τ 3
s〉 − 3〈τ s〉(〈τ 2

s〉 − 〈τ s〉2)− 〈τ s〉3

(〈τ 2
s〉 − 〈τ s〉2)3/2

= 2
I∑
i=1

pi
i2

(2.7)

[26], where 〈τ 3
s〉 is the third-order moment of the cell-cycle time. An important

property of this class of distributions is that increasing CV 2
τ s also makes the distribution

highly skewed, because from (2.7) both the CVτ s and skewness are linear combinations

of pi, albeit with different linear coefficients that decrease with i. Considering that∑I
i=1 pi = 1, the only way to increase CV 2

τ s is by increasing smaller-index components

and decreasing larger-index components of the distribution (i.e. increasing pi and

decreasing pj, where i < j). Since higher values of i are more penalized in the skewness

equation, this would correspond to making the distribution more positively skewed.

Hence high values of CV 2
τ s also means high values of skewness, thus occurrences of

longer cell cycles are more probable. As we will shortly see, this property leads to

mean protein levels being dependent on CV 2
τ s .

2.3 Computing the Average Number of Protein Molecules

All the models shown in Fig. 2.2 are identical in terms of finding 〈x(t)〉 and

in principle any one of them could have been used. We choose to analyze the full

model illustrated in Fig. 2.2A. Time evolution of the statistical moments of x(t) can

be obtained from (1.11)

d〈x〉
dt

= kx〈u〉 −
k

2

I∑
j=1

(j〈xsjj〉) . (2.8)

Note that the time-derivative of the mean protein level (first-order moment) is unclosed,

in the sense that, it depends on the second-order moment 〈xsij〉. The time evolution
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of 〈sij〉 and 〈xsij〉 is obtained as

d〈si1〉
dt

= kpi

I∑
j=1

(j〈sjj〉)− ik〈si1〉, (2.9)

d〈sij〉
dt

= ik〈si(j−1)〉 − ik〈sij〉, j = {2, . . . , i}, (2.10)

d〈xsi1〉
dt

= kx〈u〉〈si1〉+
k

2
pi

I∑
j=1

(j〈xsjj〉)− ik〈xsi1〉, (2.11)

d〈xsij〉
dt

= kx〈u〉〈sij〉 − ik〈xsij〉+ ik〈xsi(j−1)〉, j = {2, . . . , i} (2.12)

and only depends on 〈sij〉 and 〈xsij〉. Thus, (2.8) and (2.9)-(2.12) constitute a closed

system of linear differential equations from which moments can be computed exactly.

To obtain an analytical formula for the average number of proteins, we start by

performing a steady-state analysis of (2.8) that yields

I∑
j=1

(
j〈xsjj〉

)
=

2kx〈u〉
k

, (2.13)

where 〈.〉 denotes the expected value in the limit t→∞. Using (2.13), 〈xsi1〉 is deter-

mined from (2.11), and then all moments 〈xsij〉 are obtained recursively by performing

a steady-state analysis of (2.12) for j = {2, . . . , i}. This analysis results in

〈xsij〉 =
kx〈u〉
ik

pi

(
1 +

j

i

)
. (2.14)

Using (2.7), (2.14) and the fact that
∑I

i=1

∑i
j=1 sij = 1 we obtain the following ex-

pression for the mean protein level

〈x〉 =

〈
x

I∑
i=1

i∑
j=1

sij

〉
=

I∑
i=1

i∑
j=1

〈xsij〉 =
kx〈u〉〈τ s〉

(
3 + CV 2

τ s

)
2

. (2.15)

It is important to point that (2.15) holds irrespective of the complexity, i.e., the num-

ber of states Sij used in the phase-type distribution to approximate the cell-cycle time

distribution. As expected, 〈x〉 increases linearly with the average cell-cycle time dura-

tion 〈τ s〉 with longer cell cycles resulting in more accumulation of proteins. Consistent

with previous findings, (2.15) shows that the mean protein level is also affected by
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the randomness in the cell-cycle times (CV 2
τ s) [19, 79]. For example, 〈x〉 reduces by

25% as τ s changes from being exponentially distributed (CV 2
τ s = 1) to deterministic

(CV 2
τ s = 0) for fixed 〈τ s〉. Next, we determine the noise in protein copy numbers, as

quantified by the squared coefficient of variation.

2.4 Computing the Protein Noise Level

Recall that the full model introduced in Fig. 2.2A has three distinct noise

mechanisms. Our strategy for computing the protein noise level is to first analyze the

model with a single noise source, and then consider models with two and three sources.

As shown below, this approach provides a systematic dissection of the protein noise

level into components representing contributions from different mechanisms.

2.4.1 Contribution from Randomness in Cell-cycle Times

We begin with the model shown in Fig. 2.2B, where noise comes from a single

source - random cell-division events. For this model, the time evolution of the second-

order moment of the protein copy number is obtained as

d〈x2〉
dt

= 2kx〈u〉〈x〉 −
3k

4

I∑
j=1

(
j〈x2sjj〉

)
, (2.16)

and depends on third-order moments 〈x2sjj〉. Using the approach introduced earlier

for obtaining the mean protein level, we close moment equations by writing the time

evolution of moments 〈x2sij〉

d〈x2si1〉
dt

= 2kx〈u〉〈xsi1〉+
k

4
pi

I∑
j=1

(
j〈x2sjj〉

)
− ik〈x2si1〉, (2.17)

d〈x2sij〉
dt

= 2kx〈u〉〈xsij〉 − ik〈x2sij〉+ ik〈x2s(i−1)j〉, j = {2, . . . , i} . (2.18)

Note that the moment dynamics for 〈x〉 and 〈xsij〉 obtained in the previous section

(equations (2.8), (2.11), and (2.12)) are identical for all the models in Fig. 2.2, irre-

spective of whether the noise mechanism is modeled deterministically or stochastically.
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Equations (2.8), (2.9)-(2.12), and (2.16)-(2.18) represent a closed set of linear differen-

tial equations and their steady-state analysis yields

〈x2sij〉 =
k2
x〈u〉2〈τ s〉

(
3 + CV 2

τ s

)
3ik

pi +
2k2

x〈u〉2

i2k2

(
j2 + 2ij + j

2i

)
pi. (2.19)

From (2.19)

〈x2〉 =

〈
x2

I∑
i=1

i∑
j=1

sij

〉
=

I∑
i=1

i∑
j=1

〈x2sij〉 = k2
x〈u〉2

〈τ 3
s〉+ 4CV 2

τ s〈τ s〉
3 + 6〈τ s〉3

3〈τ s〉
,

(2.20)

〈τ 3
s〉 =

(
1 + 3CV 2

τ s + 2
I∑
i=1

pi
i2

)
〈τ s〉3. (2.21)

Using (2.20) and the mean protein count quantified in (2.15), we use the following

steady-state coefficient of variation squared

CV 2 ≡ 〈x
2〉 − 〈x〉

2

〈x〉
2 , 〈xi〉 =

∫ ∞
0

∫ ∞
0

xip(x, τ)dxdτ (2.22)

to quantify noise. Here τ denotes cell-cycle time, and p(x, τ) is probability of having x

molecules at cell-cycle time τ . Note that 〈xisij〉 in (2.11)-(2.12) and (2.17)-(2.18) can

be seen as expected value conditioned on cell-cycle stage sij which is the measure of

cell age τ in our model Using this equation we have

CV 2
e =

1

27
+

4
(

9 〈τ
3
s〉

〈τ s〉3 − 9− 6CV 2
τ s − 7CV 4

τ s

)
27
(
3 + CV 2

τ s

)2 , (2.23)

where CV 2
e represents the noise contribution from random cell-division events. Since

cell division is a global event that affects expression of all genes, this noise contribution

can also be referred to as extrinsic noise [80–83]. In reality, there would be other

sources of extrinsic noise, such as, fluctuations in the gene-expression machinery that

we have ignored in this analysis.

Note that CV 2
e → 1/27 as τ s approaches a delta distribution, i.e., cell divisions

occur at fixed time intervals. We discuss simplifications of (2.23) in various limits. For

example, if the time taken to complete cell cycle is lognormally distributed, then

〈τ 3
s〉

〈τ s〉3
=
(
1 + CV 2

τ s

)3
=⇒ CV 2

e =
1

27
+

4
(
21CV 2

τ s + 20CV 4
τ s + 9CV 6

τ s

)
27
(
3 + CV 2

τ s

)2 (2.24)
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and extrinsic noise monotonically increases with CV 2
τ s . If fluctuations in τ s around

〈τ s〉 are small, then using Taylor series

〈τ 3
s〉/〈τ s〉3 ≈ 1 + 3CV 2

τ s . (2.25)

Substituting (2.25) in (2.23) and ignoring CV 4
τ s and higher order terms yields

CV 2
e ≈

1

27
+

28CV 2
τ s

81
, (2.26)

where the first term is the extrinsic noise for CV 2
τ s → 0 and the second term is the

additional noise due to random cell-division events.

2.4.2 Contribution from Partitioning Errors

Next, we consider the model illustrated in Fig. 2.2C with both random cell-

division events and partitioning of protein between the two daughter cells. Thus, the

protein noise level here represents the contribution from both these sources. The time

evolution of 〈x2〉 and 〈x2sij〉 are given by

d〈x2〉
dt

= 2kx〈u〉〈x〉+
k

4
b

I∑
j=1

(j〈xsjj〉)−
3k

4

I∑
j=1

(
j〈x2sjj〉

)
, (2.27)

d〈x2si1〉
dt

= 2kx〈u〉〈xsi1〉+
k

4
pi

I∑
j=1

(
j〈x2sjj〉

)
+
k

4
bpi

I∑
j=1

(j〈xsjj〉)− ik〈x2si1〉, (2.28)

d〈x2sij〉
dt

= 2kx〈u〉〈xsij〉 − ik〈x2sij〉+ ik〈x2s(i−1)j〉, j = {2, . . . , i} . (2.29)

Note that (2.27)-(2.28) are slightly different from their counterparts obtained in the

previous section (equations (2.16) and (2.17)) with additional terms that depend on

b, where b quantifies the degree of partitioning error as defined in (2.5). As expected,

(2.27)-(2.28) reduces to (2.16)-(2.17) when b = 0 (i.e., deterministic partitioning).

Computing 〈x2sij〉 by performing a steady-state analysis of (2.27)-(2.29) and using a

similar approach as in (2.20) we obtain

〈x2〉 = k2
x〈u〉2

〈τ 3
s〉+ 4CV 2

τ s〈τ s〉
3 + 6〈τ s〉3

3〈τ s〉
+

2bkx〈u〉〈τ s〉
3

. (2.30)
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Finding CV 2 of the protein level and subtracting the extrinsic noise (CV 2
e found in

(2.23)) yields

CV 2
b =

4b

3(3 + CV 2
τ s)

1

〈x〉
, (2.31)

where CV 2
b represents the contribution of partitioning errors to the protein noise level.

Intriguingly, while CV 2
b increases with b, it decrease with CV 2

τ s . Thus, as cell-division

times become more random for a fixed 〈τ s〉 and 〈x〉, the noise contribution from

partitioning errors decrease. It turns out that this dependence of CV 2
b on CVτ s is a

direct result of the second equation in (2.5), where stochasticity in the partitioning

process increases linearly with x, the number of protein molecules just before division.

Based on (2.15), one needs to reduce kx or 〈u〉 to maintain a fixed 〈x〉 for increasing

randomness in cell-division times. Since the average number of protein molecules just

before division is 2kx〈u〉〈τ s〉, a reduction in kx or 〈u〉 results in a lower number of

protein molecules before division, and hence, lesser noise from partitioning as per (2.5)

and a smaller CV 2
b . This reasoning is supported by the fact that if we redefine the

noise in the partitioning process to make it independent of x, i.e. modify (2.5) as

〈x+〉 =
x

2
,
〈
x2

+

〉
− 〈x+〉2 = b, (2.32)

then the noise contribution from partitioning errors is given by

CV 2
b =

4b

3

1

〈x〉
2 , (2.33)

and the dependence CV 2
b on CVτ s disappears. Finally note that CV 2

b can be obtained

from a stochastic hybrid system where cell-cycle time and production events are mod-

eled deterministically and the only source of stochasticity is partitioning errors. For

this model the noise contribution will be equal to that of the current model when the

mean protein levels right before the division in both models are the same.
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Figure 2.3: Scaling of noise as a function of the mean protein level for
different mechanisms. The contribution of random cell-division events
to the noise in protein copy numbers (extrinsic noise) is invariant of the
mean. In contrast, contributions from partitioning errors at the time of
cell division (partitioning noise) and stochastic expression (production
noise) scale inversely with the mean. The scaling factors are shown as
a function of the protein random burst size u, noise in cell-cycle time
(CV 2

τ s) and magnitude of partitioning errors quantified by b (see (2.5)).
With increasing mean level the total noise first decreases and then reaches
a baseline that corresponds to extrinsic noise. For this plot, u is assumed
to be geometrically distributed with mean 〈u〉 = 1.5, CV 2

τ s = 0.05 and
b = 1 (i.e., binomial partitioning).
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2.4.3 Contribution from Stochastic Expression

Finally, we consider the full model in Fig. 2.2A with all the three different noise

sources. For this model, moment dynamics is obtained as

d〈x2〉
dt

= kx〈u2〉+ 2kx〈u〉〈x〉+
k

4
b

I∑
j=1

(j〈xsjj〉)−
3k

4

I∑
j=1

(
j〈x2sjj〉

)
, (2.34)

d〈x2si1〉
dt

= kx〈u2〉〈si1〉+ 2kx〈u〉〈xsi1〉+
k

4
pi

I∑
j=1

(
j〈x2sjj〉

)
+
k

4
bpi

I∑
j=1

(j〈xsjj〉)

− ik〈x2si1〉, (2.35)

d〈x2sij〉
dt

= kx〈u2〉〈sij〉+ 2kx〈u〉〈xsij〉 − ik〈x2sij〉+ ik〈x2s(i−1)j〉, j = {2, . . . , i} . (2.36)

Compared to (2.27)-(2.29), (2.34)-(2.36) has additional terms of the form kx〈u2〉,

where 〈u2〉 is the second-order moment of the protein burst size in (2.1). Performing

an identical analysis as before we obtain

〈x2〉 = k2
x〈u〉2

〈τ 3
s〉+ 4CV 2

τ s〈τ s〉
3 + 6〈τ s〉3

3〈τ s〉
+

2bkx〈u〉〈τ s〉
3

+
kx〈u2〉〈τ s〉(3CV 2

τ s + 5)

2
,

(2.37)

which yields the following total protein noise level

CV 2 =CV 2
e + CV 2

b + CV 2
u = CV 2

e +

Partitioning noise (CV 2
b )︷ ︸︸ ︷

4b

3(3 + CV 2
τ s)

1

〈x〉
+

Production noise (CV 2
u )︷ ︸︸ ︷

3CV 2
τ s + 5

3(3 + CV 2
τ s)

〈u2〉
〈u〉

1

〈x〉︸ ︷︷ ︸
Intrinsic noise

,

(2.38)

that can be decomposed into three terms. The first term CV 2
e represents the con-

tribution from random cell-division events and is given by (2.23). The second term

CV 2
b is the contribution from partitioning errors determined in the previous section

(partitioning noise), and the final term CV 2
u is the additional noise representing the

contribution from stochastic expression (production noise). A common approach to

study gene expression noise is to decompose it into intrinsic and extrinsic components.

These components are obtained experimentally using the dual-color assay that mea-

sures the correlation in the expression of two identical copies of the gene [75]. As per

this definition, CV 2
e represents the extrinsic noise as random cell-division events are
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common to all genes and makes expression levels more correlated in individual cells.

In contrast, the contributions from noisy production and partitioning represent the

intrinsic noise as they are specific to an individual gene and make expression levels less

correlated.

An interesting observation from (2.38) is that CV 2
τ s has opposite effects on CV 2

b

and CV 2
u (for fixed mean protein level). While CV 2

b monotonically decreases with

increasing CV 2
τ s , CV

2
u increases with CV 2

τ s . Thus, if 〈x〉 is small and b is large, then

the noise contributed from partitioning dominates the total noise, and making cell-cycle

duration more random will reduce the total noise. However, since both CV 2
e and CV 2

u

are monotonically increasing functions of CV 2
τ s , the total noise will begin to increase

with CV 2
τ s once these noise sources become dominant. It turns out that in certain

cases the intrinsic noise becomes invariant of CV 2
τ s . For example, when u = 1 with

probability one, i.e., proteins are synthesized one at a time at exponentially distributed

time intervals and b = 1 (binomial partitioning)

CV 2 = CV 2
e +

4

3(3 + CV 2
τ s)

1

〈x〉
+

3CV 2
τ s + 5

3(3 + CV 2
τ s)

1

〈x〉
= CV 2

e +
1

〈x〉
. (2.39)

In this limit the intrinsic noise is always 1/Mean irrespective of the cell-cycle time

distribution τ s [61]. Note that the average number of proteins itself depends on τ s as

shown in (2.15). Another important limit is CV 2
τ s → 0, in which case (2.38) reduces

to

CV 2 ≈

CV 2
e︷︸︸︷

1

27︸︷︷︸
Extrinsic noise

+

CV 2
b︷ ︸︸ ︷

4b

9

1

〈x〉
+

CV 2
u︷ ︸︸ ︷

5

9

〈u2〉
〈u〉

1

〈x〉︸ ︷︷ ︸
Intrinsic noise

, (2.40)

and is similar to the result obtained in [66] for deterministic cell-division times and

binomial partitioning.

Fig. 2.3 shows how different protein noise components change as a function of

the mean protein level as the gene’s transcription rate kx is modulated. The extrinsic

noise is primarily determined by the distribution of the cell-cycle time and is com-

pletely independent of the mean. In contrast, both CV 2
b and CV 2

u scale inversely with
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the mean, albeit with different scaling factors (Fig. 2.3). This observation is partic-

ularly important since many single-cell studies in E. coli, yeast and mammalian cells

have found the protein noise levels to scale inversely with the mean across different

genes [84–87]. Based on this scaling it is often assumed that the observed cell-to-cell

variability in protein copy numbers is a result of stochastic expression. However, as

our results show, noise generated thorough partitioning errors is also consistent with

these experimental observations and it may be impossible to distinguish between these

two noise mechanisms based on protein CV 2 versus mean plots unless b is known.

2.5 Noise in Synchronized Cells

The mathematical framework introduced for modeling timing of cell division can

be easily used to compute noise in synchronized cells. For example, let the cell-cycle

duration be an Erlang distribution with shape parameter I and rate parameter Ik

(i.e., pI = 1 in Fig. 1.2), which can be biologically interpreted as cells moving through

I cell-cycle stages SI1, SI2, . . . , SII . Statistical moments conditioned on the cell-cycle

stage SIj can be obtained using

〈xm|sIj=1〉 =
〈sIjxm〉
〈sIj〉

, m ∈ {1, 2}. (2.41)

Using (2.41) and moments 〈xmsIj〉 obtained from (2.14) and (2.34)-(2.36), yields the

following conditional mean

〈x|sIj=1〉 = kx〈u〉〈τ s〉
(

1 +
j

I

)
, (2.42)

which increases with cell-cycle stage (i.e., higher values of j). The protein noise level

given that cells are in stage SIj is given by

CV 2|sIj=1 :=
〈x2|sIj=1〉 − 〈x|sIj=1〉

2

〈x|sIj=1〉
2

=

CV 2
e︷ ︸︸ ︷

I + 3j

3(I + j)2︸ ︷︷ ︸
Extrinsic noise

+

CV 2
b︷ ︸︸ ︷

2Ib

3(I + j)

1

〈x|sIj〉
+

CV 2
u︷ ︸︸ ︷

I + 3j

3(I + j)

〈u2〉
〈u〉

1

〈x|sIj〉︸ ︷︷ ︸
Intrinsic noise

.

(2.43)
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Note that if I is large then the first term, which represents the noise contribution from

the cell-cycle process, is negligible and can be dropped. Interesting, while the noise

contribution from partitioning errors CV 2
b decreases with cell-cycle stage, the noise

contribution from stochastic expression CV 2
u increases with j. Moreover, for u = 1

with probability 1 and b = 1, the intrinsic noise is always 1/Mean irrespective of j.

Assuming high I, the noise at cell birth (j = 1) and division (j = I) are obtained as

CV 2|sI1=1 =

CV 2
b︷ ︸︸ ︷

2b

3

1

〈x|sI1〉
+

CV 2
u︷ ︸︸ ︷

1

3

〈u2〉
〈u〉

1

〈x|sI1〉︸ ︷︷ ︸
Intrinsic noise

(2.44)

CV 2|gnn=1 =

CV 2
b︷ ︸︸ ︷

b

3

1

〈x|sII 〉
+

CV 2
u︷ ︸︸ ︷

2

3

〈u2〉
〈u〉

1

〈x|sII 〉︸ ︷︷ ︸
Intrinsic noise

, (2.45)

respectively. Thus, measurements of (2.44) and (2.45) by synchronizing cells (or by

using cell size as a proxy for cell-cycle stage) can be used to quantify b and 〈u2〉/〈u〉,

providing a novel way to separate these noise contributions.

