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ABSTRACT

A method for imaging Radio-frequency (RF) side-bands about an optical carrier

signal, previously devised for passive, non-coherent, imaging of millimeter wave radia-

tion is furthered for use in coherent reception of Radio-frequency signals. Theoretical

formulation of a novel photonic beam-space beam-former is presented along with rela-

tionships to traditional beam-space array theory. The photonic beam-forming system

requires each element of a Radio-Frequency (RF) array be optically up-converted to a

laser carrier frequency and fed through a photonic processing system, where the output

beam-space is sampled using an array of photo-detectors (or a commercial camera).

Specific contributions of this work allow for a more power efficient optical system,

amplitude calibration of the optical chain, arbitrary apodization (or tapering) of the

output beam-space and application of the receiver system to multiple simultaneous

domains (e.g. active sensing and communications in one receive array). Furthermore,

a novel adaptive weighting approach is presented that utilizes outputs from both a

commercial camera device and an array of high-speed photo-detectors to enable array

adaptivity that is shown to be of low-latency when compared to existing techniques.

Several experiments are performed using prototype hardware to characterize the sys-

tem, component and algorithm-level performance enabling more capable designs within

future work.

xx



Chapter 1

INTRODUCTION

Since the development of radio broadcast technology, there has been interest in

controlling the direction and quality of both radiation and reception of radio waves.

Thus, directional array antennas have been discussed by the radio-frequency (RF)

community since 1903 [1]. The initial work was performed by Braun, during his early

attempts to control the direction of wireless telegraph transmissions. Braun’s antenna

only allowed for the beam to be steered in 120 degree increments, thus creating three

possible transmission locations. The relevance of this work was not fully understood

until the early 1930’s, when directional array antennas came into wide use for a number

of civilian radio applications. The first practical examples were used to solve interfer-

ence problems between radio stations of neighboring urban centers [2], with later,

phase-steerable versions, being used for shortwave radio communications [3]. Military

need for large, directive and re-steerable antennas likely began as early as the 1930’s

with the development of the first practical Radar systems [4], with early scanning

systems being used for fire-control purposes [5]. These early phased array antennas

used mechanical phase shifters with limited performance and were employed in many

radar systems during World War II. However, after the launch of Sputnik, in 1957,

the first large-scale phased arrays were developed due to a newly recognized need to

detect and track satellites and other, future, space-borne targets [6]. This work led to

the development of steering via electronic, ferrite, phase shifters which allowed rapid

scanning of the beam and led researchers to investigate methods for placement of a

transmitter/receiver pair behind each element of the array [7]. Since the 1960’s ad-

vancements in array design have led to widespread adoption of electronically steered
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antennas for a variety of radio-frequency (RF) sensing and communications applica-

tions. The 1980’s saw the development of the RF Monolithic Microwave Integrated

Circuit (MMIC, pronounced mim-mick), principally through the funding of the De-

fense Advanced Research Projects Agency’s (DARPA) MMIC program. Development

of a cost-effective MMIC allowed for a significant increase in phased array development

and research. With the advent of advanced phased array antennae came advances in

array processing techniques such as side-lobe tapering, adaptive nulling of interference

and in-situ calibration. Finally, recent advances in digitization and processing tech-

nologies have shown promise for fully digital array development in applications where

size, weight, and power constraints have previously been too great. However, process-

ing a fully digital array of any reasonable size (i.e. 100’s of elements) in real-time is still

a challenge [8], particularly when adaptive techniques are involved. In order to reduce

the computational burden of large arrays, it is reasonable to assume that only a portion

of the field-of-view (FoV) is relevant for any given time-frame, therefore, processing a

sub-set of beams, only covering the regions of activity, is of interest. As RF system

design complexity has increased steadily over time, antennas that can generate many

simultaneous beams have gained significant interest from the community at large [9],

with renewed interest being generated by the 5G wireless community [10]. Of partic-

ular interest, is the ability of a multi-beam aperture to provide coverage over a wide

angular region with a set of high-directivity beams that are generated simultaneously.

Typically this beam-fan is steered to a particular region of interest, for radar this is

typically the region where the pulses have been transmitted, for communications this

could be toward a known, fixed site or geo-stationary satellite. As reviewed in [9, 10],

there are typically three general classes of multi-beam antenna, passive multi-beam,

active multi-beam and digital multi-beam, with some systems combining a hybrid ap-

proach. The array processing system described in this work actually takes advantage

of all three classes. Historically, passive beam-forming systems operate at the RF and

use quasi-optical or transmission line techniques. Many of these methods utilize bulky

lensing materials and/or require RF ports for each individual beam, which, depending
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on the RF wavelength of interest, can make mounting of such systems impractical for

many applications. Furthermore, beam-forming circuits/networks like those by But-

ler [11] and Blass [12] have some practical limitations. For example, the Butler matrix

is optimal for an even number of beams, and typically these beams exhibit -13 dB

sidelobes. The Blass beam-former, on the other hand, contains a number of lossy com-

ponents. Still, even with these limitations, both are used extensively in a number of

systems to this day.

The work described within this thesis concentrates on the theoretical formula-

tion of an RF photonic beam-space array processing technique. This technique allows

for the generation of a continuum of beams at the output. Furthermore, these beams

can be tailored to have an arbitrary side-lobe level via applications of a number of

apodization functions in the optical domain. This capability is seen as a significant ad-

vantage of the proposed technique when compared to other beam-space beam-formers

like the Butler matrix. The output of the array processing system is a “continuous”

beam-space that can be imaged, using techniques initially conceived for passive mil-

limeter wave radiometry, or discretized (i.e. sampled) via introduction of high-speed

photo-detectors at the output. Thus, by up-converting the incident RF signal on the

antenna array to optical wave-lengths, the associated beam-forming system can be re-

duced in size by several orders of magnitude when compared to other quasi-optical

approaches that operate at the Radio frequency of the antenna (e.g. Luneberg lens,

Rotman lens, transmit-arrays, phase-shifting surfaces, etc. [10]). It will be shown in

chapter 2 that the output of the photonic beam-space processor is compatible with

existing beam-space array theory, when sampled at a set of orthogonal beam-locations

via an array of high-speed photo-detectors. Introduction of a separate, coherent, opti-

cal Local Oscillator (LO) signal to the output plane further allows the photo-detectors

to be used as down-converting mixers so that the outputs can be sent to low-speed

analog-to-digital converters (ADCs). The outputs of the ADCs can then be converted

to complex samples using digital signal processing techniques. The down-conversion

and generation of digital In-Phase and Quadrature (I/Q) samples will be discussed in
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Chapter 3. Since the photonic system up-converts the RF signals to the short-wave

infrared (SWIR) band, affordable commercial photo-detection devices developed for a

variety of high-speed spectroscopy applications can be leveraged directly. The system

also features the unique ability to “image” the beam-space directly with a commercial

short-wave, infrared (SWIR) camera, this ability was originally devised to “see” black-

body radiation in the environment. For active sensing, it is shown that this technique

allows the system to determine regions of RF activity within the FoV of the antenna in

real-time. Results from several experiments that leverage this visualization are shared

in Chapter 4. Finally, the combination of the imaging camera and the sampling photo-

detector data creates a powerful digital processing capability that will be discussed in

Chapter 5. The sampled beam outputs can be used for a variety of digital beam-space

processing techniques, including adaptive nulling and re-steering of a digital beam to

any region of interest within the FoV of the sampled beam-space.

The remaining discussion of Chapter 1 presents the necessary background in

array processing, such that the reader can more fully understand and appreciate the

theory and experimentation discussed in later chapters.

1.1 Radio-Frequency Array Processing

Array processing concepts can be traced back to a call for research on seis-

mic transducer arrays [13]. The principle concern in the late 1950’s was with deter-

mination of the precise location of earthquakes and underground nuclear explosions.

Further research in the 1960’s included Sound navigation and Ranging (SONAR) ap-

plications [14]. These early works look at the array synthesis problem in terms of

weighting the array elements such that a single, desired array response is obtained

upon summation of the inputs [15–17]. The element level weights can either be

deterministic—based on geometry—as in the Delay and Sum beam former, or sta-

tistically optimal/adaptive—in the sense of maximizing Signal-to-Noise-Ratio (SNR)

across the arrays bandwidth and field-of-view. The seminal study on adaptive arrays
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for RF applications is perhaps provided by Applebaum while working for Syracuse Uni-

versity Research Corporation in the 1960s [18], reprinted in the 1970’s to allow wider

access [19]. Through this early research, adaptive weighting/nulling, side-lobe cancella-

tion and estimation of direction/angle-of-arrival using stored data (off-line processing)

are analyzed in context to large arrays. Another popular beam-forming and angle es-

timation technique, known as Minimum Variance Distortion-less Response (MVDR)

beam-forming (i.e. Capon Beam-forming) also has its roots in early seismology. Ini-

tially, these early works were not relevant to RF antennas, since it was not yet possible

to sample and store the data from array’s that operated at radio frequencies. However,

once analog-to-digital converter (ADC) and recording technologies became practical for

use on higher-frequency RF systems, the techniques optimized for seismic and SONAR

beam-forming were investigated for application to RF systems with digital process-

ing. With post-war advancements in phased array technologies and digital processors,

many researchers, outside of the military, began implementing adaptive techniques on

RF arrays. Beginning in the 1980s several good overviews of beam-forming concepts

are provided in the literature [20, 21]. Typically, these techniques are applied across

the elements of an array, however, they are equally relevant to an array that performs

some beam-forming up-front, as in a Butler array. These arrays are known as beam-

space arrays due to the fact that the processing is performed on a set of sampled beam

outputs. Beam-space techniques are used exclusively in this thesis and are described

in greater detail in later sections.

More recent reviews of array processing show that the adaptive techniques pio-

neered by Applebaum and Capon maintain relevance with applications that span both

spatial and spectral estimation [22–24]. Several estimation techniques will be shown to

be compatible with the outputs of the photonic beam-forming system described herein

with an in depth discussion of specific techniques used for this research being provided

in a later section. For now, it is prudent to review the basic theory behind a delay and

sum beam-former. The theory presented concentrates on a uniform linear array, but

can be easily extended to multi-dimensional arrays.
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1.1.1 Delay and Sum Beam-forming of a Uniform Linear Array

Modern array processing is typically performed using matrix notation and lin-

ear algebra. This is done to create a simplified notation, particularly as array sizes

become large, however; when beginning one’s studies of array processing it is neces-

sary to understand the basic physics of the array beam-forming problem prior to the

application of matrix operations. Thus, it is instructive to begin with a simple defini-

tion of a uniform linear array as shown in Fig. 1.1. The array is assumed to have a

0 1 2 3 4 5 6 N-1...

dant

Array Bore-sight

Element #

Figure 1.1: Diagram of a Uniform Linear Array of N elements with a single plane wave
incident at an angle, θ, relative to the array bore-sight. The parallel wave-fronts of the
incident wave are shown in red.

number of elements, N , with a spacing between those elements, dant, that is uniformly

spaced. The spacing of the elements is subject to the same Nyquist/Shannon sampling

principles as used in digital signal processing theory. That is to say, any given array

must have an element spacing that allows un-ambiguous sampling of the input spatial

spectrum. For arrays with elements that possess a wide-field of-view (e.g. ±90◦), the

element spacing must be equal to half the wave-length, λant, of the desired, highest,

frequency of operation. Failure to place elements at the proper spatial sampling in-

tervals will produce aliasing effects. These effects are caused by the inability of the

array elements to un-ambiguously sample the phase of a given plane-wave as it crosses

the array face. The differential path length between adjacent elements is dant sin θ,
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where θ is the angle of incidence for a given plane wave. For narrow-band signals, the

time-delay of the signal across the elements can be approximated as a phase difference.

For the array pictured in Fig. 1.1, the phase difference, ∆φn that is realized at the nth

element of the array due to a plane wave that is incident at an angle, θ, with respect

to the array normal is

∆φn =
2π

λrf
ndant sin θ; 0 ≤ n ≤ (N − 1), (1.1)

where λrf is the wavelength of the incident RF wave. Each element is imparted with

a complex voltage due to the signal. The purpose of the array is to sum these volt-

ages, thus for an un-steered array, the response, or array factor, AF , is defined as the

summation of the complex contribution from each element:

AF (θ) =
N−1∑
n=0

An · ej∆φn =
N−1∑
n=0

An · e
j 2π
λrf

ndant sin θ
, (1.2)

where An is introduced as an amplitude distribution that may be applied across the

aperture elements. We can see from (1.2), the array factor has a maximum value of N

when θ = 0◦. The array factor may be normalized by the number of elements, N , to

produce a normalized array response that peaks at 1, rather then N . Normalization is

useful when evaluating relative side-lobe levels with respect to the main peak. Without

a mechanism to align the elements to a signal incidence angle, other than 0◦, we are left

with a response, or array factor (AF) over the set of angles [−90, 90] degrees, like that

seen in Fig. 1.2a. Additionally, the array’s power pattern factor, typically displayed in

a decibel format, can be found via the following relationship:

AFdB(θ) = 10 log10

(
|AF (θ)|2

)
, (1.3)

which for the array factor shown in Fig. 1.2a, results in an array power pattern like

that shown in Fig. 1.2b. The power pattern shown in Fig. 1.2b is normalized such

that the main beam is at 0 dB. It is interesting to note that the array factor of a
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Figure 1.2: Voltage, (a), and Power, (b), pattern responses of an 8-element linear array
of isotropic elements.

uniformly illuminated array, that is, An = 1 for all n, reduces to a sinc-like response

that is scaled by the number of elements in the array,

AF (θ) =
N−1∑
n=0

An · ej∆φn

=
N−1∑
n=0

An · e
j 2π
λrf

ndant sin θ

=
sin
(
πNdant
λrf

sin θ
)

sin
(
πdant
λrf

sin θ
)

≈
sin
(
πNdant
λrf

sin θ
)

(
πNdant
λrf

sin θ
)

(1.4)

A full derivation of this relationship is provided in Appendix A.

1.1.1.1 Delay and Sum Phase Steering

Typically, it is desired to steer the array to a desired look direction, θs, so that

the array response is maximized in the desired direction. In phased arrays, steering is

performed via phase shifters behind each element. The array factor can be augmented

to include steering via the introduction of a linear phase ramp across the elements,

φs =
2π

λrf
ndant sin θs, (1.5)
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which can be inserted directly into (1.2) as a complex phase offset, to arrive at the

updated array factor relation:

AF (θ : θs) =
N−1∑
n=0

An · ej∆φne−jφs =
N−1∑
n=0

An · e
j 2π
λrf

ndant[sin θ−sin θs]
. (1.6)

The effects of steering the array to a given direction are shown in Fig. 1.3, where the

beam-broadening effects of steering are evident. The beam broadens in the direction

−50 0 50
−40

−30

−20

−10

0

θ (Degrees)

N
o
rm

al
iz

ed
 G

ai
n
 (

d
B

)

Figure 1.3: Power response of an 8-element linear array of isotropic elements steered
in -15 degree increments, displayed in angle-space.

of the scanned angle by approximately 1
cos θs

. This is due to the fact that as an array

scans its beam, the projected length of the array in the direction of the beam varies

as the cosine of the angle as shown in Fig. 1.1. Thus as the beam is scanned closer to

end-fire, the projected length decreases toward zero.

1.1.1.2 Element Pattern Effects on Array Response

Most arrays do not have iso-tropic elements, thus we must also formulate a

pattern response for the elements. A typical element pattern response is given by

Ael(θ) = cos
αe
2 (θ), (1.7)
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where αe is a element pattern factor that is used to estimate the shape of the element

pattern roll-off with angle. A typical assumed value for αe is 1.5. Given an element

pattern, the total antenna response can then be found via the concept of pattern

multiplication, that is the contribution of the element pattern and the array factor are

multiplicative. If the array is also sub-divided into sub-arrays, the sub-array pattern

must also be multiplied to arrive at a final array output response. Here we will assume

that there are no sub-arrays, thus

Aant(θ) = Ael(θ) · AF (θ : θs) = cos
αe
2 (θ) ·

N−1∑
n=0

An · e
j 2π
λrf

ndant[sin θ−sin θs]
, (1.8)

where the element pattern contribution is assumed to be identical for all elements.

This is a reasonable assumption across a large array that is flat, such that the array

normal vector is aligned with the normals of each element. With the element pattern

factored in, the steered array response resembles that of Fig. 1.4, which clearly shows

the scan loss due to element pattern roll-off along with the beam-broadening due to

the smaller projected array length.

1.1.1.3 Array Beam-width

By using the relation in (A.14), one can solve for the beam-width versus angle

directly by approximating the array factor with a sinc function as shown in (1.4). For

example, a sinc function’s -3 dB response point lies when its argument is approximately

equal to ±1.39. Thus we can solve for an angular offset from θ, θ3dB, that makes the

arguments of the sinc function in (1.4) equate to ±1.39. Doing so provides the following

relation for the 3-dB beam-width of the array:

θ3dB =
0.886λrf
Lant cos(θ)

, (1.9)

where the scalar, 0.866, is specific to the uniformly illuminated array and Lant = Ndant,

is the length of the array. Interested readers are pointed to Appendix B for a more

thorough development of the array beam-width.
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Figure 1.4: Power pattern response of an 8-element linear array of cos
1.5
2 elements

steered in -15 degree increments, displayed in Angle-space. The element pattern is
shown as a black dotted line.

1.1.1.4 Array Grating Lobes

One final concept of importance to cover here is that of Grating Lobes. As

mentioned previously, the array elements must be spaced correctly to properly sample

the environment. This requirement is due to the fact that an array is a periodic

structure in the spatial domain, thus its Array Factor is also periodic. It is desired to

ensure that any periodic copies of the main-beam lie well outside the useful field-of-

view of the array. Returning for a moment to the closed form solution for the array

factor in (A.14),

AF (θ) =
sin
(
Ndant

π
λrf

[sin θs − sin θ]
)

sin
(
dant

π
λrf

[sin θs − sin θ]
) , (1.10)

we can see that the array factor has maximums where the denominator tends to zero,

thus

dant
π

λrf
[sin θs − sin θ] = kπ,
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where k takes on any integer value. Rearranging the terms provides the final relation-

ship of grating lobe location to steering angle, wavelength and array element spacing:

sin θgl = sinθs − k
λrf
dant

, (1.11)

where θgl is the angle at which the kth periodic grating lobe appears.

1.1.1.5 Weighted Array Factors

Another topic of importance is the effect of application of non-unity weights,

An, to the array factor response. It may be desired to reduce the sidelobe level of

the array, typically on receive, in an effort to reduce the effects of interference that

falls outside the main-beam of the antenna. This is usually accomplished via the

application of a window function across the array elements. These functions are also

known as taper, apodization and/or weighting functions, depending on the specific

applications involved.
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Figure 1.5: Comparison of uniform (un-tapered) array weights with a Taylor weighting
scheme that attempts to reduce the side-lobe levels to -30 dB with 4 equal height
side-lobes prior to roll-off.
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The typical array response is a scaled sinc function response, exhibiting side-

lobes that are -13 dB down from the main beam peak. This phenomena is identical

to that of a box-car window in spectral analysis. The uniform array can be thought

of as a simple spatial box-car filter, thus by smoothing the apparent transition region,

one can produce a response with significantly lower side-lobes. An example amplitude

profile for an eight element array is shown in Fig. 1.5, with the resulting array response

shown in Fig. 1.6. From the result in Fig. 1.6, it is obvious that one must give up some
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Figure 1.6: Comparison of the power patterns for a uniform (un-tapered) array and
one with a Taylor weighting scheme that attempts to reduce the side-lobe levels to -30
dB with 4 equal height side-lobes prior to roll-off.

main-beam gain as well as some angular resolution in order to reduce the side-lobes due

to a sharp transition at the edges of the array. Typically, the array is constructed such

that the tapered beam meets the necessary resolution and gain requirements, resulting

in a slightly larger array.
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1.1.1.6 Direction Sines

At this point it is useful to introduce the notion of sine-space coordinates. The

direction sine, u, is defined as

u = sin θ, (1.12)

which is simply the sine of the angle of incidence onto any given array. It will be

shown later that the sine-space can be transformed into any given coordinate system

with relative ease. Thus, the usage of sine-space coordinates is helpful in digital pro-

cessing since the 180◦ sector over [−90◦, 90◦] is normalized to [−1, 1], regardless of

the output coordinate system. The ease with which sine-space coordinates are pro-

cessed and transformed makes it attractive to generate antenna steering commands in

the sine-space that are then re-usable across multiple coordinate frames via a simple

transformation at the array output. An example of array steering in the sine-space is
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Figure 1.7: Array response of an 8-element linear array of isotropic elements steered
in -15 degree increments, displayed in the sine-space.

shown in Fig. 1.7, where one can notice that the array patterns do not broaden with

steering when viewed in the sine-space. The appropriate direction sine can therefore
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be directly substituted into any equation derived thus far, and will be used extensively

in the discussions of the following sections.

1.1.2 Beam-space Processing of a Uniform Linear Array

As discussed in Section 1, there are various forms of antennae that can provide

a beam-space output [9,10], colloquially referred to as multi-beam antennas. Since the

theory presented in the following sections endeavors to show that the output of the

photonic array processor is equivalent to a full-dimension beam-space, it is prudent to

review the mathematics behind beam-space formation.

1.1.2.1 Coordinate Systems and the Array Steering Vector

The concept of array steering via a linear phase ramp across the elements was

introduced in Section 1.1.1.1. The vector of phase delays that are captured by the

elements of an array, as a plane wave passes across them, is known as the spatial

steering vector. The conjugate of this vector is used to steer the array in a simple

delay and sum beam-forming scheme. This concept can be extended to a vector-

calculus notation via the introduction of the array coordinate system shown in Fig.

1.8. A modified spherical coordinate system is used so that the antenna coordinates

are more compatible with a set of 3-Dimensional simulation environments. There are

often disparate coordinate systems for separate RF disciplines, for example, antenna

engineers are used to specifying the z-axis as the radiating axis, where as system level

users might prefer to use geocentric coordinate systems that likely specify antenna

coordinates in azimuth and elevation. For these reasons, it is important to define

the coordinate system during any system level simulations, particularly when beam-

locations are of interest. The chosen coordinate system defines the azimuth angle about

the bore-sight as θ, while φ, refers to a positive up, elevation angle from bore-sight.

The location of the nth element of the array is defined as a vector, ρn. Defining the

element positions in this way allows for simulation of arrays that are not located at the

origin; useful for simulation of elevated array systems. It is often necessary to define
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Figure 1.8: Array Coordinate Definition

transformations from the local-angle coordinates of the antenna to the Cartesian space

for a vector pointing to a desired receive location, prx, with its magnitude defined as,

R. With the previous description of prx the following coordinate transformations are

defined:

x = R cosφ cos θ

y = R cosφ sin θ

z = R sinφ.

(1.13)

A set of direction-sines can be similarly generated to aid in conversion of antenna

steering commands to the local coordinate system:
ux

uy

uz

 =


cosφ · cos θ

cosφ · sin θ

sinφ


.

(1.14)

Thus, if we consider an incident signal like that shown in Fig. 1.1, and remember that

each element realizes a differential delay as the wave passes the array, we can define
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the angle of incidence of the wave via the corresponding sine-space vector, u. Then

by calculating the inner product of a given u with each element’s position vector, ρn,

the projected differential path length in the direction of the incoming wave can be

obtained. Usage of vector and matrix notation becomes necessary as the number of

terms in the beam-forming equations become large, particularly as array sizes increase

to tens of elements or more. For the array pictured in Fig. 1.8, the element position

vectors have the form: 
ρn,x

ρn,y

ρn,z

 =


0

n · dant

0


,

(1.15)

thus the inner product of a given sine-space location and the element positions results

in the following:

uTρn = ndant cosφ sin θ. (1.16)

If it is desired to determine the relative phase at each element we can introduce the

following relation:

k = − 2π

λrf
u, (1.17)

which equates the wave-vector, k, to the sine-space vector, u. It is also noteworthy to

mention that only the direction of the wave-vector can change with different waves of

equal frequency since |k| = Ω
c

= 2π
λrf

, where Ω is the frequency of the wave and c is the

speed of light. The phase offset for a given element can now be calculated as

ϕn = kTρn =
2π

λrf
ndant cosφ sin θ. (1.18)

The result in (1.18) is satisfying since it matches the result in the single dimension

case presented in (1.5) when one assumes that no steering in elevation is performed,

thereby equating cosφ to one.

With the above formulation of the coordinate system complete, and the relations

of a particular angular direction to an incoming wave-vector understood, it is possible

to formulate the necessary set of vectors used to steer an array. The array steering
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vector, vs, which is defined as an N dimensional vector of phase delays may be defined

as:

vs(ϕn) =



ejϕ0

ejϕ1

...

ejϕN−1


,

(1.19)

where the argument, ϕn, in vs(ϕn), refers to a definition of the steering vector with

respect to a desired elemental phase offset as defined as in (1.18). The steering vector

can also be defined with respect to wave-vectors, simple sine-space coordinates or angles

using the relations in (1.17) and (1.18). For the array defined in Fig. 1.8, these steering

vectors take the following forms:

vs(u) =



ej·0

e
j 2π
λrf

dantuy

...

e
j 2π
λrf

(N−1)dantuy


, (1.20)

and

vs(θ, φ) =



ej·0

e
j 2π
λrf

dant cosφ sin θ

...

e
j 2π
λrf

(N−1)dant cosφ sin θ


.

(1.21)

A steering vector for a particular scan direction will not change for a given array

and calibration, thus the steering vectors can be calculated once and stored for use in

a real-time system if desired. Forming a steered response is a simple matter of taking

the inner product of the conjugate, transpose (sometimes referred to as the Hermitian)

of the steering vector with the array inputs. Thus, if we define the input signal at the
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nth array element to be sn(t), an input signal vector across the elements can be defined

as,

s(t) =



s0(t)

s1(t)

...

sN−1(t)


.

(1.22)

The weight vector for a uniformly illuminated array is simply the hermitian of the

steering vector, thus we can arrive at the output of for a single beam-location, x(t) as

x(t) = vTs s(t) =
N−1∑
n=0

sn(t) · e−j
2π
λrf

ndant cosφ sin θ
. (1.23)

1.1.2.2 Multi-beam Processing and the Beam-space matrix

For applications where it is desired receive signals over a specific angular interval

(e.g. Radar, communications, etc.) but ignore signals elsewhere, it may be beneficial

to form a fan of beams that cover the region of interest. For large arrays, when the

number of beams in the beam-fan, M , is much smaller than the number of elements,

N , digital processing of the beam-fan significantly reduces the dimensionality of any

adaptive techniques that may be applied after beam-forming. Two distinct classes

of beam-space processing exist, those where M = N , known as full-dimension beam-

space formation, and those where M << N , known as reduced dimension beam-space

formation [25]. For small arrays, like those used for experimentation throughout the

course of this research, a full-dimension beam-space is feasible to process digitally

since both M and N are small. Thus, the experimental results described later will

focus on utilization of a full-dimension beam-space, however, the techniques described

are equally applicable to reduced dimension cases when array sizes are increased.

The construction of a beam-fan can be accomplished via a number of antenna

technologies [9,10] however, in general, all beam-forming processes begin with some way

of applying a set of steering vectors to a set of input elements. The specific methods

for how this is accomplished are what makes each technique unique, for example, a
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later section discusses a novel method for generating beams using Fourier processing, a

focus of this research. Other antennas may use a Butler or other beam-forming circuit

to provide beam-space outputs directly. Regardless of technique, a set of desired beam-

locations is generated, the following sections review the processing required to create

a beam-fan from a set of input array elements.

Each beam location has a unique beam-space steering vector:

bm = vs(um), (1.24)

defined here in the sine-space, with the sub-script, m, denoting the vector for the mth

beam. For simplicity in notation, it is assumed that all operations are on a uniform

linear array like that shown in Fig. 1.8, thus the sine-space coordinates for any steering

vectors presented from here on will only have a single component, uy, as defined in

(1.14), now denoted by u. If it is further assumed that the array has no resolution in

elevation, the definition of u can be further altered to ignore the angle, φ, leaving a

relation similar in form to that presented in Section 1.1.1.1.

Any number of beam-space steering vectors can be formed into a beam-space

steering Matrix, B, defined as

B = [b1, b2, · · · , bM−1, bM ] , (1.25)

where the columns of the beam-space steering matrix are formed from each of the M

beam-space steering vectors making B an N by M matrix. The beams that compose

the steering matrix can be arbitrary in direction; however, there are some advantages

to defining the beams such that any two steering vectors are orthogonal [25]. That is

to assume that bHk bl = Nδkl, which means that the weighting associated with any two

beams should have an inner product of zero. This condition creates a set of beams

such that when a signal is incident directly on the beam axis of one beam, the signal

will not cause a response in any other beam, thus the beams have their main-lobes

aligned with the nulls of all the other beams. Two examples of such an orthogonal

beam-space are shown in Fig. 1.9a and Fig. 1.9b. The example in Fig. 1.9a is for
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(b) Odd Array

Figure 1.9: Plot of the beam-responses for a full-dimension beam-space of orthogonal
beams for an 8-element array, (a), and 7-element array, (b). Notice how the null
positions line up perfectly due to the orthogonality constraints on the weights. For
even arrays, the final beam position is at end-fire (shown here in red), while for odd-
numbered arrays there are no end-fire beams within a full-dimension beam-space.

an 8-element array. All even numbered arrays will have an end-fire beam in the full

dimension beam-space, while an odd numbered array will not, as seen in Fig. 1.9b.

The full dimension beam-spaces show how the main axis of each beam lies precisely

on the nulls of each of the other beams due to the orthogonality constraints placed on

the steering/weight vectors. All of the results shown in the later sections utilize either

a 7 or an 8 element array configuration, so the beam-spaces of Fig. 1.9a and Fig. 1.9b

will be covered in greater depth in later sections.

