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80% [1-13C]glucose + 20% [U-13C]glucose, is highlighted in yellow. 

Three different methods were used to calculate 95% confidence 

intervals of fluxes. (A) Accurate nonlinear 95% confidence intervals 

of fluxes were determined using the method described in 

(Antoniewicz et al., 2006). 13C-MFA was performed using fluxes for 

wild-type E. coli to simulate isotopic labeling. (B) 1000 Monte Carlo 

simulations were used to determine 95% confidence intervals of 

fluxes. (C) Linearized statistics were used to determine 95% 

confidence intervals of fluxes. (D) Average precision scores for 100 

random flux maps. The random flux maps captured a wide range of 

possible flux scenarios. Accurate nonlinear 95% confidence intervals 

of fluxes were determined using the method described in 

(Antoniewicz et al., 2006). ...................................................................... 70 

Figure 4.3:   Precision scores for mixtures of glucose tracers. For each combination 

of two glucose tracers, nine mixing ratios were evaluated, ranging 

from 10%/90% to 90%/10%. Blue squares correspond to cases were 

the precision score monotonically increased (or decreased) with 

respect to the mixing ratio. Yellow squares correspond to cases where 

mixing pure tracers resulted in a significantly reduced precision score. 

Red squares correspond to cases where mixing of tracers resulted in 

an improved precision score compared to pure tracers. 13C-MFA was 

performed using simulated GC-MS data and assuming wild-type E. 

coli fluxes. ............................................................................................... 73 

Figure 4.4:   Precision and synergy scores for parallel labeling experiments with 

pure glucose tracers. Synergy scores above 1 (positive synergy) are 

highlighted in green, and synergy scores below 1 (no synergy) are 

highlighted in red. 13C-MFA was performed using simulated GC-MS 

data and assuming wild-type E. coli fluxes. ............................................ 75 

Figure 4.5:   Experimentally determined precision scores for four different tracers, 

and for the parallel fit of tracer experiments with [1,2-13C]glucose and  

[1,6-13C]glucose. The precision score for the reference tracer 

experiment, 80% [1-13C]glucose + 20% [U-13C]glucose, is by 

definition 1 (highlighted in yellow). ........................................................ 77 
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Figure 5.1:   Quantification of alternative routes of PEP generation during growth 

on acetate. (A) Schematic showing two routes of PEP synthesis during 

growth on acetate. After malate is produced via glyoxylate shunt, 

malic enzyme (maeAB) can convert malate to PYR, from which PEP 

can be formed by the activity of ppsA or ptsI. Alternatively, pck can 

convert oxaloacetate (OAC) to PEP directly. (B) Growth rates of four 

strains during growth on acetate, wild-type (WT), ΔppsA, ΔptsI, and 

the double-knockout ΔppsAΔptsI. (C) Labeling of valine from [1-
13C]alanine, reflecting PYR labeling. Labeling is M1 (from tracer) and 

M0 (from unlabeled precursors in central metabolism). (D) Labeling 

of aspartate from [1-13C]alanine, reflecting OAC labeling. Aspartate is 

almost entirely unlabeled (M0). (E) Labeling of the first two (C1-C2) 

carbons of phenylalanine, reflecting the labeling of the first two 

carbons of PEP. (F) Schematic depicting the conversion of [1-
13C]alanine to PEP and the measured amino acids. Opened and filled 

circles represent unlabeled (12C) and labeled (13C) carbons, 

respectively. (G) Percentage of PEP generated from PYR. 

Approximately 60% of PEP is generated from PYR in the WT and 

each single knockout strain; however, the flux is completely 

eliminated in the double knockout, indicating dual responsibility of 

ppsA and ptsI for the conversion of PYR to PEP. Data presented in 

(B) are mean ± s.e.m. of two biological replicates. Labeling data in 

(C), (D), and (E) have been corrected for natural abundances and 

unlabeled biomass present prior to tracer introduction. The error 

presented in (G) reflects the propagation of GC-MS measurement 

error through the calculation. .................................................................. 90 

Figure 5.2:   Enzyme I supports gluconeogenic growth on pyruvate. (A) Growth 

profiles of four E. coli strains during growth on pyruvate: wild-type 

(WT), ΔppsA, ΔptsI, and the double knockout ΔppsAΔptsI. The 

double knockout strain ΔppsAΔptsI did not grow on pyruvate. (B) [1-
13C]alanine experiments were performed and the percentage of PEP 

derived from pyruvate was determined. For the three strains able to 

grow on pyruvate, effectively all PEP was derived from pyruvate. ........ 91 
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Figure 5.3:   During growth on glucose, there is a significant back-flux from PYR 

to PEP not carried out by PEP synthetase (ppsA). (A) Schematic of 

glucose consumption and metabolism related to PEP and PYR 

interconversion. Glucose is transported and phosphorylated by the 

PTS, simultaneously converting PEP to PYR via Enzyme I (ptsI). (B) 

Growth rates of four strains during growth on glucose; ΔptsI and 

ΔppsAΔptsI were pre-grown on galactose to facilitate growth on 

glucose. (C) Labeling of last four carbons (C2-C5) of valine, 

representing the condensation of the last two carbons (C2-C3) of two 

PYR molecules. Labeling is mainly M0 (condensation of two 

unlabeled PYR’s), M2 (condensation of one fully labeled PYR and 

one unlabeled PYR) and M4 (condensation of two labeled PYRs). (D) 

Labeling of the first two (C1-C2) carbons of aspartate, reflecting the 

labeling of the same carbons in OAC. M1 labeling is generated 

through scrambling in the TCA cycle. (E) Labeling of the first two 

(C1-C2) carbons of phenylalanine, reflecting the labeling of the first 

two carbons of PEP. (F) Schematic depicting the conversion of [U-
13C]alanine to PEP and the measured amino acids. The relative 

contributions of the three sources of PEP were quantified via 

regression. Opened and filled circles represent unlabeled (12C) and 

labeled (13C) carbons, respectively. (G) Percentage of PEP generated 

from PYR. Approximately 10% is generated from PYR in both WT 

and ΔppsA strains. The contribution is slightly elevated in ΔptsI, 

likely due to activity of ppsA. There is minimal back-flux in 

ΔppsAΔptsI. Data presented in (B) are mean ± s.e.m. of two 

biological replicates. Labeling data in (C), (D), and (E) have been 

corrected for natural abundances and unlabeled biomass present prior 

to tracer introduction. The error presented in (G) reflects the 

propagation of GC-MS measurement error through the calculation. ...... 95 

Figure 5.4    (A) Growth profiles of ΔptsI strain with glucose as substrate. When 

ΔptsI was pre-grown on LB medium, little or no growth on glucose 

was observed. When ΔptsI was pre-grown on M9 medium with 

galactose, the cells grew without a lag phase on glucose. (B) The 

double knockout ΔptsIΔglk did not grow on glucose, regardless if the 

cells were pre-grown on LB medium or M9 medium with galactose. 

These results demonstrate that PTS transport is inactive in the ΔptsI 
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 xxii 

Figure 5.5    Enzyme I (ptsI) is responsible for the back-flux from PYR to PEP 

during growth on xylose. (A) Schematic of xylose consumption and 

metabolism related to PEP and PYR interconversion. Xylose is 

transported via non-PTS transporters. (B) Growth rates of four strains 

during growth on xylose, wild-type (WT), ΔppsA, ΔptsI, and the 

double knockout ΔppsAΔptsI.  (C) Labeling of last four carbons (C2-

C5) of valine, representing the condensation of the last two carbons 

(C2-C3) of two PYR molecules. Labeling is mainly M0 (condensation 

of two unlabeled PYR’s), M2 (condensation of one fully labeled PYR 

and one unlabeled PYR) and M4 (condensation of two labeled 

PYR’s). (D) Labeling of the first two (C1-C2) carbons of aspartate, 

reflecting the labeling of the same carbons in OAC. M1 labeling is 

generated through scrambling in the TCA cycle. (E) Labeling of the 

first two (C1-C2) carbons of phenylalanine, reflecting the labeling of 

the first two carbons of PEP. (F) Schematic depicting the conversion 

of [U-13C]alanine to PEP and the measured amino acids. The relative 

contributions of the three sources of PEP were quantified via 

regression. Opened and filled circles represent unlabeled (12C) and 

labeled (13C) carbons, respectively. (G) Percentage of PEP generated 

from PYR. Approximately 10% is generated from PYR in both the 

WT and ΔppsA strains. The flux is nearly completely eliminated in 

the ΔptsI and ΔppsAΔptsI strains, indicating a major role for Enzyme 

I (ptsI) in facilitating the back-flux. Data presented in (B) are mean ± 

s.e.m. of two biological replicates. Labeling data in (C), (D), and (E) 

have been corrected for natural abundances and unlabeled biomass 

present prior to tracer introduction. The error presented in (G) reflects 

the propagation of GC-MS measurement error through the calculation. 98 
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Figure 5.6    Genetic perturbations of PTS components significantly impact the 

back-flux from PYR to PEP. (A) Schematic of the PTS sugar transport 

system, which couples the transport and phosphorylation of glucose at 

EIIBCGlc (ptsG) to conversion of PEP to PYR (ptsI), via the 

phosphotransferases ptsH (ptsH) and EIIAGlc (crr). (B) Growth rates 

of wild-type (WT) E. coli and 9 knockout strains, including all single 

knockouts of PTS components and selected double knockouts, grown 

on glucose and xylose. All ptsI knockout strains grown on glucose 

were pre-grown on galactose. (C) [U-13C]alanine experiments were 

performed for all strains, and the percentage of PEP derived from 

PYR was determined. Several strains had significantly higher 

percentages of PEP derived from PYR, particularly ΔptsG on glucose 

and Δcrr on glucose and xylose, indicating that PTS component 

perturbation impacts back-flux. Double knockouts of these strains and 

ΔppsA or ΔptsI showed that ppsA plays a significant role during 

growth on glucose, accounting for all of the elevated back-flux in 

ΔptsG, and for some in Δcrr, as evidenced by the residual flux in 

ΔcrrΔptsI. On xylose, the elevated back-flux in Δcrr is caused 

exclusively by EI. Data presented in (B) are mean ± s.e.m. of two 

biological replicates. The error presented in (C) reflects the 

propagation of GC-MS measurement error through the calculation. .... 102 

Figure 6.1:   Upper central carbon metabolism, with all genes studied here shown in 

their metabolic contexts (fbaA and rpiA were not included in this 
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Figure 6.2:   Measured physiological parameters. Bar colors reflect pathway 

assignment (wild-type: gray, transporters and phosphoglucomutase: 

blue, oxidative pentose phosphate pathway: red, non-oxidative 

pentose phosphate pathway: green, Entner-Doudoroff pathway: 

orange, upper EMP pathway: purple). Error bars indicate standard 
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(n=2), and standard errors attributable to regression and measurement 
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Figure 6.3:   Calculated uptake rates of glucose and oxygen. Bar colors reflect 

pathway assignment (wild-type: gray, transporters and 

phosphoglucomutase: blue, oxidative pentose phosphate pathway: red, 

non-oxidative pentose phosphate pathway: green, Entner-Doudoroff 

pathway: orange, upper EMP pathway: purple). Error bars reflect the 

propagation of the directly measured standard errors. .......................... 116 
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Figure 6.4:   Calculated carbon dioxide secretion rates and RG coefficient. Bar 

colors reflect pathway assignment (wild-type: gray, transporters and 

phosphoglucomutase: blue, oxidative pentose phosphate pathway: red, 

non-oxidative pentose phosphate pathway: green, Entner-Doudoroff 

pathway: orange, upper EMP pathway: purple). Error bars reflect the 

propagation of the directly measured standard errors. .......................... 118 

Figure 6.5:   Dry weights for major biomass components. Bar colors reflect 

pathway assignment (wild-type: gray, transporters and 

phosphoglucomutase: blue, oxidative pentose phosphate pathway: red, 

non-oxidative pentose phosphate pathway: green, Entner-Doudoroff 

pathway: orange, upper EMP pathway: purple). Error bars represent 
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errors of the mean (n=4, 2 biological replicates with 2 technical 

replicates each). ..................................................................................... 121 

Figure 6.8:   Exhaustive pairwise correlation coefficients for all measured data. The 

coefficients are given in the lower triangle, and the quality and 

direction of the correlation is represented visually by ellipsoids in the 

upper triangle (more elongated ellipsoid = higher quality correlation). 
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(mol/mol), percentages of the four major biomass components, and 

the relative fatty acid contents (mmol/g(lipid)). All coefficients greater 

than 0.4 indicate a significant nonzero correlation at 95% confidence. 124 

Figure 6.9:   Scatter plots of correlated data. Marker colors reflect pathway 

assignment (wild-type: gray, transporters and phosphoglucomutase: 

blue, oxidative pentose phosphate pathway: red, non-oxidative 

pentose phosphate pathway: green, Entner-Doudoroff pathway: 
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Figure 6.10:  Principal component analysis (PCA) plot showing the first two 

components, which together account for more than half of the total 

variation in the data. The coefficients mapping these components to 

the original (normalized and standardized) data are shown in the table 
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Figure 6.11: Hierarchical clustering of the knockout strains. .................................... 129 

Figure 6.12: Comparison of experimental growth rates, biomass yields, and acetate 

yields to those predicted by three constraint-based modeling 

approaches (FBA: flux balance analysis, MOMA: minimization of 

metabolic adjustment, RELATCH: relative optimality in metabolic 

networks). Marker colors reflect pathway assignment (wild-type: gray, 

transporters and phosphoglucomutase: blue, oxidative pentose 

phosphate pathway: red, non-oxidative pentose phosphate pathway: 

green, Entner-Doudoroff pathway: orange, upper EMP pathway: 

purple). Correlation coefficients (ρ) describe the agreement between 

prediction and measurement. Wild-type data were excluded from this 
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Figure 7.1:   Characterization of 20 E. coli knockouts of upper central carbon 

metabolism enzymes. (A) The methods applied include 1) 

Physiological data from aerobic batch growth on glucose minimal 

medium, 2) The measured biomass composition of each strain, and 3) 

The metabolite isotopic labeling resulting from parallel 13C isotopic 

tracer experiments using [1,2-13C]glucose and [1,6-13C]glucose. 

Together, these measurements are used to precisely estimate fluxes 

via 13C metabolic flux analysis (13C-MFA). (B) The scope of this 
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These include glk (glucokinase) and pgm (to glycogen production) 

(blue), the upper portion of the glycolysis (EMP) pathway (purple), 

the oxidative (red) and non-oxidative (green) pentose phosphate 

pathway, and the ED pathway (orange). The genes denoted in red 

were excluded because of unavailability (fbaA is unconditionally 
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previously determined to be essential in these conditions (20) (C) 

Physiological changes in knockout strains are summarized, expressed 

as percentage change from the wild-type. Biomass yields were 

estimated by 13C-MFA and used to calculate glucose uptake rates. ..... 149 
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Figure 7.2:   Model validation and glucose secretion determined by 13C-MFA. (A)  

Acceptable fits (SSR less than ~250) for all but two strains: ΔpfkA 

and ΔtpiA. Acceptable fits for these were acquired by adding glucose 

secretion, and the methylglyoxal pathway, respectively, to the models. 

(B) To confirm the glucose secretion phenotype, a tracer experiment 

using [2H7]glucose was implemented. Deuterated hydrogens are lost in 

the oxPPP and PGI reactions, resulting in an intracellular G6P 

labeling pattern (measured by glycogen) distinct from the extracellular 

glucose. (C) For the wild-type, extracellular glucose labeling (left, 

bars) does not change appreciably during batch culture as 

concentration (squares) diminishes. Glycogen labeling is compared on 

the right. (D) In ΔpfkA, the extracellular glucose labeling changes 

significantly, and trends toward the intracellular glycogen labeling, 

reflecting secretion. (E) The secretion was quantified using a 

differential-equation based model, showing that 18% of glucose taken 

up is secreted in ΔpfkA. (F) Intracellular flux maps of the wild-type, 

ΔpfkA (G), and ΔtpiA (H). Fluxes are normalized to 100 units of 

glucose uptake, and the absolute uptake rates are noted. Red hash 

marks indicate the reaction affected by knockout, and colors reflect 

relative flux changes of greater than 30% compared to the wild-type 

(blue increased, red decreased). ............................................................ 153 

Figure 7.3:   Intracellular fluxes in the wild-type and 20 knockout strains. (A) 

Fluxes for all strains are normalized to 100 units of glucose uptake, 

with growth and glucose uptake rates noted. The red hash marks 

denote the reaction affected by the knockout, and the line thickness 

corresponds to flux value according the legend (upper, left). Colored 

reactions indicate changes of greater than 30% from the wild-type 

(blue increased, red decreased). (B) The absolute flux for each 

reaction directly affected by a knockout, in both the wild-type and 

corresponding mutant strain. For example, the PGI flux is 6 

mmol/gDW/h in the wild-type, but 0 in Δpgi. Brackets indicate 

isozymes corresponding to the same reaction, while asterisks indicate 

the presence of an isozyme outside the scope of this study. (C) The 

intracellular flux changes are distributed in a symmetrical way in 

relative (per 100 glucose) terms, reflecting both flux increases and 

decreases. In absolute terms the changes are highly skewed to the 

negative, indicating that most fluxes are maintained or decreased in 

knockouts, and very few are increased. (D) Absolute fluxes in central 

carbon metabolism, including the wild-type (white), and mutants in 

glk and pgm (blue), glycolysis (purple), oxPPP (red), noxPPP (green), 

and the ED pathway (orange). ............................................................... 156 
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Figure 7.4:   Distribution of flux through three key branch points in central carbon 

metabolism. Three branch points in central carbon metabolism are 

summarized, each with three possible metabolite fates. These relative 

fluxes are shown in ternary diagrams. First, the fate of G6P into 

glycolysis, oxPPP, or ED pathway. The wild-type is ~71% glycolysis, 

~28% oxPPP. Glycolytic (EMP) knockouts Δpgi and ΔpfkA, oxPPP 

knockout Δzwf, and noxPPP knockout Δgnd are notably altered. 

Second, in lower glycolysis PEP can be used for anaplerosis (to OAC) 

into the TCA cycle and glyoxylate shunt (citrate synthase), or secreted 

as acetate. EMP knockouts are most distinct in this branch point. 

Lastly, isocitate can be used for glyoxylate shunt, TCA cycle, or 

biomass (primarily amino acid biosynthesis) fluxes. ΔpfkA has highly 

elevated TCA cycle usage, and Δpgi and ΔtpiA have significantly 

utilized glyoxylate shunt fluxes. ............................................................ 157 

Figure 7.5:   Flux changes from the wild-type, in normalized (per 100 glucose) (A) 

and absolute (mmol/gDW/h) (B). Colors denote the sign and magnitude 

of the change, with blue indicating flux increase and red flux decrease, 

per the key to the right. The flux directly affected by each knockout is 

bolded. Comparing the two reveals that some increased normalized 

usage in knockout strains, e.g., pentose phosphate and TCA cycle 

fluxes in Δpgi and ΔpfkA, do not reflect increases in absolute fluxes 

in those pathways. Furthermore, absolute flux increases following 

knockouts are rare. These cases include glycolysis in Δpgm, the TCA 

cycle, glyoxylate shunt and PPCK fluxes in ΔtpiA, and ED pathway in 
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Figure 7.6:   Cofactor balances, in normalized (left) and absolute (right) units. The 

contribution of the major central carbon metabolic pathways (key, top 

right) to the production and consumption of NADH/FADH2 (lumped), 

NADPH, and ATP are shown. Bars representing positive values, show 

cofactor production, and negative values show consumption. In the 

wild-type and most knockout strains, excess NADH is converted by 

transhydrogenase to produce NADPH. In Δpgi and ΔpfkA, elevated 

oxPPP usage results in a reversal of the transhydrogenase flux, where 

excess NADPH is converted to NADH. The estimate of ATP 

generation from oxidative phosphorylation assumes a constant P/O 

ratio of 2.0 across strains, and the cell maintenance ATP cost 

(“Other”) is calculated as the balance of production and consumption. 

If no changes to oxidative phosphorylation occur, the calculated 

elevation in cell maintenance cost in ΔtpiA may arise from the 
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Figure 7.7:   Multivariate analysis and model assessment. (A) PCA was performed 

on all measured absolute fluxes. A large amount (70%) of the variance 

was captured by the first two principal components, and 93% by the 

top five. PC1 and PC2 capture pathway fluxes shown by the axis 

labels. (B-C) Nontrivial correlations between fluxes were identified by 

comparing those from randomly generated flux maps (B) to those of 

the measured fluxes (C) (Pearson correlation coefficient represented 

by color per the legend). The pyruvate dehydrogenase (PDH) and 

acetate secretion (expanded) fluxes were highly correlated (ρ=0.99), 

consistent with the acetate overflow model. (D-F) Measured flux 

values were compared to predictions from common COBRA models 

FBA, MOMA and RELATCH. (D) External rates of growth, glucose 

uptake, and oxygen uptake were compared to predictions, with quality 

of agreement scored by Pearson correlation coefficients. (E) 

Predictions and measured values of eleven key normalized 

intracellular fluxes are compared for the three most perturbed strains. 
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shunt (yellow), acetate and ana/cataplerotic reactions (pink). (F) The 

correlations of these fluxes are shown for all strains. The gray bars 
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Figure 8.1:   The genes included in this knockout study, shown in context of the 

central carbon metabolic pathways. These include genes in lower 

glycolysis (red), pyruvate dehydrogenase and acetate metabolism 

(blue), TCA cycle (green), glyoxylate shunt (orange), and amphibolic 

reactions (purple). Multiple genes listed for a given reaction indicates 

isozymes for that reaction, except where slash marks indicate an 

enzyme complex (e.g. PDH complex denoted aceE/aceF/lpd). Genes 

listed in black are included in the study, those in red did not grow in 

the studied conditions, and gray were not studied (one knockout per 
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Figure 8.2:   Physiological measurements for the wild-type and 25 knockouts. The 

growth rate, cell density to OD600 conversion, and biomass, acetate, 

lactate, and pyruvate yields are shown. Colors denote gene pathways: 

lower glycolysis (red), pyruvate dehydrogenase and acetate 

metabolism (blue), TCA cycle (green), glyoxylate shunt (orange), and 

amphibolic reactions (purple). Errors in growth rate and cell density 

per OD600 reflect standard errors of the mean (n=3, n=2, 

respectively). Biomass yield errors reflect the standard error from 

regression of biomass and glucose during culture. The product yield 

errors reflect standard errors based on the respective assumed errors of 
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Figure 8.3:   Carbon balances for wild-type and knockout strains. The fates of 

glucose carbon into biomass, products, and CO2 were calculated on a 
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Figure 8.4:   Glucose and oxygen uptake rates for the wild-type and knockout 

strains. Colors denote gene pathways: lower glycolysis (red), pyruvate 

dehydrogenase and acetate metabolism (blue), TCA cycle (green), 
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bars reflect standard error bars as propagated from direct 
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Figure 8.5:   Biomass compositions of wild-type and knockout strains. The four 

most abundant components of E. coli biomass are quantified, 

including protein, RNA, lipids, and glycogen. Colors denote gene 
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metabolism (blue), TCA cycle (green), glyoxylate shunt (orange), and 

amphibolic reactions (purple). Error bars reflect standard errors of the 
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Figure 8.6:   Correlations between physiological parameters. For each, previously 

reported values for 22 knockouts from upper central carbon 

metabolism are shown in gray, and strains from this study are shown 

in color, according to the pathway: lower glycolysis (red), pyruvate 

dehydrogenase and acetate metabolism (blue), TCA cycle (green), 

glyoxylate shunt (orange), and amphibolic reactions (purple). Six 

relevant correlations are shown, based on notable differences between 
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Figure 8.7:   Principal component analysis (PCA) of directly measured 

physiological parameters, including the wild-type (white), 22 

knockouts of upper central carbon metabolism (previously reported, 

gray), and the 25 knockouts in lower central carbon metabolism: 

lower glycolysis (red), pyruvate dehydrogenase and acetate 

metabolism (blue), TCA cycle (green), glyoxylate shunt (orange), and 

amphibolic reactions (purple). PC1 and PC2 capture 59% of the total 

measurement variability, with PC1 grouping together the growth rate 

related variance, and PC2 the trade-off of biomass and product yields. 

The mapping of physiology to PC values is indicated by the triangles 

on the axes, e.g., the purple triangle shows that high growth rate 
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Figure 8.8:   Comparison of measured physiological parameters to predictions 

made by three commonly-used COBRA modeling approaches: FBA, 

MOMA, and RELATCH. The growth rates, biomass yields, and 
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central carbon metabolic pathways. These include genes in lower 

glycolysis (red), pyruvate dehydrogenase and acetate metabolism 

(blue), TCA cycle (green), glyoxylate shunt (orange), and amphibolic 

reactions (purple). Multiple genes listed for a given reaction indicates 

isozymes for that reaction, except where slash marks indicate an 

enzyme complex (e.g. PDH complex denoted aceE/aceF/lpd). Genes 

listed in black are included in the study, those in red did not grow in 

the studied conditions, and gray were not studied (one knockout per 

complex was included). (B) Physiological changes in knockout strains 

are summarized, expressed as percentage change from the wild-type. 

Biomass yields were estimated by 13C-MFA and used to calculate 
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Figure 9.2:   Intracellular flux distributions for the wild-type and 25 knockouts. 

Glucose uptake rate and growth rate are noted for each strain, and the 
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Figure 9.3:   Detailed intracellular flux maps for three strains in the PDH and 

acetate production pathways. Glucose uptake rates are noted, and the 

knockouts are represented by red hash mark. The line thickness 

reflects the magnitude of the normalized intracellular flux (per 100 

glucose uptake). Changes in normalized flux of greater than 30% are 
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Biological systems have enormous potential for chemical conversion, 

including otherwise inaccessible syntheses and utilizing renewable feedstocks. 

Designing production strains through metabolic engineering requires detailed systems 

knowledge, particularly in the mapping of genotype (i.e., where manipulations are 

most typically made) to the metabolic phenotype (the output, e.g., overproduction of a 

chemical product). In this work, advances were made in metabolic characterization 

methods, and these methods were then applied to map metabolic responses to gene 

knockouts and adaptive laboratory evolution. Specifically, novel methods for 

measuring biomass composition, useful new measurements for 13C metabolic flux 

analysis (13C-MFA), and strategies for optimal tracer design were developed. These 

optimized methods were used to comprehensively assess metabolic responses to 45 E. 

coli gene knockout strains of enzymes in central carbon metabolism. Analysis of flux 

rewiring in these strains revealed bottlenecks and areas of flexibility in metabolism, a 

novel reversibility of Enzyme I of the PTS system and a glucose secretion phenotype. 

These results constitute a significant new resource for systems biology, particularly for 

metabolic modeling where they will be directly applied to the development of 

ensemble kinetic models.  

Genetic and metabolic responses to adaptive laboratory evolution in two 

strains were also characterized, providing new insights into the processes of microbial 

adaptation and fitness enhancement. Growth recovery (of up to 3.6-fold) in an E. coli 

knockout strain of a core glycolytic enzyme was enabled by a unique set of mutations 
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which alleviated rate limiting steps in metabolism. In evolved E. coli wild-type strains, 

growth rate enhancements of 50% did not correspond to intracellular flux rewiring, 

indicating broad and proportional regulatory change. Mutations in both experiments 

also suggest critical roles for global regulators in adaptation. Finally, the metabolism 

of Vibrio natriegens, a very fast-growing and potential next-generation host organism, 

was elucidated by 13C-MFA. This provides an important baseline of knowledge to 

facilitate modeling and engineering of this organism. Further investigation into the 

mechanisms of fast-growth, both natural and evolved, will enable the development of 

hosts with superior productivity and economic potential.
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INTRODUCTION 

Parts of this chapter are reprinted with permission from: Long CP, Antoniewicz MR 

(2014) Metabolic flux analysis of Escherichia coli knockouts: lessons from the Keio 

collection and future outlook. Curr. Op. Biotech. (28):127-133.  

1.1 Systems-Level Analysis of Metabolism in Microbiology and Metabolic 

Engineering 

Metabolism is the set of biochemical reactions that sustain cellular life. These 

reactions facilitate the consumption of nutrients, the production of useful forms of 

energy, and the synthesis of new cellular components. Metabolic reactions are 

typically catalyzed by specific proteins, or enzymes, of which there is an incredible 

natural diversity. The characterization of metabolic pathway reactions and associated 

genes/proteins, especially in model organisms such as the gram-negative bacterium 

Escherichia coli, was a major accomplishment of 20th century science (Caspi et al., 

2012; Kanehisa and Goto, 2000). Subsequently, the challenge has been to develop 

quantitative, systems-level understanding of metabolism in vivo, particularly its 

regulation, kinetics, and adaptability. In the context of microorganisms, these 

questions have particular relevance to issues of the environment (Yao et al., 2015) and 

human health (Chandrasekaran and Price, 2010; Greenblum et al., 2013). 

There has also been a long-recognized potential to leverage the diversity and 

specificity of biochemistry to develop novel chemical transformations, i.e. metabolic 

engineering (Bailey, 1991; Stephanopoulos, 1999). Advantages of biochemical 

processes include the ability to access the unique and highly specific chemistries, e.g. 
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for natural products (Paddon et al., 2013), as well as for utilizing renewable non-fossil 

fuel feedstocks (Langholtz et al., 2016). These efforts are enabled by genetic editing 

technologies, which allow for the manipulation of the system toward desired ends, 

such as optimal production of a chemical of interest. A fundamental challenge, 

however, is that the complexity of the cellular network (e.g., more than 4000 genes in 

E. coli) make identifying optimal engineering interventions difficult. Improved 

understanding of the quantitative, systems-level relationship between the genotype and 

phenotype is critical for such rational engineering efforts. 

1.2 Quantitative Methods for Metabolic Analysis 

The annotation of metabolic pathways provides a map of possible chemical 

conversions. To determine actual fluxes in the metabolic network, further assumptions 

or measurements are necessary. The constraint-based reconstruction and analysis 

(COBRA) family of in silico modeling tools utilizes the stoichiometry of the genome-

scale model, and then applies various objective functions to identify a unique flux 

solution (Lewis et al., 2012; Schellenberger et al., 2011). For example, flux balance 

analysis (FBA) typically optimizes the growth rate, subject only to stoichiometry and 

substrate uptake limitations (Edwards and Covert, 2002). These methods are useful in 

identifying theoretical possibilities for performance, but do not provide direct insight 

into the actual in vivo metabolic state.  

The predominant method for experimentally determining metabolic flux is via 

stable isotope tracers, particularly 13C metabolic flux analysis (Antoniewicz et al., 

2007a; Wiechert, 2001; Zamboni et al., 2009). An isotopically labeled substrate, for 

example glucose, is consumed by the organism of interest, and the resulting labeling 

of downstream metabolites in the network are measured. These labeling data contain 
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information about pathways usage, and provided sufficient measurements and an 

accurate network model of metabolism, fluxes and confidence intervals can be 

estimated (Antoniewicz et al., 2006). In such studies, the design of experiment, 

including single or parallel tracer experiments (Crown and Antoniewicz, 2013a), 

tracer selection, and choice of measurements are critical.  

1.3 Toward a Comprehensive Study of Knockout Responses 

The elucidation and quantification of complex regulatory and metabolic 

systems is of fundamental interest to biologists and engineers. A useful method in 

unraveling this complexity is to observe the biological system under perturbed 

conditions, for example, by removal of identified components (e.g. genes). As a model 

prokaryotic organism, Escherichia coli is ideally suited for gene knockout studies, and 

indeed, many studies on E. coli knockouts have been performed. The Keio library of 

all viable E. coli single-gene knockouts is now further facilitating these studies (Baba 

et al., 2006). In addition to having significant value in fundamental biological 

sciences, quantitative studies of cellular responses to gene knockouts provide relevant 

data for metabolic engineering and biotechnology applications.  

Multiple omics techniques have been applied to gain insight into the systemic 

responses of E. coli to gene knockouts, including metabolomics (Ishii et al., 2007; M. 

Li et al., 2006a; Siddiquee et al., 2004a; Toya et al., 2010; Zhu and Shimizu, 2005), 

transcriptomics (Fong et al., 2006; Ishii et al., 2007; M. Li et al., 2006a; Siddiquee et 

al., 2004b; Waegeman et al., 2011), enzymatic activity measurements (M. Li et al., 

2006a, 2006b; Siddiquee et al., 2004a; Zhao et al., 2004; Zhu and Shimizu, 2005), and 

metabolic flux analysis (fluxomics). Of all these omics levels, the fluxome provides 

the most relevant representation of the cellular phenotype for guiding metabolic 
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engineering efforts (He et al., 2013). Since early on in metabolic engineering, a lack of 

understanding and accurate predictability of complex perturbation responses has been 

identified as a major obstacle (Bailey, 1991; Stephanopoulos, 1999).  

1.3.1 Predicting Flux Responses of E. coli Knockouts 

There has been much work done in applying computational tools to predict 

responses of genetically perturbed biological systems. The performance limits of E. 

coli metabolic networks, subject to gene deletions and additions, have been 

traditionally assessed using FBA (Burgard and Maranas, 2001), where a linear 

optimization and an “objective function” are used to predict feasible flux distributions. 

The optimization serves as a proxy for evolutionary forces, e.g. a maximized biomass 

production flux represents evolutionary pressure under competitive growth conditions. 

The FBA approach and various objective functions have been evaluated for wild-type 

E. coli, and this approach been shown to generally work well (Schuetz et al., 2007). 

However, for unevolved genetically perturbed strains, the evolution-based objective 

function is questionable. Indeed, for many knockouts, FBA has been limited to 

evaluating the feasibility of growth (Edwards and Palsson, 2000), and predicting 

growth rates of evolved knockout strains (Fong and Palsson, 2004).  

Several alternative approaches have been proposed to predict flux distributions 

of E. coli knockouts. Minimization of Metabolic Adjustment (MOMA) (Segre et al., 

2002) postulates that the perturbed metabolic state will be as close as possible (by 

Euclidean distance) to the FBA optimum of the wild-type; this favors solutions with 

many small changes to fluxes rather than smaller number of large changes. Given that 

this can be inconsistent with the concepts of regulatory adaptation cost and linearity of 

flow, the alternative Regulatory On/Off Minimization (ROOM) approach has been 
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developed, which minimizes the number of large flux changes from the FBA solution 

(Shlomi et al., 2005). A third algorithm, RELATCH (RELATive CHange), suggests 

using experimental flux and expression data from a reference strain as the starting 

point. It then uses two parameters to describe the cell’s efforts to first minimize 

regulatory and distribution pattern changes, and then after a short time activate 

previously latent pathways and increase the flux capacity of previously active 

pathways (Kim and Reed, 2012). Yet another approach uses FBA with additional 

regulatory constraints in the form of predicted gene co-occurrence (co-regulation), or 

“flux-coupled genes” (Kim et al., 2013; Park et al., 2010). Finally, a cybernetic 

modeling approach has been described that has the additional benefit of addressing 

microbial productivity as well as yields (Song and Ramkrishna, 2012). All these 

algorithms have reported increased accuracy in predicting flux responses to knockouts 

when compared to FBA, judged against existing experimental flux data from 13C-

MFA studies. However, a thorough assessment of the various methods has been 

difficult because of significant limitations in the existing knockout flux data (as 

described next). 

1.3.2 Previous Metabolic Flux Analysis Studies of E. coli Knockouts 

In the past decade, numerous 13C-MFA studies have been performed to 

measure fluxes in E. coli knockouts. The goals of these studies have been to explore 

specific parts of the metabolic and regulatory network, and to assess the general 

perturbation response. Examples of the former are studies which combine genetic and 

environmental perturbations to study oxygen sensing and aerobic regulatory response 

(Nizam et al., 2009; Nizam and Shimizu, 2008; Portnoy et al., 2010). Another example 

is a study by Nakahigashi et al., in which a novel hidden reaction in the pentose 
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phosphate pathway was discovered by studying sets of double knockouts (Nakahigashi 

et al., 2009). In addition to helping to resolve network structure, knockout studies can 

also help elucidate regulation and dynamics. For example, Siddiquee et al. studied flux 

distributions, enzyme activities, expression levels, and metabolite concentrations of a 

pykF knockout mutant to quantitatively describe the regulation of PEP carboxylase, 

malic enzyme, phosphofructokinase, acetate formation, and the oxidative pentose 

phosphate pathway (Siddiquee et al., 2004b).  

There has also been interest in identifying challenges induced by knockouts, 

and the general and specific adaptive responses to them. For example, Canonaco and 

Sauer showed that due to overproduction of NADPH in the pgi knockout, 

transhydrogenase activity was kinetically limiting cell growth (Canonaco et al., 2001). 

Fong et al. showed that the initial response of E. coli to many gene knockouts was to 

activate latent pathways, such as the glyoxylate shunt and Entner-Doudoroff pathway, 

however, when the responses were monitored over many generations it was observed 

that the sub-optimal latent pathways were subsequently re-repressed and the capacities 

of more efficient pathways were expanded to reach new optima (Fong et al., 2006). 

Other examinations of the range of adaptive responses include the immediate flux 

response, based on a plasmid-based inducible knockout approach (Usui et al., 2012), 

and changes over the course of an extended batch culture (Toya et al., 2010). These 

studies inform our understanding of bacterial evolution, and have practical 

consequences for the industrial use of genetically modified strains. However, as a 

window to viewing the native metabolic and regulatory structure of E. coli, the studies 

of evolved strains are probably less informative than those studies immediately 

following a perturbation. 



 7 

The most widely studied knockouts to date have been those of central carbon 

metabolism and global regulation. A summary of genes whose knockout mutant fluxes 

have been reported in literature are shown in Figure 1.1. While knockout flux studies 

are clearly an area of strong interest, bias in coverage and poor comparability of 

 

Figure 1.1:   A summary of the available literature for experimental flux studies on E. 

coli knockout strains in central carbon metabolism, as of 2014. The 

numbers refer to individual references as cited in Long & Antoniewicz, 

Current Opinion in Biotechnology (2014) 28:127-133. 

results have prevented these results from being utilized to their full potential. 

Understandably, much attention has been paid to phosphoglucose isomerase (pgi), 
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glucose-6-phosphate dehydrogenase (zwf), 6-phosphogluconate dehydrogenase (gnd), 

and pyruvate kinase (pykA and pykF) genes, as these represent important nodes in 

metabolism: pgi initiates glycolysis, zwf and gnd initiate and propagate the oxidative 

pentose phosphate pathway, and pykAF provides the main route to pyruvate and 

acetyl-CoA, from which common fermentation products are produced. Regulatory 

gene knockouts, particularly of global regulators, have also been studied to some 

extent. The best studied is the ArcA/B system, which controls the aerobic metabolic 

response. Again, while it is understandable that these genes were targeted for initial 

studies, the overall limited coverage is limiting potential biological discoveries and the 

development of a more complete understanding of the general perturbation response. 

Most studies to date have been performed under either substrate-rich 

conditions (e.g. batch), or substrate-limited conditions (e.g. continuous cultures). 

Cellular responses under these two conditions are likely to be significantly different. 

For example, remarkably robust flux profiles (i.e. relatively small flux changes) for 24 

knockout strains grown under chemostat growth conditions were reported by Ishii et 

al. (Ishii et al., 2007). In contrast, much more pronounced metabolic responses were 

observed for similar strains grown under batch conditions. As an example of the 

difference, in batch culture the zwf-KO strain was reported to secrete acetate with a 

normalized flux of 44 and have a citrate synthase flux of 51 (Nicolas et al., 2007), 

while in a continuous culture the acetate flux was 0 and citrate synthase flux was 103 

(Ishii et al., 2007). The fact that various continuous culture studies used different 

dilution rates further complicates a direct comparison of these studies. Thus, with 

current data it is often difficult to deconvolute the effects of the knockout mutation 

and environmental changes.  
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Even among studies using the same gene knockout and growth condition, 

significant variability in reported fluxes has been observed. This can result from 

differences in the genetic background of the wild-type, or differences in 13C-MFA 

methodology employed. For example, for pgi knockouts grown under batch 

conditions, estimates of the normalized TCA flux range from 20 (Haverkorn van 

Rijsewijk et al., 2011) to 62 (Fong et al., 2006). In continuous studies of the pykF 

knockout at dilution rates 0.1 hr-1 and 0.2 hr-1 major differences were reported for pgi, 

pyk and ppc fluxes (Ishii et al., 2007; Siddiquee et al., 2004a). 

1.3.3 A complete knockout flux data set would be valuable 

Due to a lack of coverage and discrepancies in experimental conditions and 

methodology, knockout flux results are currently difficult to compare and generalize. 

To facilitate fundamental analysis of E. coli metabolic and regulatory processes, an 

unbiased and high-resolution data set consisting of methodologically self-consistent 

13C-flux results for a large number of knockout mutants would be ideal. This is now 

increasingly feasible given the significant improvements in 13C-flux methodology in 

recent years (Antoniewicz, 2013a, 2013b, 2013c; Leighty and Antoniewicz, 2013), as 

well as the availability of a large number of viable E. coli knockout mutants from the 

Keio collection (Baba et al., 2006). A complete, systematic data set would provide an 

unbiased basis to assess the general E. coli perturbation response. Such a data set 

would also provide highly valuable inputs for systems biology approaches, e.g. the 

data could be integrated with other omics levels allowing discovery of novel network 

connectivities, regulatory relationships and metabolic activities (Cornelius et al., 2011; 

Fong et al., 2006; Nishikawa et al., 2008). 
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A well-developed quantitative model of metabolism would be an invaluable 

tool for testing current knowledge and a significant step forward as a predictive design 

tool for metabolic engineering. Several approaches to this kind of global metabolic 

modeling have been proposed and attempted. These include joint regulatory and 

metabolic models (Yeang and Vingron, 2006), models that incorporate enzyme 

activity (Kurata et al., 2007), cybernetic models (Young et al., 2008), and differential 

equation based models (Kadir et al., 2010). Ensemble modeling is one of these 

approaches where the goal is to obtain global metabolic mass-action kinetic 

parameters by iteratively constraining the parameter space with experimental 

metabolite and flux data, an application for which a large-scale 13C-MFA knockout 

data set would be ideal (Tran et al., 2008). Many other modeling approaches have 

been equally limited by the available data for training and testing. A complete 

knockout flux data set would therefore be a valuable resource for the community and 

enable significant refinements of current models leading to improved accuracy and 

predictive power. 

An improved quantitative understanding would then also facilitate improved 

interpretation of metabolism. Many existing theoretical frameworks could be applied 

to, tested, and enriched by comprehensive knockout flux data. Examples include graph 

theoretic assessments of metabolic robustness (Behre et al., 2008; Ghim et al., 2005; 

Wilhelm et al., 2004; Wunderlich and Mirny, 2006) and flux coupling (Burgard et al., 

2004; Kim et al., 2013), quantifications of the influences of thermodynamics on 

network function (Henry et al., 2006), classifications of transcriptionally vs. 

metabolically limited fluxes (Shlomi et al., 2007), modular cost-benefit analysis 

(Carlson, 2007), Bayesian analysis of modularized networks (Kim et al., 2011), 
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evaluation of FBA optimality (Chen et al., 2011), and the logic of pathway 

latency/silencing (Fong et al., 2006; Nishikawa et al., 2008). Interpretation of 

knockout flux data through these frameworks would greatly improve our 

understanding of the evolved “logic” of cellular life. 

1.3.4 Towards a large-scale standardized flux data set 

Prioritization will be important in future efforts to produce a large set of flux 

data for E. coli knockouts. With almost four thousand viable single gene knockouts, 

and the relatively laborious nature of 13C-MFA, a truly complete set would be a 

massive undertaking. A few key sets of metabolic genes would be of highest interest 

and practical value, and should therefore be prioritized. The first and most important 

knockouts are those of central carbon metabolism. This involves the high-traffic 

pathways that generate energy, cofactors, and precursors for all other cellular 

processes. Understanding bottlenecks and kinetics in central carbon metabolism will 

therefore be critical to many metabolic engineering efforts.  

The next gene set of interest is that of regulators of central carbon metabolism. 

This regulatory network layer is essential to include in future comprehensive models, 

and quantitative understanding at this level is still not fully developed. For example, 

improved understanding of the regulatory system would allow for the replacement of 

stand-in modeling concepts such as “objective function” and other heuristics with 

more fundamental mechanistic models. Also essential to study are genes related to 

energy and redox metabolism, given that energetics and co-factor availability are 

fundamental to increasing metabolic yields. Finally, it would be valuable to investigate 

genes related to the aerobic/anaerobic response, stress response, and catabolism of 

carbon sources other than glucose, including xylose, glycerol and acetate.  
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An effort to produce a large-scale data set of E. coli knockout fluxes should 

utilize the best practices in 13C-MFA. Within reasonable limits of effort and cost, the 

goal should be to produce the highest possible flux resolution. For example, optimal 

tracer selection and the use of parallel labeling experiments have been shown to 

dramatically improve flux measurement precision (Ahn and Antoniewicz, 2013; 

Crown et al., 2016b, 2012, Crown and Antoniewicz, 2013a, 2012; Leighty and 

Antoniewicz, 2012a). Consistent and proper reporting of flux data, error analysis, and 

transparency of methods, are also of utmost importance to enable reproducibility and 

comparability of results (Antoniewicz et al., 2006). A recent review has proposed 

minimum data standards for 13C-MFA studies that will facilitate sharing of results 

(Crown and Antoniewicz, 2013b). With these guidelines and conditions, an 

experimental effort to obtain a large body of E. coli knockout flux data is warranted 

and promises to deliver significant value. 

1.4 Objectives and Outline of this Thesis 

With the above context, this thesis aims to advance four main areas of 

microbial metabolic research: (1) experimental methods for microbial physiological 

characterization and 13C-MFA (Ch. 2-4); (2) further the accurate mapping of central 

carbon metabolism by identifying novel reactions (Ch. 5); (3) characterize the 

metabolic responses to a comprehensive set of 45 knockouts in E. coli central carbon 

metabolism (Ch. 6-9), and (4) dissect the metabolic and genetic mechanisms of 

adaptive evolution and fast growth (Ch. 10-12). The specific contributions described 

in each chapter are enumerated below. 

• Chapter 2 describes a set of novel GC-MS based methods for quantifying 

biomass composition. The composition of microbial biomass is an important 
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aspect of physiology, and directly informs the estimate of growth-related 

flux in 13C-MFA. Here, a convenient and precise GC-MS based pipeline is 

presented for quantifying the four most abundant components of E. coli 

biomass (protein, RNA, lipids, and glycogen). These methods are also 

applicable to other organisms. 

• Chapter 3 demonstrates that the addition of labeling information from RNA 

(ribose moiety) and glycogen (glucose moiety) significantly aids the 

resolution and observability of certain fluxes in 13C-MFA. This is 

demonstrated in wild-type E. coli, an engineered E. coli that co-consumes 

glucose and xylose, and CHO cells. 

• Chapter 4 presents a comprehensive analysis on tracer selection for 13C-

MFA. A novel scoring method for global flux resolution is presented, a 

large number of single, mixed, and parallel tracers are evaluated via 

simulation. Ultimately, the parallel use of [1,2] and [1,6-13C]glucose are 

found to provide optimal precision, and this is validated experimentally. 

• Chapter 5 describes the identification of a novel reaction in E. coli central 

carbon metabolism, specifically the reversibility of Enzyme I of the PTS 

system. This flux is shown to be significantly reversible during glycolytic 

growth, and is responsible for a large net flux during gluconeogenic growth. 

Additionally, it is found to be sensitive to perturbations elsewhere in the 

PTS system. 

• Chapter 6 presents the physiological characterization of 20 E. coli 

knockouts from the ‘upper’ pathways of central carbon metabolism: 

glucokinase and phosphoglucomutase, glycolysis/EMP pathway (to 
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glyceraldehyde-3-phosphate), the pentose phosphate pathway, and Entner-

Doudoroff pathway. Batch growth performance, including growth and 

uptake rates and yields, as well as biomass composition measurements, are 

included. 

• Chapter 7 presents the intracellular fluxes of the same 20 knockouts from 

upper metabolism. A novel glucose secretion reaction is observed in ΔpfkA, 

and the methylglyoxal pathway is resolved in ΔtpiA. Patterns of flux 

rewiring are analyzed, including via multivariate analysis, and compared to 

COBRA model predictions.  

• Chapter 8 presents the physiological characterization of 25 E. coli 

knockouts from the ‘lower’ pathways of central carbon metabolism: 

pyruvate kinase and PEP synthetase, pyruvate dehydrogenase and acetate 

pathways, TCA cycle, glyoxylate shunt, and amphibolic reactions. Batch 

growth performance, including growth and uptake rates and yields, as well 

as biomass composition measurements, are included. 

• Chapter 9 presents the intracellular fluxes of the same 25 knockouts from 

lower metabolism. Patterns of flux rewiring are analyzed, including via 

multivariate analysis, and compared to COBRA model predictions.  

• Chapter 10 explores how growth rate is recovered in Δpgi strains subjected 

to adaptive laboratory evolution (ALE). Unique sets of mutations are 

correlated to changes in metabolic flux, including in the cofactor 

transhydrogenase and PTS system. Phenomena previously described as 

latent pathway activation and repression are re-examined. 
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• Chapter 11 describes the metabolic fluxes in six adaptively evolved E. coli 

MG1655 wild-type strains. The growth rates were increased by 50%, though 

the intracellular flux patterns were found not to change. This is consistent 

with the hypothesis that the effect of ALE in the wild-type is to broadly 

upregulate metabolic and growth functions. 