2.6 Conclusion

In this chapter TTSHS were used to model stochasticity in protein levels affected

by cell-division events. Our analysis reveals that the noise in protein levels can decrease

with increasing randomness in cell-division events. Our study presents exciting avenues

for future research. The current formulation of TTSHS considers time intervals between

events to be independent. It will be interesting to add some form of correlation between

successive events. This is particularly important for cell division, where the cell-cycle

lengths of mother and daughter cells are generally correlated.
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Chapter 3

EFFECTS OF CELL-CYCLE DEPENDENT EXPRESSION ON
RANDOM FLUCTUATIONS IN PROTEIN LEVELS

Advances in experimental technologies over the last decade have provided im-

portant insights into gene expression at a single-molecule and single-cell resolution. An

important (but not surprising) revelation is the stochastic expression of genes inside

individual cells across different organisms [30–32,50,51,88–93]. In many cases, stochas-

tic expression is characterized by random burst-like synthesis of gene products during

transcription and translation. At the transcriptional level, promoters randomly switch

to an active state, producing a burst of RNAs before becoming inactive [22,94–98]. At

the translational level, a relatively unstable mRNA degrades after synthesizing a burst

of protein molecules [69, 70, 84, 99]. Bursty expression drives intercellular variability

in gene product levels across isogenic cells, significantly impacting biological pathways

and phenotypes [40, 42,49,86,100–103].

Mathematical models have played a key role in predicting the impact of bursty

expression on noise in the level of a given protein. However, these studies have primar-

ily relied on models where synthesis rates are assumed to be constant and invariant

of cell-cycle processes. While such an assumption is clearly violated for cell-cycle reg-

ulated genes [104], replication-associated changes in gene dosage can alter expression

parameters genome wide [64, 105–107]. It is not clear how such cell-cycle dependent

expression affects the stochastic dynamics of protein levels in single cells. To system-

atically investigate this question, we formulate a model where a cell passes through

multiple cell-cycle stages from birth to division. Cell cycle is coupled to bursty expres-

sion of a stable protein and the rate at which bursts occur depend arbitrarily on the

cell-cycle stage (Fig. 3.1). In addition to stochastic expression in bursts, the model
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Figure 3.1: Coupling cell cycle to gene expression. The outer loop shows an in-
dividual cell from birth to division passing through cell-cycle stages S1, S2,
. . . , SI , with transition rates between stages give by λi, i ∈ {1, 2, . . . , I}.
The cell is born in stage S1 and division is initiated in SI . The inner loop
(transcriptional cycle) represents the rate at which protein expression
bursts occur and is given by ki in cell-cycle stage Si.

incorporates other physiological noise sources, such as variability in the duration of

cell-cycle times and random partitioning of molecules between daughter cells at the

time of division [53,56–63].

In the proposed model, some cell-to-cell variability or noise in the protein level

is simply a result of cells being in different cell-cycle stages (i.e., asynchronous popu-

lation). We illustrate a novel approach that takes into account such cell-cycle effects,

and quantifies the noise contribution just from bursty expression and partitioning er-

rors. Formulas obtained using this approach reveal that cell-cycle dependent expres-

sion considerably alters noise, always affecting contributions from bursty expression

and partitioning errors in opposite ways. Intriguingly, our results show existence of

optimal strategies to synthesize a protein within the cell cycle that minimize noise
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contributions for a fixed mean protein level. For example, the noise contribution from

bursty expression is minimal when the protein is synthesized only towards the end of

cell cycle. We discuss intuitive reasoning behind these optimal strategies, and provide

examples of proteins that are expressed in this fashion to enhance fidelity of cell-cycle

decisions.

3.1 Model Coupling Cell Cycle to Gene Expression

Similar to chapter 2, we adopt a phenomenological approach to model cell cycle

and divided it into I stages S1, S2, . . ., SI . A newborn cell is in stage S1 and transitions

from Si to Si+1 with rate λi. In stage SI , cell division is initiated with rate λI , and

upon division the cell returns to S1. In the stochastic formulation of this model,

the cell resides in stage Si for an exponentially distributed time interval with mean

1/λi, and cell-cycle duration is a sum of I independent, but not necessarily identical,

exponential random variables. These stages can be mathematically characterized by

Bernoulli processes s1(t), s2(t), . . ., sI(t), where si(t) = 1 when the cell is in stage Si

and si(t) = 0 otherwise.

We assume that gene-expression bursts occur at a Poisson rate ki in cell-cycle

stage Si. Using the above-defined Bernoulli processes, the burst arrival rate can be

compactly written as
∑I

i=1 kisi(t). Let x(t) denote the number of protein molecules in

a singe cell at time t. Then, whenever burst events occur, the protein level is reset as

x(t) 7→ x(t) + u, (3.1)

where the protein burst size u ∈ {0, 1, 2, . . . } is a random variable independently drawn

from an arbitrary distribution, and reflects the net contribution of transcriptional and

translational bursting. The partitioning of protein molecules is similar to (2.5). The

overall model coupling cell cycle to expression is illustrated in Fig. 3.1 together with

a representative trajectory of x(t).
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3.2 Mean Protein Level for Cell-cycle Driven Expression

In the first step we obtain differential equations describing the time evolution

of the statistical moments for x(t) and si(t)

d〈s1〉
dt

= λI〈sI〉 − λ1〈s1〉,
d〈si〉
dt

= λc−i〈si−1〉 − λi〈si〉, i ∈ {2, 3, . . . , I}, (3.2a)

d〈x〉
dt

=

(
I∑
i=1

ki〈si〉

)
〈u〉 − λI

2
〈xsI〉. (3.2b)

Steady-state analysis of (3.2a) yields the average value of Bernoulli processes as

〈si〉 =
1
λi∑I
j=1

1
λj

, (3.3)

which can be interpreted as the fraction of time spent in the cell-cycle stage Si. Next

we add the time evolution of moments of the form 〈xsi〉

d〈xs1〉
dt

= k1〈u〉〈s1〉+
λI
2
〈xsI〉 −

λI
2
〈xs1sI〉 − λ1〈xs1〉, (3.4a)

d〈xsi〉
dt

= ki〈u〉〈si〉 − λi〈xsi〉+ λi−1〈xsi−1〉. j ∈ {2, . . . , n}. (3.4b)

At steady-state, the linear equations can be solved recursively to yield

〈xsi〉 =
〈u〉
λi

∑I
j=1

kj
λj

+
∑i

j=1
kj
λj∑I

j=1
1
λj

. (3.5)

Since si’s are binary random variables, the mean protein level conditioned on the cell-

cycle stage (i.e., synchronized cell population) can be obtained as

〈x|si〉 =
〈xsi〉
〈si〉

= 〈u〉

(
I∑
j=1

kj
λj

+
i∑

j=1

kj
λj

)
. (3.6)

Furthermore, using (3.5) and the fact that
∑I

i=1 si = 1,

〈x〉 =
I∑
j=1

〈xsi〉 =
〈u〉∑I
j=1

1
λj

(
I∑
i=1

I∑
j=1

kj
λiλj

+
I∑
i=1

i∑
j=1

kj
λiλj

)
. (3.7)

Next, we investigate the mean protein level 〈x〉 in some limiting cases. Consider

equal transition rates between cell-cycle stages λi = I/〈τ s〉, which corresponds to an
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Erlang distributed cell-cycle duration with mean 〈τ s〉 and shape parameter I. In this

scenario

〈x〉 =
〈u〉〈τ s〉

(∑I
i=1

∑I
j=1 kj +

∑I
i=1

∑i
j=1 kj

)
I2

, (3.8)

and further reduces to

〈x〉 = k〈u〉〈τ s〉
(

3

2
+

1

2I

)
(3.9)

when the rate of expression bursts ki = k is constant throughout the cell cycle. Finally,

in the limit of deterministic cell-cycle durations of length τ s (I →∞)

〈x〉 =
3〈u〉〈τ s〉k

2
. (3.10)

3.3 Protein Noise Level for Cell-cycle Driven Expression

The mathematical approach illustrated above is now used to obtain the noise

in protein copy numbers. By noise (cell-to-cell variability), we mean the magnitude of

fluctuations in x(t) that can be attributed to two stochastic mechanisms: bursty ex-

pression and random partitioning. Note that even in the absence of these mechanisms,

there will be cell-cycle related fluctuations with protein molecules accumulating over

time and dividing by half at random cell-division times. To correct for such cell-cycle

driven fluctuations, we define another stochastic process y(t) that estimates the protein

level if expression and partitioning were modeled deterministically. More specifically,

within the cell cycle y(t) evolves according to the following differential equation

dy

dt
= 〈u〉

I∑
i=1

kisi(t). (3.11)

At the time of cell division, the level is divided exactly by half

y(t) 7→ y(t)

2
(3.12)

with zero partitioning errors, i.e., b = 0 in (2.5). This allows us to define a new

zero-mean stochastic process z(t) corrected for cell-cycle effects

z(t) ≡ x(t)− y(t) (3.13)
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that measures the deviation in the protein count in the original stochastic model (x)

from its expected levels if noise mechanisms were modeled deterministically (y). The

protein noise level can now be defined through the dimensionless quantify

CV 2 :=
〈z2〉
〈x〉

2 , (3.14)

measuring the steady-state variance in z(t) normalized by the square of the mean level.

Since 〈x〉 = 〈y〉 and 〈xy〉 = 〈y2〉, it can be rewritten as

CV 2 =
〈(x− y)2〉
〈x〉

2 =
〈x2〉
〈x〉

2 −
〈y2〉
〈y〉

2 . (3.15)

In the context of previous chapter, 〈y2〉/〈y〉
2
− 1 is interpreted as the “extrinsic noise”

in gene expression resulting from cell-cycle effects. In contrast, CV 2 is the “intrinsic

noise” resulting from stochasticity in gene expression and partitioning processes, and

is measured by subtracting the extrinsic noise from the total noise 〈x2〉/〈x〉
2
− 1.

Having appropriately defined the noise level, we next compute it using moment

equations. The time evolution of the moments 〈z2〉 and 〈z2si〉 are given by

d〈z2〉
dt

= 〈u2〉
I∑
i=1

ki〈si〉+
bλI
4
〈xsI〉+

λI
4

〈
z2s1sI

〉
− 3

4
λI〈z2sI〉 (3.16a)

d〈z2s1〉
dt

= k1〈u2〉+
bλI
4
〈xsI〉+

λI
4

〈
z2sI

〉
− λ1〈z2s1〉, (3.16b)

d〈z2si〉
dt

= ki〈u2〉 − λi〈z2si〉+ λi−1〈z2si−1〉, i = {2, . . . , I} . (3.16c)

and depend on the fourth-order moments 〈z2s1sI〉. Exploiting the model structure as

before, it follows that 〈z2s1sI〉 = 0, and (3.2), (3.4), (3.16) constitute a “closed” set of

linear differential equations. Steady-state analysis yields the following noise level

CV 2 =

(
1

3
+

2

3

1

1 + β

)
〈u2〉
〈u〉

1

〈x〉︸ ︷︷ ︸
Bursty synthesis

+
2b

3

β

1 + β

1

〈x〉︸ ︷︷ ︸
Partitioning errors

(3.17)

that is inversely proportional to the mean 〈x〉. The noise can be decomposed into

two terms: the first term represents the contribution from protein synthesis in ran-

dom bursts and depends on the statistical moments of the protein burst size u. The
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second term is the contribution from partitioning errors and depends linearly on b.

Interestingly, results show that the effect of cell-cycle regulation on the noise level can

be quantified through a single dimensionless parameter

β =

∑I
i=1

∑I
j=1

kj
λiλj∑I

i=1

∑i
j=1

kj
λiλj

, (3.18)

that is uniquely determined by the number of cell-cycle stages in the model (I), transi-

tion rates between stages (λi), and protein synthesis rates across stages (ki). Note from

(3.17) that β affects the noise terms in opposite ways – any coupling of cell-cycle to

expression that increases β will attenuate the contribution from bursty expression but

amplifies the contribution from partitioning errors. Finally, we point out that in the

case of non-bursty expression (u = 1 with probability one) and binomial partitioning

(b = 1)

CV 2 =
1

〈x〉
. (3.19)

and the noise level is always consistent with that of a Poisson distribution irrespective

of the value of β, and hence the form of cell-cycle regulation.

3.4 Optimal Cell-cycle Regulation to Minimize Noise

We explore how different forms of cell-cycle regulation affect CV 2 and begin

with the simplest case of a constant synthesis rate ki = k, i ∈ {1, 2, . . . , I} throughout

the cell cycle. This case would correspond to a scenario where the net rate of expression

(across all copies of a gene) remains invariant to replication-associated changes in gene

dosage, as has recently been shown in different organisms [106,107]. Further assuming

equal transition rates λi = I/〈τ s〉 (Erlang distributed cell-cycle durations)

β =
2I

I + 1
, (3.20)

which reduces to β = 2 as I → ∞. Thus, in this important limit of no cell-cycle

regulation (equal ki’s) and deterministic cell-cycle duration (large I),

CV 2 =
5

9

〈u2〉
〈u〉

1

〈x〉
+

4b

9

1

〈x〉
for β = 2. (3.21)

30



1 1 

0.5 

N
o
rm

a
li
z
e
d
 P

ro
d
u

c
ti

o
n

 n
o
is

e
 N

o
rm

a
liz

e
d
 P

a
rtitio

n
in

g
 n

o
is

e
 0 

0.5 

0 

Figure 3.2: Noise comparison for different strategies coupling cell cycle to
gene expression. The noise from bursty expression (left) and partition-
ing errors (right) as given by (3.17) are shown for five different strategies:
expression only at the start of cell cycle; expression only at the cell-cycle
midpoint; constant mRNA synthesis rate throughout the cell cycle; dou-
bling of synthesis rate at the cell-cycle midpoint; expression only towards
the end of cell cycle. While noise from bursty expression is minimized
in the latter strategy, contribution from partitioning errors are lowest if
expression occurs only at the beginning of cell cycle. The cell cycle was
modeled by choosing I = 20 stages with equal transition rates, i.e., stages
have equal mean duration. The duration of each stage is an exponentially
distributed random variable. The production rates ki were chosen so as
to have the same mean protein level per cell across all cases. Note that
this plot is true for any burst size and distribution.

Next, consider the following strategies for coupling cell cycle to gene expression:

1. The burst arrival rate is assumed to increase by two-fold at the cell-cycle midpoint
due to gene duplication. Assuming even n, this corresponds to

ki = k, i ∈
{

1, . . . ,
I

2

}
(3.22a)

ki = 2k, i ∈
{
I

2
, . . . , I

}
(3.22b)

2. Expression only occurs at the start of cell cycle, i.e., k1 = k and all other ki’s are
zero.
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3. Expression only occurs at the end of cell cycle, i.e., kI = k and all other ki’s are
zero.

4. Expression only occurs at the cell cycle midpoint, i.e., k I
2

= k and all other ki’s
are zero.

For a mathematically controlled comparison, the parameter k is adjusted using (3.7)

from case-to-case so as to maintain a fixed average number protein molecules. It is

important to point out that strategies 2−4 above correspond to expression only occur-

ring at specific instants in the cell-cycle, with expression turned off for the remainder

of the cycle. Our results show that the noise contribution from bursty expression is

different depending on when the proteins are synthesized, and it is the highest (lowest)

when expression occurs at the start (end) of the cell cycle (Fig. 3.2). Furthermore, as

expected from (3.17), the noise contribution from partitioning errors exhibits a com-

pletely opposite trend.

Interestingly, a two-fold increase in the protein expression rate (due to gene

duplication) at the cell-cycle midpoint leads to a lower noise contribution from bursty

synthesis, as compared to a constant rate throughout the cell-cycle (Fig. 3.2). Is it

possible to further reduce noise levels by changing the timing of genome-duplication?

This question is particularly relevant since genes can be duplicated at different times in

the cell cycle, and depending on dosage-compensation mechanisms, have different fold-

changes in transcription rates upon duplication [64]. To investigate this scenario, we

consider a m-fold change in the synthesis rate (from k to mk) that occurs at some time

τ g from the start of cell cycle. Noise is investigated as a function of τ g and m, while

keeping a fixed average protein level through alterations in k (Fig. 3.3). Intriguingly,

our analysis reveals that for a fixed τ g, noise contribution from bursty synthesis always

decreases with increasing m (Fig. 3.3). Moreover, the minimal noise is obtained when

m is as large as possible, and the duplication event occurs close to the cell-cycle end,

i.e., the protein is expressed at a small basal rate within the cell cycle, and the rate is

increased for a small time window just before division (Fig. 3.3).
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Figure 3.3: Protein noise level from bursty expression is minimal when
gene-duplication event is at the cell-cycle end, and fold-change
in transcription is high. Left : The rate of transcription within the cell
cycle is modeled as a step function - it is equal to k (mk) before (after)
the gene-duplication event, where m is the fold-change in transcription.
The event is assumed to occur at time τ g since the start of cell cycle, and
cell division occurs at time τ s = τ g + τ d. After division, the rate again
resets to k. The times τ g and τ d are assumed to be deterministic. Right :
The noise contribution from bursty expression is plotted as a function
of τ g/τ s and m. The value of k is changed so as to keep the mean
protein level fixed. Noise levels are normalized to the noise when protein
is expressed at a constant rate throughout the cell cycle (m = 1). The
plot reveals that the noise in smallest when τ g/τ s is close to 1, and m is
large.
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Above results motivate a related but more general question: Is there an optimal

way to express a protein during the cell cycle that maximizes/minimizes protein noise

levels? Since the form of cell-cycle regulation impacts CV 2 through β, this amounts to

choosing ki’s so as to maximize/minimize it. Our result show that β is bounded from

both below and above

1 ≤ β ≤ βmax =
1
λ1

+ 1
λ2

+ . . .+ 1
λI

1
λI

. (3.23)

The minimal value of β = 1 is attained when expression only occurs at the start of cell

cycle, i.e., a non-zero k1 and all other ki’s are zero. In this case

CV 2 =
2

3

〈u2〉
〈u〉

1

〈x〉
+
b

3

1

〈x〉
for β = 1. (3.24)

with the lowest noise contribution from partitioning errors, but the highest contribution

from bursty synthesis. In contrast, the maximum value of β = βmax is attained when

expression only occurs at the end of cell cycle, i.e., a non-zero kI , and all other ki’s are

relatively small or zero. Note from (3.23) that βmax → ∞ as λI → ∞ (time spent in

stage SI approaches zero), in which case

CV 2 =
1

3

〈u2〉
〈u〉

1

〈x〉
+

2b

3

1

〈x〉
for β =∞. (3.25)

and the noise contribution from bursty synthesis is minimal.

In summary, consistent with finding of Fig. 3.3, if bursty expression is the

dominant source of noise (high u and low b), then CV 2 is minimized for a given 〈x〉

when the protein is made in the shortest time window just before cell division (Fig.

3.4). On the other hand, if randomness in partitioning error is dominant (low u and

high b), the optimal strategy is to make the protein just after cell division.

3.5 Conclusion

Theoretical model of stochastic gene expression have played a pivotal role in

understanding how noise mechanisms and biologically relevant parameters generate

differences in protein/mRNA population counts between isogenic cells [108–112]. Here
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Figure 3.4: Synthesis of proteins towards the end of cell cycle minimizes
fluctuations in copy numbers. Protein level in an individual cell
across multiple cell cycles for two strategies: a fixed transcription rate
throughout the cell cycle (top) and transcription increases drastically
just before cell division (bottom). In both cases we assumed that there
exists a small degradation of protein through the cell cycle. Trajectories
obtained via Monte Carlo simulations are shown for the stochastic model
(blue) and a reduced model where noise mechanisms are modeled deter-
ministically (gray). These levels are subtracted to obtain a zero-mean
stochastic process z(t), where fluctuations resulting from cell cycle are
removed (black). Stationary distribution of z obtained from 20, 000 MC
simulation runs is shown on the right, and the bottom strategy leads to
lower variability in z for the same mean protein level. Cell cycle and ex-
pression was modeled as in Fig. 3.1 and burst arrival rates were chosen
so as to ensure a average protein copy number of 150 molecules per cell
in both cases.
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we have expanded this theory to consider cell-cycle regulated genes. Our approach

involves a general model of cell cycle, where a cell transitioning through an arbitrary

number of stages from birth to division. The protein is assumed to be expressed

in random bursts, and the rate at which bursts arrive varies arbitrarily with cell-

cycle stage. In the case of translational bursting of proteins from mRNA, the burst

arrive rate corresponds to the mRNA synthesis (transcription) rate. In contrast, for

transcriptional bursting of mRNAs, the burst arrive rate corresponds to the frequency

with which a promoter become transcriptionally active. The key contribution of this

work is derivation of (3.7) and (3.17) that predict the protein mean and noise levels

for a given form of cell-cycle regulation.