The set of orthogonal beams are shifted by 2
N

in the sine-space from a central

beam. The central beam of the fan can be steered to center the beam fan on a region of

interest in a reduced dimension implementation, but for a full-dimension beam-space,

the central beam is aligned with zero. Thus for even arrays, the beam-space steering

vector for the mth beam is given by the following:

bm,even = vs(u−
2m

N
), m = −N

2
+ 1, · · · , N

2
, (1.26)

where u is the sine-space location of the central beam. For odd arrays, the orthogonal

beam-space steering vectors are given by

bm,odd = vs(u−
2m

N
), m = −N − 1

2
, · · · , N − 1

2
, (1.27)
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where u is once again defined as the sine-space direction of the central beam.

Once a given beam-space matrix is formed, the responses at the output of each

of the M beams can be calculated by multiplying the Hermitian of beam-space matrix

and the vector of inputs to each array element, s(t),

xbs(t) = BHs(t) (1.28)

1.1.2.3 Full-Dimension Beam-Space and the Discrete Fourier Transform

Matrix

If the desired beam-space is that of a uniformly weighted array, the output,

xbs(t), may be computed via a Discrete Fourier Transform (DFT) (or Fast Fourier

Transform (FFT)), across the input elements. Looking at the form of the Hermitian

of the beam-space matrix for an odd numbered array we have:

BH =



bHum1

bHum2

bHum3

...

bHumN−2

bHumN−1

bHumN



=



bH
(−N+1

2
)

bH
(−N+3

2
)

bH
(−N+5

2
)

...

bH
(N−5

2
)

bH
(N−3

2
)

bH
(N−1

2
)



=



vH
(
− 2
N
· −N+1

2

)
vH
(
− 2
N
· −N+3

2

)
vH
(
− 2
N
· −N+5

2

)
...

vH
(
− 2
N
· N−5

2

)
vH
(
− 2
N
· N−3

2

)
vH
(
− 2
N
· N−1

2

)


,

(1.29)

22



which, when fully expanded, provides:

BH =



1 e
−j 2π

λrf
dant

N−1
N e

−j 2π
λrf

(2)dant
N−1
N · · · e

−j 2π
λrf

(N−1)dant
N−1
N

1 e
−j 2π

λrf
dant

N−3
N e

−j 2π
λrf

(2)dant
N−3
N · · · e

−j 2π
λrf

(N−1)dant
N−3
N

1 e
−j 2π

λrf
dant

N−5
N e

−j 2π
λrf

(2)dant
N−5
N · · · e

−j 2π
λrf

(N−1)dant
N−5
N

...

1 1 1 · · · 1

...
. . .

1 e
j 2π
λrf

dant
N−5
N e

j 2π
λrf

(2)dant
N−5
N · · · e

j 2π
λrf

(N−1)dant
N−5
N

1 e
j 2π
λrf

dant
N−3
N e

j 2π
λrf

(2)dant
N−3
N · · · e

j 2π
λrf

(N−1)dant
N−3
N

1 e
j 2π
λrf

dant
N−1
N e

j 2π
λrf

(2)dant
N−1
N · · · e

j 2π
λrf

(N−1)dant
N−1
N


.

(1.30)

If we further assume, dant =
λrf
2

, and collect some terms, we are left with

BH =



1 e−j
2π
N
N−1

2 e−j
4π
N
N−1

2 · · · e−j
(N−1)2π

N
N−1

2

1 e−j
2π
N
N−3

2 e−j
4π
N
N−3

2 · · · e−j
(N−1)2π

N
N−3

2

1 e−j
2π
N
N−5

2 e−j
4π
N
N−5

2 · · · e−j
(N−1)2π

N
N−5

2

...

1 1 1 · · · 1

...
. . .

1 e j 2π
N
N−5

2 e j 4π
N
N−5

2 · · · e j
(N−1)2π

N
N−5

2

1 e j 2π
N
N−3

2 e j 4π
N
N−3

2 · · · e j
(N−1)2π

N
N−3

2

1 e j 2π
N
N−1

2 e j 4π
N
N−1

2 · · · e j
(N−1)2π

N
N−1

2


,

(1.31)

where the familiar DFT kernel, e−j
kn2π
N , becomes evident across the rows and columns.

Here, each row in BH represents a single DFT sinusoid, such that upon multiplication

of BH with a set of elemental inputs from an array, the sampled output for each

complex DFT sinusoid in the matrix results. Some texts normalize the beam-space

matrix such that the columns become orthonormal and thus the matrix is Unitary. This
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normalization is done by dividing the elements by
√
N and guarantees orthogonality

[25].

It has been shown that taking the DFT across an array of inputs is consistent

with the generation of a set of orthogonal beams at the output of an array. In the

following chapter a novel method to generate the continuous beam-space via photonic

up-conversion and Fourier processing will be discussed. It is then hypothesized, and

subsequently proven through experimentation that this continuous beam-space can

be sampled at the Fourier plane output such that a set of orthogonal beams can be

captured and processed using digital beam-space techniques.
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Chapter 2

PHOTONIC UP-CONVERSION AND FOURIER PROCESSING OF A
UNIFORM LINEAR RF ARRAY

2.1 Motivation for Up-converted arrays

As reviewed earlier, performing analog beam-space processing, for multi-beam

antenna applications, at Radio Frequencies requires the use of structures that can be

very large and/or heavy as in the case of multi-beam reflector antennas [10], or quasi-

optical, lens-like structures that are directly proportional in size to the wave-length of

the RF signals of interest [9,10]. In many cases, such structures are narrow-band with

many offering scanning in only a single dimension and in all cases, the structure that

performs the phase-shifting or time-delay is larger than the antenna array that feeds

it. By first, up-converting the signals behind each element of a given array, one can

route the elemental signals via fiber-optic cabling, a significant savings in total system

weight when compared to coaxial cable or wave-guide structures. These optical signals

can then be processed in the analog domain using lens-based techniques similar to

those used directly at the RF, but with significant reductions in size and weight. The

array processing optics may also be remoted a great distance from the feeding array

via a bundle of optical fibers, making such a technique attractive for elevated applica-

tions (e.g. tower-based communications, commercial cellular, 5G, etc.). Furthermore,

as photonics integration technologies mature, perhaps through the newly instantiated

American Institute for Manufacturing (AIM) in Photonics [26], the potential for inte-

gration of optically up-converted signals on multi-function photonic integrated circuits

offers even greater savings in size and weight on the RF array itself.

The following sections will begin with a discussion on the advantages of using an

arrayed approach to photonic links behind antennas, then continue with a discussion of
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the imaging techniques, initially postulated for use in passive millimeter-wave imaging

[27] as an efficient way to combine the outputs from an arrayed link. These discussions

include the mathematical formulation of the electromagnetic fields at the input and

output of the photonic up-conversion system and the subsequent Fourier Transforming

lens system. Specific contributions of this work in methods to produce a variety of

apodized beam-spaces, precise sampling of the output beam-space to capture a set

of orthogonal beams and the usage of digital beam-space processing to extend the

techniques described to multi-function apertures will be highlighted. Thus, we begin

with a discussion on the conversion of RF signals to optical and the performance of

the so-called remoting RF-photonic link.

2.2 Photonic Up-Conversion and Remoting of an Array

Analysis of a single microwave photonic link is well understood and is well de-

fined and described in [28]. However, as photonic architectures become more prevalent

and more integrated it will be possible to extend traditional array concepts to tightly in-

tegrated photonic systems. In preparation for highly integrated photonic components,

it is instructive to analyze the performance of photonic systems within the context

of element-level photonic antenna arrays. The potential advantages are shown via an

analysis of a simple 2-element array, like that which might be used as an interferometer.

2.2.1 Antenna Input Voltage

In order to derive the link-gain of an intensity modulated direct detection

(IMDD) link fed via an RF antenna with specified gain Gant, we must determine

the input voltage to the link. We assume a single arm drive Mach-Zehnder Modula-

tor (MZM) with only one output as seen in Fig. 2.1. In it’s simplest form, a MZM

allows an input laser signal to be split into two equal paths, with one path acting as

an unperturbed reference while the second path is phase modulated via an electric

field. Thus, upon coupling of the two paths at the output, an intensity modulation of

the input laser—proportional to the input electric field—is realized. The phase-shift is
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typically due to a voltage-induced change to the refractive index of the MZM material

(i.e., Pockel’s Effect). It is therefore necessary to determine the voltage applied to an

MZM due to an incident RF field onto a given antenna or array element.

We start with RFin being an electric field due to the far field propagation of a

single tone in free space. This field is propagating toward the antenna in the direction

of maximum gain. We assume a 50Ω load and a perfect match at the input to the MZM.

With these assumptions in place we will determine the voltage seen at the input to the

modulator based on an assumed power density of the incoming wave of Sin[ W
m2 ]. Note

that Sin = ~E · ~H = | ~E|2
η

where η is the impedance of free space and is approximately

equivalent to 120π or 377Ω. From here we assume an effective aperture of the antenna

that collects the incoming power density providing a received power, PRF = Sin ·Aeff .

The effective area, Aeff , has been shown to be related to the gain of the antenna and

the wavelength of the design frequency by [29],

Aeff =
λ2

4π
Gant . (2.1)

We will use the effective area of the antenna as a factor for the arrayed analysis later

in the paper. With the above relations we find that

PRF =
| ~E|2

120π
· λ

2

4π
Gant . (2.2)

We also note that

PRF =
V 2
RF

RL
. (2.3)

By substituting (2.2) into (2.3) and solving for the voltage we arrive at

VRF =
| ~E| · λ

2π
·
√
RL

120
·Gant . (2.4)

The formulation in (2.4) is similar to the approximation for the Antenna Factor (AF)

popularized by Ham radio operators:

AFv =
| ~E|
V
≈ 9.734

λ
√
Gant

. (2.5)
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Figure 2.1: A schematic drawing of a basic Mach-Zehnder Modulator (enclosed in the
dotted line) being fed via an antenna.

The definition of the Antenna Factor, AFv, should not be confused with the Array

Factor, AF , discussed previously. Next, we describe the basic photonic link setup and

begin our analyses of several link topologies within a notional RF array.

2.2.2 MZM Input/Output Analysis

Here it is convenient to define some additional parameters in order to reduce

confusion in notation moving forward. The input RF wave’s center frequency shall be

defined by f , with its radian frequency defined by Ω = 2πf . All optical wave center

frequencies will be denoted as ν, with optical angular frequencies denoted by ω = 2πν.

We now define the input voltage signal to the MZM behind the antenna due to an RF

signal based on the characteristics of the leading RF antenna and any DC bias as

Vin(t) = Vdc + VRF cos (Ωt+ αRF ), (2.6)

where VRF is defined in (2.4), Ω is the RF carrier frequency and αRF is any phase

function unique to the RF signal. For the MZM we will assume the coupling at the

modulator input and output are ideal and that the arms are of equal length. We

further assume a loss due to the modulator of Lm. We can then describe the output

electromagnetic fields in each arm of the output coupler by a series of transfer matrices
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of the form found in [30,31]; summarized by [28] as Eb1(t)

Eb2(t)

 =
Lm√

2

 1 j

j 1

  ejφ(t) 0

0 1

 1 j

j 1

 Eo(t)

0

 . (2.7)

We note that the phase function φ(t) introduced in (2.7) is due to the relationship

between the input voltage from the antenna, VRF , and the Vπ of the modulator as well

as any DC voltage bias that is applied to the modulator. The parameter, Vπ, describes

the necessary applied voltage to shift the phase of the laser signal within an arm of the

MZM by π radians. Thus, we can define the induced phase shift, φ(t), as

φ(t) = φDC + φRF cos (Ωt+ αRF )

=
πVdc
Vπ

+
πVRF
Vπ

cos (Ωt+ αRF ).
(2.8)

The newly defined parameter, αRF , will be important for the analysis of an array

where each element feeds an independent modulator and thus each modulator will see

a different RF phase. For the case of a signal with normal incidence, αRF then vanishes

to zero. We can further define φRF = πVRF
Vπ

via substitution of (2.4) to arrive at a phase

change due to the amplitude of the input field, the antenna (or antenna element) gain

and the modulator Vπ:

φRF =
π

Vπ

| ~E| · λ
2π

·
√
RL

120
·Gant . (2.9)

Inspecting, for a moment, the relationships in (2.9) we notice that when holding all else

constant, a change in the input antenna’s gain parameter causes a change in the phase

applied to the optical field that is proportional to the inverse square of the change to

the antenna gain. Typically when remoting a single antenna via an electro-optical link,

we wish to determine the average output RF power, PΩ, at the end of the fiber link.

The analysis performed in [28] shows that for a single MZM,

PΩ =
〈
I2
qΩ(t)

〉
Ro|Hpd|2 =

1

2
R2L 2

mP
2
o J

2
1 (φRF )Ro|Hpd|2, (2.10)

where I2
qΩ(t) is the output photo-current due to the first optical sideband when the

modulator is biased at quadrature, Ro is the output resistance and Hpd is the filter
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Figure 2.2: Schematic drawing of an optical link behind an antenna array with a
traditional RF manifold design.

function of the photo-diode. The result in (2.10) can be used directly for link topologies

that are similar to Fig.2.1 or Fig. 2.2. In Fig. 2.2, an array is remoted after the array

manifold (assumed to be lossless for the purposes of this analysis), which places the

antenna’s summed RF energy into the optical link. Following a similar derivation as

in [28] it can be shown that the photo current at the photo-detector due to the first

optical sideband when the modulator is quadrature biased is given by

IΩ(t) = ∓2IdcJ1(φRF )cos(Ωt+ αRF ) (2.11)

and the small RF signal output photo current in the fundamental sideband is

PΩ,ssnon−array =
1

8
R2L 2

mP
2
oRo|Hpd|2φ2

RF . (2.12)

We now wish to determine the output current for a topology like that of Fig. 2.3 and

make some quantitative assessments of the potential advantages and disadvantages of

an element-wise optical link approach.

2.2.3 Arrayed MZM Output Power Analysis

Arraying any number of elements as in Fig. 2.3 requires two additional con-

siderations within the optical setup. The first is introduced at point A in Fig. 2.3,

where the input laser to the modulators must either be split among the elemental links

or separate, locked lasers could be introduced. Regardless of the method, the input
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Figure 2.3: Schematic drawing of an antenna array with a Mach-Zehnder Modulator
being fed by each element of the array. In this topology the energy must be manifolded
in the optical domain.

optical signals must be coherent and the phase must be stable. This extra degree of

freedom allows for more total input optical power to be put into the system. Secondly,

at point C in Fig. 2.3, we must assume some method of coupling the outputs prior to

detection. In practice, it is expected that some additional loss will occur when com-

pared to the simpler antenna remoting link in Fig. 2.2 due to any additional coupling

stages. Some further observations with respect to the RF portions of the system are

as follows:

1. The total antenna gain, Gant, is proportional to the number of elements, thus the

individual element gains,

Ge =
1

Nelements

·Gant . (2.13)

2. We will assume the input RF field amplitude will be approximately identical at

each element due to ideal element gain patterns and an overall small size of the

array.
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3. Only a bore-sight, or normal incidence angle RF wavefront will result in each

element seeing an identical RF phase, all offset angles of arrival will cause a

differential phase of the RF signal at each element. This phase offset may be

captured by αRF in (2.8).

4. φRF must now include the RF element gain instead of the total antenna gain.

Thus, we define

φRFa =
π

Vπ

| ~E| · λ
2π

·
√
RL

120
·Ge . (2.14)

We begin to analyze the topology of Fig. 2.3 in a manner similar to that used in (2.7).
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√
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√
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(2.15)
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It is straightforward to construct the set of matrices in (2.15) for any even number of

antenna elements in order to arrive at the output fields for the given set of modulators.

An additional parameter introduced in (2.15) is the ratio, κ
χ
, which allows for variations

in the input laser amplitude, via κ, and number of times it is split, via χ. Manipulation

of κ and χ enables a comparative analysis between a single antenna remoting link and

an arrayed link. We also note that in arrays with N elements, χ and N must be

related for equal power distribution to be possible. Since optimal coupling requires

equal coupling on the input and output [32], we will assume that χ =
√
N . In this

way, the analysis presented can be applied to arrays with greater than two elements

in a straight-forward manner. Thus, in our two-element arrayed case where we have

not introduced any additional optical power, κ = 1 and χ =
√

2. With the outputs

from each arm of the elemental modulators defined in (2.15), we will first take a single

output from each modulator and assume they are coupled together with another ideal

coupler prior to the photo diode circuit. For simplicity, we will further assume that

the modulators are identical and incoming RF wave is at bore-sight which allows the

following approximations:

1. φ1(t) = φ2(t)

2. Lm1 = Lm2

3. αRF = 0.

Given the assumptions above, we can derive the signal output at point C in Fig. 2.3

due to the upper arms of the modulators (denoted by EBn,1 where n is the antenna

element number) as EC1(t)

EC2(t)

 =

 EB1,1(t)√
2

+
jEB2,1(t)√

2

jEB1,1(t)√
2

+
EB2,1(t)√

2

 =

 0

j
√

Lm√
2

κ
χ
Eo(t)

(
ejφ(t) − 1

)
 . (2.16)

Taking EC2(t) as the input field to the final photo diode we can find the output photo

current as

IC2(t) = RPoC2
, (2.17)
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where R is the Responsivity of the photo detector and PoC2
is the optical power into

the detector due to EC2(t). Using definitions of Po and Eo(t) from [28], we have

Po =
A

2

(
ε

µ

) 1
2

E∗o(t)Eo(t) (2.18)

and

Eo(t) =

√
2Po
A

(µ
ε

) 1
4
ejω(t), (2.19)

such that

PoC2
=
κ2LmPo
χ2

[1− cos (φ(t))] . (2.20)

Substitution of (2.20) into (2.17) leads us to

IC2(t) =
κ2RLmPo

χ2
[1− cos (φ(t))] . (2.21)

For comparative purposes we wish to derive the photo-current due to the fundamental

sideband, since that is where the RF information exists. By substituting (2.8) into

(2.21), using the Jacobi-Anger expansion (see derivation in Appendix C) and assuming

a proper quadrature bias we can arrive at the following relationship:

IC2,q(t) =
κ2RLmPo

χ2
+ 2

κ2RLmPo
χ2

∞∑
n=0

(−1)nJ2n+1(φRFa) cos[(2n+ 1)(Ωt+ αRF )].

(2.22)

Concerning ourselves only with the first fundamental sideband, when n = 0, in (2.22),

we arrive at an expression for the output current due to the incident field’s fundamental

frequency as

IC2,Ω(t) = −2
κ2RLmPo

χ2
J1(φRFa) cos(Ωt+ αRF ). (2.23)

We note that a positive current would be generated from the coupling of the lower

outputs of the elemental modulators at point B in Fig. 2.3, which is in agreement with
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the formulation used for (2.11). We can now derive the average optical power in the

sideband by substituting (2.23) into 2.10 for I2
qΩ(t) providing us with

PC2,Ω =

〈[
−2

κ2RLmPo
χ2

J1(φRFa) cos(Ωt+ αRF )

]2
〉
Ro|Hpd|2

= 4
κ4

χ4
R2L 2

mP
2
o J

2
1 (φRFa)Ro|Hpd|2

〈
cos2(Ωt+ αRF )

〉
= 2

κ4

χ4
R2L 2

mP
2
o J

2
1 (φRFa)Ro|Hpd|2.

(2.24)

At this point we note that when holding input laser intensity constant from the topology

shown in Fig. 2.2 to that shown in Fig. 2.3, κ = 1 and χ =
√

2 for the two-way split of

the laser, which brings all terms from (2.10) and (2.24) to equilibrium except for the

arguments of the Bessel function, which depend on the differing input antenna gain

parameters, Gant and Ge. If no additional optical power is introduced into the arrayed

topology the small signal power output of the arrayed link is equal to half of the single

link case (or 1
N

for an N-dimensional array). This is due to the fact that the input

voltage to the modulators is reduced by the lower elemental gain along with the fact

that the modulators themselves are provided with a reduced the laser intensity due to

and equal distribution to each of the elements. We instead wish to analyze the case

where we use the arrayed topology to introduce a higher laser input intensity into the

system. We therefore assume the best case where Eo(t) is doubled by setting κ = 2

while keeping χ =
√

2 for a 50-50 split to the dual element array. In this case, we

assume that each MZM is being fed with its maximum allowable laser input intensity.

Making the necessary substitutions into (2.24), we are left with

PC2,Ω,2el = 8R2L 2
mP

2
o J

2
1 (φRFa)Ro|Hpd|2, (2.25)

and assuming small signals we can further reduce to

PC2,Ωss,2el = 2R2L 2
mP

2
o φ

2
RFaRo|Hpd|2. (2.26)

Brief inspection of (2.12) and (2.26) leads one to believe that there is merit to the

arrayed approach, particularly since the arrayed approach allows for additional input
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optical power and thus a higher output optical power at the detector. However, we must

consider the entire system, especially the differences in φRF and φRFa , defined in (2.9)

and (2.14) respectively, before drawing any definite conclusions. Using the definition

in (2.13) and assuming a two element array as in Fig. 2.3, we can manipulate (2.9)

and (2.14) in order to define the following relationship:

φRFa2el
=
| ~E| · λ

2π
·
√
RL

120
· 1

2
Gant =

1√
2
φRF . (2.27)

Substitution of (2.27) into (2.26) provides us with

PC2,Ωss,2el = 2R2L 2
mP

2
o

(
1√
2
φRF

)2

Ro|Hpd|2

= R2L 2
mP

2
oRo|Hpd|2φ2

RF .

= 8PΩ,ssnon−array ,

(2.28)

where PΩ,ssnon−array is defined as in (2.12). We can see from (2.28) that the 2-element

array case analyzed provides eight times the output power to the detector. This is

due to the ability to drive each modulator with its maximum allowable laser intensity

effectively doubling the amplitude of the total system’s input laser over the simple

antenna remoting case in Fig. 2.2. We further note that by substituting (2.27) into

(2.25) we can evaluate the maximum power handling of the arrayed case against that

of a single link case.

2.2.3.1 Input RF power handling of the Arrayed topology

Qualitatively, one can see from (2.27) and (2.9) that given the same electric

field, ~E, that the arrayed case will provide less input voltage into the modulators due

to the lower gain value of the array elements. We wish to calculate the input electric

field that would be required to produce the maximum phase shift in the modulators

for the arrayed case. From (2.8) we can define a maximum phase shift due to the input

RF voltage to be

φmaxRF =
VRF,maxπ

Vπ
. (2.29)
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If we assume that we are using identical modulators in both the single link case and

the arrayed case, Vπ must be held constant, leaving only the RF input voltage to vary

the value φmaxRF between the two link topologies under analysis. From (2.27) we can

determine that when the input field is constant

φelement =
1√
2
φmaxnon−array . (2.30)

We wish to find the input RF field power that would bring the relationship in (2.30) into

equilibrium. By substituting (2.4) into (2.30), assuming an identical load resistance,

using the relationship for element gain given in (2.13) and solving for the input electric

field amplitudes, we arrive at the following relationship:

| ~Eelement|2 = 2| ~Enon−array|2. (2.31)

Therefore we can see that the 2-element arrayed case can handle twice the input RF

power before the modulators reach their maximum input voltage. We next analyze the

total system gain.

2.2.3.2 System Link Gain of a Two-element Arrayed Topology

The system’s small signal RF gain can be defined simply as the ratio of the input

RF power at the antenna to the linearized output RF power at the photo-detector,

therefore for the 2-element array case

Gsystem,2el =
PC2,Ωss,2el

PRF
. (2.32)

By substituting (2.26) and (2.2) into (2.32) we are left with

Gsystem,2el =
2R2L 2

mP
2
o φ

2
RFa

Ro|Hpd|2
| ~E|2
120π
· λ2

4π
Gant

. (2.33)

We can further simplify (2.33) via substitution of (2.14) and (2.13) for φRFa and Ge

respectively, leaving

Gsystem,2el =
2R2L 2

mP
2
o
π2

2V 2
π

| ~E|2
120π

λ2

4π
RLGantRo|Hpd|2

| ~E|2
120π
· λ2

4π
Gant

=
R2L 2

mP
2
o π

2RLRo|Hpd|2

V 2
π

.

(2.34)
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Finally, defining the photo-current at quadrature bias as in [28] gives

Idc =
RLmPo

2
, (2.35)

which when substituted into (2.34) provides a final, simplified form of the 2-element

arrayed link case as

Gsystem,2el =
4I2
dcπ

2RLRo|Hpd|2

V 2
π

. (2.36)

We can perform a similar analysis starting with (2.12) and assuming the same input

RF power to arrive at a gain for the non-array link case as

Gsystem,non−array =
I2
dcπ

2RLRo|Hpd|2

2V 2
π

. (2.37)

Inspection of (2.36) and (2.37) reveals that the arrayed case provides eight times the

total system link gain. The greater total gain result is intuitive since the arrayed

architecture allows for a higher total input optical power, and thus a higher photo-

current at the detector.

2.2.4 RF Photonic Link Performance Metrics

In general, most of the performance of a given RF photonic link depends on just

two parameters [28], Vπ, and Idc, the modulator V-pi and the output photo-current at

the detector, respectively. With this in mind, the following, performance metrics are

summarized from [28] for additional context:

Gain[dB] = −22.1 + 20 log10

(
Idc[mA]

Vπ[V ]

)
, (2.38)

Po,1dB[dBm] = −23.5 + 20 log10(Idc[mA]), (2.39)

Pin,1dB[dBm] = −0.4 + 20 log10(Vπ[V ]), (2.40)

OIP3[dBm] = −13 + 20 log10(Idc[mA]), (2.41)

IIP3[dBm] = 9.1 + 20 log10(Vπ[V ]), (2.42)

NF [dB] = 196.1− 20 log10

(
Idc[mA]

Vπ[V ]

)
+Nout[dBm/Hz], (2.43)
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where Nout typically consists of input and output thermal noise, shot noise at the photo-

detector and any laser Relative Intensity Noise (RIN) contributions at the output and

may be defined by

Nout =
I2
dc

V 2
π

π2RiRo|Hpd|2kBTs + kBTs + 2qIdcRo|Hpd|2 +RIN · I2
dcRo|Hpd|2, (2.44)

with the final term in (2.44) typically represented via

RIN [dBc/Hz] = 13 +Nopt[dbm/Hz]− 20 log10(Idc[mA])− 2Hpd[dB]. (2.45)

Two dynamic range metrics are also of interest for most applications:

CDR1dB[dB ·Hz] = −22.5 + 20 log10(Idc[mA])−Nout[dBm/Hz], (2.46)

and

SFDR3[dB ·Hz2/3] = −8.7 +
40

3
log10(Idc[mA])− 2

3
Nout[dBm/Hz]. (2.47)

Inspection of the above definitions along with the results in the preceding sections offer

some additional insight into the potential advantages of using an arrayed approach to

antenna remoting. While a full analysis of each is outside the scope of this work, some

motivation may be gained via discussion. For example, the additional total link gain

that may be achieved due to the ability to put N -times the optical power into a system

with N array elements. When properly coupled at the output, the additional input

optical power was shown to produce a greater photo-current at the photo-detector,

which from (2.38), increases the overall gain. The increased photo-current can also

aid in decreasing the noise-figure and increasing the overall third-order intercept point

(OIP3). However, the realizable dynamic ranges may eventually be limited by the

intensity noise (i.e., RIN) of the driving laser if careful selection of the lasers and pre-

modulator optical amplifier stages are not chosen correctly. The RIN effects on the

output are also proportional to the photo-current, thus for a given RIN value there

is a maximum useful photo-current before the output reaches a RIN-limited plateau.

In any case, there is a practical limit to the amount of additional optical power one
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can put into a system before becoming limited by the performance of the underlying

optical components themselves. Thus, the relationships between the equations above

must be studied and well understood by any prospective system designer.

In addition to the advantages from an RF photonic remoting link perspective

discussed above, the elemental up-conversion approach allows for analog beam-forming

to be performed in the optical domain. Traditionally, it is desired to do this with pho-

tonic true-time delay units (TTDUs), and significant advances in integration techniques

for such devices are making them more prevalent [33]. While beam-forming via TTDU

is inherently wide-band, it does not allow for multiple simultaneous beams without

the need for additional beam-forming networks. We instead approach the challenge of

beam-forming via the generation of a continuous beam-space that can be sampled or

imaged as described in the next sections.

2.3 Photonic Array Processing

In the previous section it was shown that the up-conversion of each element

of an array can allow for additional optical power to be input into the system. This

additional optical power may increase the overall link performance of the system, up

to any component-limited plateaus. However, the focus of this research is on multi-

beam antenna beam-forming and so it is important to be able to produce multiple

beam-formed outputs at the termination of the RF-photonic link(s). To this end, it is

necessary to describe both physically and mathematically, a method to form an arbi-

trary beam-space using the up-converted signals. Thus, the theory of operation behind

a photonic array processor that uses optical up-conversion and a Fourier Transforming

lens will be presented next.

2.3.1 Photonic Array Processor Overview

The photonic array processor assumes that the RF array is placed in a coordinate

frame identical to that introduced in Fig. 1.8. Behind each element is an electro-optic

modulator that converts the incident RF wave energy into a modulated optical laser
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signal. The laser signals for each element are routed from the RF array to a fiber

bundle that terminates in a lens-let structure that is a scaled version of the RF array

as seen in Fig. 2.4. The optical signals are then re-launched into a free-space optical
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Figure 2.4: Diagram of the basic geometry of Beam-space beam-forming of an RF array
via optical up-conversion and a Fourier Transforming Lens.

system that is used to perform the Fourier Transform of the input fiber array. The lens

effectively applies a angle-dependent phase shift on the re-radiated waves, such that

waves of a particular incidence angle are focused to a spot on the output beam-space

plane.

2.3.2 Photonic Array Up-conversion

The photonic array processor discussed here is based on previously proven

millimeter-wave imaging techniques, pioneered at the University of Delaware [27, 34].

The schematic in Fig. 2.5, shows that each element of the RF array feeds a Low Noise

Amplifier (LNA) and a Mach-Zehnder (Electro-optic) Modulator (MZM). The MZM

41



is used as an “up-conversion” stage behind each RF element so that the RF signals

are converted to optical signals that reside within a set of optical fibers. The fibers are

RF LNA

MZM

EDFA

Distribution 8

o

A
R
R
A
Y

BIAS RF path
Voltage

Optical Fiber
FS Optical Path

Variable

Φ

Lens

Figure 2.5: Schematic of the basic form of the proposed photonic, beam-space array
processor.

then carried to a secondary phase modulator before entering the free-space processing

chain. The secondary phase modulator is used to ensure that the optical phases re-

main coherent, a necessary condition for RF beam-forming and/or signal recovery to

be possible at the output.