• Chapter 12 describes the elucidation of intracellular metabolism in the fast-

growing organism Vibrio natriegens. This organism has been proposed as a 

next-generation host for biotechnology because of its fast growth. The 

metabolic network was reconstructed from the annotated genome, biomass 

composition measured, and fluxes elucidated by 13C-MFA. Encouragingly 

for metabolic engineers, the normalized flux distribution was quite similar 

to E. coli.  
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NOVEL GC-MS BASED METHODS FOR QUANTIFYING BIOMASS 

COMPOSITION 

 

Reprinted with permission from: Long CP, Antoniewicz MR (2014) Quantifying 

Biomass Composition by Gas Chromatography/Mass Spectrometry. Anal Chem 

86(19):9423–7. Copyright 2014 American Chemical Society 

2.1 Introduction 

Quantification of the various components of biomass is important for systems 

biology and bioengineering. The composition of an organism is a core feature of its 

phenotype, and provides insight into its underlying metabolic systems as well as 

differences between environmental conditions, genotypes, and species. In the field of 

fluxomics, the resolution and accuracy of metabolic flux models derived from 

approaches such as flux balance analysis (FBA) and 13C metabolic flux analysis (13C-

MFA) are known to be sensitive to biomass composition (Pramanik and Keasling, 

1998, 1997). Current methods for quantifying biomass are tedious and sometimes 

inaccurate, which can limit the performance of these fluxomic techniques. 

The major components of microbial biomass are protein, RNA, lipids, and 

glycogen. For the model gram-negative microbe Escherichia coli, these four 

components have been reported to constitute 88% of the dry biomass (Neidhardt, 

1987). Current methods to quantify these major biomass components rely on a variety 

of enzymatic and spectroscopic based methods. Colorimetric assays are often 

employed to measure total protein content (Bradford, 1976; Peterson, 1977; Smith et 

Chapter 2 
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al., 1985), while amino acid quantification requires hydrolysis followed by HPLC 

analysis (Rutherford and Gilani, 2009). The measurement of RNA typically requires 

purification followed by spectroscopic quantification (Benthin et al., 1991). While 

colorimetric methods are also available for total lipid quantification (Wawrik and 

Harriman, 2010), the use of GC/FID and GC/MS is common for profiling fatty acids 

(Dobson and Christie, 2002; Dodds et al., 2005; Y. Li et al., 2006). Glycogen is often 

quantified using enzymatic hydrolysis followed by glucose analysis via HPLC or a 

colorimetric method (McKinlay et al., 2007). 

Here, we have developed a set of methods to quickly, accurately and precisely 

quantify 17 amino acids, all relevant fatty acids (5 demonstrated here, but easily 

extendable), RNA, and glycogen on a single, widely available analytical platform: gas 

chromatography-mass spectrometry (GC/MS). This approach offers a simplified and 

convenient workflow, summarized in Figure 2.1, and removes reliance on enzymatic 

and spectroscopic calibrations. All quantifications are based on isotope ratio analysis 

using analyte-specific standards which are isotopically unique from the sample, giving 

a high degree of confidence in the results. A similar approach has been previously 

reported for quantifying metabolite pools (Bennett et al., 2008). Here, “fully labeled” 

E. coli is used as the internal standard. To generate fully labeled E. coli in which all 

cellular carbon is 13C, a large batch of E. coli is grown on [U-13C]glucose. The 

components of this fully 13C-labeled biomass are then quantified against known 

unlabeled standards. Once characterized, this fully labeled biomass can be used as an 

internal standard to quantify subsequent unlabeled biomass samples. This procedure 

adds flexibility and convenience to the workflow, and expands the potential 

application to organisms that are difficult to label fully (Swarup et al., 2014). The 
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methods described here are validated and then applied to three E. coli strains, 

confirming consistency, agreement with previously reported values, and 

demonstrating the practical importance of such measurements in systems biology. 

 

Figure 2.1:   Schematic representation of workflow for GC-MS based methods for 

quantification of biomass composition. 

2.2 Materials and Methods 

2.2.1 Chemicals 

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO). [U-

13C]Glucose was purchased from Cambridge Isotope Laboratories (Andover, MA). 

2.2.2 Strains and Cultures 

E. coli BW25113 strains were obtained from the Keio Knockout Collection 

(Baba et al., 2006). The parent strain (“wild-type”) was used in all validation studies 

and as the labeled biomass reference. Two knockouts, Δpgi (phosphoglucose 

isomerase) and Δzwf (glucose-6-phosphate dehydrogenase) were also analyzed. All 
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cultures were grown aerobically in M9 minimal medium with 2 g/L of glucose 

(Leighty and Antoniewicz, 2013), either naturally labeled (unlabeled) or [U-13C] (fully 

labeled). Cells were harvested at mid-exponential phase (OD600 ≈ 0.7). For all 

procedures, samples containing the equivalent of 1 mL of a culture at OD = 1.0 

(roughly 0.3 mg of dry weight) were used. All biomass samples were washed twice 

with glucose-free M9 medium prior to analysis. Dry weights were measured for all 

strains by filtration of 50 mL of a culture at a density of OD = 1.0 using a 0.2 m 

cellulose acetate filter (Sartorius 11107-47-N), followed by drying for several days at 

80°C. 

2.2.3 Chemical Standards 

Unlabeled standards were prepared for all relevant analytes, and were added 

directly to the biomass pellet prior to the execution of the protocols described below. 

For amino acids, 40 μL of a 2.5 mM per amino acid solution (Pierce 20088) was used. 

For RNA, a 1 mg/mL solution (ribonucleic acid from torula yeast, Sigma R6625) in 

water was prepared, of which 80 μL was added to the sample. For glycogen, a 0.1 

mg/mL solution (glycogen from bovine liver, Sigma G0885) in water was prepared, of 

which 100 μL was added to the sample. For fatty acids, a solution of 0.3 mg/mL of 

myristic acid (C14:0), palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid 

(C18:0), and elaidic acid (C18:1) in hexane was prepared, of which 20 μL was added. 

2.2.4 GC/MS 

GC/MS analysis was performed on an Agilent 7890B GC system equipped 

with a DB-5MS capillary column (30 m, 0.25 mm i.d., 0.25 µm-phase thickness; 

Agilent J&W Scientific), connected to an Agilent 5977A Mass Spectrometer operating 
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under ionization by electron impact (EI) at 70 eV. Helium flow was maintained at 1 

mL/min. The source temperature was maintained at 200°C, the MS quad temperature 

at 150°C, the interface temperature at 280°C, and the inlet temperature at 250°C. For 

GC/MS analysis of amino acids, 1 L was injected at 1:40 split ratio. The column was 

started at 80°C for 2 min, increased to 280°C at 7°C/min, and held for 20 min. For 

GC/MS analysis of fatty acid methyl esters (FAME) and sugar derivatives, 1 L was 

injected splitless. The column was started at 80°C for 2 min, increased to 280°C at 

10°C/min, and held for 12 min.   

2.2.5 Amino Acid Analysis 

The preparation and GC/MS analysis of biomass amino acids was performed 

as previously described by (Antoniewicz et al., 2007b). Briefly, biomass pellets were 

hydrolyzed with 500 μL of 6N HCl at 110°C for 24 h, then dried under air at 65°C. 

Tert-butyldimethylsilyl (TBDMS) derivatives of amino acids were prepared by adding 

35 μL of pyridine and 50 μL of MTBSTFA + 1% TBDMCS (Sigma 375934) and 

incubating for 30 minutes at 60°C, and were then transferred to injection vials for 

GC/MS analysis. 17 of the 20 amino acids were detected and quantified by this 

method. The three not measured, arginine, cysteine, and tryptophan, are estimated to 

constitute 12% of total protein mass (Neidhardt, 1987). Since intracellular amino acid 

pools are known to be very small relative to proteinogenic amino acids (Bajad et al., 

2006), the measured signal will be dominated by the latter. 

2.2.6 RNA and Glycogen Analysis 

These two biopolymers were analyzed simultaneously, as each required 

hydrolysis followed by quantification of a sugar monomer (ribose and glucose, 
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respectively). Biomass pellets were hydrolyzed by addition of 500 μL of 6N HCl. 

Samples were immediately placed under air at 65°C for drying. The aldonitrile 

propionate derivatives of glucose and ribose were prepared by the method described 

by (Antoniewicz et al., 2011). Briefly, 50 μL of 2 wt% hydroxylamine hydrochloride 

in pyridine was added to the dried sample, which was then incubated for 60 min at 

90°C. Next, 100 μL of propionic anhydride was added followed by incubation at 60°C 

for 30 min. The samples were then transferred to injection vials for analysis. Ribose 

eluted approximately 2 minutes before glucose, and the m/z 173 fragment was used for 

quantification, which contains last two carbon atoms of each sugar. We found that 

other cellular sugars, such as fructose and deoxyribose, do not co-elute with either 

ribose or glucose and therefore do not interfere with these measurements. It is 

important to note that we used the biopolymers RNA and glycogen as standards. The 

use of the monomers ribose and glucose as standards yielded inconsistent and 

inaccurate results, due to the observed kinetics of hydrolysis and subsequent 

degradation of the sugars under the acidic conditions. 

2.2.7 Fatty Acid Analysis 

All glassware was first rinsed with chloroform and dried to remove 

contaminating lipid residues. The biomass pellets were re-suspended in approximately 

500 μL of water, transferred to a glass Pyrex culture tube, and dried under air at 65°C. 

FAME derivatives were prepared by dissolving the dried biomass in 1 mL of methanol 

and 50 μL concentrated sulfuric acid, and incubating for 2 h at 100°C. The mixture 

was then cooled to room temperature, and the FAME’s were extracted by the addition 

of 1.5 mL water and 3 mL hexane. The upper organic phase was isolated and dried 

under nitrogen flow at 40°C. The dried FAME’s were then re-dissolved in 100 μL of 
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hexane and transferred to glass GC vials for analysis. The molecular ions of all species 

of interest were quantified: C14:0 (M0 m/z 242, fully 13C-labeled M14 m/z 256), 

C16:1 (m/z 268, 284), C16:0 (m/z 270, 286), C18:1 (m/z 296, 314), C18:0 (m/z 298, 

316).  

2.2.8 GC/MS Data Analysis 

For metabolite quantification using isotope ratio analysis, all measured mass 

isotopomer distributions were first corrected for natural abundances by the method of 

(Fernandez et al., 1996). Additionally, the unlabeled (M0) content of fully labeled 

biomass was assessed (typically ~1-2%, due to presence of unlabeled inoculum) and 

corrected for. The total ion counts of the labeled species were calculated as the sum of 

the fully labeled (MN) and one-less (M(N-1)) isotopes. This was necessary to account 

for the introduction of 12C atoms due to isotopic impurities in the [U-13C]glucose as 

well as the fixation of unlabeled CO2 (Leighty and Antoniewicz, 2012a). The 

frequency of 12C atoms from these sources were low enough such that significant 

amounts of M(N-2) isotopes were not observed, and thus this effect could be 

completely accounted for by the stated methods. 

2.2.9 Validation of RNA and Glycogen Measurements 

For RNA and glycogen quantification, care was taken to ensure that the target 

macromolecules were being measured, and not for example intracellular sugars such 

as ribose, glucose, or fructose phosphates. To validate this, a labeling switch 

experiment was performed. A culture of wild-type E. coli was grown on unlabeled 

glucose to OD 0.5, and then centrifuged, washed, and re-suspended in medium 

containing [U-13C]glucose as the only carbon source. Time-course data of labeling 
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incorporation confirmed that low-turnover biomass components were indeed measured 

(Figure Appendix A.1). 

2.2.10 Validation of Method Consistency 

The methods described here depend on the quantification of isotope ratios of 

13C-labeled and unlabeled species in a sample. In practice, an unlabeled biomass 

sample can be measured against a labeled reference, or vice versa. Since most 

chemical standards are unlabeled, it is straightforward to quantify fully labeled 

biomass. To measure unlabeled biomass samples, we first grew a large batch of fully 

labeled E. coli biomass, and aliquoted a large number of identical samples, each 

containing an equivalent of 1 mL of a culture at OD = 1.0. The aliquoted biomass 

pellets were stored at -80°C. This stock of fully labeled biomass was characterized, 

and then used as a reference with which to measure subsequent unlabeled biomass 

samples. In this case, the reference and sample biomass pellets were combined directly 

at the beginning of the workup. To confirm that both methods yielded consistent 

results, E. coli was grown in two parallel cultures, one on unlabeled glucose and one 

on [U-13C]glucose. The biomass compositions of both cultures were characterized by 

the two respective methods and we confirmed that both methods yielded consistent 

results (Appendix Figures A.2-A.4) 

2.3 Results and Discussion 

2.3.1 Method Validation 

First, we validated that the methods for RNA and glycogen quantification were 

indeed measuring these low-turnover components of biomass. This was determined by 

measuring time-course labeling profiles in an experiment where E. coli was first 
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grown on unlabeled glucose followed by growth on fully 13C-labeled glucose. The 

fractional labeling of both RNA and glycogen tracked well with the fraction of new 

biomass formed after the switch, over a period of three hours (Figure A.1). 

Intracellular metabolites, which turn over in minutes, would have become fully labeled 

in this time. Only a small fraction of the measured values, less than 15% for glucose 

and less than 5% for ribose, reflected fast-turnover metabolites. Therefore, we 

concluded that the methods we applied were almost entirely measuring the targeted 

biomass components RNA and glycogen.  

Second, we validated that the presented methods gave consistent results 

regardless of whether a 13C-labeled or unlabeled internal standard was used for 

quantification, i.e. 1) using unlabeled chemical standards for quantifying a labeled 

biomass sample; and 2) using fully labeled biomass as reference material for the 

analysis of unlabeled biomass sample. This was shown by culturing E. coli in parallel 

on unlabeled and fully labeled glucose and applying both approaches. As expected, 

both approaches were found to yield identical biomass composition values (Appendix 

Figures A.2- A.4). This result shows that the methods described here are consistent 

and flexible, and can be adapted for the convenience of the user. For example, the use 

of a fully labeled reference biomass stock may be preferable if it is found that frozen 

biomass is simpler to store or more stable over time than unlabeled standard solutions. 

More significantly, it may enable the convenient analysis of species which are difficult 

to fully label, such as organisms that require complex medium for growth (Ahn and 

Antoniewicz, 2013), for which labeled standards may otherwise be prohibitively 

expensive to generate. 
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2.3.2 Biomass Composition of Three E. coli Strains 

Phenotypic differences between different genotypes, particularly gene 

knockouts, are of significant interest in systems biology (He et al., 2013; Long and 

Antoniewicz, 2014a). To demonstrate the utility of these methods, the biomass 

compositions of three E. coli strains were analyzed: wild-type (WT), and two 

knockout strains, Δzwf and Δpgi. These knockouts are missing the first reaction in the 

oxidative pentose phosphate pathway and glycolysis, respectively. As such, they have 

significantly altered metabolic states from the wild-type and each other. The overall 

compositional profiles of the three strains, shown in Figure 2.2, agree well with the 

established literature values from Neidhardt (Neidhardt, 1987). The total protein level 

was ~53% of dry weight for WT, which is comparable to Neidhardt’s 55%. For total 

cell protein quantification, Neidhardt’s values were assumed for the 3 unmeasured 

amino acids (other estimation approaches for these may be considered in the future, 

such as bioinformatic techniques to derive relative amino acid abundances from 

protein sequence data). There was slightly less protein in the knockouts, with 49% and 

47% for Δzwf and Δpgi, respectively. There were a few differences in the amino acid 

profiles between the strains (Figure 2.3), such as elevated Glx (Glu+Gln) levels in WT 

compared to the knockouts. Neidhardt reported significantly higher levels of glycine, 

valine, isoleucine and lysine than what were measured in these E. coli strains. RNA 

was significantly reduced in the Δpgi strain, at 14% of dry weight compared to 24% in 

the wild-type and 21% for Δzwf. The total fatty acids were a consistent 5% of dry 

weight for all three strains, slightly less than the 7% of Neidhardt. The distribution of 

fatty acids is shown in Figure 2.4. There was significant variability in C18:1 levels 

between the three strains, with the Δzwf strain showed elevated levels while Δpgi 

showed decreased levels relative to the wild-type. Δpgi also had less C16:1 than the 
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other two strains. The wild-type fatty acid levels, with the exception of C14:0 which is 

primarily associated with LPS, were less than the values reported by Neidhardt. This is 

likely due to differences in the E. coli strains characterized (K-12 in this study and B/r 

in Neidhardt). 

Overall, the measured composition values for E. coli are in good agreement 

with those previously reported, while also demonstrating the importance of measuring 

the composition of novel phenotypes. This is often neglected in flux analysis and 

system biology studies (Crown and Antoniewicz, 2013b). Instead, Neidhardt’s values, 

while summarized specifically for the E. coli B/r strain, are often assumed for other E. 

coli strains. Performing the biomass composition measurements presented here will 

therefore be useful for future systems microbiology applications, and in particular for 

advanced 13C metabolic flux analysis studies (Crown and Antoniewicz, 2013a).  

 

Figure 2.2:   Biomass composition of three E. coli strains. Error bars indicate standard 

errors of the mean (n=4).  
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Figure 2.3:   Amino acid distribution of three E. coli strains. The legend is the same as 

in Figure 2.2. Error bars indicate the standard error of the mean (n=4). 

“Asx” is the sum of aspartate and asparagine. “Glx” is the sum of 

glutamate and glutamine.  

 

Figure 2.4     Fatty acid distribution of three E. coli strains. The key is the same as Fig. 

2.2; error bars indicate standard error of the mean (n=4). 
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2.4 Conclusions 

The methods presented here for biomass composition analysis are accurate and 

precise, as well as convenient and flexible. The use of a single analytical platform, 

GC/MS, and simple preparatory protocols means that a full biomass composition 

analysis (of the four major components) can be easily accomplished in many labs. The 

coverage of these techniques should be sufficient for most research endeavors in 

systems microbiology and engineering. The major components not explicitly 

measured here are DNA (3.1% of dry weight), lipopolysaccharide (3.4%), 

peptidoglycan (2.5%), and intracellular metabolites, cofactors, and ions (3.5%) 

(Neidhardt, 1987). In most circumstances, the amounts of these components are 

expected to be relatively constant (Pramanik and Keasling, 1997; Stephanopoulos et 

al., 1998).  

The choice of fully labeled E. coli biomass as internal standard gives flexibility 

with respect to shelf-life and cell culturing concerns. For extension to other organisms, 

it is expected that the hydrolysis conditions used here will result in no significant 

differences in lysis or hydrolysis kinetics that might affect accuracy. Thus, we expect 

equally good performance with other classes of microbes, e.g. gram-positive bacteria 

and eukaryotic cells, although this should be validated prior to application. If verified, 

the convenience of using [U-13C] labeled E. coli as internal standard, which is quickly 

and easily cultured, for analyzing more difficult organisms would offer a significant 

advantage. 

2.4.1 Applications 

Since the development of these methods, they have been applied in a number 

of studies in diverse organisms. These include numerous E. coli knockout strains 
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(Chapters 6 and 8) and in varied environmental conditions (Gonzalez et al., 2017), 

multiple species of extreme thermophiles (Cordova et al., 2017, 2016, 2015), the 

model algae species Chlorella vulgaris (Zuñiga et al., 2016), the very fast-growing 

bacterium Vibrio natriegens (Christopher P Long et al., 2017) (Chapter 12), and the 

model diazotroph Azotobacter vinelandii (unpublished). In these studies, the utility of 

biomass composition information was largely to define the coefficients of components 

and precursors in the biomass growth equation, e.g., for 13C-MFA or genome-scale 

models. In one case, however, the composition measurements provided a key piece of 

fundamental insight (Yao et al., 2015). In environmental isolates from a phosphate-

poor lake in Indonesia, strains were found to respond to phosphate starvation by 

significantly reducing their RNA content (typically ~75% of cellular phosphate). 

These results demonstrate the broad applicability and utility of the developed GC-MS 

based biomass composition measurements. 
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MEASUREMENT OF SUGAR MONOMERS OF RNA AND GLYCOGEN 

INCREASE FLUX ESTMATE PRECISION IN 13C-MFA 

Reprinted with permission from: Long CP*, Au J*, Gonzalez JE, Antoniewicz MR 

(2016) 13C metabolic flux analysis of microbial and mammalian systems is enhanced 

with GC-MS measurements of glycogen and RNA labeling. Metab. Eng. 38, 65-72. 

*Equal contribution 

 

3.1 Introduction 

13C metabolic flux analysis (13C-MFA) is a powerful tool for quantifying 

cellular metabolism in a wide range of metabolic engineering and biomedical 

applications (Maciek R. Antoniewicz, 2015a; Young, 2014). A major factor governing 

the accuracy and precision of flux estimates from 13C-MFA is the selection of 

informative isotopic labeling measurements. In most 13C-MFA studies to date, flux 

analysis has been conducted using measurements of isotopic labeling of proteinogenic 

amino acids and/or isotopic labeling of extracted intracellular metabolites measured 

with techniques such as mass spectrometry (MS), tandem mass spectrometry 

(MS/MS), and nuclear magnetic resonance (NMR) (Antoniewicz, 2013a; Antoniewicz 

et al., 2007b; Masakapalli et al., 2014; Truong et al., 2014). Recently, improvements 

in flux precision were also achieved by simultaneously fitting multiple sets of labeling 

measurements from parallel tracer experiments (Crown et al., 2015a). 

In these data sets, however, metabolites derived from the upper half of central 

carbon metabolism (consisting of the upper portion of the glycolysis (EMP) pathway, 

pentose phosphate pathway (PPP), and Entner-Doudoroff (ED) pathway) are greatly 

Chapter 3 
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underrepresented. For example, observability of PPP fluxes in E. coli largely depends 

on accurate measurements of phenylalanine labeling, which is synthesized from 

erythrose 4-phosphate (E4P) and phosphoenolpyruvate (PEP). Although there are 

other metabolites derived from upper metabolism, e.g. histidine and serine, these 

measurements are less informative. In our experience, histidine is difficult to detect 

due to low abundance (Antoniewicz et al., 2007b), and both amino acids are related to 

one-carbon metabolism for which information may be incomplete. This leaves 

phenylalanine as the only relevant metabolite for flux analyses of PPP. In mammalian 

systems, flux analysis is even more challenging given that histidine and phenylalanine 

are not synthesized by mammalian cells, i.e. these are essential amino acids. Thus, 

13C-MFA depends on more distant labeling measurements, for example, of 

intermediates in the lower glycolytic pathway such as 3PG and PEP (Ahn and 

Antoniewicz, 2013). LC-MS and LC-MS/MS based approaches have provided direct 

labeling information on pentose phosphate pathway intermediates and fragments 

(Hanke et al., 2013; Rühl et al., 2012); however, these methods are often costly and 

laborious, as analysis of these intracellular metabolites requires rapid quenching and 

efficient extraction techniques, and in many cases large sample sizes due to low 

concentrations of these metabolites inside cells. 

A recent effort to provide additional labeling data that are more directly related 

to upper metabolism was focused on fragments of nucleosides derived from DNA and 

RNA (Miranda-Santos et al., 2015). Specifically, 31 nucleoside fragments were 

identified and the applicability of these fragments was illustrated in yeast cultures. 

While this method employed GC-MS instead of LC-MS, the presented protocols 

required large sample sizes (1.5 to 100 mL of biomass at OD=3.5) and the labeling 
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data were not solely related to metabolism of PPP, but included other parts of 

metabolism, e.g. TCA cycle and one-carbon metabolism, which further complicated 

data analysis. Other research groups have measured 13C-labeling of RNA, glycogen 

and glycan and demonstrated the value of these measurements for flux analysis (Badur 

et al., 2015; Guzmán et al., 2014; Murphy et al., 2013).  

Our work builds on these previous studies. Specifically, we present here a 

convenient GC-MS based method for measuring isotopic labeling of multiple 

fragments of glucose and ribose derived from glycogen and RNA, respectively, for 

13C-MFA studies. Our approach is less sample-intensive and more informative. A key 

advantage of our approach over that of Miranda-Santos et al. is that the measured 

labeling data are directly related to PPP metabolism, which greatly simplifies data 

analysis and improves flux precision. We demonstrate the reliability of our approach 

in two biological systems: E. coli as a model microbial system and CHO cells as a 

model mammalian system. Specifically, we illustrate that isotopic labeling of glucose 

moiety from glycogen and ribose moiety from RNA permit precise quantification of 

net and exchange fluxes in PPP. We also use this approach to determine PPP fluxes 

during co-utilization of glucose and xylose. Overall, we demonstrate that 

incorporating labeling measurements of glycogen and RNA, which are stable and 

abundant in microbial and mammalian cells, greatly improves flux observability, thus 

paving the way for future applications of this approach in metabolic engineering and 

biomedical research. 
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3.2 Materials and Methods 

3.2.1 Materials 

Chemicals and M9 minimal medium were purchased from Sigma-Aldrich (St. 

Louis, MO). Isotopic tracers were purchased from Cambridge Isotope Laboratories 

(Tewksbury, MA): [1,6-13C]glucose (99.2 % 13C), [1,2-13C]glucose (99.7 %), [1-

13C]glucose (99.5 %), [2-13C]glucose (99.5 %), [3-13C]glucose (99.5 %), [4,5,6-

13C]glucose (99.5 %), and [1,2-13C]xylose (99.2 %). The isotopic enrichment of all 

tracers and the composition of tracer mixtures used in parallel labeling experiments 

were validated by GC-MS analysis as described in (Sandberg et al., 2016) and 

(Cordova and Antoniewicz, 2016). SFM4CHO medium (GE Healthcare Life Sciences 

SH3054901) and DMEM medium (Corning 17-207-CV, without glucose, glutamine, 

and sodium pyruvate) were purchased from Fisher Scientific (Pittsburgh, PA). 

3.2.2 Strains and Culture Conditions 

For E. coli tracer experiments, wild-type E. coli BW21135 and a ΔptsG (Keio 

collection) strain were used. All E. coli strains were purchased from GE Healthcare 

Dharmacon. E. coli was cultured aerobically in M9 minimal medium at 37C in mini-

bioreactors with 10 mL working volume as described previously (Crown et al., 

2015a). For the wild-type experiments, E. coli cultures were inoculated at OD600 of 

0.01. Tracers were added at the beginning of the culture. Cells were harvested (1 mL 

samples) for GC-MS analysis at mid-exponential growth when OD600 was about 0.6. 

For the E. coli ΔptsG tracer experiment, M9 medium was supplemented with 50 

ug/mL of kanamycin (selection marker for the knockout). The culture was inoculated 

at OD600 of 0.01, and [1,2-13C]glucose and [1,2-13C]xylose were added at the 

beginning of the culture, each at a concentration of 10 mM. Cells were harvested (1 
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mL samples) for GC-MS analysis at mid-exponential growth when OD600 was about 

0.6. For CHO cell tracer experiments, CHO-K1 cells previously adapted to serum-free 

suspension culture were used (Valente et al., 2015). CHO cells were cultured in 15 mL 

of SFM4CHO/DMEM (1:1, v/v) medium supplemented with 4 mM glutamine and 1 

mM sodium pyruvate, in vented 125-mL flasks (Corning 431143) in a humidified 5% 

CO2 incubator at 37C with slow shaking (~100 rpm). CHO cell cultures were 

inoculated at approximately 1.0105 cells/mL. Tracers were added as a bolus when 

cell density reached 5.0105 cells/mL. Cells were harvested (4 mL sample for 

hydrolysis of glycogen and RNA, and 6 mL sample for intracellular metabolite 

extraction) for GC-MS analysis after 23.25 h, when cell density was approximately 

1.0106 cells/mL. 

3.2.3 Analytical Methods 

Cell growth of E. coli cultures was monitored by measuring the optical density 

at 600nm (OD600) using a spectrophotometer (Eppendorf BioPhotometer). The 

OD600 values were converted to cell dry weight concentrations using a previously 

determined OD600-dry cell weight relationship for E. coli (1.0 OD600 = 0.31 gDW/L) 

(Long et al., 2016b). After centrifugation (5 min at 14,000 rpm), the supernatant was 

separated from the cell pellet, and the cell pellets were washed twice with glucose-free 

M9 medium. Acetate and xylose concentrations were determined using an Agilent 

1200 Series HPLC (Au et al., 2014). 

Cell growth of CHO cell cultures was monitored by measuring the cell 

concentration and cell viability using a Moxi Z Cell Counter and Moxi Z Cassettes 

Type S (ORFLO Technologies, Ketchum, ID). After centrifugation (2 min at 1,000 

rpm), the supernatant was separated from the cell pellet, and the cell pellets were 



 35 

washed twice with D-PBS (Mediatech, Inc., Manassas, VA). For intracellular 

metabolite extraction of CHO cells, the methanol/chloroform/water extraction method 

described in (Ahn and Antoniewicz, 2013) was followed. Glucose and lactate 

concentrations were determined using YSI 2700 biochemistry analyzer (YSI, Yellow 

Springs, OH). 

3.2.4 Hydrolysis of Glycogen and RNA  

For hydrolysis of glycogen and RNA, the following two-step hydrochloric acid 

hydrolysis procedure was used. First, 50 μL of 6N HCl was added to dry cell pellets 

and the samples were incubated for 30 min at 30 °C. Next, 250 μL of water was added 

(thus diluting the acid to 1 N) and samples were incubated for 60 min at 110 °C. The 

samples were then cooled to room temperature, neutralized with 50 μL of 5 N NaOH, 

and dried under air flow at 65°C. The development of this method was recently 

described in (McConnell and Antoniewicz, 2016). 

3.2.5 Derivatization of Glucose and Ribose 

Glucose and ribose released from hydrolysis of biomass (i.e. from glycogen 

and RNA, respectively) were derivatized using the aldonitrile propionate 

derivatization method described in (Antoniewicz et al., 2011). Briefly, 50 μL of 2 wt% 

hydroxylamine hydrochloride in pyridine was added to dried samples, which were 

then incubated for 60 min at 90°C. Next, 100 μL of propionic anhydride was added 

followed by incubation at 60°C for 30 min. The samples were then immediately 

transferred to injection vials for GC-MS analysis.  
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3.2.6 Gas Chromatography-Mass Spectrometry 

GC-MS analysis was performed on an Agilent 7890B GC system equipped 

with a DB-5MS capillary column (30 m, 0.25 mm i.d., 0.25 µm-phase thickness; 

Agilent J&W Scientific), connected to an Agilent 5977A Mass Spectrometer operating 

under ionization by electron impact (EI) at 70 eV. Helium flow was maintained at 1 

mL/min. The source temperature was maintained at 230°C, the MS quad temperature 

at 150°C, the interface temperature at 280°C, and the inlet temperature at 250°C. GC-

MS analysis of tert-butyldimethylsilyl (TBDMS) derivatized proteinogenic amino 

acids was performed as described in (Leighty and Antoniewicz, 2013). GC-MS 

analysis of TBDMS derivatized intracellular metabolites was performed as described 

in (Ahn and Antoniewicz, 2011). For GC-MS analysis of glucose and ribose, 1 L of a 

derivatized sample was injected at 1:2 or 1:10 split ratio. The column was started at 

80°C and held for 2 min, increased to 280°C at 10°C/min, and held for 12 min. The 

m/z 173 and m/z 370 fragments of the glucose derivative (containing the last two and 

first five C-atoms of glucose, respectively (Antoniewicz et al., 2011)), and the m/z 173 

and m/z 284 fragments of the ribose derivative (containing the last two and first four 

C-atoms of ribose, respectively (Long and Antoniewicz, 2014b)), were measured in 

single ion monitoring. Mass isotopomer distributions were obtained by integration 

(Antoniewicz et al., 2007b) and corrected for natural isotope abundances (Fernandez 

et al., 1996). 

3.2.7 Metabolic Network Models and 13C-Metabolic Flux Analysis 

The metabolic network models used for 13C-MFA in this study are provided in 

Appendix B. For E. coli, the full model described in (Crown et al., 2015a) was used, 

as well as a simplified model containing only the upper portion of central carbon 
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metabolism. For CHO cells, the model described in (Ahn and Antoniewicz, 2013) was 

used. All 13C-MFA calculations were performed using the Metran software (Yoo et al., 

2008), which is based on the elementary metabolite units (EMU) framework 

(Antoniewicz et al., 2007a). Fluxes were estimated by minimizing the variance-

weighted sum of squared residuals (SSR) between the experimentally measured and 

model predicted mass isotopomer distributions using non-linear least-squares 

regression (Antoniewicz et al., 2006). For integrated analysis of parallel labeling 

experiments, the data sets were fitted simultaneously to a single flux model as 

described in (Maciek R. Antoniewicz, 2015a; Leighty and Antoniewicz, 2012b). Flux 

estimation was repeated 10 times starting with random initial values for all fluxes to 

find a global solution. At convergence, accurate 68% and 95% confidence intervals 

were computed for all estimated fluxes by evaluating the sensitivity of the minimized 

SSR to flux variations (Antoniewicz et al., 2006).  

To model fractional labeling of metabolites, G-value parameters were also 

included in 13C-MFA (Maciek R. Antoniewicz, 2015b). The G-value represents the 

fraction of a metabolite pool that is produced during the labeling experiment, while 1-

G represents the fraction that is naturally labeled, i.e. from the inoculum. By default, 

one G-value parameter was included for each measured metabolite in each data set. 

Reversible reactions were modeled as separate forward and backward fluxes. Net and 

exchange fluxes were determined as follows: vnet = vf-vb; vexch = min(vf, vb). For visual 

representation of exchange fluxes, the exchange fluxes were rescaled as follows: 

exchange flux (%) = 100%  vexch / (100 + vexch). 
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3.2.8 Goodness-of-Fit Analysis 

To determine the goodness-of-fit, 13C-MFA fitting results were subjected to a 

2-statistical test. In short, assuming that the model is correct and data are without 

gross measurement errors, the minimized SSR is a stochastic variable with a 2-

distribution (Antoniewicz et al., 2006). The number of degrees of freedom is equal to 

the number of fitted measurements n minus the number of estimated independent 

parameters p. The acceptable range of SSR values is between 2
α/2(n-p) and 2

1-α/2(n-

p), where α is a certain chosen threshold value, for example 0.05 for 95% confidence 

interval. 

3.3 Results and Discussion 

3.3.1 Measuring Glycogen and RNA Labeling with GC-MS 

Glycogen and RNA are abundant components of microbial and mammalian 

biomass. The glucose moiety of glycogen is derived from the glycolytic intermediate 

glucose-6-phosphate (G6P), and the ribose moiety of RNA is derived from the PPP 

intermediate ribose-5-phosphate (R5P). Here, we present a convenient procedure for 

measuring the labeling of glucose and ribose from glycogen and RNA using GC-MS 

for applications in 13C-MFA. To observe the sugar monomers, the polymers are first 

hydrolyzed with hydrochloric acid and then derivatized as shown in Figure 3.1. 

Previously, we validated that this approach is selective for detecting the stable biomass 

components glycogen and RNA, rather than intracellular metabolites (Long and 

Antoniewicz, 2014b). For GC-MS analysis, we use the aldonitrile pentapropionate 

derivatization method that generates two reliable GC-MS fragments for each sugar. 

The first fragment, m/z 173, contains the last two carbons of each sugar, i.e. C5+C6 of 

glucose and C4+C5 of ribose. The second larger fragment contains the first five 
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carbons of glucose (C1-C5, m/z 370), and the first four carbons of ribose (C1-C4, m/z 

284). The resulting positional labeling information provided by these fragments is 

critical for precise flux analysis, as is demonstrated in the next sections. The ribose 

and glucose peaks are clearly identifiable in the chromatograms as shown in Figures 

1B and 1C for E. coli and CHO cells, respectively. For CHO cells, we also detected 

mannose and galactose peaks (Figure 3.1C), which could be useful for other 

applications such as glycan analysis (Badur et al., 2015). 
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Figure 3.1:   GC-MS analysis of glycogen and RNA labeling. A) The biopolymers 

glycogen and RNA are first broken down into the respective sugar 

monomers glucose and ribose by acid hydrolysis. The sugars are then 

subjected to aldonitrile propionate derivatization for subsequent GC-MS 

analysis. Two fragments of each species are measured to provide 

positional labeling information. B) Total ion chromatogram from GC-MS 

analysis of sugars from hydrolyzed E. coli, and C) CHO cells. Peaks 

corresponding to different sugar monomers are clearly resolved. 

3.3.2  Glycogen and RNA Labeling Data Improve Resolution of PPP Fluxes in 

E. coli 

To demonstrate that glycogen and RNA labeling data can improve flux 

resolution, we first applied this approach to E. coli as a model microbial system. 13C-

MFA of E. coli currently relies on measurements of protein-bound amino acids. To 

assess the complementarity of glycogen and RNA measurements with amino acid 
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measurements, a test case was performed using the tracer [1,6-13C]glucose and 

exponentially growing wild-type E. coli. In preliminary studies, we identified [1,6-

13C]glucose as a promising tracer for 13C-MFA with good performance throughout 

central carbon metabolism. After performing the tracer experiment, isotopic labeling 

of amino acids from hydrolyzed biomass, as well as glucose and ribose moieties of 

glycogen and RNA, were measured by GC-MS. Fluxes were then estimated, first 

using only the amino acid labeling data, and then using the amino acid data along with 

the glycogen and RNA data. The flux results are summarized in Figure 3.2. 

Acceptable fits were obtained in all cases, assuming a constant measurement error of 

0.3 mol% for all GC-MS measurements, demonstrating that all data were in good 

agreement. Figure 3.2A shows the estimated net fluxes and Figure 3.2B shows the 

68% and 95% confidence intervals of several key fluxes in central carbon metabolism. 

Importantly, the addition of glycogen and RNA labeling data significantly improved 

the precision of fluxes in upper glycolysis (e.g. PGI flux) and PPP (e.g. oxPPP, TKT, 

TAL fluxes). The confidence intervals of these fluxes were improved by 4-fold when 

glycogen and RNA measurements were included (Figure 3.2B). 
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Figure 3.2:   13C metabolic flux analysis of E. coli metabolism using amino acid, 

glycogen and RNA labeling data from a [1,6-13C]glucose tracer 

experiment. A) Estimated flux map for E. coli central carbon metabolism. 

Fluxes were determined by simultaneously fitting amino acid (AA), 

glycogen (Glg), and RNA labeling data. White arrows represent outflux 

to biomass. B) Comparison of flux confidence intervals obtained from 
13C-MFA using only amino acid labeling data, and amino acid labeling 

data combined with glycogen and RNA data. The 68% and 95% flux 

confidence intervals are shown for eight representative metabolic fluxes 

in central carbon metabolism: phosphoglucose isomerase (v2; PGI); 

oxidative pentose phosphate pathway (v9; oxPPP); Entner-Doudoroff 

pathway (v18; ED); transketolase (v14; TKT); transaldolase (v16; TAL); 

citrate synthase (v21; TCA); PEP carboxylase (v33; PPC); glyoxylate 

shunt (v29; Glyox). 

3.3.3 Estimation of Net and Exchange Fluxes in E. coli Upper Metabolism with 

Glycogen and RNA Data 

Next, we evaluated if glycogen and RNA data alone (i.e. without amino acid 

data) could be used for reliable flux estimation in the upper half of metabolism, 

defined here to include the upper portion of the glycolysis (EMP) pathway, pentose 

phosphate pathway (PPP), and Entner-Doudoroff (ED) pathway. For this analysis we 

used a simplified network model shown in Figure 3.3A. Of the commonly measured 

amino acids, only phenylalanine could be used in this case (see Introduction section). 

To demonstrate the usefulness of glycogen and RNA measurements, a novel parallel 

tracer experiment scheme was employed here. Specifically, three mixtures of tracers 

were used (Ahn et al., 2016): [1-13C]glucose + [4,5,6-13C]glucose (1:1), [2-

13C]glucose + [4,5,6-13C]glucose (1:1), and [3-13C]glucose + [4,5,6-13C]glucose (1:1). 

These tracers were selected based on the approaches for optimal tracer experiment 

design described in (Antoniewicz, 2013c; Maciek R. Antoniewicz, 2015a; Crown and 

Antoniewicz, 2012). 
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After performing the parallel labeling experiments, isotopic labeling of 

phenylalanine from hydrolyzed proteins, as well as the glucose and ribose moieties of 

glycogen and RNA, were measured by GC-MS. Flux analysis was then performed 

three times: first, using only phenylalanine labeling data (using fragments m/z 302, 

308 and 336); second, using only glycogen and RNA labeling data; and third, using 

phenylalanine, glycogen and RNA labeling data together. All fits were statistically 

acceptable, assuming a constant measurement error of 0.3 mol% for all GC-MS 

measurements. The flux results are shown in Figure 3.3. The differences in flux 

precision for the different data sets are shown in Figure 3.3B, where for most reactions 

the glycogen and RNA measurements performed better than phenylalanine 

measurements alone, and the combined fits provided the most precise flux estimates. 

This was the case for all of the reactions except for the ED flux, where glycogen and 

RNA produced larger confidence intervals than phenylalanine. This is because while 

phenylalanine has some observability of the products of the ED reactions (i.e. PEP 

from GAP), glycogen and RNA are upstream and thus have little information about 

that flux. As shown in Figure 3.3C, the addition of glycogen and RNA measurements 

allowed good estimation of exchange fluxes. These exchange fluxes are notoriously 

difficult to estimate with amino acid labeling data alone across a wide spectrum of 

glucose tracers (Crown et al., 2015a). The PGI exchange flux was unobservable using 

only phenylalanine, but with the addition of glycogen and RNA measurements it was 

estimated with a narrow confidence interval. Dramatic improvements in precision 

were also observed for the exchange fluxes of transketolase (TKT) and transaldolase 

(TAL) half reactions leading to fructose-6-phosphate (F6P). Estimates were not 

improved in other half reactions.  
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Figure 3.3:   13C metabolic flux analysis of upper metabolism of E. coli using 

phenylalanine, glycogen and RNA labeling data from three parallel 

labeling experiments. A) Estimated flux map for E. coli determined by 

simultaneously fitting phenylalanine (Phe), glycogen (Glg), and RNA 

labeling data. White arrows represent outflux to biomass. B) Comparison 

of flux confidence intervals obtained from 13C-MFA using only 

phenylalanine labeling data, only glycogen and RNA labeling data, and 

all three metabolites. The 68% and 95% flux confidence intervals are 

shown for five representative metabolic fluxes: phosphoglucose 

isomerase (v2; PGI); oxidative pentose phosphate pathway (v9; oxPPP); 

Entner-Doudoroff pathway (v18; ED); transketolase (v14; TKT); 

transaldolase (v16; TAL). C) Comparison of confidence intervals for 

exchange fluxes estimated using different data sets. Note that in both (B) 

and (C), TKT and TAL refer to the terminal half reactions of 

transketolase and transaldolase involving fructose 6-phosphate (F6P). 

3.3.4 Elucidation of Glucose and Xylose Co-Utilization Using Glycogen and 

RNA Data 

To demonstrate a novel and practical application of our methodology, we 

applied it to elucidate the metabolism of E. coli ΔptsG mutant, which has the ability to 

co-utilize glucose and xylose (Chiang et al., 2013; Li et al., 2007). A tracer experiment 

was performed using a 1:1 molar ratio of [1,2-13C]glucose and [1,2-13C]xylose. After 

performing the labeling experiment, isotopic labeling of phenylalanine, glycogen, and 

RNA were measured by GC-MS. 

13C-MFA was then performed three times as described above using different 

data sets. All fits were statistically acceptable, assuming a constant measurement error 

of 0.3 mol% for all GC-MS measurements. The flux results are shown in Figure 3.4, 

and the differences in flux precision for the different data sets are shown in Figure 

3.4B. For 13C-MFA, we did not include the measured glucose and xylose uptake rates 

as constraints; instead, xylose uptake rate was fixed at 100 and the relative glucose 

uptake rate was estimated by 13C-MFA so that it could be compared to the measured 



 47 

rate. Overall, including glycogen and RNA labeling data resulted in significantly more 

precise flux estimates, i.e. narrower confidence intervals, compared to using 

phenylalanine data alone (Figure 3.4B). Importantly, the addition of glycogen and 

RNA allowed the glucose uptake rate to be determined with high precision, which was 

not possible with phenylalanine data (Figure 4B). Based on 13C-MFA results the 

glucose-to-xylose uptake ratio was 0.23 ± 0.02, which matches perfectly with the 

measured ratio of 0.22 (i.e. the measured glucose uptake rate was 1.93 mmol/gDW/hr 

and the measured xylose uptake rate was 8.69 mmol/gDW/hr). Previous studies on 

glucose and xylose co-utilization have relied on intracellular measurements and amino 

acid measurements (Aristilde et al., 2015; Cordova et al., 2016). This example clearly 

illustrates the value of adding glycogen and RNA labeling data for precise analysis of 

glucose and xylose co-utilization. 
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Figure 3.4:   13C metabolic flux analysis of upper metabolism for E. coli strain ΔptsG 

that co-utilizes glucose and xylose. A) Estimated flux map determined by 

simultaneously fitting phenylalanine (Phe), glycogen (Glg), and RNA 

labeling data. White arrows represent outflux to biomass. B) Comparison 

of flux confidence intervals obtained from 13C-MFA using only 

phenylalanine labeling data, only glycogen and RNA labeling data, and 

all three metabolites. The 68% and 95% flux confidence intervals are 

shown for six key metabolic fluxes: relative glucose uptake (v1; Gluc); 

phosphoglucose isomerase (v2; PGI); oxidative pentose phosphate 

pathway (v9; oxPPP); Entner-Doudoroff pathway (v18; ED); transketolase 

(v14; TKT); transaldolase (v16; TAL). 
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3.3.5 Estimation of Net and Exchange Fluxes in CHO Cell Upper Metabolism 

with Glycogen and RNA Data 

Lastly, we applied the methodology to analyze the metabolism of CHO cells as 

a model mammalian system. To demonstrate the efficacy of glycogen and RNA 

labeling data for 13C-MFA of mammalian cells, the same parallel tracer scheme was 

used as described in section 3.3.3. CHO cells were grown in serum-free suspension 

culture to the mid-exponential phase (~0.5106 cells/mL), at which point tracers were 

introduced as a bolus. After ~24 hours, cells were harvested for analysis of 3PG and 

PEP labeling (intracellular metabolites), and glycogen and RNA labeling by GC-MS. 

Flux analysis was then performed three times: first, using only 3PG and PEP 

labeling data, representing the current standard of using intracellular metabolites for 

13C-MFA; second, using only glycogen and RNA labeling data; and third, using 3PG, 

PEP, glycogen and RNA labeling data together. All fits were statistically acceptable, 

assuming a measurement error of 0.3 mol% for glycogen and RNA labeling 

measurements and a measurement error of 0.4 mol% for 3PG and PEP labeling 

measurements that were more noisy. The flux results are shown in Figure 3.5. As 

shown in Figure 3.5B, the confidence intervals of fluxes in upper metabolism were 

largest when fluxes were estimated with 3PG and PEP data alone, were reduced when 

glycogen and RNA data were used, and were greatly reduced when all measurements 

were used for 13C-MFA. A similar trend was observed for confidence intervals of 

exchange fluxes (Figure 3.5C), where the precision of TKT and TAL exchange fluxes 

was greatly improved when all four metabolites were fitted at the same time. Together, 

these results demonstrate that glycogen and RNA labeling data are complementary to 

3PG and PEP labeling measurements for estimating net and exchange fluxes in upper 

metabolism of CHO cells. 
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Figure 3.5:   13C metabolic flux analysis of upper metabolism of CHO cells using 3PG, 

PEP, glycogen and RNA labeling data from three parallel labeling 

experiments. A) Estimated flux map determined by simultaneously fitting 

3PG, PEP, glycogen (Glg), and RNA labeling data. White arrows 

represent outflux to biomass. B) Comparison of flux confidence intervals 

obtained from 13C-MFA using only 3PG and PEP labeling data, only 

glycogen and RNA labeling data, and all four metabolites. The 68% and 

95% flux confidence intervals are shown for four representative 

metabolic fluxes: phosphoglucose isomerase (v2; PGI); oxidative pentose 

phosphate pathway (v8; oxPPP); transketolase (v13; TKT); and 

transaldolase (v15; TAL). C) Comparison of confidence intervals for 

exchange fluxes estimated using different data sets. Note that in both (B) 

and (C), TKT and TAL refer to the terminal half reactions of 

transketolase and transaldolase involving fructose 6-phosphate (F6P). 

3.3.6 Determining Turnover Rates of Glycogen and RNA                     

In addition to determining intracellular fluxes, glycogen and RNA labeling 

data can also be used to determine turnover rates of glycogen and RNA(Murphy et al., 

2013). For this purpose, the estimated G-values for glycogen and RNA are first used 

to calculate an apparent labeling rate for each macromolecule. This apparent labeling 

rate reflects the generation of new biomass (i.e. growth) as well as turnover (i.e. 

breakdown and regeneration) of the macromolecules. This relationship is described 

by:  

Apparent labeling rate = -ln(1-G)/t = growth rate + turnover rate   

 

Here, G is the estimated G-value of glycogen (or RNA) from 13C-MFA, and t 

is the length of the labeling experiment (in this study, t = 23.25 h). To illustrate this 

approach for determining turnover rates of glycogen and RNA, the growth rate of 

CHO cells was determined directly by cell counting (Figure 6A), and the apparent 

labeling rates were determined from the estimated G-values (Figure 6B). Based on cell 



 52 

counting, a specific cell growth rate of 0.035 ± 0.001 h-1 was determined, and from on 

the estimated G-values for glycogen (G = 0.65±0.01) and RNA (G = 0.61±0.01), 

apparent labeling rates of 0.045±0.001 and 0.040±0.001 h-1 were determined for 

glycogen and RNA, respectively. Thus, the turnover rate of glycogen was 1.0% per 

hour (i.e. 0.045 – 0.035 = 0.010 h-1), and the turnover rate of RNA was 0.5% per hour 

(i.e. 0.040 – 0.035 = 0.005 h-1).  

 

 

Figure 3.6:   Determining turnover rates of glycogen and RNA in CHO cells. A) Time 

profile of viable cell density of CHO cells in suspension culture. B) 

Comparison of the growth rate of CHO cells (determined by cell 

counting) and the apparent labeling rates of glycogen (Glg) and RNA 

(determined from estimated G-values). The differences between the 

growth rate of CHO cells and the apparent labeling rates are attributable 

to turnover of glycogen and RNA. Error bars represent mean ± SD (n=3, 

biological replicates from parallel labeling experiments). 
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3.4 Conclusions 

In this work, we have presented an approach for GC-MS based analysis of 

isotopic labeling of glycogen and RNA, and demonstrated the usefulness of these 

measurements for 13C-MFA. Compared to alternative approaches, our method requires 

relatively little biomass (<0.2 mg of dry biomass for E. coli, and <4106 CHO cells), 

and provides multiple fragments of glucose and ribose moieties with valuable 

information regarding metabolic fluxes in upper metabolism, including glycolysis and 

pentose phosphate pathway. Additionally, we demonstrate that these measurements 

are complementary to other commonly used measurements for 13C-MFA, including 

amino acids in microbial systems and intracellular metabolites in mammalian systems. 