Derivation of noise formulas enable uncovering of optimal cell-cycle regulation

strategies to minimize CV 2 for a fixed mean protein level. In the physiological case

of large bursts (〈u〉 � 1) and binomial partitioning of proteins between daughter

cells (b = 1), the contribution from bursty synthesis dominates CV 2. Our results

show that in this scenario, expression of the protein just before division is the optimal

strategy (Fig. 3.3). Intuitively, such a strategy can be understood in the context

of the number of burst events from birth to division needed to maintain a given 〈x〉

throughout the cell-cycle. It turns out that this number is highly dependent on the

form of cell-cycle regulation. Hence, any strategy that requires more burst events to

maintain the same mean protein level, lowers noise through more effective averaging

of the underlying bursty process, albeit being more energy inefficient. For example, if

protein production only occurs at the end of cell cycle, then on average, 〈x〉 number of

proteins must to added just before cell division. This corresponds to 〈x〉/〈u〉 number

of burst events per cell cycle. If proteins were only expressed at the start of cell cycle,

then one needs to add only 〈x〉/2 number of molecules, half as much as the earlier

strategy. If proteins were made at a constant synthesis rate throughout the cell cycle,

then on average, 2〈x〉/3 number of protein are added per cell cycle, which is higher than

the early-expression strategy but lower than the late-expression strategy. In summary,

gene product synthesis just before division requires production of the most number
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of protein molecules to maintain a fixed mean level within the cell-cycle, and hence,

provides the most effective noise buffering through averaging of burst events. Next, we

provide two recent examples of proteins that are indeed expressed in this fashion.

The green alga C. reinhardtii has a prolonged G1 phase, where the size of a

newborn cell increases by more than 2-fold. This long G1 phase is followed by an S/M

phase. Here the cell undergoes multiple DNA replication and fission cycles creating 2d

daughter cells, where d is number of rounds of division. Recent studies suggest that the

number of rounds of division is controlled by a protein CDKG1, that is only expressed

just before exit from G1 [113]. Another example, is the protein Whi5 in budding yeast

S. cerevisiae and its level controls the transition of cells past the Start checkpoint. This

protein in not expressed in G1, and is only synthesized late in the cell cycle [114,115].

While such selective expression of these proteins plays a critical role in coupling cell size

to cell-cycle decision, it may also minimize intrinsic fluctuations in protein levels from

the innate stochasticity in gene expression. Clearly, a more systematic study exploring

the role of noisy expression on the fidelity of these cell-cyle decisions is warranted.
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Chapter 4

STEADY-STATE MOMENT ANALYSIS OF STOCHASTIC HYBRID
SYSTEMS

In this chapter a new method for deriving steady-state moments of TTSHS is

presented. The key contributions of this method are derivation of necessary and suf-

ficient conditions for the stability of statistical moments, along with exact analytical

expressions for the steady-state moments. These results are illustrated on an example

from cell biology, where deterministic synthesis and decay of a gene product (RNA or

protein) is coupled to random timing of cell-division events. As experimentally ob-

served, cell-division events occur based on an internal timer that measures the time

elapsed since the start of cell cycle (i.e., last event). Upon division, the gene product

level is halved, together with a state-dependent noise term that arises due to random-

ness in the partitioning of molecules between two daughter cells.

4.1 Statistical Analysis of TTSHS

A convenient approach to implement the TTSHS represented by (1.1)-(1.5) is

via a timer τ that measures the time elapsed since the last event (Fig. 4.1). The

timer increases between events, and resets to zero whenever the events occur. Let the

probability that an event occurs in the next infinitesimal time (t, t + dt] be h(τ )dt,

where

h(τ) ≡ f(τ)

1−
∫ τ
y=0

f(y)dy
(4.1)

is the event arrival rate (hazard rate). Then, τ s follows the continuous positively-valued

pdf

τ s ∼ f(τ) = h(τ)e−
∫ τ
0 h(y)dy (4.2)
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Figure 4.1: Schematic of stochastic hybrid systems with timer. As the state
evolves according to a linear system, events occur at discrete times that
change the state of the system according to (1.2). The timing of events is
controlled by renewal transitions defined through a timer τ that linearly
increases over time in between events, and is reset to zero each time an
event occurs. Choosing the event arrival rate h(τ ) based on (4.1) ensures
that the time interval between events is iid with probability distribution
f .

[116–118], and at steady-state, the timer follows the continuous positively-valued pdf

τ ∼ p(τ) =
1

〈τ s〉
e−

∫ τ
0 h(y)dy (4.3)

[119]. As a simple example, a constant (timer independent) hazard rate h(τ) = 1/〈τ s〉

leads to exponentially-distributed τ s. Similarly, a monomial function

h(τ) =
k

λ

(τ
λ

)k−1

, (4.4)

with positive constants k and λ results in a Weibull distribution for τ s with pdf

f(τ) =
k

λ

(τ
λ

)k−1

e−(τ/λ)k (4.5)

and mean 〈τ s〉 = λ Γ(1 + 1/k), where Γ is the gamma function. Having defined the

probability distributions of τ s and τ , we next summarize our main results in different

theorems and corollaries.

4.1.1 Steady-state Mean Level

In general, the expected value of x depends on the entire distribution of τ s, to

derive the steady-state mean we first introduce the following lemmas.
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Lemma 1: Existence of
〈
eAτ s

〉
is a sufficient condition for existence of

〈
eAτ s

∫ τ s
0
e−Alâdl

〉
.

Proof : The fact that a matrix exponential eAτ can be written as

eAτ =
∞∑
i=0

Ai
τ i

i!
(4.6)

means that A and eAτ can commute. Thus

A

〈
eAτ s

∫ τ s

0

e−Alâdl

〉
= A

∫ ∞
0

f(τ)eAτ
∫ τ

0

e−Asâdldτ

=

∫ ∞
0

f(τ)eAτ
∫ τ

0

e−AsAâdldτ =

∫ ∞
0

f(τ)eAτ (In − e−Aτ )âdτ

= −(In −
〈
eAτ s

〉
)â,

(4.7)

�

Lemma 2: Existence of
〈
eAτ s

〉
is a sufficient condition for existence of

〈
eAτ
〉
.

Proof : We show that when all the elements of
〈
eAτ s

〉
are bounded then

〈
eAτ
〉

exists

and is finite〈
eAτ s

〉
=

∫ ∞
0

h(τ)e−
∫ τ
0 h(y)dyeAτdτ

=
(
−e−

∫ τ
0 h(y)dyeAτ

)∞
0

+

∫ ∞
0

e−
∫ τ
0 h(y)dyeAτAdτ = In + 〈τ s〉

〈
eAτ
〉
A,

(4.8)

where we used the fact that limτ→∞ e
−

∫ τ
0 h(y)dyeAτ = 0. For the sake of simplicity of

mathematical notation we proof this for scalar case of A = a. From (4.3) it follows

that ∫ ∞
0

p(τ)dτ = 1⇒
∫ ∞

0

e−
∫ τ
0 h(y)dydτ = 〈τ s〉 <∞⇒ lim

τ→∞
e−

∫ τ
0 h(y)dy = 0. (4.9)

In the next, assume that limτ→∞ e
aτ is infinite, hence

lim
τ→∞

e−
∫ τ
0 h(y)dyeaτ = 0×∞. (4.10)

We use L’Hopital’s rule

lim
τ→∞

e−
∫ τ
0 h(y)dyeaτ = −1

a
lim
τ→∞

h(τ)e−
∫ τ
0 h(y)dyeaτ . (4.11)

Finally, note that we assumed moment generating function exists, hence

〈eaτ s〉 <∞⇒ lim
τ→∞

h(τ)e−
∫ τ
0 h(y)dyeaτ = 0 (4.12)
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and this completes our proof. �

By using these lemmas, the steady-state mean of protein is provided in the

following theorem.

Theorem 2 For the TTSHS (1.1)-(1.5) the steady-state mean of x exsists and is given

by

〈x〉 =
〈
eAτ

〉 (
In − J

〈
eAτ s

〉)−1
(
J

〈
eAτ s

∫ τ s

0
e−Alâdl

〉
+ r̂

)
+

〈
eAτ

∫ τ

0
e−Alâdl

〉
(4.13)

if and only if the expected value

〈
eAτ s

〉
=

∫ ∞
0

f(τ)eAτdτ (4.14)

exists and all the eigenvalues of the matrix J
〈
eAτ s

〉
are inside the unit circle.

Proof : Using (1.1), the states of TTSHS right before sth event x(ts) is related to the

states of TTSHS right after s− 1th event x+(ts−1) as

x(ts) = eAτ s
∫ τ s

0

e−Alâdl + eAτ sx+(ts−1). (4.15)

Thus, by using (1.1), the mean of the states after sth event is

〈x+(ts)〉 = J

〈
eAτ s

∫ τ s

0

e−Alâdl

〉
+ J

〈
eAτ s

〉
〈x+(ts−1)〉+ r̂. (4.16)

In order to have a finite 〈x+(ts)〉 in (4.16),
〈
eAτ s

∫ τ s
0
e−Alâdl

〉
and

〈
eAτ s

〉
should be

finite. Based on Lemma 1,
〈
eAτ s

〉
being finite means that

〈
eAτ s

∫ τ s
0
e−Alâdl

〉
is also

finite.

Moreover, from (4.16) the mean of the states right after an event in steady-state

(s → ∞) exists if and only and if eigenvalues of J
〈
eAτ s

〉
are inside the unite circle.

In this limit the steady-state mean of the states (s → ∞) right after an event can be

written as

lim
s→∞
〈x+(ts)〉 =

(
In − J

〈
eAτ s

〉)−1
(
J

〈
eAτ s

∫ τ s

0

e−Alâdl

〉
+ r̂

)
. (4.17)
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Let 〈x|τ=τ 〉 denotes the steady-state mean of the states in between events at a given

τ = τ . By using equation (1.1) and (4.17), 〈x|τ=τ 〉 is

〈x|τ=τ 〉 = eAτ
(
In − J

〈
eAτ s

〉)−1
(
J

〈
eAτ s

∫ τ s

0
e−Alâdl

〉
+ r̂

)
+ eAτ

∫ τ

0
e−Alâdl. (4.18)

The mean of the states can be obtained by unconditioning (4.18) with respect to τ by

using (4.3). Moreover, based on Lemma 1 and 2 when
〈
eAτ s

〉
is finite then

〈
eAτ
〉

and〈
eAτ

∫ τ
0
e−Alâdl

〉
are also finite. Hence, existence of

〈
eAτ s

〉
means that all the matrices

in (4.13) exists. �

While Theorem 2 represents the most general result, we consider simplifications of

(4.13) in special cases.

Corollary 1 If the TTSHS (1.1)-(1.5) satisfies Theorem 2 and the matrix A is invert-

ible, then

〈x〉 =
1

〈τ s〉
(
In −

〈
eAτ s

〉)
A−1

(
In − J

〈
eAτ s

〉)−1 (
J
(
In −

〈
eAτ s

〉)
A−1â+ r̂

)
− 1

〈τ s〉
(
In −

〈
eAτ s

〉)
A−2â− A−1â.

(4.19)

Proof: Taking integral by parts,
〈
eAτ
〉

can be written as〈
eAτ
〉

=
1

〈τ s〉

∫ ∞
0

e−
∫ τ
0 h(y)dyeAτdτ =

1

〈τ s〉

(
e−

∫ τ
0 h(y)dyeAτA−1

)∞
0

+
1

〈τ s〉

∫ ∞
0

h(τ)e−
∫ τ
0 h(y)dyeAτA−1dτ =

−1

〈τ s〉
(
In −

〈
eAτ s

〉)
A−1.

(4.20)

Moreover〈
eAτ s

∫ τ s

0

e−Alâdl

〉
=
〈
eAτ s(In − e−Aτ s)A−1â

〉
= −(In −

〈
eAτ s

〉
)A−1â. (4.21)

Finally, the last integral in (4.13) can be written as∫ ∞
0

e−
∫ τ
0 h(y)dyeAτ

∫ τ

0

e−Asâdldτ =

∫ ∞
0

e−
∫ τ
0 h(y)dyeAτ (In − e−Aτ )A−1âdτ

= −
(
In −

〈
eAτ s

〉)
A−2â− 〈τ s〉A−1â.

(4.22)

�

Thus, for an invertible matrix A, the steady-state expected value can directly be com-

puted from the moment generating function
〈
eAτ s

〉
. Interestingly, there are some
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scenarios where knowing a few lower-order moments of τ s are sufficient to determine

〈x〉.

Corollary 2 Consider the TTSHS (1.1)-(1.5) with A = 0, and all eigenvalues of the

matrix J are inside the unit circle, then

〈x〉 = (In − J)−1 (J 〈τ s〉 â+ r̂) +
〈τ 2

s〉
2〈τ s〉

â. (4.23)

only depends on the first- and the second-order moments of τ s.

Proof: When A = 0 we have the following

eAτ = In, eAτ
∫ τ

0

e−Alâdl = τ â. (4.24)

Further
1

〈τ s〉

(∫ ∞
0

e−
∫ τ
0 h(y)dy

)
=

∫ ∞
0

p(τ)dτ = 1. (4.25)

Hence (4.13) simplifies to

〈x〉 =J (In − J)−1 〈τ s〉â+ (In − J)−1 r̂ +
1

〈τ s〉

∫ ∞
0

τe−
∫ τ
0 h(y)dydτ â. (4.26)

Moreover, from equation (4.1) we can calculate the second-order moment 〈τ 2
s〉 as

〈τ 2
s〉 =

∫ ∞
0

τ 2h(τ)e−
∫ τ
0 h(y)dydτ, (4.27)

in which integrating by parts results in

〈τ 2
s〉 = 2

∫ ∞
0

τe−
∫ τ
0 h(y)dydτ. (4.28)

Hence from (4.3) we have the following

〈τ 〉 =
1

〈τ s〉

∫ ∞
0

τe−
∫ τ
0 h(y)dydτ =

〈τ 2
s〉

2〈τ s〉
, (4.29)

and (4.26) simplifies to (4.23). �

We will revisit this corollary later on, as it is pertinent to the example of gene expres-

sion.
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4.1.2 Steady-state Second-order Moments

In order to calculate the second-order moments, we start by deriving the dy-

namics of xx> in between two successive events

d
(
xx>

)
dt

=
dx

dt
x> + x

dx>

dt
= Axx> + xx>A> + âx> + xâ>. (4.30)

To proceed further, we introduce a new transformation named “vectorization”, i.e., a

linear transformation that converts a matrix into a column vector. For instance

A =

 a11 a12

a21 a22

⇒ vec(A) =
[
a11 a21 a12 a22

]>
, (4.31)

where vec() stands for the vectorization of a matrix. By putting all the columns of the

matrix xx> into one vector vec
(
xx>

)
∈ Rn2×1, (4.30) can be transformed as

dvec
(
xx>

)
dt

= (In ⊗ A+ A⊗ In)vec
(
xx>

)
+ (In ⊗ â+ â⊗ In)x, (4.32)

where ⊗ denotes the Kronecker product. Note that in transforming (4.30) to (4.32) we

used the fact that for three matrices M1, M2, and M3

vec(M1M2M3) = (M>
3 ⊗M1)vec(M2)

⇒



vec(Axx>) = vec(Axx>In) = (In ⊗ A)vec(xx>),

vec(xx>A>) = vec(Inxx
>A>) = (A⊗ In)vec(xx>),

vec(âx>) = vec(âx>In) = (In ⊗ â)x,

vec(xâ>) = vec(Inxâ
>) = (â⊗ In)x

(4.33)

[120]. It turns out that if we define a vector µ ≡
[
x> vec

(
xx>

)>]> ∈ R(n+n2)×1, its

time evolution can also be represented by a TTSHS, albeit a more complex one. More

specifically,
dµ

dt
= âµ + Aµµ, (4.34)

in between two successive events, where

Aµ ≡

 A 0

In ⊗ â+ â⊗ In In ⊗ A+ A⊗ In

 , âµ ≡
 â

0

 . (4.35)
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Furthermore, whenever an event occurs, µ is reset as

µ 7→ µ+, (4.36)

where the expected value of µ+ is given by

〈µ+〉 = Jµµ+ r̂µ, (4.37a)

Jµ ≡


J 0

B ⊗ ĉ+ J ⊗ r̂

+ĉ⊗B + r̂ ⊗ J
J ⊗ J +Q⊗Q

 , r̂µ ≡
 r̂

vec(D + r̂r̂>)

 . (4.37b)

In summary, we have recast the stochastic dynamic of µ as a TTSHS (4.34) -(4.37),

and a similar analysis as in Theorem 2 leads to the following result.

Theorem 3 Assuming the original TTSHS given by (1.1)-(1.5) satisfies Theorem 2.

Then

〈µ〉 =

〈
eAµτ

∫ τ

0

e−Aµlâµdl

〉
+ 〈eAµτ 〉

(
In2+n − Jµ

〈
eAµτ s

〉)−1
(
Jµ

〈
eAµτ s

∫ τ s

0

e−Aµlâµdl

〉
+ r̂µ

) (4.38)

if and only if all the eigenvalues of the matrix (J⊗J +Q⊗Q)
〈
eAτ s ⊗ eAτ s

〉
are inside

the unit circle.

Proof: Let us define

u ≡ eAτ s
∫ τ s

0

e−Alâdl. (4.39)

Using (4.15), the xx> right before sth event (x(ts)x
>(ts)) is related to x+(ts−1) as

x(ts)x
>(ts) =uu> + u

(
eAτ sx+(ts−1)

)>
+
(
eAτ sx+(ts−1)

)
u>

+
(
eAτ sx+(ts−1)

) (
eAτ sx+(ts−1)

)>
.

(4.40)

45



Thus the mean of the second-order moment of the states after sth event is

〈x+(ts)x
>
+(ts)〉 =Q

〈
uu>

〉
Q> + J

〈
uu>

〉
J>

+Q

(〈
ux+(ts−1)>eA

>τ s
〉

+
〈
ux+(ts−1)>eA

>τ s
〉>)

Q>

+ J

(〈
ux+(ts−1)>eA

>τ s
〉

+
〈
ux+(ts−1)>eA

>τ s
〉>)

J>

+Q
〈
eAτ sx+(ts−1)x>+(ts−1)eA

>τ s
〉
Q>

+ J
〈
eAτ sx+(ts−1)x>+(ts−1)eA

>τ s
〉
J> +B 〈u〉 ĉ>

+B〈eAτ sx+(ts−1)〉ĉ> + J 〈u〉 r̂> + J〈eAτ sx+(ts−1)〉r̂>

+ ĉ
〈
u>
〉
B> + ĉ〈x>+(ts−1)eA

>τ s〉B>

+ r̂
〈
u>
〉
J> + r̂〈x>+(ts−1)eA

>τ s〉J> +D + r̂r̂>.

(4.41)

By using vectorization, we have

vec(〈x+(ts)x
>
+(ts)〉) =(J ⊗ J +Q⊗Q)〈eAτ s ⊗ eAτ s〉vec(〈x+(ts−1)x>+(ts−1)〉)

+O(〈x+(ts−1)〉),
(4.42)

where

O(〈x+(ts−1)〉) =(J ⊗ J +Q⊗Q)(〈eAτ s ⊗ u〉+ 〈u⊗ eAτ s〉)〈x+(ts−1)〉

+ ((B ⊗ ĉ+ J ⊗ r̂)〈eAτ s〉+ (ĉ⊗B + r̂ ⊗ J)〈eAτ s〉)〈x+(ts−1)〉

+ vec(Q
〈
uu>

〉
Q> + J

〈
uu>

〉
J> +B 〈u〉 ĉ> + J 〈u〉 r̂>

+ ĉ
〈
u>
〉
B> + r̂

〈
u>
〉
J> +D + r̂r̂>).

(4.43)

Hence, the steady-state moments of vector µ right after an event exists if and only if

all the eigenvalues of (J ⊗J +Q⊗Q)
〈
eAτ s ⊗ eAτ s

〉
are inside the unit circle. The rest

of the proof is similar to that of Theorem 2. �

Remark 1: Theorems 2 and 3 provide sufficient conditions for the existence of the

first two moments of x.

Moreover in the case of Hurwitz A, i.e., the real parts of all eigenvalues of A are

negative, we have the following remark.

Remark 2: If A is a Hurwitz matrix (i.e., the deterministic continuous dynamics
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is by itself stable), J is a diagonal positive definite matrix and all of its eigenvalues

are inside the unit circle, then the steady-state mean of x exists. Moreover, if Q is

diagonal, J ⊗ J + Q ⊗ Q is positive definite and all of its eigenvalues are inside the

unit circle, then the second-order moments of x also exists. Note that in these cases

the first two moments of x remain bounded even though higher-order moments of τ s

may be unbounded.

