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Abstract
Water scarcity and related climate volatility are growing constraints on agricultural production
landscapes around the world. While the adaptation options available are often dictated by system
context, in many places broad-scale transformations are occurring in response to water-related
pressures. We sought contributions from across regions, agricultural system types, and scientific
disciplines to examine agricultural land use transitions driven by water scarcity, including the
tradeoffs associated with alternative land uses; impacts on food production, environment, and
society; innovations that can buffer risk; and considerations for planning and implementation. The
research presented in this collection highlights the spectrum of policy and practice changes that are
needed to facilitate beneficial land use transitions and system transformations, from quantifying
risks, to evaluating multidimensional tradeoffs, to developing socio-technical policy bundles to
maximize co-benefits.

1. Introduction

Water scarcity in agricultural landscapes is an issue
of global scope. Irrigated agriculture contributes to
40% of the global food supply and accounts for
most of the world’s anthropogenic freshwater con-
sumption (90%; Rosa 2022). As a result, the agricul-
tural sector is on the front lines of growing scarcity
and volatility in water supplies (D’Odorico et al
2018). Agricultural adaptation to water scarcity can
take many forms, from efforts to increase the effi-
ciency of water delivery systems, to supply aug-
mentation via aquifer recharge or water storage
investments. Adaptation can also involve cropland
expansion or crop switching to account for chan-
ging water availability. In many places, however,

adaptation is playing out in the form of broad-
scale system transformations, including irrigated
systems transitioning to dryland crop production,
mixed crop-livestock production, or livestock graz-
ing; dryland subsistence systems adopting sustain-
able irrigation as a climate hedge; and wholesale
conversion to other enterprises, such as renewable
energy.

This focus issue brings together research from
across system types, regions, and disciplines to exam-
ine water-driven agricultural land use transitions.
Specifically, it looks at a series of questions revolving
around the future of agricultural systems that can no
longer rely on as much water from precipitation or
irrigation as in the past. In these water-limited agri-
cultural landscapes:
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Figure 1. Land use transitions and system transformations in water-limited agricultural landscapes. Both climatic drivers (e.g.
increasing temperatures, more intense droughts) and anthropogenic drivers (e.g. increased water demand) are behind shifts in
water-limited landscapes, such as the transition from irrigated to dryland crop production. But technical innovations and good
governance and policy can help ensure that these transitions result in beneficial outcomes for stakeholders.

1. How and to what extent can agricultural lands
adapt to water scarcity?

2. How dowater-driven land use transitions play out
for those whose lives and livelihoods are directly
impacted, and what enables optimal outcomes for
stakeholders?

3. How can transitioning lands become liabilities or
assets depending on the balance of environmental
conditions and management choices?

4. What are the success stories that can serve as
guideposts for regions undergoing similar trans-
itions?

Farmers, allied industries, and downstream sec-
tors all benefit from reducing uncertainties about how
the agricultural industry will evolve under increas-
ing water limitations. This collection explores the
human and ecosystem level implications of land use
transitions in production landscapes, including the
tradeoffs associated with alternative land uses and
land abandonment; impacts on food production,
environment, and society; innovations that can buffer
risk; and considerations for planning and implement-
ation of multi-benefit landscapes in the face of water
scarcity (figure 1). In this editorial, we review some of

the key biophysical and sociological findings from the
collection and provide an outlook on future research
needs and priorities for this growing area of scientific
inquiry.

2. Irrigated and dryland agricultural
system transitions

In the semi-arid and arid regions of the world, the
advent of irrigation drastically changed the crop pro-
file and extent of the agricultural landscape. However,
climatic changes have spurred new shifts that chal-
lenge both currently irrigated and traditionally dry-
land systems’ capacity to cope with growing scarcity
of water supplies. This is evident in practices such
as the increased emphasis on wet season cropping
in the Aral Sea basin (Rufin et al 2022), or the
redesign of viable cropping strategies prompted by
irrigation retirement in the Great Plains region of the
US (Núñez et al 2022). In areas where agriculture
depends heavily on irrigation, looming cutbacks in
water availability underscore the need to understand
how the transition from irrigated to non-irrigated
systems will play out, along with its economic and
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environmental implications. For example, when pre-
viously irrigated land is retired or fallowed and tilled
for weed management over long periods, the effects
on soil biology can be profound (Núñez et al 2022).
Transitioning to dryland or water-limited cropping
systems can keep these lands productive while mitig-
ating some of the negative impacts of irrigation retire-
ment on soil health and microbial activity.