We also demonstrate that glycogen and RNA labeling data are valuable for estimating 

precise glucose and xylose uptake rates when both substrates are co-utilized.  

Beyond facilitating more precise flux estimates in combination with other 

common measurements, glycogen and RNA measurements provide unique 

observability of net and exchange fluxes in upper metabolism. In E. coli, these 

measurements are sufficient for precise quantification of fluxes in a simplified model 

of upper central carbon metabolism, performing better and with excellent 

complementarity to current measurements. In CHO cells, these measurements perform 

similarly to the commonly measured intracellular metabolites, which require much 

more laborious sample preparations and larger sample sizes. Similarly, we found 

strong synergy between these measurements and other commonly used measurements 

for 13C-MFA. It is important to note that glycogen and RNA measurements allow 

significant improvements in the precision of exchange fluxes that are often 

unobservable with other commonly used measurements (Crown et al., 2015a). Given 

the convenience of measuring glycogen and RNA labeling and the high information 
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content of these measurements for resolving metabolic fluxes, we believe that the 

approach presented in this study will be broadly applied in future 13C-MFA studies. 

3.5 Author Contributions 

Research was conceived of by CPL, JA, and MRA, and overseen by MRA. 

CPL, JEG, and JA performed the experiments and data analysis for wild-type E. coli, 

E. coli ΔptsG, and CHO cells, respectively. All authors contributed to writing the 

published article.  
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OPTIMAL TRACERS FOR PARALLEL LABELING EXPERIMENTS AND 
13C METABOLIC FLUX ANALYSIS: A NEW PRECISION AND SYNERGY 

SCORING SYSTEM 

Reprinted with permission from: Crown SB*, Long CP*, Antoniewicz MR (2016) 

Optimal tracers for parallel labeling experiments and 13C metabolic flux analysis: A 

new precision and synergy scoring system. Metab. Eng. 38, 10-18. 

*Equal contribution 

4.1 Introduction 

The significance of a judicious selection of isotopic tracers for 13C metabolic 

flux analysis (13C-MFA) has been known since the early years of 13C-MFA (Follstad 

and Stephanopoulos, 1998; Mollney et al., 1999; Wittmann and Heinzle, 2001). In 

recent years, in the quest for ever increasing accuracy and precision in 13C-MFA, 

parallel labeling experiments have emerged as the new state-of-the-art technique 

(Antoniewicz, 2015a; Antoniewicz, 2015b; Crown and Antoniewicz, 2013a; Crown 

and Antoniewicz, 2013b). This powerful flux analysis approach presents new 

opportunities for metabolic engineering studies; however, it also brings with it new 

challenges in the identification of optimal tracers. Significantly, parallel labeling 

experiments require careful selection of complementary tracers that take full 

advantage of the additional experimental effort that is required (Antoniewicz, 2013a). 

A bottleneck in the selection of optimal tracers is the lack of a systematic approach to 

evaluate the results of in silico simulations and in vivo labeling experiments to identify 

complementary tracers. For example, while it is relatively straightforward to 

determine the optimal tracer for a single flux of interest in a model, the question is 

Chapter 4 
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more challenging when multiple fluxes must be estimated with high precision (Crown 

and Antoniewicz, 2012). Often, selecting a particular tracer that improves the 

precision of one flux in the model results in decreased precision of another flux 

(Crown et al., 2012). Parallel labeling experiments offer a potential solution to this 

problem by tailoring specific isotopic tracers for different parts of metabolism. 

However, it is still not clear how optimal tracers should be selected for parallel 

labeling experiments.  

One of the predominant methods for tracer selection and experiment design is 

based on a grid-search strategy combined with the use of linearized statistics. The 

process involves calculating the parameter covariance matrix for various isotopic 

tracers of interest. For this analysis the following information is needed: an assumed 

network model, a set of fluxes (measured or assumed), and an assumed measurement 

set. To compare between different tracers and determine which tracer is optimal for a 

given system, the D-optimality criterion is commonly applied (Mollney et al., 1999). 

The D-optimality criterion is related to the covariance matrix of the free fluxes and 

provides a measure of single parameter confidence intervals and correlations between 

estimated parameters. A relative information score for each tracer is then determined 

from the D-optimality criterion, given an assumed reference tracer experiment. The 

tracer scheme that produces the highest information score is then selected as the 

optimal tracer (Arauzo-Bravo and Shimizu, 2003; Noh and Wiechert, 2006; Yang et 

al., 2006). A drawback of this approach is that it inherently relies on the assumption 

that the underlying non-linear 13C-isotopomer balances can be approximated by 

linearization near the optimal solution, which is not always valid (Antoniewicz et al., 

2006). 
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Metallo et al. (Metallo et al., 2009) introduced another approach for tracer 

selection using a precision scoring system that captures the nonlinear behavior of 13C-

MFA. The suggested precision scoring method relies on calculating accurate nonlinear 

confidence intervals for free fluxes (Antoniewicz et al., 2006). The method computes a 

score for each flux, based on the upper and lower bounds for the confidence intervals 

and using a flux weighting parameter. If a flux has a score of zero, the flux is 

unidentifiable; if the score is one, the flux is optimally identifiable. The precision 

score is then calculated as the sum of the scores for each flux. Similar to the grid-

search approach, precision scores are compared for various tracers of interest and the 

tracer that has the highest score is selected as optimal. More recently, Walther et al. 

(Walther et al., 2012) proposed a genetic algorithm for tracer selection. Despite 

addressing the nonlinearities of flux confidence intervals, the proposed approach 

potentially introduces biases due to normalization of flux confidence intervals with 

respect to flux values (i.e. pathways with small fluxes values such as ED pathway and 

glyoxylate shunt were weighted more heavily than pathways with large fluxes such as 

glycolysis, PP pathway and TCA cycle), as well as the method’s reliance on 

empirically derived parameters to determine scores. 

In this work, we propose a new precision scoring metric that captures the 

nonlinear behavior of flux confidence intervals, i.e. similar to the methods by Metallo 

et al. and Walther et al., but does not rely on empirically derived parameters and 

avoids potential biases due to flux normalization. We also propose a new synergy 

scoring metric that allows, for the first time, optimal tracers to be selected for parallel 

labeling experiments. Through the use of these two new scoring metrics we have 
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identified new optimal tracers for high-resolution 13C-MFA studies and have validated 

the performance of these tracers experimentally.  

4.2 Theory 

4.2.1 The Precision Score 

Here, we propose the following precision scoring metric to evaluate the 

precision of estimated fluxes: 

𝑃 =
1

𝑛
∑ 𝑝𝑖

𝑛

𝑖=1

 

with 

𝑝𝑖 = (
(𝑈𝐵95,𝑖 − 𝐿𝐵95,𝑖)𝑟𝑒𝑓

(𝑈𝐵95,𝑖 − 𝐿𝐵95,𝑖)exp

)

2

 

The precision score (P) for a given tracer experiment is calculated as the 

average of individual flux precision scores (pi) for n number of fluxes of interest. An 

individual flux precision score is calculated as the squared ratio of the 95% flux 

confidence interval obtained for a reference tracer experiment (“ref”) relative to the 

tracer experiment that is being evaluated (“exp”). An individual flux precision score is 

thus roughly equivalent to the fold-improvement in flux variance relative to the 

reference tracer experiment, i.e. in linear statistics: variance = (standard deviation)2. 

An individual flux precision score of 1.0 indicates that the flux precision for a 

particular tracer experiment is the same as for the reference tracer experiment. A 

precision score greater than one is desirable, as this means that the tracer experiment 

results in a narrower confidence interval compared to the reference experiment. Since 

individual flux precision scores can vary from flux to flux, i.e. a tracer experiment 



 59 

may perform better than the reference for some fluxes and worse for other fluxes, the 

ultimate gauge of tracer performance is the total precision score for the fluxes of 

interest. A precision score greater than one indicates that the tracer experiment on a 

whole outperforms the reference tracer experiment. The larger the precision score, the 

more substantial the increase in flux precision is compared to the reference tracer 

experiment. To make sure that a handful precision scores don’t dominate the total 

precision score, we set a maximum value of 9 for any individual precision score when 

evaluating single tracer experiments (and 30 for parallel labeling experiments). 

If deemed necessary, the precision score can be tailored further by applying 

different weighting factors, wi, for different fluxes of interest: 

𝑃 = (∑ 𝑤𝑖 ∗ 𝑝𝑖

𝑛

𝑖=1

) (∑ 𝑤𝑖

𝑛

𝑖=1

)⁄  

4.2.2 The Synergy Score 

In addition to the new precision scoring metric described above, we also 

propose a new synergy scoring metric that quantifies the increase in flux information 

obtained as a result of conducting multiple parallel labeling experiments and 

simultaneously fitting the data for 13C-MFA: 

𝑆 =
1

𝑛
∑ 𝑠𝑖

𝑛

𝑖=1

 

with 

𝑠𝑖 =
𝑝𝑖,1+2

𝑝𝑖,1 + 𝑝𝑖,2
 

The synergy score (S) is calculated as the average of individual flux synergy 

scores (si). An individual flux synergy score is calculated by dividing the precision 
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score for the parallel labeling experiment, denoted by pi,1+2, by the sum of the 

precision scores for the respective individual experiments, pi,1 and pi,2. Note that this 

definition of the synergy score can be expanded for more than two parallel labeling 

experiments by adding additional terms in the denominator. 

An individual flux synergy score of 1.0 indicates that no additional information 

is gained by fitting multiple parallel labeling experiments simultaneously. Intuitively, 

by performing N number of parallel labeling experiments the precision score is 

expected to increase by about N-fold. For non-linear problems such as 13C-MFA, the 

synergy score can be smaller than one, or greater than one. A synergy score greater 

than 1.0 indicates a greater than expected gain in flux information, while a synergy 

score of 1.0 or less indicates a smaller than expected improvement in flux precision. 

As with the precision scores, synergy scores can vary from flux to flux. For parallel 

labeling experiments it is desirable to have a total synergy greater than one, as this 

indicates that the global flux resolution is improved synergistically through the use of 

complementary tracers. 

Note that the synergy score can also be expressed as: 

𝑆 =
1

𝑛
∑

(𝑈𝐵95,𝑖 − 𝐿𝐵95,𝑖)1+2

−2

(𝑈𝐵95,𝑖 − 𝐿𝐵95,𝑖)1

−2
+ (𝑈𝐵95,𝑖 − 𝐿𝐵95,𝑖)2

−2

𝑛

𝑖=1

 

From the above equation it is clear that the synergy score is independent of the 

reference tracer experiment. Similar to the precision score, the synergy score can be 

tailored further by applying different weighting factors, wi, for different fluxes of 

interest: 

𝑆 = (∑ 𝑤𝑖 ∗ 𝑠𝑖

𝑛

𝑖=1

) (∑ 𝑤𝑖

𝑛

𝑖=1

)⁄  
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4.3 Materials and Methods 

4.3.1 Materials 

Media and chemicals were purchased from Sigma-Aldrich (St. Louis, MO). 

Tracers were purchased from Cambridge Isotope Laboratories: [1-13C]glucose (99.6 

atom% 13C), [1,2-13C]glucose (99.8%), [1,6-13C]glucose (99.2%), and [U-13C]glucose 

(99.3%). M9 minimal medium was used for all tracer experiments. All solutions were 

sterilized by filtration. 

4.3.2 Strain and Growth Conditions 

E. coli BW25113 (GE Healthcare Dharmacon OEC5042) was used in this 

study. Four parallel labeling experiments were performed with 2 g/L of [1,2-

13C]glucose; [1,6-13C]glucose; 51.5% [1,2-13C]glucose + 48.5% [1,6-13C]glucose; and 

81% [1-13C]glucose + 19% [U-13C]glucose, as described previously (Crown et al., 

2015a). The isotopic purity of glucose tracers and the composition of glucose tracer 

mixtures was validated by GC-MS. Cells were grown in aerated mini-bioreactors with 

a working volume of 10 mL at 37°C (Leighty and Antoniewicz, 2013). The cultures 

were inoculated from the same pre-culture that was grown overnight in a shaker flask 

at 37°C. 

4.3.3 Analytical Methods 

Samples were collected during the exponential growth phase to monitor cell 

growth and glucose consumption. Cell growth was monitored by measuring the optical 

density at 600nm (OD600) using a spectrophotometer (Eppendorf BioPhotometer). 

The OD600 values were converted to cell dry weight concentrations using a pre-

determined OD600-dry cell weight relationship for E. coli (1.0 OD600 = 0.32 gDW/L) 
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(Long et al., 2016b). After centrifugation, the supernatant was separated from the 

biomass pellet and glucose concentration was measured with a YSI 2700 biochemistry 

analyzer (YSI, Yellow Springs, OH). Acetate was measured by HPLC (Au et al., 

2014).  

4.3.4 Gas Chromatography-Mass Spectrometry 

GC-MS analysis was performed on an Agilent 7890B GC system equipped 

with a DB-5MS capillary column (30 m, 0.25 mm i.d., 0.25 µm-phase thickness; 

Agilent J&W Scientific), connected to an Agilent 5977A Mass Spectrometer operating 

under ionization by electron impact (EI) at 70 eV. Helium flow was maintained at 1 

mL/min. The source temperature was maintained at 230°C, the MS quad temperature 

at 150°C, the interface temperature at 280°C, and the inlet temperature at 250°C. GC-

MS analysis of tert-butyldimethylsilyl (TBDMS) derivatized proteinogenic amino 

acids was performed as described in (Long and Antoniewicz, 2014b). Labeling of 

glucose was determined using the aldonitrile propionate derivatization method 

described in (Antoniewicz et al., 2011). 

4.3.5 Metabolic Network Model and 13C-Metabolic Flux Analysis 

The metabolic network model used for 13C-MFA was described previously 

(Crown et al., 2015a), and is shown in Appendix Table B.1 (i.e., same as full model 

used in Chapter 3). The model includes all major metabolic pathways of central 

carbon metabolism, lumped amino acid biosynthesis reactions, and a lumped biomass 

formation reaction. The model also accounts for dilution of intracellular labeling from 

incorporation of unlabeled CO2 (Leighty and Antoniewicz, 2012). All simulations and 

13C-MFA calculations were performed using the Metran software (Yoo et al., 2008) 



 63 

which is based on the elementary metabolite units (EMU) framework (Antoniewicz et 

al., 2007a). Fluxes were estimated by minimizing the variance-weighted sum of 

squared residuals (SSR) between the measured and model predicted mass isotopomer 

distributions using non-linear least-squares regression (Antoniewicz et al., 2006). For 

integrated analysis of parallel labeling experiments, the data sets were fitted 

simultaneously to a single flux model as described in (Leighty and Antoniewicz, 

2013). Flux estimation was repeated 10 times starting with random initial values for 

all fluxes to find a global solution.  

Three methods were used to calculate 95% confidence intervals of fluxes. The 

first method, described in (Antoniewicz et al., 2006), calculates accurate nonlinear 

95% confidence intervals by evaluating the sensitivity of the minimized SSR to flux 

variations. The second method is based on Monte Carlo simulations, where random 

errors from a normal distribution (here we assumed 0.4 mol% measurement errors for 

all GC-MS measurements) are introduced and flux estimation is repeated with the 

corrupted data sets. In this work, we have performed 1,000 Monte Carlo simulations to 

determine 95% confidence intervals of fluxes. The third method is based on linearized 

statistics, where 95% confidence intervals of fluxes are obtained from the parameter 

covariance matrix (Mollney et al., 1999).    

To model fractional labeling of biomass amino acids G-value parameters were 

also included in 13C-MFA. As described previously (Antoniewicz et al., 2007b), the 

G-value represents the fraction of a metabolite pool that is produced during the 

labeling experiment, while 1-G represents the fraction that is naturally labeled (e.g. 

from inoculum). By default, one G-value parameter was included for each measured 

amino acid in each data set. Reversible reactions were modeled as separate forward 
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and backward fluxes. Net and exchange fluxes were determined as follows: vnet = vf-

vb; vexch = min(vf, vb). To determine the goodness-of-fit, 13C-MFA fitting results were 

subjected to a 2-statistical test. In short, assuming that the model is correct and data 

are without gross measurement errors, the minimized SSR is a stochastic variable with 

a 2-distribution (Antoniewicz et al., 2006). The number of degrees of freedom is 

equal to the number of fitted measurements n minus the number of estimated 

independent parameters p. The acceptable range of SSR values is between 2
α/2(n-p) 

and 2
1-α/2(n-p), where α is a certain chosen threshold value, e.g. 0.05 for 95% 

confidence interval. 

4.3.6 Assumption of No Kinetic Isotope Effect 

A common assumption in 13C-MFA is that there is no 13C kinetic isotope 

effect; essentially, that transporters and enzymes don’t discriminate between 12C and 

13C (Feng and Tang, 2011). The assumption of no kinetic isotope effect was also 

applied in this study for all tracers. Support for this assumption comes from several 

studies. Sandberg et al. (Sandberg et al., 2016), for example, demonstrated that there 

was no measurable difference in the uptake of 12C glucose and 13C glucose by wild-

type E. coli and several evolved E. coli strains. Additionally, massively parallel 

labeling experiments have been used to test this assumption. In a recent study by 

Crown et al. (Crown et al., 2015a), 14 parallel labeling experiments were successfully 

combined into one global flux solution. This would not be possible if the different 

tracers had caused a significant change in metabolism. Thus, based on best available 

methods, the assumption of no kinetic isotope effect appears to be valid for 13C-MFA. 
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4.4 Results and Discussion 

4.4.1 Evaluation of Single Glucose Tracers 

First, we performed in silico simulations to evaluate the performance of 19 

commercially available glucose tracers (Table 4.1). We also evaluated the 

performance of two commonly used glucose tracer mixtures: 80% [1-13C]glucose + 

20% [U-13C]glucose (which was selected as the reference tracer experiment in this 

study), and 20% [U-13C]glucose + 80% natural glucose. These two tracer schemes are 

widely used because of the relatively low cost of the tracers involved, i.e. [1-

13C]glucose (~$100/g) and [U-13C]glucose (~$200/g), compared to the cost of other 

glucose tracers (Table 4.1).  

Flux precision for each glucose tracer was determined as follows: 1) for each 

tracer, GC-MS measurements of proteinogenic amino acids were simulated using a 

previously determined flux map for wild-type E. coli (Crown et al., 2015a); 2) 13C-

MFA was performed on the simulated data. Glucose influx was fixed at 100 and 

acetate yield was 70 ± 5 mol/mol (Long et al., 2016b). No other external constrains 

were imposed. A constant measurement error of 0.4 mol% was assumed for all GC-

MS measurements; 3) 95% confidence intervals of fluxes were determined using three 

different methods: i) using the method described in (Antoniewicz et al., 2006), which 

produces accurate nonlinear confidence intervals by evaluating the sensitivity of SSR 

to flux variations; ii) using 1000 Monte Carlo simulations; and iii) using linearized 

statistics that approximate 95% confidence intervals at the optimal solution; 4) 

Precision scores were calculated as the average of individual precision scores for the 

following eight key fluxes in central carbon metabolism: upper glycolysis (v2, G6P  

F6P), oxidative pentose phosphate pathway (v10, 6PG  Ru5P + CO2), non-oxidative 
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pentose phosphate pathway (v14, F6P  E4P + E-C2), Entner–Doudoroff pathway 

(v18, 6PG  KDPG), TCA cycle (v21, AcCoA + OAC  Cit), glyoxylate shunt (v29, 

ICit  Glyox + Suc), cataplerosis (v31, Mal  Pyr + CO2), and gluconeogenesis (v34, 

OAC  PEP + CO2).  

Table 4.1:    19 commercially available 13C-glucose tracers. 

Glucose tracers Abbreviation List Price ($/g)* 

[1-13C]Glucose [1]Gluc $87 (Isotec) 

[2-13C]Glucose [2]Gluc $200 (Omicron) 

[3-13C]Glucose [3]Gluc $1200 (Omicron) 

[4-13C]Glucose [4]Gluc $1600 (Omicron) 

[5-13C]Glucose [5]Gluc $1700 (Omicron) 

[6-13C]Glucose [6]Gluc $700 (Omicron) 

[1,2-13C]Glucose [12]Gulc $650 (Omicron) 

[1,3-13C]Glucose [13]Gluc $1700 (Omicron) 

[1,6-13C]Glucose [16]Gluc $1500 (Omicron) 

[2,3-13C]Glucose [23]Gluc $1800 (Omicron) 

[2,5-13C]Glucose [25]Gluc $2600 (Omicron) 

[3,4-13C]Glucose [34]Gluc $3200 (Omicron) 

[4,5-13C]Glucose [45]Gluc $2550 (Omicron) 

[4,6-13C]Glucose [46]Gluc $9760 (Omicron) 

[5,6-13C]Glucose [56]Gluc $2600 (Omicron) 

[1,2,3-13C]Glucose [123]Gluc $1700 (Omicron) 

[4,5,6-13C]Glucose [456]Gluc $3200 (Omicron) 

[2,3,4,5,6-13C]Glucose [23456]Gluc $9400 (Omicron) 

[U-13C]Glucose [U]Gluc $195 (Isotec) 

* Shown is the lowest listed price per gram of tracer on 3/27/2016.  

* Omicron, http://www.omicronbio.com/index.html 

* Isotec, http://www.sigmaaldrich.com/chemistry/stable-isotopes-isotec.html 

* Cambridge Isotope Laboratories, http://www.isotope.com 
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Figure 4.1 shows the calculated standard deviations of key fluxes in central 

carbon metabolism for the different glucose tracers, and Figure 4.2 shows the 

calculated precision scores, sorted from the best to the worst performing glucose 

tracer. Tracers with a precision score greater than 1.0 performed better than the 

reference tracer experiment, 80% [1-13C]glucose + 20% [U-13C]glucose; tracers with a 

precision score smaller than 1.0 performed worse than the reference tracer experiment. 

Figures 4.2A, 4.2B and 4.2C compare the precision scores determined using the three 

different methods for determining 95% confidence intervals of fluxes. Overall, there 

was excellent agreement between the accurate nonlinear confidence intervals method 

(Figure 4.2A) and the Monte Carlo simulations method (Figure 4.2B). In contrast, 

linearized statistics produced significantly different precision scores (Figure 4.2C). For 

example, the first two methods determined that the reference tracer experiment was 

one of the worst performing tracers. Both methods determined that the mixture 80% 

[1-13C]glucose + 20% [U-13C]glucose performed worse than 100% [1-13C]glucose, 

which was recently validated experimentally (Crown et al., 2015a). In contrast, the 

linearized statistics method predicted the opposite result. Overall, this method 

overestimated the performance of tracer mixtures. It is important to note that nearly all 

studies thus far have relied on linearized statistics to identify optimal tracers. 

Consistent with our simulation results, in many cases mixtures of tracers have been 

predicted to perform better than pure glucose tracers (Arauzo-Bravo and Shimizu, 

2003; Mollney et al., 1999). Here, we demonstrate that using linearized statistics may 

not be appropriate for tracer selection. In the remainder of this study, we used the 

accurate nonlinear confidence intervals method by Antoniewicz et al. (2006) to 

determine 95% confidence intervals of fluxes, since this method produced the same 
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results as the Monte Carlo simulation method, but was computationally much more 

efficient. 

 

Figure 4.1:    Precision of estimated fluxes in central carbon metabolism obtained with 
13C-MFA for 19 commercially available glucose tracers and two common 

glucose tracer mixtures, 20% [U-13C]glucose; and 80% [1-13C]glucose + 

20% [U-13C]glucose. 13C-MFA was performed using simulated GC-MS 

data. 
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Figure 4.2:   Precision scores for 19 commercially available glucose tracers and two 

common glucose tracer mixtures, 20% [U-13C]glucose; and 80% [1-
13C]glucose + 20% [U-13C]glucose. The reference tracer experiment, 

80% [1-13C]glucose + 20% [U-13C]glucose, is highlighted in yellow. 

Three different methods were used to calculate 95% confidence intervals 

of fluxes. (A) Accurate nonlinear 95% confidence intervals of fluxes 

were determined using the method described in (Antoniewicz et al., 

2006). 13C-MFA was performed using fluxes for wild-type E. coli to 

simulate isotopic labeling. (B) 1000 Monte Carlo simulations were used 

to determine 95% confidence intervals of fluxes. (C) Linearized statistics 

were used to determine 95% confidence intervals of fluxes. (D) Average 

precision scores for 100 random flux maps. The random flux maps 

captured a wide range of possible flux scenarios. Accurate nonlinear 95% 

confidence intervals of fluxes were determined using the method 

described in (Antoniewicz et al., 2006). 

Of the 19 commercially available glucose tracers, 14 performed better than the 

reference tracer experiment (Figure 4.2A). The highest precision score of 3.7 was 

obtained for [1,6-13C]glucose, which was particularly good at determining fluxes of 

Entner–Doudoroff pathway and glyoxylate shunt (Figure 4.1). Interestingly, the top 

six best performing tracers were all doubly labeled glucose tracers: [1,6-13C]glucose 

(precision score = 3.7), [1,2-13C]glucose (precision score = 2.8), [5,6-13C]glucose 

(precision score = 2.8), [2,3-13C]glucose (precision score = 2.3), [4,5-13C]glucose 

(precision score = 1.9), and [3,4-13C]glucose (precision score = 1.8). Doubly labeled 

tracers have not been widely used for 13C-MFA, with the exception of [1,2-

13C]glucose (Ahn and Antoniewicz, 2013; Crown and Antoniewicz, 2013b; Murphy et 

al., 2013; Walther et al., 2012). The tracers that performed the worst were 20% [U-

13C]glucose (precision score = 0.4) and [4-13C]glucose (precision score = 0.1).  
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4.4.2 Optimal Tracers are not Sensitive to Flux Values 

In theory, different tracers could be optimal for different flux maps. To 

evaluate the sensitivity of optimal tracer selection with respect to flux values, we 

generated 100 random flux maps and repeated the analysis described above. The 

results are summarized in Figure 4.2D. The 100 random flux maps captured a wide 

range of possible flux scenarios, with the glycolysis flux ranging from 7 to 98 

(normalized to glucose uptake of 100), the oxidative pentose phosphate flux ranging 

from 0 to 92, the Entner–Doudoroff pathway flux ranging from 0 to 38, the TCA cycle 

flux ranging from 0 to 64, the glyoxylate shunt flux ranging from 0 to 43, and the 

acetate secretion flux ranging from 0 to 99. We found that the precision scores 

calculated for wild-type E. coli flux map (Figure 4.2A) and 100 random flux maps 

(Figure 4.2D) were very similar, thus suggesting that optimal tracer selection doesn’t 

depend strongly on the actual flux values used for tracer selection. For example, in 

both cases: 1) [1,6-13C]glucose was determined to be the best tracer; 2) doubly labeled 

glucose tracers produced the highest precision scores; 3) the reference tracer 

experiment with 80% [1-13C]glucose + 20% [U-13C]glucose performed very poorly 

overall; and 4) 20% [U-13C]glucose and [4-13C]glucose were the two worst performing 

tracers. 

4.4.3 Evaluation of Mixtures of Glucose Tracers 

Next, we evaluated if mixtures of glucose tracers would perform better than 

pure glucose tracers. Note that the reference tracer experiment is an example of a 

mixture of glucose tracers: 80% [1-13C]glucose + 20% [U-13C]glucose. In a previous 

study, we experimentally evaluated four different mixtures of glucose tracers: [1-

13C]glucose and [U-13C]glucose (1:1 mixture), [1-13C]glucose and [U-13C]glucose (4:1 
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mixture), [1-13C]glucose and [4,5,6-13C]glucose (1:1 mixture), and [U-13C]glucose and 

unlabeled glucose (1:4 mixture), in addition to a large number of pure glucose tracers 

(Crown et al., 2015a). Experimentally, we found that pure glucose tracers performed 

better than mixtures of glucose tracers. Here, we wanted to determine if this 

observation could be generalized. Thus, we evaluated all possible dual mixtures of 

glucose tracers, as well as mixtures of all individual glucose tracers and unlabeled 

glucose. For all mixtures, nine different ratios were evaluated: 10/90, 20/80, 30/70, 

40/60, 50/50, 60/40, 70/30, 80/20, and 90/10.  

The results of this extensive analysis are summarized in Figure 4.3. Overall, 

we found that in the vast majority of cases pure tracers performed better than mixtures 

of tracers. In fact, mixing different tracers often resulted in a significantly lower 

precision score. For example, a 50/50 mixture of [1,2-13C]glucose and [1,6-

13C]glucose produced a precision score that was less than half of the precision scores 

of the respective pure tracers. There were only 6 cases where a mixture of tracers 

performed slightly better than the respective pure tracers (highlighted in red in Figure 

3); however, in none of these cases did the precision score approach that of the best 

pure glucose tracers identified in the previous section. Thus, based on this exhaustive 

analysis we can conclude that pure glucose tracers in general perform better than 

mixtures of tracers for 13C-MFA in E. coli.  
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Figure 4.3:   Precision scores for mixtures of glucose tracers. For each combination of 

two glucose tracers, nine mixing ratios were evaluated, ranging from 

10%/90% to 90%/10%. Blue squares correspond to cases were the 

precision score monotonically increased (or decreased) with respect to 

the mixing ratio. Yellow squares correspond to cases where mixing pure 

tracers resulted in a significantly reduced precision score. Red squares 

correspond to cases where mixing of tracers resulted in an improved 

precision score compared to pure tracers. 13C-MFA was performed using 

simulated GC-MS data and assuming wild-type E. coli fluxes. 
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4.4.4 Identification of Optimal Tracers for Parallel Labeling Experiments 

Next, we set out to identify optimal tracers for parallel labeling experiments. 

We examined all possible combinations of two parallel labeling experiments with the 

19 commercially available glucose tracers. Mixtures of tracers were not included in 

this analysis based on the results in the previous section. For consistency, the tracer 

experiment with 80% [1-13C]glucose + 20% [U-13C]glucose was used as the reference 

experiment. The calculated precision scores and synergy scores are shown in Figure 

4.4. The highest precision score was obtained for parallel labeling experiments with 

[1,6-13C]glucose and [1,2-13C]glucose, which had a precision score of 7.8. This 

precision score was higher than the sum of the precision scores for the respective 

single pure tracers, i.e. 3.7 for [1,6-13C]glucose and 2.8 for [1,2-13C]glucose. Thus, 

there was significant synergy in the use of these two tracers. In this case, the synergy 

score was 1.2 (=7.8/(3.7+2.8)). There were several other combinations of parallel 

labeling experiments that produced a high precision score and synergy score. 

Interestingly, all of the best performing parallel labeling experiments (with precision 

scores above 7.0) included at least one doubly labeled glucose tracer.  

The precision and synergy scores on the diagonal in Figure 4.4 correspond to 

performing the same tracer experiment twice. We found that synergy scores on the 

diagonal were all less than 1, thus indicating that no synergistic flux information is 

gained by performing the same tracer experiment twice, as might be expected. Of 

course, there could be other good reasons for performing the same tracer experiment 

multiple times, e.g. to evaluate biological variability (Au et al., 2014); however, from 

the perspective of improving flux precision, it is always better to use two different 

tracers in parallel. Several tracers had particularly high synergy scores, e.g. [2,5-

13C]glucose, suggesting that this tracer brings significant complementarity in parallel 



 75 

labeling experiments. Overall, the synergy scores varied from values less than 1 (no 

synergy) to values much greater than 1 (high synergy). This result indicates that 

judicious selection of tracers for parallel labeling experiments is important, since some 

(but not all) parallel labeling experiments produce synergistic improvements in flux 

precision. To our knowledge, this is the first time that synergies resulting from the use 

of parallel labeling experiments have been rigorously quantified. 

 

 

Figure 4.4:   Precision and synergy scores for parallel labeling experiments with pure 

glucose tracers. Synergy scores above 1 (positive synergy) are 

highlighted in green, and synergy scores below 1 (no synergy) are 

highlighted in red. 13C-MFA was performed using simulated GC-MS data 

and assuming wild-type E. coli fluxes. 

4.4.5 Experimental Validation of Optimal Tracers 

To validate the predictions described in the previous sections, we performed 

four parallel labeling experiments with wild-type E. coli. Specifically, labeling 
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experiments were performed with the following tracers: 100% [1,2-13C]glucose; 100% 

[1,6-13C]glucose; 51.5% [1,2-13C]glucose + 48.5% [1,6-13C]glucose; and 81% [1-

13C]glucose + 19% [U-13C]glucose. The first two tracers were used to validate the 

prediction that [1,6-13C]glucose and [1,2-13C]glucose are optimal tracers for 13C-MFA 

when single tracer experiments are used (see section 4.4.1), and to test the synergy of 

these two tracers in parallel labeling experiments (see section 4.4.4). The third tracer 

was chosen to validate the prediction that mixing tracers will result in a dramatically 

poorer performance compared to using the respective pure tracers (see section 4.4.3). 

The fourth tracer experiment was used as the reference tracer experiment.  

E. coli was grown aerobically in parallel batch cultures and mass isotopomer 

distributions of proteinogenic amino acids were measured by GC-MS. Data from the 

four tracer experiments were then first analyzed separately by 13C-MFA. In all cases a 

statistically acceptable fit was obtained. The estimated fluxes agreed well with those 

previously reported for the closely related E. coli K-12 MG1655 strain (Crown et al., 

2015a; Leighty and Antoniewicz, 2013). Next, we fitted the experiments with [1,2-

13C]glucose and [1,6-13C]glucose in parallel, which also resulted in a statistically 

acceptable fit. Figure 4.5 shows the calculated precision scores. As predicted, the 

tracer experiments with [1,2-13C]glucose and [1,6-13C]glucose performed significantly 

better (precision scores of 6.1 and 5.4, respectively) than the reference tracer 

experiment. Moreover, as predicted, when the two tracers were mixed (51.5% [1,2-

13C]glucose + 48.5% [1,6-13C]glucose), a significantly lower precision score of 2.1 

was obtained. Finally, parallel fitting of [1,2-13C]glucose and [1,6-13C]glucose tracer 

experiments resulted in the highest precision score (18.3) with a synergy score of 1.6 

(=18.3/(6.1+5.4)). The higher than expected precision score obtained here (i.e. 
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compared to simulation results) was mainly due to a poorer than expected 

performance of the reference tracer experiment. Taken together, the experimental 

results described in this section confirmed all important predictions of our in silico 

simulations. 

 

Figure 4.5:   Experimentally determined precision scores for four different tracers, and 

for the parallel fit of tracer experiments with [1,2-13C]glucose and  [1,6-
13C]glucose. The precision score for the reference tracer experiment, 80% 

[1-13C]glucose + 20% [U-13C]glucose, is by definition 1 (highlighted in 

yellow). 

4.5 Conclusions 

In this contribution, we have introduced a new scoring system for identifying 

optimal tracers for 13C-MFA. Unlike previous efforts (Arauzo-Bravo and Shimizu, 

2003; Metallo et al., 2009; Walther et al., 2012), the proposed precision scoring metric 

accounts for nonlinear flux intervals and is not biased due to normalization by flux 
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values. The new synergy score introduced here provides information whether it is 

beneficial to conduct tracer experiments in parallel. Through extensive in silico 

simulations, 19 commercially available glucose tracers were evaluated for 13C-based 

flux analysis. We demonstrated that the current standard tracer, 80% [1-13C]glucose + 

20% [U-13C]glucose, performs poorly in general. A large number of pure glucose 

tracers, especially doubly 13C-labeled tracers such as [1,6-13C]glucose and [1,2-

13C]glucose, performed significantly better. Flux precision was dramatically improved 

through the use of parallel labeling experiments. For example, we demonstrated an 18-

fold improvement in the precision score (compared to the reference tracer experiment) 

by using parallel experiments with [1,6-13C]glucose and [1,2-13C]glucose.  

In this work, we have focused on identifying optimal tracers for 13C-flux 

analysis in E. coli because of the significant importance of this organism in both 

academia and industry (Long and Antoniewicz, 2014a). The optimal tracers identified 

here may not be optimal for other organisms, especially if the structure of the 

metabolic pathways are dramatically different from E. coli. However, if the metabolic 

pathways are similar then likely the same tracers will be optimal, given the fact that 

we have evaluated a very wide range of possible flux scenarios and consistently found 

the same tracers to perform optimally. 

It is also important to note that flux results not only depend on the selected 

tracers, but also on the labeling measurements used for 13C-MFA. In this work, we 

have assumed that proteogenic amino acids (measured by GC-MS) were used for 13C-

MFA. GC-MS is a wide used technology in the 13C-MFA field (Antoniewicz, 2015a). 

However, several alternative measurement techniques are available, and in some 

cases, may be preferred: tandem mass spectrometry (Antoniewicz, 2013b; Choi and 
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Antoniewicz, 2011; Choi et al., 2012), LC-MS/MS (McCloskey et al., 2016), and 

NMR (Masakapalli et al., 2014; Szyperski, 1995; Tang et al., 2007). Moreover, in 

addition to measuring labeling of protein-bound amino acids, it may be advantageous 

to measure 13C-labeling of carbohydrates (McConnell and Antoniewicz, 2016), fatty 

acids (Crown et al., 2015b), nucleosides (Miranda-Santos et al., 2015), glycogen and 

RNA (Guzman et al., 2014; Long et al., 2016a), and intracellular metabolites (Ahn and 

Antoniewicz, 2013; Millard et al., 2014). Finally, a practical consideration is the cost 

associated with performing 13C-MFA studies: the cost of tracers (Table 4.1), analytical 

instruments, sample preparation, analysis time, and the cost of performing parallel 

labeling experiments vs. single tracer experiments (Hollinshead et al., 2016). All of 

these factors should be considered collectively to determine the best or most 

convenient strategy for completing a 13C-MFA study. 

4.6 Author Contributions 

SBC developed the theory and performed simulations. CPL performed the 

experiments and analysis thereof. MRA oversaw the research. All authors contributed 

to writing the published article.   
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ENZYME I FACILITATES REVERSE FLUX FROM 

PHOSPHOENOLPYRUVATE TO PYRUVATE IN ESCHERICHIA COLI  

Reprinted with permission from: Long CP*, Au J*, Sandoval NR, Gebreselassie NA, 

Antoniewicz MR (2017) Enzyme I facilitates reverse flux from pyruvate to 

phosphoenolpyruvate in Escherichia coli. Nature Communications. 8(14316) 

*Equal contribution 

 

5.1 Introduction 

The phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) is 

used by many bacteria and some archaea for the uptake and phosphorylation of sugar 

substrates (Deutscher et al., 2014). It is the main mechanism of glucose uptake and 

utilization in the model organism Escherichia coli, where it also has an important role 

in carbon catabolite repression and regulating central carbon metabolism (Deutscher et 

al., 2014, 2006; Escalante et al., 2012). The PTS consists of four proteins carrying out 

successive phosphotransferase reactions, coupling glucose transport and 

phosphorylation to the lower glycolytic reaction of phosphoenolpyruvate (PEP) to 

pyruvate (PYR). This allows for the coupled regulation of substrate uptake and 

glycolytic flux, as the PEP/PYR ratio has been shown to act as part of a flux sensor 

(Kotte et al., 2010; Kremling et al., 2007) and controller of phosphofructokinase 

(encoded by pfkA) activity via allosteric inhibition by PEP (Fenton and Reinhart, 

2009). Due to its central metabolic function and complex regulatory role, the PTS is a 

Chapter 5 
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frequent target of metabolic engineering interventions (De Anda et al., 2006; Flores et 

al., 1996; Gosset, 2005; Meza et al., 2012). 

Although individual steps of the PTS are known to be reversible (Deutscher et 

al., 2014, 2006; Postma et al., 1993), current understanding allows only for a net 

forward flux during the uptake of a PTS sugar (e.g. glucose). Indeed, the conversion 

from PEP to PYR, which is also facilitated by pyruvate kinases (encoded by pykA and 

pykF in E. coli), is often assumed to be a committed step in lower glycolysis. This 

assumption has practical implications, for example in the analysis of stable isotope 

labeling data through 13C metabolic flux analysis and in flux balance analysis studies. 

The reverse reaction, PYR to PEP, is carried out by the gluconeogenic enzyme PEP 

synthetase (PpsA, encoded by ppsA in E. coli). This enzyme is minimally expressed 

during growth on glycolytic substrates (Trauchessec et al., 2014), as significant 

activity would cause a wasteful futile cycle. However, PpsA is actively expressed 

under gluconeogenic conditions via transcriptional regulation by Cra (Ramseier, 

1996). 

In this work, we show that Enzyme I (EI), the terminal phosphotransferase in 

the PTS responsible for the conversion of PEP to PYR, is responsible for a significant 

in vivo flux in the reverse direction (i.e. PYR to PEP) during both gluconeogenic and 

glycolytic growth. We use knockout strains and 13C alanine tracer experiments to 

directly quantify this reverse flux and determine gene-reaction relationships. We 

demonstrate that PpsA and EI are able to interchangeably and exclusively support the 

major gluconeogenic flux from PYR to PEP during growth on acetate and pyruvate. 

Similar experiments under growth on glycolytic substrates glucose and xylose 

demonstrate that this reverse flux is mainly attributable to EI, indicating an unexpected 
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role for this enzyme in the context of central carbon metabolism. Furthermore, we 

show that this reverse flux is modulated by genetic perturbation of other PTS 

components. 

5.2  Methods 

5.2.1 Materials 

Chemicals and culture media were purchased from Sigma-Aldrich (St. Louis, 

MO). [1-13C]Alanine (99 atom% 13C) and [U-13C]alanine (98+ atom% 13C) were 

purchased from Cambridge Isotope Laboratories (Andover, MA). M9 minimal 

medium was used for all labeling experiments. All solutions were sterilized by 

filtration. 

5.2.2 Strains 

For wild-type E. coli grown on acetate, E. coli K-12 MG1655 (ATCC Cat. No. 

700925, Manassas, VA) was used. For all other cultures, E. coli strains were obtained 

from the Keio collection (GE Dharmacon), which was generated by one-step 

inactivation of all non-essential genes in E. coli K-12 BW25113 (Δ(araD-araB)567, 

Δ(lacZ4787::rrnB-3), lambda−, rph-1, Δ(rhaD−rhaB)568, hsdR514) (Baba et al., 

2006). The strains used in this study, with identifying information from the collection, 

are listed in Table 5.1. Double deletion strains were constructed following the method 

of Datsenko and Wanner on existing Keio collection strains (Baba et al., 2006; 

Datsenko and Wanner, 2000). Kanamycin resistance cassettes were cured by 

transformation of pCP20 (Cherepanov and Wackernagel, 1995), which carries the FLP 

recombinase gene; the pCP20 plasmid was subsequently cured by growth at 42°C 

overnight and confirmed via replica plating and PCR amplification. Kanamycin 
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resistance cassettes for second-gene knockouts were amplified from Keio collection 

single deletion strains using the original Keio collection primers with homologous 

regions corresponding to the desired deletion. The purified amplicon was 

electroporated into the cured single deletion host E. coli strain expressing 1 mM 

arabinose-induced λ-Red recombinase genes from the pKD46 plasmid (Datsenko and 

Wanner, 2000) and grown on solid LB with kanamycin at 37°C. Successful 

recombination was confirmed via PCR of both the mutated loci. The recombination 

plasmid pKD46 was subsequently cured by growth overnight at 42°C and confirmed 

via replica plating. All strains carrying pCP20 and pKD46 were grown at 30°C. 

 

Knockout Gene Plate-Row-Col ID JW_id-Strain 

ppsA 3-A-3 JW1692-1 

ptsG 55-G-3 JW1087-2 

crr 57-H-8 JW2410-1 

ptsH 57-F-8 JW2408-2 

ptsI 57-G-8 JW2409-1 

Table 5.1:     List of strains used in this study. 

5.2.3 Culture Conditions 

E. coli strains were cultured aerobically in M9 minimal medium at 37°C in 

aerated mini-bioreactors with 10 mL working volume (Crown et al., 2015a). Cultures 

were inoculated at OD600 of 0.01, and biomass concentration and growth rates were 

determined by periodic measurements of OD600 using a spectrophotometer (Eppendorf 

BioPhotometer). The medium contained, for the respective experiments, 1.2 g/L 
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acetate, 2 g/L pyruvate, 2 g/L glucose, or 4 g/L xylose. In the acetate and pyruvate 

experiments, a bolus of 1 mM [1-13C]alanine was added when the cultures reached an 

OD600 of ~0.1, and the cells were harvested for analysis at an OD600 of 0.5. In the 

glucose and xylose experiments, a bolus of 10 mM [U-13C]alanine was added when 

the culture reached an OD600 of 0.5, and cells were harvested at an OD600 of 1.5. In all 

experiments, the non-tracer substrate (i.e. acetate, glucose, or xylose) was not limiting 

throughout, and exponential growth was maintained (i.e. culture performance was not 

affected by the presence of the tracer). For glucose experiments with strains containing 

the ΔptsI mutation, pre-cultures were grown in medium with 4 g/L galactose. The cells 

were centrifuged, washed, and inoculated into the standard glucose medium described 

above at an OD600 of 0.05-0.1, and harvested at an OD600 of 0.3. 

5.2.4 Gas Chromatography Mass Spectrometry 

GC-MS analysis was performed on an Agilent 7890B GC system equipped 

with a DB-5MS capillary column (30 m, 0.25 mm i.d., 0.25 μm-phase thickness; 

Agilent J&W Scientific), connected to an Agilent 5977A Mass Spectrometer operating 

under ionization by electron impact (EI) at 70 eV. Helium flow was maintained at 1 

mL/min. The source temperature was maintained at 230°C, the MS quad temperature 

at 150°C, the interface temperature at 280°C, and the inlet temperature at 250 °C. GC-

MS analysis of tert-butyldimethylsilyl (TBDMS) derivatized proteinogenic acids was 

performed to measure isotopic labeling (Leighty and Antoniewicz, 2013). Mass 

isotopomer distributions were obtained by integration (Antoniewicz et al., 2007b) and 

corrected for natural isotope abundances (Fernandez et al., 1996). 
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5.2.5 Calculations 

For the [1-13C]alanine tracer experiments, the fraction of PEP derived from 

PYR was determined from the labeling of PEP (determined from phenylalanine m/z 

302 fragment labeling, C1-C2) and PYR (determined from valine m/z 288 fragment 

labeling, C1-C5): 

%𝑃𝐸𝑃 𝑓𝑟𝑜𝑚 𝑃𝑦𝑟 =  
𝑃𝐸𝑃𝑀1

𝑃𝑦𝑟𝑀1
 =

𝑃ℎ𝑒302𝑀1

𝑉𝑎𝑙288𝑀1
   

  

For the [U-13C]alanine tracer experiments, the fraction of PEP derived from 

PYR was determined by least-squares regression using the measured mass isotopomer 

distributions (MID) of PEP (determined from phenylalanine m/z 302 fragment, C1-

C2), OAC (determined from phenylalanine m/z 302 fragment, C1-C2), and PYR 

(determined from phenylalanine m/z 260 fragment, C2-C5), after correction for 

unlabeled biomass  

𝑀𝐼𝐷𝑃𝐸𝑃 = (%𝑃𝐸𝑃 𝑓𝑟𝑜𝑚 𝑃𝑦𝑟) ∗ 𝑀𝐼𝐷𝑃𝑦𝑟 + (%𝑃𝐸𝑃 𝑓𝑟𝑜𝑚 𝑂𝐴𝐶) ∗ 𝑀𝐼𝐷𝑂𝐴𝐶 +

(%𝑃𝐸𝑃 𝑓𝑟𝑜𝑚 𝑔𝑙𝑢𝑐 𝑜𝑟 𝑥𝑦𝑙) ∗ 𝑀𝐼𝐷𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑  

  

5.2.5.1 Correction of labeling data for unlabeled biomass (after natural 

abundance correction) 

Since we measure labeling of amino acids from hydrolyzed biomass proteins, 

the mass isotopomer data must be corrected for unlabeled biomass that was present 

prior to the introduction of 13C-alanine. The fraction of old unlabeled biomass and 

fraction of new biomass (i.e. generated after the introduction of 13C-alanine) is 

calculated as follows: 

Fraction of old unlabeled biomass = 𝐴𝑙𝑎𝑀0 

Fraction of new biomass = 1 − 𝐴𝑙𝑎𝑀0 
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The mass isotopomer data of other amino acids, e.g. valine, phenylalanine, 

aspartate, can then be corrected for the presence of old unlabeled biomass as follows: 

𝑉𝑎𝑙𝑀0
𝑐𝑜𝑟𝑟 =  

𝑉𝑎𝑙𝑀0−𝐴𝑙𝑎𝑀0

1−𝐴𝑙𝑎𝑀0
    (for M0) 

𝑉𝑎𝑙𝑀𝑖
𝑐𝑜𝑟𝑟 =  

𝑉𝑎𝑙𝑀𝑖

1−𝐴𝑙𝑎𝑀0
     (for Mi, i> 0) 

5.2.5.2 Tracer experiments with [1-13C]alanine (growth on acetate and 

pyruvate) 

For [1-13C]alanine tracer experiments, the fraction of PEP derived from 

pyruvate is calculated from the M1 labeling of pyruvate and M1 labeling of PEP. 