Proof: Based on Corollary 11 of [121], for a negative definite symmetric matrix M1

and a positive semidefinite matrix M2 we have

λmin(M1M2) ≥ λmin(M1)λmax(M2), (4.44)

where λmin and λmax denote the smallest and largest eigenvalue of a matrix, respec-

tively. Based on the fact that exponential of a Hurwitz matrix is positive definite and

−J is symmetric negative definite (J is diagonal positive definite) we have

λmin(−J
〈
eAτ s

〉
) ≥ λmin(−J)λmax(e

Aτ s). (4.45)

Given the fact that λmin(−J) = −λmax(J) and λmin(−J
〈
eAτ s

〉
) = −λmax(J

〈
eAτ s

〉
), we

have

λmax(J
〈
eAτ s

〉
) ≤ λmax(J)λmax(e

Aτ s). (4.46)

The proof of the second part of this remark is from the fact that eigenvalues of Kro-

necker product of two matrices are the multiplication of their eigenvalues [122]. �

The different corollaries of Theorem 2 that consider special cases can also be

generalized to Theorem 3. For instance, if Aµ is invertible then similar to Corollary 1,

the steady-state mean of vector µ takes the form

〈µ〉 =
1

〈τ s〉
(
In2+n −

〈
eAµτ s

〉)
A−1
µ

(
In2+n − Jµ

〈
eAµτ s

〉)−1×(
Jµ
(
In2+n −

〈
eAµτ s

〉)
A−1
µ â+ r̂µ

)
− 1

〈τ s〉
(
In2+n −

〈
eAµτ s

〉)
A−2
µ âµ − A−1

µ âµ.
(4.47)

47



Moreover, as an extension of Corollary 2, when A = 0, 〈xx>〉 only depends on the first

three moments of τ s. In this limit, 〈eAµτ s〉 in (4.38) simplifies to

Aµ =

 0 0

In ⊗ â+ â⊗ In 0

 ,⇒ 〈eAµτ s〉 =

 I 0

(In ⊗ â+ â⊗ In)〈τ s〉 I

 . (4.48)

Moreover 〈
eAµτ s

∫ τ s

0

e−Aµlâµdl

〉
=

 â〈τ s〉
1
2
(In ⊗ â+ â⊗ In)â〈τ 2

s〉

 . (4.49)

Similarly

〈eAµτ s〉 =

 I 0

(In ⊗ â+ â⊗ In)〈τ 〉 I

 ,
〈
eAµτ s

∫ τ s

0

e−Aµlâµdl

〉
=

 â〈τ 〉
1
2
(In ⊗ â+ â⊗ In)â〈τ 2〉

 .
(4.50)

Moreover, from equation (4.1) we can calculate 〈τ 3
s〉 as

〈τ 3
s〉 =

∫ ∞
0

τ 3h(τ)e−
∫ τ
0 h(y)dydτ, (4.51)

in which integrating by parts results in

〈τ 3
s〉 = 3

∫ ∞
0

τ 2e−
∫ τ
0 h(y)dydτ. (4.52)

Hence, from (4.3) we have the following

〈τ 2〉 =
1

〈τ s〉

∫ ∞
0

τ 2e−
∫ τ
0 h(y)dydτ =

〈τ 3
s〉

3〈τ s〉
. (4.53)

Together with (4.29) we see that all the terms in (4.38) are only depending on the first

three moments of τ s. We next illustrate the theory developed for TTSHS to a nano

sensor and the biological example of gene expression.

4.2 Modeling Noise in Nanosensors

Nanomechanical resonators are increasingly being used for diverse applications,

such as, atomic force microscope tips, sensing forces at the atomic level, and chemical

sensors [123]. A major source of noise in these systems is the random collisions between
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surrounding gas molecules and the sensor [124]. These sensors are often kept in rarefied

atmospheres, where the time interval between collisions can be long enough for model

approximations based on Brownian noise to fail [124]. We present a TTSHS model

that mechanistically captures the noise due to gas-molecule collisions. Nanosensor

dynamics is modeled through the following mass-spring system with displacement (x1)

and velocity (x2) ẋ1

ẋ2

 =

 0 1

−ω2
n −2ζωn

x1

x2

 , (4.54)

where ωn denotes the natural frequency, and ζ the damping ratio [125]. Let gas

molecules strike the sensor at times ts with intervals between subsequent strikes τ s

assumed to be independent and identical random variables with an arbitrary distribu-

tion. Whenever collisions occur, the velocity resets as

x2(ts) 7→ x2(ts) + η, (4.55)

where η is drawn from an arbitrary distribution with zero mean and variance σ2.

Intuitively, σ2 depends on the velocity of the impinging gas molecules, which in turn is

determined by the gas temperature. Writing (4.55) in terms of TTSHS model results

in

〈x+(ts)〉 = x(ts), x = [x1 x2]> (4.56a)

〈
x+(ts)x

>
+(ts)

〉
− 〈x+(ts)〉〈x+(ts)〉> = E =


0 0

0 σ2

, (4.56b)

with Q = B = ĉ = 0. Using Theorem 3 yields the following steady-state variances of

the sensor displacement and velocity

〈x2
1〉 =

σ2

4〈τ s〉ζω3
n

, 〈x2
2〉 =

σ2

4〈τ s〉ζωn
, (4.57)

respectively. Here σ2 is the collision impact, and is quantified by the variance of the

noise term η in (4.55). Intriguingly, (4.57) shows that the magnitude of fluctuations

in the sensor displacement/velocity are inversely dependent on 〈τ s〉, and invariant of
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higher-order moments of τ s. Thus, making the timing of collisions more random (for

a fixed 〈τ s〉) has no effect on 〈x2
1〉 and 〈x2

2〉. Furthermore, measurement of 〈x2
1〉 and

〈x2
2〉 cannot discriminate between infrequent high-impact strikes (large σ2 and 〈τ s〉),

and frequent low-impact strikes (small σ2 and 〈τ s〉). It is important to point out

that (4.57) determines the sensor’s limit of detection. For example, consider a simple

displacement sensor, where the sensor’s position is read out based on an external force.

Then, the sensor’s displacement by random chance determines the lowest force that

can be accurately measured.

4.3 Quantifying Noise in Gene Expression

In chapter 2 we studied the contribution of noisy cell-cycle times in driving

stochastic variations of a stable protein, i.e., protein with no active degradation [20].

Exploiting the TTSHS framework, we present a novel unified theory of how noisy cell-

cycle times combine with randomness in the molecular partitioning process to shape

variations in the level of gene product with an arbitrary decay rate.

4.3.1 Average Gene Product Level for Random Cell-cycle Times

Consider a gene product synthesized at a constant rate kx > 0, and degrades

via first-order kinetics with rate γx > 0. Then, its level x(t) within the cell at time t

evolves as
dx

dt
= kx − γxx(t). (4.58)

Cell division events occur at times ts, s ∈ {1, 2, . . .} with cell-cycle times τ s ≡ ts−ts−1

being iid random variables. Assuming perfect partitioning of molecules between two

daughters for now, the level is exactly halved at the time of division

x+ =
x

2
with probability one. (4.59)

In the context of the original TTSHS (1.1)-(1.5) this corresponds to A = −γx, â = kx,

J = 1/2 and r̂ = Q = B = ĉ = D = 0.
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Since A = −γx < 0 and J < 1, then as per Remark 1 the mean of x exists, and

using Corollary 1

〈x〉 =
kx
γx
− kx

2γ2
x〈τ s〉

1− 〈e−γxτ s〉
1− 1

2
〈e−γxτ s〉

. (4.60)

If the gene product happens to be a protein whose half-life is much longer than the

average cell-cycle time (1/γx � 〈τ s〉), then taking the limit γx → 0 in (4.60) yields

〈x〉 =
kx〈τ s〉

(
3 + CV 2

τ s

)
2

. (4.61)

Note that (4.61) could also have been derived directly from Corollary 2. These results

exemplify the earlier point that while in general, the average gene product level depends

on the entire distribution of the cell-cycle time, in some limiting cases it is completely

characterized by just the first two moments of τ s.

4.3.2 Stochasticity in Gene Product Levels for Random Cell-cycle Times

In order to calculate the second-order moments, we define a new vector µ =

[x x2]T , whose time evolution can also be described by a TTSHS. From (4.34) it follows

that

dµ

dt
= âµ + Aµµ, Aµ =

 −γx 0

2kx −2γx

 , âµ =

 kx

0

 , (4.62)

and at the time of division

〈µ+〉 = Jµµ+ r̂µ, Jµ =

 1/2 0

0 1/4

 , r̂µ = 0. (4.63)

Since A = −γx < 0, J = 1/2, Q = 0, and J ⊗ J + Q ⊗ Q = 1/4 < 1, then based

on Remark 1 the steady-state second-order moment of x exists. We derive the terms

needed in Theorem 3

〈eAµτ s〉 =

 〈e−γxτ s〉 0

2kx
γx

(〈e−γxτ s〉+ 〈e−2γxτ s〉) 〈e−2γxτ s〉

 ,
〈
eAµτ s

∫ τ s

0

e−Aµlâµdl

〉
=

 kx
γx

(1− 〈e−γxτ s〉)
k2

γ2x
(〈e−2γxτ s〉 − 2 〈e−γxτ s〉+ 1)

 ,
(4.64)
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Figure 4.2: The noise contributions show similar behavior with respect to
decay rate, but contrasting behavior with respect to noise in
cell-cycle times. A 2D color plot of the two noise contributions in (4.70)
as a function of the gene product decay rate and the noise in cell-cycle
times. Increasing CV 2

τ s increases the noise contribution from random cell-
cycle times, but decreases the contribution form random partitioning.
Both noise contributions decrease monotonically with increasing decay
rate. Noise levels are normalized to their value when CV 2

τ s = 0 and
γx = 0.1 hr−1. We used gamma distributed τ s with a fixed mean cell-
cycle time of 〈τ s〉 = 2hrs. The mean of x is fixed at 100 molecules by
simultaneously changing kx.

and

〈eAµτ 〉 =

 〈e−γxτ 〉 0

2kx
γx

(〈e−γxτ 〉+ 〈e−2γxτ 〉) 〈e−2γxτ 〉

 ,
〈
eAµτ

∫ τ

0

e−Aµlâµdl

〉
=

 kx
γx

(1− 〈e−γxτ 〉)
k2

γ2x
(〈e−2γxτ 〉 − 2 〈e−γxτ 〉+ 1)

 .
(4.65)

Using the fact that

〈e−γxτ 〉 =
1

〈τ s〉
1

γx

(
1−

〈
e−γxτ s

〉)
, 〈e−2γxτ 〉 =

1

〈τ s〉
1

2γx

(
1−

〈
e−2γxτ s

〉)
, (4.66)
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equation (4.65) can be changed to just contain expected values with respect to τ s.

Putting these matrices and vectors back in Theorem 3 we derive 〈x2〉 as

〈x2〉 =
k2
x

γ2
x

+
k2
x

16γ3
x〈τ s〉

−14 + 17〈e−γxτ s〉+ 〈e−2γxτ s〉 (2− 5〈e−γxτ s〉)(
1− 1

4
〈e−2γxτ s〉

) (
1− 1

2
〈e−γxτ s〉

)
.

(4.67)

Using the coefficient of variation squared to quantify the noise in x

CV 2
e ≡

〈x2〉 − 〈x〉
2

〈x〉
2

=
−8
(
1− 1

4
〈e−2γxτ s〉

)
(1− 〈e−γxτ s〉)2

+ 4γx〈τ s〉
(
1− 1

4
〈e−γxτ s〉2

)
(1− 〈e−2γxτ s〉)

8
(
1− 1

4
〈e−2γxτ s〉

) (
−1 + 〈e−γxτ s〉+ 2γx〈τ s〉(1− 1

2
〈e−γxτ s〉)

)2 ,

(4.68)

where CV 2
e denotes the noise in the gene product level due to randomness in cell-cycle

times. Before analyzing this formulas further, we next consider another physiologically

relevant noise source that arises from molecular partitioning errors.

4.3.3 Inclusion of Randomness in the Molecular Partitioning Process

As mentioned before, biomolecules in the mother cell are probabilistically par-

titioned between the two daughters at the time of division. Randomness in the parti-

tioning process can be incorporated in the TTSHS framework with each division event

resetting x 7→ x+ as shown in (2.5).

With the above modification we have a TTSHS where A = −γx, â = kx, J =

1/2, B = b, ĉ = 1/8, and r̂ = Q = D = 0. While the steady-state mean of gene

product level is still the same as (4.60), inclusion of the nontrivial noise term in (2.5)

leads to (from Theorem 3)

〈x2〉 =
bkx

8γ2
x〈τ s〉

1− 〈e−2γxτ s〉
1− 1

4
〈e−2γxτ s〉

1− 〈e−γxτ s〉
1− 1

2
〈e−γxτ s〉

+
k2

γ2
x

+
k2

16γ3
x〈τ s〉

−14 + 17〈e−γxτ s〉+ 〈e−2γxτ s〉 (2− 5〈e−γxτ s〉)(
1− 1

4
〈e−2γxτ s〉

) (
1− 1

2
〈e−γxτ s〉

) ,

(4.69)

which yields the following elegant decomposition for gene product noise levels

Total Noise =
〈x2〉 − 〈x2〉
〈x2〉

= CV 2
e + CV 2

b ,

CV 2
b = b

1− 〈e−2γxτ s〉
4− 〈e−2γxτ s〉

1− 〈e−γxτ s〉
−1 + 〈e−γxτ s〉+ 2γx〈τ s〉(1− 1

2
〈e−γxτ s〉)

1

〈x〉
.

(4.70)
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Figure 4.3: Gene product noise levels can both increase or decrease with
increasing noise in cell-cycle times. The total noise in (4.70) is
plotted as a function of parameter b in the partitioning process and noise
in cell-cycle times. While for small (large) values of b the noise levels
increase (decrease) with increasing CV 2

τ s , intermediate values of b can
make the total noise approximately invariant of CV 2

τ s . Noise levels are
normalized to their value when CV 2

τ s = 0, the mean of x is fixed at 20
molecules by simultaneously changing kx, and γx = 0.1 hr−1. The rest
of parameters are chosen equal to their value in Fig. 4.2.

Here CV 2
e is the noise contribution for random cell-cycle times as determined earlier,

and the new term CV 2
b , quantifies the contribution from partitioning noise. Note

that unlike CV 2
e , CV 2

b is inversely related to the mean 〈x〉, and would become the

dominating noise term at low molecular levels.

Both noise contributions CV 2
e and CV 2

b monotonically decrease to zero with

increasing degradation rate γx, for a fixed mean 〈x〉 (Fig. 4.2). This makes intuitive

sense, as rapid turnover rates allow for faster convergence to mean levels after random

perturbations. In the limit of fast decay rate (γx → ∞), we obtain the following

asymptotes

CV 2
e ≈

1

8γx〈τ s〉
, CV 2

b ≈
1

8γx〈τ s〉
b

〈x〉
, (4.71)
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which only depend on the mean cell-cycle times and show very similar scaling that

differ by a factor of b over mean. Interestingly, noise contributions show contrasting

behavior to increasing noise in cell-cycle times – increasing CV 2
τ s for fixed τ s increases

CV 2
e , but decreases CV 2

b (Fig. 4.2B) This implies that depending on the degree of

randomness in partitioning (parameter b), the total noise may decrease, increase, or

remain somewhat invariant of CV 2
τ s (Fig. 4.3). Finally, taking the limit γx → 0 in

(4.70), we recover our prior result for stable gene products [20]

Total noise =

CV 2
e︷ ︸︸ ︷

1

27
+

4
(

9 〈τ
3
s〉

〈τ s〉3 − 9− 6CV 2
τ s − 7CV 4

τ s

)
27
(
3 + CV 2

τ s

)2 +

CV 2
b︷ ︸︸ ︷

4b

3(3 + CV 2
τ s)

1

〈x〉
.

(4.72)

4.4 Conclusion

Our main results (Theorems 2 and 3) connect these moments to the system

dynamics and the distribution of event arrival times. While knowledge of the entire

distribution of τ s is generally needed to compute the moments, but if A = 0 then the

mean of x just depends on the first two moments of τ s, and the second-order moments

of x depend on the first three moments of τ s (Corollary 2).
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Chapter 5

CONTROL DESIGN AND ANALYSIS OF A STOCHASTIC
EVENT-DRIVEN SYSTEM

We considered a feedback loop which is subject to different sources of noise

and stochasticity: 1) The plant dynamics are subject to external disturbances. 2)

The controller is not always interacting with the plant and is only connected to the

plant in random times. 3) The control law is not precise and contains noise. Applying

the control law in specific times is a promising method for reducing the energy and

resource consumption [12, 126, 127]. Previous works have dealt with designing control

strategies to improve system performance. In particular, different strategies are desired

that reduce the number of times a control component needs to communicate with the

plant. Examples of such strategies include event-driven control, where the new control

law applied when the state of the system meets a certain condition [13, 14, 128, 129];

self-driven control, where the state of the system at the time of applying the control

law is used to determine the next control time [15, 17, 130, 131]; time-driven control,

where the control law is applied at fixed times [132–134].

It turns out a variation of TTSHS is an efficient tool to study the aforementioned

control loop. We consider a system whose states are modeled as Stochastic Differential

Equations (SDEs). These SDEs naturally capture the disturbances in the system. For

example, if the disturbance is state independent (dependent) then the corresponding

drift and diffusion terms of the SDEs could be taken as state independent (dependent).

Further, to capture the randomness in the control times, we model them using a renewal

process.

The framework presented here can be used to study time-driven control. More-

over, we have previously shown that some biological systems where resets happen
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because states satisfy a certain condition (event-driven) can be transformed to such

framework [23, 135]. Since here the system under study is subject to random distur-

bance, the time intervals at which states meet a certain value is random with weak

correlation between them. Hence we can assume that they happen in independent and

identically distributed time intervals based on an underlying renewal process. This

means that the current framework is fairly general and can model a large set of sys-

tems.

We provide the necessary and sufficient conditions on stability of first- and

second-order moments of the states of system. Further, we quantify the contribution

of each noise source to the states of system. We show that the exact results combined

with stability conditions can be used to design controllers to meet desired performance

criterion. Finally, we demonstrate our method via different examples. An interesting

observation is that while rare and randomly transmission times are expected to increase

noise in a system, these might even reduce the noise in the system in some parameter

regimes.

5.1 Stochastic Control of Event-driven Linear Systems

Let the states of the system x ∈ Rn×1 evolve according to the following stochas-

tic differential equation

dx = (â+ Ax(t) +Bu(t)) dt+ (E +Dx(t)1n)dwn, (5.1)

where u(t) ∈ Rm×1 denotes the controller. Here â ∈ Rn×1 is a constant vector, and

A ∈ Rn×n, B ∈ Rn×m, E ∈ Rn×n, D ∈ Rn×n are constant matrices; 1n is a 1× n unit

matrix. In addition wn is a n-dimensional Wiener process satisfying

〈dwn〉 = 0, 〈dwndw
>
n 〉 = Indt. (5.2)

While the first part in the right-hand side of (5.1) determines dynamics of the plant,

the second part represents the contribution of disturbance to the system. The state-

independent disturbance is modeled through E, and Dx(t)1n presents state-dependent

disturbance.
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Transmission times 

Figure 5.1: Model schematic of an event-driven control loop. Left : The con-
troller is far from the plant hence the feedback loop is connected through
a network. In between transmission times, plant uses the previous control
law which is maintained in hold. Any time that connection occurs, the
hold reads the new control law which is calculated based on the current
values of states of the system. Right : The mathematical representation
of system as a stochastic hybrid system. Resets are the times in which
connection occurs. Any time that a transmission occurs, a new control
law is applied to the plant. However due to presence of errors, an extra
term η is added to the system.

The controller connects to the plant in random times ts, s ∈ {1, 2, . . .} as shown

in Fig. 5.1, and the time interval between transmission times

τ s ≡ ts − ts−1 (5.3)

is an independent and identically distributed (iid) random variable that follows a con-

tinuous positively-valued probability density function f .

The controller is designed based on state feedback, i.e., the full state x is avail-

able and the input u is a function of x [136]. Whenever the controller communicates

with the plant, the control law resets as

u+ 7→ Kx+ η, K ∈ Rm×n. (5.4)

Here K is the matrix of controller gains and η denotes the noise in the control law. We

assume that η is a vector of zero-mean noise terms and 〈ηη>〉 = Σ ∈ Rm×m, where Σ

is a diagonal matrix. In between the connections, the control law remains constant.
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5.2 Control Design from Steady-state Moments

Motivated by control designs for such system [137–139], we define the main

goal as obtaining a control law that derive the system to the desired mean level while

minimizing the variance of system. We can set up this problem as an optimization

problem

MinimizeK

(
n∑
i=1

λi

(
〈x2

i 〉 − 〈xi〉
2
))

, (5.5a)

Subject to 〈x〉 = Constant, (5.5b)

where λi are weights, and xi denotes the ith state. The controller matrix K has n2

elements and the number of constraints (number of mean values) is n. Hence there

will be n2 − n degree of freedom in the system. Solving such optimization problem is

generally convoluted specifically if n is large.