It is necessary to determine the form of the RF signals of interest as they prop-

agate through the system. Thus we begin with determining the input RF voltage to

after the nth array element as

VRFe,n =
| ~E| · λ

2π
·
√
RL

120
·GeGLNA , (2.48)

where it is necessary to consider the gain of any RF amplification stages, behind each

element, through the addition of GLNA, to the relation previously derived in (2.4).
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Thus we continue with defining the voltage at the input to the electro-optic modulator

as before:

Vin(t) = Vdcn + VRFe,n cos (Ωt+ αRFn), (2.49)

where Vdc is once again a bias voltage that can control the modulator input/output

transfer characteristic to achieve a variety of effects on the overall performance of the

photonic link [35]. In real applications the bias voltages are likely unique to each

modulator, hence the subscripted n. It is equally likely that the element and LNA gain

characteristics are slightly different as well, however; for simplicity in notation we will

assume that Vdcn and VRFe,n are constant across the array of modulators allowing us

to drop the subscripted n moving forward. We do note that the phase seen at each

element will be different for any signals that arrive at an angle from the array bore-

sight and this relationship is preserved within the phase term, αRFn . With the input

voltage to each MZM defined, we model the phase of the optical carrier signal at the

nth element as

ϕn(t) = ϕdcn + ϕRFn cos (Ωt+ αRFn(t))

=
πVdc
Vπ

+
πVRFe
Vπ

· cos (Ωt+ αRFn(t)).
(2.50)

Then, the output optical field from a single element’s MZM can then be defined, in a

manner similar to (2.7), as

En (t) =
1

2
·
√
`n · Pon · ejωt

(
ejϕn(t) − 1

)
, (2.51)

where ` denotes the loss due to the MZM, Po denotes the input optical power and ω

denotes the optical radian frequency. We have assumed a single output MZM, and

thus have chosen the upper arm to derive the output relation in (2.51). The choice of

output arm is arbitrary as they are equivalent in all aspects but sign. Continuing, we

arrive at an initial expression for the optical signal behind each RF antenna element

via substitution of (2.50) into (2.51) giving

En (t) =
1

2
·
√
`n · Pon · ejωt

(
e
j
(
π·Vdc
Vπ

+
π·VRFe
Vπ

·cos (Ωt+αRFn (t))
)
− 1

)
, (2.52)
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which can be further reduced with an assumption that π·Vdc
Vπ

= π
2
, a condition known

as the quadrature bias, provides us with

En,q (t) =
1

2
·
√
`n · Pon · ejωt

(
je
j
(
π·VRFe
Vπ

·cos (Ωt+αRFn (t))
)
− 1

)
, (2.53)

where the subscript, q, has been added to denote a quadrature bias. From (2.50), we

know that
π·VRFe
Vπ

= ϕRF , thus the exponential with the RF modulation term is of a

form that can be reduced to a summation of Bessel functions via the Jacobi-Anger

Expansion. After application of the expansion in (C.1) we are left with the following

result

En,q (t) =
1

2
·
√
`n · Pon · ejωt

(
j

[
∞∑

k=−∞

jkJk(ϕRF )ejk(Ωt+αRFn (t))

]
− 1

)
, (2.54)

where Jk(), represent the Bessel functions of the first kind. The initial result in (2.54)

is formidable, but satisfying, since the result of electro-optic conversion of an RF signal

is a set of RF side-bands about an optical carrier. Typically, we are concerned with the

first optical sideband as this is where the RF signal information resides. Furthermore,

the later sidebands fall-off rather quickly making RF signal recovery from those side-

bands more challenging. With this is mind, we will concentrate on the result for k = 1

giving us

En,q1 (t) =
1

2
·
√
`n · Pon · ejωt

(
j
[
jJ1(ϕRF )ej(Ωt+αRFn (t))

]
− 1
)

=
1

2
·
√
`n · Pon · ejωt

(
−J1(ϕRF )ej(Ωt+αRFn (t)) − 1

)
,

(2.55)

where the subscript, q1, on the left hand side of (2.55) denotes the field for the funda-

mental sideband. We are left with an expression that includes the optical carrier and

the first side-band. If we assume that the term, ϕRF , is small we can further reduce

the result above by using a small signal approximation for the Bessel function in the

side-band term. Thus, for small, ϕRF ,

Jn(ϕ) =
ϕn

2nn!
, (2.56)
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which when used in (2.55) provides us with a final form for the signal at the output of

the nth element’s up-conversion stage as

En,q1,ss(t) =− 1

4

√
`nPon ·

πVRFn
Vπ

· ej(ω+Ω)t+jαRFn (t) − 1

2

√
`nPon · ejωt, (2.57)

where the new subscript, ss, denotes the ”small signal” assumption in a manner similar

to [28]. Inspection of (2.57) shows two distinct terms, the first is due to the fundamental

sideband of the optical input signal to the modulator while the second is due to the

optical carrier term. We note in (2.57) that the elemental RF phase, αRFn(t), due

to the incident RF wave sweeping across the elements of the RF array is preserved

within the optical side-band. We also point out that the RF signal in the first term of

(2.57) must compete with the optical carrier signal within the second term when the

combined signals pass through the optical beam-space processor. Each up-converted

signal is transported to a Fourier transforming lens via a fiber bundle, which terminates

in a lenslet array structure that is a scaled version of the input RF array’s elemental

configuration as seen in Fig. 2.4. A 2-f optical system, where f is the focal-length

of the lens in the system, is then used to Fourier transform the input field. This

Fourier transform is effectively a Discrete Spatial Fourier Transform (DSFT) of the

input array, and is therefore forming a continuous beam-space (i.e., spatial spectrum).

In order to show this relationship, we must formulate the input field to the optical

system and derive an output relation ship for the field once it is propagated through

the lens system.

2.3.3 Photonic Array Free-Space Optical Processing

Due to fact that the input RF array is up-converted to optical wavelengths (on

the order of 1550 nanometers), a lens-based beam-forming system can be used that is

orders of magnitude smaller in overall diameter when compared to a similar system at

RF. Thus, we can derive the input/output relationship of the optical processing chain

by beginning with the input field.
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The field at the input plane (y′ and z′ axes in Fig. 2.4) of the 2-f optical system

is made up of N optical fiber inputs terminated into a micro-lenslet array, where the

nth fiber’s contribution after the lens-lets is defined as:

E(y′,z′)n(t) = En,q1,ss(t) · e
(
− (y′−y′n)2+(z′−z′n)2

w2
o

)
. (2.58)

Each fiber is given an approximately Gaussian profile with a beam-waist of wo due to

the lenslet array at the termination of the fiber bundle. The y′-axis location of each

fiber at the input plane is denoted by the y′n in this linear array case. For more complex,

planar arrays, each element would have components in both the z′ and y′ axes. We

note that this beam-forming system operates on both linear and planar arrays equally

well. The total input optical field is then the sum over all N elemental input fields:

E(y′,z′)(t) =
N∑
n=1

En,q1,ss(t) · e
(
− (y′−y′n)2+(z′−z′n)2

w2
o

)
. (2.59)

By following a derivation similar to [36], the field at the output of the 2-f imaging

system is

E(v,u)(t) =
ejkofl

jλofl

∫ ∫
E(y′,z′)(t) · P (y′ + v, z′ + u)

· e−j
2π
λofl

(vy′+uz′)
dy′dz′,

(2.60)

where ko is the optical wave number, λo is the optical signal’s wavelength, fl is the focal

length of the lens system, and the function P (y′+v, z′+u) represents the effects of the

lens pupil function on the output field. When the lens is much larger than the area of

the input field and the input field is assumed paraxial, we may assume the effects of the

pupil function are small and treat it as a constant equal to one (1). Before continuing,

it is convenient to define the variables, ES and EC , based on the result in (2.57), as

the fields due to the RF-induced sideband and the optical carrier respectively:

ESn(t) = −1

4
·
√
`nPon ·

πVRFn
Vπ

· ej(ω+Ω)t+jαRFn (t), (2.61)

ECn(t) = −1

2

√
`nPon · ejωt. (2.62)

We also define the Gaussian beam profile function in (2.58) as

Bn(wo) = e

(
− (y′−y′n)2+(z′−z′n)2

w2
o

)
. (2.63)
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We can now expand (2.60) via substitution of (2.61), (2.62), and (2.63) to arrive at the

following result:

E(v,u)(t) =

ejkofl

jλofl

∫ ∫ N∑
n=1

ESn(t) ·Bn(wo)

· e−j
2π
λofl

(vy′+uz′)
dy′dz′

+
ejkofl

jλofl

∫ ∫ N∑
n=1

ECn(t) ·Bn(wo)

· e−j
2π
λofl

(vy′+uz′)
dy′dz′,

(2.64)

where the first double integral in (2.64) captures the output due to the energy in the

RF-induced optical sideband and the second double integral does the same for the

optical carrier signal. Additionally, from (2.64), one can see that the form of the

integrals on the right hand side of (2.64) is that of a Fourier Transform. The Fourier

transforming capability of a lens stems from its ability to impart a phase delay, to

an incident signal, that is quadratic within the perpendicular plane to the paraxial

axis. That is to say that any plane wave incident on the input plane of a lens with a

wavefront that is tilted in relation the paraxial axis of system is focused to a spot at the

output plane, with a position that is directly proportional the tilt angle of the input

wave-front. Thus, the output of the photonic beam-space beam-former just described

is equivalent to the Discrete Spatial Fourier Transform (DSFT) of the input array, and

can be described as a continuous spatial frequency spectrum. Any peaks of the spatial

spectrum will coincide with the angles-of-arrival of any plane-waves that are incident

on the RF array. With this in mind, we can see from (2.64) and (2.61), that the output

due to the “sideband term” of (2.64) is a spatial Fourier transform of the fundamental

optical sideband with a tilt angle that is in direct proportion to the angle of the

incoming RF waves. The angle of arrival of any incoming RF waves is preserved via

the element-to-element phase differences that are captured within the sideband term

via the variable, αRFn , in (2.61). The elemental phase difference causes the generation

of off-axis wavefronts on the lens which are focused by the quadratic phase function of
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the lens. Similar inspection of the “carrier term” in (2.64) along with the relation in

(2.62) shows that the optical carrier output should not have any associated tilt angle.

This assumes that the input laser is distributed via a network of equal-length fibers

to each optical modulator and that optical phase alignment is maintained after the

modulators. For the experimental system discussed later, the optical phase coherence

across the channels is controlled via a feedback loop as described in [37].

It has been shown that the input/output relationship of the optical processing

chain is that of a Fourier Transform, allowing simulation of the system to be performed

with good fidelity via the Fast Fourier Transform (FFT). Thus, a numerical simulation

for the proposed processing chain has been developed to allow for visualization of

contributions of both the side-band and the carrier to the output spatial frequency

spectrum.

2.3.3.1 Photonic Array Beam-space Processing Simulation

We have shown that the RF phase is preserved within the fundamental sideband

of the optical carrier so that an RF wave with an incidence angle off of the array’s

bore-sight will be shifted in the output Fourier plane proportionally to the angle of

incidence. This behavior can be seen from the simulated, solid-colored, “beams” of

Fig. 2.6. A significant challenge in the practical application of photonic beam-space

beam-forming is in the cancellation of unwanted carrier energy. The lack of any tilt

angle associated with the wave-fronts of the carrier’s field causes any uncanceled carrier

signal to manifest as a large, bore-sight “beam” response as shown by the black dotted

line in Fig. 2.6c and Fig. 2.6d. Thus, the carrier term eclipses any reasonable RF input

that would enter the antenna if it is not properly canceled before entering the beam-

forming system. From Fig. 2.6d, it is clear that the carrier must be attenuated by more

than 35 dB in order for the bore-sight RF signal (in red) to eclipse the carrier signal’s

main-lobe for the case simulated here. Furthermore, the carrier term does not contain

any useful RF signal information; however, any un-canceled carrier power at the output

will produce a non-negligible intensity noise on a receiving photo-detector [38]. For this
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reason, uncanceled carrier power becomes another limiting factor for the amount of

optical input power that can be put into the up-converted array architecture discussed

initially in Section 2.2.3. Carrier rejection—in the experimental beam-space array

processor discussed later—is currently accomplished via a combination of reflective,

thin-film filtering and use of Mach-Zehnder modulators biased for suppression of the

carrier. When properly nulled, one can expect an output like that of Fig. 2.6a and

Fig. 2.6b for each signal incident on the array.

Thus, with proper sampling of the output plane, it is hypothesized that one can

arrive at an equivalent Beam-space output vector, xbs(t), to that of the DFT beam-

former in (1.28). Furthermore, it is suggested that the signals incident at orthogonal

beam positions can be recovered directly at the output of the RF photonic beam-former

using high-speed photo-detectors placed at the precise locations. The theory behind

determining these locations will be discussed next, with a series of experimental results

using the suggested techniques being covered in subsequent Chapters.

2.3.4 Effects of Up-conversion on RF Angle-of-Arrival (AoA)

It is desired to be able to determine the precise locations in the output plane of

the optical processing chain that coincide with an arbitrary selection of signal incidence

angles. Such a relation would allow for the placement of an array of sampling photo-

detectors such that a discrete set of orthogonal beam positions could be recovered.

Furthermore, if the output plane intensity is imaged with a camera, the location of any

peaks in the image would be able to be converted to angles-of-arrival.

Thus we begin with the formulation by making the simplifying assumption that

for the array shown in Fig. 2.4, we do not expect to have any resolution for the angle,

φ. Therefore, we can consider a “top-down” two-dimensional equivalent geometry for

the purposes of mathematical convenience as shown in Fig. 2.7. When an RF plane

wave is intercepted by the RF array at an angle, θ, as shown in Fig. 2.7, the total
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Figure 2.6: Simulated outputs of the beam-space beam-former for an eight element
array with RF signals aligned with the main response axis of a single orthogonal beam
position. Eight separate signals are shown to illustrate the ability of the photonic
system to “image” the entire field-of-view from [−90◦, 90◦]: a) Voltage patterns with
optical carrier nulled; b) Power patterns with optical carrier nulled; c) Voltage patterns
normalized to optical carrier output; d) Power patterns normalized to optical carrier
output. Note colors and line-styles are kept constant for each beam within each sub-
plot.
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phase variation across the array is given by:

∆φRF =
2π

λRF
· Lpant

=
2π

λRF
·N · dant · sin θ,

(2.65)

where Lpant is the total propagation path length difference across the RF array, N is

the number of elements and dant is the inter-element spacing. The total propagation

path length can also be described as the projected antenna length in the direction of

travel of the incident wave. The incoming signals are then up-converted to the optical

domain where they ride on a side-band of the optical carrier as defined in (2.61). The

signals then propagate over equivalent length fibers to the fiber bundle array, where the

angle-of-arrival (AoA) is translated such that the entire field of view of the RF array

is encompassed within a scaled set of par-axial angles in the optical domain. Since

the RF signals are passed to the fiber array without loss of phase (or time of arrival)

information the total phase variation and/or time-delay across the fiber array must be

equivalent to the total variation across the input RF array as defined in (2.65). We

define the total phase variation across the fiber array for any wave launched at a tilt

angle, α, relative to the central axis of the optical system as

∆φfa =
2π

λSB
· Lpfa

=
2π

λSB
·N · dfa · sinα,

(2.66)

where Lpfa is the total propagation path length across the fiber array, λSB is the

wavelength of the first fundamental sideband of the optical carrier, N is the number of

elements and dfa is the inter-fiber spacing. Equating (2.66) to (2.65) and solving for α

yields

α = arcsin

(
λSB · dant
λRF · dfa

· sin(θ)

)
. (2.67)

From (2.67), we see that the initial RF signal is re-launched from the fiber array

at a scaled angle, α, that is proportional to the ratios between the RF and optical

wavelengths as well as the RF and optical element spacing. With knowledge of the tilt
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Figure 2.7: Two-dimensional graphical depiction of the translation of the input aper-
ture from the RF to the optical domains and its effect on the direction-of-arrival of the
incoming RF waves.

angle of the optical wave-fronts we can determine the output locations on the Fourier

plane via simple geometry as

uo = f · tan(α), (2.68)

where uo is the output plane location and f is the focal-length of the lens as defined in

Fig. 2.7. We arrive at a relation between the RF array’s sine-space coordinate, usine,

and the output Fourier plane location, uo, as

uo = f · tan

[
arcsin

(
λSB · dant
λRF · dfa

· usine
)]

, (2.69)

where uo is defined in meters from the central axis of the output plane. For the

simulation outputs shown we have assumed a lens focal-length, f , of 20 centimeters

and a fiber spacing, dfa, of 200 microns. If we wish to sample the outputs at eight
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Table 2.1: Sine-space and Fourier-space locations of 8 Orthogonal Beam Positions for
an 8-element array

Beam θRF usine uo α
(unit-less) (degrees) (unit-less) (microns) (degrees)

1 -48.59 -0.75 -581.2 -0.1665
2 -30 -0.5 -387.5 -0.1110
3 -14.478 -0.25 -193.7 -0.0555
4 0 0 0 0
5 14.478 0.25 193.7 0.0555
6 30 0.5 387.5 0.1110
7 48.59 0.75 581.2 0.1665
8 90 1 775 0.2220

(8) orthogonal beam locations, we can do so by placing high-speed photo-detectors

at the required locations in the Fourier plane, as noted in Table 2.1. Just as in the

sine-space, grating lobes will appear in the Fourier plane so it is imperative that the

RF array is critically sampled to build a proper full-dimension beam-space output.

Another important effect of the up-conversion and beam-forming process is that the

fiber array cannot physically become small enough to be critically sampled for the

chosen optical wavelengths. The spacing is limited by the physical dimension of the

optical fiber itself, which is an order of magnitude larger than the optical wave-lengths

being carried. The side-effect of this is that there are constant optical grating lobes in

the focal-plane, however; the fiber-array is significantly oversampled when compared

to the RF signal of interest. Thus the full field-of-view of a properly sampled RF array

will lie between the optical grating lobes. The roll-off of the optical grating lobes can

be directly affected by altering the beam-shape of the elemental fibers at the input

the optical processing system. Currently, each fiber is assumed to have a Gaussian

beam shape with beam-waist, wo, provided via coupling of each input fiber to a lenslet

array. The plots in Fig. 2.8 show the simulated Fourier plane output due to a single

bore-sight source with varying beam-waist at the input fiber bundle. The graphic in

Fig. 2.9 is an additional attempt to visualize grating lobe patterns that result from

undersampling the fiber array.
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Figure 2.8: Simulated outputs at the Fourier plane of the optical processor for three
different assumed Gaussian beam-waists.

Figure 2.9: A graphical depiction of an unsteered, spherical wave being launched from
arrays with 3 different element spacings with respect to the launched wave-length.
The launched waves are represented by the light-colored areas. The three array con-
figurations show an End-Fire array, a Critically Sampled Array and an example of
an Under-sampled, Up-converted array, with dant = λ, λ

2
, and 10λ, respectively. The

Up-converted case clearly shows the multiple beams/grating lobes that are launched
simultaneously as a set of overlapping, light-colored fringes. In the photonic array pro-
cessor, the RF signals of interest lie in the spaces between the multiple lobes seen in
the diagram on the right, allowing them to be recovered un-ambiguously at the output
plane.
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From inspection of Table 2.1, we see that there is no beam at -775 microns, this

is due to the fact that the 8th beam of an even-order array is an end-fire beam that has

a grating lobe at -1 in sine-space. This grating lobe is evident in Fig. 2.6 as a purple

trace that appears to have main response axes at both -775 and 775 microns in the

output plane.

We now have a method to generate a continuous beam-space and calculate

locations for the sampling of chosen beams within the output Fourier plane of the beam-

former. The example beam-space locations in Table 2.1 would be used for sampling a

set of orthogonal inputs such as to further process the beams using beam-space adaptive

processing techniques. In some applications there may be the need to directly sample

arbitrary beams that exhibit a low-sidelobe response, to mitigate effects of spatially

adjacent interference, for example. In order to reduce the output plane sidelobes, a

method of apodization or beam-tapering must be employed, as discussed next.

2.3.5 Apodization of Beams Using the Photonic Beam-space Processor

Beam apodization (also known as tapering or windowing) is realized via a pat-

tern of weights across array elements that are typically symmetrical about physical

dimensions of the receiving array. In many applications, these weights are applied via

physical attenuators within the array beam-former. This method is compatible with

the photonic beam-space processor, though it requires an additional RF device to be

placed behind the antenna elements. Instead, we apply beam tapering functions within

the optical chain, after RF up-conversion has occurred. There are several methods that

have been developed, simulated and prototyped.

2.3.5.1 Apodization Via Transmissive Film Filtering in the Optical Chain

A simple, but effective method for beam tapering within the photonic beam-

space beam-former is to place an amplitude transmissive profile filter in the free-space

optical path of the lens [39]. In order to achieve the desired results, this technique

requires precise alignment of the filter with the fiber array’s central axis. It is important
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that the transmissive filter overlap the input signal support completely. An example

optical taper profile that matches a -27 dB Taylor [40] window has been simulated

in Fig. 2.10 to show the concept. A consequence of tapering in this manner is the

removal of optical power that was put into the system. Amplitude tapering within the

optical chain of the beam-space processor effectively lowers the wall-plug efficiency of

the system in a manner proportional to the apodization profile that is used on the fiber

array. This is due to the fact that the tapering function must be applied via a carefully

constructed gradient density filter that blocks the optical signal from the outer fiber

array elements, while not altering the phase. For the case of the Taylor function used

to generate Fig. 2.10a, the laser signals from the edge elements are attenuated by

70% when compared to the central elements. Another issue with the gradient density

tapering method is the actual construction and implementation of the filter itself. The

filter must be equal in size to the fiber bundle, which for small arrays will tend to be on

the order of millimeters in side length. Precise control of the density gradient may also

present a challenge since the approximately linear portion of the function simulated

(i.e. the region from ˜200 to ˜600 microns in Fig. 2.10b) changes density by 0.11%

per micron. Furthermore, switching between tapered and untapered beams requires

additional hardware (e.g., a filter wheel) that would complicate the optical system. To

circumvent these issues we propose a different method that uses precise control of the

input laser power prior to the optical modulators. By limiting the input laser power to

each Mach-Zehnder modulator an amplitude taper function can be created that does

not “throw away” any input power. This method has the advantage of reducing the

total input power of a system when the output of apodized beams is required.

2.3.5.2 Apodization Via Weighted Distribution of a Master Laser

Rather than attenuate the laser amplitudes at the fiber bundle, which can be

costly to the overall power efficiency of the system, we wish to limit the initial input

laser power to each of the element’s optical modulators. For the purposes of demon-

stration, a method to “taper” the input laser across an array of eight (8) modulators
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Figure 2.10: Example of Apodization via a transmissive filter in the optical path: a)
Fourier plane output showing apodized beam of single bore-sight input (solid, red line)
overlaid with un-canceled carrier response (dotted, black line). Note the sidelobe level
of the carrier matches that of the -27 dB Taylor weighting applied via the simulated
transmissive film over the fiber array. b) Normalized plot of the real-part of the input
field showing the filter function and its effect on the elemental Gaussian beam outputs.
All optical energy above the red, filter function line is attenuated, lowering the power
efficiency of the photonic system.

using commercial fiber couplers was devised as shown in Fig. 2.11. The splitting ratios

used are widely available making them easy to procure; however, their limited vari-

ability constrains the precision of the apodization profiles that are possible. A total of

seven couplers is used in order to split the input laser symmetrically about the center

of the modulator array. We wish to approximate the splitting ratio that would be nec-

essary to achieve a -27 dB Taylor with three equal height sidelobes (i.e. n̄ = 3). The

normalized weights applied to the field at each element in order to achieve a perfect

8-sample Taylor window [40] are listed in Table 2.2 along with the weights that can be

realized with commercially available fiber couplers as of this writing.

In order to determine the optimal coupling ratio for a given layout a simple

tree-like distribution network is assumed. If each 2x2 coupler is treated as an ideal,

lossless coupler with a single input, the output can be shown to be of the following
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form [28]:  Eout1

Eout2

 =

 √1−K j
√
K

j
√
K

√
1−K

  Ein

0

 , (2.70)

where K is the power coupling ratio. Using the relation in (2.70), a system of equations

was created in order to solve for the optimal coupling ratios required to achieve an 8-

element Taylor weighting. The equations were set up assuming a splitting layout like

that within Fig. 2.11, where one branch from each coupler is further split and the

other is split via a 50/50 coupler and fed to a symmetric set of elements. There are

three unique branches in the formation, while the others are all assumed to be ideal

50/50 couplers. Assuming the objective is to match the ratios given in the second

row of Table 2.2 we can solve for the final input to output coupling ratios for each

termination point of the distribution network as labeled in Fig. 2.11 as:

A1,2 =
1√
2
·
√
K1 · Ain,

A3,4 =
1√
2
·
√
K2 ·

√
1−K1 · Ain,

A5,6 =
1√
2
·
√
K3 ·

√
1−K1 ·

√
1−K2 · Ain,

A7,8 =
1√
2
·
√

1−K3 ·
√

1−K2 ·
√

1−K1 · Ain,

(2.71)

where Ain is assumed to be the initial input amplitude from the master laser. Taking

the relations in (2.71) and equating their ratios to the normalized weights listed in the

second row of Table 2.2 enables a solution for the optimal coupling ratios. For example,

from Table 2.2 and Fig. 2.11:
A1

A3

= 0.834, (2.72)

therefore,

K2 =
(0.8342) ·K1

(1−K1)
. (2.73)
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Solving for the remaining coupling ratios based on the Taylor weight values and back

substituting leaves the following:

K1 = 0.468 ≈ 0.45 ,

K2 = 0.612 ≈ 0.60 ,

K3 = 0.724 ≈ 0.70 .

(2.74)

The values in (2.74) were then approximated with commercially available couplers, to

achieve a close estimate of the desired Taylor weighting scheme. The realized weights

are listed along with the desired Taylor response in Table 2.2, a graphical comparison

is shown in Fig. 2.12b. The output of the ideal and realized weighting functions for

the central beam is shown in Fig. 2.12a. As seen in Fig. 2.12, it may be possible to

achieve a weighted distribution of the master laser via commercially available couplers

that closely resembles an ideal Taylor weighting function. The close-in sidelobes for the

achievable distributed laser weightings are approximately 2 dB higher than the ideal

case in simulations.

Table 2.2: Ideal and Realized Weights, for Each Modulator Shown in Fig 2.11

MZMn 1 2 3 4 5 6 7 8
Taylor Weights .349 .565 .834 1 1 .834 .555 .349

Realized Weights .383 .585 .856 1 1 .856 .585 .383

2.3.5.3 Master laser Input Power Comparison

If we wish to ensure that the unweighted elements (i.e. central array elements)

are fed with the modulators maximum allowable laser power, we must relate the master

laser input power to the modulators maximum allowable input power. We start by

relating the master laser amplitude to its input power via:

Ain =
√
PoML . (2.75)

Inspecting the relations in (2.71), we note that the value for A1,2 is the maximum

output of the distribution system. We will assume that A1,2 must not exceed the
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Figure 2.11: A graphical depiction of the fiber coupler layout used for simulation and
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tapering of the input laser amplitude into the Mach-Zehnder Modulators.
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Figure 2.12: Example of beam apodization of the bore-sight beam via weighted distri-
bution of the master laser: a) Apodized bore-sight beam for the ideal laser weighting
(solid red) overlaid with the realized weighting (solid black). Both are compared to the
unweighted case (dotted black). Note the ideal case achieves -27 dB sidelobes, while
the coupler-based weights yield -25 dB sidelobes with 0.25 dB additional main-lobe
gain (barely evident in the plots). b) Comparison of the ideal Taylor (red asterisk)
and realized (black circles) weighting functions with the error shown in dotted blue.
The slight gain improvement noted in the response plot is intuitive due to the slight
decrease in attenuation of the outer elements when using the coupler-based weighting.
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maximum allowing input power, Pomax , for the MZM’s used in the array. Substitution

of (2.75) into the relation for A1,2 and equating to the maximum allowable modulator

input power, Pomax , then provides

Pomax =
1√
2
·
√
K1 ·

√
PoML . (2.76)

Solving for the input power of the master laser leaves us with

PoML
=

2 · Pomax
K1

. (2.77)

Finally, substitution of our approximated values for K1 in (2.74) leaves us with a final

relationship between the maximum allowable input power into the modulators and the

required input power of the master laser as

PoML
=

2 · Pomax
0.45

≈ 4.44 · Pomax . (2.78)

In comparison to an un-weighted array where we can assume each modulator is driven

with a power that is close to Pomax , the weighted system requires approximately 0.55

of the input power.

PoML,weighted
≈ 0.55 · PoML,un−weighted . (2.79)

From (2.79) we can see that the formation of apodized beams via a weighted distribu-

tion of the master laser saves approximately 45% in laser power over apodization in

the optical domain where excess input power is eliminated via a transmissive filter.

We have shown via simulation that tapering the output beams of the photonic

beam-space processor is possible via a weighted distribution of the master feed laser

to each modulator. We have also presented a method using commercially available

parts to approximate an ideal taper function. As mentioned previously, it is desired to

recover the signals within a given beam at it’s focused point on the Fourier Plane. This

is possible via the introduction of a photo-detector at the precise locations given by the

relation in (2.69) for a given optical setup. It is impractical to sample the optical side-

band directly at terahertz frequencies in order to recover the lower-frequency RF signal

of interest, though significant work in photo-detectors with extremely wide detection
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bandwidths exists [41]). For these reasons, we choose to introduce an optical Local

Oscillator Signal into the beam-forming processor which allows us to down-convert the

optical signals to any arbitrary intermediate frequency for recovery and processing.