In regions where production costs—including the
cost of water—have historically been high, water-
limited cropping systems can prove to be a high-value
use of water relative to thirstier crops (Peterson and
Hanak 2022). However, dryland crop production can
be risky, and not economically viable in the low-
est rainfall areas. A potentially lucrative alternative
land use that could capitalize on acreage coming out
of irrigated production is renewable energy develop-
ment, particularly solar farms. In the US, a large share
of planned utility-scale solar energy development tar-
gets working lands (Biggs et al 2022). Where solar
developments ultimately occur will be influenced by
incentives and landowner decision-making factors,
which tend to differ among types of landowners (e.g.
ranchers or intensive crop growers).

Climate change is altering drought patterns glob-
ally, including changes in frequency, intensity, and
duration of drought (Prudhomme et al 2014, Satoh
et al 2022). In this context, historically dryland
regions, which predominantly support subsistence
agriculture, are facing heightened threats to food
security. Regions that are already at the margins of
suitability for dryland crop production are particu-
larly exposed to these climatic changes. Across Africa,
for example, the margins of dryland crop produc-
tion areas are expected to retreat and be replaced by
pastoral systems, raising concerns about the region’s
ability to produce adequate food under future cli-
mates (Nidumolu et al 2022). Likewise, droughts in
Australia have the potential to significantly impact
global food supply; the country’s dryland production
systems are highly sensitive to water limitations, and
yet supply 10%–40% of the world’s grain (Grundy
et al 2016).

In contexts where irrigated agriculture has been
limited less by water availability than by socioeco-
nomic factors, poor access to technologies, or lack
of investment, research has focused on how develop-
ing the capacity to irrigate can help secure food pro-
duction. Sustainable irrigation is highlighted by some
as a measure to build resilience to climate change
and avoid further environmental externalities from
agricultural expansion, particularly in marginalized,
food insecure populations (Rosa et al 2020).However,
irrigation expansion must be done carefully to avoid
falling into the same water scarcity traps that are
afflicting currently irrigated lands, and to avoid cre-
ating new problems and unexpected consequences
such as soil salinization or increased energy expendit-
ures (Rosa 2022). Socioeconomic factors must also

be considered because they can considerably reduce
the scope for sustainable irrigation relative to the bio-
physical potential (Van Maanen et al 2022).

3. Innovations to mitigate risk from
climate extremes

Under any of these scenarios, innovation and new
strategies in genetics, agronomy, management sys-
tems, and crop modeling and simulation tools are all
needed to facilitate beneficial transitions in response
to water scarcity. Precipitation extremes in either
direction can result in prevented planting or a
failed crop, and climate change projections indic-
ate more frequent extremes in many important agri-
cultural regions (IPCC 2022). Adaptive innovations
often revolve around quantifying risk—particularly
changes in precipitation regimes—as away to account
for increased climate variability in management
plans. Improved climate and productivity forecast-
ing, for example, can serve an important role in
understanding the risk of crop loss or prevented
planting. This is the case for both managing rainfall
scarcity, as in dryland contexts where both rainfall
distribution and quantity are critical, and managing
over-abundance or extreme rainfall events (Lee and
Abatzoglou 2023).