Moreover, due to physical constraints, this is possible that degree of freedom

in controller is zero. For example, consider a scalar system, for this system one can

design the controller to reach to a specific mean, but then controller is unable of

changing variance to a desired level because the degree of freedom is zero. However,

such physical constraints can also be helpful, i.e. assume a controller which have n+ 1

non-zero elements in the matrix K. Then this is straightforward to solve (5.5), because

we only will have one degree of freedom. Regardless of the complexity level, in order

to solve (5.5), we need to derive exact solutions of steady-state mean and variance.

5.2.1 The Steady-state Mean of x

We first introduce a new vector that contains both the states and the controller

y ≡ [x> u>]> ∈ R(n+m)×1. Dynamics of this vector is obtained from (5.1) as

dy = (ây + Ayy(t)) dt+ (Ey +Dyy(t)1n+m)dwn+m, (5.6)

where

ây ≡

 â

0

 , Ay ≡
 A B

0 0

 , Ey ≡
 E 0

0 0

 , Dy ≡

 D 0

0 0

 , dwn+m ≡

 dwn

0

 .
(5.7)
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Further, any time that the controller transmits a new control law, the states of y

change as

〈y+〉 = Jyy, Jy ≡

 In 0

K 0

 , (5.8)

where we used (5.4) and the fact that states of the system will not change instanta-

neously during the transmissions (〈x+(ts)〉 = x(ts)). By this definition, this system

falls into the category of stochastic hybrid systems that we introduced in the earlier

chapters, and we can generalize our results to this system.

Theorem 4 The steady-state mean of vector y is

〈y〉 =
〈
eAyτ

〉 (
In+m − Jy

〈
eAyτ s

〉)−1
Jy

〈
eAyτ s

∫ τ s

0

e−Ayrâydr

〉
+

〈
e−Ayτ

∫ τ

0

e−Ayrâydr

〉
,

(5.9)

if and only if the expected value
〈
eAyτ s

〉
exists and all the eigenvalues of matrix Jy

〈
eAyτ s

〉
are inside the unit circle.

In the next part, we provide a novel approach for deriving the second-order moments

of system.

5.2.2 The Second-order Moments of x

Similar to previous chapters, our strategy is to transform the second-order mo-

ments to a similar form as in (5.6)-(5.8). To do so, we introduce a new vector

µ ≡ [x> u> vec(xx>)> vec(xu>)> vec(ux>)> vec(uu>)>]. (5.10)

Dynamics of µ between the events is given by

dµ = (âµ + Aµµ(t))dt+ (Eµ +Dµµ(t)1l)dwl, (5.11)

where l = n2 +m2 + 2mn+m+ n. Further

âµ ≡
[
â 0 vec

(
EE>

)
0 0 0

]
, (5.12)
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and

Aµ ≡



A B 0 0 0 0

0 0 0 0 0 0

M1 0 M2 M3 M4 0

0 Im ⊗ â 0 Im ⊗A 0 Im ⊗B

0 â⊗ Im 0 0 A⊗ Im B ⊗ Im

0 0 0 0 0 0


,

M1 ≡In ⊗ â+ â⊗ In +D ⊗ E1>n + E>1>n ⊗D,

M2 ≡In ⊗A+A⊗ In + nD ⊗D, M3 ≡ In ⊗B +B ⊗ In.

(5.13)

We did not give definitions of Eµ and Dµ because as we will see in Theorem 2, they

have no role in defining the mean of vector µ. Finally, in the time of transmission, the

states of vector µ(ts) change to µ(t+s ), where

〈µ+(ts)〉 = Jµµ(ts) +Rµ, Jµ ≡



In 0 0 0 0 0

K 0 0 0 0 0

0 0 In+m 0 0 0

0 0 K ⊗ In 0 0 0

0 0 In ⊗K 0 0 0

0 0 K ⊗K 0 0 0


, Rµ ≡



â

0

0

0

0

vec (Σ)


.

(5.14a)

Deterministic dynamics (7.24) and stochastic resets (5.14) are similar to (5.6) and (5.8).

Hence with a similar analysis as in previous part, we have the following theorem.

Theorem 5 Suppose that a system satisfies the hypothesis of Theorem 1. Then the

steady-state mean of vector µ is

〈µ〉 =
〈
eAµτ

〉 (
Il − Jµ

〈
eAµτ s

〉)−1
(
Jµ

〈
eAµτ s

∫ τ s

0

e−Aµrâµdr

〉
+Rµ

)
+

〈
e−Aµτ

∫ τ

0

e−Aµrâµdr

〉
,

(5.15)

if and only if all the eigenvalues of the matrix Jµ
〈
eAµτ s

〉
are inside the unit circle.
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Figure 5.2: Making transmission of the control law more random can reduce
variance of x. A) Surprisingly, by increasing the mean time intervals
between the transmissions, the noise in x contributed from disturbance
can reduce. On the other hand, increasing τ s will increase the noise
contributed from σ. This is because the added noise by controller remains
in the system for a longer time before getting corrected by a new control
law. B) Noisy transmission times also can reduce the variance contributed
from disturbance. Hence, when the noise added by controller is small,
randomly distributed times can be used to reduce variance in x. For
this plot, we used gamma distributed time intervals and variance of x
is normalized to its value at the beginning of the plot. The noise in
transmission time intervals is quantified by coefficient of variation squared
CV 2

τ s . The parameters are selected as â = 1, A = −1, E = 0.45, B = 0.5,
K = 0.5, and σ = 1. Finally, 95% confidence intervals are obtained by
running 1000 numerical simulations.

Mean of µ contains all the second-order moments of vector x. Finally, by having closed

form expression for the mean and the second-order moments, we can design the matrix

of controller gains K to reach to the desired mean and to minimize the variance.

5.3 Illustrative Examples

We illustrate our results in two examples. While the first example is a general

system that can be used to model any engineering or natural system, the second one

is motivated from systems biology.
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5.3.1 Example 1

Suppose that the state of a system x ∈ R is governed via a one dimensional

SDE as

dx = (â+ Ax(t) +Bu(t)) dt+ E dw, (5.16)

and the control law in the time of resets is

u(t+s ) 7→ Kx(t−s ) + η, (5.17)

where η is a zero mean noise term with variance σ2. Based on (5.6), the vector

y = [x u]> is governed via

dy = (ây + Ayy(t)) dt+ Eydw2, (5.18)

where

ây =

 â

0

 , Ay =

 A B

0 0

 , Ey =

 E 0

0 0

 . (5.19)

Further, at the time of a transmission, the states reset as (5.8) with Jy =

 1 0

K 0

.

Hence based on Theorem 1, the mean of x in steady-state is

〈x〉 = − â

A+BK
. (5.20)

Interestingly, the mean of x in steady-state is independent of τ s. Hence, as far as

system is stable, having rare connections between the controller and the plant does not

change the mean of x.

5.3.1.1 The Second-order Moment of the System

In order to derive the second-order moments, we define

µ = [x u x2 xu u2]. (5.21)
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Figure 5.3: The control gain can be designed to obtain any desired mean as
long as eigenvalues remain within the unit circle. A) By increas-
ing the control gain, the magnitude of eigenvalues increases resulting in
the system to move toward instability. The second eigenvalue becomes
greater than 1 first. This means that there exists a control gain that the
mean is finite, but the variance is infinite. When the other eigenvalue
becomes greater than 1 the system becomes unstable. Hence, there ex-
ists certain values of mean that we never can reach. B) The variance is
finite only when absolute value of both eigenvalues are less than 1. The
variance is normalized to its value when K = 0. For intermediate val-
ues of K, variance is less than the time in which there exists no control
(K = 0). In this figure, time intervals in between the resets are gamma
distributed with 〈τ s〉 = 1 min and CV 2

T = 0.2. The rest of parameters
are selected as â = 1.5, A = −1, and B = −1.

By this selection, âµ and Aµ in (5.12)-(5.13) are defined as

aµ =



â

0

E2

0

0


, Aµ =



A B 0 0 0

0 0 0 0 0

2â 0 2A 0 0

2B â 0 A B

0 0 0 0 0


. (5.22)
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Further, anytime that connection occurs the states of system reset to

〈µ+(ts)〉 = Jµµ(ts) +Rµ, Jµ =



1 0 0 0 0

K 0 0 0 0

0 0 1 0 0

0 0 K 0 0

0 0 K2 0 0


, Rµ =



0

0

0

0

σ2


. (5.23)

By using these matrices, the non-zero eigenvalues of Jµ
〈
eAµτ s

〉
are

spec
(
Jµ〈eAµτ s〉

)
=

[
A
〈
eAτ s

〉
+BK

〈
eAτ s

〉
−BK

A
,

A
〈
e2Aτ s

〉
(A+BK)2 +BK(BK − 2A 〈eaτ s〉 (A+BK))

A2

]
.

(5.24)

If these eigenvalues are inside the unit circle then the mean and the variance of x are

given by (5.20) and

var(x) = 〈x2〉 − 〈x〉2 =

Fluctuations contributed from noise in control law︷ ︸︸ ︷
σ
2
B2(A〈τs〉 −

〈
eAτs

〉
+ 1)

(
A2(

〈
eAτs

〉
+ 1)〈τs〉 + 2BK(

〈
eAτs

〉
(A〈τs〉 − 1) + 1)

)
A3〈τs〉2(A + BK)(A(

〈
eAτs

〉
+ 1) + BK(

〈
eAτs

〉
− 1))

+

Fluctuations contributed from disturbance︷ ︸︸ ︷
E2

(
−A4(

〈
eAτs

〉
+ 1)〈τs〉2 + A2BK〈τs〉(−2A

〈
eAτs

〉
〈τs〉 +

〈
e2Aτs

〉
− 1) + 2B2K2(−A〈τs〉 +

〈
eAτs

〉
− 1)(

〈
eAτs

〉
(A〈τs〉 − 1))

)
2A3〈T 〉2(A + BK)(A

〈
eAτs

〉
+ 1) + BK(

〈
eAτs

〉
− 1))

.

(5.25)

Note that the variance can be written as the sum of two terms: 1) Variance contributed

from the noise in control law (σ). 2) Variance contributed from the disturbance (E).

Timing of transmissions affects both of these terms.

Interestingly, in some parameter regimes rare control of the system reduces

the variance. For example, suppose that disturbance is large (E is large) and the

fluctuations due to disturbance are dominant. In this limit, rare control of the system

can reduce the noise as shown in Fig. 5.2. Surprisingly, the variance of x in this limit

is less than

− E2

A+BK
(5.26)

which is the variance for the case in which the controller and the plant are connected

all the time. This means that rare transmissions of the control law not only saves

resources, but also reduces the variance in x.
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Moreover, in Fig. 5.2 we also illustrated the effect of noise in transmission times

on variance of x. As expected, increasing the noise in the timing of transmissions in-

creases fluctuations contributed from noise in the control law (raised from σ). However,

again these noisy transmission times can be used to reduce the effect of fluctuations

contributed from disturbance. It is important to point that the aforementioned results

just occurs in specific parameter regimes. In most of the cases, by increasing the mean

time intervals or randomness in the timing of transmissions, the variance of x increases.

5.3.1.2 Control Design

For this system, the non-zero eigenvalues of the matrix Jy
〈
eAτ s

〉
are given by

(5.24). Hence in order to have finite mean and variance of x, it is necessary and

sufficient that∣∣∣A 〈eAτ s〉+BK
〈
eAτ s

〉
−BK

A

∣∣∣ < 1, (5.27a)∣∣∣A 〈e2Aτ s
〉

(A+BK)2

A2
+
BK(BK − 2A 〈eaτ s〉 (A+BK))

A2

∣∣∣ < 1, (5.27b)

where | | denotes the magnitude. In addition, we can design the controller for having

the desired mean of state by choosing K as

K = − â+ A〈x〉desired

B〈x〉desired

. (5.28)

However, satisfying (5.27) means that reaching to a desired x may not be possible.

The interplay between the control gain and the stability of mean and variance of is

shown in Fig. 5.3.

5.3.2 Example II

Consider a system with two states x = [x1 x2]>, in which its dynamics is given

by

dx = (â+ Ax(t) +Bu) + Edw2, (5.29)

where

â =

 a1

0

 , A =

 −γ1 0

a2 −γ2

 , B =

 1 0

0 1

 , C =

 √a1 0

0 0

 . (5.30)
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This example is motivated from biochemical reactors, i.e., assume that x1 and x2 are

levels of species 1 and 2, respectively. Here we assumed that molecules of species 1

are produced at a constant rate a1. Later molecules of species 2 are produced from

species 1, i.e., its production rate is a2x1. We assumed that count level of species 2 is

considerably higher than species 1. Hence the production of species x1 is noisy and we

used a Langevin approximation of this reaction [140]. Finally, molecules of x1 and x2

degrade with rates γ1 and γ2, respectively.

This biochemical reactor is controlled through a network. Any time that trans-

mission happens, the control law changes as

〈u+(ts)〉 = Kx(ts), K =

 −k1 −k2

0 −k3

 . (5.31)

This reactor is controlled in two different ways: 1- A UV radiation that increases

death rate of molecules [141, 142]. This control law is implemented by manipulating

k1 and k3. 2- The resources need to produce species 1 is controlled based on levels of

species 2 through the parameter k2. Such negative feedback loops are common motifs

in biological systems [72,143,144].

By introducing y = [x> u>]> ∈ R4×1, this system can be written in the form

of (5.6). Hence the methods explained in this paper can be applied, which results in

〈x1〉 =
a1(γ2 + k3)

a2k2 + γ1(γ2 + k3) + γ2k1 + k1k3

, (5.32a)

〈x2〉 =
γ2 + k3

a2

〈x1〉. (5.32b)

Similar to (5.20), the mean values are independent of statistical characteristics of τ s.

We can select k1, k2, and k3 to have any desired mean level. Moreover, we have one

degree of freedom (two means and three control gains) hence we can use this degree

of freedom to minimize variance as in (5.5). The overall results for the mean and the

variance of system as functions of feedback gains are similar to that in Fig. 5.3.
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5.4 Conclusion

We studied statistical moments of a control system in which the controller and

the plant are communicating in random times. We derived the exact solutions of mean

and second-order moments as well as the stability conditions. We showed that these

results can be used to design controllers for keeping the mean of states on a desired

level. We demonstrate our method on different examples. Surprisingly, the mean is

independent of transmission times statistical moments. In addition, we observed that

under specific parameter regimes, rare transmissions of the control law not only save

resources of the system but also reduce fluctuations. Further, we showed that noisy

transmission times can reduce the fluctuations in x.

This is important to note that the current framework only is applicable to a sub-

class of systems. In order to include all classes of such control loops (e.g. self-driven)

we need to consider the hazard rate in equation (4.1) to be a function of x as well.

The future work will design the control law for such a case. Moreover, we considered

a general form for the noise terms added to the plant in the time of applying control.

This noise can be quantified with respect to its source [145–147]. Another avenue of

research will be modeling this noise term mechanistically.
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Chapter 6

STOCHASTIC HYBRID SYSTEMS WITH FAMILIES OF RANDOM
DISCRETE EVENTS

We consider a class of TTSHS where the state evolves according to a linear

dynamical system. This continuous time evolution is interspersed by discrete events

that occur at random times and change (reset) the state based on a linear affine map.

In particular, we consider two families of mutually independent discrete events, with

the first family of resets occurring at exponentially-distributed times. The second

family of resets is generally-distributed, in the sense that, the time intervals between

successive events are independent and identically distributed random variables that

follow an arbitrary continuous positively-valued probability density function. For this

class of stochastic systems, we provide explicit conditions that lead to finite stationary

moments, and the corresponding exact closed-form moment formulas. These results

are illustrated on protein concentration. In summary, this chapter expands the class of

stochastic hybrid systems for which statistical moments can be derived exactly without

any approximations, and these results have applications for studying random phenom-

ena in diverse areas.

6.1 Model Formulation

The class of TTSHS under consideration have the following ingredients:

1. Continuous dynamics: The states of the system x ∈ Rn×1 are governed by
time-invariant ordinary differential equations

dx(t)

dt
= â+ Ax(t), (6.1)

where vector â ∈ Rn×1 and matrix A ∈ Rn×n are constant.
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2. Exponentially-distributed resets: The first family of resets occur at expo-
nentially distributed time intervals, i.e., Poisson arrival of events. Let the mean
time interval in between these resets be denoted by 1/h1 where h1 is a constant.
Then, the probability of an event occurring in the next infinitesimal time interval
(t, t+dt] is h1dt. Whenever these events occur the state is reset based on a linear
affine map

x 7→ J1x+ r̂1, (6.2)

where J1 ∈ Rn×n and r̂1 ∈ Rn×1 are a constant matrix and vector, respectively.

3. Generally-distributed resets: The second family of resets occur in non expo-
nentially distributed time intervals. Events occur at times ts, s ∈ {1, 2, . . .}, and
the time intervals

τ s ≡ ts − ts−1 (6.3)

are independent and identically distributed (iid) random variables that follow an
arbitrary continuous positively-valued probability density function f . Whenever
the events occur, the state is reset as

x 7→ x2+. (6.4)

We allow x2+ to be a random variable, whose average value is related to its value
just before the event as

〈x2+〉 = J2x+ r̂2. (6.5)

Here 〈.〉 denotes the expected value operator, J2 ∈ Rn×n and r̂2 ∈ Rn×1 are a
constant matrix and vector, respectively. Furthermore, the covariance matrix of
x2+ is defined by

〈x2+x
>
2+〉 − 〈x2+〉〈x2+〉> = Q2xx

>Q>2 +B2xĉ
>
2 + ĉ2x

>B>2 +D2. (6.6)

Here Q2 ∈ Rn×n, D2 ∈ Rn×n, ĉ2 ∈ Rn×1 are constant matrices. Moreover D2 ∈
Rn×n is a constant symmetric positive semidefinite matrix.

Having mathematically defined the system, we next provide our main results on

the statistical moments of x(t).

6.2 Steady-state Mean Level

To present the steady-state mean of x, we define the following matrix and vector

to simplify notation

Ax ≡ A+ h1(J1 − In)), âx ≡ â+ r̂1. (6.7)
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𝑑𝒙
𝑑𝑡 = 𝐴𝒙 + 𝑎  

𝑑𝝉
𝑑𝑡 = 1 

𝒙 ⟼ 𝒙2+ 

ℎ2(𝝉) 

ℎ1 

𝒙 ⟼ 𝒙1+ 

𝝉 ⟼ 0 

Figure 6.1: Schematic of a TTSHS with linear continuous dynamics and
two families of random resets. The two families of resets occurs at
random times and change the state based on the linear affine maps (6.2)
and (6.4). For the first reset, events happen at exponentially-distributed
time intervals, while for the second reset, time intervals are generally-
distributed and drawn from an arbitrary probability distribution func-
tion. The timing of the latter family of resets is regulated by a timer τ
that measures the time since the last event, and the next event occurs at
a hazard rate h2(τ ). In between events, the state evolve according to a
linear time-invariant dynamical system.

Theorem 6 Consider the TTSHS given by the linear continuous dynamics (6.1), and

the two families of stochastic events defined in (6.2)-(6.6). For this system, the steady-

state mean is

〈x〉 ≡ lim
t→∞
〈x(t)〉 =

〈
eAxτ

∫ τ

0

e−Axrâxdr

〉
+
〈
eAxτ

〉 (
In −

〈
J2eAxτ s

〉)−1
(
r̂2 + J2

〈
eAxτ s

∫ τ s

0

e−Axrâxdr

〉)
,

(6.8)

if and only if all the eigenvalues of J2

〈
eAxτ s

〉
are inside the unit circle.

Proof: The sketch of the proof is the following: we start by finding the moment

dynamics of the system in between generally distributed events. Next, we solve moment

dynamics for initial condition corresponding to τ = 0 (value of the states right after a

generally distributed reset). Finally, taking mean over all τ results in the steady-state

mean of x.
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Based on forward Kolmogorov equation, we have the following for joint proba-

bility distribution of timer and the states p(τ, x) in steady state

∂p(τ, x)

∂τ
+

∂

∂x
((â+ Ax)p(τ, x)) =

+ h1p(τ, J
−1
1 (x− r̂1))− h1p(τ, x)− h2(τ)p(τ, x), τ > 0,

(6.9)

where x is the vector of dummy variables for x. Further the operator ∂
∂x

is defined as

∂

∂x
=

[
∂

∂x1

,
∂

∂x2

, . . . ,
∂

∂xn

]
, (6.10)

which is a vector of partial derivative operators.