2.3.6 Beam-Space Down-Conversion and Signal Recovery

One advantage of sampling a continuous beam-space that is generated via an

analog optical processor is that a single LO signal can be used to generate a down-

converted beam output for any given sampled beam location. Furthermore, the LO

signal can be introduced as part of the fiber-bundle that feeds the photonic array

processor. Doing so guarantees that the LO signal will see an identical optical path as

each of the array signals, thus remaining fully coherent across the entire useful portion

of the focal plane. Care must be taken when designing an optical system that uses

photo-detectors as down-converting mixers since it is extremely important that the

fields to be mixed arrive at nearly the same incidence angle. Mismatches in angle can

cause phase fringes that will reduce the SNR at the detector. Thus, the signals are

all introduced at the fiber-bundle in an attempt to mitigate the potential challenges

of introduction after the beam-forming lens. The signals arrive at the photo-detector

such that a low-frequency beat signal results, the beat frequency must be within the

bandwidth of the detector, while the other higher-frequency beat signal should be

outside this bandwidth. The concept of detecting beat frequencies between to optical

signals was introduced in the late 1940’s [42] with a large number of experiments

following in the literature in an effort to understand the theory of what is now known as

optical heterodyning or coherent detection [43–45]. It has been shown [44] that optical

heterodyne detection provides a significant conversion gain over direct detection of the

optical signal of interest as long as sufficient power is provided to the photo-detector by

the LO laser. Furthermore, the LO laser and its spectral performance dominates the

noise characteristics of the down-converted signal assuming that a proper LO signal

amplitude is chosen so as not to introduce saturation effects [46]. The signal-to-noise

ratio out of a PD using coherent heterodyning (when neglecting effects of laser RIN)
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may be written in terms of

S

N
=

1
2
i2Req

2qIoBR̃eq + 2qI ′oBR̃eq + kTeqB
, (2.80)

where the three terms in the denominator are due to Shot noise, noise due to back-

ground light/dark current and thermal noise, respectively with. The output power has

been related to the current via a lumped, equivalent resistance that includes factors due

to design parameters of a particular photo-detection device [44]. In practice, the value

of the equivalent resistance can be measured for a given device, rather than calculated.

If the LO power is strong enough such that, Io >> I ′o, then the LO induced current

dominates the dark current and any currents due to back-ground illumination [44].

It is also desired to set the LO power such that the shot noise is dominant over the

thermal noise, creating a fundamentally limited link. Thus, with proper selection of

the LO signal power, the signal-to-noise ratio for the coherent optical detector reaches

an ideal maximum of
S

N
=
βoηPs
hνB

=
βoRPs
Bq

, (2.81)

where, βo is related to the angular overlap of the optical beams, h is Planck’s constant

of ≈ 6.6x10−34 [m
2·kg
s

], R is the photo-detector Responsivity in amps per watt, Ps is

power of the received signal, B is the photo-detector’s effective bandwidth and q is the

electron charge constant of ≈ 1.6x10−19 [Coulombs]. In the experimental photonic

array processor, the optical LO signal is derived from the master laser that feeds each

of the electro-optical up-conversion stages behind each element of the RF array. The

tapped master laser signal is modulated by a null-biased external modulator that is fed

by a tunable RF source as shown in Fig. 2.13. The output of the modulator produces

a set of sidebands that are used to injection lock a second, thermally tuned, LO laser

to the desired LO frequency. This injection locked signal is then fed into the photonic

beam-space beam-forming system so that the, now coherent, LO signal over-lays the

beam-space precisely, mitigating losses due to mis-match in incidence angle. This

modulation-sideband-injection locking, pioneered at the University of Delaware, has

been shown to produce coherent LO signals across several octaves of bandwidth [47],
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allowing the photonic array processor to down-convert signals across its entire accessible

bandwidth to any chosen intermediate frequency (IF).

At any given beam-location in the output plane of the photonic array processor

we will have the superposition of the up-converted RF signal fields with that of the

LO laser. For a single incident RF field we would have a superposed field at the

photo-detector array of the following form:

EPD = ALO · ejωLOt + As · ejωst, (2.82)

with

ωLO = ωo+ ωRF + ωIF (2.83)

and

ωs = ωo+ ωRF , (2.84)

where ωo is the radian frequency of the optical carrier, ωRF is the radian Radio fre-

quency and ωIF is the desired output intermediate frequency. We can then define the

intensity of the combined field at the photo-detector as

IPD =
EPDE

∗
PD

Zo

=
1

Zo

[(
ALO · ejωLOt + As · ejωst

) (
ALO · e−jωLOt + As · e−jωst

)]
,

(2.85)

where the ∗ indicates the complex conjugate and Zo is the characteristic impedance.

Simplification of the relation in (2.85) yields

IPD =
1

Zo

[(
ALO · ejωLOt + As · ejωst

) (
ALO · e−jωLOt + As · e−jωst

)]
=

1

Zo
[A2

LO · ej(ωLO−ωLO)t + ALOAs · ej(ωLO−ωs)t + · · ·

ALOAs · e−j(ωLO−ωs)t + A2
s · e−j(ωs=ωs)t]

=
1

Zo

[
A2
LO + A2

s + ALOAs
(
ej(ωLO−ωs)t + e−j(ωLO−ωs)t

)]
=

1

Zo
·
[
A2
LO + A2

s + 2ALOAs cos [(ωLO − ωs) t]
]
.

(2.86)
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We can then write the output photo-current as

iPD = RIPD

= R
[
PLO + Ps + 2

√
PLOPs cos (ωLO − ωs) t

]
,

(2.87)

where PLO and Ps are the incident optical powers of the LO and sideband signals

respectively. Inspecting the result in (2.87), we have a DC term, idc and a signal term,

is,

idc = R · (PLO + Ps) , (2.88)

and

is = 2R
√
PLOPs cos [(ωLO − ωs) t]. (2.89)

When PLO � Ps, as should be the case when maximizing output SNR, the DC photo-

current reduces to

idc = R · PLO. (2.90)

Finally, substitution of the definitions in (2.83 - 2.84) provides us with the output

signal current at the IF as

is,IF = 2R
√
PLOPs cos [(ωo + ωRF + ωIF − ωo − ωRF ) t]

= 2 ·R ·
√
PLOPs cos (ωIF t) .

(2.91)

From the result in (2.91) we can see that it is possible to down-covert the RF signal

within the fundamental optical sideband to any desired IF via introduction of a coherent

laser LO signal that is offset from the sideband by the desired IF. Hence, the center

of the IF band can be precisely selected by generation of the coherent LO via the

technique described in [47]. We note that for wide-band inputs, a single LO stage like

that described makes it is possible for more than one RF signal to alias into the IF

band of interest. Therefore, some care must be taken to ensure that only the signal

of interest is down-converted. During experimentation, this is done via the use of

a narrow-band array at the input. Thus, assuming proper frequency planning, the

desired IF signal for any given beam-location can be conditioned and sampled at the

output of the beam-sampling PD array.
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In this chapter, it has been shown that the proposed methods of array remoting,

photonic beam-forming and beam-space sampling can allow for the sampling and down-

conversion of an arbitrary beam-space. The beam-space that is generated is continuous

across the full-field-of-view of an input RF antenna array. The importance of using

a critically sampled RF antenna was discussed and a method to determine precise

optical sampling locations in the output plane of the optical processor was derived.

Thus, any arbitrary angular region in the field of view of an input antenna can be

collected using a precisely positioned, high-speed photo-detector. For applications that

require low-sidelobes for reduced spatial interference at the sampled beam-location, a

method to apodize the output beam-space was presented. Finally, the entire beam-

space can be simultaneously down-converted via the introduction of a single, coherent

Local Oscillator signal. This technique mitigates the need for complex LO distribution

across large arrays as one might need for a traditionally digitized beam-space array or

an elemental digital array and allows for a full-dimension orthogonal beam-space to the

down-converted upon sampling. The next chapter discusses an experimental photonic

system that allows for the visualization of the incident spatial frequency spectrum while

simultaneously providing a set of down-converted, orthogonal beam outputs that can

be used for digital processing of multiple signal types.
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Chapter 3

MULTI-FUNCTIONAL PROCESSING OF PHOTONICALLY
GENERATED BEAM-SPACES

As discussed in Chapter 2, the output of the proposed photonic array processor

is a continuous spatial frequency spectrum. This spectrum is generated via analog

means, and is therefore processed in real-time, regardless of the input array size. It

is desirable to utilize the output for multiple simultaneous functions, also in real-time

(or as close to real-time as modern processing will allow). Thus, there are two distinct

methods to capture and process the spectral output, one is via traditional, camera-

type devices, while the other is via high-speed photo-detectors, perhaps using coherent

detection as discussed in the previous chapter. Both methods have significant merit,

particularly if used in tandem.

3.1 Imaging of the Continuous Spatial Frequency Spectrum

When the photonic array processor is utilized without a down-converting LO

signal, as shown in Fig. 2.5, detection of the output plane irradiance (also called the

intensity) would allow for visualization of the spatial spectrum. A commercial camera

is too slow to follow the oscillations of the optical signal directly, but instead responds

to the time-averaged intensity. The camera must be matched to the wavelength of the

sidebands of interest and have sufficiently fast integration times, such that an image

can be generated at video rates. The irradiance of a field is defined as the flux, in

watts, per unit area on a given output plane and may be modeled via

Ir(v, u) =
1

2η0

Et1(v, u)E∗t1(v, u) =
1

2η0

|Et1(v, u)|2, (3.1)

where Et1(v, u) is the output plane electric field given in (2.64) at a given time instant,

t = t1, and η0, the characteristic impedance of the medium. For the purposes of imaging
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Figure 3.1: Simulated irradiance of the field at the output of the photonic array pro-
cessor with, (a), full plane, and, (b), zoomed portion of plane, covered by gray box in
(a), that is practical to image with a commercial detector array or camera.
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the the spatial spectrum of a set of incident RF fields, only the relative form of the

irradiance is necessary allowing multiplier, 1
2η0

, in (3.1) to be ignored. With that, some

simulated outputs for a single, bore-sight, plane wave are shown in Fig. 3.1. The result

in Fig. 3.1a shows the grating lobe structure due to the spacing of the fiber array. This

result is in agreement with the cartoon example shown in Fig. 2.9. The roll-off is due

to the Gaussian beam shape at the output of the system. In practice, it is only useful

to image, or sample, a portion of the region between two opposing optical grating-

lobes. All desired RF signal angle-of-arrival information is preserved unambiguously

in between the optical grating lobe region, as shown in Fig. 3.2, where two opposing

signals are simulated as incident at ±90◦. In many cases, the RF array’s field-of-view
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Figure 3.2: Simulated output irradiance patterns for a bore-sight signal overlaid with
signals from ±90◦, showing that even though there are optical grating lobes, they do
not interfere with recovery of signals from a critically sampled RF array at the input.
The region unambiguous measurement of input RF signal angle is shown by the gray
overlay.

will be limited to less than the region over [−90◦, 90◦], often by the element pattern, as

discussed in Section 1.1.1.2. We also show an example of opposing signals at ±45◦ in

Fig. 3.3. In the case simulated here, we have assumed a reasonable optical setup with
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Figure 3.3: Simulated output irradiance patterns for a bore-sight signal overlaid with
signals from ±45◦. The region unambiguous measurement of input RF signal angle is
shown by the gray overlay.

a lens focal length of 20cm, a lens diameter of 2cm, an optical wavelength of 1550nm

(in the Short-Wave Infrared Detector Range), an optical fiber spacing of 200µm and

an elemental beam-waist of 50µm. Therefore, for the simulation parameters used here,

one can visualize the entire field of view of any critically sampled (i.e. dant = λRF
2

) RF

array with an image sensor less then 2 millimeters in diameter.

3.1.1 Beam-Squint of Wide-band Signals

The Fourier operation that is performed on the input signal field is not wide-

band in a true-time delay sense. The lens is effectively imparting an angular dependent

phase offset to the incident fields, thus the angular translation is subject to dispersive

effects. These effects manifest themselves as a frequency dependent steering of the

output beams, known as beam squint/dispersion. This phenomena is evident in tra-

ditional phased arrays that do not use true-time-delay in their beam-steering systems.

An example output of a set of signals incident from identical angles, but at frequency

offsets of 1 GHz relative to one another is shown in Fig. 3.4. It is interesting to note
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that the apparent “beam-width” of the output field irradiance patterns is determined

solely by the optical fiber array size and the side-band frequencies, while the angle is

determined by the relative RF phases across the fiber array elements. While a 6 GHz

span is quite large for a typical RF array, it is orders of magnitude smaller in per-

cent bandwidth at the up-converted frequencies, thereby generating a set of “beams”

that do not appear to broaden significantly with frequency when viewed in the output

optical plane.
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Figure 3.4: Simulated output irradiance patterns for a set of 30◦ offset signals of
various frequencies. The typical beam-broadening effects are not seen due to the fact
that the output irradiance “beams” are dependent only on the optical array size and
corresponding side-band frequencies, which have extremely small differences in terms
of percentage bandwidth across the RF signal span shown.

3.1.2 Analog Re-Steering of the Output Beam-Space

If we apply a frequency-dependent steering vector to the elements prior to the

photonic array processor, we can re-steer the entire beam-space. The necessary phase

offset across the RF elements has the following form:

∆φRF =
2π

λstr
ndantsin(θd), (3.2)
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where λstr is the wavelength of signal that we wish to steer toward in the direction, θd,

and is presumed different from the design wavelength of the antenna. Applying this

phase offset in either the RF domain, prior to up-conversion, or in the optical domain,

prior to the lens-let array, will re-steer the beam-space such that a signal incoming from

the angle, θd, will be output at the center of the focal plane. In this way, a beam-fan

of a particular size may be sampled via a set of specialized photo-detectors, potentially

embedded within a traditional camera focal plane array, a so called “Foveal” detector

array. While creation of such a device is not the focus of this work, it is perhaps an

interesting system-level approach to applying the photonic array processing scheme

discussed here. Nonetheless, for the existing experimental system, application of a

steering vector that is keyed to a particular frequency and angle of signal can be used

to steer a beam-fan, as shown in Fig. 3.5.
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Figure 3.5: Simulated output irradiance patterns for a set of 3 offset signals, or beam-
positions. The beam-fan is then shown in a re-steered configuration which has centered
the outputs at the origin of the focal plane. This technique would be especially useful
for implementing reduced-dimension beam-space systems.

It is also possible to apply a steering vector, such that a particular frequency of

74



interest can be centered on the array. In certain cases this may mitigate ambiguities

in angle-of-arrival of two signals with widely offset frequencies; however, any technique

to determine frequency, without a-priori knowledge, would require a structured search

that would undoubtedly require signals that were persistent in angle for the duration

of the search routine. Therefore, without the use of known-angle, pilot-tone types

of signals, it is unlikely that a frequency-dependent phase steering technique would

be practical in determining true frequency of multiple arriving signals in a real-time

operation. Nonetheless, in situations where the frequencies of likely signals are known,

as in communications or RF sensing applications, frequency-dependent phase shifting

in the RF domain can compensate for dispersive effects. An example is shown in Fig.

3.6.
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Figure 3.6: Simulated output irradiance patterns for a signal at 15GHz incident on an
array at 30 degrees. The Array is designed for a 12GHz center frequency, which causes
the 15GHz signal to appear at an angle of approximately 38.5 degrees. The pattern
for a 12GHz signal at 30 degrees is shown as a light gray dash-dotted line. Application
of a steering vector such that λstr = c

15GHz
and θd = 30◦ results in the 15GHz signal

being centered on the focal-plane, even thought it originally appeared at 38.5◦. We
note that a 12GHz signal incident at θd is know pushed off-center as shown by the solid
light gray line.
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3.2 Digitization of a Down-converted Beam-space

When performing a simple imaging operation on the spatial spectrum of the

environment given an input RF array that is collecting signals, a simple camera can

be used to capture and digitize the entire intensity map of the spatial spectrum. In

this manner, all digitization is performed via the analog to digital read-out circuits

on the camera itself. However, when it is desired to capture and digitize a set of

beam-positions such that the signal phase can also be recovered, a more sophisticated

sampling architecture with high-speed photo-detectors and an integral optical LO, like

that discussed in Section 2.3.6, is required.

From Section 2.3.6, the output signal from a coherent, heterodyned, photo-

detector will be an analog signal centered at the desired IF. Methods for determining

the placement of such photo-detectors were described via the relations in Section 2.3.4.

Thus, for a given set of detectors placed at the focal plane of the optical array processing

chain, we wish to digitize the outputs such that both In-phase and Quadrature (I/Q)

signal components can be recovered.

Recovery of I/Q signal samples is vital for the processing of nearly all modern

communications signals. Most signals rely on the transmission of two-orthogonal carri-

ers that are used to generate a constellation of points within the complex plane. Thus,

failure to recover one of the orthogonal carriers (namely the I or Q signal) would pre-

vent reconstruction of the signal constellation entirely. Similarly, for radar processing,

both I and Q inputs are required in order to determine the velocity of an object. Fail-

ure to have both components would only allow for the direct recovery of the speed, or

absolute value of the velocity. Typically, it is desirable to determine whether a target

signal is encroaching or receding upon detection.

Traditional coherent receivers perform I/Q signal demodulation via a matched

set of receiver paths, each fed via the same LO, but with one LO signal being out of

phase with the other by 90◦. Doing so allows for digitization of matched sinusoidal and

co-sinusoidal signals at an intermediate or even baseband frequency. The two digitized
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signals are then summed to form a single complex signal record as xs = I+ jQ. Down-

converting a signal using a set of signal paths that are at quadrature requires a great

amount of calibration. The amplitude and phase of both the In-phase and Quadrature

signal paths must be matched precisely. To avoid the additional complications of a

quadrature demodulation design, multiple methods for sampling a band-limited signal

in order to recover the complex In-phase and Quadrature components without the need

for an analog I/Q receiver structure have been analyzed since the early 1980’s [48–51].

All, so-called “Digital I/Q,” techniques take advantage of the sampling theorem in an

effort to ensure that the band-limited signal of interest is converted to an IF that can

be sufficiently oversampled. The oversampling enables digital filtering and decimation

procedures to bring the real-sampled bandpass signal down to a complex baseband

representation where it can be filtered without aliasing. Thus, in order to avoid the

complexities of analog I/Q demodulation, one must design the digital demodulation

receiver with an analog-to-digital converter (ADC) that is up to 4 times faster than its

in an analog quadrature demodulation receiver design.

For the system concept presented herein, we utilize a set of 14-bit ADCs with

a sampling rate of 250 Msps. Due to the desire to maximize the recoverable RF

bandwidth, a digital demodulation technique similar to [52] was chosen. The technique

in [52] allows for an RF bandwidth of β = 0.4 · fsamp to be recovered without aliasing

and was initially proposed for digitization of wide-band Synthetic Aperture Radar

data. The implementation is quite simple and requires that the band-limited signal

be down-converted to an IF that is 0.625 · β and then sampled at a rate that is 2.5 ·

β. A scale, pictorial representation of the technique is shown in Fig. 3.7. For the

photonic array processor experiments discussed in later sections, fsamp = 250 MHz

and β = 100 MHz, thus requiring an IF of 62.5 MHz. The sampled signal is then

multiplied by a complex modulation of e
jπn
2 = jn to shift the signal to base-band. The

baseband spectrum now encompasses the normalized frequency band of (−0.4π,+0.4π).

In order to reject any unwanted signals a low-pass filter is applied to the baseband data,

followed by a decimation by 2. Since filtering essentially eliminates any signals outside
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Figure 3.7: Digital I/Q demodulation of a band-limited, real-sampled signal captured
at the output of the array processor. The technique begins with an analog down-
conversion stage to bring the RF signal to a lower IF. For the photonic system, analog
down-conversion is performed via an optical LO at the focal plane of the array pro-
cessor. The signal at the output of each photo-detector is sampled via an ADC. The
sampling rate of the ADC must be at least 2.5β. Oversampling ensures mitigation of
aliasing effects upon digitization and translation to base-band. The digitized IF signal
is multiplied by a complex phasor to translate one of the side-bands to baseband and
create complex data samples. The digital baseband signal is filtered via an FIR filter
and decimated by two leaving a final complex signal sampled at 1.25β.
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of the band of interest the effective sampling rate can be reduced to that needed only

to represent the final output spectrum. Thus, the decimation operation reduces the

sampling rate by half, leaving the digital I and Q signals sampled at a final rate of

1.25 · β where they are ready for further digital processing. The slight over-sampling

of the final signal is not seen as detrimental to further processing, in fact, it concedes

some headroom for any further filtering operations. This technique was chosen due to

its simplistic implementation within digital hardware. For example, the filtering and

decimation can be performed together within a field-programmable gate array (FPGA)

using commercially available development tools. The final output I/Q samples are

then ready to be processed for any application with signals within the down-converted

bandwidth of β (e.g. Radar and/or communications waveforms).

Thus, we can consider the output of a single photo-detector to be that of a

single beam-space data vector, more specifically a single row of xbs(t), as defined in

(1.28). For a single time-instant, xbs is an M by 1 vector, however, for a given time

interval, [t0, Ts], each row in the beam-space data matrix contains a continuous-time

signal. These signals are sent to an ADC for digitization where we obtain a sampled

beam-space data matrix, Xbs, such that

Xbs = [xbs[t0]; xbs[t0 + ∆t]; · · · xbs[Ts]] , (3.3)

where Ts is a total sampling interval that depends on application and

∆t =
1

fs
, (3.4)

and fs is the sampling frequency of the ADC used for digitization. Therefore, after

sampling we have a matrix of sampled data values for each channel. Each ADC channel

is digitizing signals that are contained within a single beam-position, creating a bit-

stream for each beam that is sampled at the focal plane. If multiple sample periods,

P , are taken for a total time span of PTs, the output matrix takes the form of a 3-

dimensional cube. This method of sampling is common in pulsed systems like Radar

and the sampled data matrix is often referred to as a data cube.
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Taking a single beam output as an example, Fig. 3.8 shows the sampled wave-

form and its spectrum. Since the samples are real-valued, the aforementioned Digital
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Figure 3.8: Example of a sampled output from a single photo-detector after optical
down-conversion. The signal waveform contains a set of 3 echo pulses from a test target
generator.

I/Q demodulation technique is performed on every channel to produce a complex base-

band result as shown in Fig. 3.9. The base-band waveform shown in Fig. 3.9 now has

complex components due to the complex digital base-band translation operation. We

also see how the lower-freqeuncy spectral component has been translated to be cen-

tered at DC in the spectrum plot shown in Fig. 3.9. We still require application of

a low-pass filter to remove the unwanted, redundant spectral content at the edges of

the sampled spectral band. We will also, likely be able to remove the LO leakage

signal seen as a large spur at 62.5 MHz in Fig. 3.9 and at DC in Fig. 3.8. For the
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Figure 3.9: Example base-band translated output from a single photo-detector after
optical down-conversion. The signal waveform contains a set of 3 echo pulses from a test
target generator. The base band translated signal now contains a complex spectrum.
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filtering operation a finite-impulse-response (FIR) filter was designed using the Parks

and McClellan algorithm [53], a widely used technique for optimum digital filter de-

sign. The filter’s response is shown in Fig. 3.10. The filter is applied to the digital
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Figure 3.10: Filter Response of the Low-pass filter used for extraction of the base-band
spectra of interest during the Digital I/Q generation process. The filter has ≈ 54 dB
of rejection in the stop band.

base-band data stream to arrive a the final complex I/Q signal result. If being done in

a real-time system the decimation and filtering can be performed in tandem for some

computational savings [52]. After the filtering and decimation operations we arrive

at the final complex result shown in Fig. 3.11. The result in Fig. 3.11 has isolated

the relevant 100 MHz of spectrum. The examples shown have a 100 MHz bandwidth

Linear Frequency Modulated (LFM) (i.e. chirp) waveform filling the entire spectrum.

The process shown in Fig. 3.8, Fig. 3.9, and Fig.3.11 is performed on each sampled

beam-location at the output of the photonic array processor described in the previous

section.

The beam-space imaging, LO generation, and digital beam-space demodulation

techniques described have been utilized along with an prototype photonic array proces-

sor to collect a number of experimental datasets that will be described in the following

Chapters. However, prior to discussing the experimental results, it is helpful to gain an

understanding of the types of processing that can be applied to the sampled outputs.
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Figure 3.11: Example of the final, filtered and decimated output from a single photo-
detector after optical down-conversion. The filtered spectrum appears as a plateau
with a shape similar to that of the filter response.

83



3.3 Processing the Output of a Single Beam

In the most straightforward application of the beam-space generation techniques

discussed in the previous sections, each beam can provide spatial coverage of a prede-

fined region of interest and can therefore be processed directly, without consideration

of the signals in the other beams. This may be used in a next generation wireless

communication system to provide additional spectral re-use. This may be possible by

the usage of “beams” rather than “cells”, with the beams having a much more tightly

controlled spatial response. This application is a good example where a low-sidelobe

beam-space might be of interest. Some initial results in forming a beam-space with

high spatial isolation of the beams was presented in [54]. Additional low-sidelobe beam-

space results will be presented in a later Chapter as well. This type of application may

be thought of as a non-adaptive approach, that is, each beam is processed separately

and no attempt is made to use other adjacent beams to form a more optimal output. In

general, each beam can be processed for any signal that is within the down-converted

bandwidth of the sampling system. Here we have chosen to concentrate on two specific

applications, Radar and Communications.

3.3.1 Basic Communications Processing Scheme

In order to show that the signals can be processed for multiple applications

simultaneously, a digital communications receiver system was created to perform fil-

tering, demodulation and display of constellation diagrams. Typically, communications

signals are formed by modulating a series of data samples onto a set of orthonormal ba-

sis functions. Thus, for a given data symbol, d, the corresponding modulated waveform

can be described as [55]:

xc(t) =
N∑
n=1

dnςn(t), (3.5)

where ςn(t) is to the nth orthonormal basis function onto which the nth data value is

modulated. A simple set of orthonormal basis functions are the sine and cosine, thus a

simple communications modulation is that of Quadrature Phase Shift Keying (QPSK)
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where the data symbols are modulated onto the In-phase and Quadrature components

of a transmitted carrier. This allows for the reception of four (4) distinct signal levels,

one for each quadrant in the real/imaginary plane. While the concept is simplistic,

reception of the signal constellation involves several steps as outlined below.

Recovery of any given Communications signal begins with a gain equalization

and filtering stage, typically, a raised-cosine filter shape is used to shape the spectrum of

the communications signal. This is necessary since the amplitude and phase modulation

that is inherent to a number of communications protocols causes an extreme widening

of the spectral bandwidth, outside that which is useful to the communications receiver.

This spectral, spillage or leakage is often termed Adjacent Channel Interference (ACI),

and can be controlled to some degree with spectral filtering. Another benefit of the

filtering stage is in the reduction of inter-symbol interference (ISI), this is typically due

to coherent effects within the channel (i.e., multipath), or any other misalignment in

sampling, such that a given symbol interferes with its neighbors. The usage of a paired

transmit and receive filter, like a root-raised cosine filter, allows for matched filtering of

the symbols on receive. The final output filter can be made to match that of a Raised

cosine filter, which meets the conditions of the Nyquist ISI criterion in [55] when

sampled at the proper time intervals, as shown in Fig. 3.12. Inspection of the symbols

in Fig. 3.12 show that they have a form that is identical to the orthogonal beams shown

in Fig. 2.6, and we are once again reminded of the importance of proper sampling

and filter design, whether in the temporal, spatial, or spectral domains. Thus, for a

communication only application, the desire would be to have spatial channels from the

photonic array processor that have little interference (i.e., orthogonal or low-sidelobe

beams), with each channel then being able to receive communications symbols with

little interference (i.e., ISI). The communications receiver/processor assumes a root-

raised-cosine filter for its matched filtering stage. Just prior to matched-filtering, the

sampled data is put through an automatic gain control process that attempts to ensure

that the signal level from sample-to-sample is flat. The signal is then filtered, however;

direct attempts at recovering a constellation at this stage are typically fruitless as seen
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Figure 3.12: Plot of the time-domain responses for a set of symbols with a raised-cosine
response. Each symbol can be sampled at the symbol rate, such that its response is
maximum, while the adjacent symbols are minimum.

from the cyan dots of the I/Q plot in Fig. 3.13. The communications receiver is not yet

synchronized in phase or frequency with the received data. A synchronization process

is performed to estimate the timing error in the sampling of the symbols. This can be

performed in many ways and the implementation here is likely not optimum as it is

not the focus of this research. However, a simple “zero-crossing” timing error detector

scheme is implemented such that the In-phase and Quadrature samples are compared

to find instances where an “eye-diagram” crosses zero. Other popular techniques exist

with slightly more complex implementation of the feed-back mechanisms such those

offered by Gardner [56] and Mueller [57]. Regardless of the timing error estimator,

estimated offsets of the samples from the ideal locations are used to interpolate the

data samples such that they align with the proper sampling locations. The coarsely

aligned result is shown as the red dots on the constellation diagram in Fig. 3.13. The

remaining steps utilize an adaptive linear equalization technique to reduce the effects

of multi-path and other dispersive channel effects. The effect of this step can be seen in

Fig. 3.13 as the drastic tightening of the constellation points from the red to the green

dots. The phase errors associated with the dispersive channel have been equalized via
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Figure 3.13: Example of the output communications constellation diagram after several
stages of digital processing.

a set of complex filter weights. Finally, any deviations from the carrier are detected

via use of an FFT based spectral analysis approach. This allows for corrections due

to slight Doppler-shifts or other channel-related carrier offsets. Thus, the final output

constellation is shown in black within Fig. 3.13, where it is seen to have good agreement

with the ideal constellation, shown as a set of stars for this particular QPSK data-

set. At this point a threshold detector can be used to determine which quadrant, of

the I/Q plane, the samples lie within so that the bit-stream can be reconstructed.

Each point on the constellation corresponds to a set of bits (i.e., one symbol). The

digital communications receiver reviewed here is not a real-time implementation, but
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Figure 3.14: Screen Capture from the KeySight VSA software used for real-time digital
communication demodulation.

is instead post processed. Non-real-time operation is not ideal, therefore, a Vector

Signal Analyzer (VSA) using a digital communication demodulation software package

is used for most of the experiments presented in subsequent Chapters. A screen capture

of the VSA software is shown in Fig. 3.14. For multi-function experimentation, the

VSA is provided a direct feed from one of the output beam-sampling photo-detectors

for communications processing in real-time, while the other outputs are provided to a

radar processor built around a National Instruments PXI-e chassis.