Labeling of pyruvate is inferred from that of valine. GC-MS analysis of valine 

produces m/z 288 fragment which contains carbons C1-C5 of valine. C1 of valine is 

derived from C1 of pyruvate, and the remaining carbons are derived from C2-C3 of 

pyruvate. Since carbons C2-C3 of pyruvate are unlabeled, the M1 labeling of m/z 288 

fragment reflects the M1 labeling of pyruvate: 

𝑃𝑦𝑟𝑀1 = 𝑉𝑎𝑙288𝑀1
𝑐𝑜𝑟𝑟  

   

The M1 labeling of PEP is inferred from the M1 labeling of m/z 302 fragment 

of phenylalanine, which contains C1-C2 of phenylalanine that are derived from C1-C2 

of PEP: 

𝑃𝐸𝑃𝑀1 = 𝑃ℎ𝑒302𝑀1
𝑐𝑜𝑟𝑟  

   

Thus, the fraction of PEP derived from pyruvate is calculated as follows: 

 

%𝑃𝐸𝑃 𝑓𝑟𝑜𝑚 𝑃𝑦𝑟 =  
𝑃𝐸𝑃𝑀1

𝑃𝑦𝑟𝑀1
=

𝑃ℎ𝑒302𝑀1
𝑐𝑜𝑟𝑟

𝑉𝑎𝑙288𝑀1
𝑐𝑜𝑟𝑟 =

𝑃ℎ𝑒302𝑀1/(1−𝐴𝑙𝑎260𝑀0)

𝑉𝑎𝑙288𝑀1/(1−𝐴𝑙𝑎260𝑀0)
 =

𝑃ℎ𝑒302𝑀1

𝑉𝑎𝑙288𝑀1
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In the above equation, we have assumed that the contribution of oxaloacetate 

to PEPM1 is minimal, which we have confirmed by measuring aspartate M1 labeling 

directly and showing that it was negligible in all cases.  

5.2.5.3 Tracer experiments with [U-13C]alanine (growth on glucose and xylose) 

For [U-13C]alanine tracer experiments, the fraction of PEP derived from 

pyruvate is calculated by least squares regression using the measured mass isotopomer 

distributions (MID) of PEP (determined from phenylalanine m/z 302 fragment, C1-

C2), oxaloacetate (OAC) (determined from phenylalanine m/z 302 fragment, C1-C2), 

and PYR (determined from valine m/z 260 fragment, C2-C5). 

 

𝑀𝐼𝐷𝑃𝐸𝑃,𝐶1−𝐶2 = (%𝑃𝐸𝑃 𝑓𝑟𝑜𝑚 𝑃𝑦𝑟) ∗ 𝑀𝐼𝐷𝑃𝑦𝑟,𝐶1−𝐶2 + (%𝑃𝐸𝑃 𝑓𝑟𝑜𝑚 𝑂𝐴𝐶) ∗

𝑀𝐼𝐷𝑂𝐴𝐶,𝐶1−𝐶2 + (%𝑃𝐸𝑃 𝑓𝑟𝑜𝑚 𝑔𝑙𝑢𝑐 𝑜𝑟 𝑥𝑦𝑙) ∗ 𝑀𝐼𝐷𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑  

   

The mass isotopomer distribution of pyruvate (carbon atoms C1-C2) is 

determined as follows: 

𝑀𝐼𝐷𝑃𝑦𝑟,𝐶1−𝐶2 = [

𝑃𝑦𝑟𝐶1−𝐶2,𝑀0

𝑃𝑦𝑟𝐶1−𝐶2,𝑀1

𝑃𝑦𝑟𝐶1−𝐶2,𝑀2

] = [
√𝑉𝑎𝑙260𝑀0

𝑐𝑜𝑟𝑟

0

1 − √𝑉𝑎𝑙260𝑀0
𝑐𝑜𝑟𝑟

] 

   

The mass isotopomer distributions of PEP and OAC (carbon atoms C1-C2) are 

determined as follows: 

𝑀𝐼𝐷𝑃𝐸𝑃,𝐶1−𝐶2 = [

𝑃𝐸𝑃𝐶1−𝐶2,𝑀0

𝑃𝐸𝑃𝐶1−𝐶2,𝑀1

𝑃𝐸𝑃𝐶1−𝐶2,𝑀2

] = [

𝑃ℎ𝑒302𝑀0
𝑐𝑜𝑟𝑟

𝑃ℎ𝑒302𝑀1
𝑐𝑜𝑟𝑟

𝑃ℎ𝑒302𝑀2
𝑐𝑜𝑟𝑟

] 

𝑀𝐼𝐷𝑂𝐴𝐶,𝐶1−𝐶2 = [

𝑂𝐴𝐶𝐶1−𝐶2,𝑀0

𝑂𝐴𝐶𝐶1−𝐶2,𝑀1

𝑂𝐴𝐶𝐶1−𝐶2,𝑀2

] = [

𝐴𝑠𝑝302𝑀0
𝑐𝑜𝑟𝑟

𝐴𝑠𝑝302𝑀1
𝑐𝑜𝑟𝑟

𝐴𝑠𝑝302𝑀2
𝑐𝑜𝑟𝑟

] 
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Finally: 

 

𝑀𝐼𝐷𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑 = [
𝑀0
𝑀1
𝑀2

] = [
1
0
0

] 

5.3 Results 

5.3.1 Enzyme I Supports a Significant Gluconeogenic Flux 

There are two possible gluconeogenic routes for acetate metabolism (Fig. 

5.1a). Acetate enters central carbon metabolism as acetyl-CoA (AcCoA) and can 

either be metabolized to PEP via PEP carboxykinase (pck) (shown in green in Fig. 

5.1a) or via malic enzyme (maeAB) followed by conversion of PYR to PEP (shown in 

purple). As discussed above, this latter reaction is known to be carried out under 

gluconeogenic conditions by PEP synthetase (ppsA).  

To resolve the relative contribution of these two gluconeogenic routes, a tracer 

experiment using [1-13C]alanine was applied (Fig. 5.1). The tracer was added during 

growth on excess acetate (growth rates shown in Fig. 5.1b). Alanine equilibrates with 

intracellular PYR (Fig. 5.1f), which results in a PYR pool (observed via valine 

labeling) that is a mixture of unlabeled PYR (M0) produced from unlabeled sources in 

central carbon metabolism, and [1-13C]PYR (M1) produced from the tracer (Fig. 5.1c). 

As oxaloacetate (OAC, observed via aspartate) is almost entirely unlabeled (Fig. 5.1d) 

(the labeled C-1 of PYR is lost in the pyruvate dehydrogenase reaction before entering 

the TCA cycle), the relative contribution of each route to PEP production (as 

measured by phenylalanine labeling, Fig. 5.1e) is easily calculated. 

In the wild-type, a significant amount (~60%) of PEP was generated from PYR 

(Fig. 5.1g). In order to confirm that PpsA was responsible for this flux, the tracer 



 89 

experiment was repeated with a ΔppsA knockout strain. Surprisingly, the contribution 

of PYR to PEP (~65%) was similar to the wild-type. Following a database search for 

enzymes able to interconvert PYR and PEP(Kanehisa et al., 2016), we hypothesized 

that Enzyme I (EI, encoded by the gene ptsI) may be involved. EI is known to react 

reversibly(Weigel et al., 1982), but is not known to have a role in gluconeogenesis. In 

the knockout strain ΔptsI, the contribution of PYR to PEP (~65%) was still similarly 

high to the wild-type and ΔppsA strains. To determine if any other enzymes were 

involved with this flux, a double knockout, ΔppsAΔptsI, was constructed and the 

tracer experiment was repeated. In this double knockout, PEP labeling was entirely 

eliminated, indicating that the flux from PYR to PEP was zero (Figs. 5.1e and 5.1g). 

These results suggest that PpsA and EI interchangeably and exclusively support the 

large gluconeogenic flux from PYR to PEP observed in the wild-type during growth 

on acetate. This result was also observed during growth on pyruvate, which is shown 

in Figure 5.2. With pyruvate, the WT, ΔppsA, and ΔptsI strains grew similarly well 

(~0.25 hr-1), while ΔppsAΔptsI was unable to grow (Fig. 5.2a). For the three viable 

strains, nearly 100% of PEP was generated directly from PYR (Fig. 5.2b), indicating 

that alternative routes via the glyoxylate shunt and PCK or MAE reactions were not 

utilized. The unaffected growth rates and PYR to PEP fluxes in both ΔppsA and ΔptsI 

during growth on acetate and pyruvate reveal a high degree of flexibility in the system, 

which requires either rapid transcriptional compensation or large excess capacity for 

each enzyme. 
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Figure 5.1:   Quantification of alternative routes of PEP generation during growth on 

acetate. (A) Schematic showing two routes of PEP synthesis during 

growth on acetate. After malate is produced via glyoxylate shunt, malic 

enzyme (maeAB) can convert malate to PYR, from which PEP can be 

formed by the activity of ppsA or ptsI. Alternatively, pck can convert 

oxaloacetate (OAC) to PEP directly. (B) Growth rates of four strains 

during growth on acetate, wild-type (WT), ΔppsA, ΔptsI, and the double-

knockout ΔppsAΔptsI. (C) Labeling of valine from [1-13C]alanine, 

reflecting PYR labeling. Labeling is M1 (from tracer) and M0 (from 

unlabeled precursors in central metabolism). (D) Labeling of aspartate 

from [1-13C]alanine, reflecting OAC labeling. Aspartate is almost entirely 

unlabeled (M0). (E) Labeling of the first two (C1-C2) carbons of 

phenylalanine, reflecting the labeling of the first two carbons of PEP. (F) 

Schematic depicting the conversion of [1-13C]alanine to PEP and the 

measured amino acids. Opened and filled circles represent unlabeled 

(12C) and labeled (13C) carbons, respectively. (G) Percentage of PEP 

generated from PYR. Approximately 60% of PEP is generated from PYR 

in the WT and each single knockout strain; however, the flux is 

completely eliminated in the double knockout, indicating dual 

responsibility of ppsA and ptsI for the conversion of PYR to PEP. Data 

presented in (B) are mean ± s.e.m. of two biological replicates. Labeling 

data in (C), (D), and (E) have been corrected for natural abundances and 

unlabeled biomass present prior to tracer introduction. The error 

presented in (G) reflects the propagation of GC-MS measurement error 

through the calculation. 
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Figure 5.2:   Enzyme I supports gluconeogenic growth on pyruvate. (A) Growth 

profiles of four E. coli strains during growth on pyruvate: wild-type 

(WT), ΔppsA, ΔptsI, and the double knockout ΔppsAΔptsI. The double 

knockout strain ΔppsAΔptsI did not grow on pyruvate. (B) [1-13C]alanine 

experiments were performed and the percentage of PEP derived from 

pyruvate was determined. For the three strains able to grow on pyruvate, 

effectively all PEP was derived from pyruvate. 

5.3.2 A Significant Back-Flux is Measured During Growth on Glucose 

Given the surprising activity of EI under gluconeogenic growth conditions, we 

next sought to determine whether there was any measurable flux from PYR to PEP 

during growth on glucose. This flux was expected to be minimal or nonexistent, as this 

reaction is traditionally understood to have a large forward thermodynamic driving 

force, and gluconeogenic flux via PpsA would create a futile cycle. Glucose is a PTS 

sugar, meaning that during its consumption EI actively participates in the conversion 

of PEP to PYR. The experimental approach was modified slightly from the acetate and 

pyruvate cases by using [U-13C]alanine as tracer instead of [1-13C]alanine (Fig. 5.3). 

Again, PYR labeling was observed via valine labeling, OAC via aspartate, and PEP 

labeling via phenylalanine labeling. The contributions to PEP from OAC and PYR 
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were distinguishable due to M1 labeling in OAC, generated from scrambling in the 

TCA cycle (Fig. 5.3f). During growth on glucose, the wild-type was determined to 

have a statistically significant back-flux through which 10% of PEP was generated 

from PYR. When ΔppsA strain was analyzed, it was found to have the same back-flux 

as the wild-type (Fig. 5.3g), a result consistent with the reports of minimal PpsA 

expression during growth on glucose.(Trauchessec et al., 2014) Given the dual 

contribution of PpsA and EI to gluconeogenic flux under growth on acetate and 

pyruvate, it was suspected that EI may also be responsible for this back-flux on 

glucose.  

However, the EI mutant (ΔptsI) is known to grow minimally on glucose, and 

only after a long lag phase.(Flores et al., 1996; Liang et al., 2015) After pre-growth on 

LB medium and transferring to minimal medium with glucose, little or no growth was 

observed over 60 hours (Fig. 5.4a). Previous studies have found that growth on 

glucose can be facilitated by the induction of the gal operon, natively used for 

galactose transport and metabolism.(De Anda et al., 2006) Upon induction, the GalP 

proton-symport transporter is able to non-specifically transport glucose(Flores et al., 

2005, 1996; Hernández-Montalvo et al., 2003; Liang et al., 2015), which can be 

subsequently phosphorylated by glucokinase (glk). To take advantage of this 

phenomenon, ΔptsI and ΔppsAΔptsI strains were pre-grown in minimal medium with 

galactose. Upon transferring to minimal medium with glucose, growth immediately 

commenced, albeit at a relatively slow growth rate (~0.1 hr-1) (Fig. 5.3b, Fig. 5.4a). 

The absence of PTS transport was confirmed by the lack of growth under the same 

conditions of a ΔptsIΔglk double knockout strain (Fig. 5.4b).  



 93 

In both the ΔptsI and ΔppsAΔptsI strains first pre-grown in this way, a 

significant amount of PEP labeling was observed (Fig. 5.3e). In ΔptsI, 13% of PEP 

came from PYR, indicating significant PpsA activity (Fig. 5.3g), which is likely a 

result of active expression of ppsA in the altered regulatory state of this strain. In the 

ΔppsAΔptsI strain, almost all of the PEP labeling was generated from OAC via the 

PCK reaction (note the significant M1 labeling in Fig. 5.3e). As a result, only 2.4% of 

PEP was generated from PYR, demonstrating again responsibility of EI and PpsA for 

this flux. 

It is important to note that in these experiments WT and ΔppsA strains take up 

glucose via the PTS system, while ΔptsI and ΔppsAΔptsI strains are using non-PTS 

transporters. In order to get a more direct comparison of these four strains during 

glycolytic growth, the non-PTS sugar xylose was chosen for subsequent experiments. 
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Figure 5.3:   During growth on glucose, there is a significant back-flux from PYR to 

PEP not carried out by PEP synthetase (ppsA). (A) Schematic of glucose 

consumption and metabolism related to PEP and PYR interconversion. 

Glucose is transported and phosphorylated by the PTS, simultaneously 

converting PEP to PYR via Enzyme I (ptsI). (B) Growth rates of four 

strains during growth on glucose; ΔptsI and ΔppsAΔptsI were pre-grown 

on galactose to facilitate growth on glucose. (C) Labeling of last four 

carbons (C2-C5) of valine, representing the condensation of the last two 

carbons (C2-C3) of two PYR molecules. Labeling is mainly M0 

(condensation of two unlabeled PYR’s), M2 (condensation of one fully 

labeled PYR and one unlabeled PYR) and M4 (condensation of two 

labeled PYRs). (D) Labeling of the first two (C1-C2) carbons of 

aspartate, reflecting the labeling of the same carbons in OAC. M1 

labeling is generated through scrambling in the TCA cycle. (E) Labeling 

of the first two (C1-C2) carbons of phenylalanine, reflecting the labeling 

of the first two carbons of PEP. (F) Schematic depicting the conversion 

of [U-13C]alanine to PEP and the measured amino acids. The relative 

contributions of the three sources of PEP were quantified via regression. 

Opened and filled circles represent unlabeled (12C) and labeled (13C) 

carbons, respectively. (G) Percentage of PEP generated from PYR. 

Approximately 10% is generated from PYR in both WT and ΔppsA 

strains. The contribution is slightly elevated in ΔptsI, likely due to 

activity of ppsA. There is minimal back-flux in ΔppsAΔptsI. Data 

presented in (B) are mean ± s.e.m. of two biological replicates. Labeling 

data in (C), (D), and (E) have been corrected for natural abundances and 

unlabeled biomass present prior to tracer introduction. The error 

presented in (G) reflects the propagation of GC-MS measurement error 

through the calculation. 

5.3.3 Enzyme I Accounts for Back-Flux During Growth on Xylose 

The [U-13C]alanine tracer experiments were repeated for the same four strains 

(WT, ΔppsA, ΔptsI and ΔppsAΔptsI) using the non-PTS sugar xylose as substrate (Fig. 

5.5). Xylose is transported into the cell via an ABC transporter (xylGHF) or a proton 

symporter (xylE) (Linton and Higgins, 1998) (Fig. 5.5a), which renders EI non-

essential for growth (Fig. 5.5b). During growth on xylose, the back-flux observed in 
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Figure 5.4    (A) Growth profiles of ΔptsI strain with glucose as substrate. When ΔptsI 

was pre-grown on LB medium, little or no growth on glucose was 

observed. When ΔptsI was pre-grown on M9 medium with galactose, the 

cells grew without a lag phase on glucose. (B) The double knockout 

ΔptsIΔglk did not grow on glucose, regardless if the cells were pre-grown 

on LB medium or M9 medium with galactose. These results demonstrate 

that PTS transport is inactive in the ΔptsI strain. 

the wild-type was similar to that observed during growth on glucose, with 11% of PEP 

formed from PYR (Fig. 5.5g). Once again, this flux was not significantly reduced in 

the ΔppsA strain. However, this flux was almost completely eliminated in the ΔptsI 

and ΔppsAΔptsI strains (Fig. 5.5g), providing strong evidence that EI was exclusively 

responsible for the conversion of PYR to PEP under these conditions. Thus, during  

growth on xylose PpsA was not active, as may be expected under normal glycolytic 

growth conditions (Trauchessec et al., 2014). 
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Figure 5.5    Enzyme I (ptsI) is responsible for the back-flux from PYR to PEP during 

growth on xylose. (A) Schematic of xylose consumption and metabolism 

related to PEP and PYR interconversion. Xylose is transported via non-

PTS transporters. (B) Growth rates of four strains during growth on 

xylose, wild-type (WT), ΔppsA, ΔptsI, and the double knockout 

ΔppsAΔptsI.  (C) Labeling of last four carbons (C2-C5) of valine, 

representing the condensation of the last two carbons (C2-C3) of two 

PYR molecules. Labeling is mainly M0 (condensation of two unlabeled 

PYR’s), M2 (condensation of one fully labeled PYR and one unlabeled 

PYR) and M4 (condensation of two labeled PYR’s). (D) Labeling of the 

first two (C1-C2) carbons of aspartate, reflecting the labeling of the same 

carbons in OAC. M1 labeling is generated through scrambling in the 

TCA cycle. (E) Labeling of the first two (C1-C2) carbons of 

phenylalanine, reflecting the labeling of the first two carbons of PEP. (F) 

Schematic depicting the conversion of [U-13C]alanine to PEP and the 

measured amino acids. The relative contributions of the three sources of 

PEP were quantified via regression. Opened and filled circles represent 

unlabeled (12C) and labeled (13C) carbons, respectively. (G) Percentage 

of PEP generated from PYR. Approximately 10% is generated from PYR 

in both the WT and ΔppsA strains. The flux is nearly completely 

eliminated in the ΔptsI and ΔppsAΔptsI strains, indicating a major role 

for Enzyme I (ptsI) in facilitating the back-flux. Data presented in (B) are 

mean ± s.e.m. of two biological replicates. Labeling data in (C), (D), and 

(E) have been corrected for natural abundances and unlabeled biomass 

present prior to tracer introduction. The error presented in (G) reflects the 

propagation of GC-MS measurement error through the calculation. 

5.3.4 Back-Flux is Affected by Genetic Knockouts of PTS Components 

Given the strong evidence for EI involvement in the back-flux from PYR to 

PEP under glycolytic conditions, it was further hypothesized that this activity would 

be perturbed in knockout mutants of other PTS components. The PTS and its 

components are shown in Fig. 5.6a. The phosphotransferase partner of EI is HPr 

(encoded by the gene ptsH), which then interacts with the soluble (crr) and 

membrane-bound (ptsG) components of the glucose-specific Enzyme II complex 

(EIIABCGlc). The growth rates on glucose and xylose for the mutant strains ΔptsG, 
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Δcrr, and ΔptsH are shown in Fig. 5.6b. The mannose Enzyme II complex (EIIMan) is 

also known to transport glucose (Curtis and Epstein, 1975), allowing for the ΔptsG 

and Δcrr strains to grow on glucose with no lag phase, presumably still utilizing the 

PTS system. The lack of significant lag phase or growth defect for ΔptsH on glucose 

is less clear, but it has been suggested that this strain may be able to recruit non-PTS 

transporters such as galP more quickly than ΔptsI (Liang et al., 2015). Alternatively, it 

has been suggested that the HPr-like protein FPr from the fructose PTS may be able to 

substitute its activity for HPr (Bettenbrock et al., 2007).  

The [U-13C]alanine tracer experiments described above for glucose and xylose 

were performed for all knockouts of PTS components. There was a striking increase in 

the back-flux for several knockout strains (Fig. 5.6c). For example, in the ΔptsG strain 

grown on glucose, 21% of PEP was formed from PYR. Similarly high back-fluxes 

were also observed for Δcrr on both glucose (26%) and xylose (24%). However, the 

back-flux was nearly eliminated in ΔptsH on glucose, and significantly reduced on 

xylose. This indicates that HPr is likely the primary, if not sole, phosphotransferase 

partner of EI. 

While ppsA is generally not expected to be expressed during normal glycolytic 

conditions, it could be expressed and active in the altered regulatory environments of 

these mutant strains, as was seen in the case of ΔptsI on glucose. The phosphorylation 

states of PTS proteins are known effectors in regulatory circuits, particularly in the 

signaling of glucose availability for global metabolic regulation (Deutscher et al., 

2006; Reddy and Kamireddi, 1998). Perturbations in the PTS system could 

conceivably result in expression of gluconeogenic genes, e.g. through the activation of 

the global regulator Cra. To help to assign responsibility for the increased back-flux in 
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these strains, several double knockouts of ptsG, crr, ppsA, and ptsI were constructed 

(Fig. 5.6b,c). The strain ΔptsGΔppsA had a significant reduction in back-flux, down to 

10% from 21% in the single knockout during growth on glucose (Fig. 5.6c). Thus the 

excess back-flux in ΔptsG, relative to the wild-type, was attributable to PpsA. In 

contrast, there was only a modest decrease in back-flux for ΔcrrΔppsA on glucose, 

and there was no decrease on xylose. In the ΔcrrΔptsI strain, pre-grown on galactose 

as previously described, there was a reduction in the back-flux during growth on 

glucose, down to 14% from 26% in Δcrr. On xylose, the flux for the double knockout 

was nearly zero, compared with 24% in the single knockout. The fact that ΔcrrΔptsI 

on glucose still had some back flux likely indicates some degree of PpsA activity. 

Therefore, both enzymes play a role in the elevated back-flux of Δcrr on glucose. 

During growth on xylose, however, the elevated back-flux is entirely the result of EI. 

Overall, the double knockout studies are helpful in deconvoluting the relative 

contributions of PpsA and EI. These results suggest that in certain PTS mutant strains, 

particularly ΔptsI, Δcrr, and ΔptsG, the perturbed regulatory environments during 

growth on glucose results in ppsA being expressed and active. PpsA does not appear to 

play a role during growth on xylose, allowing for a more direct analysis of the 

interactions of PTS component perturbations with the back-flux activity. 
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Figure 5.6    Genetic perturbations of PTS components significantly impact the back-

flux from PYR to PEP. (A) Schematic of the PTS sugar transport system, 

which couples the transport and phosphorylation of glucose at EIIBCGlc 

(ptsG) to conversion of PEP to PYR (ptsI), via the phosphotransferases 

ptsH (ptsH) and EIIAGlc (crr). (B) Growth rates of wild-type (WT) E. coli 

and 9 knockout strains, including all single knockouts of PTS 

components and selected double knockouts, grown on glucose and 

xylose. All ptsI knockout strains grown on glucose were pre-grown on 

galactose. (C) [U-13C]alanine experiments were performed for all strains, 

and the percentage of PEP derived from PYR was determined. Several 

strains had significantly higher percentages of PEP derived from PYR, 

particularly ΔptsG on glucose and Δcrr on glucose and xylose, indicating 

that PTS component perturbation impacts back-flux. Double knockouts 

of these strains and ΔppsA or ΔptsI showed that ppsA plays a significant 

role during growth on glucose, accounting for all of the elevated back-

flux in ΔptsG, and for some in Δcrr, as evidenced by the residual flux in 

ΔcrrΔptsI. On xylose, the elevated back-flux in Δcrr is caused 

exclusively by EI. Data presented in (B) are mean ± s.e.m. of two 

biological replicates. The error presented in (C) reflects the propagation 

of GC-MS measurement error through the calculation. 

5.4 Discussion 

The results presented here show that Enzyme I facilitates reverse flux from 

PYR to PEP in E. coli. This function is active both under conditions in which the PTS 

is the primary means of transporting substrate (growth on glucose) and is not (growth 

on acetate, pyruvate or xylose). Knowledge of this gene-reaction relationship will 

improve our understanding and annotation of E. coli central carbon metabolism, which 

is of central importance in metabolic modeling and engineering efforts such as 13C 

metabolic flux analysis (Long and Antoniewicz, 2014a) and the development of 

production strains (De Anda et al., 2006; Flores et al., 1996; Gosset, 2005; Meza et al., 

2012).  

This metabolic activity also raises biological questions about the PTS, its 

regulation, and whether there are additional unannotated connectivities in the network. 
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For example, are there other kinases that interact with HPr or EI to provide the 

phosphoryl groups needed to sustain this large flux from PYR to PEP? In the 

gluconeogenic conditions studied here, there is clearly an unknown phosphate donor 

that allows EI to drive a large net flux from PYR to PEP. In the glycolytic conditions 

it is less clear whether the observed labeling is a result of simple reversibility in the 

EI/HPr system, or whether there is another donor specifically responsible for the PYR 

to PEP flux. The large increase in the back-flux in Δcrr, along with its elimination in 

ΔptsH during growth on glucose, is consistent with a model in which HPr is the 

primary or sole phosphotransferase partner of EI, and the Δcrr mutation perturbs the 

equilibria of the PTS chain as the less abundant or efficient EIIMan is substituted for 

EIIGlc. This would cause the phosphorylated form of HPr to accumulate, driving the 

partial reversal of the EI and PEP/PYR reactions. The fact that this also occurs during 

growth on xylose is surprising, and indicates either a robust dynamic equilibrium in 

the PTS system even when not being actively used, or the activity of other unknown 

factors.  

The complexity of the enzymatic and regulatory interactions in the PTS system 

require caution when interpreting these results. It is possible that EI could 

phosphorylate or activate another, yet unknown enzyme which phosphorylates PYR, 

or that the altered phosphorylation states of PTS components in the mutant strains 

studied result in the activation of such an enzyme. For example, P~EIIAGlc activates 

adenylate cyclase, generating cAMP which activates the global regulator 

Crp(Deutscher et al., 2006), which controls transcription of over 100 genes(Zheng et 

al., 2004). Other regulatory functions spanning from carbon and nitrogen metabolism 

to chemotaxis are directly influenced by the phosphorylation state of PTS components 
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(Deutscher et al., 2014). In this work we were able to deconvolute the role of ppsA, 

which was active in some knockout strains. Further work is needed to clarify the 

network, including potential candidates implicated in this work (e.g. a 

phosphotransferase donor during gluconeogenic growth) as well as to rule out the 

presence of any more unknown intermediary enzymes.  

The reversibility of the PEP to PYR step in glycolysis is also surprising in the 

global sense, particularly in the context of textbook understanding of this reaction as a 

“committed step” with a large Gibbs free energy drop. In fact, the results presented 

here are consistent with a recent study that estimated  in vivo ΔG values in central 

carbon metabolism using measured metabolite concentrations and observed cellular 

ΔG values (Park et al., 2016). For this reaction, the estimated ΔG was significantly 

lower than historically assumed. Similar labeling studies to those presented here 

demonstrated the reversibility of pyruvate kinase in human iBMK cells (Park et al., 

2016). Taken together these results are cause for reconsideration of our understanding 

of the thermodynamics, control, and engineering targets of central carbon metabolism.  

5.5 Author Contributions 

CPL and JA performed the experiments in the glucose, xylose, and pyruvate 

conditions. NAG performed the experiments in the acetate condition. NRS constructed 

all double knockout strains. CPL, JA and MRA designed the project and wrote the 

paper with help from all authors. 
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CHARACTERIZATION OF PHYSIOLOGICAL RESPONSES TO 22 GENE 

KNOCKOUTS IN ESCHERICHIA COLI UPPER CENTRAL CARBON 

METABOLISM 

Reprinted with permission from: Long CP, Gonzalez JE, Sandoval NR, Antoniewicz 

MR (2016) Characterization of physiological responses to 22 gene knockouts in 

Escherichia coli central carbon metabolism. Metab. Eng. 37, 102-113. 

 

6.1 Introduction 

Gene knockouts are widely used in biology to identify specific functions of 

corresponding gene products, as well as to study their roles in broader systems 

contexts. The utility of this approach has long been appreciated in the study of 

microbial metabolism, particularly by observing responses to knockouts of metabolic 

enzymes and global regulators. For example, in the model organism Escherichia coli, 

multiple ‘-omics’ techniques have been applied to gain insights into metabolic 

robustness (Ishii et al., 2007), transcriptional regulatory control (Haverkorn van 

Rijsewijk et al., 2011), hidden reactions (Nakahigashi et al., 2009), as well as 

responses following adaptive evolution (Charusanti et al., 2010; Fong et al., 2006). 

Metabolic fluxes are often the output of interest, and numerous studies have applied 

13C-metabolic flux analysis (13C-MFA) to knockouts of genes in E. coli central carbon 

metabolism and its global regulators (Long and Antoniewicz, 2014a). Many of these 

studies have been facilitated by the Keio collection of all viable single-gene E. coli 

knockouts (Baba et al., 2006). Knockout studies such as these are highly useful in 

improving our understanding of the structure and dynamics of metabolic networks, 

Chapter 6 
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and provide data for assessing and improving our ability to predict complex genetic 

perturbation responses. This ability is critical to rational strain design in metabolic 

engineering, and the difficulty of such predictions has long been identified as a key 

obstacle in the field (Bailey, 1991; Stephanopoulos, 1999). 

Due to the centrality of gene perturbation response prediction to metabolic 

engineering, a variety of modeling approaches have been developed and applied. The 

most prominent set are the constraint-based reconstruction and analysis (COBRA) 

methods, which rely on metabolic network stoichiometry and a defined ‘objective 

function’. These include flux balance analysis (FBA) (Edwards and Covert, 2002), 

minimization of metabolic adjustment (MOMA) (Segre et al., 2002), regulatory on/off 

minimization of metabolic flux changes (ROOM) (Shlomi et al., 2005), and relative 

optimality in metabolic networks (RELATCH), which also includes gene expression 

data from the reference state (Kim and Reed, 2012). These predictive models are then 

implemented as tools for rational strain design, such as in OptKnock (Burgard et al., 

2003; Chowdhury et al., 2014; Ranganathan et al., 2010). 

In a recent review (Long and Antoniewicz, 2014a), we highlighted important 

gaps in studies of E. coli knockout metabolism. For example, knockouts of many 

genes in central carbon metabolism have not been studied at all, and flux results from 

those that have been studied are often inconsistent or difficult to compare due to 

differences in culturing conditions and analytical approaches. This has impeded broad 

systems biology analyses that would be possible with a large, self-consistent study, as 

well as by integrating flux data with complimentary phenotypic observations. 

Illustrating the broad interest of such data, Mackie et al. (Mackie et al., 2014) recently 
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suggested that knockout phenotypic data would be an important addition to the Ecocyc 

database.  

Limitations in the available experimental data have inhibited thorough 

evaluation of the various competing COBRA models and the development more 

mechanistic kinetic and regulatory models. Demonstrating the potential of the latter, 

Khodayari et al. (Khodayari et al., 2014) recently used flux data from seven E. coli 

knockout mutants to estimate the parameters of a kinetic model of central carbon 

metabolism. In efforts such as these, additional high quality physiological data would 

undoubtedly be of great use. 

In this study, we present a comprehensive physiological characterization of 

wild-type E. coli and 22 knockouts of central carbon metabolism enzymes. The scope 

of this work consists of the following physiological data: growth rates, substrate 

uptake rates, product secretion rates, biomass and acetate yields, and biomass 

composition. These data were collected for the knockouts of upper central carbon 

metabolism, defined here to include glucose transporters, the upper portion of the 

glycolysis (EMP) pathway, pentose phosphate pathway (PPP), and Entner-Doudoroff 

(ED) pathway (Figure 6.1). In this work, we chose to study cellular responses under 

aerobic, batch (glucose-rich) conditions during exponential growth in M9 minimal 

medium. Under these conditions, no external growth limitations are imposed on the 

cells. We therefore expect to observe metabolic responses that inherently reflect the 

altered metabolic state of the knockouts, i.e. more so than would be observed with 

imposed growth limitations. Previous continuous culture studies reported surprisingly 

little metabolic variation when E. coli knockouts were grown at an arbitrary low 

growth rate (Ishii et al., 2007).  
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Figure 6.1:   Upper central carbon metabolism, with all genes studied here shown in 

their metabolic contexts (fbaA and rpiA were not included in this study, 

shown in red, see Methods section). 

6.2 Methods 

6.2.1 Chemicals 

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO). [U-

13C]Glucose was purchased from Cambridge Isotope Laboratories (Andover, MA). 

M9 minimal medium was used for all experiments. All media and solutions were 

sterilized by filtration. 

6.2.2 Strains and Culture Conditions 

E. coli strains were obtained from the Keio collection (GE Healthcare 

Dharmacon), which were generated by one-step inactivation of all non-essential genes 

in E. coli K-12 BW25113 (Baba et al., 2006). The specific strains used in this study 
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are listed in Table 6.1. The Keio collection contains two strains per gene knockout, 

and the reader should note which specific strain was used here, as differences resulting 

from adaptive evolution or contamination of stock cultures are possible. Two 

knockouts were excluded from this study: fbaA and rpiA (Figure 6.1). fbaA is not 

available from the Keio collection, indicating it is likely essential; the purchased ΔrpiA 

was validated to not be the correct strain. We were unable to create a rpiA knockout de 

novo, suggesting that this gene may be essential. 

 

Pathway Knockout Gene Plate-Row-Col Strain ID 

Wild-type none 
 

 

PTS glucose 

transport 

ptsG 55-G-3 JW1087-2 

crr 57-H-8 JW2410-1 

Glucose kinase glk 3-C-5 JW2385-1 

Glycogen 

biosynthesis 
pgm 5-E-5 JW0675-1 

Oxidative pentose 

phosphate 

pathway 

zwf 3-C-3 JW1841-1 

ybhE 19-G-6 JW0750-3 

gnd 4-E-3 JW2011-3 

Non-oxidative 

pentose 

phosphate 

pathway 

rpe 3-C-6 JW3349-2 

sgcE 73-D-6 JW4263-1 

rpiB 4-G-7 JW4051-2 

tktA 5-A-6 JW5478-1 

tktB 3-F-5 JW2449-3 

talA 3-E-5 JW2448-1 

talB 1-H-10 JW0007-1 

Entner-Doudoroff 

pathway 

edd 51-D-3 JW1840-1 

eda 51-C-3 JW1839-1 

Upper glycolysis 

pgi 3-F-7 JW3985-1 

pfkA 3-F-6 JW3887-1 

pfkB 77-B-4 JW5280-1 

fbp 5-H-9 JW4191-1 

fbaB 77-C-8 JW5344-1 

tpiA 4-G-6 JW3890-2 
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Table 6.1:     E. coli strains from the Keio collection (GE Healthcare Dharmacon) used 

in this study. 

 

For assessment of biomass and excreted metabolite yields, each strain was 

grown in aerated mini-bioreactors with 10 mL working volume (Leighty and 

Antoniewicz, 2013) in M9 minimal medium with 2 g/L glucose. Cultures were grown 

until glucose depletion. Biomass yields were calculated by regression of glucose 

concentrations and optical density (OD600) measurements (Eppendorf BioPhotometer). 

Supernatant was collected at the time of glucose depletion for analysis of excreted 

metabolites by HPLC (Au et al., 2014). For assessment of dry weight and biomass 

composition, two biological replicate 100 mL cultures were grown aerobically in 

shaker flasks, in M9 minimal medium with 2 g/L glucose. Cells were harvested at 

mid-exponential phase (OD600 ≈ 0.7). At that point, samples for dry weight analysis 

were taken by filtration of 70 mL of culture using a 0.2 μm cellulose acetate filter 

(Sartorius 11107-47-N), followed by drying for several days at 80 °C until constant 

weight. Additionally, samples containing the equivalent of 1 mL of culture at OD600 = 

1.0 (roughly 0.3 mg of dry weight) were washed twice with glucose-free M9 medium 

and used for biomass composition analysis.  

6.2.3 Biomass Composition Analysis 

The methods used for quantifying biomass composition were previously 

described in detail (Long and Antoniewicz, 2014b). Briefly, samples were prepared by 

three respective methods: hydrolysis of protein and subsequent TBDMS derivatization 

of amino acids; hydrolysis of RNA and glycogen and subsequent aldonitrile 

propionate derivatization of sugars (ribose and glucose, respectively); and fatty acid 

methyl ester derivatization. In total, 17 amino acids were quantified. The amino acids 
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arginine, cysteine and tryptophan are degraded during hydrolysis and were thus not 

detected. For total protein quantification, we assumed the values previously reported 

(Neidhardt, 1987) for these three amino acids. Glutamine and asparagine were 

deaminated to glutamate and aspartate, respectively, during hydrolysis; thus, we report 

the combined pools of each. Quantification of all species was achieved by isotope 

ratio analysis using an isotopically labeled standard and a naturally labeled sample. In 

this study, the standard was generated by growing wild-type E. coli on [U-13C]glucose 

and aliquoting identical (1 mL of an OD600 = 1.0) samples of this “fully labeled” 

biomass. These were centrifuged and washed twice with M9 medium. The 

composition of the labeled biomass was characterized using unlabeled chemical 

standards, and subsequently these were used as standards by co-dissolving with the 

unlabeled samples at the beginning of each respective analytical method.  

6.2.4 Gas Chromatography-Mass Spectrometry 

GC-MS analysis was performed on an Agilent 7890B GC system equipped 

with a DB-5MS capillary column (30 m, 0.25 mm i.d., 0.25 μm-phase thickness; 

Agilent J&W Scientific), connected to an Agilent 5977A Mass Spectrometer operating 

under ionization by electron impact (EI) at 70 eV. Helium flow was maintained at 1 

mL/min. The source temperature was maintained at 230 °C, the MS quad temperature 

at 150 °C, the interface temperature at 280 °C, and the inlet temperature at 250 °C. For 

GC-MS analysis of amino acids, 1 μL was injected at 1:40 split ratio. The column was 

started at 80 °C for 2 min, increased to 280 °C at 7 °C/ min, and held for 20 min. For 

GC-MS analysis of fatty acid methyl esters (FAME) and sugar derivatives, 1 μL was 

injected splitless (Crown et al., 2015b). The column was started at 80 °C for 2 min, 

increased to 280 °C at 10 °C/min, and held for 12 min.  
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6.2.5 Calculation of Oxygen Uptake and Carbon Dioxide Production Rate 

The carbon dioxide production rate was calculated from an overall carbon 

balance, accounting for glucose uptake, acetate secretion, and biomass formation. The 

oxygen uptake rate was calculated from an overall redox balance using the degrees of 

reduction and production/consumption rates of glucose, acetate and biomass. The 

degree of reduction of biomass of each strain was calculated from the measured 

biomass composition. The degree of reduction () was calculated as follows 

(Antoniewicz et al., 2007c; Crown and Antoniewicz, 2013a): 

𝛾 = 4𝐶 + 𝐻 − 2𝑂 − 3𝑁 + 6𝑆 + 5𝑃 − 𝑐ℎ𝑎𝑟𝑔𝑒 

6.2.6 COBRA Modeling 

Flux balance analysis (FBA), minimization of metabolic adjustment (MOMA), 

and the relative change (RELATCH) algorithms were implemented through the 

COBRA Toolbox 2.0 in Matlab 2012b (Kim and Reed, 2012; Schellenberger et al., 

2011) using the E. coli iAF1260 genome scale model (Feist et al., 2007). CPLEX from 

Tomlab (http://tomopt.com) was used as the LP and QP solvers. RELATCH was 

downloaded from the Reed Laboratory website 

(http://reedlab.che.wisc.edu/codes.php). For FBA calculations, the upper bounds for 

glucose and oxygen uptake rates were set at wild-type values of 8.5 mmol/gdw/hr and 

12 mmol/gdw/hr respectively (see Results), and growth rate was optimized. For 

MOMA and RELATCH, the reference state was generated using fluxes previously 

reported from a 13C-MFA study (Leighty and Antoniewicz, 2013) as follows. First, the 

reported fluxes were re-normalized to the reported glucose uptake rate of 8.5 

mmol/gdw/hr. Then, in the iAF1260 model, the upper and lower bounds for key branch 

point reactions in central carbon metabolism were set as the measured value plus or 
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minus 0.05 respectively, corresponding approximately to the reported 95% confidence 

intervals. These included the glucose-6-phosphate isomerase (‘PGI’), glucose-6-

phosphate dehydrogenase (‘G6PDH2r’, otherwise referred to as “zwf” here), 6-

phosphogluconate dehydratase (‘EDD’), triose phosphate isomerase (‘TPI’), 

glyceraldehyde-3-phosphate dehydrogenase (‘GAPD’), pyruvate kinase (‘PYK’), 

phosphotransacetylase (‘PTAr’, toward acetate production), citrate synthase (‘CS’), 

isocitrate lyase (‘ICL’), malic enzyme (ME1, ME2), phosphoenolpyruvate carboxylase 

(‘PPC’), and phosphoenolpyruvate carboxykinase (‘PPCK’) reactions. The upper limit 

of the glucose uptake rate was set to 8.5 mmol/gdw/hr, at least 95% of which was 

required to be transported via the PTS system (‘Glcptspp’). An FBA simulation was 

then run to obtain a genome-scale reference state flux solution. For RELATCH, gene 

expression data for the wild-type reference state was included (Covert et al., 2004). 

All reaction bounds, including all transport bounds, were lifted for the calculation of 

the knockout phenotype using MOMA and RELATCH.  

6.3 Results 

6.3.1 Characterization of Physiological Responses to Gene Knockouts 

6.3.1.1 Biomass Dry Weights 

The experimentally determined OD600 to cell-dry-weight conversion factors are 

summarized in Figure 6.2 (top right). Out of the 23 strains studied here, 21 strains had 

a conversion factor that conformed to a normal distribution (as confirmed by the 

Lilliefors normality test) with a mean of 0.31 g/L/OD600 and a standard deviation of 

0.02. The two notable outliers were ΔptsG with a dry weight conversion factor of 0.42 

g/L/OD600 and ΔtpiA with a dry weight conversion factor of 0.41 g/L/OD600. The high 
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conversion factors for these two strains were consistently observed in multiple 

biological replicates. Interestingly, we also observed significant foaming in cultures of 

these two strains, while little or no foaming was observed with the other 21 strains. 

For all subsequent calculations we used the individual dry weight conversion factors 

for ΔptsG (0.42 g/L/OD600) and ΔtpiA (0.41 g/L/OD600), and used the average value of 

0.31 g/L/OD600 for the remaining 21 strains. 

6.3.1.2 Growth Rates 

The measured growth rates are shown in Figure 6.2 (top left). The growth rate 

of wild-type strain was 0.63 hr-1. Only one knockout strain had a significantly higher 

growth rate, Δpgm, which grew with a specific growth rate of 0.68 hr-1. The slowest 

growing strains were ΔpfkA (0.16 hr-1), Δtpi (0.17 hr-1), Δpgi (0.19 hr-1), ΔptsG (0.25 

hr-1), Δrpe (0.30 hr-1) and Δcrr (0.44 hr-1). Other strains had growth rates similar to or 

slightly less than the wild-type. 

6.3.1.3 Biomass Yields 

We observed relatively little variability in the measured biomass yields (Figure 

6.2, bottom left). Most knockouts had similar values to the wild-type (0.41 gdw/g). The 

ΔptsG strain had a higher yield of 0.57 gdw/g. Other knockouts had yields similar to or 

less than the wild-type, with ΔybhE having the lowest biomass yields (~0.31 gdw/g). 

6.3.1.4 Acetate Yields 

Relatively large variability was observed for acetate yields (Figure 6.2, bottom 

right), and correspondingly, the acetate secretion rates. The wild-type strain produced 

0.71 mol of acetate per mol of glucose consumed. The knockouts ΔptsG and Δpgi 

produced little or no acetate, while others produced anywhere from ~0.4 mol/mol 
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(ΔpfkA and ΔtpiA) to as much as 0.95 mol/mol (ΔybhE and Δgnd). The variations in 

acetate yields likely reflect significant differences in underlying internal fluxes, 

particularly with respect to the acetyl-CoA node and the TCA cycle. 

 

Figure 6.2:   Measured physiological parameters. Bar colors reflect pathway 

assignment (wild-type: gray, transporters and phosphoglucomutase: blue, 

oxidative pentose phosphate pathway: red, non-oxidative pentose 

phosphate pathway: green, Entner-Doudoroff pathway: orange, upper 

EMP pathway: purple). Error bars indicate standard errors of the mean 

for growth rate (n=3) and cell density per OD (n=2), and standard errors 

attributable to regression and measurement error for biomass and acetate 

yield. 
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6.3.1.5 Glucose Uptake Rates 

The calculated glucose uptake rates are shown in Figure 6.3. The uptake rate 

for wild-type strain was 8.5 mmol/gdw/hr, consistent with previous reports (Crown et 

al., 2015a; Haverkorn van Rijsewijk et al., 2011; Leighty and Antoniewicz, 2013). 

Large reductions in glucose uptake rate were observed in some of the slow growing 

strains, with ΔptsG, Δpgi, ΔpfkA, and ΔtpiA all at approximately 2 mmol/gdw/hr. 

Additionally, Δcrr and Δrpe had lower glucose uptake rates at approximately 5 

mmol/gdw/hr. Interestingly, two knockouts consumed glucose at a higher rate than the 

wild-type, the fastest being Δpgm at 10.1 mmol/gdw/hr. Other knockouts had uptake 

rates similar to or slightly less than the wild-type. 

 

Figure 6.3:   Calculated uptake rates of glucose and oxygen. Bar colors reflect 

pathway assignment (wild-type: gray, transporters and 

phosphoglucomutase: blue, oxidative pentose phosphate pathway: red, 

non-oxidative pentose phosphate pathway: green, Entner-Doudoroff 

pathway: orange, upper EMP pathway: purple). Error bars reflect the 

propagation of the directly measured standard errors. 
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6.3.1.6 Gas Exchange Rates 

Specific oxygen uptake (Figure 63, right) and carbon dioxide evolution rates 

were calculated from redox and carbon balances, respectively (see also Figure S1). 

Despite relatively larger uncertainty in these estimated rates, resulting from 

propagation of measurement errors, some significant variations were still apparent. 

The specific oxygen uptake rate of wild-type was estimated to be ~13 mmol/gdw/hr, 

consistent with prior literature (Chen et al., 2011; Leighty and Antoniewicz, 2013). 

The strains ΔptsG, Δpgi, ΔpfkA, and ΔtpiA consumed oxygen at a much lower rate, ~4 

to 5 mmol/gdw/hr; while other strains consumed oxygen at a higher rate than wild-type, 

particularly Δpgm and ΔrpiB (~19 mmol/gdw/hr).  The carbon dioxide secretion rates 

and respiratory coefficients (RQ = CO2 produced per O2 consumed) are shown in 

Figure 6.4. The RQ values for all strains were between 1.1 and 1.3, with no significant 

outliers.  
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Figure 6.4:   Calculated carbon dioxide secretion rates and RG coefficient. Bar colors 

reflect pathway assignment (wild-type: gray, transporters and 

phosphoglucomutase: blue, oxidative pentose phosphate pathway: red, 

non-oxidative pentose phosphate pathway: green, Entner-Doudoroff 

pathway: orange, upper EMP pathway: purple). Error bars reflect the 

propagation of the directly measured standard errors. 

6.3.1.7 Biomass Composition 

The compositions of biomass for all 23 strains are shown in Figure 6.5. We 

observed several striking differences in the relative distribution of the four major 

biomass components, i.e. proteins, RNA, lipids and glycogen. The total protein 

content varied between 45 wt% and 59 wt% (wild-type strain 51 wt%). The RNA 

content ranged from 14 wt% to 23 wt%, with most knockouts having lower RNA 

content than wild-type (21 wt%). The lipid content varied significantly between 3.7 

wt% and 6.4 wt% (wild-type strain 4.7 wt%). The glycogen content also varied 

widely, ranging from 0.6 wt% to 8.9 wt%, with most knockout strains accumulating 

more glycogen than the wild-type (3.2 wt%). A notable exception was Δpgm, which 

had almost no glycogen, consistent with the gene’s key role in generating the 

precursor glucose 1-phosphate for glycogen synthesis. The relatively large variations 
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in biomass composition highlight the relevance of these measurements for interpreting 

the metabolic and physiological states of these strains.  

 

Figure 6.5:   Dry weights for major biomass components. Bar colors reflect pathway 

assignment (wild-type: gray, transporters and phosphoglucomutase: blue, 

oxidative pentose phosphate pathway: red, non-oxidative pentose 

phosphate pathway: green, Entner-Doudoroff pathway: orange, upper 

EMP pathway: purple). Error bars represent standard errors of the mean 

(n=4, 2 biological replicates with 2 technical replicates each). 

The normalized distributions of amino acids (per gram of protein) were 

constant for all strains (Figure 6.6). In contrast, there was large variability in the 

distribution of fatty acids, particularly amongst C16:0, C16:1 and C18:1 fatty acids 
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(Figure 6.7). Interestingly, all slow-growing strains (Δrpe, Δpgi, ΔpfkA, and ΔtpiA) had 

elevated C16:0 levels and decreased C18:1 levels. Another strain that stood out was 

Δfbp, which had more C16:1 than C16:0. 

 

Figure 6.6:   Amino acid distribution of each strain. Error bars represent standard 

errors of the mean (n=4, 2 biological replicates with 2 technical replicates 

each). 
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Figure 6.7:   Amino acid distribution of each strain. Error bars represent standard 

errors of the mean (n=4, 2 biological replicates with 2 technical replicates 

each). 