By having the joint probability distribution, we define conditional mean 〈x|τ 〉

as

〈x|τ 〉 ≡ 〈x|τ=τ 〉 =
1

p(τ)

∫ +∞

0

xp(τ, x)dx. (6.11)

Taking derivative with respect to τ from (6.11) results in

∂〈x|τ 〉
∂τ

=−
∂p(τ)
∂τ

p2(τ)

∫ +∞

0

xp(τ, x)dx+
1

p(τ)

∫ +∞

0

x
∂p(τ, x)

∂τ
dx. (6.12)

In order to calculate ∂〈x|τ 〉
∂τ

we need the expression of ∂p(τ,x)
∂τ

and ∂p(τ)
∂τ

. Substi-

tuting these expressions from (6.9) and (4.3) in (6.12) and after some algebraic steps

we have

∂〈x|τ 〉
∂τ

= (â+ r̂1) + (A+ h1(J1 − In))〈x|τ 〉. (6.13)

Thus the conditional mean can be derived as

〈x|τ=τ 〉 = e(A+h1(J1−In))τ 〈x+(ts)〉

+ e(A+h1(J1−In))τ

∫ τ

0

e−(A+h1(J1−In))r(â+ r̂1)dr.
(6.14)

In order to calculate 〈x+(ts)〉 we use equation (6.5)

〈x(ts)〉 =
(
In − J2

〈
e(A+h1(J1−In))τ s

〉)−1
×(

r̂2 + J2

〈
e(A+h1(J1−In))τ s

∫ τ s

0
e−(A+h1(J1−In))r(â+ r̂1)dr

〉)
.

(6.15)

using equation (4.3) to uncondition (6.14) with respect to τ results in (6.8). �
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6.3 Steady-state Second-order Moments

To compute the second-order moments, we define a new vector µ ≡
[
x> vec

(
xx>

)>]> ∈
R(n+n2)×1, whose dynamics in between events is governed via

dµ

dt
= âµ + Aµµ, (6.16)

where

Aµ ≡

 A 0

In ⊗ â+ â⊗ In In ⊗A+A⊗ In

 , aµ ≡
 â

0

 . (6.17)

Any time that an exponentially distributed event occurs, vector µ resets as

µ 7→ Jµ1µ+ r̂µ1, Jµ1 ≡

 J1 0

0 J1 ⊗ J1

 , r̂µ1 ≡

 r̂1

vec(r̂1r̂
>
1 )

 . (6.18)

Moreover, any time that a generally-distributed event occurs, µ resets as

µ 7→ µ2+. (6.19)

Based on (6.6)

〈x2+x
>
2+〉 =〈x2+〉〈x2+〉> +Q2xx

>Q>2 +B2xĉ
>
2 + ĉ2x

>B>2 +D2. (6.20)

Further from (6.5), 〈x2+〉〈x2+〉> can be written as

〈x2+〉〈x2+〉> = J2xx
>J>2 + J2xr̂

>
2 + r̂2x

>J>2 + r̂2r̂
>
2 . (6.21)

By combining these two equations and using (4.33), 〈µ2+〉 is given by

〈µ2+〉 = Jµ2µ+ r̂µ2, (6.22)

where

Jµ2 ≡


J2 0

B2 ⊗ ĉ2 + J2 ⊗ r̂2

+ĉ2 ⊗B2 + r̂2 ⊗ J2

J2 ⊗ J2 +Q2 ⊗Q2

 , r̂µ2 ≡

 r̂2

vec(D2 + r̂2r̂
>
2 )

 .
(6.23)
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Deterministic dynamics (6.16), and stochastic resets (6.18) and (6.22) are similar

to (6.1), (6.2) and (6.5). Hence with a similar analysis as in Theorem 4, the following

theorem provides the necessary and sufficient conditions for having finite second-order

moments of x. As done prior to Theorem 4, we define

Aµ ≡ Aµ + h1(Jµ1 − In2+n), âµ ≡ âµ + r̂µ1. (6.24)

Theorem 7 Suppose that the states of the system given by (6.1)-(6.6) satisfies the

hypothesis of Theorem 4. Then

〈µ〉 ≡ lim
t→∞
〈µ〉 =

〈
eAµτ

〉 (
In2+n − Jµ2

〈
eAµτ s

〉)−1×(
r̂µ2 + Jµ2

〈
eAµτ s

∫ τ s

0

e−Aµrâµdr

〉)
+

〈
eAµτ

∫ τ

0

e−Aµrâµdr

〉
, (6.25)

if and only if all the eigenvalues of the matrix (J2 ⊗ J2 +Q2 ⊗Q2)
〈
eAµτ s ⊗ eAµτ s

〉
are

inside the unit circle.

The proof of this theorem is similar to that of Theorem 3 and 4.

6.4 Noise in Protein Concentration

Here we consider an example of such a system drawn from cellular biology.

Let x(t) ∈ R denote the concentration of a given protein inside a single cell at time

t. We model the time evolution of x using a TTSHS that incorporates three noise

mechanisms:

1. Stochastic production of protein molecules in bursts of gene activity, as has been
experimentally seen [86,90,94].

2. Timer controlled cell-division events occur at random times. Whenever, cell divi-
sion occurs, both the cell volume and the number of protein molecules reduce by
half (assuming symmetric division). Thus, in the sense of average concentrations,
there is no change

〈x+(ts)〉 = x(ts), (6.26)
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Figure 6.2: Modeling stochasticity in the level of protein concentration us-
ing TTSHS. Left : Time evolution of the protein level x ∈ R in a single
cell is modeled via a SHS with two stochastic resets representing produc-
tion of proteins in bursts and cell-division events. The latter is controlled
by a timer τ , and whenever it occurs the state is reset via (6.26)-(6.27).
In between events, protein concentrations decay exponentially with rate
γx due to cellular growth. Right : A sample trajectory of x is shown
with cell division events (dashed lines). The steady-state distribution of
x obtained via a large number Monte Carlo simulations is shown on the
right.

3. During cell division, protein molecules are partitioned between two daughters cells
based on a binomial distribution, i.e., each molecule has an equal probability
of being in one of the two cells [20, 148]. This binomial partitioning process
introduces noise in the concentration that can be represented by〈

x2
+(ts)− 〈x+(ts)〉2

〉
= bx(ts). (6.27)

for some positive constant c. The linear dependence in (6.27) comes from the
fact that the variance of a binomially distributed random variable is proportion
to its mean.

Before considering the stochastic case, we first consider deterministic protein

production, where the concentration evolves as

ẋ(t) = kxu− γxx(t). (6.28)

Here kx and u denote the frequency and size of protein bursts, resulting in a net

production rate of kxu in the deterministic model. The concentration is diluted at a
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rate γx, which is the rate of exponential growth in cell volume. Cell-division events

are assumed to occur randomly at times ts, where τ s ≡ ts − ts−1 follows an arbitrary

positively-valued distribution. The mean cell-division time is intimately connected to

the growth rate via

〈τ s〉 =
ln(2)

2γx
(6.29)

[72]. The TTSHS defined by (6.26)-(6.28) is of the form discussed in this section.

Hence, steady-state analysis yields the following mean and noise

〈x〉 =
kxu

γx
, CV 2 =

ln(2)b

2〈x〉
, (6.30)

respectively. The noise in the protein concentration level only depends on 〈τ s〉, which

enters the equation via γx (see (6.29)). Thus remarkably, making the timing of cell

division more random (for a fixed mean) will not result in higher stochasticity in the

protein concentration.

Next, we consider stochastic production of proteins, which involves adding a

second family of resets in the above TTSHS model. As pointed earlier, production of

proteins is assumed to occur in bursts that happen at random times. In particular,

burst events are assumed to occur at exponentially distributed times with rate kx.

Whenever the event occurs the concentration changes as

x(ts) 7→ x(ts) + u. (6.31)

The overall model with both stochastic production and cell division events is shown in

Fig. 6.2. In between events, the concentration is diluted as

ẋ(t) = −γxx(t). (6.32)

Steady-state analysis of the above moment equations yields

〈x〉 =
kxu

γx
, CV 2

x =
ln(2)b

2〈x〉
+

1

2

u

〈x〉
, (6.33)

providing the first results connecting the protein noise level to randomness in the

underlying bursty synthesis and cell division events. As before, the noise only depends

on 〈τ s〉 and independent of its higher-order statistics.
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6.5 Conclusion

We have studied statistical moments for a class of TTSHS with two families

of resets, allowing the second family to occur at generally-distributed time intervals.

Exact solutions of the first- and second-order moments were derived, and applied to the

biological problem of stochastic gene expression. Our analysis reports for the first time,

formulas for the mean and the noise in the level of a protein concentration in terms

of underlying parameters and random processes. This is straightforward to expand

these results to a system with multiple families of resets, each having Poisson arrivals.

However, having more than one family of generally-distributed resets is convoluted and

will be the subject of future investigation.
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Chapter 7

MULTI-MODE STOCHASTIC HYBRID SYSTEMS WITH RENEWAL
TRANSITIONS

In this chapter, a class of stochastic hybrid systems comprising of multiple oper-

ation modes is studied. In each mode, the state evolves according to a linear stochastic

differential equation. We allow for stochastic switching between operational modes

with switching times controlled by an underlying renewal process such that the time

spent in each mode is a random variable with an arbitrary given probability distribu-

tion. We present a novel method to derive exact analytical solutions for the statistical

moments, and illustrate the applicability of the method on an example drawn from

systems biology. More specifically, we study how random switching of a gene between

transcriptionally active and inactive states drives stochastic variation in the level of

the expressed protein. Our results show that while randomness in gene switching times

has no affect on the mean protein level, it critically impacts the magnitude of fluctua-

tions in the protein level. This effect is further amplified for proteins with high decay

rate. We finally discuss how noise in protein can be used to infer the underlying gene

expression mechanisms.

7.1 Model Formulation

The class of systems under study include:

1. Operation modes: The system, contains m operative modes. In each mode,
the states x ∈ Rn×1 are governed via a set of Stochastic Differential Equations
(SDEs)

dx = (âi + Aix)dt+ Eidωn, i = {1, . . . ,m}, (7.1)

where Ai ∈ Rn×n, Ei ∈ Rn×n, and âi ∈ Rn×1. Moreover, ωn denotes n-
dimensional Wiener process where

〈dωn〉 = 0, 〈dωndω>n 〉 = Indt. (7.2)
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Figure 7.1: Schematic of stochastic hybrid systems with two operation
modes. In each mode the states are governed via a set of stochas-
tic differential equations according to (7.1). Resets happen at random
times. Any time that an event occurs the states change their value and
the system switches to another operation mode. The states after reset
depend on the states before reset (eq. 7.4). A timer τ measures the time
since the last even, and rest to zero after each event occurs.

2. Reset intensity: When random events occur, the states will change and the
system will switch to another mode. Assuming that random events happen at
times ts, s ∈ {2, 3, . . .}, the time interval between the events is defined as τ s ≡
ts−ts−1. The set of time intervals τ s can be divided into m subsets denoting reset
time intervals between m different modes. In the rest of this paper for simplicity
of notation and mathematical derivations we consider the case of m = 2 (Fig.
7.1). However the obtained results are general and can be applied to any m. In
this case system toggles between two modes and τ si is defined as

τ si ≡ ts − ts−1 =

{
i = 1 from mode 1 to 2,

i = 2 from mode 2 to 1.
(7.3)

3. Reset maps: When a reset happens, the states change as

x(ts) 7→ x+(ts). (7.4)

We assume that x+(ts) is a random variable in which its expectation is a linear
affine map of x(ts). These maps depend on i as

〈x+(ts)〉 = Jix(ts) + r̂i, i = {1, 2}, (7.5)

where Ji ∈ Rn×n and r̂i ∈ Rn×1. Further, the covariance matrix of x+(ts) depends
on x(ts) as

〈x+(ts)x
>
+(ts)〉 − 〈x+(ts)〉〈x+(ts)〉> =Qix(ts)x

>(ts)Q
>
i +Bix(ts)ĉ

>
i

+ ĉix
>(ts)B

>
i +Di, i = {1, 2}.

(7.6)
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Here Qi ∈ Rn×n, Bi ∈ Rn×n,Di ∈ Rn×n, and ĉi ∈ Rn×1.

7.2 Statistical Moments of Multi-mode Stochastic Hybrid System

Similar to previous chapters, we introduce a timer τ that measures the time

since the last event. The timer increases with time between the events

dτ = dt, (7.7)

and resets to zero whenever a new event occurs

τ 7→ 0. (7.8)

Note that we have two modes in the system, and the time intervals that the system

resides in each of them is independent from the other. Thus we further divide set of

τ into two subsets τ 1 and τ 2 indicating the accumulation of time in mode 1 and 2,

respectively (τ = {τ 1, τ 2}).

With this definition we can connect the probability of occurrence of an event

to probability density function of the time intervals between the events. Let the prob-

ability that a transmission occurs in the next infinitesimal time (t, t + dt] be hi(τ )dt,

where

hi(τ) ≡ fi(τ)

1−
∫ τ
y=0

fi(y)dy
, i = {1, 2}, (7.9)

Then, the time interval between events τ si follows a probability density function fi

τ si ∼ fi(τ) = hi(τ)e−
∫ τ
y=0 fi(y)dy, i = {1, 2} (7.10)

[116–118], and timers follow the following density function [119]

τ i ∼ pi(τ) =
1

〈τ si〉
e−

∫ τ
y=0 fi(y)dy, i = {1, 2}. (7.11)

Finally, note that the probability that the system resides in each mode is independent

of the states of system and is given by

Probability of being in mode 1 =
〈τ s1〉

〈τ s1〉+ 〈τ s2〉
,

Probability of being in mode 2 =
〈τ s2〉

〈τ s1〉+ 〈τ s2〉
.

(7.12)
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7.2.1 Steady-state Mean Level

By introducing the timer, we can derive the steady-state mean of x in the

following theorem.

Theorem 8 The steady-state mean of states of stochastic hybrid system in (7.1)-(7.6)
is given by

〈x〉 =
〈τs1 〉

〈τs1
〉 + 〈τs2

〉

(
〈eA1τ1 〉(In − J2〈e

A2τs2 〉J1〈e
A1τs1 〉)−1

(
J2〈e

A2τs2 〉
〈
e
A1τs1

∫ τs1

0
e
−A1l

â1dl

〉
+ J2〈e

A2τs2 〉r̂1

+

〈
e
A2τs2

∫ τs2

0
e
−A2l

â2dl

〉
+ r̂2

)
+

〈
e
A1τ1

∫ τ1

0
e
−A1l

â1dl

〉)
+

〈τs2 〉
〈τs1

〉 + 〈τs2
〉

(
〈eA2τ2 〉

(
In − J1〈e

A1τs1 〉J2〈e
A2τs2 〉)−1

(J1〈e
A1τs1 〉

〈
e
A2τs2

∫ τs2

0
e
−A2l

â2dl

〉
+ J1〈e

A1τs1 〉r̂2

+

〈
e
A1τs1

∫ τs1

0
e
−A1l

â1dl

〉
+ r̂1

)
+

〈
e
A2τ2

∫ τ2

0
e
−A2l

â2dl

〉)
.

(7.13)

if and only if 〈eAiτ si 〉, i = {1, 2} is finite, and all the eigenvalues of the matrix

J1〈eA1τ s1 〉 J2〈eA2τ s2 〉 are inside unit circle.

Proof: Proof of this theorem consists of two parts, we start with assuming that the

system is residing in mode 1, hence the states of the system right before the sth event

is

x(ts) = eA1τ s1x+(ts−1) +

∫ τ s1

0

e−A1lâ1dl +

∫ τ s1

0

E1dωn. (7.14)

By using (7.5), the mean of the states after the sth event is

〈x+(ts)〉 = J1

(
〈eA1τ s1 〉〈x+(ts−1)〉+

〈
eA1τ s1

∫ τ s1

0

e−A1lâ1dl

〉)
+ r̂1. (7.15)

After the sth event the system is residing in mode 2. Hence the states of the system

before s+ 1th event is given by

x(ts+1) = eA2τ s2x+(ts) +

∫ τ s2

0

e−A2lâ2dl +

∫ τ s2

0

E2dωn. (7.16)

Again by using (7.5) we derive the values of states right after s+ 1th event

〈x+(ts+1)〉 = J2

(〈
eA2τ s2

〉
〈x+(ts)〉+

〈
eA2τ s2

∫ τ s2

0

e−A2lâ2dl

〉)
+ r̂2. (7.17)

Substituting (7.15) into (7.17), we get

〈x+(ts+1)〉 = J2〈eA2τ s2 〉J1〈eA1τ s1 〉 〈x+(ts−1)〉+ J2〈eA2τ s2 〉
〈
eA1τ s1

∫ τ s1

0

e−A1lâ1dl

〉
+ J2〈eA2τ s2 〉r̂1 +

〈
eA2τ s2

∫ τ s2

0

e−A2lâ2dl

〉
+ r̂2.

(7.18)
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Note that after s + 1th event we have returned to mode 1. Hence in order to have

a finite recursive equation, all the eigenvalues of J2〈eA2τ s2 〉J1〈eA1τ s1 〉 should be inside

the unit circle. In this limit, the mean of states right after returning to mode 1 in

steady-state is

〈x+(ts)〉 =V1J2〈eA2τ s2 〉
〈
eA1τ s1

∫ τ s1

0
e−A1lâ1dl

〉
+ V1J2〈eA2τ s2 〉r̂1 + V1

〈
eA2τ s2

∫ τ s2

0
e−A2lâ2dl

〉
+ V1r̂2,

(7.19)

where

V1 = (In − J2〈eA2τ s2 〉J1〈eA1τ s1 〉)−1. (7.20)

By having the steady state initial condition of being in mode 1, we can calculate

the mean of states for any time τ 1 = τ

〈x|τ1=τ 〉 =eA1τ

∫ τ

0

e−A1lâ1dl + eA1τV1(J2

〈
eA2τ s2

〉〈
eA1τ s1

∫ τ s1

0

e−A1lâ1dl

〉
+ J2

〈
eA2τ s2

〉
r̂1 +

〈
eA2τ s2

∫ τ s2

0

e−A2lâ2dl

〉
+ r̂2).

(7.21)

In the next part, we repeat our analysis by assuming that system is residing in

mode 2. Such analysis results in another recursive formula which is converging if all

the eigenvalues of J1〈eA1τ s1 〉J2〈eA2τ s2 〉 are inside the unit circle. Note that eigenvalues

of J2〈eA2τ s2 〉J1〈eA1τ s1 〉 and J1〈eA1τ s1 〉J2〈eA2τ s2 〉 are equal. In this case we can calculate

the steady-state mean of states for any time τ 2 = τ as

〈x|τ2=τ 〉 =eA2τ

∫ τ

0

e−A2lâ2dle
A2τV2(J1

〈
eA1τ s1

〉〈
eA2τ s2

∫ τ s2

0

e−A2lâ2dl

〉
+ J1

〈
eA1τ s1

〉
r̂2 +

〈
eA1τ s1

∫ τ s1

0

e−A1lâ1dl

〉
+ r̂1),

(7.22)

where

V2 = (In − J1〈eA1τ s1 〉J2〈eA2τ s2 〉)−1. (7.23)

Finally, taking expected value with respect to τ i, i = {1, 2} from (7.21) and (7.22) by

using (7.11) and then using (7.12) results in (7.13) and that completes our proof. �

In general, matrices cannot commute, thus, J2〈eA2τ s2 〉J1〈eA1τ s1 〉 is not equal to J1〈eA1τ s1 〉
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J2〈eA2τ s2 〉. This implies an important property of these systems: even if each mode is

stable, it does not result in stability of the whole system. Note that the states of the

system at a given time depends on the entire history of the resets.

7.2.2 Steady-state Second-order Moments

We use the method that we introduced in chapter 3 to convert dynamics of

the second-order moments to a similar form as in (7.1) and (7.4). The dynamics of µ

between the events is given by

dµ = (âµi + Aµiµ(t))dt+ (Eµi)dwn2+n, (7.24)

where

Aµi =

 Ai 0

In ⊗ âi + âi ⊗ In In ⊗ Ai + Ai ⊗ In

 , âµi =

 âi

vec
(
EiE

>
i

)
 . (7.25)

Note that we did not show Eµi because this matrix has no role in the steady-state

mean of µ [149]. Moreover, when a reset occurs, the states of µ reset as

µ(ts) 7→ µ+(ts), (7.26)

where

〈µ+(ts)〉 = Jµiµ(ts) + r̂µi , Jµi =

 Ji 0

Mi Ni

 , r̂µi =

 r̂i

vec
(
DiD

>
i

)
 , (7.27a)

Mi = Bi ⊗ ĉi + ĉi ⊗Bi + Ji ⊗ r̂i + r̂i ⊗ Ji, Ni = Ji ⊗ Ji +Qi ⊗Qi.

Deterministic dynamics (7.24) and stochastic resets (7.26) are similar to (7.1) and (7.4).

Hence with a similar analysis as in Theorem 6, the following theorem provides the

necessary and sufficient conditions for having the steady-state second-order moments

of x.

Theorem 9 Suppose that the multi-mode stochastic hybrid system in (7.1)-(7.6) sat-

isfies the hypothesis of Theorem 1, then the steady-state mean of xx> is finite if and

only if all the eigenvalues of the matrix

(J1 ⊗ J1 +Q1 ⊗Q1)〈eA1τ s1 ⊗ eA1τ s1 〉(J2 ⊗ J2 +Q2 ⊗Q2)〈eA2τ s2 ⊗ eA2τ s2 〉 (7.28)
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are inside the unite circle.