3.3.2 Basic Radar Processing Scheme

Another primary RF function of interest to this research is that of Radar pro-

cessing. For any given beam-output a matched filtering operation can be performed,
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such that, a known transmit signal can be pulled from a noisy background. The

transmit signaling for radar operations can be widely varied [58], we therefore choose

to focus on systems that use a Linear Frequency Modulation (LFM) waveform (i.e.,

Chirp Waveform). Thus, a transmitted LFM radar signal will have a form similar to

the following:

xr(t) = Are
j(Ωt+ γ

2
t2+φr), (3.6)

where the radian chirp parameter, γ is defined as

γ =
2πβr
τr

, (3.7)

with βr being the transmission bandwidth of the pulse and τr the pulse length. The

complex output of a baseband chirped Pulse of 10 µsecs with a 10 MHz bandwidth is

shown in Fig. 3.15. When up-converted to a center frequency of 12 GHz, the spectrum
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Figure 3.15: Ideal Linear Frequency Modulated Pulse with the center of the pulse
referenced to t = 0.

of the base-band LFM pulse is shifted in frequency as shown in Fig. 3.16. Upon

reception a similar shift is performed during down-conversion to get the signals back to
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Figure 3.16: Ideal spectrum of a Linear Frequency Modulated pulse.

a base-band representation as discussed in Section 3.2. The pulse is transmitted where

it will react with the environment such that a set of delayed replicas will return to a

receiving station. The received signal can therefore be represented as

sr,n(t) = Ar,ne
j(Ω(t−td,n)+ γ

2
(t−td,n)2+φr). (3.8)

Reviewing the case where there is a singular target return, n = 1, allows for straight-

forward visualization of the time-delay, td, in the down-converted received signal as

shown in Fig. 3.17. The time-delay represents a round-trip delay and must be divided

by two when converting received time-delay to radar range. Therefore,

td =
2R

c
, (3.9)

where R is the range to a given target and c denotes the speed of light. Radar returns

rarely have single target returns due to reflections from the surrounding ground, often

called clutter returns. When multiple targets are present in a received signal, the

superposition of those echoes results in a highly modulated return pulse. An example

for just 3 targets is shown in Fig. 3.18. This modulation is due to the fact that the
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Figure 3.17: Received pulse with the time-delay due to a single target in the scene.
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Figure 3.18: Received pulse with the time-delay due to multiple targets in the scene,
individual delays are now very difficult to visualize and detect.
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transmitted pulse has an extremely long spatial length. When considered the round-

trip aspect of radar, the spatial length of the pulse is equal to cτp
2

, thereby making the

10 µSec pulse in the examples equivalent to 1500 meters in range. In fact, a good rule

of thumb to remember is that 1 µSec is equivalent to 150 meters of range. In order to

detect the time delays of each of the targets within the spatial pulse, the properties of

the LFM are used to “compress” the intrapulse resolution. Since the pulse appears to

be “different” with time, a correlation operation will result in peaks where the received

signal matches well with the transmitted pulse. This operation effectively “compresses”

the pulse by a factor that is proportional to the pulse width and bandwidth of the chirp.

This type of radar pulse compression processor is often referred to as a range correlator

in the literature. It makes use of the properties of the matched filter to optimize the

signal to noise ratio of the returns [58], while also providing a range resolution, ρr, that

is proportional to the bandwidth of the transmitted chirp signal, thus,

ρr =
c

2βr
. (3.10)

The operation is simple; the transmit pulse modulation is known and, thus, a replica

of the transmitted pulse is used to perform a cross-correlation with the received signal.

This is typically done via a fast convolution process that uses the FFT. Remembering

that the convolution of two signals in the time domain is equivalent to a multiplication

of those signals in the frequency domain gives the following form of the range-correlator:

yr(t) = FFT−1
{
Sr,bb(Ω)X∗r,bb(Ω)

}
, (3.11)

where X∗r,bb(Ω) is the baseband matched filter form of the initial transmitted signal and

Sr,bb(Ω) is the FFT of the baseband received signal. An example of the compressed

pulse output for the 3 target case presented earlier can be see in Fig. 3.19. The

experiments discussed later use a range-correlator processor that is implemented on a

National Instruments PXIe- chassis that utilizes an FPGA and a single-board computer

for processing.
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Figure 3.19: Pulse-compressed output for the 3-target echo signal shown in Fig. 3.18.
Targets were placed at 130, 170 and 300 meters.

3.4 Processing of the Full Beam-space

The previous sections described processing that can be performed on a single

row of the sampled and digitized beam-space data matrix defined in (3.3). However,

a multitude of beam-space processing techniques can be readily applied if we consider

the columns of the beam-space data matrix. The concepts of array processing were

introduced in Section 1.1, where much of the early research was performed across the

elements of a given array. Here, we assume to have properly sampled the continuous

spatial frequency spectrum at the output of the photonic array processor, as described

in Section 2.3.3, such that we have effectively captured a set of orthogonal beam outputs

as initially described in Section 1.1.2. By doing so, many of the so-called “element-

space” array processing techniques are easily converted to application in the beam-

space regime proposed here. In practice, the sampling of the beam-space requires

precise alignment along with significant calibration, as will be discussed in a later

section. For now, we assume to have a set of output samples from the beam-sampling
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photo-detector array that are a set of down-converted beam-space signals from a set

of orthogonal beams such that,

Xbs = BHXes, (3.12)

where Xbs and Xes denote the beam-space and element-space data matrices, respec-

tively. The structure of the element-space data matrix is such that each row contains

a set of time-sampled values of the superposition of the incident RF signals and noise.

In the noiseless case, each column of the element-space matrix is a separate time-

snapshot of the vector, s(t), introduced in (1.28). With the addition of a noise signal

term, element data vector can be defined for an arbitrary number of signals as

xes(t) = V(θ)s(t) + n(t), (3.13)

which allows for

xbs(t) = BHV (θ)s(t) + n(t) = Vbs(θ)s(t) + n(t), (3.14)

where V (θ) is a matrix containing the steering vectors toward the signals incident on

the array, s(t) is a vector of those signals, and n(t) is a noise vector assumed to be white

with variance σ2
n and uncorrelated with the signals in s(t). The newly defined beam-

space steering matrix, Vbs, contains the element-space steering vectors for the signals

as augmented by the beam-space matrix, B. It is noted that v(θ) is substituted with

the beam-space augmented version, vbs(θ), when performing the described operations

on beam-space data vectors. The continuous-time signals are assumed to be sampled

via an ADC such that the beam-space matrix becomes an M by L matrix, X[bs], where

L = fs · Ts is the total number of samples acquired at the sampling rate, fs, during

the sampling duration, Ts. This matrix is some-times referred to as a “Space-Time”

data matrix since the rows correspond spatial locations while the columns correspond

to time-samples or “snapshots.”

It is worth reminding the reader that the transformation in (3.12) is equivalent

to sampling the Discrete Spatial Fourier Transform of the input elements at the sample
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intervals provided by a Discrete Fourier Transform, and is therefore an invertible oper-

ation [25]. This implies that one could retrieve the element-space data vector from the

beam-space output of the photonic array processor if desired. We further emphasize the

capability of the Photonic Beam-space Array processor to directly sample Xbs without

any digital computation, all beam-space beam-forming and sampling is performed in

real-time regardless of the number of elements in the RF array.

Two primary uses for the application of element-space or beam-space array

processing techniques are to determine the directions, or angles-of-arrival (AoAs) of a

number of unknown signals that are incident on the array and/or steer the array such

that only signals from a desired AoA are sampled. In general, all of these techniques

attempt to perform a calculation that is optimum in the sense of minimizing the mean

square error with a desired signal and/or maximizing the signal-to-noise ratio [59].

Often, a given spatial spectrum estimator or adaptive array weight calculation will

rely on knowledge of the covariance matrix, Rx, of the received spatial environment.

Typically, the true, or clairvoyant, covariance is unknown and an estimate must be

made from the data samples that are collected by the array. Thus, for a given array

output that is derived via a weighted sum on input samples (in either the element-space

or the beam-space) we have

y = wHx, (3.15)

where wH is the weight vector applied to the array outputs that steers (or adapts) the

baseline array response in order to detect the specific, s(t), per the definition in (3.13).

It has been shown that the expected output power from the array is of the following

form [59],

E
[
|y|2
]

= wHE
[
xxH

]
w. (3.16)

The expectation of the data vector in (3.16) is equal to the covariance such that

Rx = E
[
xxH

]
. (3.17)
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If it is further assumed that the desired signal, noise and any interference signals are

mutually uncorrelated, we can define

Rx = E
[
xxH

]
= |As|2v(θs)v(θs)

H +
Z∑
z=1

|Az|2v(θz)v(θz)
H + σ2

nI, (3.18)

where the subscripted, s, defines the values for the desired signal, while z delineates

the contributions from Z possible interfering sources. The result in (3.18) may be

termed the clairvoyant covariance. If we assume isotropic noise, the noise will only

contribute to the diagonal of the covariance matrix while the off-diagonal terms are

due to correlations across the array from incident plane-wave sources and thus contain

information about angles of arrival. Since the clairvoyant covariance is not likely to

be known, a good estimate of the covariance must be made from the sampled data,

known as the sample covariance matrix, R̂x. The sample covariance matrix is often

calculated via the following formula:

R̂x =
1

K

K−1∑
k=0

xkx
H
k , (3.19)

where R̂x converges to the maximum likelihood estimate of Rx when K is large [60].

Once the sample covariance is formed, a number of techniques can be applied

to the data. These techniques are broken into two classes for the purposes of this

discussion:

1. Methods that attempt to estimate the Spatial Spectrum and thereby determine

possible Angles-of-Arrival of incident sources.

2. Methods that attempt to form an adapted array response such that the desired

signal is captured and unwanted interference is attenuated.

We begin with a discussion on the estimation of the array spatial spectrum, followed

by an example of array adaptation that is used for experimentation.
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3.4.1 Beam-Space Spatial Spectrum Estimation

Estimation of the spatial frequency spectrum is equivalent to searching over all

possible array steering vectors for locations where the array response peaks. Signifi-

cant research has been performed in this area for decades, with several comprehensive

reviews existing in the literature [22–24]. Here, only the necessary foundations of the

relevant techniques will be reviewed. The discussion begins with a basic form of spatial

spectral estimation that is non-parametric in nature. That is, the estimation techniques

are not based on any particular spectral/signal model.

3.4.1.1 Non-Parametric Spatial Spectrum Estimators

The most straightforward spatial spectrum estimator is the Fourier Spectral

estimator, also called the Bartlett Beam-former [61], which takes advantage of the

relation in 3.16, to search for peaks in the array response. Thus, AoA estimates are

associated with the peaks of the following spectral function:

PBartlett(θ) = v(θ)HR̂xv(θ). (3.20)

We can see from (3.20) that the estimate is formed from a rigorous search across all

potential steering vectors. For the sampled beam-space output that is retrieved from

the photonic array processor we must convert the relation in (3.20) to one that will

operate in the beam-space using the relation in (3.14). Thus, we apply the beam-space

steering matrix, BH , to any element-space steering vectors to arrive at the beam-space

Bartlett estimator:

PBartlett(θ) =
(
BHv(θ)

)H
R̂x

(
BHv(θ)

)
= vbs(θ)

HR̂xvbs(θ).
(3.21)

The relation of element-space estimators to beam-space datasets will be used through-

out this thesis. In practice the steering vectors can be calculated once and stored as

large matrix, allowing a single set of matrix multiplications to provide PBartlett(θ) di-

rectly. It will be shown in a later section that the “imaged” output of the photonic

array processor is essentially equivalent the Bartlett beam-former.
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The next estimator that is used is known as the Minimum Variance Distortion-

less Response (MVDR) or Capon Beam-former [62]. The Capon formulation takes the

basic concept of the Bartlett method and applies several constraints in an effort to

optimize the result. Noticing that the relation in (3.16) is equivalent to the variance

of the array response, Capon wished to find a set of optimal weights, wo(θ), such that

the variance is minimized by

wo(θ) = arg min
{
E
[
|y(θ)|2

]}
, (3.22)

but the response in a desired direction was left undistorted by

wH
o (θ)vbs(θ) = 1. (3.23)

When the constrained optimization problem is solved the resulting optimal weights are

found via

wcapon(θ) =
R̂−1
x vbs(θ)

vHbs(θ)R̂
−1
x vbs(θ)

, (3.24)

with the spatial spectrum then given by

PCapon(θ) =
1∣∣∣vHbs(θ)R̂−1
x vbs(θ)

∣∣∣ , (3.25)

where the result is once more augmented to operate within the desired beam-space.

The final non-parametric method to be discussed is that of the Maximum En-

tropy Method (MEM) [63]. The aim of MEM was to augment the existing Fourier

Methods by attempting to extrapolate data outside of the aperture. This extrapola-

tion essentially widens the aperture, which theoretically improves the resolution. The

key to MEM is in how it attempts to guarantee the validity of the extrapolated data

when there seems to be an infinite number of possible extrapolations. Thus, the MEM

technique constrains the extrapolation in an effort to maximize the randomness (or

minimize the structure) of the data. This, in turn, acts to maximize the flatness of the

spectral response outside of the measured array region. The maximum entropy spatial

spectrum is given by

PMEM(θ) =
e1R̂

−1
x eT1∣∣∣e1R̂−1

x vbs(θ)
∣∣∣2 , (3.26)
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where e1 = [1 0 · · · 0] is a 1 by M vector known as the first standard basis vector.

Thus, with only a sample covariance matrix, a great number of angle-of-arrival

estimation techniques can be performed, with many offering significant performance

increases over simplistic Fourier techniques. The next set of techniques rely on an

Eigen-analysis of the covariance and will be referred to collectively as “sub-space”

estimators.

3.4.1.2 Sub-space Spatial Spectrum Estimation Techniques

Sub-space methods begin with an Eigen-decomposition of the sample covariance

matrix such that

R̂xqi = λiqi for i = 1, 2, · · · ,M, (3.27)

where the λi are found to be roots of the characteristic equation given by

det
[
R̂xq − λI

]
= 0. (3.28)

For our beam-space outputs of M beams, there will be M roots. These roots, λi,

are known as the Eigenvalues, each with an associated Eigenvector, qi. An important

property of the Eigenvectors is that any two Eigenvectors associated with two distinct

Eigenvalues will be orthogonal such that the eigen matrix, Q = [q1q2 · · · qM ], is unitary

making

QHQ = I. (3.29)

We may also factor the sample covariance matrix in terms of the eigen matrix and a

diagonal matrix of the Eigenvalues, Λ, such that

R̂x = QΛQH , (3.30)

which is an identity that is often useful in estimating the inverse of the covariance

matrix as R̂−1
x ≈ QΛ−1QH , particularly when a technique uses a sub-space covariance

estimate.

Returning to the Eigenvalues, λi, for a given sample covariance matrix, if the

noise is assumed to be white Gaussian, the Eigenvalues may be sorted such that the
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largest, i = 1, 2, ..., D, Eigenvalues are associated with, D, incident signals, while the

remaining, M −D, Eigenvalues are associated with noise. In an ideal case, the noise

Eigenvalues would all be equal to the noise power, however, this is rarely the case due to

the fact that the covariance is estimated from a finite number of data snapshots. Thus,

determining a proper Eigenvalue threshold for, D, is of interest and is typically done

based on some statistics of the eigenvalues or eigenvectors of the sample covariance

matrix. Often, an estimate of the multiplicity of the smallest eigenvalue is used [23].

Other popular algorithms include Akakie’s Information-Theoretic Criterion (AIC) and

the Minimum Description Length (MDL) [64] from the information theory community,

which form an estimate of D via the following minimizations:

D̂AIC = arg min

D̂AIC(2M − D̂AIC + 1)

− (M − D̂AIC)Ls loge


(∏M

i=D̂AIC+1 λi

) 1
M−D̂AIC∑M

i=D̂AIC+1
λi

M−D̂AIC


,

(3.31)

and

D̂MDL = arg min

1

2
D̂MDL(2M − D̂MDL + 1) loge(Ls)

− (M − D̂MDL)Ls loge


(∏M

i=D̂MDL+1 λi

) 1
M−D̂MDL∑M

i=D̂MDL+1
λi

M−D̂MDL


,

(3.32)

where Ls is the number of time-samples (i.e., snapshots) used in forming the sample

covariance matrix. Another method, germane to the photonic array processing scheme

presented here, is to threshold the peaks that are detected when using a camera to

image of the irradiance pattern of the continuous spatial spectrum formed at the output

focal plane. This particular technique will be discussed in detail within Chapter 6.

Assuming that a proper estimate of the number of signals can be made, the

covariance matrix can be divided into two orthogonal sub-spaces, one associated with

only signals and the other associated with only noise. The signal sub-space, Qs, is a
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matrix of eigenvectors that are associated with the incident signals, while the noise

sub-space, Qn, is a matrix formed from the eigenvectors associated with noise only. It

is therefore possible to form a new covariance estimate that uses only the signal sub-

space, a so-called covariance of the Principle Components. The Principle Components

covariance, R̂x,PCA = QsΛsQ
H
s can be directly substituted into the non-parametric

methods discussed in Section 3.4.1.1. Usage of a properly estimated signal-subspace

covariance affords a reduction in the noise-floor along with the number of false peaks in

the previously mentioned techniques. The remaining sub-space methods concentrate

on the noise-subspace and various weighted projections onto it, in order to determine

angles-of-arrival.

The simplest of the noise sub-space methods is likely that given by Pisarenko

[65], where a pseudo-spectrum is formed based on the projection of candidate steering

vectors onto the eigenvector, qmin, that is associated with the smallest eigenvalue.

The theory being that the minimum eigenvector represents the noise, which should be

orthogonal to any steering vector that represents a signal location, thus,

PPisarenko(θ) =
1

|qHminvbs|2
. (3.33)

A natural follow-on the the Pisarenko method is that of the MUltiple SIgnal Classifica-

tion (MUSIC) method which projects candidate steering vectors onto the entire noise

subspace, Qn, with the output MUSIC spectra given by

PMUSIC(θ) =
1

vHbs(θ)QnQH
n vbs(θ)

=
1

|QH
n vbs(θ)|2

, (3.34)

or alternatively by

PMUSICN (θ) =
vHbsvbs(θ)

vHbsQnQH
n vbs(θ)

, (3.35)

where the numerator serves to normalize the array response vectors in the case of beam-

space operation [66]. Several other estimators that are closely related to MUSIC are

of interest, namely the Minimum Norm [67] and Eigenvector Methods [68]. The Min-

Norm method has been shown to have less bias and better detection performance in low

SNR environments as the cost of some level of increased estimation variance [69], while
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the eigenvector method is more tolerant of non-whitened noise and is less susceptible

to errors in the estimation of the size of the signal sub-space, D. The Min-Norm

method projects candidate steering vectors onto a portion of the noise sub-space with

the constraint that the steering vectors must be minimized in length (i.e. norm) and

the weight associated with the first element of the array must be unity. The min-norm

spatial spectrum is provided by

PMNM(θ) =
1

|dHvbs|2
, where d =

QNQ
H
Ne1

eH1 QNQH
Ne1

. (3.36)

The eigenvector method uses the eigenvalues associated with the noise sub-space as a

set of weights against the subspace vectors. The eigenvalue method spatial spectrum

is given by

PEVM(θ) =
1

vHbsQnΛ−1
n Q

H
n vbs

. (3.37)

The angle estimation methods discussed here will be used extensively with the

sampled beam-space outputs of the photonic array processor presented in the previous

Chapters. A comparison of their relative performance during experimentation will also

be discussed. It will be shown that the beam-space generated by the photonic array

processor can be made orthogonal such that these super-resolution techniques can be

applied for increased angular estimation performance.

3.4.2 Beam-space Adaptive Spatial Spectrum Filtering

If we recall the relation in (3.15) and augment it with our Beam-space matrix

we have

y(t) = (BHw)Hxbs(t) = wH
bsxbs(t). (3.38)

Typical weights for beam-steering are simply a set of steering vectors toward a desired

set of locations, however; if there is significant interference within the environment it

is desirable to apply weights to the array response such that the error between the

beam-former output and the desired signal is minimized. This optimization effectively

uses the degrees of freedom of the array to produce an optimal array pattern such that

unwanted signals are aligned with nulls in the patter. For the beam-space processing
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discussed here, the number of degrees of freedom is equal to the number of beams in

the beam-space, M . There are two formulations that are popular, one is in minimizing

the mean square error and the other is in maximizing the signal-to-noise ratio.

3.4.2.1 Mean Squared Error (MSE) Optimal Filtering

The optimal set of filter weights that minimize the MSE generate what is known

as a Wiener filter (also called Wiener-Hopf or Wiener-Kolmogorov solutions in some

texts). If we define the error at the output of the beam-former as

ε(t) = sd(t)− y(t) = sd(t)−wH
bsxbs(t), (3.39)

where sd(t) is the desired signal output. Then, the squared error becomes

|ε(t)|2 = |sd(t)|2 − s∗d(t)wH
bsxbs(t)− xHbs(t)wbssd(t)−wH

bsxbs(t)x
H
bs(t)wbs, (3.40)

with the expectation or mean of the squared error being given by

εMSE(t) = E
[
ε2(t)

]
= E

[
s2
d(t)
]
−wH

bsE [s∗d(t)xbs(t)] · · ·

− E
[
xHbs(t)sd(t)

]
wbs −wH

bsE
[
xbs(t)x

H
bs(t)

]
wbs

= s2
d(t)−w

H
bsrd − rHd wbs −wH

bsRxwbs,

(3.41)

where the over-bar accent on s2
d(t) denotes the mean. The Wiener solution to mini-

mizing the error with respect to the weights gives

−2rd + 2Rxwbs = 0, (3.42)

which is obtained by setting the gradient of the MSE with respect to the weights equal

to zero. When solved for the weights, the relation in (3.42) provides the optimal weight

vector as

wopt = R−1
x rd. (3.43)
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In practice, it is unreasonable to expect that the desired signal is completely known.

Remembering the relation in (3.13) allows substitution of s(t) in for the desired signal,

which leaves us with

wopt = R−1
x rd = R−1

x E [s∗(t)s(t)vbs(θ)]

= |s(t)|2R−1
x vbs(θ),

(3.44)

where the signal power, |s(t)|2, is often replaced by a simple scaling parameter with

little effect to the output signal-to-interference-plus-noise ratio (SINR). An example

of how a pattern is adapted in this way is shown in Fig. 3.20. The other method of
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Figure 3.20: Example of of an adapted response using the optimal weighting solution
for two interference sources, shown as dotted-red lines. The adapted response is shown
in red.

solving for the optimal weights is in maximizing the SNR at the output.

3.4.2.2 Optimal Filtering by Maximizing the Output Signal-to-Noise Ratio

The output SNR for a given set of weights can be written as

S

N
=

wH
bsRswbs

wH
bsRi+nwbs

=
|wH

bssvbs(θ)|2

wH
bsRi+nwbs

. (3.45)
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A similar derivation as that performed for the MMSE case can be done here by setting

the gradient, with respect to the weight vector, of the result in (3.45) equal to zero.

The final relation for the weights that optimize the SNR can be written as [21,25]:

R−1
i+nRswbs = λmaxwbs, (3.46)

which can be reduced to

wSNR = αR−1
i+nvbs(θ). (3.47)

The results in (3.44) and (3.47) are seen to be equivalent to within a scale factor. It is

noted that the optimal MVDR result given in (3.24) is also equivalent—within a scale

factor—to the results given in (3.44) and (3.47). The scaling does not effect the output

SINR since all signals scale proportionally.

Thus, if the signal and/or noise subspaces are known or can be well estimated an

optimally adapted response can be obtained via the application of the weights given

by (3.24), (3.44) or (3.47). It will be shown later that the ability of the photonic

array processor to measure the irradiance pattern of the continuous spatial spectrum

of an array directly (and in real-time), allows for the generation of a direct estimate

of the interference covariance. This estimate can be used to form a set of weights that

effectively null any unwanted interference in the spatial spectrum.

3.4.3 Computational Latency of Beam-Space Adaptive Techniques

Later sections will show the ability of the proposed system to perform several

estimates of importance in adaptive processing via simple calculations, thus potentially

improving overall latency of adaptive techniques. For this reason it is instructive to

discuss the notional latencies that might be expected when performing the calculations

described above.

The latency associated with any adaptive operations is largely dependent on

the size of the sample covariance matrix. The estimation convergence time is directly

dependent on the sample rate of the input data vectors, the total degrees of freedom,

the required accuracy of the estimate and the processing capability of the system.
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Figure 3.21: Family of curves depicting the first order estimate of processing latency
when using a covariance-based AoA estimation or adaptive filtering approach for in-
creasing array sizes. Each pair of curves depict a bounded region of expected latency
assuming use of a Virtex-7 class of FPGA.

In practice, an upper limit on the accuracy required is chosen to limit latency and

computation. For an array with N sensors, the Signal-to-Interference-Plus-Noise Ratio

(SINR) loss (in dB) associated with the number of samples (or snapshots) used to form

the sample covariance matrix is related by [70],

lossSINR = −10 · log10 [(K + 2−N)/(K + 1)] . (3.48)

A typically chosen limit of 3 dB results in K = 2N − 3 samples, while a more strin-

gent 1 dB requirement would result in K = 5N − 6 samples. The samples must then

be processed via a matrix operation involving the input data matrix and its hermi-

tian transpose, which requires O(M2K) complex operations. The matrix is inverted

(O(M3)) for use in either adaptive weight calculations (O(M2)) and/or generation of

the spatial spectral estimates (O(MA), where A is the number of angles to estimate).

In a real-time implementation the final step can be done in parallel effectively making
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A = 1 for any latency calculations. For the case provided, a modern Xilinx Virtex 7

can be expected to perform the required complex multiply/add operations with output

rates varying between 297 MHz and 544 MHz depending on the particular implemen-

tation design [71]. For M = 7 and K = 11, we have O(M2K+M3 +M2 +MA) ≈ 938

operations, which results in a rough estimate of the lower bound on total latency as

3.16µs. However, as M increases linearly, the processing latency does so exponentially,

as shown in Fig. 3.21. The curves shown in Fig. 3.21 should be taken to represent

the minimum requirement for calculations and estimation samples. Often, a given es-

timator may require further operation on the covariance matrix (e.g. singular value

decomposition) in order to weight the estimates or to generate a projected sub-space

to improve performance over a region of interest [66]. Additional steps to the AoA

estimation process will only add latency.
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Chapter 4

EXPERIMENTAL PHOTONIC ARRAY PROCESSOR

4.1 Experimental Hardware Overview

A set of prototype components were developed at the University of Delaware in

order to test the hypothesized ability—of the photonically up-converted array processor

described in the preceding Chapters—to allow for imaging of the continuous spatial

frequency spectrum from an RF array while simultaneously enabling the discretization

and digitization of an orthogonal subset of the spatial spectrum for further, digital

processing.

4.1.1 Photonic Array Processor and Optical Down-converting Cart

The collection of hardware that makes up the prototype array and photonic

up-conversion stages, introduced via the schematic diagram of Fig. 2.13 is housed in a

mobile rack. The entirety of the aforementioned “receiver cart” is pictured in Fig. 4.1.

The top of the cart includes a critically sampled RF array with a center frequency of 12

GHz, with an up-conversion stage behind each RF element. The array assembly sits on

a rotational stage for precise angular steering of the entire system. The up-conversion

stages behind each element utilize an Agile Microwave Technology, AMT-A0253, LNA

that offers a noise figure of less than 3 dB (typical), followed by a Mach-Zehnder

Electro-optic Modulator by Optilab. The OptiLab, IM-1550-40-PM-HER, modulators

will operate at frequencies up to 40 GHz, while the LNA’s used are only able to operate

at frequencies up to 20 GHz. At the termination of the gain and up-conversion stages,

each RF array element’s input signal resides on an optical sideband that is transported

via an optical fiber as seen in Fig. 4.2. The inside of the cart houses several laser

sources, a master laser that is used to feed each of the MZMs, an Erbium Doped Fiber
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Figure 4.1: Photograph of the prototype Receiver array with the Radar Transmit horn
fixed above it. The box below the array houses the optical array processing chain along
with a number of laser sources and power conditioning devices.
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Figure 4.2: Photograph of the prototype gain and up-conversion stage behind each
element of the RF array that feeds the array processing system. Not shown in the
image is the back side of the unit where a circuit card assembly (CCA) is held for
controlling the MZM bias.
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Amplifier (EDFA) that is used to amplify the master laser prior to the MZMs and a

local oscillator (LO) laser source that is used for optical heterodyning at the output of

the beam-space. Also inside the cart are several electro-optic phase modulators that

are used to apply the necessary phase shifts to the optical fibers such that they can

maintain coherence. The phase offsets are measured via photo-detector board that

resides as part of the optical array processor. The schematic of the array processor

is shown in Fig. 2.13, while the prototype optical chain is pictured in Fig. 4.3. An

Figure 4.3: Photograph of the prototype optical Array processor.

important function within the optical processing chain is that of carrier tracking and

suppression. The photonic array processor has the unique need for the carrier to

be left unsuppressed until after phase-offsets between the channels can be measured.

However, failure to suppress the carrier prior to output of the beam-forming optical

system results in the large carrier response simulated in Fig. 2.6d.
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A number of carrier suppression methods have been proposed in the literature

with two main classes of techniques evident: optical filtering and modulator biasing

[28]. For the experimental photonic array processor described within this thesis, carrier

suppression is achieved via a combination of low-biasing of the front-end modulators

with additional carrier rejection in the beam-space processor via a stack of thin-film

optical filters. To the knowledge of the author, this is the first system to use both classes

of suppression techniques in series within a multi-channel photonic link architecture.