The calculated degrees of reduction and molecular weights of biomass are 

listed in Table 6.2. The degrees of reduction had minimal variation, ranging from 4.34 

to 4.45 electrons per Cmol of biomass. The molecular weight of biomass also varied 

minimally, ranging from 26 to 27 gdw per Cmol of biomass. 

 

Strain 
Degree of 

Reduction 
MW(g/mmol-C) 

WT 4.371 0.0270 
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ptsG 4.414 0.0261 

crr 4.340 0.0262 

glk 4.368 0.0268 

   

pgm 4.353 0.0265 

   

zwf 4.382 0.0268 

ybhE 4.414 0.0265 

gnd 4.414 0.0267 

   

rpe 4.383 0.0264 

sgcE 4.373 0.0268 

rpiB 4.385 0.0267 

tktA 4.426 0.0266 

tktB 4.432 0.0270 

talA 4.422 0.0269 

talB 4.434 0.0272 

   

edd 4.381 0.0272 

eda 4.366 0.0267 

   

pgi 4.384 0.0268 

pfkA 4.380 0.0266 

pfkB 4.363 0.0272 

fbp 4.363 0.0272 

fbaB 4.451 0.0270 

tpiA 4.398 0.0269 

Table 6.2:     Calculated degree of reduction and molecular weight of each strain. 

6.3.2 Correlations in Physiological Data and PCA Analysis 

Next, we analyzed the measured growth data, yield data, and biomass 

composition data for pairwise correlations. The results are summarized in Figure 6.8, 

and scatter plots of several highly correlated physiological parameters are shown in 
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Figure 6.9. Several correlations that we identified were anticipated based on prior 

literature reports (see below), while other correlations were more surprising. The 

growth rate correlated with several physiological parameters, including acetate yield, 

RNA content, and the content of the fatty acids C16:0 and C18:1. There were also 

clear trade-offs between biomass and acetate yields, and between fatty acids, 

particularly C16:1 vs. C16:0, and C16:0 vs. C18:1. The strong correlations between 

biomass composition and growth rate are also highlighted in Figure 6.9. The RNA 

dependence on growth rate has been reported previously (Neidhardt, 1987; Pramanik 

and Keasling, 1997), and is thought to reflect the need for more ribosomes to support 

fast growth rates. The trade-off in fatty acid composition, on the other hand, in which 

the unsaturated C18:1 is preferred to the saturated C16:0 at faster growth rates, has not 

been previously reported to our knowledge. 
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Figure 6.8:   Exhaustive pairwise correlation coefficients for all measured data. The 

coefficients are given in the lower triangle, and the quality and direction 

of the correlation is represented visually by ellipsoids in the upper 

triangle (more elongated ellipsoid = higher quality correlation). The 

coloring is scaled to reflect value from -1.0 (red) to 0 (white) to 1.0 

(blue). The included data sets (left to right) are growth rate (h-1) , dry 

weight per OD (g/L/OD600), biomass yield (g/g), acetate yield (mol/mol), 

percentages of the four major biomass components, and the relative fatty 

acid contents (mmol/g(lipid)). All coefficients greater than 0.4 indicate a 

significant nonzero correlation at 95% confidence. 
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Figure 6.9:   Scatter plots of correlated data. Marker colors reflect pathway assignment 

(wild-type: gray, transporters and phosphoglucomutase: blue, oxidative 

pentose phosphate pathway: red, non-oxidative pentose phosphate 

pathway: green, Entner-Doudoroff pathway: orange, upper EMP 

pathway: purple). 
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Also shown in Figure 6.9 are the correlation between glucose uptake rate and 

both biomass and acetate yields, which has implications in terms of the acetate 

“overflow” metabolism interpretation (Basan et al., 2015; Majewski and Domach, 

1990). E. coli is believed to produce acetate under aerobic conditions in order to 

maximize glucose uptake and growth rate under constrained oxidative phosphorylation 

capacity. Therefore, at a lower glucose uptake rate, a relatively higher oxidative 

phosphorylation flux would result in higher biomass yields and lower acetate flux. For 

example, Basan et. al (Basan et al., 2015) showed a highly linear dependence of 

acetate flux on growth rate. In our data, the expected trends are present: biomass yield 

correlates negatively with glucose uptake rate and acetate yield correlates positively 

with glucose uptake rate. However, it is interesting to note the imperfect nature of this 

relationship in our data, especially relative to the results of Basan et al. These results 

indicate that the gene knockouts are likely perturbing the system in ways that exceed 

this relatively well-understood phenomenon.  

Principal component analysis (PCA) was also applied to explore correlations in 

our data set. PCA is a data reduction technique that can be used to identify redundant 

and linearly dependent measurements, allowing for the identification and 

interpretation of nontrivial variation in large multidimensional data sets such as is 

presented here. PCA defines a new lower-dimensional space spanned by new 

variables, or “principal components”, that are linear combinations of the original 

variables and that capture the maximum amount of original variation in the data. For 

PCA analysis, all data were normalized and standardized prior to analysis. The results 

of PCA analysis are shown in Figure 6.10. Principal components 1 and 2, accounted 

for 56% of the total data variability. PC1 mostly captured the growth rate 
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dependencies discussed above (i.e. covariation of growth rate with acetate yield, 

%RNA, C16:0, and C18:1), while PC2 captured subtler correlations mostly in biomass 

composition data, particularly between %Carb, C14:0, and C18:0 (see coefficients in 

Figure 6.10). The various E. coli knockouts clustered in informative ways. For 

example, knockouts of the dominant enzymes in the EMP pathway (Δpgi, ΔpfkA, 

ΔtpiA) clustered in a region with low PC1 and low PC2 values. These knockouts are 

likely to disrupt the highly active glycolytic flux of wild-type cells. ΔptsG was an 

outlier with low PC1 and high PC2 values. Both isozymes of ΔtalA and ΔtalB also 

clustered together with low PC2 values, and several strains clustered with high PC1 

and moderately high PC2 values. Interestingly, the two knockouts of the ED pathway 

(Δedd and Δeda) did not cluster together. Hierarchical clustering was also applied as 

an alternative clustering approach, and the resulting dendrogram is included in Figure 

6.11. Overall, similar general relationships were observed with hierarchical clustering 

and PCA analysis, for example, the clustering of Δpgi, ΔpfkA, ΔtpiA and Δrpe, and the 

largest distances being between wild-type and this cluster, and between wild-type and 

ΔptsG.  
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Figure 6.10:  Principal component analysis (PCA) plot showing the first two 

components, which together account for more than half of the total 

variation in the data. The coefficients mapping these components to the 

original (normalized and standardized) data are shown in the table to the 

right. 
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Figure 6.11: Hierarchical clustering of the knockout strains. 

6.3.3 Evaluating COBRA Modeling Predictions 

Next, we applied several widely used COBRA modeling approaches to predict 

several of the directly measured physiological characteristics for the 23 strains. For 

FBA, the upper bounds on glucose and oxygen uptakes were taken to be those of the 

wild-type E. coli. The wild-type glucose uptake and oxygen uptake rates applied were 

8.5 mmol/gdw/hr and 12 mmol/gdw/hr, respectively. The former was as measured in 

this study, and the latter value was chosen because it is within the experimental error 

of measurements in this study, is consistent with previous studies (Chen et al., 2011; 

Leighty and Antoniewicz, 2013), and results in FBA predictions of wild-type growth 

rate, biomass yield, and acetate yield that are consistent with experiment (Figure 6.12). 

These constraints are a necessary and common assumption of FBA in which the wild-
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type is assumed to be optimal. No uptake rate constraints were applied for MOMA or 

RELATCH. The reference state, generated as described in the Methods section, also 

had good agreement with the experimental wild-type growth rate, biomass and acetate 

yields (Figure 8). Of the 22 knockout strains studied here, 13 were knockouts of 

isozymes catalyzing the same reaction, which do not impose new stoichiometric 

constraints, thus allowing FBA and MOMA to find the trivial wild-type solution. The 

same is true for Δglk, Δedd, Δeda, and Δfbp, which do not carry significant flux in the 

wild-type (both in the FBA solution and according to (Leighty and Antoniewicz, 

2013)). In contrast, RELATCH utilizes gene expression data to calculate the metabolic 

costs of adjustment associated with each individual gene knockout, including 

isozymes. 

The performance of the three models in terms of predicting growth rate, 

biomass yield, and acetate yield are summarized in Figure 6.12. Correlation 

coefficients were calculated to quantify the agreement between prediction and 

measurement. In general, FBA predicted very few deviations from the wild-type 

physiology for the 22 knockouts. This resulted in poor agreement with the data, with 

correlation coefficients of 0.43, 0.17, and -0.12 for growth, biomass yield, and acetate 

yield respectively. As assuming growth rate optimization has long been considered 

invalid for un-evolved knockouts, this poor performance is not surprising. MOMA 

performed better in some cases, for example in predicting growth rates for the 

oxidative pentose phosphate pathway knockouts (predicted: 0.51-0.52 hr-1, observed: 

0.58, 0.48, 0.53 hr-1), Δpgi (predicted: 0.46, observed: 0.19 hr-1) and ΔtpiA (predicted: 

0.31, observed: 0.16 hr-1). The overall growth rate correlation coefficient was 0.51. 

MOMA had a very poor overall agreement with the biomass yield data (ρ=0.07), and 
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in particular overestimated the biomass yield penalties for Δpgi (predicted: 0.31 gdw/g, 

observed: 0.46 gdw/g) and ΔtpiA (predicted: 0.15 gdw/g, observed: 0.39 gdw/g). MOMA 

predicted almost no changes to acetate yields across all strains except ΔtpiA (0.55 

mol/mol), also resulting in poor overall agreement (ρ=0.24). Of the three models 

tested here, RELATCH predictions agreed best with measurement for growth rate 

(ρ=0.54), biomass yield (ρ=0.52), and acetate yield (ρ=0.40). This is partially a result 

of the fact, as mentioned above, that RELATCH was the only one of the three without 

a large number of trivial (wild-type) solutions for knockouts. While performing best of 

this set of COBRA methods, RELATCH did not fully capture the range of growth 

rates observed. The growth rates of all of the slowest growing strains were over-

estimated. While performing by far the best in terms of biomass yield, it did not 

predict the high yield for ΔptsG. The acetate yield predictions of RELATCH were 

generally low relative to the measured values, but high for the non-producing strains 

ΔptsG and Δpgi. 
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Figure 6.12: Comparison of experimental growth rates, biomass yields, and acetate 

yields to those predicted by three constraint-based modeling approaches 

(FBA: flux balance analysis, MOMA: minimization of metabolic 

adjustment, RELATCH: relative optimality in metabolic networks). 

Marker colors reflect pathway assignment (wild-type: gray, transporters 

and phosphoglucomutase: blue, oxidative pentose phosphate pathway: 

red, non-oxidative pentose phosphate pathway: green, Entner-Doudoroff 

pathway: orange, upper EMP pathway: purple). Correlation coefficients 

(ρ) describe the agreement between prediction and measurement. Wild-

type data were excluded from this correlation. 
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6.4 Discussion 

The phenotypic data collected and reported here demonstrate that there are 

significant metabolic and physiological changes associated with the knockout of 

central carbon metabolism enzymes. The “rewired” metabolic phenotypes are direct 

responses to the altered metabolic network, with effects of stoichiometry, kinetics, and 

regulation manifested. The study of this rewiring can offer new insights into these 

areas. In the knockouts studied here, we observed a 4.3 fold range of growth rates, a 

1.8 fold range in biomass yields, and a wide range of acetate producing phenotypes 

from non-producing (~0 mol/mol for Δpgi) to high-producing (~1 mol/mol for ΔybhE 

and Δgnd). The corresponding metabolic rates (glucose uptake, oxygen uptake, carbon 

dioxide secretion, and acetate secretion) had correspondingly high variations. These 

results demonstrate that under substrate-rich conditions, the impact of many central 

carbon metabolism knockouts on the metabolic phenotype is dramatic. This contrasts 

with previous studies in which, for example, at low dilution rates of 0.2 hr-1 no acetate 

was produced by any knockout strains, including many of the same as are presented 

here (Ishii et al., 2007). 

There are several interesting cases to which more specific analyses can be 

applied. For example, it was unexpected that two knockouts to complimentary 

components of the PTS glucose transport (ΔptsG is the glucose-specific transporter, 

and Δcrr is its first partner phosphotransferase) displayed different growth and glucose 

uptake rates (Δcrr took up glucose approximately twice as fast). This could indicate 

the presence of regulatory effects or kinetic differences as alternative transporters or 

phosphotransferases are utilized. Also of note are the phenotypes of the many 

isozymes studied. Some of these knockouts were severely impacted in terms of 

growth, indicating a heavy reliance on one dominant isozyme. This was the case for 
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Δrpe and ΔpfkA, which had been previously reported to be the dominant isozymes 

(Kotlarz et al., 1975; Lyngstadaas et al., 1998). This was even more severely the case 

for fructose bisphosphate aldolase, where the primary fbaA is essential for E. coli 

growth even with rich media (Baba et al., 2006). In contrast, the growth rate was not 

nearly as affected for tktA/B and talA/B, indicating perhaps a more equitable and 

flexible distribution of the flux load. However, significant differences in biomass and 

acetate yields and biomass composition indicate that measurable phenotypic changes 

do occur in these cases. The one knockout studied here that was not completely 

integrated into a central carbon metabolic pathway was Δpgm. Phosphoglucomutase 

interconverts G6P and G1P, and under glucose rich conditions generates G1P for 

glycogen biosynthesis (Eydallin et al., 2007). In this knockout, we observed an 

elevated growth rate, higher glucose and oxygen uptake rates, and negligible glycogen 

content, in agreement with results reported by Eydallin et al. These results show 

quantitatively the metabolic and growth “opportunity cost” that E. coli pays for 

security against future glucose starvation.  

Looking at the growth and yield data in aggregate, we can extract general 

trends and identify outliers of interest. For example, we observed a positive correlation 

between acetate yield and glucose uptake rate (Figure 6.9). This is consistent with the 

general interpretation of acetate overflow metabolism (Majewski and Domach, 1990). 

However, we can see deviations from this trend, including very slowly growing strains 

that still produce significant amounts of acetate such as ΔpfkA and ΔtpiA. Similarly, 

acetate yield correlates negatively with biomass yield, as would be expected given the 

trade-off of carbon fates; and biomass yield correlates negatively with glucose uptake 

rate. Along with the two strains mentioned above, Δrpe also clearly falls into a 
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category of knockout strains that grows both slowly and inefficiently. It is notable that 

while the severity of the EMP disruptions (also including Δpgi) may be intuitive due 

to the large wild-type glycolytic flux, the RPE flux is much less (Crown et al., 2015a; 

Leighty and Antoniewicz, 2013), showing that disruptions even in nominally small 

fluxes can have large effects. 

The presented biomass composition information also provided valuable 

perspective and opportunity for insight. It is notable that the total protein content 

varied only slightly, and the relative amino acid composition did not vary at all. 

However RNA, fatty acids, and glycogen contents exhibited much more variation. We 

demonstrated that RNA content correlated positively with growth rate, which had been 

previously reported (Neidhardt, 1987; Pramanik and Keasling, 1997). However, we 

did not observe the also previously reported negative correlations between growth rate 

and both protein and glycogen content (Neidhardt, 1987; Pramanik and Keasling, 

1997). Many knockouts exhibited an increased level of glycogen storage, which could 

indicate that it is an effect of a general stress response. Most surprising were strains 

that did not have impaired growth or other significant differences from the wild-type, 

but had much higher glycogen levels, such as Δedd, ΔtalB, and ΔpfkB. The total fatty 

acid content ranged moderately both higher and lower than the wild-type, but we 

observed striking correlations in fatty acid content. Faster growing strains had a more 

equitable distribution of C16:1, C16:0, and C18:1 fatty acids. Slower growing strains, 

however, contained much more C16:0, which came primarily at the expense of C18:1. 

These fatty acids are associated with the phospholipid membrane, so the differing 

compositions likely correspond to different membrane properties, e.g. membrane 

fluidity and stability (Zhang and Rock, 2008). On the other hand, C14:0, which did not 
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change much between the strains, is primarily associated with lipopolysaccharide 

(LPS) (Neidhardt, 1987). Some growth rate effects on membrane lipid have been 

identified previously (Shokri et al., 2002), but the identified trends were not as 

monotonic or clear as is reported here. The exact mechanism behind this correlation is 

worthy of future investigation. 

These correlations and others were captured also in the presented PCA 

analysis. Clustering was observed among knockout strains with similar roles in a 

pathway, particularly the dominant EMP enzymes Δpgi, ΔpfkA, and ΔtpiA. These 

knockouts were likely to have similar physiological effects such as sugar-phosphate 

stress from accumulation of glycolytic intermediates (Richards et al., 2013). The 

ΔptsG strain was also significantly unique from all other strains. Surprisingly, a 

significant distance was observed between the two ED pathway knockouts, Δedd and 

Δeda. This was due to differences in biomass composition, particularly higher 

glycogen levels and less C18:0 in Δedd. It is not known by what mechanism these two 

strains would be affected in this way, as this pathway carries negligible flux in the 

wild-type. Both the PCA analysis and hierarchical clustering provided a quantitative 

sense of the similarity between all studied strains, and could identify the knockout 

strains with the most severe impacts relative to the wild-type strain. 

Metabolic networks have been most thoroughly studied and understood thus 

far at the level of stoichiometry. This is reflected in the prevalence of the COBRA 

modeling tools. Using the external flux data collected here, we have applied three 

COBRA methods, FBA, MOMA, and RELATCH, to determine whether the observed 

phenotypes could be predicted on the basis of stoichiometry and wild-type phenotypic 

data alone (fluxes for MOMA; and fluxes and gene expression for RELATCH). While 
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RELATCH performed the best of the three, all fell short of broad quantitative 

accuracy. For the isozymes, which make up a large fraction of the included knockout 

set, any deviation from the wild-type could not be predicted on the basis of 

stoichiometry alone by FBA or MOMA. These results demonstrate the difficulty of 

predicting knockout flux behavior, particularly in nutrient-rich environments where 

glucose uptake rates can vary significantly. In this regime, there are likely to be 

significant kinetic and/or regulatory effects, which further study of knockout 

metabolism will help to elucidate. 

6.5 Conclusions 

Knockouts of central carbon metabolism enzymes in E. coli show significant 

physiological and metabolic changes, or “metabolic rewiring”. This is particularly true 

in the case of unconstrained growth conditions used in this study, in contrast to 

previous reports of robustness seen in slow dilution rate chemostat cultures (Ishii et 

al., 2007). Large variations in growth rate, biomass yield, acetate yield, uptake rates, 

and biomass composition were observed. The external metabolic fluxes of glucose 

uptake, biomass generation, and acetate generation provide a glimpse into the kinetic 

limitations and regulatory adjustments occurring in these knockouts. These also 

provide an important data set for assessing and improving metabolic modeling, as we 

have demonstrated that common COBRA modeling approaches do not accurately 

predict observed behavior. Significantly more detailed understanding of these rewired 

metabolisms, and commensurate modeling opportunities, will be possible with more 

detailed 13C-MFA studies. The results presented also demonstrate the importance and 

complementarity of biomass composition measurements to the other physiological 

measurements. Relationships between general composition changes and common 
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physiological changes like altered growth rate were observed in RNA and fatty acid 

composition. Large differences in glycogen composition, uncorrelated with growth or 

other measured parameters, could offer insights into other types of stress response in 

these strains.  
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METABOLIC FLEXIBILITY AND LIMITATIONS REVEALED IN 

FLUXOMIC RESPONSES TO DELETION OF 20 GENES IN UPPER 

CENTRAL CARBON METABOLISM 

Christopher P. Long, Maciek R. Antoniewicz 

7.1 Introduction 

Quantitative and predictive understanding of cell metabolism is a fundamental 

objective in cell biology and bioengineering. Since the mapping of most major 

metabolic enzymes and associated genes over the past century (Caspi et al., 2012; 

Kanehisa and Goto, 2000), focus has shifted to studying the systems-level properties 

of metabolism, including kinetics and regulation. A commonly applied and fruitful 

approach to generating systems information is to study perturbation responses, such as 

to environmental or genetic changes (Long and Antoniewicz, 2014a). Knockouts of 

genes encoding metabolic enzymes and regulators (Haverkorn van Rijsewijk et al., 

2011) have been used to study regulatory responses, kinetics (e.g, identify potential 

rate limiting steps (Toya et al., 2010)), and even to identify novel reactions 

(Nakahigashi et al., 2009). Beyond any single discovery or analysis, such data also 

inform the development of metabolic models, for which predicting the genotype-

phenotype relationship is a fundamental objective (Kim and Reed, 2012; Lewis et al., 

2012; Segre et al., 2002; Shlomi et al., 2005). These models represent the expression 

of current systems-level understanding, and their utility is essential for the realization 

of rational, forward engineering of strains in biotechnology. Rigorous assessment of 

Chapter 7 
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existing models such as the constraint based reconstruction and analysis (COBRA) 

models, and development of next-generation models such as ensemble kinetic 

approaches (Khodayari and Maranas, 2016; Tran et al., 2008), have been limited by 

available experimental measurements (Long and Antoniewicz, 2014a).  

In the model Gram-negative microbe Escherichia coli, gene perturbation 

studies have been significantly enabled by the Keio knockout strain collection (Baba 

et al., 2006). In published fluxomic studies, however, incomplete coverage in genes 

and differences in experimental conditions across studies have limited the generalized 

interpretation of results (Long and Antoniewicz, 2014a). Furthermore, recent advances 

in 13C-metabolic flux analysis (13C-MFA) methodology have significantly improved 

the precision and identifiability of fluxes (Maciek R. Antoniewicz, 2015a; Crown et 

al., 2016b; Long et al., 2016a). In this study, 20 gene knockout strains, which 

comprehensively span the upper portion of central carbon metabolism, were 

characterized under identical growth conditions. The chosen condition of aerobic 

batch growth on glucose minimal medium compliments a previous study which 

reported robust metabolic responses to 14 knockouts under substrate-limited 

conditions (Ishii et al., 2007), is relevant to many biotechnological applications, and 

offers novel insights into intracellular kinetic limitations as external limits to growth 

are removed. The results will provide a basis for better understanding metabolic 

limitations to growth, and enable the application of next-generation modeling to this 

important regime.  
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7.2 Materials and Methods 

7.2.1 Materials 

Chemicals and M9 minimal medium were purchased from Sigma-Aldrich (St. 

Louis, MO). Isotopic tracers were purchased from Cambridge Isotope Laboratories 

(Tewksbury, MA): [1,6-13C]glucose (99.2 % 13C), and [1,2-13C]glucose (99.7 %). 

The isotopic purity and enrichment of all tracers were validated by GC-MS analysis 

(Cordova and Antoniewicz, 2016; Sandberg et al., 2016). All solutions were sterilized 

by filtration. 

7.2.2 Strains and Culture Conditions 

E. coli strains were obtained from the Keio collection (GE Healthcare 

Dharmacon), which were generated by one-step inactivation of all non-essential genes 

in E. coli K-12 BW25113 (Baba et al., 2006). The specific strains used in this study 

are listed in Table 6.1 (except ΔptsG and Δcrr, excluded here), and were verified using 

PCR amplification of the knockout gene region (Long et al., 2016b). For 13C-tracer 

experiments, strains were cultured aerobically in glucose M9 minimal medium at 37°C 

in mini-bioreactors with 10 mL working volume (Long et al., 2016b). Pre-cultures 

were grown overnight and then used to inoculate the experimental culture at an OD600 

of 0.01, in which 2 g/L of the glucose tracers were present. Cells were harvested for 

GC-MS analysis at mid-exponential growth when OD600 was approximately 0.7. For 

the glucose secretion experiments, experimental cultures were inoculated as above, 

with 2 g/L of either [2H7]glucose (i.e., d7 glucose) or [1,2-13C]glucose. The experiment 

continued until glucose was entirely depleted. 
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7.2.3 Analytical Methods 

Cell growth was monitored by measuring the optical density at 600nm (OD600) 

using a spectrophotometer (Eppendorf BioPhotometer). The OD600 values were 

converted to cell dry weight concentrations using a previously determined OD600-dry 

cell weight relationship for E. coli (1.0 OD600 = 0.32 gDW/L) (Long et al., 2016b). 

After centrifugation, the supernatant was separated from the cell pellet. The cell 

pellets were washed with glucose-free M9 medium prior to subsequent analysis. 

Glucose concentrations in the media were determined using YSI 2700 biochemistry 

analyzer (YSI, Yellow Springs, OH). Acetate concentrations were determined using an 

Agilent 1200 Series HPLC (Gonzalez et al., 2017). Growth rate was calculated using 

linear regression of the natural logarithm of the OD600 and time.  

7.2.4 Gas Chromatography-Mass Spectrometry 

GC-MS analysis was performed on an Agilent 7890B GC system equipped 

with a DB-5MS capillary column (30 m, 0.25 mm i.d., 0.25 µm-phase thickness; 

Agilent J&W Scientific), connected to an Agilent 5977A Mass Spectrometer operating 

under ionization by electron impact (EI) at 70 eV. Helium flow was maintained at 1 

mL/min. The source temperature was maintained at 230°C, the MS quad temperature 

at 150°C, the interface temperature at 280°C, and the inlet temperature at 250°C. GC-

MS analysis of tert-butyldimethylsilyl (TBDMS) derivatized proteinogenic amino 

acids was performed as described (Long and Antoniewicz, 2014b). Labeling of 

glucose (derived from glycogen) and ribose (from RNA) were determined as described 

(Long et al., 2016a; McConnell and Antoniewicz, 2016). For the additional labeling 

measurement in ΔtpiA, the intracellular metabolite glycerol-3-phosphate was 

derivatized as described (Ahn et al., 2016). The labeling of medium glucose in the 
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glucose excretion experiments was determined as described (Antoniewicz et al., 

2011). In all cases, mass isotopomer distributions were obtained by integration 

(Antoniewicz et al., 2007b) and corrected for natural isotope abundances (Fernandez 

et al., 1996). 

7.2.5 Metabolic network model and 13C-metabolic flux analysis 

The metabolic network model used for 13C-MFA is provided in Appendix 

Table C.1, and the full flux results are in the Supplemental File. The model (Crown et 

al., 2015a; Gonzalez et al., 2017) includes all major metabolic pathways of central 

carbon metabolism, lumped amino acid biosynthesis reactions, and a lumped biomass 

formation reaction. The coefficients for precursors in the biomass formation reaction 

were determined for each strain, based on the measured biomass compositions, as 

previously described (Antoniewicz et al., 2007c). Modifications to the model were 

made for two cases. For ΔpfkA, secretion of G6P was added, such that the net uptake 

of glucose was still 100. For ΔtpiA, the methylglyoxal pathway was added. To resolve 

this flux, an additional tracer experiment was performed using 50% [1-13C]glucose 

and 50% [4,5,6-13C]glucose. The labeling of the intracellular metabolite glycerol-3-

phosphate, which is produced from DHAP, was measured and used in flux estimation. 

13C-MFA calculations were performed using the Metran software (Yoo et al., 2004), 

which is based on the elementary metabolite units (EMU) framework (Antoniewicz et 

al., 2007a). Fluxes were estimated by minimizing the variance-weighted sum of 

squared residuals (SSR) between the measured and model predicted mass isotopomer 

distributions and acetate yield using non-linear least-squares regression. For integrated 

analysis of parallel labeling experiments, the data sets were fitted simultaneously to a 

single flux model (Leighty and Antoniewicz, 2013). Flux estimation was repeated 10 
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times starting with random initial values for all fluxes to find a global solution. At 

convergence, accurate 95% confidence intervals were computed for all estimated 

fluxes by evaluating the sensitivity of the minimized SSR to flux variations. Precision 

of estimated fluxes was determined as follows (Antoniewicz et al., 2006): 

Flux precision (stdev) = [(flux upper bound 95%) – (flux lower bound 95%)] / 4 

To describe fractional labeling of biomass amino acids G-value parameters 

were included in 13C-MFA. As described previously (Antoniewicz et al., 2007c), the 

G-value represents the fraction of a metabolite pool that is produced during the 

labeling experiment, while 1-G represents the fraction that is naturally labeled (e.g., 

from inoculum). By default, one G-value parameter was included for each measured 

amino acid in each data set. Reversible reactions were modeled as separate forward 

and backward fluxes. Net and exchange fluxes were determined as follows: vnet = vf-

vb; vexch = min(vf, vb). To determine the goodness-of-fit, 13C-MFA fitting results were 

subjected to a 2-statistical test (Antoniewicz et al., 2006).  

7.2.6 Quantification of Glucose Secretion 

For each strain, experiments were performed independently with [2H7]glucose 

(d7-glucose) and [1,2-13C]glucose. The glucose in the medium was sampled 

throughout the course of a batch culture, for both total concentration and isotopic 

labeling. Biomass samples were taken at multiple time points from OD~0.7 to the end 

of the experiment at glucose depletion (OD~2), and analyzed for glycogen labeling. In 

all cases the glycogen labeling was found to not change significantly in time. The 

amount of glucose secretion was quantified by fitting to a differential equation-based 

model (See Appendix C). 
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7.2.7 Constraint-Based Reconstruction and Analysis (COBRA) Modeling 

Flux balance analysis (FBA), minimization of metabolic adjustment (MOMA), 

and the relative change (RELATCH) algorithms were implemented through the 

COBRA Toolbox 2.0 in Matlab 2012b (Kim and Reed, 2012; Schellenberger et al., 

2011) using the E. coli iAF1260 genome scale model (Feist et al., 2007) (specifically 

“Ec_iAF1260_flux1.xml”). CPLEX from Tomlab (http://tomopt.com) was used for 

the LP and QP solvers. RELATCH was downloaded from the Reed Laboratory 

website (http://reedlab.che.wisc.edu/codes.php). For FBA calculations, the upper 

bounds for glucose and oxygen uptake rates were set at wild-type values of 8.5 

mmol/gdw/hr and 12 mmol/gdw/hr respectively and growth rate was optimized. For 

MOMA, the reference state was generated using the measured (from 13C-MFA) wild-

type fluxes as follows. Forty reactions were mapped from the network model applied 

here for 13C-MFA to the iAF1260 model, spanning glucose uptake, central carbon 

metabolic pathways, and acetate secretion. In iAF1260, the upper and lower allowable 

bounds for each reaction was set to the values obtained for the 95% confidence 

intervals from 13C-MFA. FBA with growth optimization was then run to obtain the 

‘reference’ state fluxes. Good agreement with measured growth rate (0.60 h-1), acetate 

yield (0.66 mol/mol) and biomass yield (0.39 g/g) were observed.  For RELATCH, the 

same 40 fluxes and standard errors were inputted, as well as gene expression data 

previously reported for the wild-type (Covert et al., 2004). All bounds for substrate 

uptake and central carbon reactions were lifted for the calculation of knockout 

phenotypes using MOMA and RELATCH.  

For the assessment of correlations between measured and estimated normalized 

intracellular fluxes (Fig. 7.7E-F, Fig. C.3), the following specific fluxes were used 

(reaction names correspond to iAF1260 designation and numbers correspond to 
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network model in Table S2): PGI (v2), PYK (v9), GND (v11), EDD (v19), PDH (v21), 

CS (v22), SUCOAS (v28), ICL (v32), PPC (v36), PCK (v37), and EX_ac(e) (v70). 

7.3 Results 

7.3.1 Detailed Characterization of the Metabolic Phenotype 

For each of the 21 studied strains, a detailed description of carbon metabolism 

was acquired through three complimentary analyses (Fig. 7.1A). First, direct 

measurements of cell density, substrates, and products during batch culture (aerobic, 

glucose minimal medium) allowed for the quantification of growth, uptake, and 

secretion rates. Second, the biomass composition of each strain was quantified using 

previously described GC-MS based methods (Long and Antoniewicz, 2014b). These 

measurements provide important constraints in 13C-MFA by quantifying the amounts 

of each precursor and co-factor utilized in biomass formation (e.g., ribose phosphates 

for RNA synthesis, or acetyl-CoA for fatty acids). Accuracy of flux estimates in 

secondary metabolism (i.e., biosynthetic pathways) is being increasingly recognized as 

important for developing large-scale models (Khodayari and Maranas, 2016; 

McCloskey et al., 2016).  The biomass composition and physiological parameters of 

these strains were previously reported (Long et al., 2016b), and are updated here (see 

Materials and Methods). Lastly, 13C tracer experiments were performed with a parallel 

experimental design, employing [1,2-13C] and [1,6-13C]glucose, previously identified 

as optimal for flux estimate precision (Crown et al., 2016b). The resulting labeling of 

proteinogenic amino acids and the sugar moieties of RNA (ribose) and glycogen 

(glucose) (Long et al., 2016a) were fit to a comprehensive network model of E. coli 
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metabolism, subject to the measured external fluxes and biomass compositions, to 

obtain the global metabolic phenotype. 

The scope of this study includes the knockouts, from the Keio collection (Baba 

et al., 2006), of twenty enzymes spanning the ‘upper’ part of central carbon 

metabolism (Fig. 7.1B), defined here as including glucose kinase (glk), 

phosphoglucomutase (pgm, the first step in glycogen biosynthesis), the first half of 

glycolysis (i.e., EMP pathway), the oxidative (oxPPP) and non-oxidative pentose 

phosphate pathways (noxPPP), and the ED pathway. The effects of knocking out these 

genes on the growth rate, biomass yield, glucose uptake rate, and acetate yield are 

shown in Fig. 7.1C (absolute values in Appendix Fig. C.1, and growth rate 

reproducibility in Appendix Fig. C.2). The most severe growth defects (>50%) were 

observed in Δpgi, ΔpfkA, ΔtpiA, and Δrpe. Interestingly, Δpgm grew 10% faster than 

the wild-type, likely reflecting the cost the wild-type incurs to sacrifice growth for 

glycogen storage, hedging against future scarcity or stress. Variations in biomass yield 

of up to 0.1 g/g from the wild-type (0.4 gDW/ggluc) were observed, with a low of 0.3 g/g 

(ΔtpiA), and a high of 0.5 (Δpgi). Corresponding to the growth rates and biomass 

yields, the glucose uptake rates also varied widely. The acetate secretion phenotype 

ranged from none produced (Δpgi) to nearly 1 mol per mol glucose (ΔrpiB), showing 

both significant increases and decreases from the wild-type’s 0.7 mol/mol. These 

phenotypic differences reflect large metabolic perturbations in these knockouts during 

batch growth.  
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Figure 7.1:   Characterization of 20 E. coli knockouts of upper central carbon 

metabolism enzymes. (A) The methods applied include 1) Physiological 

data from aerobic batch growth on glucose minimal medium, 2) The 

measured biomass composition of each strain, and 3) The metabolite 

isotopic labeling resulting from parallel 13C isotopic tracer experiments 

using [1,2-13C]glucose and [1,6-13C]glucose. Together, these 

measurements are used to precisely estimate fluxes via 13C metabolic flux 

analysis (13C-MFA). (B) The scope of this study includes twenty single 

gene knockout strains from the Keio collection spanning the pathways of 

upper central carbon metabolism. These include glk (glucokinase) and 

pgm (to glycogen production) (blue), the upper portion of the glycolysis 

(EMP) pathway (purple), the oxidative (red) and non-oxidative (green) 

pentose phosphate pathway, and the ED pathway (orange). The genes 

denoted in red were excluded because of unavailability (fbaA is 

unconditionally essential and its knockout is not in the Keio collection; 

rpiA was previously determined to be essential in these conditions (20) 

(C) Physiological changes in knockout strains are summarized, expressed 

as percentage change from the wild-type. Biomass yields were estimated 

by 13C-MFA and used to calculate glucose uptake rates. 

7.3.2 Identification of Novel Reactions Active in Knockout Strains 

Precise intracellular fluxes were determined for each strain by fitting isotopic 

labeling data and product yields to a previously validated model of E. coli metabolism. 

Statistically acceptable fits were obtained for 19 of the 21 strains (Fig. 7.2A). The two 

exceptions were ΔpfkA and ΔtpiA, for which the sum of squared residuals was 

significantly outside the acceptable range. Such poor model fits in 13C-MFA often 

indicate an incomplete metabolic network model. Indeed, for ΔtpiA the methylglyoxal 

(MG) pathway has been previously reported to carry significant flux (Fong et al., 

2006). Although tightly repressed in the wild-type due to the toxicity of the 

intermediate methylglyoxal (Tötemeyer et al., 1998), the MG pathway relieves the 

dead-end at DHAP caused by the knockout, and its addition to the model resulted in 

an acceptable fit. To resolve the unacceptable fit for ΔpfkA, a wide range of alternative 
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metabolic pathways and reactions was evaluated. The only change to the model that 

resulted in an acceptable fit of the data was the introduction of an outflux of glucose 6-

phoshate (G6P). After validating that ΔpfkA did not accumulate additional 

carbohydrates internally, we hypothesized that ΔpfkA may secrete glucose into the 

medium. This was verified with a targeted tracer experiment (Fig. 7.2B-E), in which 

fully-deuterated d7-glucose was introduced as the substrate. Exchange of hydrogens in 

the PPP and PGI reactions resulted in intracellular G6P labeling that was distinct from 

extracellular glucose, and was measurable via glycogen. In Fig. 7.2C-D, the 

extracellular glucose labeling in the batch culture is compared to glycogen labeling. 

During the course of the tracer experiment, glucose labeling in the medium 

increasingly resembled the labeling of G6P, clear evidence of glucose secretion by 

ΔpfkA. The glucose secretion rate was determined to be 18% of the uptake rate (Fig. 

7.2E; these results were also replicated using a 13C tracer, excluding any 2H-specific 

kinetic isotope effect). No evidence of glucose secretion was found for wild-type E. 

coli and ΔtpiA (Fig 7.2E). These results support and extend recent reports that a ΔpfkA 

strain, modified to prevent glucose consumption, accumulated glucose in the medium 

when grown on pentoses (Niyas and Eiteman, 2017; Xia et al., 2015). Mechanistic 

investigations concluded that several phosphatases were involved in 

dephosphorylating G6P, allowing for the diffusion of free glucose out of the cell 

(Niyas and Eiteman, 2017).  

The intracellular fluxes of wild-type E. coli, ΔpfkA and ΔtpiA are shown in Fig. 

7.2F-H. The wild-type flux distribution (Fig. 7.2F) is in good agreement with previous 

reports (Chen et al., 2011; Crown et al., 2015a; Leighty and Antoniewicz, 2013; 

Perrenoud and Sauer, 2005), and large flux changes in ΔpfkA (Fig. 7.2G) and ΔtpiA 
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(Fig. 7.2H) are apparent (changes greater than 30% from wild-type are highlighted), 

including the unique reactions identified for these two strains. The PFK I (pfkA) and 

TpiA (tpiA) enzymes carry high flux in the wild-type, and their loss results in large 

reductions in growth rate (Fig. 7.1C) and glucose uptake rate (Fig. 7.1C and Fig. 7.2F-

H). In addition to the glucose secretion phenotype, in ΔpfkA there is increased relative 

utilization of the oxPPP, ED pathway, serine deaminase, and the TCA cycle, while the 

PGI reaction and acetate production fluxes are decreased. The co-occurrence of the 

unique phosphatase and serine deaminase (no deaminase flux was measured in any 

other strain) activities may indicate a common regulatory mechanism. The ΔtpiA 

fluxes are quite different, as the MG pathway takes a large flux (86 per 100 glucose) 

from DHAP to pyruvate, and the TCA cycle, glyoxylate shunt, and PPCK reaction 

(OAC to PEP) are highly elevated. The oxPPP, lower glycolysis, and acetate 

production fluxes are decreased. These significant differences demonstrate that there is 

no common ‘slow growth’ metabolic phenotype, but that these strains encounter 

unique limitations and challenges.  
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Figure 7.2:   Model validation and glucose secretion determined by 13C-MFA. (A)  

Acceptable fits (SSR less than ~250) for all but two strains: ΔpfkA and 

ΔtpiA. Acceptable fits for these were acquired by adding glucose 

secretion, and the methylglyoxal pathway, respectively, to the models. 

(B) To confirm the glucose secretion phenotype, a tracer experiment 

using [2H7]glucose was implemented. Deuterated hydrogens are lost in 

the oxPPP and PGI reactions, resulting in an intracellular G6P labeling 

pattern (measured by glycogen) distinct from the extracellular glucose. 

(C) For the wild-type, extracellular glucose labeling (left, bars) does not 

change appreciably during batch culture as concentration (squares) 

diminishes. Glycogen labeling is compared on the right. (D) In ΔpfkA, the 

extracellular glucose labeling changes significantly, and trends toward 

the intracellular glycogen labeling, reflecting secretion. (E) The secretion 

was quantified using a differential-equation based model, showing that 

18% of glucose taken up is secreted in ΔpfkA. (F) Intracellular flux maps 

of the wild-type, ΔpfkA (G), and ΔtpiA (H). Fluxes are normalized to 100 

units of glucose uptake, and the absolute uptake rates are noted. Red hash 

marks indicate the reaction affected by knockout, and colors reflect 

relative flux changes of greater than 30% compared to the wild-type 

(blue increased, red decreased).  

7.3.3 Carbon Metabolism Rewiring in 20 Knockout Strains 

The normalized (per 100 glucose) distributions of fluxes through the central 

carbon metabolic pathways are summarized for all strains in Fig. 7.3A. As might be 

expected, the strains with severe growth defects (i.e., Δpgi, ΔpfkA, ΔtpiA, Δrpe) also 

had highly altered intracellular flux distributions. However, there were also several 

strains with large flux changes despite much smaller external physiological effects, 

particularly Δzwf, Δgnd, ΔrpiB, and ΔtktA. This indicates that some compensating 

pathways are more flexible than others, resulting in a more robust physiology. Other 

knockout strains had flux distributions close to the wild-type. These include Δpgm, as 

well as knockouts of enzymes that carry minimal flux in the wild-type such as glk 

(most glucose is transported and phosphorylated via PTS), the ED pathway genes edd 

and eda, and the gluconeogenic fbp. Additionally, minimal changes were observed in 
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knockouts of minor isozymes pfkB, fbaB, sgcE, tktB, and talA. The normalized fluxes 

are also represented in Fig. 7.4, focusing on the pathway utilization through three key 

branch points in metabolism.  

The local effects of enzyme loss on the directly involved reactions can also be 

evaluated in absolute flux units (mmol/gDW/h, Fig. 7.3B). In the cases where a single 

gene is responsible for the flux, complete elimination of flux was observed in most 

cases (e.g., Δpgm, Δpgi, ΔtpiA, Δzwf, and Δgnd). A notable exception was Δpgl, where 

a significant PGL (6-phosphogluconolactonase) flux was maintained in the knockout 

strains. This reaction has been shown to proceed spontaneously in vivo (Kupor and 

Fraenkel, 1972; Miclet et al., 2001; Thomason et al., 2004), and a significant oxPPP 

flux has also been measured in E. coli strain BL21, which is lacking the pgl gene 

(Waegeman et al., 2011). In the cases where multiple enzymes are known to catalyze 

the same reactions (i.e., isozymes), it is apparent in some cases that one isozyme is 

dominant. For example, the PTS system (glucose uptake) is more utilized than glk; 

pfkA is preferred over pfkB, fbaA over fbaB, rpiA over rpiB, rpe over sgcE, and tktA 

over tktB. 

The nature of flux rewiring can also be assessed more globally, for example to 

determine whether compensatory flux increases are common (i.e., flexible 

redistribution) or if rate limitations occur (Fig. 7.3C-D). When changes in fluxes from 

the wild-type are expressed in relative flux units (per 100 glucose), a symmetrical, 

unimodal distribution of flux changes is observed, suggesting that many fluxes are 

both increased and decreased in the knockout strains (as in Fig. 7.3A). However, when 

expressed in absolute units (mmol/gDW/h), the pattern of flux changes is highly skewed 

towards negative flux changes, i.e., most flux changes result in lower rates in the 
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knockouts and very few result in higher absolute flux. These changes are expanded 

upon in Fig. 7.4, which shows for example that the elevated normalized fluxes through 

the oxPPP and TCA cycle in Δpgi and ΔpfkA do not represent increases in absolute 

terms. Instead, as the rates of glucose uptake decrease in these strains, similar absolute 

rates of flux through these pathways play relatively larger roles. This lack of 

expansion of absolute flux capacity indicates a rate limitation in these slow growing 

strains. Limitations can also occur in cofactor metabolism, which is affected directly 

by carbon pathway usage (Fig. 7.6). For example, it has been shown that reversal of 

the pyridine nucleotide cofactor transhydrogenase is at least partially rate-limiting in 

Δpgi (Canonaco et al., 2001).  

The distributions of absolute fluxes throughout central carbon metabolism 

across strains is visualized in Fig. 7.3D. The rates of glycolysis varied most widely, 

with several glycolysis knockouts and Δrpe much slower than the wild-type and other 

strains. There were less drastic changes (in absolute flux units) elsewhere in 

metabolism, as these fluxes are much smaller in magnitude in the wild-type. Notably, 

only Δgnd had a significantly increased absolute ED pathway flux, and only ΔtpiA had 

significantly elevated absolute TCA, glyoxylate shunt, and PPCK fluxes. In all other 

strains these pathways were not significantly increased relative to the wild-type, in 

contrast to previous interpretations of ‘latent pathway activation’ (for example in 

Δpgi) based on relative flux changes (Fischer and Sauer, 2003; Hua et al., 2003).  

Notably, the higher variability pathways (e.g., glycolysis) have been shown to be the 

most highly regulated at the metabolite level, while the pentose phosphate pathway 

and TCA cycle are comparatively less regulated (Reznik et al., 2017). This may help 

explain the lack of absolute flux increases in these pathways in most strains, and why 
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the oxPPP is not able to sufficiently compensate for the decreased glycolysis flux in 

Δpgi and ΔpfkA.  

 

Figure 7.3:   Intracellular fluxes in the wild-type and 20 knockout strains. (A) Fluxes 

for all strains are normalized to 100 units of glucose uptake, with growth 

and glucose uptake rates noted. The red hash marks denote the reaction 

affected by the knockout, and the line thickness corresponds to flux value 

according the legend (upper, left). Colored reactions indicate changes of 

greater than 30% from the wild-type (blue increased, red decreased). (B) 

The absolute flux for each reaction directly affected by a knockout, in 

both the wild-type and corresponding mutant strain. For example, the 

PGI flux is 6 mmol/gDW/h in the wild-type, but 0 in Δpgi. Brackets 

indicate isozymes corresponding to the same reaction, while asterisks 

indicate the presence of an isozyme outside the scope of this study. (C) 

The intracellular flux changes are distributed in a symmetrical way in 

relative (per 100 glucose) terms, reflecting both flux increases and 

decreases. In absolute terms the changes are highly skewed to the 

negative, indicating that most fluxes are maintained or decreased in 

knockouts, and very few are increased. (D) Absolute fluxes in central 

carbon metabolism, including the wild-type (white), and mutants in glk 

and pgm (blue), glycolysis (purple), oxPPP (red), noxPPP (green), and 

the ED pathway (orange).  
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Figure 7.4:   Distribution of flux through three key branch points in central carbon 

metabolism. Three branch points in central carbon metabolism are 

summarized, each with three possible metabolite fates. These relative 

fluxes are shown in ternary diagrams. First, the fate of G6P into 

glycolysis, oxPPP, or ED pathway. The wild-type is ~71% glycolysis, 

~28% oxPPP. Glycolytic (EMP) knockouts Δpgi and ΔpfkA, oxPPP 

knockout Δzwf, and noxPPP knockout Δgnd are notably altered. Second, 

in lower glycolysis PEP can be used for anaplerosis (to OAC) into the 

TCA cycle and glyoxylate shunt (citrate synthase), or secreted as acetate. 

EMP knockouts are most distinct in this branch point. Lastly, isocitate 

can be used for glyoxylate shunt, TCA cycle, or biomass (primarily 

amino acid biosynthesis) fluxes. ΔpfkA has highly elevated TCA cycle 

usage, and Δpgi and ΔtpiA have significantly utilized glyoxylate shunt 

fluxes.  
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Figure 7.5:   Flux changes from the wild-type, in normalized (per 100 glucose) (A) and 

absolute (mmol/gDW/h) (B). Colors denote the sign and magnitude of the 

change, with blue indicating flux increase and red flux decrease, per the 

key to the right. The flux directly affected by each knockout is bolded. 

Comparing the two reveals that some increased normalized usage in 

knockout strains, e.g., pentose phosphate and TCA cycle fluxes in Δpgi 

and ΔpfkA, do not reflect increases in absolute fluxes in those pathways. 

Furthermore, absolute flux increases following knockouts are rare. These 

cases include glycolysis in Δpgm, the TCA cycle, glyoxylate shunt and 

PPCK fluxes in ΔtpiA, and ED pathway in Δgnd.  