Proof: First let us define

yi ≡ eAiτ si
∫ τ si

0

e−Ailâidl. (7.29)

Similar to Theorem 6 we prove Theorem 7 in two parts. Assume that system is residing

in mode 1, then xx> right after sth event is related to x(t+s−1)x>+(ts−1) as

vec(〈x+(ts)x
>
+(ts)〉) =

(J1 ⊗ J1 +Q1 ⊗Q1)〈eA1τ s1 ⊗ eA1τ s1 〉vec(〈x+(ts−1)x>+(ts−1)〉

+ (J1 ⊗ J1 +Q1 ⊗Q1)(〈eA1τ s1 ⊗ y1〉〈y1 ⊗ eA1τ s1 〉)〈x+(ts−1)〉

+ ((B1 ⊗ ĉ1 + J1 ⊗ r̂1)〈In ⊗ eA1τ s1 〉

+ (ĉ1 ⊗B1 + r̂1 ⊗ J1)〈eA1τ s1 ⊗ In〉)〈x+(ts−1)〉

+ vec(Q1

〈
y1y1

>〉Q>1 + J1

〈
y1y1

>〉 J>1 +B1 〈y1〉 ĉ1
>

+ J1 〈y1〉 r̂1
> + ĉ1

〈
y1
>〉B>1 + r̂1

〈
y1
>〉 J>1 + E1 + r̂1r̂1

>).

(7.30)

Next, xx> right after s+ 1th event is related to x+(ts)x
>
+(ts) as

vec(〈x+(ts+1)x>+(ts+1)〉) =

(J2 ⊗ J2 +Q2 ⊗Q2)〈eA2τ s2 ⊗ eA2τ s2 〉vec(〈x+(ts)x
>
+(ts)〉

+ (J2 ⊗ J2 +Q2 ⊗Q2)(〈eA2τ s2 ⊗ y2〉+ 〈y2 ⊗ eA2τ s2 〉)〈x+(ts)〉

+ ((B2 ⊗ ĉ2 + J2 ⊗ r̂2)〈eA2τ s2 〉

+ (ĉ2 ⊗B2 + r̂2 ⊗ J2)〈eA2τ s2 〉)〈x+(ts)〉

+ vec(Q2

〈
y2y2

>〉Q>2 + J2

〈
y2y2

>〉 J>2 +B2 〈y2〉 ĉ2
>

+ J2 〈y2〉 r̂2
> + ĉ2

〈
y2
>〉B>2 + r̂2

〈
y2
>〉 J>2 + E2 + r̂2r̂2

>).

(7.31)

Combining these two equations we obtain a recursive formula in which is converging

in steady-state if all the eigenvalues of (J2 ⊗ J2 + Q2 ⊗ Q2)〈eA2τ s2 ⊗ eA2τ s2 〉(J1 ⊗

J1 + Q1 ⊗ Q1)〈eA1τ s1 ⊗ eA1τ s1 〉 are inside unit circle. Similarly if we assume that the

system resides in mode 2 then the steady-state values exists if all the eigenvalues of
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(J1⊗ J1 +Q1⊗Q1)〈eA1τ s1 ⊗ eA1τ s1 〉(J2⊗ J2 +Q2⊗Q2)〈eA2τ s2 ⊗ eA2τ s2 〉 are inside the

unit circle. The eigenvalues of these two matrices are the same. The rest of proof is

similar to that of Theorem 6. �

Finally, 〈µµ>〉 can be obtained from (7.13) by replacing Ai, âi, Ji, and r̂i in (7.13)

with their respective Aµi , âµi , Jµi , and r̂µi , i = {1, 2}. In the next section, we apply

our results on a biological example.

7.3 Noise in Gene Switching

A main source of noise in biological systems is occurrence of random events such

as protein synthesis, binding, etc. [49, 51, 52]. One such important event is stochastic

gene switching: a gene becomes active for a short period of time followed by a period

of silence [89–92,105,148].

To explore the contribution of gene switching on protein concentration, we used

the multi-mode stochastic hybrid system introduced in here. Let x(t) denotes a pro-

tein concentration level inside the cell at time t. We assume that production occurs in

exponentially distributed time intervals with rate kx and we use a Langevin approxi-

mation of this reaction [140]. Further we consider that protein decays with a rate γx.

When gene is active, the dynamics of protein concentration can be written as

dx = (kx − γxx)dt+
√
kx dw1, (7.32)

and when gene is inactive, protein dynamics only include decay

dx = −γxxdt. (7.33)

Note that decay of protein concentration is mainly caused by cell growth. Since cell

growth is a cellular process which is the summation of many random events, we did

not consider any noise in the decay of proteins [119, 150, 151]. The dynamics of this

system are in the form of (7.1) with

A1 = A2 = −γx, â1 = kx, E1 =
√
kx, â2 = 0, E2 = 0. (7.34)

85



Protein 

Gene OFF 
Multi step  

 

activation 
Gene ON 

Ø 

Gene ON Gene OFF 

ℎ2(𝝉 ) 

𝑑𝒙 = 𝑘𝑥 − 𝛾𝑥𝒙 𝑑𝑡 + 𝑘𝑥𝑑𝝎1 𝑑𝒙 = −𝛾𝑥𝒙𝑑𝑡 

𝝉 ⟼ 0 

𝑑𝝉 = 𝑑𝑡 𝑑𝝉 = 𝑑𝑡 

𝝉 ⟼ 0 

ℎ1(𝝉 ) 

A) 

B) 
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Figure 7.2: The fundamental process of gene switching can be modeled
through multi-mode framework. A) Promoter randomly switches
between active and inactive states. Protein synthesis only occurs when
promoter is ON. Protein is subject to decay with a rate γx. B) The multi-
mode system presented here is perfect for modeling promoter toggling.
When gene is OFF the protein dynamics are only governed via decay.
when promoter becomes active the protein synthesis is modeled through
a Langevin equation with a rate kx.

Moreover, J1 = J2 = 1, and r̂i = Qi = Bi = Di = ĉi = 0, i = {1, 2} (Fig. 7.2). For

having a clear connection to our biological example, we rename τ s1 and τ s2 as τ on and

τ off , respectively.

Since A1 = A2 = −γx < 0, then both 〈e−γxτoff 〉 and 〈e−γxτon〉 exist. Moreover,

because J1 = J2 = 1 then 〈e−γxτoff 〉〈e−γxτon〉 < 1, hence we can use (7.13) to derive

the steady-state mean of protein concentration

〈x〉 =
〈τ on〉

〈τ on〉+ 〈τ off〉
kx
γx
. (7.35)

The mean of protein concentration is independent of the probability density function

of gene-switching time intervals. This means that the mean of protein contains no

information about the underlying processes that leads to gene activation.
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In the next step, we derive the second-order moment of protein to explore how

variations in gene-switching time intervals affect the fluctuations in protein count.

First, we use (7.25) to derive the matrices needed for calculating the second-order

moment

Aµ1 =

 −γx 0

0 −2γx

 , âµ1 =

 kx

kx

 , Aµ2 =

 −γx 0

2kx −2γx

 , âµ2 = 0, Jµ1 = Jµ2 = I2.

(7.36)

Further, here Jµi = I2 and r̂µi = 0, i = {1, 2}. Since −γx < 0 then the conditions of

Theorem 7 are satisfied and we can derive the second-order moment as

〈x2〉 =
k2
x

γ3
x

(〈e−γxτoff 〉 − 1)(〈e−γxτon〉 − 1)

(〈e−γxτoff 〉〈e−γxτon〉 − 1)(〈τ on〉+ 〈τ off〉)

+
k2
x

γ2
x

(〈e−γxτoff 〉〈e−γxτon〉 − 1)〈τ on〉
(〈e−γxτoff 〉〈e−γxτon〉 − 1)(〈τ on〉+ 〈τ off〉)

+
kx
2γx

〈τ on〉
〈τ on〉+ 〈τ off〉

.

(7.37)

We use the coefficient of variation squared to quantify noise in x

CV 2 =
γx(〈e−γxτoff 〉〈e−γxτon〉 − 1)〈τ off〉〈τ on〉)

(〈e−γxτoff 〉〈e−γxτon〉 − 1)γx〈τ on〉2

+
(〈τ on〉+ 〈τ off〉)((〈e−γxτoff 〉 − 1)(〈e−γxτon〉 − 1)

(〈e−γxτoff 〉〈e−γxτon〉 − 1)γx〈τ on〉2
+

1

2

1

〈x〉
.

(7.38)

The first two terms in the right-hand side of this equation show the contribution of ran-

dom gene switching times in protein noise, the last term quantifies the contribution of

random synthesis events. While the mean of protein is independent of statistical char-

acteristic of switching times, the protein fluctuations depend on the entire distribution

of τ on and τ off .

Next, based on the measurements inside the living cells [22], we assume that

gene deactivation reaction happens in exponentially distributed time intervals and we

explore the effect of noise in gene activation time interval. Fig. 7.3 shows that making

gene-activation reaction more noisy increases CV 2. Further, we can approximate the

results in the limit of fast gene switching as

CV 2 ≈ 1

2

〈τ on〉2γx
〈τ on〉+ 〈τ off〉

(
1 + CV 2

τon

)
+

1

2

1

〈x〉
, (7.39)
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Figure 7.3: The noise in protein concentration is highly affected by the gene-
switching time intervals. A) Noise in gene ON time intervals will not
change the mean of a protein. Moreover, it does not have an obvious effect
on the protein time trend. B) The noise in protein is highly affected by
the gene switching noise. While the mean of protein only depends on
the ratio of gene ON and OFF times, noise is affected by the magnitude
of the ON and OFF time intervals as well. For this plot the protein
production rate is selected to be kx = 100, decay rate is γx = 1 min−1,
and mean ON and OFF time intervals are equal 〈τ on〉 = 〈τ off〉.

where CV 2
τon ≡ 〈τ

2
on〉/〈τ on〉2 − 1 denotes the coefficient of variation squared of gene-

activation time intervals. This equation clearly shows that the noise in gene activation

reaction increases the noise in protein concentration. Moreover, this equation quantifies

the contribution of decay rate on noise, i.e., higher decay rate means higher noise.

Additionally, this equation shows that noise in x depends on both fluctuations and

amplitude of gene-switching time intervals (Fig. 7.3).

7.4 Conclusion

We studied statistical moments of a class of stochastic hybrid systems with

multiple operation modes. We derived exact solution of the first and second order

moments as well as necessary and sufficient conditions for having finite moments. While

we only present our derivations for a two mode system, the results can be generalized

to a any arbitrary number of modes.
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We used the framework presented here to calculate the mean and the noise in

protein concentration. We find that the randomness in gene-activation time intervals

increases the noise in protein while having no effect on the mean. Hence noise can be

used to infer protein expression parameters systematically. Noise in gene-activation

time intervals is an indicator of the number of steps that needs to be taken to activate

a gene [22]. Previously through a numerical model we explored this connection on

experimental data obtained from mouse [22]. Here we provide the exact solutions that

can be used to infer mechanisms behind gene switching in different types of cells.
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Chapter 8

LINEAR NOISE APPROXIMATION FOR A CLASS OF STOCHASTIC
HYBRID SYSTEMS

The usual problem of moment dynamics equations is that in general for non-

linear systems, the lower order moments are dependent on the higher orders [152].

Hence the system of equations cannot be solved. The common method to solve this

issue is to express the higher order moments as functions (mainly nonlinear) of lower

order moments. This procedure is called as moment closure [153–157] and the approx-

imated results are usually solved numerically.

However there exists two methods that give analytic results for the approxi-

mated moment dynamics. The first method is to linearize both continuous dynamics

and discrete events of a system and then write the moment dynamics for a linear SHS

using the extended generator [28]. This method is easy to implement yet ad-hoc and

there exists no general theorem that guarantees the obtained results are a good ap-

proximation of the moments. The other method is through the omega expansion using

LNA [158–160]. This method leads to the stochastic variables being distributed ac-

cording to a Gaussian distribution with the mean given by the deterministic dynamics.

The method has many salient features, namely (i) the mean and variance obtained

are positive, (ii) the error of estimating these moments reduces with increase in the

system size [161, 162], (iii) complex multivariable systems can be effectively reduced

in dimensionality by considering timescale separation [163]. In this chapter we answer

the question: Do these methods (linearization vs omega expansion with LNA) give the

same moment dynamics equations for SHS, and if so for what sub-class of SHS?

To address this question we first give a one dimension example for which lin-

earization method and the system size expansion methods are elucidated. We then
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extend the result for a SHS having stochastic resets that do not scale with system

size and show that the moment dynamics equations for LNA and linearization are the

same. Finally, we study the single dimensional class of SHS where this condition is

relaxed and direct application of LNA is not possible. For this model, we introduce a

new method to derive and approximate the moments.

8.1 Comparison of Linearizarion and LNA in a Simple Genetic Circuit

Let the number of a species be denoted by x. The stochastic synthesis of this

species is mathematically described as

Prob.(x(t+ dt) = x+ 1) = Ωh
(x

Ω

)
dt. (8.1)

Here the production rate is represented by h
(
x
Ω

)
, and Ω is the system size. Further

between two production events it follows the deterministic dynamics

dx

dt
= −γxx. (8.2)

Here γx is the dilution rate of the species. We assume that dilution is deterministic

because cell growth is a cellular process which is the result of many events and hence

can be modeled deterministically [119,150,151]. Next, x is split into the deterministic

and stochastic components for LNA with the ansatz

x = Ωφ+ Ω1/2ε. (8.3)

Here ε is a stochastic process. The deterministic component φ is solution of the system

dφ

dt
= h(φ)− γxφ. (8.4)

The probability that the random variable x takes the value n at time t is given

by p(x, t), which follows the chemical master equation

dp(x, t)

dt
=Ωh

(n
Ω

)
(p(x− 1, t)− p(x, t)) +

∂ (γxxp(x, t))

∂x
. (8.5)

The left hand side can be expressed as

dp(x, t)

dt
=
∂Π

∂t
+
dε

dt

∂Π

∂ε
=
∂Π

∂t
− Ω1/2dφ

dt

∂Π

∂ε
. (8.6)
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Here Π(ε, t) is the probability that ε takes value ε at time t. Note that we have dropped

the argument for the sake of simplicity. The master equation in the new variables ε

and φ is given by

∂Π

∂t
− Ω1/2dφ

dt

∂Π

∂ε
=Ω

(
E−1 − 1

)
h
(n

Ω

)
Π +

1

Ω1/2

∂(γxnΠ)

∂ε
. (8.7)

The deterministic reaction is represented by the second term on the right hand side.

The first term on the right hand side represents stochastic reactions with the operator

E changing n to n + 1 and hence ε to ε + Ω−1/2. The operator E−1 can be expanded

as [158]

E−1 = 1 + (−1)Ω−1/2 ∂

∂ε
+

(−1)2

2!
Ω−1 ∂

2

∂ε2
· · · . (8.8)

Note that the transition intensity h is a function of the intensive variable x/Ω =

φ+Ω−1/2ε. In order to proceed we expand the transition intensity linearly with respect

to the fluctuations Ω−1/2ε about the deterministic solution φ as

h
(x

Ω

)
= h(φ) +

dh(φ)

dφ
Ω−1/2ε. (8.9)

Next substituting (8.3), (8.8), and (8.9) in (8.7) and truncating to the order Ω0 the

master equation is

∂Π

∂t
=

(
∂Π

∂ε
ε+ Π

)
γx + Ω1/2∂Π

∂ε

(
dφ

dt
+ γxφ− h(φ)

)
−
(
−h(φ)

2

∂2Π

∂ε2
+
dh(φ)

dφ

(
∂Π

∂ε
ε+ Π

))
. (8.10)

As the deterministic dynamics state follows

dφ

dt
+ γxφ− h(φ) = 0, (8.11)

hence the previous equation can be simplified. The reduced master equation is

∂Π

∂t
=

(
∂Π

∂ε
ε+ Π

)
γx −

(
− h(φ)

2

∂2Π

∂ε2
+
dh(φ)

dφ

(
∂Π

∂ε
ε+ Π

))
. (8.12)
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Finally we obtain the moment dynamics of the ith moment by multiplying (8.12) by εi

and integrating with respect to ε. Thus the first order moment dynamics is

d〈ε〉
dt

= 〈ε〉
(
dh(φ)

dφ
− γx

)
. (8.13)

With the initial condition, 〈ε(0)〉 = 0, the stochastic component 〈ε〉 = 0,∀t ≥ 0.

Similarly, the dynamics of the second order moment is

d〈ε2〉
dt

= h(φ) + 2〈ε2〉
(
dh(φ)

dφ
− γx

)
. (8.14)

At steady-state the second order moment is given by

〈ε2〉 =
h(φ)

2
(
γx − dh(φ)

dφ

) . (8.15)

We define the steady state production rate as h(φ) and feedback strength as |dh(φ)

dφ
|,

where | | denotes the absolute value. We then quantify the noise with the coefficient

of variation (CV). Noting that from (8.3), the variance of ε (σ2
ε) can be related to

coefficient of variation squared of x at steady-state as

CV 2
x =

σ2
ε

Ωφ
2 . (8.16)

Finally the noise in x is

CV 2
x =

γx

2(γx − dh(φ)

dφ
)〈x〉

. (8.17)

To compare with the linearization technique we first linearize the propensity

function about 〈x〉
Ω

= φ as

h
(x

Ω

)
= h (φ) +

dh(φ)

dφ

x− 〈x〉
Ω

. (8.18)

We then write the extended moment generator for a system with stochastic and deter-

ministic dynamics as [28]

d〈(ψ(x, t))〉
dt

= 〈(Lψ)(x, t)〉, (8.19)

(Lψ)(x, t) ≡ ∂ψ(x, t)

∂n
(−γxx) +

∂ψ(x, t)

∂t
+ (ψ(x+ 1, t)− ψ(x, t))Ωh(φ). (8.20)
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Here ψ : R × [0,∞) → R, is a continuously differentiable function. To obtain the

first and second order moment dynamics we substitute ψ(x, t) in (8.20) as x and x2

respectively

d〈x〉
dt

= Ωh(φ)− γx〈x〉, (8.21)

d〈x2〉
dt

= −2γx〈x2〉+ Ωh(φ) + 2Ωh(φ)〈x〉+ 2
dh(φ)

dφ
(〈x2〉 − 〈x〉2). (8.22)

Solving these equations for the steady-state moments gives the same noise expression

as (8.17). Note that, if dh(φ)/dφ > 0 then it is a positive feedback with the noise

amplifying compared to that without feedback. In this case for high enough magnitude

of dh(φ)/dφ ≥ γx, the noise in x does not reach a steady state and diverges. On the

other hand dh(φ)/dφ < 0 represents negative feedback, and noise in protein copy

number reduces with feedback strength |dh(φ)/dφ|.

On a side note, the auto-regulatory motif studied here is biologically relevant.

Inherent stochasticity in genetic circuits is associated with diseased states [164]. While

in some cases heterogeneity in the cell is advantageous for its survival [165,166]. Hence,

there exists mechanisms of regulation of the protein levels on the cellular level [70,112,

167,168]. In the next section we present the general results of LNA for a class of SHS

models.

8.2 Equivalence of the Omega Expansion and Linearization Method

Once we establish that the omega expansion and linearization are the same for

a birth/death example, a natural question is whether the equivalence of these two

methods holds for general SHS.

Theorem 10 Consider a SHS with m states governed via ordinary differential equa-

tion between events

dx

dt
=Ω g

(x
Ω
, t
)
,x ∈ Rn×1, g : Rn×1 × [0,∞)→ Rn×1. (8.23)
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𝑑𝒙

𝑑𝑡
= Ω𝑔(𝒙/Ω, 𝑡) 

𝒙 ↦ 𝐽𝑟𝒙 + 𝐴𝑟  

Ωℎ𝑟(𝒙/Ω, 𝑡) 
B) The direct LNA compatible SHS A) The General SHS model   

𝑟 ∈ {1,2,… , 𝑠} 

𝑑𝒙

𝑑𝑡
= Ω𝑔(𝒙/Ω, 𝑡) 

𝒙 ↦ 𝒙 + 𝐴𝑟 

Ωℎ𝑟(𝒙/Ω, 𝑡) 
𝑟 ∈ {1,2,… , 𝑠} 

Figure 8.1: The schematic of general SHS vs the ones in which lineariza-
tion and LNA leads to the same results. Continuous dynamics of
the system are governed via a set of general ordinary differential equa-
tions g(x/Ω, t). Different family of resets occur with transition intensity
hr(x/Ω, t), r ∈ {1, . . . , s}. Anytime that a reaction occurs the states of
SHS change via a matrix Jr and a vector Ar. Note that for Jr 6= In the
direct LNA using omega expansion is not valid.

Moreover this system consists of s stochastic events where reset map of each event

r ∈ {1, ...s} is represented as

x 7→ x+ Ar, Ar ∈ Rn×1, hr : Rn×1 × [0,∞)→ R (8.24)

and occurring with transition probabilities Ωhr(x/Ω, t). For this SHS model, the omega

expansion using LNA directly and the linearization approach gives the same first and

second order moment dynamics.

Proof: The proof of this theorem is separated into two parts, one where we derive the

moment equations of the system from the master equation proposed by Van Kampen.