Management system innovations that embrace
biological diversity and redundancy have been shown
to improve the resilience of crop production to cli-
mate and weather extremes at the field level (Renwick
et al 2021), but crop diversity also has implications
for resilience at larger scales. Country-level food sys-
tems, for instance, are less vulnerable to weather
extremes and display a greater ability to recover from
shocks when they have a more diverse crop port-
folio, especially one that includes more minor and
drought-resistant crops (Renard et al 2023). Water
systems also benefit from diversification; efforts to
diversify water supply sources, e.g. irrigating with
reclaimed water (Ballesteros-Olza et al 2022), can
improve the system’s ability to cope with short-
ages and reduce the overexploitation of existing
supplies.

Refinement of crop genetics to improve baseline
resistance to extremes like drought and high tem-
perature and to enable climate-adaptive manage-
ment systems will also help with system adapta-
tion and transformation. In Australian dryland sys-
tems, for instance, long-coleoptile wheat genotypes
have allowed for deeper planting into subsurface soil
moisture, which can lengthen the time window for
sowing and decrease reliance on ever-shifting sea-
sonal precipitation events (Stummer et al 2023).
Development of crop varieties that perform well in
novel dryland contexts will be important in eas-
ing cropping system transitions by reducing agro-
nomic risk and improving financial incentives to
adapt.
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4. Governance and policy for
water-limited agricultural regions

Water scarcity-driven agricultural land use trans-
itions can be fraught with tradeoffs, and good
policies and governance systems are essential for
enabling beneficial transitions for possible stake-
holders, including farmers, communities, and other
water users. For instance, recent work in the San
Joaquin Valley of California has shown that build-
ing flexible, transparent water markets and fast-
tracking efforts to repurpose transitioning agricul-
tural land can help avoid undesirable economic
and environmental outcomes (Hanak et al 2023).
In India’s cereal producing regions, policy scenario
development showed that energy pricing tools could
reduce agricultural demand for water with minimal
impacts on production, resulting in the same out-
comes as water withdrawal quotas by the year 2050
(Singh et al 2023). However, in the stressed Ganges–
Brahmaputra–Meghna river basin, emphasizing sus-
tainable development goals related to agricultural
profitability over those related to food production
goals would reduce the number of people fed by an
estimated two-thirds (Siderius et al 2022).

Recent studies have highlighted the importance
of considering the increasing complexity in the
interaction of natural and human processes, par-
ticularly as water supplies decrease in situations
like prolonged droughts. While short-term meas-
ures (e.g. drought coping mechanisms or emer-
gency responses like reducing water use, increasing
groundwater pumping, or switching water sources)
might be beneficial initially, they could lead to
more significant challenges in the future (Fernández
et al 2023). Governance systems must therefore be
adaptable and consider both social and environ-
mental contexts, especially in areas facing severewater
scarcity.

The various ways in which policy decisions
can manifest in different contexts highlight the
importance of ‘fit’ in water governance systems,
e.g. for groundwater use in heavily stressed aquifers
(Marston et al 2022). This is especially true for
developing bottom–up governance systems, which
have struggled to gain traction in industrial-
ized agricultural settings but offer the potential
for resilient and adaptable solutions when the
relevant social and environmental contexts are
considered.

5. Research needs and priorities

The research presented in this collection highlights
the spectrum of needs and priorities that will be crit-
ical for adaptation to water limitations. The measures
proposed are both policy and practice changes. These
priorities include:

(1) Quantifying the current and future states/risks
ofwater scarcity in agricultural lands, e.g.map-
ping the shifting margins of arid/semi-arid agri-
cultural production zones, or improving predic-
tion of precipitation-related crop losses;

(2) Evaluating the multidimensional tradeoffs or
co-benefits of future land use alternatives,
e.g. documenting the biophysical impacts of
irrigation retirement on soil functionality, con-
sidering sustainable irrigation expansion where
relevant for food security, or developing crop
varieties andmanagement systems that are adap-
ted to shifting climate baselines and frequent
precipitation extremes;

(3) Developing socio-technical policy bundles to
maximize co-benefits of land use transitions or
system transformations, e.g. discerning effect-
ive policies and governance strategies for differ-
ent scarcity contexts.
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