 159 

 

Figure 7.6:   Cofactor balances, in normalized (left) and absolute (right) units. The 

contribution of the major central carbon metabolic pathways (key, top 

right) to the production and consumption of NADH/FADH2 (lumped), 

NADPH, and ATP are shown. Bars representing positive values, show 

cofactor production, and negative values show consumption. In the wild-

type and most knockout strains, excess NADH is converted by 

transhydrogenase to produce NADPH. In Δpgi and ΔpfkA, elevated 

oxPPP usage results in a reversal of the transhydrogenase flux, where 

excess NADPH is converted to NADH. The estimate of ATP generation 

from oxidative phosphorylation assumes a constant P/O ratio of 2.0 

across strains, and the cell maintenance ATP cost (“Other”) is calculated 

as the balance of production and consumption. If no changes to oxidative 

phosphorylation occur, the calculated elevation in cell maintenance cost 

in ΔtpiA may arise from the toxicity of methylglyoxal.  
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7.3.4 Multivariate Analysis and Model Prediction Assessment 

For additional insights into the key underlying drivers of the observed 

metabolic rewiring, multivariate statistical analyses were applied. Principal component 

analysis (PCA) (Fig. 7.7A) shows that the highly dimensional flux data across the 21 

strains can be largely explained by a few key principal components (70% of variance 

explained by first two, 83% by first three). PC1 shows that absolute glycolytic flux 

and growth rate are coupled, and inversely relate to glyoxylate shunt and PPCK flux 

rates. PC2 captures an inverse relationship between pentose phosphate pathway and 

TCA cycle fluxes. The distribution of strains across these two principal components is 

reflective of the degree of perturbation from the wild-type, and of the highly-perturbed 

strains there is clustering of knockouts by pathway perturbation (e.g., Δzwf and Δgnd; 

ΔpfkA and Δpgi). Pairwise correlations between fluxes were also examined (Fig. 7.7B-

C), with random flux maps generated (Supplementary Text, Appendix C) to control 

for trivial, stoichiometry-driven relationships (Fig. 7.7B). There were interesting 

differences between the random and measured flux correlations. The random fluxes 

showed a highly negative relationship between the fluxes at the branch point of 

glycolysis and the oxPPP (as well as the ED pathway), whereas no such relationships 

were observed in the measured flux pattern. This could indicate that this split is 

regulated, or is kinetically limited (i.e., reduced glycolytic flux did not result in 

increased absolute oxPPP flux in Δpgi or ΔpfkA). Additionally, the PPC (PEP to OAC) 

flux correlated strongly with glycolysis. This flux replenishes the TCA cycle to allow 

for supply of precursor for biomass synthesis, and its correlation reflects a strong 

driving force to maintain a relatively constant biomass yield. The strongest non-trivial 

flux correlation was between the PDH flux (pyruvate to AcCoA) and acetate secretion 

(ρ=0.99). Above a PDH flux of 2 mmol/gDW/h, the acetate secretion rate increased 
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linearly by 0.85 mmol/gDW/h per flux unit of PDH reaction. Below a PDH flux of 2 

mmol/gDW/h, no acetate secretion was observed. This result provides evidence for the 

hypothesis of acetate overflow metabolism that is likely caused by limitations in the 

electron transport chain capacity (Basan et al., 2015; Liu et al., 2014; Majewski and 

Domach, 1990). 

Finally, the measured flux changes were compared to predictions from three 

commonly used constraint-based reconstruction and analysis (COBRA) models. These 

models consider the genome scale stoichiometry (here, the E. coli iAF1260 genome 

scale model (Feist et al., 2007)), and represent increasing levels of complexity from 

FBA to MOMA to RELATCH. Significantly here, only RELATCH can account for 

the respective contributions of isozymes. The comparison of model predictions to 

measurements are summarized in Fig. 7.7D-F. FBA and MOMA performed quite 

poorly at predicting extracellular rates (Fig. 7.7D), often predicting minimal or no 

phenotypic impact. While RELATCH performed better, it still lacked broad accuracy. 

For the intracellular flux distributions (normalized), the most severely rewired strains 

were also the most difficult to predict (Fig. 7.7E). For Δpgi and ΔpfkA, fluxes were 

most accurately predicted with RELATCH, however ΔtpiA was poorly predicted. For 

many strains, the accuracy of COBRA predictions was only slightly better than the 

“assume-no-flux-change” scenario, and these methods were most significantly 

challenged by the highly-perturbed strains discussed.  
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Figure 7.7:   Multivariate analysis and model assessment. (A) PCA was performed on 

all measured absolute fluxes. A large amount (70%) of the variance was 

captured by the first two principal components, and 93% by the top five. 

PC1 and PC2 capture pathway fluxes shown by the axis labels. (B-C) 

Nontrivial correlations between fluxes were identified by comparing 

those from randomly generated flux maps (B) to those of the measured 

fluxes (C) (Pearson correlation coefficient represented by color per the 

legend). The pyruvate dehydrogenase (PDH) and acetate secretion 

(expanded) fluxes were highly correlated (ρ=0.99), consistent with the 

acetate overflow model. (D-F) Measured flux values were compared to 

predictions from common COBRA models FBA, MOMA and 

RELATCH. (D) External rates of growth, glucose uptake, and oxygen 

uptake were compared to predictions, with quality of agreement scored 

by Pearson correlation coefficients. (E) Predictions and measured values 

of eleven key normalized intracellular fluxes are compared for the three 

most perturbed strains. The fluxes correspond to intracellular pathways as 

follows: glycolysis (light blue), oxPPP and ED pathways (red), TCA 

cycle and glyoxylate shunt (yellow), acetate and ana/cataplerotic 

reactions (pink). (F) The correlations of these fluxes are shown for all 

strains. The gray bars reflect the correlation between the knockout and 

wild-type fluxes (i.e., assuming no change from the wild-type).  
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7.4 Discussion 

In this study, we have leveraged the Keio collection and advances in 13C-MFA 

to comprehensively interrogate system-level responses to genetic perturbations in the 

upper pathways of central carbon metabolism. In contrast to previous studies of 

substrate limited growth (Ishii et al., 2007), the substrate rich conditions presented 

here revealed and allowed for the quantification of rate limitations in central carbon 

metabolism. In some cases, remarkable robustness and flexibility was observed, as in 

the redistribution of oxPPP flux in Δzwf and Δgnd without significantly reduced 

glucose uptake. In other cases, however, loss of certain enzymes created massive 

bottlenecks as flux was redirected (Δpgi, ΔpfkA), reactions had to be reversed (Δrpe), 

or new pathways had to be activated (ΔtpiA, ΔpfkA). In cataloguing these various 

responses, these results will provide a valuable resource for strain engineering and 

metabolic modeling. For example, the rarity of absolute flux increases in these strains 

suggests that metabolism is perhaps more kinetically controlled than currently 

appreciated. As such, the stoichiometry-based COBRA models struggled to predict 

absolute rates. The development of increasingly sophisticated COBRA models, such 

as the ‘ME’ models (Lerman et al., 2012) which account for macromolecular 

constraints, and ensemble kinetic models (Khodayari et al., 2014; Khodayari and 

Maranas, 2016), offer promising pathways to better accuracy and predictability. The 

latter is dependent on high-quality knockout flux data for kinetic parameter 

identification.  

The application of advanced 13C-MFA techniques has again been demonstrated 

as a useful tool in biological discovery. Here, glucose secretion in ΔpfkA was 

identified and confirmed, building upon previous observations which have already 

shown potential for biotechnological application (Niyas and Eiteman, 2017; Xia et al., 
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2015). Recently, targeted 13C tracer studies confirmed the in vivo reversibility of 

Enzyme I of the PTS system (Christopher P. Long et al., 2017a). These examples 

highlight that methods designed to improve precision in 13C-flux analysis, e.g., 

optimized tracer selection and parallel labeling experiments, also provide more 

resolving power to identify non-conventional pathway usage, even in the extensively 

studied E. coli. Importantly, the directly measured mass isotopomer data can be easily 

re-analyzed by the community under different network model assumptions or model 

sizes (García Martín et al., 2015; Gopalakrishnan and Maranas, 2015).  Widening the 

scope of the available flux data to knockouts of other metabolic pathways, and 

complementing fluxomic data with metabolomic, transcriptomic and/or proteomic 

data, will strengthen these efforts. Further collection of 13C-MFA results in online 

public databases, of E. coli (Ishii et al., 2007; Long and Antoniewicz, 2014a; Mackie 

et al., 2014) and other species (Blank et al., 2005; Fischer and Sauer, 2005), would 

ease access and encourage comparative studies.   
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CHARACTERIZATION OF PHYSIOLOGICAL RESPONSES TO 25 GENE 

KNOCKOUTS IN ESCHERICHIA COLI LOWER CENTRAL CARBON 

METABOLISM 

Christopher P. Long, Jacqueline E. Gonzalez, Maciek R. Antoniewicz 

8.1 Introduction 

Mapping and understanding the genotype-phenotype relationship has 

fundamental value across systems biology and metabolic engineering practice. In the 

model organism Escherichia coli, the availability of the Keio collection has facilitated 

large-scale interrogation of gene knockout responses, including growth screens (Baba 

et al., 2006) and various omics-based investigations into pathways of interest 

(Haverkorn van Rijsewijk et al., 2011; Ishii et al., 2007). Such studies are critical in 

the development of systems-level analysis of metabolic networks, including in 

modeling efforts with direct utility in strain design (Burgard et al., 2003; Khodayari 

and Maranas, 2016; Kim and Reed, 2010). In a recent review, we highlighted 

important gaps in the study of E. coli knockout metabolism, particularly in central 

carbon metabolism (Long and Antoniewicz, 2014a). We found that quantitative 

phenotypic data were not available for numerous gene knockouts, and those that were 

available from disparate sources often used different conditions and were therefore 

difficult to compare and assemble for broad analysis.  

The pathways of central carbon metabolism under aerobic conditions were 

identified as the highest priority target for a detailed and comprehensive study of 

Chapter 8 
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knockout metabolism. These pathways serve as the essential backbone for substrate 

assimilation, energy generation, and biomass precursor production, and are necessarily 

the targets of many engineering interventions. Due to alternative pathways and 

enzyme redundancy, however, predicting specific knockout responses is far from 

trivial and has been the subject of extensive study (Fischer and Sauer, 2003; Jahan et 

al., 2016; Lewis et al., 2012; Long and Antoniewicz, 2014a). Novel reaction activities 

have even recently been identified in the canonical pathways (Christopher P. Long et 

al., 2017a; Nakahigashi et al., 2009). Previously, we reported physiological 

measurements, including growth rates and yields of biomass and products, as well as 

biomass composition, for the wild-type and 21 knockouts spanning the ‘upper’ 

pathways of central carbon metabolism (i.e., glucose transport, glucokinase, the EMP 

pathway to glyceraldehyde-3-phosphate, the pentose phosphate pathway, and the ED 

pathway) (Chapter 6) (Long et al., 2016b). Here, we extend this to the ‘lower’ central 

carbon metabolic pathways, shown in Fig. 8.1 to include lower glycolysis 

(downstream of PEP), pyruvate dehydrogenase and acetate production pathways, the 

TCA cycle, glyoxylate shunt, and amphibolic reactions. These pathways include key 

metabolic nodes of high interest to metabolic engineering, including pyruvate, acetyl-

CoA, citrate, and oxaloacetate (Cordova and Alper, 2016; Krivoruchko et al., 2015). 

Detailed physiological characterizations are presented, followed by correlation and 

PCA analysis, as well as assessment of predictions made by constraint-based 

reconstruction and analysis (COBRA) modeling approaches. 
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Figure 8.1:   The genes included in this knockout study, shown in context of the 

central carbon metabolic pathways. These include genes in lower 

glycolysis (red), pyruvate dehydrogenase and acetate metabolism (blue), 

TCA cycle (green), glyoxylate shunt (orange), and amphibolic reactions 

(purple). Multiple genes listed for a given reaction indicates isozymes for 

that reaction, except where slash marks indicate an enzyme complex (e.g. 

PDH complex denoted aceE/aceF/lpd). Genes listed in black are included 

in the study, those in red did not grow in the studied conditions, and gray 

were not studied (one knockout per complex was included). 
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8.2 Methods 

8.2.1 Chemicals 

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO). [U-

13C]Glucose was purchased from Cambridge Isotope Laboratories (Andover, MA). 

M9 minimal medium was used for all experiments. All media and solutions were 

sterilized by filtration. 

8.2.2 Strains and Culture Conditions 

E. coli strains were obtained from the Keio collection (GE Healthcare 

Dharmacon), which were generated by one-step inactivation of all non-essential genes 

in E. coli K-12 BW25113 (Baba et al., 2006). The strains used in this study are listed 

in Table 8.1, with the wild-type having been previously described (Long et al., 2016b). 

The Keio collection contains two independently generated copies of each gene 

knockout, and the reader should note which was used here as differences resulting 

from adaptive evolution or contamination of stock cultures are possible.  

For assessment of biomass and excreted metabolite yields, each strain was 

grown in aerated mini-bioreactors with 10 mL working volume (Leighty and 

Antoniewicz, 2013) in M9 minimal medium with 2 g/L glucose. Cultures were grown 

until glucose depletion. Biomass yields were calculated by regression of glucose 

concentrations and optical density (OD600) measurements (Eppendorf BioPhotometer). 

Supernatant was collected prior to glucose depletion for analysis of excreted 

metabolites. Acetate was quantified by HPLC (Au et al., 2014), and organic acids in 

the medium were quantified using isotopically labeled standards (pyruvate, lactate, 

citrate, succinate, malate, and fumarate) and methoxylamine-TBDMS derivatization 

(Crown et al., 2016a). For assessment of dry weight and biomass composition, two 
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biological replicate 100 mL cultures were grown aerobically in shaker flasks, in M9 

minimal medium with 2 g/L glucose. Cells were harvested at mid-exponential phase 

(OD600 ≈ 0.7). At that point, samples for dry weight analysis were taken by filtration 

of 70 mL of culture using a 0.2 μm cellulose acetate filter (Sartorius 11107-47-N), 

followed by drying for several days at 80 °C until constant weight. Additionally, 

samples containing the equivalent of 1 mL of culture at OD600 = 1.0 (roughly 0.3 mg 

of dry weight) were washed twice with glucose-free M9 medium and used for biomass 

composition analysis.  

Table 8.1:     E. coli strains from the Keio collection (GE Healthcare Dharmacon) used 

in this study.  

Pathway Knockout Gene Plate-Row-Col Strain ID 

Wild-type none 
 

 

Lower 

glycolysis 

pykA 3-D-3 JW1843-1 

pykF 4-H-2 JW1666-3 

ppsA 4-A-3 JW1692-2 

PDH & 

Acetate 

aceE 5-F-9 JW0110-2 

poxB 5-A-5 JW0855-1 

pta 5-H-4 JW2294-1 

ackA 5-E-10 JW2293-1 

acs 49-B-4 JW4030-1 

TCA Cycle 

prpC 1-C-11 JW0324-1 

acnA 4-B-2 JW1268-2 

acnB 1-B-11 JW0114-3 

sucB 1-F-12 JW0716-1 

sucC 1-G-12 JW0717-1 

frdA 3-D-8 JW4115-1 

sdhA 2-C-12 JW0713-2 

fumA 3-G-2 JW1604-1 

fumB 3-H-7 JW4083-1 

fumC 3-F-2 JW1603-1 
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mdh 3-A-6 JW3205-1 

mqo 3-F-3 JW2198-1 

Glyoxylate 

shunt 

aceA 3-E-7 JW3975-2 

aceB 3-D-7 JW3974-1 

Amphibolic 

reactions 

pck 3-D-6 JW3366-1 

sfcA 77-B-1 JW5238-1 

maeB 3-D-5 JW2447-3 

 

8.2.3 Biomass Composition Analysis 

The methods used for quantifying biomass composition were previously 

described in detail (Long and Antoniewicz, 2014b). Briefly, samples were prepared by 

three respective methods: hydrolysis of protein and subsequent TBDMS derivatization 

of amino acids; hydrolysis of RNA and glycogen and subsequent aldonitrile 

propionate derivatization of sugars (ribose and glucose, respectively); and fatty acid 

methyl ester derivatization. In total, 17 amino acids were quantified. The amino acids 

arginine, cysteine and tryptophan are degraded during hydrolysis and were thus not 

detected. For total protein quantification, we assumed the previously reported ratios of 

these amino acids relative to alanine (Neidhardt, 1987). Glutamine and asparagine 

were deaminated to glutamate and aspartate, respectively, during hydrolysis; thus, we 

report the combined pools of each. Quantification of all species was achieved by 

isotope ratio analysis using an isotopically labeled standard and a naturally labeled 

sample. In this study, the standard was generated by growing wild-type E. coli on [U-

13C]glucose and aliquoting identical (1 mL of an OD600 = 1.0) samples of this “fully 

labeled” biomass. These were centrifuged and washed twice with M9 medium. The 

composition of the labeled biomass was characterized using unlabeled chemical 
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standards, and subsequently these were used as standards by co-dissolving with the 

unlabeled samples at the beginning of each respective analytical method.  

8.2.4 Gas Chromatography-Mass Spectrometry 

GC-MS analysis was performed on an Agilent 7890B GC system equipped 

with a DB-5MS capillary column (30 m, 0.25 mm i.d., 0.25 μm-phase thickness; 

Agilent J&W Scientific), connected to an Agilent 5977A Mass Spectrometer operating 

under ionization by electron impact (EI) at 70 eV. Helium flow was maintained at 1 

mL/min. The source temperature was maintained at 230 °C, the MS quad temperature 

at 150 °C, the interface temperature at 280 °C, and the inlet temperature at 250 °C. For 

GC-MS analysis of amino acids, 1 μL was injected at 1:40 split ratio. The column was 

started at 80 °C for 2 min, increased to 280 °C at 7 °C/ min, and held for 20 min. For 

GC-MS analysis of fatty acid methyl esters (FAME) and sugar derivatives, 1 μL was 

injected splitless (Crown et al., 2015b). For GC-MS analysis of organic acids in the 

medium, 1 μL was injected at 1:10 split ratio. The column was started at 80 °C for 2 

min, increased to 280 °C at 10 °C/min, and held for 12 min. 

8.2.5 Calculation of Oxygen Uptake and Carbon Dioxide Production Rate 

The carbon dioxide production rate was calculated from an overall carbon 

balance, accounting for glucose uptake, acetate secretion, and biomass formation. The 

oxygen uptake rate was calculated from an overall redox balance using the degrees of 

reduction and production/consumption rates of glucose, acetate and biomass. The 

degree of reduction of biomass of each strain was calculated from the measured 

biomass composition. The degree of reduction () was calculated as follows 

(Antoniewicz et al., 2007c; Crown and Antoniewicz, 2013a): 



 172 

𝛾 = 4𝐶 + 𝐻 − 2𝑂 − 3𝑁 + 6𝑆 + 5𝑃 − 𝑐ℎ𝑎𝑟𝑔𝑒 

8.2.6 COBRA Modeling 

Flux balance analysis (FBA), minimization of metabolic adjustment (MOMA), 

and the relative change (RELATCH) algorithms were implemented through the 

COBRA Toolbox 2.0 in Matlab 2012b (Kim and Reed, 2012; Schellenberger et al., 

2011) using the E. coli iAF1260 genome scale model (Feist et al., 2007) (specifically 

“Ec_iAF1260_flux1.xml”). CPLEX from Tomlab (http://tomopt.com) was used for 

the LP and QP solvers. RELATCH was downloaded from the Reed Laboratory 

website (http://reedlab.che.wisc.edu/codes.php). For FBA calculations, the upper 

bounds for glucose and oxygen uptake rates were set at wild-type values of 8.5 

mmol/gdw/hr and 12 mmol/gdw/hr respectively and growth rate was optimized. For 

MOMA, the reference state was generated using measured wild-type fluxes from 13C-

MFA (Chapter 7), as follows: Forty reactions were mapped from the network model 

applied here for 13C-MFA to the iAF1260 model, spanning glucose uptake, central 

carbon metabolic pathways, and acetate secretion. In iAF1260, the upper and lower 

allowable bounds for each reaction was set to the values obtained for the 95% 

confidence intervals from 13C-MFA. FBA with growth optimization was then run to 

obtain the ‘reference’ state fluxes. Good agreement with measured growth rate (0.60 

h-1), acetate yield (0.66 mol/mol) and biomass yield (0.39 g/g) were observed.  For 

RELATCH, the same 40 fluxes and standard errors were inputted, as well as gene 

expression data previously reported for the wild-type (Covert et al., 2004). All bounds 

for substrate uptake and central carbon reactions were lifted for the calculation of 

knockout phenotypes using MOMA and RELATCH.  
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8.3 Results 

8.3.1 Characterization of Physiological Responses to Gene Knockouts 

8.3.1.1 Biomass Dry Weights 

The experimentally determined conversion factors of OD600 to cell-dry-weight 

are shown in the upper right of Fig. 8.2. There was minimal variance between strains, 

with an average conversion of 0.31 g/L/OD600 that was consistent with those from the 

22 previous measurements reported previously (Long et al., 2016b). The overall 

average (n=48 strains) of 0.31 g/L/OD600 was used for subsequent calculations. 

8.3.1.2 Growth Rate 

The growth rates of each knockout strain are shown in the upper left panel of 

Fig. 8.2. Pyruvate kinase I (pykF) shows a slight growth defect (0.53 h-1) compared to 

the wild-type (0.63 h-1) and pyruvate kinase II (pykA). The large role of the PTS 

system in pyruvate to PEP conversion likely contributes to this robustness. More 

surprisingly, there was also slightly impeded growth in ΔppsA (0.50 h-1), which 

encodes the gluconeogenic PEP synthetase. This is believed to be minimally expressed 

during aerobic growth on glucose (Trauchessec et al., 2014) as its activity creates a 

futile cycle. By far the most severe growth defect was observed in ΔaceE (0.06 h-1), 

the E1 component of the pyruvate dehydrogenase (PDH) complex. Interestingly, 

knockouts of the other components E2 and E3, aceF and lpd, respectively, did not 

grow in the studied conditions. A minor defect was observed in Δpta (0.51 h-1), the 

first step in acetate production. In the TCA cycle, the most significant growth defects 

were in ΔacnB (0.21 h-1) and ΔsucB (0.23 h-1). The former is the dominant aconitase 

isozyme, with the presence of acnA alleviating the glutamate auxotrophy observed in 
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the double knockout mutant (Gruer et al., 1997), which also precludes growth in Δicd. 

The latter is a component of the 2-oxoglutarate dehydrogenase multi-enzyme complex 

(OGDHC) that converts AKG to SuccCoA. No growth reductions were observed in 

knockouts in the glyoxylate shunt or amphibolic reactions, consistent with the known 

low flux through these pathways in the wild-type (Leighty and Antoniewicz, 2013). 

The knockout of the active anaplerotic reaction (PEP to OAC), Δppc, did not grow 

under these conditions. 

8.3.1.3 Biomass and Product Yields 

The measured biomass yields are also shown in Fig. 8.2, in the center-left 

panel. Most knockout strains had similar yields to the wild-type’s 0.41 gDW/ggluc. The 

notable exceptions to this were ΔaceE, with a very low biomass yield of 0.09 g/g, and 

ΔsucB (0.21 g/g). The highest measured biomass yield was in Δpta, at 0.47 g/g. The 

low biomass yield strains were characterized by 3-carbon products (Fig. 8.2, lower 

panels), with ΔaceE producing high amounts of lactate (0.54 mol/mol) and pyruvate 

(1.05 mol/mol) and ΔsucB producing lactate (0.69 mol/mol). There was a wide 

spectrum of acetate phenotypes, the primary aerobic product in wild-type E. coli 

(Long et al., 2016b). Most notably, knockouts in PDH (ΔaceE) and the dominant pta-

ackA pathway produced very low amounts of acetate. Interestingly, Δpta produced 

some lactate and pyruvate, while ΔackA (the next reaction in the acetate production 

pathway) did not. Some other mutants in the TCA cycle caused the acetate yield to 

significantly increase, particularly ΔacnB (1.05 mol/mol) and ΔsdhA (1.13 mol/mol). 

Additionally, a small amount of citrate (0.03 mol/mol) were detected from ΔacnB, and 

succinate (0.08 mol/mol) from ΔsdhA. In both cases, the excreted product is the 

substrate of the affected reaction, likely reflecting intracellular accumulation.  
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A carbon balance, reflecting the measured yields, was performed for each 

strain and is shown in Fig. 8.3. Remarkably, in ΔaceE 79% of the carbon is converted 

to lactate and pyruvate. The unique biomass and product profiles of Δpta and ΔsucB 

are apparent as well. In ΔackA, which produces very little acetate or other product, an 

estimated 40% of all carbon is fully oxidized to CO2.  

8.3.1.4 Substrate Uptake Rates 

The uptake rates of glucose and oxygen were calculated and are shown in Fig. 

8.4. The lowest glucose uptake rates were observed in ΔaceE (3.9 mmol/gDW/h) and 

ΔacnB (3.3 mmol/gDW/h). Corresponding to their low biomass yields, the reductions in 

glucose uptake rate for ΔaceE and ΔsucB (uptake rate of 6.0 mmol/gDW/h) were 

relatively less severe than their reductions in growth rate. A modest decrease was also 

observed in Δpta (6.1 mmol/gDW/h), compared to the wild-type’s 8.5 mmol/gDW/h. The 

oxygen uptake rates were calculated based on electron balances, and revealed 

significant decreases (from the wild-type’s 12.9 mmol/gDW/h) in respiration rates in 

ΔaceE, Δpta, ΔacnB, and ΔsucB (4-6 mmol/gDW/h), as well as less severe reductions in 

ΔsucC and ΔsdhA (~8 mmol/gDW/h). Inhibited flux through the TCA cycle may be 

expected to limit the available reduced cofactors for the electron transport chain. The 

highest estimated oxygen uptake rate was 17.9 mmol/gDW/h in ΔackA, presumably 

corresponding to an elevated TCA flux and lack of secreted products.  
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Figure 8.2:   Physiological measurements for the wild-type and 25 knockouts. The 

growth rate, cell density to OD600 conversion, and biomass, acetate, 

lactate, and pyruvate yields are shown. Colors denote gene pathways: 

lower glycolysis (red), pyruvate dehydrogenase and acetate metabolism 

(blue), TCA cycle (green), glyoxylate shunt (orange), and amphibolic 

reactions (purple). Errors in growth rate and cell density per OD600 

reflect standard errors of the mean (n=3, n=2, respectively). Biomass 

yield errors reflect the standard error from regression of biomass and 

glucose during culture. The product yield errors reflect standard errors 

based on the respective assumed errors of measurement (HPLC and GC-

MS). 
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Figure 8.3:   Carbon balances for wild-type and knockout strains. The fates of glucose 

carbon into biomass, products, and CO2 were calculated on a Cmol per 

Cmol basis. Strains are grouped according to their metabolic pathways, 

as in Figure 2. 

 

Figure 8.4:   Glucose and oxygen uptake rates for the wild-type and knockout strains. 

Colors denote gene pathways: lower glycolysis (red), pyruvate 

dehydrogenase and acetate metabolism (blue), TCA cycle (green), 

glyoxylate shunt (orange), and amphibolic reactions (purple). Error bars 

reflect standard error bars as propagated from direct measurements 

through the respective calculations. 
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8.3.1.5 Biomass Composition 

To further elucidate the physiological effects of these knockouts, as well as to 

facilitate further metabolic network analysis, the biomass composition of each strain 

was measured. The compositions are summarized in Fig. 8.5. The total protein content 

varied minimally in most strains from the 51% of cell dry weight seen in the wild-

type, consistent with the previous knockout report (Long et al., 2016b). The biggest 

change was a decrease in ΔaceE (39%), and the highest value observed was 56% in 

ΔackA. The RNA content varied more widely, with low amounts (11-14%) observed 

in ΔaceE and ΔsucB. Other strains were closer to the wild-type’s 21%. Total lipid 

content ranged from 4% (ΔsucB) to 7% (ΔacnA), representing both decreases and 

increases from the wild-type (5%). With respect to glycogen content, most strains 

were in a range of 2-4%, similar to the wild-type (3%). Several strains had moderately 

increased glycogen content of ~6%, e.g., Δacs, ΔfrdA, and ΔaceB. By far most 

notably, however, was ΔaceE with a very highly elevated glycogen content of 11% of 

dry weight. The relative abundances of amino acids were constant across strains, but 

did vary significantly for fatty acids, particularly C16:0, C16:1, and C18:1.  

The compositions were used to calculate the degree of reduction and molecular 

weights of biomass, which were used here in calculating oxygen and CO2 exchange 

rates. The degrees of reduction varied minimally, from 4.36 to 4.46 electrons per Cmol 

of biomass. The molecular weights varied from 26 to 27 gDW per Cmol of biomass.  
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Figure 8.5:   Biomass compositions of wild-type and knockout strains. The four most 

abundant components of E. coli biomass are quantified, including 

protein, RNA, lipids, and glycogen. Colors denote gene pathways: lower 

glycolysis (red), pyruvate dehydrogenase and acetate metabolism (blue), 

TCA cycle (green), glyoxylate shunt (orange), and amphibolic reactions 

(purple). Error bars reflect standard errors of the mean based on 4 

measurements (2 biological by 2 technical replicates). 

8.3.2 Correlations and Principal Component Analysis of Physiological Data 

Pairwise correlation analysis was performed using the physiological data, and a 

relevant subset are shown in Fig. 8.6. Here they are also compared to 21 previously 

reported knockouts from upper central carbon metabolism (Long et al., 2016b), which 

provides interesting context and insight into the effects of perturbing the different 

central carbon pathways. For example, in the upper central carbon pathway knockouts, 

higher glucose uptake rate was correlated with reduced biomass yield and increased 
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product (i.e., acetate) yield. This was consistent with the concept of acetate overflow 

metabolism. In the lower central carbon metabolic knockouts however, these 

relationships do not hold. In fact, some of the strains with the lowest glucose uptake 

rates have the highest product yields and lowest biomass yields (ΔaceE and ΔsucB). 

ΔacnB is also notable with its very low uptake rate, moderately high product yield, 

and a biomass yield only slightly lower than the wild-type. As the acetate overflow 

model is predicated on there being a static capacity for TCA cycle flux, it is perhaps 

not surprising that perturbations directly to it and product formation pathways would 

disrupt this phenomenon. There is consistency between the sets of mutant data with 

respect to the expected trade-off in carbon fates between product and biomass yield 

(middle-left panel). Here, the addition of ΔaceE and ΔsucB significantly extend the 

observed range of this correlation. 

 The correlations previously reported (Long et al., 2016b) in growth rate and 

biomass composition were also recapitulated here. The strong positive correlation 

between growth rate and RNA composition is well-established (Neidhardt, 1987; 

Pramanik and Keasling, 1997), and is thought to reflect the increased numbers of 

ribosomes needed for faster growth. The growth rate dependence of fatty acid 

composition, first reported for the upper central carbon pathway knockouts, is also 

observed here. At higher growth rates, the C16:0 content decreases and C18:1 content 

increases. The mechanism of this is still unknown. For each of these relationships, the 

very low growth rate of ΔaceE extends the range of observations beyond what was 

reported previously. 
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Figure 8.6:   Correlations between physiological parameters. For each, previously 

reported values for 22 knockouts from upper central carbon metabolism 

are shown in gray, and strains from this study are shown in color, 

according to the pathway: lower glycolysis (red), pyruvate 

dehydrogenase and acetate metabolism (blue), TCA cycle (green), 

glyoxylate shunt (orange), and amphibolic reactions (purple). Six 

relevant correlations are shown, based on notable differences between 

upper and lower metabolism knockouts (see text). 
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Principal component analysis (PCA) was performed to further deconvolute the 

relationships between physiological parameters and between strains. PCA is a 

multivariate data reduction technique that minimizes that combines redundant and 

linearly dependent variables into ‘principal components’, which are able to capture the 

maximum amount of total variance across the data set. The result of this analysis is 

shown in Fig. 8.7. The first two principal components explain a large portion of the 

overall data variance: 42% and 17% respectively. PC1 captures the growth rate and 

associated biomass composition effects. High PC1 values reflect high growth rate, 

high RNA and C18:1 content, and low C16:0 content. PC2 captures the carbon fate, of 

product formation (high PC2 values) and biomass (low values). Again, the upper 

central carbon pathway knockouts are included in this analysis for further context. 

Many strains cluster around the wild-type, as expected for knockouts of small or no 

impact. Interestingly, ΔacnB clusters with two slow-growing knockouts in glycolysis, 

Δpgi and ΔtpiA. As in Fig. 7, ΔaceE and ΔsucB are significant outliers compared to the 

upper central carbon pathway knockouts, due to their very high product yields.  
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Figure 8.7:   Principal component analysis (PCA) of directly measured physiological 

parameters, including the wild-type (white), 22 knockouts of upper 

central carbon metabolism (previously reported, gray), and the 25 

knockouts in lower central carbon metabolism: lower glycolysis (red), 

pyruvate dehydrogenase and acetate metabolism (blue), TCA cycle 

(green), glyoxylate shunt (orange), and amphibolic reactions (purple). 

PC1 and PC2 capture 59% of the total measurement variability, with PC1 

grouping together the growth rate related variance, and PC2 the trade-off 

of biomass and product yields. The mapping of physiology to PC values 

is indicated by the triangles on the axes, e.g., the purple triangle shows 

that high growth rate values correspond to high PC1 values, and vice 

versa. 

8.3.3 Evaluating COBRA Model Predictions 

The application of constraint-based reconstruction and analysis (COBRA) 

modeling approaches to metabolic network analysis and engineering is widespread 

(Lewis et al., 2012). The acquisition of large phenotypic data sets such as this one 

presents an opportunity to evaluate the various ‘objective functions’ used in these 

approaches. Thus, we compared the measured growth rate, biomass yield, and product 
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yields to the predictions made by three commonly used techniques: FBA with growth 

rate optimization (Edwards and Covert, 2002), MOMA (Segre et al., 2002), and 

RELATCH (Kim and Reed, 2012) (Fig. 8.8). MOMA minimizes the sum of squares 

difference from the wild-type to the newly constrained knockout network, and 

RELATCH accounts for wild-type gene expression to further constrain pathway 

capacities. Details of the implementations of these methods are described above 

(Methods).  

The FBA predictions of growth rates are characterized by very little impact 

relative to the wild-type, although the no-growth phenotypes are accurately predicted 

for ΔgltA and Δicd. MOMA is more accurate in predicting a significant growth rate 

impact for ΔaceE, but the effect is underestimated at 0.2 h-1. RELATCH is actually 

less accurate for ΔaceE (0.4 h-1), but does accurately predict modest decreases in 

growth rate for ΔpykF, Δpta, and ΔackA. It has a false-negative growth prediction for 

ΔacnB, but does uniquely and accurately predict no growth for Δppc. With respect to 

biomass yield, the only notable predictions for MOMA are ΔaceE (accurately low), 

and for RELATCH again the false-negative for ΔacnB. The acetate yields are shown 

in the bottom row of Fig. 8.8, as the predictions for other products were near zero for 

all strains. The exceptions were an FBA prediction of pyruvate yield for ΔaceE 

(measured: 1.05 mol/mol, predicted: 0.10 mol/mol) and succinate for ΔsdhA 

(measured: 0.08 mol/mol, MOMA: 0.05 mol/mol, RELATCH: 0.03 mol/mol). The 

acetate yield predictions for all models were quite poor, with only ΔaceE registering 

differences in FBA and MOMA. RELATCH did predict modest decreases for Δpta 

and ΔackA, but these were still quite overestimated relative to the measurements.  
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Figure 8.8:   Comparison of measured physiological parameters to predictions made 

by three commonly-used COBRA modeling approaches: FBA, MOMA, 

and RELATCH. The growth rates, biomass yields, and acetate yields are 

compared, with model predictions (y-axis) plotted against observed value 

(x-axis), with the gray (y=x) line representing perfect agreement. The 

overall quality of the agreements were quantified using Pearson 

correlation coefficients (ρ, shown). 

8.4 Conclusions 

In this study, we identify key genes in lower glycolysis, acetate formation, and 

the TCA cycle that cause significant metabolic bottlenecks and rewiring of 
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fermentation pathways. The PDH mutant ΔaceE was particularly notable here given its 

severely impeded growth rate and biomass yield, and its 79% carbon conversion to 

pyruvate-derived products make it an attractive engineering target. While it is unclear 

why this strain is able to grow while mutants of E2 and E3 (aceF and lpd) cannot, it 

should be noted that Nakashima et al. observed a similar high pyruvate production 

phenotype following RNA silencing of aceE (Nakashima et al., 2014). In subsequent 

reactions which consume the key node metabolite AcCoA, an interesting activation of 

pyruvate and lactate formation in Δpta, not observed in the next step ΔackA, could 

reflect a mechanism to effectively divert glycolytic overflow to the upstream pyruvate 

node. In the TCA cycle, ΔacnB and ΔsucB uniquely represent significant growth 

limiting, but not preventing, perturbations. Continued 13C-MFA studies will confirm 

whether these and other TCA cycle mutants result in incomplete, truncated cycles. 

Taken together with the previous report of wild-type and 21 knockouts in 

upper central carbon metabolic pathways (Long et al., 2016b), this study completes a 

comprehensive mapping of physiological effects of knockouts in aerobic central 

carbon metabolism. This should be a resource to the modeling and engineering 

communities, which will grow in scope and utility when 13C flux and other omics 

measurements become available. As constraint-based approaches become increasingly 

sophisticated, e.g. the ME-models (O’Brien et al., 2013), such data can be re-applied 

for assessing prediction accuracy. More detailed fluxomic, metabolomic, and/or 

transcriptomic data will facilitate further development of ensemble kinetic models as 

well (Chowdhury et al., 2015; Khodayari et al., 2014; Khodayari and Maranas, 2016). 



 187 

8.5 Author Contributions 

CPL performed the experiments and analysis except the analysis of excreted 

acetate, performed by JEG. CPL and MRA designed the project and wrote the paper 

with help from all authors. 

 

 

 

  



 188 

FLUXOMIC RESPONSES TO 25 GENE KNOCKOUTS IN LOWER 

CENTRAL CARBON METABOLISM 

Christopher P. Long, Maciek R. Antoniewicz 

9.1 Introduction 

Here, the methods and analysis introduced in Chapter 7 are extended to the 25  

knockout strains in lower central carbon metabolism introduced in Chapter 8. These 

include knockouts of genes involved in lower glycolysis, pyruvate dehydrogenase and 

acetate pathways, the TCA cycle, glyoxylate shunt, and amphibolic reactions. The 

intracellular fluxes of these strains provide important information about the flow of 

carbon around the key nodes pyruvate and acetyl-CoA, including the usage of the 

TCA cycle versus product formation. In the knockouts of upper central carbon 

metabolism (Chapter 7), several strains utilized the glyoxylate shunt and PCK 

(cataplerotic) reaction. Additionally, a very strong correlation was observed between 

pyruvate dehydrogenase flux and acetate production, i.e., the acetate overflow effect. 

Now that genes directly involved in these pathways are perturbed, will the glyoxylate 

shunt, PCK, or malic enzyme reactions be induced in any cases? Will the acetate 

overflow effect hold, even when the PDH and acetate pathways are directly affected 

by knockout? In the upper central carbon metabolic knockouts, significant changes far 

from the site of knockout, e.g., in the lower pathways, were observed. In these strains, 

will we see ‘upstream’ impacts of the knockouts, such as redistribution of flux 

between glycolysis, oxidative pentose phosphate, and Entner-Doudoroff pathways? In 

Chapter 9 
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this work, insights into these questions are developed as intracellular fluxes are 

measured by 13C-MFA, analyzed, and compared to predictions made by COBRA 

models. The presented results complete the comprehensive metabolic study of 

knockout responses of 45 central carbon metabolism genes.  

9.2 Materials and Methods 

9.2.1 Materials 

Chemicals and M9 minimal medium were purchased from Sigma-Aldrich (St. 

Louis, MO). Isotopic tracers were purchased from Cambridge Isotope Laboratories 

(Tewksbury, MA): [1,6-13C]glucose (99.2 % 13C), and [1,2-13C]glucose (99.7 %). 

The isotopic purity and enrichment of all tracers were validated by GC-MS analysis 

(Cordova and Antoniewicz, 2016; Sandberg et al., 2016). All solutions were sterilized 

by filtration. 

9.2.2 Strains and Culture Conditions 

E. coli strains were obtained from the Keio collection (GE Healthcare 

Dharmacon), which were generated by one-step inactivation of all non-essential genes 

in E. coli K-12 BW25113 (Baba et al., 2006). The specific strains used in this study 

are listed in Table 8.1. For 13C-tracer experiments, strains were cultured aerobically in 

glucose M9 minimal medium at 37°C in mini-bioreactors with 10 mL working volume 

(Long et al., 2016b). Pre-cultures were grown overnight and then used to inoculate the 

experimental culture at an OD600 of 0.01, in which 2 g/L of the glucose tracers were 

present. Cells were harvested for GC-MS analysis at mid-exponential growth when 

OD600 was approximately 0.7. 
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9.2.3 Analytical Methods 

Cell growth was monitored by measuring the optical density at 600nm (OD600) 

using a spectrophotometer (Eppendorf BioPhotometer). The OD600 values were 

converted to cell dry weight concentrations using a previously determined OD600-dry 

cell weight relationship for E. coli (1.0 OD600 = 0.32 gDW/L) (Long et al., 2016b). 

After centrifugation, the supernatant was separated from the cell pellet. The cell 

pellets were washed with glucose-free M9 medium prior to subsequent analysis.  

9.2.4 Gas Chromatography-Mass Spectrometry 

GC-MS analysis was performed on an Agilent 7890B GC system equipped 

with a DB-5MS capillary column (30 m, 0.25 mm i.d., 0.25 µm-phase thickness; 

Agilent J&W Scientific), connected to an Agilent 5977A Mass Spectrometer operating 

under ionization by electron impact (EI) at 70 eV. Helium flow was maintained at 1 

mL/min. The source temperature was maintained at 230°C, the MS quad temperature 

at 150°C, the interface temperature at 280°C, and the inlet temperature at 250°C. GC-

MS analysis of tert-butyldimethylsilyl (TBDMS) derivatized proteinogenic amino 

acids was performed as described (Long and Antoniewicz, 2014b). Labeling of 

glucose (derived from glycogen) and ribose (from RNA) were determined as described 

(Long et al., 2016a; McConnell and Antoniewicz, 2016). In all cases, mass isotopomer 

distributions were obtained by integration (Antoniewicz et al., 2007b) and corrected 

for natural isotope abundances (Fernandez et al., 1996). 

9.2.5 Metabolic network model and 13C-metabolic flux analysis 

The metabolic network model used for 13C-MFA is provided in Appendix 

Table C.1, and the full flux results are in the Supplemental File. The model (Crown et 

al., 2015a; Gonzalez et al., 2017) includes all major metabolic pathways of central 
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carbon metabolism, lumped amino acid biosynthesis reactions, and a lumped biomass 

formation reaction. The coefficients for precursors in the biomass formation reaction 

were determined for each strain, based on the measured biomass compositions, as 

previously described (Antoniewicz et al., 2007c). A modification was made to the 

model for ΔaceE, where it was found that the reversible reaction between aspartate 

and fumarate (E.C. 4.3.1.1) significantly improved the quality of fit. 13C-MFA 

calculations were performed using the Metran software (Yoo et al., 2004), which is 

based on the elementary metabolite units (EMU) framework (Antoniewicz et al., 

2007a). Fluxes were estimated by minimizing the variance-weighted sum of squared 

residuals (SSR) between the measured and model predicted mass isotopomer 

distributions and acetate yield using non-linear least-squares regression. For integrated 

analysis of parallel labeling experiments, the data sets were fitted simultaneously to a 

single flux model (Leighty and Antoniewicz, 2013). Flux estimation was repeated 10 

times starting with random initial values for all fluxes to find a global solution. At 

convergence, accurate 95% confidence intervals were computed for all estimated 

fluxes by evaluating the sensitivity of the minimized SSR to flux variations. Precision 

of estimated fluxes was determined as follows (Antoniewicz et al., 2006): 

Flux precision (stdev) = [(flux upper bound 95%) – (flux lower bound 95%)] / 4 

To describe fractional labeling of biomass amino acids G-value parameters 

were included in 13C-MFA. As described previously (Antoniewicz et al., 2007c), the 

G-value represents the fraction of a metabolite pool that is produced during the 

labeling experiment, while 1-G represents the fraction that is naturally labeled (e.g., 

from inoculum). By default, one G-value parameter was included for each measured 

amino acid in each data set. Reversible reactions were modeled as separate forward 
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and backward fluxes. Net and exchange fluxes were determined as follows: vnet = vf-

vb; vexch = min(vf, vb). To determine the goodness-of-fit, 13C-MFA fitting results were 

subjected to a 2-statistical test (Antoniewicz et al., 2006).  

9.2.6 Constraint-Based Reconstruction and Analysis (COBRA) Modeling 

Flux balance analysis (FBA), minimization of metabolic adjustment (MOMA), 

and the relative change (RELATCH) algorithms were implemented through the 

COBRA Toolbox 2.0 in Matlab 2012b (Kim and Reed, 2012; Schellenberger et al., 

2011) using the E. coli iAF1260 genome scale model (Feist et al., 2007) (specifically 

“Ec_iAF1260_flux1.xml”). CPLEX from Tomlab (http://tomopt.com) was used for 

the LP and QP solvers. RELATCH was downloaded from the Reed Laboratory 

website (http://reedlab.che.wisc.edu/codes.php). For FBA calculations, the upper 

bounds for glucose and oxygen uptake rates were set at wild-type values of 8.5 

mmol/gdw/hr and 12 mmol/gdw/hr respectively and growth rate was optimized. For 

MOMA, the reference state was generated using the measured (from 13C-MFA) wild-

type fluxes as follows. Forty reactions were mapped from the network model applied 

here for 13C-MFA to the iAF1260 model, spanning glucose uptake, central carbon 

metabolic pathways, and acetate secretion. In iAF1260, the upper and lower allowable 

bounds for each reaction was set to the values obtained for the 95% confidence 

intervals from 13C-MFA. FBA with growth optimization was then run to obtain the 

‘reference’ state fluxes. Good agreement with measured growth rate (0.60 h-1), acetate 

yield (0.66 mol/mol) and biomass yield (0.39 g/g) were observed.  For RELATCH, the 

same 40 fluxes and standard errors were inputted, as well as gene expression data 

previously reported for the wild-type (Covert et al., 2004). All bounds for substrate 
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uptake and central carbon reactions were lifted for the calculation of knockout 

phenotypes using MOMA and RELATCH.  

For the assessment of correlations between measured and estimated normalized 

intracellular fluxes (Fig. 9.9B-C), the following specific fluxes were used (reaction 

names correspond to iAF1260 designation and numbers correspond to network model 

in Table S2): PGI (v2), PYK (v8), GND (v10), EDD (v18), PDH (v20), CS (v21), 

SUCOAS (v27), ICL (v31), PPC (v35), PCK (v36), and EX_ac(e) (v74), EX_lac_D(e) 

(v75), and EX_pyr(e) (v76). 

9.3 Results and Discussion 

9.3.1 Physiology 

As presented in Chapter 8, the scope of this study was 25 knockout strains 

spanning the pathways of lower central carbon metabolism (Fig. 9.1A). The basic 

physiological characteristics, including growth rate, biomass yield, glucose uptake 

rate, and acetate yield, are expressed as a percentage change from the wild-type in Fig. 

9.1B (complete data in Appendix Fig. D.1-2). The most severely growth-limited 

strains were ΔaceE, ΔacnB, and ΔsucB. In addition to the changes highlighted here, 

some strains also had significant production of pyruvate (ΔaceE and Δpta) and lactate 

(ΔaceE, Δpta, and ΔsucB). 

9.3.2 Intracellular flux distributions 

Simplified flux maps, representing the normalized intracellular flux distributions, are 

shown in Fig. 9.2. The large changes in pathway usage are highlighted (blue for 

increases, red for decreases greater than 30%). Growth rates and glucose uptake rates 

are also noted. Notably, the relative usages of the upper pathways, i.e., glycolysis, 
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pentose phosphate pathway, and ED pathway, do not undergo large rewiring in these 

strains. This may reflect a regulatory mechanism that maintains the splits in these 

branch points across a wide range of glucose uptake rates. The knockouts have 

significant impacts across the pathways they are more proximal to, in product 

formation and the TCA cycle. The three strains ΔaceE, Δpta, and ΔsucB begin 

producing pyruvate derived (pyruvate and lactate) products, while the knockouts in the 

pta-ackA acetate pathway cause significant reductions in acetate excretion and 

increased usage of the TCA cycle. Several knockouts restrict flux in the TCA cycle, 

including ΔaceE, ΔacnB, ΔsucB, ΔsucC, and Δmdh. These include some of the most 

severely perturbed overall phenotypes. Interestingly, despite direct perturbations in the 

TCA cycle and amphibolic reactions, none of the knockouts utilized the glyoxylate 

shunt or PCK reactions. Only Δmdh had an active malic enzyme flux. 
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Figure 9.1    (A) The genes included in this knockout study, shown in context of the 

central carbon metabolic pathways. These include genes in lower 

glycolysis (red), pyruvate dehydrogenase and acetate metabolism (blue), 

TCA cycle (green), glyoxylate shunt (orange), and amphibolic reactions 

(purple). Multiple genes listed for a given reaction indicates isozymes for 

that reaction, except where slash marks indicate an enzyme complex (e.g. 

PDH complex denoted aceE/aceF/lpd). Genes listed in black are included 

in the study, those in red did not grow in the studied conditions, and gray 

were not studied (one knockout per complex was included). (B) 

Physiological changes in knockout strains are summarized, expressed as 

percentage change from the wild-type. Biomass yields were estimated by 
13C-MFA and used to calculate glucose uptake rates. 
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Figure 9.2:   Intracellular flux distributions for the wild-type and 25 knockouts. 

Glucose uptake rate and growth rate are noted for each strain, and the 

location of the knockout is shown by the red hash mark. The magnitude 

of the normalized intracellular fluxes are represented by the line 

thickness, as noted in the key to the upper left, and changes greater than 

30% are reflected by the line color (blue for increase, red for decrease). 

Three interesting knockouts affecting the key pyruvate and acetyl-CoA nodes 

are ΔaceE, Δpta, and ΔackA, the fluxes of which are shown in detail in Fig. 9.3. The 

E1 subunit of the pyruvate dehydrogenase (PDH) complex is knocked out in ΔaceE, 

which severely restricts this flux (Pyr→AcCoA). Due to identical atom transitions, it 

is not possible to distinguish flux through the PDH mechanism or others such as 

pyruvate formate-lyase (EC 2.3.1.54). The result of the knockout was a massive out-

flux from pyruvate, excreted as pyruvate (101 per 100 mol gluc) and lactate (50). 



 197 

Here, no acetate was produced and the TCA cycle is incomplete, only generating the 

minimum necessary precursors, e.g. AKG, for biomass production. Additionally, the 

large pathway changes resulted in exactly zero cofactor transhydrogenase flux, i.e., 

NADH and NADPH were generated at exactly the needed proportion. The pta-ackA 

pathway is the primary route of acetate production in aerobically growing E. coli, and 

has been shown to be largely thermodynamically controlled (Enjalbert et al., 2017; 

Wolfe, 2005). The knockout of pta, the first step in this pathway, significantly reduced 

acetate outflux, and interestingly resulted in excretion of pyruvate products (22 lactate 

and 17 pyruvate per 100 gluc). The impact of ackA knockoutwas quite different; 

although acetate production was similarly knocked down, no pyruvate-derived 

products were produced and instead the TCA cycle flux was significantly increased. 