The first level of suppression is done at the elements of the array via a MZM that is

biased between “null” and “quadrature.” The measured output of a single MZM at high

and low bias points is shown in Fig. 4.4a. In other applications, the modulators may be

biased at “null,” further reducing the output at the carrier wavelength; however, some

carrier signal is required for the maintenance of phase coherency across the channels

within the beam-former. It is therefore desired to allow just enough carrier power

through to the first stage of the optical system, where channel-to-channel phase offsets

are measured. The remaining carrier signal is then filtered via a stack of thin-film

filters prior to the Fourier transform lens. It is necessary for the filtering operation to

provide sufficient cancellation so that the RF sideband dominates the output as shown

in Fig. 4.4b. The addition of the filter stack also aids in rejection of some increased 2nd

and 3rd order spurs that can be introduced due to biasing the modulators away from

the quadrature point (i.e. the center of the linear region of the transfer function).

Finally, a variable RF source used to tune the LO laser is the only non-photonic/

optical component other than the various digital logic and control boards used to

interface with all of the components via the laptop, pictured on the right side in Fig.

4.1. A LabView interface was previously developed to allow for control of the electro-

optic modulators, phase-control and the LNAs of the up-conversion stage. Several

SWIR cameras are also able to be viewed, one for alignment of the fiber-array and the

other for imaging of the continuous spatial spectrum as discussed earlier. Typically, the

latter camera output is of interest during experiments and can be viewed and recorded

in real-time via the LabView interface depicted in Fig. 4.5. Finally, the large horn seen
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(b) A measured beam output using a SWIR
camera at the focal-plane of the beam-space
processor. The “beam” pattern generated
by the leakage of the optical carrier signal
is shown to be approximately 34 dB down
from the peak of desired RF signal for the
case shown.

Figure 4.4: Plots showing the effects of Carrier Suppression and Leakage.

Figure 4.5: Screen capture of the LabView program that allows for control of the
photonic up-conversion and phase control stages along with collection and processing
of the beam-space imaging SWIR camera.
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in Fig. 4.1 is a wide-band transmit horn that is fed by the “PXIe cart,” as discussed

next.

4.1.2 Signal Generation, Digitization and Processing Cart

The second cart used for experimentation contains the signal generation, digiti-

zation and processing components all contained within a single National Instruments

PXIe chassis. The “PXIe Cart” is used to generate the radar waveforms that are trans-

mitted via the wide-band horn pictured above the receive array in Fig. 4.1. The PXIe

chassis contains a base-band RF signal generator with a high-speed, dual-channel 16-bit

Digital-to-Analog Converter (DAC). The signals are generated via the use of an Arbi-

trary waveform generation capability built into the National Instruments PXIe-7972R

FPGA Card. The DAC is contained within a National Instruments 5782 Input/Output

module that is seen as the protruding card on the left side of the chassis pictured in

Fig. 4.6. The DAC card is configured to output a base-band I/Q signal. For the pur-

poses of experimentation, it was desired to maximize the range resolution that could be

sampled on receive. Thus, based on the discussions in Section 3.2, a Linear Frequency

Modulated Chirp of 100 MHz was programmed. The pulse width, pulse rate and trans-

mit and receive gating was performed via the on-board FPGA within the 7972R. The

maximum pulse width of the signal is limited by on-board memory within the FPGA

to something on the order of a second, however; the limit was never approached during

experimentation since typical radar pulse lengths are measured in microseconds. All

signaling and clocks were derived from a single high-fidelity clock that is generated by

a NI-6674T, timing and synchronization module. The 6674T was also used to route

all of the triggers, generated via the 7972R, to the other cards within the system using

an equal trace-length bus. Thus, upon receipt of the transmit trigger, the I/Q outputs

from the DAC card are fed to a Programmable Signal Generator (PSG) that serves as

an I/Q mixer. The PSG is configured to accept wide-band I/Q inputs and is used as

an up-converter stage for the 12 GHz transmit signal. The 6674T can also be used to

route a pulse-on gate signal to the PSG for pulsed operation. The output of the PSG
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Figure 4.6: Photograph of the National Instruments PXIe Chassis with all cards in-
stalled. The box just below the monitor is the controller for the angular positioning
stage that is beneath the RX array, used for calibration sweeps.
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is fed to an external amplifier, if necessary, prior to being radiated via the wide-band

horn. For laboratory experiments, the transmit horn is directed toward a photonic test

target generator (TTG) that is used to generate a set of return echoes that would not

otherwise be possible within the confined space of the laboratory environment.

Upon reception of the returned radar signals, along with any other RF signals

within the field-of-view of the receive array, the photonic array processor described in

Chapter 2 is used to down-convert and sample an orthogonal set of beams as detailed in

Sections 2.3.6 and 6.2.1, respectively. The output of the beams are sent to a National

Instruments Reconfigurable Oscilloscope (NI PXIe-5171R) with eight (8), 14-bit chan-

nels capable of sampling at 250 Msps. The 5171R is used to digitize the each beam’s

down-converted output. The on-board FPGA within the 5171R allows for real-time

signal conditioning and has plenty of room left for performing digital-IQ generation

on the fly. For the purposes of experimentation here, the digital I/Q generation was

done using the single board computer (SBC) that is seen as the left-most, quadruple-

wide, card in the PXIe chassis. Each channel results in a digitized complex, base-band

dataset that can be recorded to a hard-disk that is part of the PXIe Chassis. Simul-

taneously, a LabView program is used to capture, and view Radar processing results

in real-time. An example of the real-time radar display from the LabView program

is shown in Fig. 4.7. The output beams can be processed individually for separate

functions as described in Section 3.3, or processed together to perform spatial spectrum

estimation or to form adaptive beams as discussed in Section 3.4.

4.1.3 Radar Test Target Generation

For the purposes of experimentation it is desired to have a controlled environ-

ment with known targets. In order to allow for the generation of actual radar return

echoes of arbitrary amplitude and time-delay, a radar test target generator was built

using components formerly used in an attempt to model a multi-path channel. The

radar signal is radiated toward the photonic test target generator (TTG) where the

transmitted waveform is received by a horn antenna, time-delayed and re-radiated
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Figure 4.7: Screen Capture of the LabView program interface for collection and pro-
cessing of Radar Data using the photonic array processor and down-converting receiver.
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Figure 4.8: Picture showing the RX/TX horns that are part of the photonic radar
target generator built for simulating radar targets at ranges that are un-obtainable
within the laboratory environment. The picture is taken from the point of view of
the Receive Array, showing the relative distance of the TTG receive and transmit
horns from the receiver. The TX horn is also used during Calibration to transmit a
calibration signal.

back toward the radar via a second horn. The distance of the TTG antennas to the

radar system can be made arbitrary, with all of the “range” coming from the ability

to change the time-delay of the returns using a set of switch-able optical fibers. The

relative distance of the horns can be seen in Fig. 4.8 since the same set of horns were

also used for calibration. The TTG used has the ability to create up to 4 synthetic

targets (though only 3 were used in the experiments presented here), each with its

own range and amplitude. A picture of the TTG is shown in Fig. 4.9, where the

three fiber spools that generate the relative time-delays between targets can be seen

on the right. Test target generation begins with a set of multiplexed lasers, driven

by Thorlabs CLD1015s, that feed a high-speed intensity modulator by Codeon that

responds to signals at center frequencies up to 40 GHz. The resultant optical signal is

then de-multiplexed allowing each laser to travel through separate optical delay lines.
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Figure 4.9: Picture of the Photonic Test Target Generator with the top-cover removed.
The TTG is used to provide radar target returns for reception and processing during
experimentation. The three fiber spools used to generate relative target delays are
seen to the right. The 4 Thorlabs CLD1015 laser drivers are seen in the center (labeled
Ch16, Ch18, Ch20, Ch24). Each laser can generate one target signal. The MUX and
DEMUX equipment along with the Codeon 40GHz intensity modulator are shown to
the left of the laser drivers.
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The signals can then be separately detected and re-radiated or multiplexed again so

that all target returns are radiated from a signal source. Varying the length of each

fiber spool allows for precise time-delays to be selected for each generated target, while

varying the laser power for each signal changes the apparent target amplitude. The

photo-detectors used within this device must be sensitive to the RF frequency, thus

the final output PD that generates the signals to be sent to the TTG transmit horn

is a µ2t (now Finisar) 50 GHz bandwidth photo-detector. Thus, the target generator,

as configured, can generate synthetic targets for any signal that is under the 40 GHz

limit of the first stage intensity modulator. The TTG’s output photo-detector signal is

fed directly to an amplifier after which it is radiated via an x-band horn antenna back

towards the receive array.

4.1.4 QPSK Signal Generation

In order to show multiple functions, a second signal source consisting of a QPSK

signal of random values is set up according to Fig. 4.10. The signal is generated at an

IF by a 10-bit Arbitrary Waveform Generator (AWG). The AWG is set to generate an

I/Q output that is then mixed up to RF using a Mixed Signal Generator (MXG) as the

local oscillator. The MXG is fed directly into the LO port of a double balanced mixer

configuration, where it is mixed with the combined I and Q signals from the AWG.

The communications signal is then amplified and radiated from a second horn antenna.

The QPSK signal is configured to output a spectrum shaped by a Root-Raised Cosine

Filter on transmit. The total radiated bandwidth can be varied from 1 to 100 MHz

and is well contained via the applied Root-Raised Cosine filtering.

4.2 Experimental Setups

Two distinct sets of experiments were performed. The initial experiments were

designed to test the theory introduced in Section 2.3.5 and determine the limits of

apodization performance for the photonic system. This early work in apodization was

focused on applications where beams could be assumed stationary and separated by at
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Figure 4.10: Graphical depiction of the equipment used to generate a QPSK signal
at various center frequencies for experimentation. The complex QPSK signal was
generated at an IF using a 10-bit Tektronix AWG. The I/Q signals were combined and
then mixed up to RF using an Agilent MXG as the variable Local Oscillator Source.
The communications signal was then radiated via an amplified and horn antenna toward
the Receive array.

least a null-to-null beam-width. Thus, the intent was to generate a set of output beams

that had extremely low side-lobes to improve the spatial isolation between adjacent

spatial channels [54]. These experiments utilized a set of CW sources of differing

power levels, such that both could be detected upon application of apodization profiles

across the master-laser inputs to the modulator array. These experiments are the focus

of the discussion in Chapter 5.

The follow-on experimentation endeavored to prove the theory developed in Sec-

tions 2.3.4 and 2.3.6. During these experiments, the Radar and QPSK signal generators

described in Sections 4.1.2, 4.1.4 and 4.1.3 are used extensively in order to show the

ability of the system to operate on multiple functions simultaneously. The experiments

begin with the capture and calibration of a full dimension beam-space and end with the

simultaneous processing of a Radar and QPSK signal at the array processor output.

The discussions in Chapter 6 focus on these multi-functional experiments.
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Chapter 5

EXPERIMENTAL RESULTS ON THE GENERATION OF APODIZED
BEAM-SPACES VIA PHOTONIC UP-CONVERSION

5.1 Motivation for Beam-Space Apodization

An unweighted array will possess a power pattern resembling that shown in Fig.

1.2b. The “beam” in Fig. 1.2b possesses a sinc-like response, typical of a sampled

periodic aperture. An individual beam possesses a decaying side-lobe structure with

peak side-lobes nominally occurring 13.3 dB down from the main response. We can

see a similar result, simulated for the photonic array processor output in Fig. 2.6.

However, in many applications, the input signals of interest can be small compared to

interference or other unwanted signals in adjacent beam positions. Thus, if a signal of

interest and an interference signal enter the array from adjacent spatial locations it is

highly probably that the side-lobes of each individual beam will interact. This issue is

particularly troublesome when one signal’s side-lobes are of equal power to an adjacent

signal’s main-lobe. This effect can be visualized quite easily with the optical beam-

space processor because the lens system produces a continuous Fourier spectrum at

the output. With a peak side-lobe level of -13.3 dB, a desired signal must be of a large

enough magnitude to provide sufficient signal-to-interference ratio for reliable isolation

and subsequent error-free processing. In instances where one spatial channel is masked

by a large interference source incident in the adjacent spatial channel, lowering of the

array output side-lobes may provide enough isolation to allow detection of the desired

signal. An example is shown in Fig. 5.1, where the desired signal, in black, is 17 dB

below a interfering signal slightly off bore-sight. To improve isolation of signals in the

presence of high-amplitude signal sources, we wish to limit the side-lobe levels of the

spatial receive channels at the output of the photonic array processor.
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Figure 5.1: Simulated outputs of an 8-channel beam-space beam-former with a large
interfering signal (red) entering the array slightly off-bore-sight along with a desired
signal (black) entering in an adjacent spatial channel [54]. c© IEEE 2017.

5.2 Creation of Apodized Beams Using a Prototype Photonic Beam-space

Processor

As in any apodization scheme the effects are realized via a pattern of weights

that are applied across the physical dimensions of the receiving aperture. A method

for tapering via a transmissive film in the optical path of a photonic beam-space pro-

cessing chain was introduced in [39]. An important negative side effect of tapering in

the free-space optical domain is the removal of optical power that was put into the

system. In order to avoid the unnecessary loss of input optical power the techniques

discussed in Section 2.3.5 were developed. The tapering or weighting functions used

for experimentation are real-valued, and thus only operate on the relative amplitudes

of the array elements. A subsequent chapter discusses the usage of complex weightings

that allow for generation arbitrary array responses (within the limits of the array’s

available degrees of freedom).

For this reason, the apodization experiments began with applying an optical

amplitude profile across the master laser feeds to the photonic up-conversion stage
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behind each element of a wide-band array. The array of wide-band elements can be

seen in Fig. 5.3, where all 8 elements are used in the tapering experiments.

5.2.1 Experimental Setup for Spatial Isolation Data Collections

The experimental setup includes two RF sources within the field of view of the

RF antenna. The wide-band antenna used for these initial experiments could not be

critically sampled, thus the field-of-view of the photonic array system is significantly

constrained. For this reason the sources were placed offset from one another with one at

bore-sight to the antenna array and another placed 22.5 degrees off-bore-sight as shown

in Fig. 5.2. Initially only the bore-sight source is turned on so that proper calibration
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Figure 5.2: Schematic Overview of the Experimental Setup for the Apodization Ex-
periments

of the array can be verified. The array is initially calibrated with a flat amplitude

124



profile which produces no appreciable apodization of the array side-lobe response. It

was found that each elemental channel had drastically different optical insertion losses,

therefore, calibration is absolutely necessary, even when no apodization is applied.

The calibration of the amplitudes of each element is facilitated via measurement of the

signal levels of each individual element at the output of the photonic array processor.

The measurements are made using a logarithmic SWIR detector. A flat amplitude and

phase calibration results in the expected -13.3 dB peak side lobe levels. Figure 5.4

shows the array response at the photonic beam-space beam-former’s focal plane with

both measured and simulated data overlaid and seen to be in good agreement. The

grating lobe pattern that is evident within Fig. 5.4 is due to the spacing of the optical

fiber bundle, as discussed in Section 3.1. We next wish to show that the side-lobe levels

can be apodized via application of a weighted distribution to the input optical carrier

laser source as hypothesized and simulated in Section 2.3.5.

5.2.2 Experimental Validation of Apodization Via Weighting of the Master

Laser

As discussed in Section 2.3.5.2, the optimum method for applying an amplitude

profile–when considering effects to system prime-power efficiency—is to avoid attenu-

ation and instead opt for efficient distribution of the laser. The one draw-back of this

approach is that it only allows a single apodization profile to be used, thus for the

purposes of experimentation, input laser powers to the modulators at each element are

adjusted via a set of variable attenuators. When no side-lobe apodization is desired

the eight laser inputs are equalized to provide a flat amplitude distribution across the

array, which results in an array response like that seen in Fig. 5.4. When side-lobe

apodization is required, a symmetric amplitude distribution can be applied across the

master laser inputs. In turn, the amplitude distribution of the optical sidebands that

carry the RF signal information is affected proportionally. This results in a tapered

beam profile at the output of the photonic beam-space array processing system. In

order to demonstrate the concept, a set of amplitude weights was calculated using the
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Figure 5.3: Picture of 8-element array used for spatial isolation experiments as reported
in [54]. c© IEEE 2017.
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Figure 5.4: Overlay of simulated and measured data for a bore-sight RF source incident
on the 1x8 prototype array [54]. c© IEEE 2017..

Taylor synthesis technique [40]. A desired sidelobe level for the experiments was chosen

to be -35 dB from the main-beam peak. The calculated weights, shown in Table 5.1,

were set using attenuators in-line with each modulator. Specific choice of weighting

functions is dependent on system isolation requirements and the technique presented

is compatible with any amplitude weighting. A recent survey of potentially useful

apodization functions can be found in [72]. The resulting beam-space output is shown

in Fig. 5.5 along with the ideal response. Clearly, the measured response is limited

by a root-mean-square (RMS) side-lobe floor as it fails to approach the ideal, desired

side-lobe levels. Even still, the results of Fig. 5.5 show a marked improvement in the

overall side-lobe level of the array response. The peak sidelobes have been reduced by

8.2 dB.

To illustrate the importance of side-lobe apodization in terms of achievable

spatial isolation, a second source at 22.5 degrees off-bore-sight was turned on with an

amplitude set to be 14 dB below that of the source at bore-sight. The scenario described

above results in the measured beam-space outputs shown in Fig. 5.6. Comparison

of Fig. 5.6a to Fig. 5.6b shows that the apodized array allows for the previously
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Figure 5.5: Measured prototype array response for a bore-sight RF source when the
array is apodized via the amplitude profile listed in Table 5.1, overlaid with the Ideal
response of the given weighting profile along with an unapodized reference.

Table 5.1: Input Laser Weighting for Each Optical Modulator

MZMn 1 2 3 4 5 6 7 8
(Ratio) .213 .475 .791 1 1 .791 .475 .213

(dB) -6.7 -3.2 -1.0 0 0 -1.0 -3.2 -6.7

undetected source at 22.5 degrees to be resolved at the output of the beam-space

processing chain with a peak-to-side-lobe ratio of 7.5 dB such that it might be sampled

with a high-speed photo-detector, enabling recovery of the desired signal. The initial

results, shown in Fig. 5.5, indicate the presence of some un-mitigated amplitude and

phase errors within the beam-forming system. If no errors were present, the measured

apodized beam pattern would match the ideal perfectly.

5.2.3 Analysis of Error Sources within the Photonic Array Processing

Chain

In order to verify the existence of an RMS side-lobe floor, and measure the level

precisely, a number of additional experiments were carried out.
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(a) Beam-former output of array response
without apodization
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Figure 5.6: Measured and simulated photonic beam-space beam-former response with
two incident sources. From [54]. c© IEEE 2017.

5.2.3.1 Additional Tapering Experiments

A number of additional apodization profiles were generated in order to measure

the resulting beam-patterns in an effort to determine the source of the side-lobe floor

seen during the initial experiments. The relative amplitude offsets for each channel are

shown in Table 5.2. The results for each of the tapering functions are shown separately

in Figs. 5.7a, 5.7b, and 5.7c so that they may be compared to the ideal array response

in each case. Inspection of the measured results in Fig. 5.7a shows that the weighting

Table 5.2: Table of different amplitude weighting functions used for experimentation
to validate the proposed apodization method. Tapering functions are applied via a
weighted distribution of the feed laser. *The -27 dB taper mimics the realized weights
using commercial splitters as discussed in Section 2.3.5.2.

MZMn 1 2 3 4 5 6 7 8
-22 dB 0.56 0.64 0.87 1.00 1.00 0.87 0.64 0.56
-27 dB* 0.38 0.58 0.86 1.00 1.00 0.86 0.58 0.38
-35 dB 0.21 0.48 0.79 1.00 1.00 0.79 0.48 0.21

of the master laser produces the desired beam-pattern. However, as the taper functions

become more aggressive, as in Fig. 5.7b and Fig. 5.7c, the measured results begin to

deviate from the ideal cases until an average sidelobe floor is evident at approximately

-23 dB. The -35 dB taper produces a beam-pattern that is limited exclusively by the
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(a) Measured beam-pattern at the output
of the photonic beam-space array processor
with master laser distribution according to
the first row of Table 5.2. At this mild ta-
pering the results are close to the ideal for
our small experimental array.
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(b) Measured beam-pattern at the output
of the photonic beam-space array processor
with master laser distribution according to
the weights shown in the second row of Ta-
ble 5.2.
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(c) Measured beam-pattern at the output of the photonic beam-space array processor with
master laser distribution according to the weights shown in the third row of Table 5.2. The
measured result is far from the ideal due to an apparent root-mean-square (RMS) sidelobe
floor of −23 dB.

Figure 5.7: Overview of the measured results (black traces) and simulated ideal results
(dotted blue traces) for each of the amplitude profiles listed in Table 5.2.
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RMS sidelobe floor as seen in Fig. 5.7c as originally reported in [54]. The high average

sidelobe level can be caused by a number of defects within the antenna array system,

all of which can be reduced to a set of tolerances for amplitude and phase errors across

the array channels. Of particular interest are any errors introduced from the photonic

components themselves as discussed next.

5.2.3.2 Array Error Analysis for Photonic Array Processor

As seen in Fig. 5.7c, the measured array output does not match the ideal

aperture illumination function. The peak sidelobe levels are as much as 14.5 dB out of

spec from ideal. The root-mean-square (RMS) sidelobe level measures approximately

23 dB below the main beam peak, with the peak sidelobe level being 20.5 dB down.

Since the array errors are random in nature, it is desirable to determine the statistics

of the errors affecting the prototype photonic system. Once the statistics are known

(or estimated), they can be applied to the numerical simulations discussed in previous

sections to better understand how the photonic beam-forming technique will scale to

arbitrary arrays and tapers.

5.2.3.3 Determination of Error Statistics

Precise determination of the statistics of small arrays is difficult, if not impos-

sible, since simplifications via the Central Limit Theorem are not necessarily valid [6].

However, an approximation of the peak sidelobe errors may be determined by following

a method similar to [73]. The first step is to define the array pattern with errors to be

Fe(φ, θ) =
N∑
1

(1 + δa,n) · An · ejδφ,n

· e−j
2π
λrf
·n·d·(cos(φ) sin(θ)−cos(φs) sin(θs))

,

(5.1)

where δa,n is the amplitude error (applied as a multiplicative error), δφ,n is the phase

error (in radians), φs and θs are desired steering angles as defined in Fig. 2.7. Assuming
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that the array errors are small and that the array pattern is Rician distributed, the

variance of the array errors can be approximated as:

σ2 ≈ 1

2
· (σ2

δa + σ2
δφ

) ·
N∑
1

A2
n, (5.2)

where σ2
δa

and σ2
δφ

are the variances of the amplitude and phase errors respectively, and

An represents the desired illumination at each element of the array. If it is assumed that

the amplitude and phase errors are zero-mean, σδa and σδφ can be taken to represent

the RMS error levels. It will be further assumed that the illumination functions are

normalized such that the sum over the elements is equal to unity. Note, this assumption

is in contrast to the treatment given in Section 1.1.1.5, however; the scaling only effects

overall array gain, and not the relative side-lobe levels that are of the main concern

here. From here, the constant probability sidelobe model in [74] is used to determine

the ratio of the illumination function to the achieved (measured) sidelobe levels as:

Rs =

∑N
1 A

2
n

Sm
, (5.3)

where Sm is the measured or achievable sidelobe level given errors. The set of curves

generated via the constant probability sidelobe model are used to determine the value

of the scaled array error variance to guarantee a sidelobe level equal to our observed

levels with a 90% probability.

The most aggressive illumination function used for the previously presented

experiments was a -35 dB Taylor window function. The sum of the squares of the illu-

mination yields a -8.18 dB value, while the measured sidelobe level was approximately

-20.5 dB, thus

Rs−35 = 12.32 dB. (5.4)

The measured ratio of designed-to-achieved sidelobe levels for the -35 dB Taylor weight-

ing experiments is
Sdesigned
Sm

= −14.5 dB. (5.5)
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Using the value in (5.5) as a lookup parameter within the constant sidelobe probability

model yields
1

2
· (σ2

δa + σ2
δφ

) ·Rs ' −6.7 dB. (5.6)

By inserting the result in (5.4) into (5.6) and reducing, one can arrive at

1

2
· (σ2

δa + σ2
δφ

) ' −19.02 dB. (5.7)

The expression in (5.7) can be then used to determine a set of RMS error values that

lead to the ratio of designed to achieved sidelobe levels in (5.5). Thus, the relation in

(5.7) can be used to determine the RMS phase errors upon direct measurement of the

RMS amplitude errors.

The RMS amplitude errors of the elemental channels was measured directly at

the input to the beam-space processor system via an optical spectrum analyzer (OSA).

The OSA allows for direct measurement of the optical carrier and the RF side-bands

about-the-carrier in a manner similar to an RF spectrum analyzer. Data was collected

on the OSA for several minutes and statistics were calculated on the side-bands, since

the continuous spatial spectrum of the RF sideband is what results at the output of

the beam-former. From the measurements, it was discovered that

σδa,measured = 0.039, (5.8)

thus, the amplitude error tolerance, εδa , is estimated to be

εδa ' ±0.59 dB. (5.9)

By substituting (5.8) into (5.7) and solving for σδφ yields

σδφ ' 0.153 r ' 8.8 degrees. (5.10)

An ensemble of simulated array pattern outputs using the statistical values in

(5.8) and (5.10) in conjunction with a -35 dB Taylor illumination function across the

master laser inputs to the modulators is shown, in Fig. 5.8, to be in good agreement

with measured results.
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Figure 5.8: A plot of the measured beam-former output (solid, black) overlaid with a
simulated output (dashed, red) that includes the RMS errors as measured in (5.8) and
derived in (5.10). The measured results were initially reported in [54].

5.2.3.4 Discussion of Error Sources

With the nominal statistics of the array errors having been measured and/or

otherwise estimated, it is prudent to discuss likely sources of error so that the array

and beam-former performance can be improved in future designs. That being said, the

errors, as measured, are reasonable for a large array. It is safe to assume that average

sidelobe level performance will improve upon construction of a larger array, assuming

the existing errors hold constant [75]. There is, however, an important design detail

that limits the practical size of the array that can be beam-formed using a particular

instance of the photonic array processor. The sidelobe structure and apparent floor is

directly affected by the size of photo-detectors used to sample the Fourier-plane output.

5.2.3.4.1 Sampling Array Effects on Effective Side-lobe Levels

The phenomena just introduced is due in large part to the effective spatial

averaging that occurs across the unit area of a given photo-detector. There is some

optimization of the relationship between array size and pixel-size that can be performed
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via changes to the magnification, but this optimization is limited by the physical size of

the sampling array and the effective field-of-view that is imaged. That is, one can only

magnify the output spatial spectrum until it falls off of the detector array. With these

limits in mind, once the distance between adjacent sidelobes reaches a point where

multiple side-lobes are incident onto a single detector (or pixel), the sampled result

is a spatial integration of the array pattern over the surface area of the pixel. This

integration effect causes a sidelobe floor in the antenna array pattern upon sampling.

Examples of the photo-detector integration effect on the worst-case sidelobe floor for an

ensemble of array patterns can be seen in Fig. 5.9. Thus, it is important to consider the

overall antenna beam-width (and therefore, the total number of input array elements)

when constructing the optical processor and the output plane detector array. Some

simulated outputs for the 128 element case across two (2) widely available detector pixel

configurations are shown in Fig. 5.10. Keeping all else constant, careful construction

of the detector array and other back-end beam-space processing is required in order to

ensure the desired RMS sidelobe performance can be reached.

5.2.3.4.2 Photonic Phase Modulation Effects on Effective Side-lobe Levels

Returning again to the front-end error sources, it was initially postulated that

the modulator bias controllers were producing a sinusoidal amplitude variation due to

the dither tone that is used on the bias. However, for the single-arm modulators used,

the dithering should not affect the side-band, only the carrier. This fact was verified

via measurements using an OSA and the next stage of the photonic chain was ana-

lyzed. At the next stage, it was discovered that a significant portion of the amplitude

variation occurs after the phase modulator that is used to maintain channel-to-channel

coherence. This is likely due to Residual Amplitude Modulation (RAM) within the

1x8 phase modulator, first studied for its negative effects in spectroscopy [76]. This

additional modulation is due to imbalances in the sidebands of the phase modulated

laser signal. Several mechanisms that cause these imbalances have been studied includ-

ing the input beam-intensity profile, input laser frequency, polarization mis-matches
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(a) Simulated aperture patterns incident on the photo-detector array. These patterns have
not yet been spatially integrated by the physical photo-detector area and increasing the array
size reduces the contribution of the array errors to the average sidelobe level.

−1500 −1000 −500 0 500 1000 1500

−40

−30

−20

−10

0

microns

d
B

 

 N=16

N=32

N=64

N=128

SLL Spec

(b) Simulated aperture patterns after the photo-detector array, showing the effects of photo-
detector size (holding errors and optical chain constant) on achievable sidelobe level. For a
given error budget, optical chain and detector array, there is a limit to achievable sidelobe
level regardless of array size.

Figure 5.9: Simulated outputs of worst-case patterns for different aperture sizes (N =
16, 32, 64, and 128 antenna elements) given existing error budget.
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Figure 5.10: Simulated outputs of worst-case aperture patterns, for a 128 element array,
as captured when using with two (2) different commercially available pixel pitches (pixel
pitch = 25µm and 12.5µm). Also shown is an ideal, no pixelation, case for the existing
system error budget. The RMS sidelobe levels for the depicted worst-case patterns are
-29 dB, -33 dB and -36 dB, respectively.
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and photo-refractive defects within the modulator itself [76–78]. Measurements of the

side-band voltage over time at both the array element MZM and the phase control

loop modulator are shown in Fig. 5.11. The results in Fig. 5.11 are normalized to

the expected value and any linear trends have been removed. The traces were taken

over the same amount of time, however; they are not simultaneously captured. Thus,

no direct correlation can be made between time deviations within the traces, but it is

clearly shown that the phase control modulator introduces a larger amplitude ripple

over all time. A potential source for RAM in the phase modulator is in how the input

fibers are coupled to the optical wave-guides of the modulator. This coupling is less

than ideally aligned and will be corrected in any future system design revisions. The

phase control modulator’s design and subsequent packaging is also suspected to cause

cross-talk between the channels due to a common ground on the bias. Thus, when

one channel is providing a bias signal, some of the signal leaks to the abutting chan-

nels, leading to a phase error. This issue is seen as the most significant as it causes

unintentional phase offsets in adjacent channels, contributing to both amplitude and

phase errors within the array processing system. It is believed that replacement of

the existing 1x8 phase modulator with discrete phase modulators is a candidate for

improving the amplitude ripple in the phase control loop until a better 1x8 design can

be developed.