In this method we break the states into their respective deterministic and stochastic

variables and write the moment equations for the stochastic components. For the lin-

earization method, we use the extended generator of SHS systems to get the uncentered

moment equations of the states. Finally we transform these to centered moments about

the deterministic solution. Comparing these moments equations with those derived in

the omega expansion, we see that they are same.
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Let φq and εq be the deterministic part and the stochastic counterpart of the

qth state. We obtain the deterministic part as the solution of

dφq
dt

=
s∑
r=1

Aqrhr(φ1, . . . φn) + gq(φ1, . . . φn). (8.25)

Note that for simplicity of notation, we drop the arguments of the functions hr and

gq in the following analysis. We obtain the reduced master equation by truncating the

expansion to Ω0 as [158]

∂Π

∂t
=

s∑
r=1

− n∑
i=1

Air
∂

∂εi

n∑
j=1

εj
∂hr
∂φj

Π+

n∑
j=1

(
−

n∑
i=1

∂

∂εi
εj
∂gi
∂φj

)
Π +

s∑
r=1

(− n∑
i=1

Air
∂

∂εi

)2
hr
2

Π. (8.26)

Using this equation we obtain the first order moment equations of εq as

d〈εq〉
dt

=

s∑
r=1

Aqr

n∑
j=1

〈εj〉
∂hr
∂φj

+

n∑
j=1

〈εj〉
∂gq
∂φj

, (8.27)

which for 〈εj(0)〉 = 0,∀j ∈ {1, . . .m}, implies that 〈εq〉 = 0,∀t ≥ 0. Further, it follows

that the dynamics of 〈xq〉 is that of Ωφq, shown in (8.25). The second order moment

is

d〈εq2〉
dt

=2
s∑
r=1

Aqr

n∑
i=1

∂hr
∂φi
〈εiεq〉+ 2

n∑
i=1

∂gq
∂φi
〈εiεq〉+

s∑
r=1

A2
qrfr, (8.28)

d〈εqεl〉
dt

=
s∑
r=1

Aqr n∑
j=1

∂hr
∂φj
〈εjεl〉+Alr

n∑
j=1

∂hr
∂φj
〈εjεq〉


+

 n∑
j=1

∂gq
∂φj
〈εjεl〉+

n∑
j=1

∂gl
∂φj
〈εjεq〉

+

s∑
r=1

hrAqrAlr. (8.29)

We then use the linearization method, which gives the following

d〈(xq − 〈xq〉)2〉
dt

= 2
n∑
j=1

(
s∑
r=1

∂hr
∂φj

Aqr +
∂gq
∂φj

)
〈(xq − 〈xq〉) (xj − 〈xj〉)〉+

s∑
r=1

ΩhrA
2
qr,

(8.30)
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d〈(xq − 〈xq〉)(xl − 〈xl〉)〉
dt

=

s∑
r=1

ΩhrAqrAlr (8.31)

+
n∑
j=1

(
s∑
r=1

∂hr
∂φj

Aqr +
∂gq
∂φj

)
〈(xj − 〈xj〉) (xl − 〈xl〉)〉

+
n∑
j=1

(
s∑
r=1

∂hr
∂φj

Alr +
∂gl
∂φj

)
〈(xj − 〈xj〉) (xq − 〈xq〉)〉 .

The fact that xj := Ωφj + Ω1/2εj , means that (8.28) and (8.29) are centered moment

equations. Comparing them with (8.30) and (8.31), we see that our centered moment

dynamics from these two methods are the same. The final moment equations can be

written in the form the matrix differential equation

dU

dt
= B + ∆U + U∆T . (8.32)

Here ∆ij =
∑s

r=1Air
∂hr
∂φj

+ ∂gi
∂φj

, Bij = Ω
∑s

r=1 hrAirAjr, Uij = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉.

�

The Lyapunov function derived from (8.32) at steady state has additional terms

∂gi
∂φj

compared to the Lyapunov function of biochemical reaction systems [160]. These

terms represent the deterministic dynamics of the system in addition to the stochastic

events. Note that the omega expansion with the LNA assumes that the fluctuations

in the stochastic dynamics are of the order Ω−1/2 with respect to the deterministic

component (as seen in (8.3)). Hence in principle the noise as represented by the

coefficient of variation ∝ Ω−1/2 and will tend to zero as Ω → ∞. Fluctuations of the

order of the macroscopic variable (Ω0) will be present in coefficient of variation for the

resets of the form

x 7→ Jrx+ Ar, Ar ∈ Rn×1,x ∈ Rn×1, Jr ∈ Rn×n, (8.33)

where Jr 6= In (Fig. 8.1). In the next section we propose an alternative approach

to solving the moments of this system, where direct LNA via omega expansion is not

applicable.
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8.3 An Alternative Representation to Systems Where Direct LNA Fails

Consider a system with the dynamics

Prob.(x(t+ dt) = x+ 1) = Ωh(x/Ω)dt, (8.34)

Prob.(x(t+ dt) = hx+ a) = Ωγx(x/Ω)dt. (8.35)

As previously demonstrated, we break the state x into two parts: one is the stochastic

process which accounts for the macroscopic dynamics only φ, and one which accounts

for the stochasticity in production ε, i.e. x = Ωφ + Ω1/2ε. By this definition, the

following theorem provides an alternative representation of this system.

Theorem 11 For the system in (8.34)-(8.35) dynamics of φ and ε are as follows

between events

dφ

dt
= h(φ),

dε

dt
= −h(φ)Ω1/2, (8.36)

while the events are defined as

Prob.

 φ(t+ dt) = jφ

ε(t+ dt) = jε+ aΩ−1/2

 = Ωγx(φ+ Ω−1/2ε)dt, (8.37)

Prob.(ε(t+ dt) = ε+ Ω−1/2) = Ωh(φ)dt. (8.38)

Proof: For system in (8.34) and (8.35) we have p = Π(φ, ε, t), thus

dp

dt
=
∂Π

∂t
+
dε

dt

∂Π

∂ε
+
dφ

dt

∂Π

∂φ
=
∂Π

∂t
− Ω1/2dφ

dt

∂Π

∂ε
+
dφ

dt

∂Π

∂φ
. (8.39)

We write the master equation as

∂Π

∂t
− Ω1/2dφ

dt

∂Π

∂ε
+
dφ

dt

∂Π

∂φ
=

Ω

(
h(φ+ Ω−1/2(ε− Ω−1/2)Π(φ+ Ω−1/2(ε− Ω−1/2))

− h(φ+ Ω−1/2ε)Π(φ+ Ω−1/2ε) + γx

(
φ

j
+ Ω−1/2 ε− aΩ−1/2

j

)
×

Π

(
φ

j
+ Ω−1/2 ε− aΩ−1/2

j

)
− γx

(
φ+ Ω−1/2ε

)
Π
(
φ+ Ω−1/2ε

))
.

(8.40)
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Now expanding this equation with respect to the deviation in ε, we get

∂Π

∂t
− Ω1/2dφ

dt

∂Π

∂ε
+
dφ

dt

∂Π

∂φ
= Ω

(
− Ω−1/2 ∂

∂ε
h(φ+ Ω−1/2ε)Π(φ+ Ω−1/2ε)

+
Ω−1

2

∂2

∂ε2
h(φ+ Ω−1/2ε)Π(φ+ Ω−1/2ε)− aΩ−1/2 ∂

∂ε
γx

(
φ

j
+ Ω−1/2 ε

j

)
Π

(
φ

j
+ Ω−1/2 ε

j

)
+ a2Ω−1 ∂

2

∂ε2
γx

(
φ

j
+ Ω−1/2 ε

j

)
Π

(
φ

j
+ Ω−1/2 ε

j

)
+ γx

(
φ

j
+ Ω−1/2 ε

j

)
Π

(
φ

j
+ Ω−1/2 ε

j

)
− γx

(
φ+ Ω−1/2ε

)
Π
(
φ+ Ω−1/2ε

))
.

(8.41)

Finally we can write the master equation for system described in (8.36)-(8.38), for

which the results are identical to (8.41). �

As we mentioned earlier, the noise in the systems introduced above consist of

fluctuations of the macroscopic scale. Direct LNA ignores such terms and hence the

results obtained are erroneous, the transformation we introduced inherently accounts

for these terms. This results in low errors of approximation. By having this alternative

representation of the system we can now use the omega expansion to derive the moment

dynamics of φ and ε. Note that the moment dynamics obtained from this method are

still not closed. However they are in the standard form and any closure approximation

can be applied to solve them. In the following, we applied this method to an example

motivated by growth and division of living cells.

8.4 An Illustrative Example

Consider a system with the following dynamics

Prob.(x(t+ dt) = x+ 1) = Ωkxdt, (8.42)

Prob.(x(t+ dt) = x/2) = γxxdt. (8.43)

This system can be seen as the model of protein count progressing through many

cell cycles and divisions. Protein molecules are produced in random events and any

time a division event occurs, the molecules are halved in between daughter cells. We

also consider that proteins are stable without degradation, due to the fact that many
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Figure 8.2: The fluctuations in protein x can be split into a macroscopic part
and a stochastic production part. Left. The large fluctuations in
proteins are reflected in the macroscopic part and the smaller fluctuations
correspond to the stochastic production part. Right. The noise in protein
(CV 2

x ) can be approximated well by our omega expansion technique when
the system size increases. Note that this approximation is better than
simply applying moment closure on the moment dynamics of x. The
95% confidence intervals are obtained via bootstrapping based on 5, 000
realizations.

proteins have half-lives much longer than the cell division time [72–74]. As mentioned

earlier LNA is not directly applicable in this case. Hence we use the alternative system

introduced in Theorem 2 by choosing h(φ) = kx, j = 1
2
, and a = 0. We assume the

following scalings for the variables

φ ∼ Ω−1/2, ε ∼ Ω−1/4. (8.44)

Using these scalings, for large Ω, we assume φ� Ω−1/2ε and hence we can approximate

the moment dynamics to

d〈ε〉
dt

= −γxΩ
2
〈εφ〉, (8.45)

d〈ε2〉
dt

= kx −
3γxΩ

4
〈ε2φ〉, (8.46)

d〈φ〉
dt

= kx −
γxΩ

2
〈φ2〉. (8.47)

Due to the presence of the third order moment 〈ε2φ〉, the moment dynamics of

this system are not closed. From (8.44), this term exhibits scaling of Ω−1. Hence we
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consider the following general form of this term at steady-state

〈ε2φ〉 = 〈ε2〉〈φ〉+ ηΩ−1. (8.48)

Here the coefficient η quantifies the correlation in this specific cross moment of φ and

ε. The steady-state analysis of (8.45)-(8.47) gives

〈φ2〉 =
2kx
γxΩ

, 〈εφ〉 = 0, 〈ε2〉 =

√
(1 + CV 2

φ)γx

2kΩ

(
4kx
3γx
− η
)
. (8.49)

We can see that the scalings of ε and φ in (8.44), are justified as 〈ε2〉 ∝ Ω−1/2 and

〈φ2〉 ∝ Ω−1. Here CV 2
φ is the coefficient of variation squared of φ. The noise in x can

be derived as

CV 2
x = CV 2

φ +
〈ε2〉

Ω〈φ〉2
= CV 2

φ +

from stochastic production︷ ︸︸ ︷√
2(1 + CV 2

φ)3/2γ
1/2
x

3Ω1/2k
1/2
x

−

from correlation of ε2 and φ︷ ︸︸ ︷
η

(1 + CV 2
φ)3/2γ

3/2
x

2
√

2Ω1/2k
3/2
x

. (8.50)

For high values of Ω, the correlation in 〈ε2φ〉 represented by η is small. Hence the

noise can be approximated as

CV 2
x ≈CV 2

φ +

√
2(1 + CV 2

φ)3/2γ
1/2
x

3Ω1/2k
1/2
x

. (8.51)

This expression shows that for Ω → ∞, the noise in x tends to that in φ. Note that

in order to get the noise in φ we need 〈φ〉. To this end, we use the scalings in the

variables to reduce the moment dynamics of the second order moment to

d〈φ2〉
dt

= 2kx〈φ〉 −
3γxΩ

4
〈φ3〉. (8.52)

This equation involves the third order moment of φ showing that the system of equa-

tions cannot be solved or closed. Hence we use the derivative matching approach which

shows superior performance in many cases, to obtain the relationship of 〈φ3〉 in terms

of the lower order moments [154,155]

〈φ3〉 ≈ 〈φ
2〉3

〈φ〉3
. (8.53)
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Using this relationship we get the noise in φ as

CV 2
φ =

2−
√

3√
3

. (8.54)

Finally we compare the approximate expression for noise in x to that of simulations

(Fig. 8.2). Note that the noise in x from the simulations and analytical formula are

very close for high system size Ω. This is because the assumptions used to derive the

analytical formula are valid at high Ω. The correlation term is an important term

which we have neglected to derive the noise approximation. This is an simplifying

assumption which may be inaccurate in some regimes. Finally, a natural question is

whether moment closure on the dynamics of x without φ, ε separation yields a better

approximation of the noise. To see this, we compare our approach to the moment

closure method and see that our approximation outperforms closure on x (Fig. 8.2).

8.5 Conclusion

We compared the linearization and omega expansion through a birth/death

regulation example. We observed that for this example these methods give the same

results. We find that the direct LNA method does not work, for systems with stochastic

transitions of the form x 7→ Jrx+Ar, J
r 6= In and it does for Jr = In. For the latter

systems we showed that the linearization technique gives the same moment dynamics

equations as the omega expansion.
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Chapter 9

DISCUSSION

Moment analysis of Stochastic Hybrid Systems (SHS) often relies on deriving

a set of differential equations for the time evolution of moments [28, 78]. For linear

stochastic systems, moments can be obtained exactly by solving these set of differential

equations. However, nonlinearities within SHS, such as the transition intensity (4.1),

lead to unclosed dynamics in the sense that time evolution of lower-order moments

depends on higher-order moments. In such cases, moment computations are performed

by either employing approximate closure schemes [152–156, 169–173], or constraints

imposed by positive semidefiniteness of moment matrices [174–176].

Here we introduced two main methods for deriving the exact solutions of mo-

ments. In the first method we model arrival of events using phase-type processes [25],

and show that the resulting systems has closed moment dynamics. In the second

method, instead of relying on moment dynamics, we used an alternative approach to

derive exact analytical expressions for the first two steady-state moments of TTSHS.

Finally, applying the theory of TTSHS to the biological example of gene expression

resulted in novel formulas for the mean and variance in the level of a gene product,

and how these levels are impacted by stochasticity in cell-cycle times and the molecular

partitioning process. Further, we extend our method to consider TTSHS where con-

tinuous dynamics follow a stochastic differential equation, or multi-mode TTSHS that

allow for stochastic switching between linear systems. Finally, we proposed an alterna-

tive approximation for the case of nonlinear SHS. We showed the applicability of the

method with an example motivated from the biologically relevant protein partitioning

during cell division.
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properties of transcriptional time series in escherichia coli,” Nature Genetics,
vol. 43, pp. 554–560, 2011.

[90] D. M. Suter, N. Molina, D. Gatfield, K. Schneider, U. Schibler, and F. Naef,
“Mammalian genes are transcribed with widely different bursting kinetics,” Sci-
ence, vol. 332, pp. 472–474, 2011.

[91] R. D. Dar, B. S. Razooky, A. Singh, T. V. Trimeloni, J. M. McCollum, C. D.
Cox, M. L. Simpson, and L. S. Weinberger, “Transcriptional burst frequency and
burst size are equally modulated across the human genome,” Proceedings of the
National Academy of Sciences, vol. 109, pp. 17 454–17 459, 2012.

110



[92] A. Singh, “Transient changes in intercellular protein variability identify sources
of noise in gene expression,” Biophysical Journal, vol. 107, pp. 2214–2220, 2014.

[93] G. Hornung, R. Bar-Ziv, D. Rosin, N. Tokuriki, D. S. Tawfik, M. Oren, and
N. Barkai, “Noise-mean relationship in mutated promoters,” Genome Research,
vol. 22, pp. 2409–2417, 2012.

[94] A. Raj, C. Peskin, D. Tranchina, D. Vargas, and S. Tyagi, “Stochastic mRNA
synthesis in mammalian cells,” PLOS Biology, vol. 4, p. e309, 2006.

[95] A. Singh, B. S. Razooky, R. D. Dar, and L. S. Weinberger, “Dynamics of protein
noise can distinguish between alternate sources of gene-expression variability,”
Molecular Systems Biology, vol. 8, p. 607, 2012.

[96] K. B. Halpern, S. Tanami, S. Landen, M. Chapal, L. Szlak, A. Hutzler, A. Nizh-
berg, and S. Itzkovitz, “Bursty gene expression in the intact mammalian liver,”
Molecular Cell, vol. 58, pp. 147–156, 2015.

[97] C. R. Bartman, S. C. Hsu, C. C.-S. Hsiung, A. Raj, and G. A. Blobel, “Enhancer
regulation of transcriptional bursting parameters revealed by forced chromatin
looping,” Molecular Cell, vol. 62, pp. 237 – 247, 2016.

[98] C. R. Brown and H. Boeger, “Nucleosomal promoter variation generates gene
expression noise,” Proceedings of the National Academy of Sciences, vol. 111, pp.
17 893–17 898, 2014.

[99] L. Cai and N. F. X. S. Xie, “Stochastic protein expression in individual cells at
the single molecule level,” Nature, vol. 440, pp. 358–362, Sep. 2006.

[100] A. Singh and J. J. Dennehy, “Stochastic holin expression can account for lysis
time variation in the bacteriophage λ,” Journal of the Royal Society Interface,
vol. 11, p. 20140140, 2014.

[101] S. Uphoff, N. D. Lord, B. Okumus, L. Potvin-Trottier, D. J. Sherratt, and
J. Paulsson, “Stochastic activation of a dna damage response causes cell-to-cell
mutation rate variation,” Science, vol. 351, pp. 1094–1097, 2016.

[102] P. J. Choi, L. Cai, K. Frieda, and X. S. Xie, “A stochastic single-molecule event
triggers phenotype switching of a bacterial cell,” Science, vol. 322, pp. 442–446,
2008.

[103] T. M. Norman, N. D. Lord, J. Paulsson, and R. Losick, “Stochastic switching
of cell fate in microbes,” Annual Review of Microbiology, vol. 69, pp. 381–403,
2015.

111



[104] C. C.-S. Hsiung, C. R. Bartman, P. Huang, P. Ginart, A. J. Stonestrom, C. A.
Keller, C. Face, K. S. Jahn, P. Evans, L. Sankaranarayanan, B. Giardine, R. C.
Hardison, A. Raj, and G. A. Blobel, “A hyperactive transcriptional state marks
genome reactivation at the mitosis g1 transition,” Genes & Development, vol. 30,
pp. 1423–1439, 2016.

[105] J. Yu, J. Xiao, X. Ren, K. Lao, and X. S. Xie, “Probing gene expression in live
cells, one protein molecule at a time,” Science, vol. 311, pp. 1600–1603, 2006.

[106] S. O. Skinner, H. Xu, S. Nagarkar-Jaiswal, P. R. Freire, T. P. Zwaka, and I. Gold-
ing, “Single-cell analysis of transcription kinetics across the cell cycle,” eLife,
vol. 5, p. e12175, 2016.

[107] O. Padovan-Merhar, G. P. Nair, A. G. Biaesch, A. Mayer, S. Scarfone, S. W.
Foley, A. R. Wu, L. S. Churchman, A. Singh, and A. Raj, “Single mammalian
cells compensate for differences in cellular volume and DNA copy number through
independent global transcriptional mechanisms,” Molecular Cell, vol. 58, pp. 339–
352, 2015.

[108] M. Thattai, “Universal poisson statistics of mrnas with complex decay path-
ways,” Biophysical Journal, vol. 110, pp. 301–305, 2016.

[109] A. N. Boettiger, “Analytic Approaches to Stochastic Gene Expression in Multi-
cellular Systems,” Biophysical Journal, vol. 105, no. 12, pp. 2629–2640, 2013.

[110] J. Rausenberger and M. Kollmann, “Quantifying origins of cell-to-cell variations
in gene expression,” Biophysical Journal, vol. 95, pp. 4523–4528, 2008.

[111] K. H. Kim and H. M. Sauro, “Measuring retroactivity from noise in gene regu-
latory networks,” Biophysical Journal, vol. 100, pp. 1167–1177, 2011.

[112] M. Soltani, P. Bokes, Z. Fox, and A. Singh, “Nonspecific transcription factor
binding can reduce noise in the expression of downstream proteins,” Physical
Biology, vol. 12, p. 055002, 2015, undergraduate student marked with *.
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Appendix A

DISCLAIMER

Substantial parts of this thesis (theoretical results and figures) have been previ-

ously published in several proceedings and journals of IEEE, Public Library of Science,

Automatica, and Royal Society [18,20,21,177]. Given that these publications has Open

Access rights, the use of figures and results, completely contained within the papers,

is permitted according to the creative commons license.
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