This resulted in a larger transhydrogenase flux producing NADPH. The differences 

between these two strains are interesting with respect to the regulation of acetate 

overflow metabolism. One potential explanation for these differences is the role of the 

intermediate acetyl-phosphate in protein regulation, where it is well known to have 

global control of lysine acetylation (Weinert et al., 2013). 
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Figure 9.3:   Detailed intracellular flux maps for three strains in the PDH and acetate 

production pathways. Glucose uptake rates are noted, and the knockouts 

are represented by red hash mark. The line thickness reflects the 

magnitude of the normalized intracellular flux (per 100 glucose uptake). 

Changes in normalized flux of greater than 30% are reflected by color 

(blue for increase, red for decrease).  

In the TCA cycle, ΔacnB, ΔsucB, and Δmdh had the most severely perturbed 

fluxes (detailed flux maps shown in Fig. 9.4). The knockout of acnB, the dominant 

aconitate hydratase, caused a large reduction in glucose uptake rate (3.4 mmol/gDW/h) 

and an incomplete TCA cycle providing only biomass precursors. The isozyme acnA 

is presumably responsible for the aconitase flux of 9 per 100 glucose in this strain. As 

the TCA cycle is limited, acetate overflow is increased. In ΔsucB, the flux through the 

2-oxoglutarate dehydrogenase is blocked, resulting in an incomplete TCA cycle. The 

limited flux into the TCA cycle provides AKG for biosynthesis (icd, which produces 
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AKG, is essential in these conditions). ΔsucB maintains fast glucose uptake (7.1 

mmol/gDW/h), but has a much lower growth rate (0.23 h-1) and biomass yield (0.18 

gDW/ggluc). Somewhat surprisingly, a significant portion of this missing carbon goes 

into lactate production (81 per 100 gluc). In this strain, the transhydrogenase flux is 

reversed (forming NADH). Deletion of the major malate dehydrogenase mdh results in 

a unique rewiring of the TCA cycle and malic enzyme. The TCA cycle is incomplete, 

and flux is routed from PEP to OAC (PPC reaction) to Mal to Pyr (via malic enzyme). 

Malate dehydrogenase is known to be reversible, but the malate:quinone 

oxidoreductase mqo is thought to be irreversible, so the mechanism of this oxidative 

(OAC→Mal) flux is unclear and worthy of future investigation. 

 

Figure 9.4:   Detailed flux maps of three knockouts in the TCA cycle. Line thickness 

and color have the same meaning as in Fig. 9.3.  
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9.3.3 Metabolic flux changes 

The nature of flux rewiring can also be analyzed more holistically, as in Figs. 

9.5 and 9.6. In Fig. 9.5A, the change in directly affected flux (i.e., in the reaction 

associated with each knocked-out gene) for each mutant is shown. For example, of the 

genes involved in pyruvate and PEP interconversion, ΔpykF causes a slight decrease in 

absolute flux, while knock out of ppsA (gluconeogenic reaction) causes a slight 

increase in flux in the glycolytic direction. ΔaceE, Δpta, and ΔackA cause severe, near-

complete flux decreases, while the alternative acetate production pathway poxB and 

acetate consumption pathway acs do not affect the acetate flux. As noted above, 

ΔacnB has a more significant impact than ΔacnA, while ΔsucB and ΔsucC eliminate 

flux as expected. Except for the reversal of the malate dehydrogenase in Δmdh, the rest 

of the genes either have robust isozymes or carry very little flux in the wild-type.  

The global network flux changes are visualized in Fig. 9.5B-C and Fig. 9.6. In 

absolute units, by far the most variance is observed in glycolysis and product 

formation pathways (Fig. 9.5B). Histograms of flux changes, both in relative and 

absolute terms, are shown in Fig. 9.5C. While most changes are near zero, in both 

relative and absolute terms fluxes are seen to increase and decrease. This is in contrast 

with the upper metabolism knockouts (Ch. 7), where absolute flux increases were rare.  
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Figure 9.5:   (A) The change in absolute flux in the reaction directly affected by the 

knockout. Asterisks reflect the presence of an isozyme not included in the 

study, and brackets group isozymes together. (B) Absolute fluxes of all 

strains, throughout central carbon metabolism. Each point is a single 

strain, with the color reflecting the pathway as in Fig. 9.1 (wild-type is 

white). (C) Histograms of relative and absolute flux changes from the 

wild-type in the knockout strains. Values below zero represent reductions 

in flux, whereas those greater than zero represent increases. 
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Figure 9.6:   Flux changes from the wild-type, in normalized (per 100 glucose) (A) and 

absolute (mmol/gDW/h) (B). Colors denote the sign and magnitude of the 

change, with blue indicating flux increase and red flux decrease, per the 

key to the right. The flux directly affected by each knockout is bolded. 

In Fig. 9.6, the specific occurrences of absolute increases are apparent, and 

include pyruvate and lactate production, TCA cycle flux in ΔackA, and glycolytic flux 

in ΔsdhA and ΔsfcA. The latter two have elevated glucose uptake, glycolysis, and 

acetate secretion rates. ΔsdhA knocks out the succinate dehydrogenase, which does 

perturb the TCA cycle. ΔsfcA encodes the NAD-dependent malic enzyme, which does 

not carry flux in the wild-type. The mechanisms of these phenotypes should be 

investigated further, as regulatory changes of potential interest are possible. 
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Figure 9.7:   Cofactor balances, in normalized (left) and absolute (right) units. The 

contribution of the major central carbon metabolic pathways (key, top 

right) to the production and consumption of NADH/FADH2 (lumped), 

NADPH, and ATP are shown. Bars representing positive values, show 

cofactor production, and negative values show consumption. The 

estimate of ATP generation from oxidative phosphorylation assumes a 

constant P/O ratio of 2.0 across strains, and the cell maintenance ATP 

cost (“Other”) is calculated as the balance of production and 

consumption.  

Changing fluxes result in changes to the sources and sinks of metabolic 

cofactors, including NADH, FADH2, NADPH, and ATP. The pathway contributions 

to the production and consumption of these are shown in Fig. 9.7, in normalized and 

absolute terms. As discussed above, the changes in central carbon metabolism change 
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the role of the pyridine cofactor transhydrogenase in some strains. In the wild-type, it 

is responsible for converting a small fraction of cellular NADH to approximately 40% 

of the needed NADPH. In ΔaceE and ΔsucB, lactate production contributes to 

consuming some NADH, and severely reduced biomass yields reduce the demand for 

NADPH. As a result, the transhydrogenase flux is zero in ΔaceE, and reversed in 

ΔsucB. Interestingly, despite the many perturbations to the TCA cycle in these strains, 

the only knockout with severely reduced oxidative phosphorylation (in normalized 

terms) was ΔaceE.  

9.3.4 Multivariate Analysis 

As was done in Chapter 7, the absolute fluxes across all strains can be analyzed 

for pairwise correlations (Fig. 9.8). In this set, the correlation between the PYK 

(PEP→Pyr) and PDH (Pyr→AcCoA) fluxes is weaker, due to the strains that secrete 

products from pyruvate. An important, and nontrivial, correlation is the acetate 

overflow relationship between the PDH flux and acetate secretion. This reflects the 

proposed mechanism of glycolytic flux exceeding the capacity of the TCA cycle, and 

the excess being excreted as acetate. As these knockouts directly impact the product 

formation and TCA cycle pathways, it was unclear if the relationship would hold. As 

is clear in the figure, however, the correlation held and was still strong (ρ=0.96), with 

the same line of best fit as for the upper knockouts. Notably, the acetate knockouts, 

particularly ΔackA, which did not secrete pyruvate products and increased its TCA 

flux in absolute terms, were the most significant deviants (less acetate than expected 

per PDH flux). The two strains with elevated absolute glycolytic fluxes, ΔsdhA and 

ΔsfcA, laid clearly on the same trendline.  
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Figure 9.8:   Pairwise correlations of fluxes in central carbon metabolism. 

Stoichiometrically trivial correlations are controlled for by comparison to 

correlations seen in 100 randomly generated flux maps (Fig. 7.7B). The 

heat map reflects the Pearson correlation coefficient. A key, non-trivial 

relationship is the acetate overflow relationship between pyruvate 

dehydrogenase flux and acetate production. The scatter plot of this strong 

correlation is shown.  

The principal component analysis, introduced in Chapter 7 and utilizing 

absolute fluxes from throughout the network, can also be extended to include the 

additional strains presented here. This is shown in Fig. 9.9, where the top two 

principal components account for 59% of the total variance across the 45 strains, and 

the top six account for 91%. The generalized identities of PC1 and PC2 are the same 

as in Chapter 7, where the growth rate related effects are in PC1 (i.e., growth rate, 

glycolytic rate, and acetate production rate positively related, with the rarely active 

glyoxylate shunt and PPCK pathways negatively related), and PC2 capturing the TCA 
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cycle (positive) and the pentose phosphate pathway and lactate production (negative). 

As expected, many strains cluster around the wild-type, but other interesting clusters 

are also observed: Δgnd, ΔackA, and Δzwf; and ΔaceE, Δpgi, ΔpfkA, and ΔacnB.  

 

Figure 9.9:   Principal component analysis of absolute fluxes in 45 knockout strains. 

The percentage of total variability explained by the top six PC’s are 

shown above, and the distribution of the strains across the top two PC’s 

are shown below. The colors reflect pathway association per the key, and 

the triangles to the bottom and right of the axis reflect the primary 

determinants of PC1 and PC2, respectively.  
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Figure 9.10: Comparison of measurements to predictions made by three COBRA 

models: FBA, MOMA and RELATCH. (A) External rates: growth, 

glucose uptake, and oxygen uptake. Predictions (y-axis) vs. 

measurements (x-axis) are plotted, with correlation coefficients shown. 

(B) Normalized intracellular fluxes for the four significantly perturbed 

strains. The fluxes correspond to intracellular pathways as follows: 

glycolysis (light blue), oxPPP and ED pathways (red), TCA cycle and 

glyoxylate shunt (yellow), product and ana/cataplerotic reactions (pink). 

(C) Correlations for the normalized intracellular fluxes for all strains. The 

gray bar reflects a trivial “no change from wild-type” model, i.e., strains 

with a good fit by this model are quite unperturbed and are therefore 

trivial to predict.  

Finally, the metabolic flux phenotypes of these strains were compared to 

COBRA predictions, made by FBA, MOMA, and RELATCH. The results are 

summarized in Fig. 9.10. As established in Chapter 8, these methods perform quite 

poorly at predicting external rates (Figs. 8.8, 9.10A).  For assessing the accuracy of 

predictions for normalized intracellular flux patterns, 13 key fluxes (see Methods) 

spanning the central carbon and excretion pathways were examined. The correlation 

between prediction and measurement was used to describe the agreement between the 

two. As seen in Fig. 9.10C, many strains had insignificant changes from the wild-type, 

i.e., a trivial model that assumes no flux changes at all performed very well for 20 of 

the strains. Four strains that had non-trivial changes are shown in Fig. 9.9B as well: 
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ΔaceE, ΔsucB, Δpta, and ΔackA. None of the COBRA methods predicted significant 

pyruvate or lactate excretion, which harmed the agreement in three of these four. All 

methods performed very poorly with ΔaceE, with MOMA performing best with a 

correlation coefficient of 0.21. Predictions were altogether more accurate for ΔsucB, 

but still struggled due to the fluxes around pyruvate (elevated PYK, active lactate and 

pyruvate secretion). For both Δpta and ΔackA, the models all predict that high acetate 

secretion should be maintained through other pathways.  

9.4 Conclusions 

The results presented here significantly further our quantitative understanding 

of the pathways of lower central carbon metabolism. Particularly, understanding the 

dynamics of pyruvate and AcCoA production and consumption is central to efforts to 

describe and model metabolism. As key node metabolites, these species are also of 

high interest as precursors for products of interest in biotechnology. The insights that 

blocking the PDH with ΔaceE allow for the efficient conversion to pyruvate-derived 

products could be quite useful in strain engineering. Additionally, the differing effects 

of blocking acetate production at pta and ackA could be taken advantage of, in the 

case where either pyruvate availability or TCA cycle flux was desired. In the TCA 

cycle, it is useful to know which reactions are essential (i.e., upstream of AKG) and 

yet can be modulated to significant effect (acnB), and which are not but still cause 

significant rate limitations when perturbed (sucB). These results also inform additional 

lines of scientific inquiry, particularly in the differing regulatory effects of Δpta and 

ΔackA, the mechanism of elevated glycolytic rates in ΔsdhA and ΔsfcA, and the 

oxaloacetate reduction to malate in Δmdh. 
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Taken together with the results from upper central carbon metabolism (Chapter 

7), we have presented a significant new resource of 45 characterized knockout strains 

spanning central carbon metabolism. This resource will be useful to metabolic 

engineers who have specific interests in genes and pathways, as well as to the broader 

systems biology community. Although we have presented some analysis of these flux 

results, many more analyses and potential insights are possible and will hopefully be 

explored. More specifically, these fluxes will be highly applicable to metabolic 

modeling, both in assessing existing models as was done here, but also in developing 

new approaches. Mutant flux data can be used for the parameterization of kinetic 

models by the ensemble method, and the breadth and precision of this study will be a 

significant advantage in that application (Khodayari et al., 2014; Khodayari and 

Maranas, 2016).    
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DISSECTING THE GENETIC AND METABOLIC MECHANISMS OF 

ADAPTATION TO THE KNOCKOUT OF PGI, A MAJOR METABOLIC 

ENZYME IN ESCHERICHIA COLI 

Reprinted with permission from: Long CP, Gonzalez JE, Feist AM, Palsson BO, 

Antoniewicz MR (2018) Dissecting the genetic and metabolic mechanisms of 

adaptation to the knockout of a major metabolic enzyme in Escherichia coli. Proc. 

Natl. Acad. Sci. USA. 115(1) 222-227 

 

10.1 Introduction 

In the study of microbial metabolism, understanding responses to genetic 

perturbation and adaptive evolution is fundamental. Mutations in metabolic enzymes 

force a rewiring of flux in the cell, the nature of which can inform our understanding 

of alternative pathways, kinetics and regulation (Ishii et al., 2007; Long and 

Antoniewicz, 2014a). Adaptive laboratory evolution (ALE) is a powerful approach by 

which a microbe is cultured continuously for many generations, typically achieving 

improved fitness (e.g., faster growth rate) through natural selection. The final mutants 

are then sequenced and phenotypically characterized (Dragosits and Mattanovich, 

2013; Herring et al., 2006), with the identification of causal genetic mutations and 

mechanistic insights enabled by replicate experiments and detailed ‘omics’ analysis 

(LaCroix et al., 2015). Often used to study adaptations to environmental conditions 

like varied substrates (Conrad et al., 2009; Herring et al., 2006; LaCroix et al., 2015; 

Lee and Palsson, 2010; Sandberg et al., 2016) or the presence of toxic chemicals 

(Atsumi et al., 2010; Horinouchi et al., 2010; Mundhada et al., 2017; Reyes et al., 

Chapter 10 
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2012), ALE has also been previously applied to study the adaptive responses to 

genetic perturbations such as the loss of major metabolic enzymes (Charusanti et al., 

2010; Fong et al., 2006; Fong and Palsson, 2004). These studies provide a valuable 

dimension for both evolutionary and metabolic research, as new metabolic phenotypes 

are evolved subject to significant and unnatural constraints. The metabolic response to 

knockouts before and after adaptive evolution has been an area of significant 

theorizing and in silico model development (Cornelius et al., 2011; Fong and Palsson, 

2004; Kim and Reed, 2012).  

Phosphoglucose isomerase (pgi) knockouts of E. coli are of significant interest 

in metabolic engineering and have been the subject of many investigations (Long and 

Antoniewicz, 2014a). Phosphoglucose isomerase catalyzes the first reaction in 

glycolysis, the conversion of glucose 6-phosphate (G6P) to fructose 6-phosphate 

(F6P), which in the wild-type during aerobic growth on glucose catabolizes 

approximately 70% of glucose (Crown et al., 2015a; Leighty and Antoniewicz, 2013). 

Its loss results in a correspondingly severe growth impairment (70-80% lower growth 

rate) (Fong et al., 2006; Long et al., 2016b) as the oxidative pentose phosphate 

pathway (oxPPP) and Entner-Doudoroff pathway must compensate. Several studies 

have used 13C-metabolic flux analysis (13C-MFA) to characterize Δpgi, frequently 

describing the activation of normally latent (i.e., non-utilized) pathways and a redox 

imbalance caused by over-production of NADPH in the pentose phosphate pathway 

(Canonaco et al., 2001; Fischer and Sauer, 2003; Ishii et al., 2007; Toya et al., 2010; 

Usui et al., 2012). The major flux, redox, and growth rate changes caused by loss of 

pgi make it a rich target for ALE experiments (Charusanti et al., 2010; Fong et al., 

2006). Previously, Charusanti et al. adaptively evolved ten strains in replicate 
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experiments over 50 days of continuous culture in glucose minimal media, reporting 

significant growth recovery of 3.6-fold (Charusanti et al., 2010). However, no 

underlying intracellular fluxes have been reported for these strains or any similarly 

large scale ALE study of genetic mutants.  

To gain fundamental insight into the mechanisms and outcomes of adaptive 

evolution, both the mutations and the selected-upon phenotype (here, metabolism) 

must be measured. In this study, we applied high-resolution 13C-MFA and next-

generation sequencing to the ten evolved Δpgi strains and the parental strain reported 

previously (Charusanti et al., 2010). Novel mutations were identified, and 

comparisons to recently reported wild-type ALE studies (LaCroix et al., 2015; 

Sandberg et al., 2016) helped to identify mutations unique to Δpgi. Together with 

complimentary fluxomic information, a detailed picture of how Δpgi metabolically 

adapts to achieve faster growth is attained. Areas of convergence and divergence on 

the genetic and fluxomic levels highlight the large number of genetic solutions 

possible for achieving similar metabolic phenotypes, as well as some differences in 

metabolic optima. In several cases, specific causal mutation-flux relationships were 

identified.  

10.2 Methods 

10.2.1 DNA Sequencing 

Clonal genomic DNA was extracted using NucleoSpin Tissue kit from 

Macherey-Nagel (Bethlehem, PA). The quality of DNA was assessed with ultraviolet 

absorbance ratios using a Nano drop. DNA was quantified using Qubit dsDNA High 

Sensitivity assay. Paired-end resequencing libraries were generated using a Nextera 
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XT kit from Illumina (San Diego, CA) with 1 ng of input DNA total. Sequences were 

obtained using an Illumina MiSeq MS-102-3003 600 cycle kit. The breseq pipeline 

(Barrick et al., 2009) version 0.27.1 was used to map sequenced reads and identify 

mutations relative to the E. coli K-12 MG1655 genome (NCBI accession number 

NC_000913.3). All samples had a mean coverage of at least 80.  

10.2.2 Materials 

Chemicals and M9 minimal medium were purchased from Sigma-Aldrich (St. 

Louis, MO). Isotopic tracers were purchased from Cambridge Isotope Laboratories 

(Tewksbury, MA): [1,6-13C]glucose (99.2 % 13C), [1,2-13C]glucose (99.7 %), and [U-

13C]alanine (98+% 13C). The isotopic purity and enrichment of all tracers were 

validated by GC-MS analysis (Cordova and Antoniewicz, 2016; Sandberg et al., 

2016). All solutions were sterilized by filtration.  

10.2.3 Strains and Culture Conditions 

The strains used in this study were previously described (Charusanti et al., 

2010). Briefly, the starting strain for adaptive evolution was an E. coli Δpgi strain 

constructed from wild-type E. coli K12 MG1655 (ATCC, Manassas, VA) (Fong et al., 

2006). Adaptive laboratory evolution had been carried out with ten Δpgi replicates 

using serial passaging for 50 days in 250 mL flasks containing glucose M9 minimal 

medium. For the wild-type strain data presented here, physiological culture 

measurements were used as reported (Crown et al., 2015a).  

For 13C-tracer experiments, strains were cultured aerobically in glucose M9 

minimal medium at 37°C in mini-bioreactors with 10 mL working volume (Long et 

al., 2016b). Pre-cultures were grown overnight and then used to inoculate the 
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experimental culture at an OD600 of 0.01. For 13C-MFA, glucose tracers were added at 

the beginning of the culture. Cells were harvested for GC-MS analysis at mid-

exponential growth when OD600 was approximately 0.7. For the quantification of the 

pyruvate to PEP flux, [U-13C]alanine tracer experiments were performed and the data 

were analyzed as described (Christopher P. Long et al., 2017a). Briefly, the cultures 

were inoculated as above in naturally labeled glucose M9 medium. At an OD600 of 0.5, 

a bolus of 10 mM [U-13C]alanine was added and the cells were collected at an OD600 

of 1.5 for GC-MS analysis.  

10.2.4 Analytical Methods 

Cell growth was monitored by measuring the optical density at 600nm 

(OD600) using a spectrophotometer (Eppendorf BioPhotometer). The OD600 values 

were converted to cell dry weight concentrations using a previously determined 

OD600-dry cell weight relationship for E. coli (1.0 OD600 = 0.32 gDW/L) (Long et 

al., 2016b). After centrifugation, the supernatant was separated from the cell pellet. 

The cell pellets were washed with glucose-free M9 medium prior to subsequent 

analysis. Glucose concentrations in the media were determined using YSI 2700 

biochemistry analyzer (YSI, Yellow Springs, OH). Acetate concentrations were 

determined using an Agilent 1200 Series HPLC (Gonzalez et al., 2017). Growth rate 

was calculated using linear regression of the natural logarithm of the OD600 and time. 

Biomass yields and oxygen uptake were estimated as part of 13C-MFA, and used to 

calculate absolute uptake rates. 
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10.2.5 Gas Chromatography-Mass Spectrometry 

GC-MS analysis was performed on an Agilent 7890B GC system equipped 

with a DB-5MS capillary column (30 m, 0.25 mm i.d., 0.25 µm-phase thickness; 

Agilent J&W Scientific), connected to an Agilent 5977A Mass Spectrometer operating 

under ionization by electron impact (EI) at 70 eV. Helium flow was maintained at 1 

mL/min. The source temperature was maintained at 230°C, the MS quad temperature 

at 150°C, the interface temperature at 280°C, and the inlet temperature at 250°C. GC-

MS analysis of tert-butyldimethylsilyl (TBDMS) derivatized proteinogenic amino 

acids was performed as described (Long and Antoniewicz, 2014b). Labeling of 

glucose (derived from glycogen) and ribose (from RNA) were determined as described 

(Long et al., 2016a; McConnell and Antoniewicz, 2016). In all cases, mass isotopomer 

distributions were obtained by integration (Antoniewicz et al., 2007b) and corrected 

for natural isotope abundances (Fernandez et al., 1996). 

10.2.6 Metabolic Network Model and 13C-Metabolic Flux Analysis 

The metabolic network model used for 13C-MFA is provided in Appendix 

Table E.1. The model (Crown et al., 2015a; Gonzalez et al., 2017) includes all major 

metabolic pathways of central carbon metabolism, lumped amino acid biosynthesis 

reactions, and a lumped biomass formation reaction. For the wild-type, labeling data 

reported for 14 parallel tracer experiments (Crown et al., 2015a) were refitted. 13C-

MFA calculations were performed using the Metran software (Yoo et al., 2004), which 

is based on the elementary metabolite units (EMU) framework (Antoniewicz et al., 

2007a). Fluxes were estimated by minimizing the variance-weighted sum of squared 

residuals (SSR) between the measured and model predicted mass isotopomer 

distributions and acetate yield using non-linear least-squares regression. For integrated 
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analysis of parallel labeling experiments, the data sets were fitted simultaneously to a 

single flux model (Leighty and Antoniewicz, 2013). Flux estimation was repeated 10 

times starting with random initial values for all fluxes to find a global solution. At 

convergence, accurate 95% confidence intervals were computed for all estimated 

fluxes by evaluating the sensitivity of the minimized SSR to flux variations. Precision 

of estimated fluxes was determined as follows (Antoniewicz et al., 2006): 

Flux precision (stdev) = [(flux upper bound 95%) – (flux lower bound 95%)] / 4 

To describe fractional labeling of biomass amino acids G-value parameters 

were included in 13C-MFA. As described previously (Antoniewicz et al., 2007c), the 

G-value represents the fraction of a metabolite pool that is produced during the 

labeling experiment, while 1-G represents the fraction that is naturally labeled (e.g., 

from inoculum). By default, one G-value parameter was included for each measured 

amino acid in each data set. Reversible reactions were modeled as separate forward 

and backward fluxes. Net and exchange fluxes were determined as follows: vnet = vf-

vb; vexch = min(vf, vb). To determine the goodness-of-fit, 13C-MFA fitting results were 

subjected to a 2-statistical test (Antoniewicz et al., 2006).  

For the [U-13C]alanine tracer experiments, the fraction of PEP derived from 

pyruvate was determined by least-squares regression using the measured mass 

isotopomer distributions (MID) of PEP (determined from phenylalanine m/z 302 

fragment, C1-C2), oxaloacetate (determined from aspartate m/z 302 fragment, C1-C2), 

and pyruvate (determined from valine m/z 260 fragment, C2-C5), after correction for 

unlabeled biomass (see Chapter 5 for more information). 

𝑀𝐼𝐷𝑃𝐸𝑃 = (%𝑃𝐸𝑃 𝑓𝑟𝑜𝑚 𝑃𝑦𝑟) ∗ 𝑀𝐼𝐷𝑃𝑦𝑟 + (%𝑃𝐸𝑃 𝑓𝑟𝑜𝑚 𝑂𝐴𝐶) ∗ 𝑀𝐼𝐷𝑂𝐴𝐶 +
(%𝑃𝐸𝑃 𝑓𝑟𝑜𝑚 𝑔𝑙𝑢𝑐) ∗ 𝑀𝐼𝐷𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑  
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The absolute PPS/EI flux was calculated from this value using the estimated 

fluxes of enolase (3PG→PEP) and PCK (OAC→PEP) from 13C-MFA. 

10.3 Results 

10.3.1 Recovery of Growth Fitness in Δpgi ALE Strains is Associated with 

Unique Mutations 

In E. coli K-12 MG1655, the knockout of phosphoglucose isomerase (pgi) 

results in a reduction in growth rate of approximately 80% compared to the wild-type, 

from 0.72 h-1 to 0.14 h-1. Following ALE, a significant fraction of this growth rate can 

be recovered (46-71% of the wild-type growth rate, Fig 10.1A). These 2.4 to 3.6-fold 

increases in growth rate are quite large when compared with, for example, similar 

ALE experiments with wild-type E. coli which reported 1.6-fold increases in growth 

rate (LaCroix et al., 2015).  

To assess the genetic basis of the large increases in growth rate, whole-genome 

sequencing was performed and sequences were mapped to the E. coli reference to 

identify mutations in ten independent ALE experiments. Recent advances in 

sequencing allowed for improved determination of mutations in clones isolated from 

final populations, particularly of insertion sequences (IS elements), as compared with 

a previous effort which utilized both a microarray hybridization-based method and an 

earlier Illumina short-read technology protocol (Charusanti et al., 2010). In all, 52 

unique mutations were identified across the ten ALE strains, spanning 34 different 

genetic regions (29 structural mutations, i.e., within in ORF, and 5 intergenic regions). 

The complete mutation table is in the Supplementary File. A key advantage and reason 

for using replicate ALE experiments is to use mutation frequency to help differentiate 

causal mutations from genetic ‘hitch-hikers’ that do not affect fitness (LaCroix et al., 
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2015). Fig. 10.1B lists the genes which were mutated in ≥ 2 of the 10 Δpgi ALE 

strains, as well as the genes frequently mutated in reported wild-type K-12 MG1655 

ALE studies performed in similar conditions (LaCroix et al., 2015; Sandberg et al., 

2016). The two sets are striking in their lack of overlap; mutations that occur in almost 

every reported wild-type ALE experiment, in rpoB, pyrE/rph, and hns/tdk occur rarely 

or not at all in Δpgi strains. Instead, the Δpgi ALE strains have a high frequency of 

mutations in the pyridine nucleotide transhydrogenases pntAB and sthA, the 

transcription factor rpoS, and the PTS sugar transport system component crr. The 

distribution of these mutations across the ten Δpgi ALE strains is also in Fig. 1A, 

showing that while some strains had many of these common mutations (ALE-2 had 6 

out of the top 7), others had fewer (ALE-8 had only 1/7). This likely reflects less 

common but equally effective adaptive routes. It is worthwhile to mention that some 

genes or genetic regions had many unique mutations in parallel evolutions (e.g., 6 for 

rpoS and 5 for pntAB). In contrast, the IS element insertion in crr was identical in 5 

different strains. Both patterns clearly demonstrate evidence for causality. It was 

previously demonstrated that the combination of rpoS and sthA mutations are causal 

for increased growth in Δpgi, and exhibit positive epistasis (Charusanti et al., 2010). 

The difference in mutation profiles demonstrate that there are unique selective 

pressures in Δpgi, which result in unique adaptive responses. To further investigate 

how these mutations enabled the large increases in growth rates from the initial 

perturbed Δpgi state, we next characterized the carbon metabolism of each strain using 

13C-MFA.  
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Figure 10.1: Growth rate recovery in evolved Δpgi strains is supported by unique 

mutations. (a) The growth rate is severely reduced in the Δpgi knockout 

strain relative to wild-type (WT). This is significantly, but not 

completely, recovered through adaptive laboratory evolution (ALE), as 

seen in ten independently evolved Δpgi-ALE strains (growth rate, mean ± 

sem, n3). (b) Whole-genome sequencing of ALE strains allows for 

analysis of frequently occurring mutations. Here, the frequency of 

mutations in 10 Δpgi-ALE strains is compared to those previously 

reported for 14 WT-ALE strains of E. coli (LaCroix et al., 2015; 

Sandberg et al., 2016). The profile of mutations is quite distinct for Δpgi-

ALE and WT-ALE strains, highlighting the unique evolutionary 

pressures and mechanisms of growth rate recovery in Δpgi. The 

distribution of mutations from the seven most frequently affected genes 

in the 10 Δpgi-ALE is also shown in (a, bottom), with the number of 

unique mutations per gene noted. 
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10.3.2 Activation of Latent Pathways, or Not? 

To characterize the rewiring of central carbon metabolism in the parental and 

ALE Δpgi strains, high-resolution 13C-MFA was performed. The analysis consisted of 

two parallel labeling experiments with [1,2-13C] and [1,6-13C]glucose (an experimental 

design previously identified as providing optimal flux estimate precision (Crown et al., 

2016b)), and the simultaneous fitting of labeling from proteinogenic amino acids, the 

ribose moiety of RNA, and glucose moiety of glycogen (Long et al., 2016a) to 

estimate fluxes. For the wild-type, data from parallel labeling experiments previously 

reported were refitted (Crown et al., 2015a). The full network model is in Appendix 

E.1, and the estimated metabolic fluxes are in the Supplementary File.  

In Fig. 10.2A-C, the estimated intracellular fluxes of the wild-type, Δpgi 

parental strain, and Δpgi ALE-3 are summarized. ALE-3 was the fastest-growing Δpgi 

strain (0.51 h-1) and had an intracellular flux distribution typical of most of the ALE 

strains. The growth rates and glucose uptake rates for each strain are noted, and the 

fluxes shown are normalized to 100 units of glucose uptake. In all Δpgi strains, the 

forward and reverse fluxes of the PGI reaction were estimated to be zero, thus 

confirming the pgi knockout. The unevolved Δpgi (Fig. 10.2B) was found to utilize 

reactions and pathways that carry minimal flux in the wild-type (Fig. 10.2A), 

including the ED pathway, glyoxylate shunt, and PCK reaction (oxaloacetate to PEP). 

These flux changes have been noted in previous studies, and have been described as 

‘latent pathway activation’ (Fischer and Sauer, 2003; Hua et al., 2003; Ishii et al., 

2007; Toya et al., 2010; Usui et al., 2012). After adaptive evolution, ALE-3 (Fig. 

10.2C) and the other ALE strains significantly reduced the usage of these pathways, 

for example the glyoxylate shunt flux was reduced from 25 to 6, and the PCK reaction 

from 22 to 3 in ALE-3. This ‘re-repression’ following adaptive evolution has also 
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been previously observed and been the focus of various speculations and 

computational analyses (Cornelius et al., 2011; Fong et al., 2006). The previous 

terminology implies the presence of a transient regulatory response, activated in 

response to the stress caused by the knockout and then repressed during evolution to 

facilitate faster growth.  

When interpreting metabolic fluxes, it is important to consider both normalized 

fluxes (e.g., relative to glucose uptake) and absolute fluxes (mmol/gDW/h), as each 

provide complimentary information. Several key fluxes are shown in both units in Fig. 

10.2D, corresponding to the pathway map shown in Fig. 10.2E. The glucose uptake 

rates used to calculate absolute fluxes are in Appendix Table E.2. In Fig. 10.2B and 

10.2D, we can see that although the oxPPP is the dominant route of glucose 

catabolism in Δpgi, the absolute flux is reduced by roughly half in the unevolved strain 

relative to the wild-type. It has been previously reported that G6P accumulates in Δpgi 

and that G6PDH (encoded zwf), the first step in the oxPPP, is likely rate limiting for 

growth due to allosteric inhibition caused by an elevated NADPH/NADP+ ratio (Toya 

et al., 2010). This limitation is overcome in the evolved strains, where oxPPP fluxes 

are increased by 3 to 4-fold, to rates higher even than in the WT (by up to 2-fold). 

Intriguingly, the highest absolute flux was observed in ALE-9, which was the only 

evolved strain with a mutation in zwf. 

In cases of ‘activated latent’ pathways, the absolute fluxes provide an 

especially illuminating perspective. There was no statistically significant increase in 

the absolute ED, glyoxylate shunt, or PCK fluxes in Δpgi compared to the wild-type. 

Instead, a similar low level of absolute flux was maintained, which only appeared 

much larger in relative terms due to the dramatic reductions in absolute glucose uptake 



 222 

caused by the pgi knockout. Very little change was observed in the ALE strains for 

these latent pathway fluxes, with the lone exception of an elevated PCK flux in ALE-

9. These results challenge the notion that these latent pathways are ‘activated’ in a 

regulatory sense that increases their absolute flux capacity. Perhaps more likely is that 

these enzymes are expressed at low levels in the wild-type, and this is maintained in 

the Δpgi strain, where due to the perturbation in glycolysis the same small rates of flux 

play a larger relative role. The ‘re-repression’ in the ALE strains, then, is instead 

simply the recovery of faster glucose uptake rate (Appendix Fig. E.1).  
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Figure 10.2:  13C-Metabolic flux analysis reveals large flux redistributions, but 

ambiguous activation of latent pathways. Intracellular flux distributions, 

normalized to 100 units of glucose uptake, are shown for the wild-type 

(a), unevolved Δpgi (b), and a representative evolved Δpgi strain ALE-3 

(c). The net and exchange fluxes through the PGI reaction were 

determined to be zero for all knockout strains, thus confirming the pgi 

knockout. Significant flux rewiring is observed in Δpgi, including 

increased usage of oxPPP and TCA, as well as activation of the ED 

pathway, glyoxylate shunt, and PCK reaction. Many of these apparently 

activated latent pathways are re-repressed in the ALE-3 strain, and other 

ALE strains (d). Selected fluxes are shown in normalized units (as in a-c) 

as well as absolute units (mmol/gDW/h), in the context of central 

metabolic pathways (e). The error bars in (d) reflect the 95% confidence 

intervals of flux estimates. The absolute fluxes reveal that the apparent 

activation of the ED pathway, glyoxylate shunt, and PCK reactions, and 

increased TCA cycle fluxes in Δpgi do not correspond to increases in 

absolute flux, and that the relative increases are therefore results of lower 

glucose uptake. Thus, what may be interpreted as pathway activation 

when expressed as relative pathway usage may not represent a real 

increase in expression or pathway capacity. 

10.3.3 Energy Metabolism is not Significantly Affected by Adaptive Evolution in 

Δpgi 

The measured metabolic fluxes can also inform a broader analysis of energy 

metabolism in these strains. In Fig. 10.3A-B, oxygen uptake rates and acetate yields 

are shown. In the unevolved Δpgi, the oxygen uptake is reduced to 4.3 mmol/gDW/h, 

down from 15 mmol/gDW/h in the wild-type, corresponding to the overall slowed 

metabolism and growth rate. The unevolved Δpgi does not produce acetate, as the 

citrate synthase (CS) flux can easily accommodate all the flux from acetyl-CoA at less 

than half of its wild-type rate (Fig. 10.2D). In the ALE strains, oxygen uptake recovers 

to 62-91% of the wild-type flux and some strains produce acetate. This may represent 

a limit in TCA cycle or oxidative phosphorylation capacity that these strains 

encounter, above which excess glycolytic flux is diverted to acetate production. This 
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acetate overflow effect is shown in Fig. 10.3C, which shows that the absolute flux 

through the pyruvate dehydrogenase (acetyl-CoA generation) strongly correlates with 

the acetate secretion flux in all strains. Fig. 10.3D-E show the normalized cofactor 

balances for ATP and NADH/FADH2 (the electron carriers used in oxidative 

phosphorylation for ATP production), with contributions to production and 

consumption by the various pathways and cell functions. One noticeable difference in 

the unevolved Δpgi strain is an increased contribution of the TCA cycle and oxidative 

phosphorylation to energy metabolism, leading to a slightly higher overall ATP yield. 

The ALE strains mostly reverted to normalized levels of total cofactor production and 

consumption that were very similar to the wild-type. Overall, the profile of energy 

metabolism is remarkably conserved in these strains. Perhaps the most significant 

difference between the wild-type and Δpgi strains in cofactor metabolism is in the 

reversed role of transhydrogenase (Fig. 10.3D). 
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Figure 10.3: Energy metabolism is mostly unaffected by adaptive evolution in Δpgi. 

Oxygen uptake rates (OUR) (a) and acetate yields (b) are shown for the 

wild-type, unevolved Δpgi, and ten Δpgi-ALE strains. The OUR recovers 

in some cases to near wild-type levels in ALE strains after being severely 

reduced in Δpgi. OUR was estimated by 13C-MFA, and the error bars 

indicate standard deviations of the estimates. The acetate secretion 

phenotype also varies widely in these strains (b). The unevolved Δpgi 

secretes no acetate, compared to 0.7 mol/mol glucose in the wild-type. 

The ALE strains produce varying amounts of acetate, but all significantly 

less than the wild-type. The acetate overflow effect is represented in (c), 

which shows the absolute acetate production flux plotted against the 

absolute pyruvate dehydrogenase (PDH) flux in absolute units. Error bars 

represent 95% confidence intervals. The two fluxes strongly correlate 

(Pearson correlation coefficient of 0.83). Both the oxygen uptake and 

acetate secretion phenotypes directly impact cellular energy metabolism, 

summarized in more detail through ATP (d) and NADH/FADH2 (e) 

balances. These both show the normalized (per glucose) contributions of 

various metabolic pathways to the production and consumption of these 

cofactors. Oxidative phosphorylation supports the majority of ATP 

generation while consuming NADH or FADH2 and oxygen. Glycolysis 

contributes to ATP production through substrate-level phosphorylation. 

ATP is utilized in glucose uptake, biomass synthesis, and other cellular 

maintenance costs. NADH/FADH2 are produced in glycolysis, the TCA 

cycle, and in the Δpgi strains, through the transhydrogenase. Overall, 

energy metabolism is not significantly altered following adaptive 

evolution. 

10.3.4 Transhydrogenase Genes are Mutated in Many, but Not All Δpgi ALE 

Strains 

E. coli is able to interconvert reduced cofactors with two pyridine nucleotide 

transhydrogenases, the membrane-bound PntAB which primarily converts NADH to 

NADPH, and the soluble form SthA (also referred to as UdhA) which primarily 

converts NADPH to NADH (Sauer et al., 2004). In the wild-type, excess NADH 

produced in glycolysis and the TCA cycle is used to produce approximately half of the 

needed NADPH through the transhydrogenase (Figs. 10.3D, 10.4A, E.2). In Δpgi, the 

redirection of glucose flux in upper central carbon metabolism, away from glycolysis 
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and into the oxPPP, results in a significant excess of NADPH generation. Some of this 

is utilized by elevated biosynthesis flux (i.e., biomass yield) (Fig. E.1), but most of the 

imbalance must be corrected by a reversal of the transhydrogenase to convert NADPH 

to NADH.  

The absolute rates of NADPH production and consumption are shown in Fig. 

10.4A. Here again is shown the impact of the forcing of flux through the oxPPP, 

which generates a large excess of NADPH and necessitates the reversal of the 

transhydrogenase. This transhydrogenase flux is shown in Fig. 10.4B in both absolute 

and relative flux units, with the 95% confidence intervals calculated from 13C-MFA. 

In the Δpgi strains (both unevolved and evolved), the normalized flux does not change 

significantly (also Fig. E.2), reflecting that other parts of central carbon metabolism 

were not rewired to relieve the cofactor imbalance. Instead, the absolute 

transhydrogenase fluxes increase significantly in the ALE strains. To gain insight into 

how these flux increases were achieved, the mutations directly related to the regions of 

the transhydrogenase genes in the ALE strains were compared to the flux changes 

(Fig. 10.4C). As noted above (Fig. 10.1), pntA, pntB, and sthA were some of the most 

frequently mutated genes in this study. Eight of the ten ALE strains had at least one 

transhydrogenase mutation, with five having two. Based on the nature of the 

mutations, they presumably increase SthA activity, reduce PntAB activity, or both. 

The pntAB mutations were diverse, including deletions and a duplication, as well as an 

upstream IS element insertion. Three of the four mutations in the coding regions likely 

result in truncated, nonfunctional proteins: ALE-2 has a nonsense mutation in pntA, 

and ALE-4 and ALE-7 have major truncations in pntB and pntA, respectively 

(Charusanti et al., 2010). The sthA mutations were SNP’s, including a commonly 
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mutated site (5 strains) 64 bp upstream. The exact effect of the upstream mutations on 

transcriptional regulation is uncertain, but we hypothesize that they increase sthA and 

reduce pntAB expression. Despite the high frequency of these mutations, two strains 

(ALE-5 and ALE-6) achieved the increased flux with no observed mutations directly 

in the transhydrogenase genes, raising questions about other possible mechanisms for 

cofactor rebalancing. Both ALE-5 and ALE-6 possess mutations in genes which 

directly affect transcription levels (e.g., lrp and rpoA). In fact, pntAB has been 

identified as a regulatory target of Lrp (Cho et al., 2008).  
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Figure 10.4: Reversal of transhydrogenase flux corresponds to genetic mutations in 

many, but not all Δpgi ALE strains. The function of the pyridine 

nucleotide transhydrogenases changes dramatically in Δpgi strains. The 

cofactors NADH and NADPH are produced and consumed in various 

metabolic pathways, and transhydrogenases can interconvert the reduced 

forms of each. In (a), the pathway contributions to the NADPH 

production and consumption are shown in absolute units. In the wild-

type, excess NADH is used to produce approximately half of NADPH 

needed for biomass synthesis. In Δpgi strains, elevated oxPPP pathway 

flux creates an excess of NADPH, leading to a reversal of net 

transhydrogenase flux. This flux is shown in normalized and absolute 

units in (b). There are two transhydrogenases in E. coli: the soluble SthA 

primarily converts NADPH to NADH, and the membrane-bound PntAB 

primarily converts NADH to NADPH. The absolute, but not the 

normalized transhydrogenase flux increases significantly following 

adaptive evolution. This suggests that metabolism is not rewired 

elsewhere to relieve the imbalance, but instead the transhydrogenase 

activity in the needed direction increases. The transhydrogenase enzymes 

pntA, pntB, and sthA were frequently mutated in the ALE strains (c). 

Check marks reflect the presence of the described mutations in specific 

ALE strain. At least one transhydrogenase mutation occurred in 8 out of 

10 strains.  

10.3.5 Mutations in PTS Component crr are Associated with Increased Back-

Flux from Pyr to PEP 

Another frequently occurring, and more unexpected, mutation was an IS 

element insertion in crr in 5 of 10 ALE strains (Fig. 5). Crr encodes EIIAGlc, the 

cytosolic sub-unit of Enzyme II in the PTS glucose transport system. The PTS system 

is the primary mode of glucose uptake in E. coli, and links the uptake and 

phosphorylation of glucose (by EII) to the glycolytic conversion of PEP to pyruvate 

(Pyr) (by EI, linked by the intermediary phosphotransferase HPr) (Deutscher et al., 

2014; Escalante et al., 2012) (Fig. 10.5A). Previous work has shown that Enzyme I 

(EI) of the PTS sugar transport system is reversible in vivo (Christopher P. Long et al., 
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2017a), and that in the wild-type 10% of PEP is produced from Pyr in the reverse (i.e., 

gluconeogenic) direction by this mechanism. Previous work has also shown that in a 

Δcrr strain, this flux is increased by more than 2-fold due to perturbation of the PTS 

equilibrium as well as some possible activation of PPS, the gluconeogenic enzyme 

also able to facilitate the conversion of Pyr to PEP. Given the prevalence of the crr 

mutation and global metabolic perturbations in Δpgi, we hypothesized that the PPS/EI 

flux (Pyr to PEP) would be altered in these ALE strains. 

The PPS/EI flux was measured using an [U-13C]alanine tracer approach 

developed recently (Christopher P. Long et al., 2017a) (see Methods, Appendix Fig. 

E.3). As shown in Fig. 10.5B, the extent of this flux varied widely among the ALE 

strains, and its magnitude corresponded strongly with the presence of the crr mutation. 

Expressed as normalized flux (relative to 100 units of glucose uptake), the PPS/EI flux 

was significantly elevated in the unevolved Δpgi (from 18 in the wild-type to 47), and 

was reduced subsequently in strains lacking the crr mutation, but maintained at a high 

level in the strains with the mutated crr. In absolute terms, the flux was significantly 

reduced in all Δpgi strains except for those with the crr mutation, where the flux was 

more similar to the wild-type. Without further analysis of the activity of PPS in these 

strains, it is difficult to deduce the exact mechanism of these changes, but they are 

consistent with the previous observations in Δcrr (Christopher P. Long et al., 2017a). 

This result strongly supports a genetic-metabolic flux relationship between the crr IS 

element mutation and elevated PPS/EI flux. The high frequency of this identical 

mutation indicates a strong selective pressure for this mutation, but the exact 

mechanism of the fitness benefit is unclear. In addition to its direct role in glucose 
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uptake, crr is also involved in signaling the global regulator Crp (Deutscher et al., 

2006), which controls the transcription of over 100 genes (Zheng et al., 2004). 
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Figure 10.5: Elevated back-flux from PYR to PEP corresponds with a frequently 

occurring mutation in crr. In (a), the PTS glucose transport system is 

shown. This cascade of phosphotransferases couples the uptake and 

phosphorylation of glucose to the glycolytic conversion of 

phosphoenolpyruvate (PEP) to pyruvate (Pyr). The terminal 

phosphotransferase Enzyme I (EI) has been previously shown to be 

reversible, and capable of converting Pyr to PEP. This reaction is also 

carried out by the gluconeogenic enzyme PPS. Another intermediate 

phosphotransferase, EIIAGlc, is encoded by crr as shown. The flux from 

Pyr to phosphoenolpyruvate (i.e., in the gluconeogenic direction) was 

quantified using [U-13C]alanine tracer experiments. The estimated flux is 

shown in (b) in both normalized and absolute flux units, with error bars 

reflecting standard deviations of the estimate. This flux was significantly 

elevated in Δpgi relative to the wild-type in normalized units, but 

decreased in absolute units. There was wide variability in the ALE 

strains, which strongly correlated with the presence of a specific and 

frequent insertion element mutation in crr in 5 of 10 strains. Strains 

containing this mutation, indicated above with check marks, had highly 

elevated PPS/EI fluxes. Crr is functionally linked to EI through their 

mutual involvement in the PTS sugar transport system, and its knockout 

has been previously shown to modulate EI reversibility. 
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10.4 Discussion 

In this work, we have explored how recovery of growth rate in Δpgi is enabled 

by unique genetic mutations and significant metabolic rewiring. In this system, fitness 

recovery was driven by global transcriptional regulation (i.e., sigma factors and other 

RNA polymerase components) and relief of a rate-limiting step at the cofactor 

transhydrogenase. This led to increased absolute flux through the oxidative pentose 

phosphate pathway, and a corresponding recovery of faster glucose uptake and growth 

rates. The usage of latent pathways including the ED pathway, glyoxylate shunt, and 

PCK reaction, were shown to represent no increase in absolute flux relative to the 

wild-type, and in absolute terms did not appreciably change after adaptive evolution. 

The availability of these pathways, expressed at low levels in the wild-type, may offer 

flexibility when facing changing conditions. However, they do not appear to be 

‘activated’ as part of a general stress response in this case. These insights and the data 

set presented here should help advance predictive metabolic modeling (Chowdhury et 

al., 2015; Khodayari et al., 2014; Lerman et al., 2012). Overall, these results add to our 

understanding of adaptive evolution by elucidating how challenges to specific cellular 

sub-systems, i.e., central carbon metabolism and glycolysis, are overcome. Future 

application of this approach to other significant, growth-limiting metabolic 

perturbations may similarly illuminate associated kinetic and regulatory limitations as 

well as reveal useful solutions to ameliorate them. Paired with the appropriate 

measurements (as shown here with fluxomics), such studies are likely to uncover 

detailed mechanisms of adaptation.    

Comparing the mutations and phenotypes of wild-type and Δpgi derived ALE 

strains deepens our mechanistic understanding of adaptive evolution by providing 

insight into the context-dependent selective forces and impacts of various mutations. 
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For example, RNA polymerase components are commonly mutated in ALE, and in 

experiments started with wild-type, mutations to rpoB and rpoC dominate (Fig. 1) 

(Herring et al., 2006; LaCroix et al., 2015; Sandberg et al., 2017, 2016, 2014). These 

have been shown to contribute to a rebalancing of the proteome to promote growth 

(Utrilla et al., 2016), corresponding to broad and proportional intracellular metabolic 

flux increases (i.e., no changes in normalized flux distributions) (Christopher P. Long 

et al., 2017b). In contrast, ALE experiments started with Δpgi acquired frequent 

mutations in the stress-response associated sigma factor rpoS. This would seem to 

indicate the presence of a unique maladaptive rpoS-mediated stress response in Δpgi. 