5.2.3.4.3 System Phase Error Budgeting for Low-Side-lobe Performance

The calculated phase error budget for the system is divided among several design

elements: the antenna element spacing, LNA phase characteristics and the optical

phase control modulator. If we augment the relationship in (5.2) with a term to

encompass the antenna element positional errors we arrive at:

σ2 ≈ 1

2
· (σ2

δa + σ2
δφ

+ k2
rf · σ2

p) ·
N∑
1

A2
n, (5.11)

where σ2
p is the standard deviation of the element positional error in all translational

axes (assumed to be equal) [79,80]. The prototype array’s elements are hand positioned
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Figure 5.11: Measured RF sideband amplitude, versus time, for a single element’s
Mach-Zehnder Modulator and corresponding phase control modulator. The plots
clearly show that the phase control modulator has significantly more amplitude ripple
than the MZM.

with the aid of a steel rule and movable mounting brackets. This was done to allow for

a number of array element positions and array lengths to be studied over various inci-

dent radio frequencies. If we assume the positional error to be uniform over ±0.5mm,

due to the inherent precision of the steel rule, we can calculate σp = 0.001√
12
≈ 0.000289.

Using the newly calculated value for positional error and assuming an RF of 17 GHz,

we can re-calculate the value for phase error contributions to sidelobe level in (5.11)

as σδφ = 0.1138 ≈ 6.5degrees. Thus, the phase errors due to the photonic system can

be isolated to be approximately equal to a best-case 6.5 degrees RMS value, with the

bulk of this error being attributed to the 1x8 phase control modulator. Finally, the

LNA’s are not phase matched and only a rough channel-phase calibration is performed

before collecting data from the array, however, the bulk of the phase and amplitude

error is believed to stem from the phase-control circuit and its associated phase modu-

lator, making a re-design of the existing phase modulator vital to achieving significant
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performance improvements in future systems using apodization.

5.3 Significant Outcomes from the Apodization Experiments

The experiments presented within this Chapter showed the ability of the pho-

tonic array processor to generate a continuous, weighted, spatial spectrum from an

unweighted input array. This result is significant since it validates the ability of the

proposed system concept to detect and display the angular locations of incident signals

via the relation derived in Section 2.3.4 using the imaging techniques described in Sec-

tion 3.1, all in real-time. It is noted that the entire spatial spectrum (i.e., beam-space)

is projected onto a detector array that is less than 5,000 microns across in the presented

experiments. Furthermore, the fiber bundle that is used to transfer the up-converted

signals is orders of magnitude smaller in diameter than an associated bundle of RF

coaxial cables or wave-guides making the remoting of beam processing functions more

amenable to space-constrained applications.

The results of the initial apodization experiments lead to an investigation into

error sources that cause an apparent RMS side-lobe floor in the beam-space data. A

number of system errors were measured, estimated and/or otherwise calculated in an

effort to understand the shortcomings of a prototype system. These investigations led

to the discovery of Residual Amplitude Modulation (RAM) within the optical phase

control loop’s electro-optical phase modulator. The phase modulator was shown to be

the cause of considerable amplitude modulation compared to the rest of the RF and

optical chains. This RAM signal contributes significantly to the overall sidelobe level

performance of a photonically beam-formed system and will require mitigation for the

proposed technique to generate low sidelobe arrays with a small number of elements.

Finally, the measured errors that exist in today’s system, were shown to be

sufficient to produce arrays with sidelobes well below -35 dB as the number of elements

becomes greater than 128. This result also led to the discovery of the sampling effects of

various detector configurations. It is therefore important to carefully design the optical

processing chain along with the output detector array due to a spatial integration

140



phenomena that occurs across the physical size of the photo-detectors. As the size of the

array increases it is necessary to reduce the size of the photo-detectors, or increase the

magnification of the optical system to compensate. Future systems with large element

numbers are more likely to require lens systems with increased magnification due to

limitations in the manufacture and usage of smaller photo-detectors. The lessons-

learned in precise sampling of the beam-space are carried forward into the next set of

experiments—discussed in Chapter 6—where the down-conversion, spatial-sampling,

digitization and processing of a full-dimension beam-space of a critically sampled input

array is undertaken.
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Chapter 6

RECOVERY OF A PHOTONICALLY-GENERATED
FULL-DIMENSION BEAM-SPACE FOR MULTI-FUNCTION

APPLICATIONS

A natural follow-on to the initial experiments in the imaging and capture of

an apodized spatial spectrum for the purposes of increasing spatial isolation of two

or more adjacent channels is to attempt to recover the signals that are incident in

each of the channels using the optical heterodyning and beam-space sampling concepts

introduced in Chapter 2.

6.1 Dual-Beam multi-function Experiments

Initial multi-function experiments were performed in a manner similar to those

reported in [81], where selected spatial channels were isolated using optical hetero-

dyning and high-speed photo-detectors. The experimental setup is shown in Fig. 6.1.

Here the TTG is fed directly by the Radar Waveform generation components of the

PXIe Cart. This provided a high-SNR signal for the initial attempts at processing. At

this point, no extraordinary efforts were made to sample an orthogonal beam-space.

One beam-output was sent to the VSA for communications processing, while a sec-

ond beam-output was sent to the Radar Processing LabView program resident on the

PXIe Chassis. The output from the SWIR camera can be used to show the AoA of

the individual signals, as shown in Fig. 6.2. The Comms and Radar signals were

configured such that the Radar signal would down-covert to a 62.5 MHz IF, while the

communications signal would down-convert to an IF of 118 MHz. This ensures that the

signals do not interfere, even if the sampled beams are not orthogonal. The sampled

waveform and spectrum is shown in Fig. 6.3a, where the raised-cosine spectral shape of
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Figure 6.1: Experimental overview of the Dual-beam multi-function experiments.
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Figure 6.2: AoA measurements from SWIR output of the Photonic Array Processor.
High-speed photo-detectors were aligned with each beam output location to show that
signal recovery of separate signal types was possible.
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Figure 6.3: Plots of the waveforms and associated spectra of the captured outputs from
the beam directed toward the Radar Test Target Generator.
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Figure 6.4: Range/Doppler Processed output of multiple radar pulses from the TTG as
sampled from Beam “1” (directed toward the TTG). True Target locations are labeled
with yellow-dotted lines.
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the communications signal is evident adjacent to the 100 MHz chirp spectrum. Upon

digital base-band translation and filtering as discussed in Section 3.2, the final output

signal and spectrum that is processed by the radar processor is shown in Fig. 6.3b.

The final digital I/Q samples are then stored until several pulses are collected. Upon

collection of multiple pulses, the radar processor can perform both range and Doppler

processing on the data. The resulting “Range/Doppler” plot is shown in Fig. 6.4. The

Range/Doppler plot shows three test targets generated by the TTG. Currently, the

TTG does not simulate moving targets, thus the targets remain at the zero-Doppler or

“DC” position. Any Doppler response in the map is due to Doppler side-lobes and/or

spurs/interference and not target motion.

Simultaneously, the VSA is processing the communications information that is

set at the 118 MHz IF. The output screen capture from the VSA is shown in Fig. 6.5,

where the QPSK signal was recovered with an SNR of 17 dB. Thus it was shown that
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Figure 6.5: Recorded QPSK constellation from the VSA, connected to Beam “0.” The
QPSK signal was recovered simultaneously with the radar signal from the TTG, each
in a separate spatial channel.

two different signals could be spatially isolated, sampled and processed simultaneously,
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however, they were set to separate center frequencies, such that they would be some-

what isolated upon down-conversion to IF. The next set of experiments placed both

signals at the same RF and attempted to capture the entire beam-space. The signals

were placed such that they not only interfered in frequency, but also spatially due to

side-lobe energy.

6.2 Full-Beam-Space Multi-function Experiments

The final set of experiments required the sampling and recovery of the entire

field-of-view of the input RF array. This is done most efficiently via the formation of

the orthogonal beam-space introduced in Section 1.1.2. This experiment set out to

validate the hypothesis that the continuous spatial spectrum that is generated by the

photonic array processor could in fact be sampled precisely enough such that an output

equivalent to that of a DFT beam-former could be recovered.

6.2.1 Sampling and Calibration of Orthogonal Beam-Space Locations

Ideally, a focal-plane array of high-speed photo-detectors with a fine pitch would

be placed in the optical processor’s output plane such that a grid of beam-locations

could be down-converted and sampled across the full field-of-view (FoV) of an input

RF antenna. Such a device would allow for AoA processing and adaptive beam-forming

techniques to be applied on arbitrary clusters of beams around focal plane locations

with high incident intensities. In other words, if every pixel of a SWIR camera were

capable of sampling the IF signal that is generated when an optical LO is introduced at

the focal plane, the irradiance map could be used to cue processing of any pixel/beam

location in the output plane. A suitable digital read-out circuit that selected “beam-

pixels” for processing would also need to be developed. Currently, no commercially

available, large-format, devices exist that would meet any useful bandwidth specifica-

tion for a 2D array application. To allow for maximum flexibility in processing, it is

otherwise beneficial to sample a set of orthogonal beam positions. For the uniform
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linear RF array used in experimentation, this can be readily accomplished with a com-

mercial linear SWIR photo-detector array. For the initial experiments, a Hamamatsu

Figure 6.6: Picture of the beam-sampling photo-detector array used for experimenta-
tion.

G12430 Series photo-detector array was chosen for its large pixels of 200µm in diam-

eter, with a pitch of 250µm, shown in Fig. 6.6. The photo-detectors have a nominal

bandwidth of 60 MHz, though it was discovered to possess an adequate response up

to 125 MHz. However, some of the wide-band radar data shows a slight roll-off due

to the photo-detector response. Initially, this choice of large photo-sensitive area was

made to guarantee that the maximum amount of beam-energy is converted to the IF

signal at the output. This works well when single, spatially separated, beams are pro-

cessed specifically for the recovery of a given signal, particularly when the beam-space

is apodized to match the span of the photo-detectors. However, when the desire is to

capture a set of beams that can be processed together, in an adaptive sense, the size of

the pixels can allow unwanted leakage or cross-talk between the beams, as will be shown

later. Furthermore, for adaptive processing it is desired to have orthogonal beams, but

the large photo-sensitive area causes an effective broadening of the beams and alters

the overall side-lobe structure. These effects tend to reduce the overall orthogonality

of the beam-space and must be compensated for in processing. Compensation of such

effects will be discussed later in a section on performance and design considerations.

For the signal recovery results presented in subsequent chapters, the beam-

sampling array is placed such that we capture beam-locations associated with the ideal

orthogonal beam angles shown in Table 6.1. For any given array-size and optical chain,

the appropriate beam-sampling locations can be calculated via the relation in (2.69).

These beam-locations are associated with a set of M beam-space steering vectors as

defined in (1.24). Clearly, the photo-detector array, with a pitch of 250 µm, will not
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Figure 6.7: Simulated, unity magnification output for the experimental setup discussed.
The sampling photo-detector locations are highlighted in gray. Clearly, for a fixed pitch,
commercial array, like the one used here, some optical adjustments are necessary.

allow for unambiguous sampling of the desired beam locations. This effect is simulated

in Fig. 6.7. For this reason, we must attempt to adjust magnification until we achieve

good alignment.

Table 6.1: Sine-space and Fourier-space locations of 7 Beam Positions for the 7-elements
used as the input to the Photonic Beam-Space Receiver. The Fourier plane positions
assume unity magnification.

Beam θRF usine uo
(unit-less) (degrees) (unit-less) (microns)

0 -59 -0.857 -603.9
1 -34.85 -0.571 -402.6
2 -16.6 -0.286 -201.3
3 0 0 0
4 16.6 0.286 201.3
5 34.85 0.571 402.6
6 59 0.857 603.9

In any case, the position of the sampling array along with the magnification

and alignment of the optical system must be adjusted to achieve the best possible

beam-sampling at the focal plane. That is, we endeavor to fill each high-speed pixel

with only a single beam-position, in practice, this turns out to be easier with slightly
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Figure 6.8: Overview of the Calibration setup and procedure for aligning the beam-
sampling photo-detector array.

smaller pixels and future versions of the system will likely implement a beam-sampling

PD array with smaller pixels and relative pixel pitch. We note that system sensitivity

must also be considered when choosing an optimum pixel size, since less output current

is likely yielded from smaller pixels. For now, we must find a near optimum alignment

for the existing experimental system. The alignment procedure currently uses the

output of each of the photo-detectors to determine when the signal is maximized.

Thus, the outputs of the beam-sampling photo-detectors are sent to the NI-5171R,

as described in Section 4.1.2, where each of the 14-bit ADC data streams are viewed

at once on an oscilloscope display. The notional setup is shown in Fig. 6.8, where

the calibration source utilizes a single horn from the radar TTG pictured in Fig. 4.8.
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Figure 6.9: Simulated, 38% magnification output for the experimental setup discussed.
The sampling photo-detector locations are highlighted in gray. Here the alignment
of the fixed, 250 µm pitch detector array is much more well matched to the desired
beam-locations.

With a known continuous wave (CW) tone incident on the receiver bore-sight beam,

the beam-sampling array is translated, by micro-positioners, within the focal plane.

The bore-sight beam channel is viewed along with each adjacent beam-channel and

coarse alignment is complete when the signal is maximized in the central beam’s output

channel. With the bore-sight channel maximized, further translations—within the large

pixel itself—along with magnification adjustments are necessary to ensure that each

of the adjacent channels is equalized. An ideal calculation of required magnification

yields the magnified output beam-space as simulated in Fig. 6.9, where the detectors

align reasonably well with the intended beams.

Once the beam-sampling photo-detector array is aligned to the desired beam

locations, a calibration sweep of the antenna is performed using a continuous wave

(CW) source. A picture of the calibration source, as viewed from the RF array, is

shown in Fig. 4.8. The sweep allows the photo-detector channels or beam-ports to be

stored and analyzed in order to generate a simple calibration table. It also allows for

visualization of the sampled beam-space. The output of one such calibration sweep

is shown in Fig. 6.10. The large photosensitive area of the beam-sampling array
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Figure 6.10: Beam-sampling photo-detector array outputs, as measured over a 140-
degree calibration sweep. The calibration sweep of the RF antenna across a known
source allows visualization of the beam-sampling photo-detector array’s beam-space.
The beams are labeled within the diagram according to the first column in Table 6.1.

pixels makes manual alignment of the photo-detectors with desired beam locations

challenging, thus some calibration is still required to account for alignment errors. An

asymmetric amplitude roll-off of the beam-space is evident in Fig. 6.10 and must be

calibrated out. The asymmetry was discovered to be due to optical beam alignment

errors between the fiber-bundle terminations and the lens-let array at the input to

photonic array processor. Alignments within the prototype are performed by hand

via a set of micro-positioner stages, future versions of the system will feature bonded

components that do not require manual alignment, eliminating several sources of error.

Even with reasonable alignment of the photo-detectors, the beam-space output

in Fig. 6.10 shows that the outermost beams suffer from what appear to be grating

lobes. This is likely due to the following factors:

1. Coupling of adjacent beams and potentially optical grating lobes due to the width

of the photo-detectors
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Figure 6.11: Graphical depiction of the potential advantages of the usage of a photo-
detector array with smaller pixels. The hypothesized array shown also has a smaller
pixel-to-pitch ratio which aids in reductions of channel cross-talk.

2. Slight mis-alignment of the entire array of photo-detectors such that none of them

is sampling the main-response axis of any beams

3. Large scan angles when using small arrays (ours is effectively 7 elements) can

cause elevated lobes at the opposite angle to the scan.

A number of calibration passes were performed in an attempt to reduce the influence of

photo-detector mis-alignment (items 1 and 2 above). The results in Fig. 6.10, represent

the best achievable alignment for the current system. It is believed that the usage of

smaller detectors, while reducing the amount of out field energy that is collected for

a given beam, will significantly reduce any cross coupling between beams. The gray-

shaded region of beam “6” in Fig. 6.9 serves as an example where the grating lobe

of beam “0” has energy incident on the photo-detector for beam “6”. Reducing the

photo-detector diameter to less than 100µm would better ensure that the main response

of beam “6” is all that is detected as shown in Fig. 6.11. Smaller detectors will also

make it easier to align the array to the main-response axes of the beam positions

since it will allow the beam roll-off to be detected more readily using the oscilloscope

technique outlined earlier. Furthermore, the additional separation between adjacent
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pixels will prevent spill-over and other coupling effects that hinder performance of the

photo-detector array in and of itself. The final issue of array size can only be mitigated
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Figure 6.12: Comparison of 3 arrays of increasing numbers of elements when scanned
to a large angle off bore-sight.

by building a larger array, or potentially by constraining the element pattern. An

example pattern of a 7-element array at a wide scan angle is shown in Fig. 6.12, where

the elevated side-lobes are evident for the 7-element array when compared to the larger

arrays.

6.2.1.1 Orthogonality of the Sampled Beam-space

The beam-width (3 dB) of the calibrated results averaged to a value of approx-

imately 19.6 degrees. However, the beam-width (3 dB) for the 7-element array used

at the input is approximately 16.6 degrees. Thus, the spatial integration effect of a

large photo-detector, as discussed in Section 5.2.3.4.1, has caused a 3-degree broad-

ening of the bore-sight beam. Each subsequent beam will have additional broadening

due to the decreasing projected area of the array. The calculated beam-locations for

the array setup used in experimentation are provided in Table 6.2 along with the ideal
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beam angles. The outer-most beams, while symmetric, are the farthest from the ideal

Table 6.2: Ideal vs Measured beam locations after sampling via high-speed photo-
detectors.

Beam θIdeal θActual ∆θ
(unit-less) (degrees) (degrees) (degrees)

0 -59 -50 9
1 -34.85 -33.91 0.94
2 -16.6 -15.05 1.55
3 0 1.405 1.405
4 16.6 16.25 -0.35
5 34.85 35.52 0.67
6 59 50.77 -8.23

locations, however; this is to be expected and has to do with the construction of the

input array. The element pattern, in an ideal sense, should have a cosine shape, where

Ez(x, y) = cos
(
πx
Lp

)
and Lp is the patch side-length [82]. This is often approximated

by the relation given in (1.7) for the purposes of system-level simulation. The element

pattern effectively re-shapes the main-lobe response when steered at extreme angles.

This effect is seen in Fig. 1.4, where the peak of the 60◦ beam, actually appears to

align better with an angle that is closer to 53◦. The rest of the beams are also slightly

mis-aligned. This is largely due to an imperfect relationship of magnification and the

pitch and pixel size of the sampling array as previously discussed. The net effect is to

produce a set of beams at the output that are no longer considered orthogonal.

6.2.1.1.1 Beam-space Whitening

There are many processing techniques that take advantage of the orthogonality

for a given beam-space output. Thus, for situations where the beam-space is not

perfectly orthogonal, such as the case where some mis-alignment occurs, or the beam-

space is apodized for low-sidelobe performance, the transformations performed on the

beam-space data vectors must use a whitened, or “orthogonalized” beam-space steering

matrix. The whitened beam-space matrix is given by the following:

Bwbs = B
[
BHB

]− 1
2 . (6.1)
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The newly whitened component beams will have an altered sidelobe structure, likely

by several dB [25]. This whitened version of the measured beam-space matrix will be

used extensively during the experiments discussed in the following sections.

6.2.2 Full-Dimension Beam-Space Experimental Setup

With the alignment and calibration of the recovered beam-space complete and

the beam-space matrix estimated, a set of experiments were conducted where the Radar

and communications signal spectra were both centered at the same IF upon down-

conversion. This ensured that any non-spatially isolated signal would be subjected

to in-band interference upon subsequent down-conversion, sampling, and filtering. To

further exacerbate the potential for interference, the signals were placed such that

they straddled the set of sampled beam-positions as shown in Fig. 6.13. This ensures

that the side-lobes of each signal appear in each of the adjacent beams. Recall, from

Section 1.1.2, that any signal not incident along the main axis of a beam will impart

side-lobe energy into all of the beams within the orthogonal beam-space. Furthermore,

the discovery, in Section 6.2.1, that the sampled beam-space is both broadened by

the photo-detectors and slightly mis-aligned, only serves to increase the chance for

cross-coupling of the signals.

The Radar signal for these trials was also being transmitted from atop the receive

array in a mono-static fashion. This provided additional opportunity for reflected

echoes to arrive along a variety of beam-angles. Thus, the TTG now received the

transmitted signal over-the-air, amplified and delayed the signal, then re-transmitted

it back to the receive array. The QPSK signal was setup just as before, using a AWG

that was up-converted to an RF. These experiments had both signals centered on a 12

GHz RF carrier.
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Figure 6.13: Schematic overview of the experimental setup used for the Full-Dimension
Beam-space recovery experiments. Not shown is the Radar Transmit Horn. It sits atop
of the receive array in a quasi-monostatic fashion as seen in Fig. 4.1.

6.2.3 QPSK Signal Recovery

If the location of the desired communications signal is assumed to be known

precisely, or is discovered to be stationary, the sampled beam-locations can be phys-

ically adjusted to optimize the signal power entering the Photonic Array Processor.

This was done during the prior experiment discussed in Section 6.1. However, for the

beam-sampling scheme discussed here, the output from Beam 1 is instead optimized

for orthogonality with its neighboring beams. The output of Beam 1 is then split off

to a Vector Signal Analyzer where the signal is filtered, demodulated and processed for
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a QPSK signal, just as before. The spectrum of beam 1, as displayed on the VSA, is
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(a) Detected communications signal spec-
trum output from the VSA. The raised
cosine spectrum of the 10 MHz QPSK sig-
nal, centered at 62.5 MHz, is immediately
evident.
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(b) Recovered QPSK constellation from
sampled beam sent to the VSA. A slight
skew in the constellation is evident from
the in-band interference of the radar sig-
nal, though it is still recovered with ac-
ceptable SNR due to the separate root-
raised cosine matched filter.

Figure 6.14: Recovered spectrum and constellation of a QPSK signal incident on the
array at the same time as a Radar signal. Both signals are in-band.

shown in Fig. 6.14a. The VSA is setup with the parameters of the root raised cosine

filter along with the expected symbol rate, samples per symbol and the bit-encoding

scheme (i.e. Gray Encoding [55]). The VSA is then used to recover the QPSK constel-

lation as seen in Fig. 6.14b. The constellation shown in Fig. 6.14b was recovered with

a calculated Modulation Error Ratio (MER) of 16.1 dB, consistent with the Carrier-

to-Noise ratio that is apparent in the spectrum shown in Fig. 6.14a. The MER is a

receiver-data driven measurement that uses the relative offset of the data from a true

constellation diagram and is directly related to the Signal-to-Noise Ratio (SNR). The

reported MER fluctuated between 15.5 dB and 17.2 dB over the duration of several

minutes of data recording. Thus, even under non-ideal beam-sampling conditions, the

outputs of the beam-sampling photo-detector array allow for recovery of the QPSK

signal.
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6.2.4 Radar Signal Recovery

The radar signal processing is performed in near-real-time on the National In-

struments PXIe chassis. Each of the 7 sampled beam outputs is digitized on the

aforementioned 8-channel reconfigurable oscilloscope card and processed via a combi-

nation of Field programmable Gate Array (FPGA) and Single Board Computer (SBC)

nodes. The usage of the compute nodes affords a greater amount of control over the

collection and processing of the sampled output beams. The additional control and

flexibility allowed for investigations of beam-space processing techniques to improve

the performance of the radar processing, particularly in the presence of additional in-

band signals, like the QPSK signal used in these experiments. For the purposes of

radar processing, it is assumed that the transmit steering vector of the radar system

is known a-priori, as in a typical mono-static radar case. The radar signal returns

from the TTG were aligned between two adjacent beams in the sampled beam-space

with an associated steering vector of v(24.3◦), as shown in Fig. 6.13. This once again

represents a non-ideal case for direct signal recovery from the sampled beams them-

selves. Each beam-output is processed using the range correlation processing on each

returned pulse. Once a set of pulses are collected, a Doppler Fast Fourier Transform

(FFT) is taken across the pulses to form the Range/Doppler maps associated with

the signals incident at each beam angle. The effect of non-ideal signal locations and

beam-sampling is evident within the Range/Doppler outputs for each beam, shown in

Fig. 6.15. The returns from the 3 point target responses due to the radar signal are

seen in virtually every channel. Also seen in the channels are a set of constant-Doppler

tones that spread vertically in range. These tones are due to the interference from the

communications signal. A typical goal for a radar application would be to maximize

the signal to noise along the direction of the transmit steering vector, while attempt-

ing to suppress any incident energy from unwanted directions. Thus, we wish to use

the SWIR to estimate the location of any unknown and possibly interfering signals

so that they might be suppressed, while simultaneously maximizing the signal in the
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direction of the transmitted radar signal. In the experiment shown, the interfering sig-

nal is stationary and is defined as the the cooperative QPSK signal described earlier.

However, in many cases the interfering signals will be unknown in both quantity and

angle-of-arrival. It is therefore necessary to develop a method to estimate the location

of interference when using the Photonic Array Processing techniques described thus

far.

6.2.5 Estimation of Quantity and Angle-of-Arrival of Interference Sources

There are a number of potential advantages to using the outputs of the photonic

array processor when real-time operation of an adaptive array are considered. A partic-

ular advantage of the photonic beam-space sampling approach is the ability to capture

the continuous beam-space on an imaging SWIR camera. For the full-dimension exper-

iments presented here, the output of the SWIR has several peaks as shown in Fig. 6.16.

These peaks can be used as a coarse location estimate in real-time. Furthermore, the

signal power of the incident signals can be estimated directly from the SWIR output

as part of the peak search operation. This is seen as useful since the signals can be

prioritized for the application of adaptive weights to either re-steer toward, or place

nulls in, the directions of the prioritized responses. The output of the SWIR device can

be fed directly to a processor where a simple peak-search operation can be performed

in near real-time to provide estimates of the AoA of signals across the full field of view

with latencies that are on the order of 8-10 milliseconds for the currently used device.

6.2.5.1 Latency of SWIR-Based AoA Estimates

Reduction of latency and/or convergence time for any adaptive technique is of

the utmost importance if a particular algorithm is to be used in a real-time system.

For the photonic array processor prototype, with a sampling rate of 250 Msps, and

N = M = 7, at least 11 samples are required to meet the 3 dB SINR loss criteria using

the relation in (3.48). The total sampling time required for the 11 samples is therefore

44 nanoseconds. With this in mind, Fig. 6.17 shows advantages to the real-time
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Figure 6.16: Captured snapshot of the SWIR measurement of the irradiance pattern at
the output of the photonic array processor. This effectively measures the input spatial
spectrum with resolution limited by the size of the array.

photonic beam-forming/AoA estimation approach presented for arrays with greater

than 116 elements. With a future change to a high-speed SWIR sensor technology,

capable of read-out speeds approaching 40 KHz [83], the array size cross-over point

in Fig. 6.17 is reduced to 17 elements for the minimum latency curve and 9 elements

for high-latency curve. The results presented in Figs. 6.18, 6.19, and 6.20, show

the difference in AoA performance for varying numbers of samples, K, used for the

estimate of Rx during the subject experiments. The SWIR values are constant, with

a mean latency of 8.5 milliseconds, due mainly to the usage of a 2-D camera array

with substantially higher pixel count than necessary for the existing prototype. The

covariance and sub-space based methods, for M = 7, have nominal latencies of 3.1,

5.9, and 10.3 microseconds for K = 11, 29, and 59, respectively. Therefore, even

modest sized arrays making usage of a high-speed SWIR output as an AoA estimator

would achieve significant benefit to initial AoA estimation times since the measurement

latency depends only on the SWIR readout speed and not the values of M and K. It

is reasoned that future versions of the technology should be developed using state-of-

the-art SWIR detectors, with detector size optimized for the array configuration, in
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Figure 6.17: Family of curves depicting the first order estimate of processing latency
when using a covariance-based AoA estimation or adaptive filtering approach, including
the latency of the SWIR measurements. Each pair of curves depict a bounded region of
expected latency assuming use of a Virtex-7 class of FPGA. The horizontal lines depict
the AoA latency of the current SWIR camera in the photonic array processor prototype
along with a latency value for a commercial state of the art (SoTA) SWIR sensor with
39 kHz read-out speeds. The intersection points show array sizes where advantages in
latency can be gained from the presented photonic beam-space estimation approach.
The inset is zoomed over the region of 0 to 20 to allow better visualization of the
high-speed SWIR benchmark.
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order to further improve the latency (even for small arrays).

6.2.5.2 AoA Estimation Using the SWIR Measurement of the Spatial

Spectrum

If a particular application requires additional angular resolution of incident sig-

nals and can tolerate additional computational latency, the sample covariance matrix,

R̂x, can be estimated as discussed in Section 3.4 and any of the spatial spectrum esti-

mation techniques reviewed in Section 3.4.1 can be applied to the sampled beam-space

data. The sampled beam-space data vectors were used to calculate the sample covari-

ance matrix for three separate values of K as defined in (3.48). The first dataset used

only 11 samples, the second used 59 and the third dataset used 512. The 512 sample

dataset was used as an “ideal” estimation case. Multiple frames of data were then ran

through several of the estimation techniques to generate the plots shown in Fig. 6.18,

Fig. 6.19 and Fig. 6.20. Only a single capture of the SWIR output is shown as a

“truth” trace of what the input spatial spectrum resembled prior to sampling with the

high-speed photo-detector array. The flattened peak is that of the pulsed radar signal,

with the flat-top manifesting as a side-effect of the SWIR integration time and the

chosen pulse rate of the radar. The opposite peak is located at -28.49◦, a mere 0.29◦

from the actual location of the QPSK signal.

In general, the Fourier-based techniques perform on par with the SWIR output

and are noticeably un-affected by the duty-factor of the radar signal. Both Capon

and MUSIC detect and locate the two incident signals on every trial. The Pisarenko

method introduces many false peaks and has a wide variance in AoA estimates. This is

likely due to the fact that it only projects onto a single eigenvector and due to the finite

nature of the data snapshots, it is unlikely that the smallest eigenvector truly represents

the noise-subspace. The performance of MUSIC, which uses the entire estimated noise

subspace, performs much more robustly across the trials. An interesting result from

the Maximum Entropy Method was discovered, particularly when using a principle

components version that operated on the estimated signal subspace. As seen in the
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Figure 6.18: Overlay of 50 trials of Angle-Estimation using 11 samples to estimate the
sample covariance.
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Figure 6.19: Overlay of 50 trials of Angle-Estimation using 59 samples to estimate the
sample covariance.
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Figure 6.20: Overlay of 50 trials of Angle-Estimation using 512 samples to estimate
the sample covariance. Using this many samples is seen as an ideal estimate.
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Figure 6.21: Plot showing the measured response at the output of the photonic array
processor in the absence of any RF signals. The apparent beam pattern is due to the
leakage of the optical carrier through the thin-film filter stack meant to reject it. This
signal is 20-30 dB or more below the RF signals in most cases presented, yet certain
sub-space estimation methods seem to detect and locate its presence in the data.

Figs. 6.18, 6.19, and 6.20, the Max Entropy plot regularly detects a third signal near

7 degrees. This was initially puzzling until it was discovered that the leakage of the

optical carrier became offset from bore-sight upon applying a flat amplitude calibration

on the input laser. The attenuators act as time-delay units, effectively changing the

pattern of the carrier leakage. The carrier was subsequently measured on the SWIR

output in the absence of any signals. The measured carrier response was discovered

to be located with a peak at approximately 6.7 degrees, as seen in Fig. 6.21. This

is believed to be the signal that is detected by the Maximum Entropy Method. No

other method was able to detect the presence of the carrier signal with nearly as

much probability. A secondary benefit of the measured SWIR output when used in

conjunction with covariance and eigen sub-space methods is in estimation of the size

of the signal sub-space. Two popular algorithms for estimating the dimensionality

of the signal sub-space were provided in Section 3.4.1, namely Akakie’s Information-

Theoretic Criterion (AIC) and the Minimum Description Length (MDL). The peak

search of the SWIR detector output is found to be an effective bound on the estimates
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from these criteria and is used during the trials that resulted in Figs. 6.18, 6.19, and

6.20. Both AIC and MDL have been used with some success in this work, however, it

is worth noting that the SWIR output aided in bounding the results when the incident

signals were of high SNR. The AIC is known to over-estimate the signal space [64] and

during the trials presented here it never estimated less than 5 signals, with a mean

signal estimate of 5.78. Similarly, MDL failed to ever estimate the number of signals

to be less than 4, with an average signal estimate of 5.2. Performance of the noise-

subspace techniques when using an unconstrained estimate from either MDL or AIC,

suffered greatly due to the lack of eigenvectors left to span the noise space. This is

particularly an issue when a small number of degrees of freedom are being used, as

when using a small array. The potential reason for the high estimates is believed to be

due to the high potential for multi-path in the laboratory environment, in-fact double

bounced returns from the forward and backward wall of the laboratory were evident

within some of the radar data. To address this shortcoming, an updated MDL criterion

was presented in the literature, which uses a computationally intensive search in the

estimation [84]. The additional latency introduced by the exhaustive search required

in [84] can be reduced by using the SWIR output as a set of seed locations to search

over, thus reducing overall latency of such techniques and producing a more reliable

estimate. When using the SWIR as a bound on the estimates the number of signals

was not estimated over 3. Results for trials using only the idealized covariance estimate

(i.e., using 512 samples) are shown for both MDL and AIC in Figs. 6.22a and 6.22b,

respectively. Both MUSIC and the principle component version of MEM are affected

by the over-estimation, as expected.

Thus, it has been shown that the SWIR output provides a constant-latency

estimate of the number and AoA of incident signals, regardless of array size. It is

important to point out that the angular resolution of the SWIR output will increase

with increasing N , due to the decreased beam-width of a larger input array. The

optically down-converted beam-space data outputs from the photonic array processor

can also be used to provide estimates of increased resolution, beyond that possible with
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simple beam-forming. A number of beam-space spatial spectrum estimation methods

were shown to be compatible with the sampled beam outputs. Finally, the SWIR was

shown to be a fair estimator of the signal sub-space, which can be used to improve

performance of sub-space spectral estimators. The next section discusses performance

of a low-latency digital re-steering of the array using the beam-space data vector and

the estimate of the interfering signal location and power via the SWIR output.

6.2.6 Beam-Space Adaptivity Via SWIR Measurements of the Interference

Spatial Spectrum

The ability to measure the continuous spatial spectrum at the Fourier plane of

the photonic array processor allows for the direct measurement of the locations of any

incident sources in the environment. This ability can be put to good use in estimating

the location of large interference sources, without the need to use any covariance-based

estimation techniques. The low-latencies with which these estimations are possible

allow the photonic array processor to apply adaptive weighting to the captured beam

data in near-real-time. Thus, if the location of a desired signal is known, any additional

peaks on the SWIR output can be assumed to be due to interference. With this in

mind an idealized interference covariance can be formed without much computation,

only the generation of a set of steering vectors is required giving

R̂SWIR = σ̂2
nI +

PSWIR∑
p=1

Apv(θp)v
H(θp), (6.2)

where I is the identity matrix augmented with a noise estimate (here left equal to 1),

PSWIR represents the total interference peaks measured on the SWIR output, Ap is the

measured amplitude of the peak, and θp represents the estimated AoA of the pth peak.

The weights can then be determined directly by solving

(B∗R̂SWIRB)wSWIR = B∗v(θs), (6.3)
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where the superscript, ()∗, denotes the conjugate of the elements, and v(θs) is a steering

vector in a desired look direction applied as a constraint to the adapted pattern. With

some manipulation this results in

wSWIR = R̂−1
SWIRBS

B∗v(θs), (6.4)

were, R̂SWIRBS = (B∗R̂SWIRB), is the beam-space transformation of the estimated

interference covariance.

For the experimental data discussed here, the single interference peak can be

estimated at a location of −28.49◦. If desired, additional degrees of freedom may be

used to slightly widen the estimated covariance. This can be done by simply adding in

symmetric measurements offset from the peak. It was discovered that adding in addi-

tional peak measurements of ±1◦ from the initially measured peak provided exceptional

cancellation performance of greater than 20 dB in all trials that were run. The set of

adapted beam-patterns using a number of techniques described in Section 3.4.2 along

with two variants of the technique described above are shown in Fig. 6.23. The MVDR,
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Figure 6.23: Plots showing a comparison of various adaptive filtering techniques.

Wiener and Maximum SNR derived weights all rely on the estimate of the sample co-

variance and, thus, require additional latency in the weight formation. They also will

have varying performance across a given data-set as the sample covariance is constantly

updated with new samples. For any given estimate of the covariance, MVDR, Wiener

171



and Max SNR perform similarly, as expected. The two, SWIR-derived, patterns remain

steady across multiple samples as long as the signal peaks remain present in the SWIR

data. For the QPSK signal used in these experiments, the SWIR peak in the direction

of the QPSK signal is 20 dB greater in amplitude than the peak in the direction of

the known radar signal and remains constant for the duration of the experiments. The

solid black pattern in Fig. 6.23 is formed via the weights derived in (6.4), while the

dotted black pattern attempted to steer a null in the direction of the interference by

augmenting the measured sample covariance by the interference estimate given by the

SWIR. The “Null-Steered” version of the SWIR derived weights was therefore suscep-

tible to the same errors in covariance estimation as MVDR, Wiener, and Max SNR.

It does, however, guarantee a steered null, but fails to ensure that gain remains in

the desired direction. Thus, the constrained version of the SWIR derived weighting

scheme is seen to have superior performance in terms of synthesizing an ideal adapted

beam-pattern. With the usage of the synthesized covariance, only the application of

the adapted weights themselves causes latency in the processing chain. Application

of weights is necessary for all of the techniques employed making the SWIR derived

weighting approach the most efficient in terms of overall latency.

Taking the adaptive weights used to generate the pattern, shown as the black

trace within Fig. 6.23, and applying them to the collected beam-space sample data,

provides the results seen in Fig. 6.24. A direct comparison of the spectra of the

quiescent and adapted beams that are steered toward the TTG are shown in Fig.

6.25, where the 10 MHz QPSK spectrum can be seen to vanish in the adapted output

spectrum. This is due to the application of a spatial null in the direction of the

QPSK signal. After collection of multiple pulses of spatially filtered data, the resulting

range/Doppler plots from each beam-output can be summed to form an adapted beam

Range/Doppler output as shown in Fig. 6.26. The data shown in Fig. 6.26 is the

spatially-weighted version of the initially processed results shown in Fig. 6.15. Thus,

for the experiments shown, usage of the SWIR output to provide a low-latency estimate

of interference sources along with beam-space adaptivity, can provide adaptive weights
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Figure 6.24: Comparison of sampled waveform data before and after adaptive spatial
filtering is applied to the data streams. The output in (b) shows the removal of the
10MHz QPSK spectrum. The Radar echo return pulse is also more easily detected,
visually, in the waveform graph.
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with results better than sample covariance based weighting schemes. The results shown

here have spatially-nulled the interference beyond its initial 20 dB of interference-to-

signal ratio, leaving the adapted output of the beam-space data free of the constant

Doppler spurs that were evident prior to applying any adaptive beam-space weights.

6.3 Significant Outcomes from Multi-function Experimentation

Based on the results for various sampled beam-space experiments that have been

achieved to date, and the small array sizes that have been used thus far for experimen-

tation, it has been discovered that robust results are obtained within the field-of-view

that encompasses approximately ±50◦. This is due in part to the unreliable beam per-

formance outside of the this region, coupled with the fact that the large detector sizes

in current use allow significant cross-talk in the outer beams of the beam-space. How-

ever, the first demonstrations of simultaneous functionality (i.e., communications and

Radar signal recovery) of a photonic beam-space receive array have been recorded. To

the knowledge of the author, this feat is unique to the work presented here. Moreover,

several lessons on the design of a beam-space sampling photo-detector array have been

learned, along with several methods to align and calibrate such a device so that a full

beam-space can be sampled at the output of the photonic array processor described

herein. With the beam-space sampling array in place, it was shown that the photonic

array processor allows for the simultaneous down-conversion of any location with the

beam-space. The down-conversion process has the advantage of using a single LO signal

for the entire beam-space, thus reducing errors associated with clock distribution and

skew. This is seen as a significant advantage, especially across a large input array. The

down-converted outputs were then shown to be useful for recovery of both In-phase and

Quadrature signal components which allows for the multi-functional processing to be

undertaken. Additionally, it was shown that the beam-space outputs can be used in a

variety of spatial spectral estimation techniques in order to identify possible location of

incident signals. The key finding here being that the ability to image the entire spatial

spectrum through the use of a commercial SWIR camera enabled a robust, low-latency
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estimate of possible interference sources such that a set of adaptive weights for the

beam-space outputs could be generated in an effort to null the interference. Finally,

a new method of weighting a beam-space dataset, based on the SWIR data estimates

was shown to out-perform traditional, covariance based techniques, in both potential

latency as well as null-depth as shown in Fig. 6.23.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

The research performed throughout the course of this work has provided the

community with a new understanding of the possible uses of RF photonics as they

pertain to Array theory and processing. These techniques are wholly different from the

traditional focus on RF photonic True-time delay beam-steering. Here, the techniques

initially pioneered for passive RF imaging have been augmented for use in the remote

processing of arrays of arbitrary sizes. Specifically, Chapter 2 of this work outlined the

theory of array remoting via an array of electro-optic modulators where it was shown

that an arrayed approach has the potential to offer substantial gain when compared to

a single-receiver link of similar components. The remoted array elements can then be

passed to an optical array processor, often referred to as the photonic array processor

within the text, that allows for the measurement of the phase across the elements as well

as the irradiance pattern of the spatial frequency spectrum. The phase measurements

are used to compensate for phase mismatches among the elements such that they can

maintain coherence. The coherent optical field is sent through a Fourier transforming

lens system, generating a continuous spatial spectrum at the output. The theory of

how an incident signal of a given angle is translated onto the output plane of the

processor was derived along with several methods to taper, or apodize, the output

response function. Finally, the introduction of a single optical local oscillator signal

at the input to the processor was shown to allow for the down-conversion of any point

within the spatial spectrum (also referred to as a Beam-space) with the addition of a

high-speed photo-detector at the output plane.
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Chapter 3 discussed the precise methods for the measurement of the irradiance

pattern of the continuous spatial spectrum at the output of the photonic array proces-

sor. The irradiance pattern is shown to be equivalent to the amplitude of the far-field

radiation pattern of the re-radiated optically up-converted electric-field. It is the re-

radiation of the up-converted RF element fields that allows the optical processor to

“image” the RF environment. The discussion continued with methods for determining

the useful region of a given output image, as well as some shortcomings to the Fourier

Imaging approach when it comes to wide-band inputs. The discussion is continued

via introduction of the techniques used in the prototype system to down-convert the

beam-space and sample and filter the data such that the real-sampled beam-space can

be converted to a set of complex samples. This ability is fundamental to the usage of

the system for both communications and radar functions. The basic techniques used

to process both a communications signal and a radar signal are presented along with

the necessary background for how a set of sampled beams can be processed in tandem

for use in a number of adaptive filtering and spatial spectrum estimation techniques.

Chapter 4 discussed the multitude of experimental hardware that was devel-

oped, augmented or otherwise utilized throughout the course of this work. The ex-

perimental system consisted of two separate “carts”, one holding the RF receive array

and associated photonic back-end that was the focus of the discussion in Chapter 2

as well as Section 3.1, while the other served as the Radar waveform generator, digi-

tizer and beam-space adaptive processor. The experiments also used a number of test

sources, namely a specially designed photonic test target generator, and a communica-

tions signal emulator. A significant amount of effort went into the design, control and

coordination of myriad components across the two carts. The work performed in inter-

facing, data recording and processing was paramount to the success of the experiments

presented in the final chapters of this Thesis.

Chapters 5 and 6 discuss the setup, operation and outcome of several experi-

ments. The initial experiments of Chapter 5 were devised to prove the ability to taper

the output beam-space by altering the input laser signal to the up-conversion stages
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of the array processor. The results were promising and have been featured in several

technical reports and publications [54, 81, 85]. The results of the initial apodization

experiments also led the discovery of several sources of phase and amplitude error

specific to the photonic components used within the system as well as a number of

potential pitfalls to be avoided when scaling the technology to larger arrays. These

discoveries will undoubtedly lead to enhanced versions of the system in the future as

will be discussed in the section on future work. The experiments discussed in Chapter

6 concentrated on the simultaneous detection and recovery of disparate signals in two

spatially isolated channels (i.e., separate beam positions). The demonstrations are the

first of their type, with two separate signals being recovered from two separate beams

and simultaneously down-converted using a single optical LO and have been featured

in several publications [86, 87]. The approach was tried with several apodization pro-

files applied and significant lessons on the alignment of beam-sampling photo-detectors

with desired spatial locations were learned. These lessons were applied to prove the

possibility of sampling a full set of orthogonal beam positions for use in later adaptive

processing experiments. The later experiments showed that the ability to “image” the

beam-space in real-time with a SWIR detector, while simultaneously down-converting

an orthogonal sampling of that same beam-space, could be used to develop a powerful,

low-latency, adaptive weighting scheme. The latency was shown to be superior than

that of a state-of-the-art FPGA for array sizes over 118 elements using the current de-

tectors, with potential improvement to include array sizes as small at 9 element. It was

further shown that the application of the proposed weighting scheme, to the collected

beam-space data, effectively nulled the SWIR-detected interference signal completely,

while maintaining array gain along the desired look direction.

7.1 Future Work

The performance of the prototype equipment shows significant potential for use

in future communications and radar applications. However, there are specific areas of

investigation that can offer tremendous improvements in capability moving forward:
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1. Integration of RF gain and RF photonic conversion stages to allow for critically

sampled arrays of arbitrary size (and potentially frequency),

2. Reduction of RAM and other deleterious phase and amplitude effects imparted

by the phase-coherence control mechanism and associated phase modulators,

3. Ability to rapidly apply apodization profiles and maintain relative amplitudes

across array elements in an automated fashion,

4. Integration of SWIR spatial spectrum measurements into an adaptive control

loop with low latency and convergence,

5. Integration of Spatial Spectrum Measurement detectors and Beam-space sam-

pling detectors, a “Foveal Detector,”

6. Multiplexing of disparate RF Arrays onto a single Photonic Array Processor

back-end for wide-band access.

7.1.1 Integrated RF-Photonic Receiver Module

The existing prototype uses bulk RF and bulk-fiber connectorized components

eliminating the chances of building a critically sampled array without the usage of

bulky interposers. With the coming advances in photonic integration [26], it is likely

possible to integrate all of the components necessary for the up-conversion stage of

the system. Integration at this level would alleviate the current challenges in achieving

matched lengths of fiber for each channel, a feat that does not scale well with array size.

It also may allow for the integration of the phase and amplitude controls necessary to

maintain coherence and/or various apodization profiles.

7.1.2 Reduction of Error Sources

Certainly, integration of various components at the chip level can eliminate some

sources for error, however it may also introduce some. The attempted to integrate the

phase control modulators that are used to maintain coherence across the channels is
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a good example of where integration an lead to unintended consequences. Thus, care

must be taken in the design of future phase control systems to ensure that significantly

less coupling across the channels and residual amplitude modulation within each chan-

nel are produced. Additional experiments using discrete phase modulators on each

channel should be performed to ensure that errors are due to the modulator and not

due to some oscillation in the phase control loop. The original phase control design

was optimized for non-coherent imaging of passive millimeter wave energy, and thus it

should likely be re-optimized for the coherent recovery of an RF array beam-space.

7.1.3 Application of real-time laser amplitude control

Currently, laser amplitude profiles are adjusted by hand, and while they are

found to remain stable for days one adjusted, the initial calibration can take an hour

or better to perform. For this reason a set of variable attenuators with a tapped

feedback mechanism have been ordered to investigate methods to rapidly converge on

a set of desired amplitude weights across the array. It is hoped that the variable optical

attenuator (VOA) system will allow for real-time equalization of the optical channels

along with rapid adaptation of the amplitudes. This capability along with the existing

phase-control loop can be used to test the ability to apply complex weighing profiles

across the array in real-time. This is seen as a necessary step to achieving a truly

low-latency adaptive output capability.

7.1.4 Photonically Driven Adaptive Array Control

Assuming the ability to simultaneously apply amplitude and phase weights

across the channels is proven by the usage of the VOA along with the existing proto-

type hardware, the logical next step is to apply the weights calculated from the SWIR

camera estimates of and ideal interference source covariance directly to the array ele-

ments.

The adaptive technique described in Chapter 6 is seen as a unique capability

that is only afforded by the usage of elemental optical up-conversion of an RF array.
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The real-time aspect of the measurement is important, and with updated components,

to further improve latency, could potentially be combined with the feed-back loop used

for maintaining phase coherence across the channels. The current FPGA used for the

phase-control loop could be updated to perform peak-search and weight estimation

operations, allowing the entire process to occur in near-real-time. This combination

would allow for the weighting to be applied in the element-space, rather than the beam-

space, such that a set of desired look-directions could be maintained with constant gain,

while any interference sources could be mitigated in real-time. This ability, along with

the ability to re-steer the beam-space as discussed in Section 3.1.2, could allow recovery

of the adapted beams directly at the output, further reducing the latency associated

with achieving a spatially filtered output data set.

7.1.5 Foveated Sensing using Coherent Optical Up-Conversion

Lens

N
ested Focal Plane

Low-Speed 

Spatial Spectrum 

Imaging Pixels

High-Speed

Beam-Sampling

Pixels

Foveated Sensor For

Beam-Fan Recovery

Figure 7.1: Graphic depiction of a potential layout for a nested array of photo-detectors.
Such an array would allow the collapse of two separate functions within the photonic
array processor to a single optical path.
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It was shown in this thesis that only an orthogonal (or even approximately-

orthogonal) set of beam-output locations is required to be recovered in order to form

an adapted array response toward any direction within the RF array’s useful field-of-

view. For this reason it should be possible to design a focal plane array of sensors

such that two embedded grids of pixels are overlaid. This could be thought of as a

foveated type of sensor where a cluster of high-speed photo-detectors are meant to

enable sampling and recovery of an orthogonal beam-space, while the surrounding,

low-speed pixels were used to estimate signal locations for adaptive weight generation.

Development of an array such as the one pictured in Fig. 7.1 would allow for one less

lens and optical chain in the system. Currently a separate lens path is required for

each function (i.e. Beam sampling and Spatial Spectrum Measurement).

7.1.6 Switched-inputs for Wide-band Operation

The photonic system used for experiments accepts RF inputs across the 5 GHz

to 25 GHz band before the optical filters used start to block the RF side-band of

interest. Furthermore, the beam-forming lens system operates across an even greater

range within the limits of tolerable beam-squint. To avoid issues of beam-squint across

a single, wide-band, array, it may be possible to multiplex the signals from many

separate, narrow-band arrays instead. To test this theory a number of optical switches

are being procured to allow for separate RF arrays, each with their own up-conversion

stages to be switched into the photonic array processor as needed. This capability

could lead to the discovery of novel methods to multiplex multiple arrays, perhaps via

separate optical polarizations or separate master-laser wave-lengths. Such a system

would allow for coherent recovery of signals across disparate arrays and could lead to

several novel applications of the technology moving forward.
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Appendix A

DERIVATION OF A CLOSED-FORM ARRAY RESPONSE FOR A
UNIFORMLY ILLUMINATED LINEAR ARRAY

Beginning with the relationship in (1.6) and setting An = 1 for all n, we have:

AF (θ) =
N−1∑
n=0

ej∆φne−jφs =
N−1∑
n=0

e
j 2π
λrf

ndant[sin θ−sin θs]
. (A.1)

Recognizing the relation in (A.1) as a particular geometric series, we can use the finite

sum formula given by
b∑

k=a

rk =
ra − rb+1

1− r
, (A.2)

along with the substitutions of a = 0 and b = N − 1 to arrive at the following formula

that is relevant to our summation in (A.1):

N−1∑
k=0

rk =
1− rN

1− r
. (A.3)

Thus, let x = 2πdant
λrf

(sin θ − sin θs) which leaves us with the following simplified form

of the array factor,

AF (θ) =
N−1∑
n=0

ejnx. (A.4)

Using the relation in (A.3), we now have the following set of trigonometric manipula-

tions to (A.4):

AF (θ) =
1− ejNx

1− ejx
(A.5)

=
1− cos (Nx)− j sin (Nx)

1− cosx− j sinx
, (A.6)
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taking the squared magnitude of both sides provides,

|AF (θ)|2 =
(1− cos (Nx)− j sin (Nx)) · (1− cos (Nx) + j sin (Nx))

(1− cosx− j sinx) · (1− cosx+ j sinx)
(A.7)

=
1− 2 cos (Nx) + cos2(Nx) + sin2(Nx)

1− 2 cos (x) + cos2(x) + sin2(x)
(A.8)

=
2− 2 cos (Nx)

2− 2 cos (x)
(A.9)

=
1− cos (Nx)

1− cos (x)
, (A.10)

remembering that

sin2(x) =
1

2
(1− cos(2x)), (A.11)

so if we substitute, y = 2x, such that x = y
2

above, we arrive at

2 sin2
(y

2

)
= 1− cos(y), (A.12)

such that we can reduce (A.10) to

|AF (θ)|2 =
2 sin2

(
Nx
2

)
2 sin2

(
x
2

) . (A.13)

Finally, taking the square root and replacing x leaves us with

√
|AF (θ)|2 =

√
2 sin2

(
Nx
2

)
2 sin2

(
x
2

)
AF (θ) =

sin
(
Nx
2

)
sin
(
x
2

)
AF (θ) =

sin
(
Ndant

π
λrf

[sin θ − sin θs]
)

sin
(
dant

π
λrf

[sin θ − sin θs]
) ,

AF (θ) =
sin
(
Ndant

π
λrf

[sin θs − sin θ]
)

sin
(
dant

π
λrf

[sin θs − sin θ]
) ,

(A.14)

which is equivalent to the result in (1.4) when θs = 0.
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Appendix B

DERIVATION OF ARRAY BEAM-WIDTH

Beginning with the final relation in (A.14) we have:

AF (θ) =
sin
(
Ndant

π
λrf

[sin θs − sin θ]
)

sin
(
dant

π
λrf

[sin θs − sin θ]
) ,

≈
sin
(
Ndant

π
λrf

[sin θs − sin θ]
)

(
Ndant

π
λrf

[sin θs − sin θ]
) , ,

(B.1)

where we have approximated the array factor via a true sinc function. We wish to

derive an angle, offset from the maximum response, θ3dB, that is 3 dB down from the

peak response. It is convenient to first determine the value for the argument of the

sinc function that produces the desired -3dB output value, therefore we must solve

sinx

x
= 10

−3
20 = .70795, (B.2)

for x. This is done most simply with a commercial solver or by plotting the function

via any numerical software one might have available. The value for x can be found to

be approximately equal to ±1.39. Taking this result along with the initial argument

in (B.1) we can construct the following relations with respect to the angle, θ:

πNdant
λrf

[
sin θs − sin

(
θs +

θ3dB

2

)]
= −1.39 (B.3)

πNdant
λrf

[
sin θs − sin

(
θs −

θ3dB

2

)]
= 1.39, (B.4)

where we have considered both sides of the beam. To solve for the beam-width we can

subtract equations (B.3) and (B.4), to arrive at a single relation:

πNdant
λrf

[
sin θs − sin

(
θs +

θ3dB

2

)
− sin θs + sin

(
θs −

θ3dB

2

)]
= −2.78

πNdant
λrf

[
sin

(
θs −

θ3dB

2

)
− sin

(
θs +

θ3dB

2

)]
= −2.78,

(B.5)
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which can be further reduced using the trigonometric identity,

sin(a) = sin(b) = 2 cos

(
a+ b

2

)
sin

(
a− b

2

)
, (B.6)

to leave us with

2πNdant
λrf

cos

[(
θs − θ3dB

2

)
+
(
θs + θ3dB

2

)
2

]
sin

[(
θs − θ3dB

2

)
−
(
θs + θ3dB

2

)
2

]
= −2.78,

2πNdant
λrf

cos [θs] sin

[
−θ3dB

2

]
= −2.78.

(B.7)

Taking the small angle approximation allows one to further reduce the relation above

2πNdant
λrf

cos [θs]

[
θ3dB

2

]
= 2.78, (B.8)

πNdant
λrf

cos [θs] θ3dB = 2.78, (B.9)

θ3dB =
2.78 · λrf

πNdant cos[θs]
, (B.10)

θ3dB =
0.886 · λrf
Lant cos[θs]

, (B.11)

which produces the familiar result for the 3 dB beam-width of an un-tapered array. A

more general form may be written as

θ3dB =
kant · λrf
Lant cos[θs]

, (B.12)

where kant is a factor related to the efficiency of a particular aperture illumination

function (i.e., amplitude taper profile).
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Appendix C

JACOBI-ANGER EXPANSION

The Jacobi-Anger Expansion appears is many texts dealing with signal process-

ing theory, electromagnetic theory and other disciplines where complex exponentials

are common. It is useful in simplifying a number of equations related to both phase

and frequency modulation as well as in expansions of plane waves to cylindrical waves.

The identity relates a complex exponential with a sinusoidal phase function to an infi-

nite sum of Bessel functions. There are several, real-valued forms that have been used

when simplifying a number of equations in Chapter 2 of this thesis. An introduction

to the Jacobi-Anger Identity and some simple derivations of the real-valued relations

are offered below.

We begin with the complex relation:

ejx cos θ =
∞∑

n=−∞

jnJn(x)ejnθ, (C.1)

substituting θ = θ − π
2
, provides the alternate form as

ejx sin θ =
∞∑

n=−∞

Jn(x)ejnθ, (C.2)

, where Jn(x) is a Bessel function of order, n. If we apply the Bessel function identity

that states

J−n(x) = (−1)nJn(x) (C.3)
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to the equation in (C.1), we can see that the terms in the sum that are symmetric

about zero can be summed in order to reduce the bounds from [−∞,∞], to [1,∞].

Doing so for several values makes the pattern more clear:

n = ±1→ jJ1(x)ejθ + (−1)(−j)J1(x)e−jθ = jJ1(x)
[
ejθ + e−jθ

]
= 2jJ1(x) cos(θ),

n = ±2→ (−1)J2(x)ej2θ + (1)(1)J2(x)e−j2θ = 2J2(x) cos(2θ),

n = ±3→ − jJ3(x)ej3θ + (−1)jJ3(x)e−j3θ = 2(−j)J3(x) cos(3θ),

(C.4)

and with n = 0, we have

n = 0→ Jo(x), (C.5)

which allows us to write the relation in (C.1) as

ejx cos θ = J0(x) + 2
∞∑
n=1

jnJn(x) cos(nθ). (C.6)

Using the result in (C.6), we can arrive at identities for sinusoidal phase modulations.

We begin by using the Euler Identity on the left half of (C.6), such that:

ejx cos (θ) = cos(x cos(θ)) + j sin(x cos(θ)) = J0(x) + 2
∞∑
n=1

jnJn(x) cos(nθ) (C.7)

From here, noticing that the real and imaginary parts of ejxcos(θ) can be calculated

from the result above. Some manipulation provides the final form for some real-valued

identities as:

Re
{
ejx cos (θ)

}
= cos(x cos(θ)) = J0(x) + 2

∞∑
n=1

(−1)nJ2n(x) cos(2nθ)

Im
{
ejx cos (θ)

}
= sin(x cos(θ)) = −2

∞∑
n=1

(−1)nJ2n−1(x) cos([2n− 1]θ).

(C.8)
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PERMISSIONS

In reference to IEEE copyrighted material which is used with permission in this

thesis, the IEEE does not endorse any of the University of Delaware’s products or

services. Internal or personal use of this material is permitted. If interested in reprint-

ing/republishing IEEE copyrighted material for advertising or promotional purposes or

for creating new collective works for resale or redistribution, please go to http://www.

ieee.org/publications_standards/publications/rights/rights_link.html to

learn how to obtain a License from RightsLink.

If applicable, University Microfilms and/or ProQuest Library, or the Archives

of Canada may supply single copies of the dissertation.
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