However, rpoB mutations were also seen in 2 of 10 Δpgi ALE experiments here, but 

never co-occurring with rpoS mutations. Further work is needed to deconvolute the 

role of each in adapting the global transcriptome and whether the two mutations would 

have additive benefits in Δpgi. Across both the wild-type and Δpgi studies, mutations 

to more than two RNA polymerase subunits (rpo) genes are rarely observed, possibly 

pointing to overlapping mechanisms where the selected-for mutations depend on the 

state of the cell (in this case, perturbed (Δpgi) versus a wild-type state). Other 

mutations seen more when starting with a wild-type strain, such as in pyrE/rph are 

likely relevant based on the overall growth state (the evolved strains started with wild-

type are significantly faster when evolved under the same conditions) thus they may 

never be selected for in a ‘crippled’ starting strain such as the Δpgi starting strain 

(Jensen, 1993). However, such mutations and a convergence of mutations may be seen 

if evolved for more extended lengths of time under the same conditions (Wiser et al., 

2013). 
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Other unique mutations in Δpgi were in the transhydrogenases and in crr. With 

regards to the former, a recent report of an ALE study of an oxPPP mutant (i.e., 

reduced NADPH production) found a high frequency of mutations in pntAB which led 

to increased activity (Chou et al., 2015). Given the importance of cofactors to the 

formation of metabolic products, the reported mutations from these two studies may 

provide valuable new candidates for rationally manipulating transhydrogenase activity 

in metabolic engineering (Jan et al., 2013). Lastly, the mechanism of fitness 

enhancement of the crr IS element mutation identified here requires further study. One 

possibility is that the reduced glycolytic flux in Δpgi could be sensed (Kochanowski et 

al., 2013) by the PTS system, e.g., via perturbation of the PEP/Pyr concentration ratio, 

and result in feedback inhibition of glucose uptake. Another is that the accumulated 

G6P (Toya et al., 2010) could induce a maladaptive regulatory response via CRP 

activation by P~EIIBGlc. In these scenarios, a crr mutation may help to decouple 

feedback inhibition or limit the harmful regulatory effect. Ultimately, it will be 

desirable to confirm the identities and interactions of causal mutations by reproducing 

them synthetically. Previous work (Canonaco et al., 2001; Charusanti et al., 2010) 

confirmed causality and epistasis for sthA and rpoS mutations, but did not fully 

recapitulate the observed growth phenotypes of the evolved clones themselves. This 

likely points to a complex landscape that will become more feasible to explore as high 

throughput genome engineering methods mature and many strains can be tested 

efficiently. 

10.5 Author Contributions 

CPL performed all cell culture and 13C tracer experiments; CPL and JEG 

analyzed metabolic data; AMF performed whole-genome sequencing; AMF and BOP 
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analyzed genomic data; CPL and MRA designed the project and wrote the paper with 

help from all authors. 
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FAST GROWTH PHENOTYPE OF E. COLI K-12 FROM ADAPTIVE 

LABORATORY EVOLUTION DOES NOT REQUIRE INTRACELLULAR 

FLUX REWIRING 

Reprinted with permission from: Long CP, Gonzalez JE, Feist AM, Palsson BO, 

Antoniewicz MR (2017) Fast growth phenotype of E. coli K-12 from adaptive 

laboratory evolution does not require intracellular flux rewiring. Metab. Eng. 44, 100-

107. 

 

11.1 Introduction 

Adaptive laboratory evolution (ALE) is a method in which microorganisms are 

continuously cultured in a controlled environment over many generations, allowing for 

fitness improvement through the accumulation of beneficial mutations. ALE has been 

applied to increasing chemical tolerance (Atsumi et al., 2010; Horinouchi et al., 2010; 

Mundhada et al., 2017; Reyes et al., 2012), rates of growth on diverse substrates 

(Cordova et al., 2016; Herring et al., 2006; Lee and Palsson, 2010; Sandberg et al., 

2017), and gaining general insight into microbial responses to environmental or 

genetic perturbations (Charusanti et al., 2010; Fong and Palsson, 2004; Tenaillon et 

al., 2012). Following an ALE experiment, the resulting strains are sequenced to 

identify genetic mutations (Herring et al., 2006). The difficulty inherent in identifying 

causal mutations has led to the practice of performing multiple independent ALE 

experiments and using the frequency of mutations to guide analysis (LaCroix et al., 

2015). Phenotypic characterization is then necessary to quantitatively describe the 

extent of the fitness improvement (e.g. increase in growth rate) and the associated 

Chapter 11 
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physiology. Detailed cellular characterizations involving omics techniques such as 

transcriptomics, proteomics, metabolomics, and fluxomics can then enable systems 

and pathway-level analysis of the phenotype and its enabling mechanisms. Ideally, 

such approaches would result in genotype-phenotype insights that improve our general 

scientific understanding of the cell system and inform future rational engineering 

efforts (Long and Antoniewicz, 2014a).  

Exponential aerobic growth of E. coli K-12 MG1655 on glucose minimal 

media is arguably the most widely used combination of organism and condition in 

basic science and biotechnology (Janssen et al., 2005). ALE applied in this context, 

particularly serial passaging of batch cultures such that the exponential phase is 

maintained, selects for increased growth rate. Such efforts probe the limits of E. coli 

growth performance and allow for the study of fast growing phenotypes that might be 

useful in biotechnology. Previously, LaCroix et al. reported the phenotypes and 

transcriptional analysis of ten independent ALE experiments of E. coli MG1655 

(LaCroix et al., 2015). They reported up to 1.6-fold increases in growth rate, and 

identified frequent causal mutations in rpoB and intergenic regions of hns/tdk and 

pyrE/rph. The pyrE/rph mutation ameliorates a well-characterized strain-specific 

defect in pyrimidine biosynthesis (Jensen, 1993), and the other two likely result in 

broad transcriptional changes as rpoB and hns are global regulators. Transcriptomic 

analyses revealed increases in expression of genes associated with protein production 

(amino acid metabolism, transcription, translation, folding), glucose transport, and 

glycolysis, and reductions in enzymes involved in the TCA cycle and glyoxylate 

shunt. Similarly, Sandberg et al. reported the results of six independent ALE 

experiments, also using E. coli MG1655 and aerobic exponential growth on glucose 
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minimal media (Sandberg et al., 2016). Here, ALE was carried out over 40 days, or 

approximately 1000 generations, through serial passaging such that stationary phase 

was avoided. The glucose was 13C labeled to test the hypothesis that a subtle kinetic 

isotope effect may influence metabolism and the trajectory of ALE, but this was 

disproven in isotopic preference studies described previously (Sandberg et al., 2016). 

Furthermore, the final growth rates and most frequent mutations were very similar to 

those in (LaCroix et al., 2015), and the same key mutations (rpoB, pyrE/rph, and 

hsns/tdk) occurred with high frequency in the six ALE experiments.  

The genetic and transcription level changes in these studies suggest the 

possibility of broad metabolic shifts in the adaptively evolved strains. However, to our 

knowledge, intracellular metabolic fluxes of such strains have not yet been reported. 

In this study, we applied high-resolution 13C-metabolic flux analysis (13C-MFA) 

(Maciek R. Antoniewicz, 2015a) to the six ALE strains previously described in 

(Sandberg et al., 2016) to determine whether their high growth rate is enabled by or 

associated with rewiring of central carbon metabolism. For additional context, the 

fluxes of the ALE strains were compared to the parent MG1655 strain, a related K-12 

strain (BW25113), and a more distantly related E. coli strain BL21. Finally, flux 

balance analysis (FBA) was performed to compare the calculated optimal 

stoichiometric solution to the measured in vivo fluxes. 

11.2 Materials and Methods 

11.2.1 Materials 

Chemicals and M9 minimal medium were purchased from Sigma-Aldrich (St. 

Louis, MO). Isotopic tracers were purchased from Cambridge Isotope Laboratories 
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(Tewksbury, MA): [1,2-13C]glucose (99.7 %) and [1,6-13C]glucose (99.2 % 13C). The 

isotopic purity and enrichment of the tracers were validated by GC-MS analysis as 

described in (Sandberg et al., 2016) and (Cordova and Antoniewicz, 2016). All 

solutions were sterilized by filtration.  

11.2.2 Strains and Growth Conditions 

E. coli BL21(DE3) was obtained from Invitrogen (Cat. No. C600003). E. coli 

BW25113 was obtained from the Keio collection (GE Healthcare Dharmacon, Cat. 

No. OEC5042). The MG1655 wild-type and adaptively evolved (ALE) strains were 

previously described in (Sandberg et al., 2016). The wild-type was K-12 MG1655 

(ATCC 700926). Six independent cultures were adaptively evolved in M9 minimal 

glucose medium for 40 days, corresponding to an average of 963 generations, or 2.82 

x 1012 cumulative cell divisions (CCD). Passaging was frequent enough to avoid 

glucose depletion and initiation of stationary phase. In this study, all strains were 

cultured aerobically in glucose M9 minimal medium at 37°C in mini-bioreactors with 

10 mL working volume as previously described (Long et al., 2016b). Pre-cultures 

were grown overnight and then used to inoculate the experimental culture at an OD600 

of 0.01. For 13C-MFA, glucose tracers were added at the beginning of the culture. 

Cells were harvested (1 mL samples) for GC-MS analysis at mid-exponential growth 

when OD600 was approximately 0.7. In all cases, parallel tracer experiments were 

performed using [1,2-13C]glucose and [1,6-13C]glucose. These tracers were previously 

determined to be optimal for high-resolution 13C-MFA of E. coli (Crown et al., 

2016b).  
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11.2.3 Analytical Methods 

Cell growth was monitored by measuring the optical density at 600nm 

(OD600) using a spectrophotometer (Eppendorf BioPhotometer). The OD600 values 

were converted to cell dry weight concentrations using previously determined OD600-

dry cell weight relationship for E. coli (1.0 OD600 = 0.32 gDW/L; molecular weight 

of dry biomass = 24.6 gDW/C-mol (Long et al., 2016b). After centrifugation of the 

samples, the supernatant was separated from the biomass pellet. Acetate 

concentrations in the supernatant were determined using an Agilent 1200 Series HPLC 

(Gonzalez et al., 2017). Glucose concentrations were determined using a YSI 2700 

biochemistry analyzer (YSI, Yellow Springs, OH). Growth rate was calculated using 

linear regression of the natural logarithm of the OD600 and time, and biomass yield 

via regression of biomass dry weight and glucose concentration in the medium.  

11.2.4 Gas Chromatography-Mass Spectrometry 

GC-MS analysis was performed on an Agilent 7890B GC system equipped 

with a DB-5MS capillary column (30 m, 0.25 mm i.d., 0.25 µm-phase thickness; 

Agilent J&W Scientific), connected to an Agilent 5977A Mass Spectrometer operating 

under ionization by electron impact (EI) at 70 eV. Helium flow was maintained at 1 

mL/min. The source temperature was maintained at 230°C, the MS quad temperature 

at 150°C, the interface temperature at 280°C, and the inlet temperature at 250°C. GC-

MS analysis of tert-butyldimethylsilyl (TBDMS) derivatized proteinogenic amino 

acids was performed as described in (Long and Antoniewicz, 2014b). Labeling of 

glucose (derived from glycogen) and ribose (derived from RNA) were determined as 

described in (Long et al., 2016a; McConnell and Antoniewicz, 2016). In all cases, 

mass isotopomer distributions were obtained by integration (Antoniewicz et al., 
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2007b) and corrected for natural isotope abundances (Fernandez et al., 1996). 

Measurement errors of 0.3% were assumed for all mass isotopomers (Antoniewicz et 

al., 2007b). 

11.2.5 Metabolic Network Model and 13C-Metabolic Flux Analysis 

The metabolic network model used for 13C-MFA is provided in Appendix 

Table F.1. The model is based on the E. coli model described previously (Crown et al., 

2015a; Gonzalez et al., 2017), which includes all major metabolic pathways of central 

carbon metabolism, lumped amino acid biosynthesis reactions, and a lumped biomass 

formation reaction. Updates to the model include: i) making the reactions between 

PEP and pyruvate (Christopher P. Long et al., 2017a), and between -ketoglutarate 

and succinyl-CoA reversible; ii) allowing for deamination of serine to pyruvate; and 

iii) modeling atmospheric CO2 dilution of each parallel experiment independently 

(Leighty and Antoniewicz, 2012a).  

13C-MFA calculations were performed using the Metran software (Yoo et al., 

2004), which is based on the elementary metabolite units (EMU) framework 

(Antoniewicz et al., 2007a). Fluxes were estimated by minimizing the variance-

weighted sum of squared residuals (SSR) between the measured and model predicted 

mass isotopomer distributions and acetate yield using non-linear least-squares 

regression. For integrated analysis of parallel labeling experiments, the data sets were 

fitted simultaneously to a single flux model as described previously (Leighty and 

Antoniewicz, 2013). Flux estimation was repeated 10 times starting with random 

initial values for all fluxes to find a global solution. At convergence, accurate 95% 

confidence intervals were computed for all estimated fluxes by evaluating the 
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sensitivity of the minimized SSR to flux variations. Precision of estimated fluxes was 

determined as follows : 

Flux precision (stdev) = [(flux upper bound 95%) – (flux lower bound 95%)] / 4  

To describe fractional labeling of metabolites, G-value parameters were 

included in 13C-MFA. As described previously (Antoniewicz et al., 2007c), the G-

value represents the fraction of a metabolite pool that is produced during the labeling 

experiment, while 1-G represents the fraction that is naturally labeled, i.e. from the 

inoculum. By default, one G-value parameter was included for each measured 

metabolite in each data set. Reversible reactions were modeled as separate forward 

and backward fluxes. Net and exchange fluxes were determined as follows: vnet = vf-

vb; vexch = min(vf, vb). 

11.2.6 Goodness-of-Fit Analysis 

To determine the goodness-of-fit, 13C-MFA fitting results were subjected to a 

2-statistical test. In short, assuming that the model is correct and data are without 

gross measurement errors, the minimized SSR is a stochastic variable with a 2-

distribution (Antoniewicz et al., 2006). The number of degrees of freedom is equal to 

the number of fitted measurements n minus the number of estimated independent 

parameters p. The acceptable range of SSR values is between 2
α/2(n-p) and 2

1-α/2(n-

p), where α is a certain chosen threshold value, for example 0.05 for 95% confidence 

interval. 

11.2.7 Flux Balance Analysis (FBA) and Flux Variability Analysis (FVA) 

For FBA and FVA calculations, the COBRA Toolbox 2.0 implemented in 

Matlab was used (Schellenberger et al., 2011). Gurobi was used for the linear solver 
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(http://www.gurobi.com/). The E. coli iAF1260 genome scale model was used (Feist 

et al., 2007) for all calculations. The measured glucose and oxygen uptake rate were 

used as constraints as described in the text. All additional import and export fluxes, as 

well as internal constraints, were identical to those contained in the iAF1260 model 

file “Ec_iAF1260_flux1.xml”. 

11.3 Results and Discussion 

11.3.1 Growth and Physiology 

In this study, three unevolved E. coli strains, i.e. BL21(DE3), BW25113, and 

MG1655, and six adaptively evolved MG1655 strains were investigated. The complete 

list of specific mutations observed in the six evolved strains, labeled ALE-1 through 

ALE-6, had been reported in (Sandberg et al., 2016). Briefly, the same key mutations 

previously identified as causal (LaCroix et al., 2015) were recapitulated in the evolved 

strains, particularly various insertion sequence mutations in the hns/tdk intergenic 

region (ALE-1, ALE-3, ALE-5, ALE-6), deletions in the pyrE/rph intergenic region of 

either 1 bp (ALE-2, ALE-5) or 82 bp (ALE-1, ALE-3, ALE-4) and SNP’s in rpoB 

(ALE-1, ALE-2, ALE-3, ALE-4, ALE-5). ALE-6 was noticeably distinct from the 

other five strains, as it was lacking pyrE/rph and rpoB mutations, but instead had a 

unique rpoC mutation. 

The growth rates, biomass and acetate yields, and glucose uptake rates for all 

nine strains investigated here (i.e. three unevolved and six evolved strains) are 

summarized in Figs. 11.1 and 11.2. The growth physiology of the BW25113 strain 

was previously described (Long et al., 2016b). Like MG1655, this strain is a K-12 

derivative and thus is closely related, whereas BL21 is a more distantly related E. coli 
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strain. All wild-type strains had similar growth rates (0.63 to 0.68 h-1) (Fig. 1A), and 

the ALE strains grew significantly faster (approximately 0.9 h-1) as expected and 

previously reported (Sandberg et al., 2016). This represents a 28-38% increase in 

fitness (i.e. growth rate) under our experimental conditions. Most of the strains had 

similar acetate production phenotypes (Fig. 11.1B). The K-12 strains produced 

approximately 0.7 mol acetate per mol glucose, in good agreement with previous 

reports (Chen et al., 2011; Leighty and Antoniewicz, 2013; Rahman and Shimizu, 

2008). The BL21 strain produced significantly less acetate (0.39 mol/mol), a 

phenotype which has also been well characterized previously (Monk et al., 2016; 

Waegeman et al., 2012, 2011). In fact, previous studies have reported even lower 

acetate yields of 0.2 mol/mol and less, which may indicate a relatively larger 

variability in BL21 strains compared to K-12 strains. Interestingly, the acetate 

phenotypes following adaptive evolution were mostly unchanged, with the most 

significant change being an increase in acetate yield in ALE-6 from 0.66 to 0.83 

mol/mol. 

The biomass yields were relatively consistent across all strains (0.41 to 0.44 

gDW/gglc) (Fig. 11.1C). The directly measured yields are compared to those estimated 

by 13C-MFA in Appendix Fig. F.2. While there is strong overall consistency, a larger 

difference is suggested between BL21 (0.45 g/g) and ALE-6 (0.38 g/g), as would be 

expected given the divergent acetate yield phenotypes. This suggests that increases in 

growth rate that were attained during adaptive evolution came not from increased 

carbon efficiency, but rather from increased overall metabolic rate. This was also 

reflected in the calculated glucose uptake rates (Fig. 11.2A), which increased from 8.5 

mmol/gDW/h in the wild-type to up to 12.5 mmol/gDW/h in ALE-6. The oxygen uptake 
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rates (Fig. 11.2B) also increased significantly in the ALE strains relative to the wild-

type, but reached levels similar or only slightly higher (17 mmol/gDW/h) than the 

oxygen uptake rate of BL21 (15 mmol/gDW/h). Notably, the strain with the unique 

genetic mutations, i.e. ALE-6, had the highest rates of glucose uptake and acetate 

excretion. 
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Figure 11.1: Physiology of all strains during exponential growth on glucose minimal 

medium. The three E. coli wild-type strains, BL21 (green), BW25113 

(red), and MG1655 (blue) are shown along with the adaptively evolved 

MG1655 strains (ALE, dark blue). Growth rates (A) were measured in 

triplicate cultures, and acetate yields (B) on media HPLC measurements 

of duplicate cultures. Error bars indicate standard errors of the mean. 

Biomass yield (C) was based on regression of substrate and biomass 

measurements in a culture, with error bars reflecting the uncertainty in 

the parameter fitting. 
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Figure 11.2: Substrate uptake rates of all strains during exponential growth on glucose 

minimal medium. The three E. coli wild-type strains, BL21 (green), 

BW25113 (red), and MG1655 (blue) are shown along with the adaptively 

evolved MG1655 strains (ALE, dark blue). Glucose uptake rates (A) 

were calculated from the growth rate and biomass yield (Fig. 11.1), and 

oxygen uptake rate (B) was estimated by 13C-MFA. Error bars reflect 

standard errors. 

11.3.2 13C-Metabolic Flux Analysis 

To quantify the intracellular metabolic fluxes supporting the observed 

increases in growth and glucose uptake rates, high-resolution 13C-MFA was 

performed. For each strain, two parallel labeling experiments were performed with 
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[1,2-13C]glucose and [1,6-13C]glucose, as this was previously identified to provide 

optimal precision in flux estimates throughout E. coli central carbon metabolism 

(Crown et al., 2016b). Labeling of proteinogenic amino acids, labeling of ribose 

moiety of RNA, and glucose moiety of glycogen (Long et al., 2016a) from each 

parallel experiment were fitted simultaneously, along with the measured acetate yield, 

to estimate fluxes. The estimated metabolic fluxes are provided in the Supplemental 

File. Statistically acceptable fits were achieved in all cases, assuming GC-MS 

measurement errors of 0.3% (Antoniewicz et al., 2007b).  

The results of 13C-MFA are summarized in Figs. 11.3 and 11.4. In Fig. 11.3, 

the distributions of fluxes through two key branch points in central carbon metabolism 

are shown for all strains. The first branch point (Fig. 11.3A) describes the split in 

upper central carbon metabolism between glycolysis (EMP pathway), the oxidative 

pentose phosphate pathway (oxPPP), and the Entner Doudoroff (ED) pathway. The 

relative usage of these three pathways was remarkably consistent among the nine 

strains studied here. The main route of glucose catabolism being the EMP pathway (74 

to 78%), with almost all the rest going to the oxPPP. ED pathway usage was minimal, 

not exceeding 2% in any of these strains. There was a small increase in EMP usage in 

four of the six ALE strains relative to the parental strain. More variations between 

strains were observed in lower metabolism (Fig. 11.3B). The branch point here 

describes the fate of the lower glycolytic intermediate phosphoenolpyruvate (PEP), 

into anaplerosis (conversion to oxaloacetate via PPC), the TCA cycle via citrate 

synthase, or acetate production. The differences in the pathway usage here also reflect 

the differing acetate secretion phenotypes (Fig. 11.1B). Particularly, the BL21 strain 

has a much lower acetate flux (35% of PEP) and a correspondingly higher TCA cycle 
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flux (40%) than all K-12 strains (15% for BW25113 and 18% for MG1655). In the 

adaptively evolved strains, the relative pathway usage is once again remarkably 

unchanged, with the only significant difference being a higher acetate secretion and 

reduced TCA cycle flux in ALE-6. The constant relative intracellular pathway usage 

(i.e., fluxes normalized to these branch points or to glucose uptake rate) in the ALE 

strains corresponds to substantial and proportional increases in absolute flux 

throughout central carbon metabolism, as the glucose uptake rates are significantly 

elevated (Fig. 11.2A). 

Detailed flux maps of central carbon metabolism are shown for three selected 

strains in Fig. 11.4. The wild-type BL21 and MG1655 are compared along with ALE-

6, which was the fastest growing strain and exhibited the most unique phenotype of 

the evolved strains. The fluxes shown were normalized to 100 units of glucose uptake, 

with the growth and glucose uptake rates for each strain noted. As discussed above, 

there was a slight increase in normalized EMP flux from the wild-type to ALE-6, from 

72% to 76% of glucose, at the expense of the oxPPP. The flux differences in lower 

metabolism, particularly the relative rate of TCA cycle and acetate secretion in these 

three strains, can also be seen here. No significant fluxes were observed in the ED 

pathway, glyoxylate shunt, malic enzyme, or PCK reactions in any of the studied 

strains. Given this, the two branch points described in Fig. 11.3 captured the main 

variations in the normalized intracellular fluxes of the strains. As noted above, ALE-6 

was the most different from the wild-type, with elevated acetate yield and reduced 

TCA cycle usage. In absolute terms, however, the citrate synthase flux of ALE-6 (1.74 

mmol/gDW/h) was quite similar to that of the wild-type (1.67). The normalized fluxes 

of the other ALE strains were highly conserved from the parental strain. 
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Figure 11.3: Key flux branch points for all strains as measured by 13C-MFA. The 

upper flux branch point (A) reflects the fate of glucose into one of the 

EMP pathway (glycolysis), the oxidative pentose phosphate pathway 

(oxPPP) or the ED pathway. The lower branch point shown (B) reflects 

the fate of phosphoenolpyruvate (PEP) into anaplerosis, the TCA cycle 

via citrate synthase, or to acetate production. Error bars reflect the 95% 

confidence interval of the flux estimates. 
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Figure 11.4: Complete flux maps of selected strains. All fluxes in central carbon 

metabolism are shown for the BL21 strain, as well as the wild-type 

MG1655 and one of its evolved descendants (ALE-6). Growth and 

glucose uptake rates for each strain are listed above, and all intracellular 

fluxes shown are then normalized to 100 units of glucose uptake. The 

indicated uncertainties for fluxes represent standard errors of the 

estimates. 

11.3.3 Cofactor Metabolism 

The measured intracellular fluxes can be used to calculate the contributions of 

individual pathways to the production or consumption of key cofactors in metabolism, 

including NADH and FADH2 (Fig. 5A), NADPH (Fig. 5B), and ATP (Fig. 5C) 

(shown here in absolute units). This analysis highlights that NADH is roughly evenly 

produced in glycolysis and the TCA cycle (approximately 40% and 50%, respectively, 

for BL21, and the reverse for the K-12 strains), and mostly consumed by the electron 

transport chain as part of oxidative phosphorylation in all strains. 15-23% of NADH is 
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converted by transhydrogenase to NADPH, accounting for 41-55% of NADPH 

produced and supplementing the oxPPP and TCA cycle. The large TCA cycle flux in 

BL21 makes it a particularly significant source of NADPH in that strain (28%). All 

NADPH is utilized for biomass synthesis. Fig. 5C illustrates that ATP is mainly 

produced by oxidative phosphorylation (64-70%), with a smaller contribution from 

glycolysis (23-27%), and is consumed for biosynthesis and maintenance costs (under 

the category of “Other” in Fig. 5C). A constant P/O ratio of 2 was assumed for all 

strains to calculate ATP production, and the maintenance costs were estimated as the 

difference between total production and consumption for substrate uptake and growth. 

As a more conservative P/O ratio of 1.5 (Noguchi et al., 2004; Taymaz-Nikerel et al., 

2010) would reduce the estimated ATP production and maintenance consumption 

rates somewhat, these results should be interpreted with caution. The inter-strain 

differences remain relevant though, as no mutations were observed in oxidative 

phosphorylation genes that would indicate a changing P/O ratio in the ALE strains. 

Given the conservation of normalized fluxes in the MG1655 strains, much of the 

variation in absolute cofactor rates is due to differences in glucose uptake and overall 

metabolic rate. In Appendix Fig. F.1, the cofactor balances are shown normalized to 

glucose uptake, where it is apparent that there are only very subtle differences in 

relative cofactor metabolism across the K-12 wild-types and ALE strains. The 

elevated TCA cycle of BL21 does contribute significantly more to cofactor 

production, and the increased use of oxidative phosphorylation results in a higher 

overall ATP yield. 
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Figure 11.5: Quantitative cofactor balances. For each strain, the contributions of 

metabolic pathways to the production and consumption of cofactors are 

calculated in absolute units. Positive values reflect production of 

cofactor, and negative values reflect consumption. Shown are balances 

for NADH/FADH2 (lumped) (A), NADPH (B), and ATP (C). “Other” in 

the ATP panel represents the estimated ATP maintenance cost (here, 

assuming P/O ratio=2.0). 
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11.3.4 Principal Component Analysis and Flux Balance Analysis 

To further assess the degree of similarity between the metabolic flux profiles 

of the investigated strains, principal component analysis (PCA) was performed using 

nine key normalized fluxes in central carbon metabolism. PCA is a data reduction 

technique in which large multivariate data sets can be described in a new lower 

dimensional space in terms of principal components, which are linear combinations of 

the original variables. These principal components capture the maximum amount of 

original variation in the data. The results of PCA are shown in Fig. 11.6. The fluxes 

used for the analysis were selected from various representative intracellular and 

extracellular pathways, and excluded those with minimal flux (e.g. the ED pathway or 

glyoxylate shunt) where the inter-strain variance was not meaningful. The first two 

principal components capture nearly all (95%) of the flux variation, with PC1 (52%) 

reflecting the lower metabolism split between acetate production and the TCA cycle, 

and PC2 (43%) the upper split between glycolysis and oxPPP. This confirms our 

analysis above in Fig. 11.3, suggesting that these were the major areas of flux variance 

among the strains. All the K-12 strains, including BW25113, the MG1655 wild-type 

and ALE strains, clustered together in the PCA plot. ALE-6 was positioned at the 

extreme end of the group with a high PC1 value, reflecting its particularly low TCA 

cycle and high acetate flux, while BL21 was positioned at the opposite end with a low 

PC1 value. 

We were also interested to compare the flux phenotypes of the adaptively 

evolved strains to an ‘optimal’ flux distribution as predicted by flux balance analysis 

(FBA), a widely-used tool in metabolic engineering. FBA finds a set of fluxes that 

optimizes the maximal growth rate given substrate uptake constraints, the genome 

scale network stoichiometry, and a biomass growth equation. This is commonly 



 258 

justified as reflecting the selection pressure and result of evolution in laboratory 

strains (Edwards and Palsson, 2000; García Sánchez and Torres Sáez, 2014; Segre et 

al., 2002). FBA calculations were performed using the E. coli iAF1260 genome scale 

model (Feist et al., 2007) with two sets of glucose and oxygen uptake constraints (all 

others were set to simulate the glucose minimal media environment): one 

corresponding to the MG1655 wild-type (qglc=8.5 mmol/gDW/h, qO2=12 mmol/gDW/h), 

and one corresponding to the ALE strains (qglc=12, qO2=17). The predicted growth 

rates from FBA agreed well with the measured growth rates (i.e., unevolved predicted 

0.63 h-1, and evolved predicted 0.92 h-1) and acetate yields (unevolved 0.7 mol/mol, 

evolved 0.63 mol/mol). The corresponding normalized flux predictions from FBA 

were included in the PCA plot (Fig. 11.6). There were some notable disagreements 

between the predicted and measured metabolic fluxes, especially in upper metabolism, 

where FBA predicted in both cases (unevolved and evolved) that approximately half 

of glucose flux was catabolized through oxPPP (54-55%). As discussed previously 

and shown in Figs. 3 and 4, this flux was measured by 13C-MFA as 21-25% of glucose 

flux in all strains studied here. Since the measured and FBA-predicted growth rates 

agreed well, it appears that the optimal growth rate is not strongly affected by upper 

pathway usage and alternate optimal solutions may enable the observed growth rates. 
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Figure 11.6: Principal component analysis of key normalized intracellular metabolic 

fluxes in measured strains and two flux balance analysis (FBA) 

simulations. The simulations were based on two different sets of 

substrate uptake constraints as noted. The coefficients of the top two 

principal components are shown in the table. 

This hypothesis of alternate optimal solutions was confirmed with flux 

variability analysis (FVA) (Mahadevan and Schilling, 2003), which calculates a range 

of possible flux values that can support a given rate of growth. FVA was applied to 

both sets of glucose and oxygen uptake rate constraints, yielding very similar 

normalized flux variabilities in each case. The results described below are from the 

higher uptake rate case, corresponding to the ALE phenotype. Focusing again on the 

oxPPP flux, stepping down slightly to 99% of the optimal growth rate, the oxPPP flux 

varied from 34%-67% of glucose uptake. Stepping further, this range increased to 14-
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74% of glucose uptake for 98% of optimal growth rate. Interestingly, in looking at 

another major central metabolism pathway, the branch point between the TCA cycle 

and acetate production, was more constrained with citrate synthase (TCA) fluxes 

varying only from 8-19% at 99% optimal growth, and 8-27% at 98% optimal growth. 

Thus, this analysis demonstrates that alternate optimal flux distributions can support 

rapid growth in the E. coli network and some pathways have more flexibility than 

others.   

11.4 Conclusions 

In this work, intracellular fluxes of E. coli subject to adaptive laboratory 

evolution were analyzed for the first time using 13C-MFA. Given the numerous genetic 

mutations (Sandberg et al., 2016) and previously reported transcriptional changes in 

evolved strains (LaCroix et al., 2015), it was expected that significant intracellular 

metabolic rewiring would be occurring in these strains. Instead, we show here that 

normalized intracellular metabolic fluxes change very little in six independently 

evolved MG1655 strains. In absolute terms, intracellular fluxes increased 

proportionally and substantially, along with the glucose uptake rate, to support faster 

growth. The one significant change, a 26% increase in acetate yield in ALE-6, 

corresponded to a unique set of mutations. Interestingly, it was previously reported 

that in similarly evolved strains, enzymes involved in the TCA cycle were broadly 

transcriptionally repressed (LaCroix et al., 2015), but this did not correspond to 

reductions in normalized (5 out of 6 strains) or absolute (6 out of 6) TCA flux in the 

strains analyzed here. Future studies may explore whether some TCA cycle enzymes 

(or others in central metabolism) have excess flux capacity in the wild-type, allowing 

for increases in absolute flux under certain conditions without commensurate increases 
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in expression.. Overall, it was found that the magnitude of the differences between 

wild-type E. coli strains, particularly between BL21 and the K-12 strains (MG1655 

and BW25113), exceeded the variation in unevolved and adaptively evolved MG1655 

strains. The broad similarities, but notable differences between E. coli strains, should 

further inform analyses of cell metabolism rigidity across species (Tang et al., 2009; 

Wu et al., 2016). 

Principal component analysis of the differences in normalized intracellular 

fluxes highlighted the similarity between all K-12 strains and the uniqueness of BL21 

strain. It also showed that the particular solution found using FBA optimization of the 

growth rate function predicted a high oxPPP flux, differing significantly from that 

measured here using 13C-MFA. This apparently reflects alternate optima or near-

optima, which was further supported through an FVA approach. While growth rate 

optimization is a commonly used objective function, and reflects the selective pressure 

in the ALE experiment, alternative objective functions could also be explored (García 

Sánchez and Torres Sáez, 2014; Schuetz et al., 2007). Overall, in the case of K-12 

MG1655, 13C-MFA demonstrated there was no strong selective pressure to change 

fluxes from the starting flux distribution. As the research community accumulates 

more results for adaptively evolved strains with different initial metabolic phenotypes 

(e.g. different wild-type or gene knockout strains (Fong et al., 2006)), it may become 

possible to elucidate the path dependency of the evolved ‘optima’ achieved through 

ALE. For example, it would be interesting to determine whether the high TCA flux of 

BL21 strain is reduced upon evolution or is maintained during fast growth. 

The knowledge that faster growth of adaptively evolved strains was not 

enabled by any particular change in metabolic pathway usage adds some clarity to the 
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picture previously presented via genetic and transcriptomic analysis (LaCroix et al., 

2015). Along with increases in protein producing machinery, i.e. transcription and 

translation, changes to expression levels of central carbon metabolic enzymes were 

also reported. These included increases in PTS glucose transporters, enzymes in 

glycolysis and acetate production, and decreases in TCA cycle and glyoxylate shunt 

enzymes. The fact that the overall state of the metabolic network remained the same, 

despite adjustment in expression of metabolic enzymes, may indicate that the adaptive 

evolution responses are a matter of proteomic allocation rather than optimization of 

cellular processes. For example, the rpoB mutation has been shown to affect the 

balance between growth and stress functions (Utrilla et al., 2016). Moving forward, 

combined multi-omics analysis of ALE strains will be useful in advancing cellular 

modeling of kinetics (Khodayari et al., 2014) and physical and macromolecular 

constraints on phenotype (O’Brien et al., 2013). Identifying a growth-optimal 

proteome and regulatory mechanisms by which it can be achieved will be useful in 

engineering efficient strains. Understanding the hard constraints of E. coli 

performance, which in addition to the proteome can also include membrane space 

limitations (Liu et al., 2014), may motivate the development of alternative high-

performance organisms for future applications (Cordova et al., 2015; Lee et al., 2016). 

11.5 Author Contributions 

CPL performed all cell culture and 13C tracer experiments; CPL and JEG 

analyzed metabolic data; AMF performed whole-genome sequencing; AMF and BOP 

analyzed genomic data; CPL and MRA designed the project and wrote the paper with 

help from all authors. 
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METABOLISM OF THE FAST-GROWING BACTERIUM VIBRIO 

NATRIEGENS ELUCIDATED BY 13C METABOLIC FLUX ANALYSIS 

Reprinted with permission from: Long CP, Gonzalez JE, Cipolla RM, Antoniewicz 

MR (2017) Metabolism of the fast growing bacterium Vibrio natriegens elucidated by 
13C metabolic flux analysis. Metab. Eng. 44, 191-197. 

12.1 Introduction 

Escherichia coli is the most widely studied microorganism in academia 

(Janssen et al., 2005; Long and Antoniewicz, 2014a). A wealth of knowledge has been 

generated over the past century for this model microbe, and many molecular tools 

have been developed for genetic engineering (Datsenko and Wanner, 2000; Gibson et 

al., 2009; Li et al., 2015; Wang et al., 2009). As a result, E. coli is often the go-to 

organism for metabolic engineering efforts. However, researchers are increasingly 

interested in selecting alternative hosts for various applications in biotechnology. One 

of the key physiological characteristics that impacts industrial performance is growth 

rate, or perhaps more importantly, biomass specific substrate uptake rate. This rate 

determines the maximum productivity that can be achieved for a given size bioreactor. 

As such, faster growing organisms offer a clear advantage over slower growing 

organisms. In this respect, wild-type E. coli has a relatively high growth rate of about 

0.7 h-1 (60 min doubling time) when grown in minimal medium with glucose as the 

carbon source, and ~30 min doubling time when grown in rich medium. Faster 

growing E. coli strains have also been generated through adaptive laboratory evolution 

with a maximum growth rate of about 1.0 h-1 (40 min doubling time) in glucose 

Chapter 12 
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minimal medium (LaCroix et al., 2015; Sandberg et al., 2016); however, for yet 

unknown reasons this appears to be the upper limit for E. coli growth rate. 

To achieve even faster conversion rates, scientists are now interested in 

identifying alternative fast-growing organisms to replace E. coli as the workhorse host 

(Lee et al., 2016; Weinstock et al., 2016). One such organism is the Gram-negative, 

non-pathogenic marine bacterium Vibrio natriegens, which is commonly found in 

marine and coastal waters and sediments, and has a reported doubling time of 10 

minutes or less when cultured under ideal conditions in rich medium (Eagon, 1962). V. 

natriegens (initially Pseudomonas natriegens) was described for the first time by 

Payne et al. in the early 1960s (Payne et al., 1961). It is a moderate halophile, 

requiring about 1.5% NaCl for optimal growth, and grows well under laboratory 

conditions with glucose as the only carbon source, with an optimal growth temperature 

of 37 °C (Eagon, 1962; Lee et al., 2016). Two annotated genomes are available for V. 

natriegens,  for strains ATCC 12048 (Wang et al., 2013) and DSMZ 759 (Maida et al., 

2013); and recently, a wide range of genetic tools were developed and described to 

engineer V. natriegens (Weinstock et al., 2016). Additionally, the fast growth of this 

species was recently shown to reduce the time needed to execute common cloning 

pipelines, which has clear advantages in highly iterative strain building efforts 

(Weinstock et al., 2016).  

In this work, we have investigated the metabolism of V. natriegens using state-

of-the-art tools for 13C metabolic flux analysis (13C-MFA) (Gonzalez and 

Antoniewicz, 2017). Currently, no information is available about intracellular 

metabolism of V. natriegens and this lack of knowledge significantly impacts our 

ability to apply rational strategies to engineer this organism. For example, in the 
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absence of an experimentally validated flux map, constraint-based modeling and 

analysis (COBRA) approaches cannot be applied to guide new metabolic engineering 

designs (Becker et al., 2007; Schellenberger et al., 2011). To address this critical gap 

in knowledge, here we have characterized the growth physiology, constructed a 

detailed model core metabolism, measured biomass composition, and performed high-

resolution 13C-MFA to estimate intracellular fluxes in V. natriegens. Analysis of co-

factor balances provide additional insights into its metabolism. Taken together, the 

results presented in this study provide an important quantitative description of the 

physiology and metabolism of V. natriegens that can serve as the basis for informed 

host selection, future model building, and strain design efforts. 

12.2 Materials and Methods 

12.2.1 Materials 

Media and chemicals were purchased from Sigma-Aldrich (St. Louis, MO). 

Tracers were purchased from Cambridge Isotope Laboratories, [1,2-13C]glucose (99.5 

atom% 13C) and [1,6-13C]glucose (99.5%). The isotopic purity and enrichment of 

glucose tracers was determined by GC-MS analysis (Cordova et al., 2016). Wolfe’s 

minerals (Cat. No. MD-TMS) and Wolfe’s vitamins (Cat. No. MD-VS) were 

purchased from ATCC (Manassas, VA). The growth medium for V. natriegens was 

M9 minimal medium supplemented with (per liter of medium): 15 g of NaCl, 10 mL 

of Wolfe’s minerals, 10 mL of Wolfe’s vitamins, and 0.05 g of yeast extract. Glucose 

was added as indicated in the text. All media and stock solutions were sterilized by 

filtration. 
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12.2.2 Strains and Growth Conditions 

V. natriegens (ATCC Cat. No. 14048, Manassas, VA) was used in this study. 

For tracer experiments, cells from frozen stock were first pre-cultured overnight at 37 

C in a shaker flask with 20 mM initial glucose. Next, 1 mL of this culture was 

washed with fresh medium and used to inoculate a new shaker flask with 10 mL of 

medium (20 mM initial glucose). After 1 hr, 100 uL of this culture was used to 

inoculate two mini-bioreactors, one containing 10 mM of [1,2-13C]glucose and one 

containing 10 mL of [1,6-13C]glucose. The optical density (OD600) of the inoculated 

cultures was about 0.015. We estimated that about 0.2 mM of unlabeled glucose was 

carried over from the inoculum to the cultures. Cells were then grown at 37°C in the 

mini-bioreactors as described before (Gonzalez et al., 2017). Air was sparged into the 

liquid at a rate of 12 mL/min to provide oxygen and to ensure sufficient mixing of the 

culture by the rising gas bubbles. Cell pellets were collected for GC-MS analysis of 

isotopic labeling during the mid-exponential growth phase when biomass 

concentration (OD600) was between 0.7 and 1.0. 

12.2.3 Analytical Methods 

Samples were collected at multiple times during the growth phase to monitor 

cell growth, substrate uptake and acetate accumulation. Cell growth was monitored by 

measuring the optical density at 600nm (OD600) using a spectrophotometer 

(Eppendorf BioPhotometer). The OD600 values were converted to cell dry weight 

concentrations using the following relationship for V. natriegens: 1.0 OD600 = 0.27 

gDW/L, which was experimentally determined as described in (Long et al., 2016b). 

Acetate concentrations were determined using an Agilent 1200 Series HPLC 



 267 

(Whitaker et al., 2017), and glucose and lactate concentrations were determined using 

a YSI 2700 biochemistry analyzer (YSI, Yellow Springs, OH).  

12.2.4 Biomass Composition Analysis 

The methods used for quantifying biomass composition were described in 

(Long and Antoniewicz, 2014b). Briefly, samples were prepared by three respective 

methods: hydrolysis of protein and subsequent TBDMS derivatization of amino acids; 

hydrolysis of RNA and glycogen and subsequent aldonitrile propionate derivatization 

of sugars (ribose and glucose, respectively); and fatty acid methyl ester derivatization 

for analysis of fatty acid. In total, 17 amino acids were quantified. Glutamine and 

asparagine are deaminated during hydrolysis to glutamate and aspartate, respectively; 

thus, we report the combined pools of each. The amino acids arginine, cysteine and 

tryptophan are degraded during hydrolysis and thus were not quantified. 

Quantification of all components was achieved by isotope ratio analysis using an 

isotopically labeled standard and a naturally labeled biomass sample. In this study, the 

standard was generated by growing wild-type E. coli on [U-13C]glucose and aliquoting 

identical (1 mL of an OD600 = 1.0) samples of this “fully labeled” biomass. These 

were centrifuged and washed twice with M9 medium. The composition of the fully 

labeled biomass was determined using unlabeled chemical standards as described in  

(Long and Antoniewicz, 2014b).  

12.2.5 Gas Chromatography-Mass Spectometry 

GC-MS analysis was performed on an Agilent 7890B GC system equipped 

with a DB-5MS capillary column (30 m, 0.25 mm i.d., 0.25 µm-phase thickness; 

Agilent J&W Scientific), connected to an Agilent 5977A Mass Spectrometer operating 
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under ionization by electron impact (EI) at 70 eV. Helium flow was maintained at 1 

mL/min. The source temperature was maintained at 230°C, the MS quad temperature 

at 150°C, the interface temperature at 280°C, and the inlet temperature at 250°C. GC-

MS analysis of tert-butyldimethylsilyl (TBDMS) derivatized proteinogenic amino 

acids was performed as described in (Antoniewicz et al., 2007b). Labeling of glucose 

in the medium was determined after aldonitrile propionate derivatization as described 

in (Antoniewicz et al., 2011; Sandberg et al., 2016). Labeling of fatty acids was 

determined after derivatization to fatty acid methyl esters (FAME) (Crown et al., 

2015b). Labeling of glucose (derived from glycogen) and ribose (derived from RNA) 

were determined as described in (Long et al., 2016a; McConnell and Antoniewicz, 

2016). In all cases, mass isotopomer distributions were obtained by integration 

(Antoniewicz et al., 2007b) and corrected for natural isotope abundances (Fernandez 

et al., 1996). 

12.2.6 Metabolic Network Analysis and 13C-Metabolic Flux Analysis 

A metabolic network model of V. natriegens core metabolism was constructed 

for 13C-MFA based on the reactions annotated in KEGG and BioCyc databases (Caspi 

et al., 2012; Kanehisa et al., 2012; Kanehisa and Goto, 2000). The complete 13C-MFA 

model is provided in Appendix Table G.1. The model includes all major metabolic 

pathways of central carbon metabolism, including glycolysis, pentose phosphate 

pathway, Entner–Doudoroff pathway, TCA cycle, glyoxylate shunt, and various 

anaplerotic and cataplerotic reactions, lumped amino acid biosynthesis reactions, and a 

lumped biomass formation reaction, which was derived using the measured biomass 

composition for V. natriegens. Since it is not possible to distinguish between the 

fluxes of NAD-dependent malic enzyme (EC 1.1.1.38), NADP-dependent malic 
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enzyme (EC 1.1.1.40), and oxaloacetate decarboxylase (EC 4.1.1.3) using 13C-MFA 

(Kappelmann et al., 2015), we included only one reaction in the model (the NADP-

dependent malic enzyme) to describe the combined flux of all three reactions. The 

model also accounts for the exchange of intracellular and atmospheric unlabeled CO2 

(Leighty and Antoniewicz, 2012a), and G-value parameters to describe fractional 

labeling of amino acids. As described previously (Antoniewicz et al., 2007c), the G-

value represents the fraction of a metabolite produced from labeled glucose, while 1-G 

represents the fraction that is naturally labeled, e.g. from to the inoculum. By default, 

one G-value parameter was included for each measured amino acid in each data set.  

Reversible reactions were modeled as separate forward and backward fluxes. Net and 

exchange fluxes were calculated as follows: vnet = vf-vb; vexch = min(vf, vb).  

All 13C-MFA calculations were performed using the Metran software (Yoo et 

al., 2008) which is based on the elementary metabolite units (EMU) framework 

(Antoniewicz et al., 2007a). Fluxes were estimated by minimizing the variance-

weighted sum of squared residuals (SSR) between the experimentally measured and 

model predicted mass isotopomer distributions of biomass amino acids, glucose 

derived from glycogen, ribose derived from RNA, and the measured acetate yield, 

using non-linear least-squares regression (Antoniewicz et al., 2006). For integrated 

analysis of parallel labeling experiments, the data sets were fitted simultaneously to a 

single flux model (Maciek R Antoniewicz, 2015). Flux estimation was repeated at 

least 10 times starting with random initial values for all fluxes to find a global 

solution. At convergence, accurate 95% confidence intervals were computed for all 

estimated fluxes by evaluating the sensitivity of the minimized SSR to flux variations. 

Precision of estimated fluxes was determined as follows (Antoniewicz et al., 2006): 
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Flux precision (stdev) = [(flux upper bound 95%) – (flux lower bound 95%)] / 4 

12.2.7 Goodness-of-Fit Analysis 

To determine the goodness-of-fit, 13C-MFA fitting results were subjected to a 

2-statistical test. In short, assuming that the model is correct and data are without 

gross measurement errors, the minimized SSR is a stochastic variable with a 2-

distribution (Antoniewicz et al., 2006). The number of degrees of freedom is equal to 

the number of fitted measurements n minus the number of estimated independent 

parameters p. The acceptable range of SSR values is between 2
α/2(n-p) and 2

1-α/2(n-

p), where α is a certain chosen threshold value, for example 0.05 for 95% confidence 

interval. 

12.3 Results and Discussion 

12.3.1 Growth Physiology 

Growth characteristics of V. natriegens were determined in aerobic batch 

culture at 37 °C in medium containing 1.8 g/L of glucose as the main carbon source. 

The growth medium was M9 minimal medium supplemented with 1.5% NaCl, 

vitamins, minerals, and 0.05 g/L of yeast extract. The addition of small amount of 

yeast extract eliminated a short lag phase that was observed when cells were 

subcultured without it. The yeast extract did not impact glucose uptake rate or the 

specific growth rate. During the exponential growth phase, the specific growth rate of 

V. natriegens was 1.70 ± 0.02 h-1, which corresponds to a doubling time of about 24 

min (Fig 12.1). The biomass yield was 0.44 gDW/g and the biomass-specific glucose 

uptake rate was 21.4 ± 1.3 mmol/gDW/h. V. natriegens produced acetate as a byproduct 
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during exponential growth, with about 0.8 mol of acetate produced per mol of glucose 

consumed (Table 12.1). No other byproducts were detected by HPLC analysis.   

 

Figure 12.1: The growth rate of V. natriegens, as measured in three replicate cultures. 

Table 12.1:  Physiological characteristics of V. natriegens grown in aerobic batch 

culture on glucose minimal medium at 37C (mean ± sem, n = 4 

biological replicates). 

Growth rate 1.70 ± 0.02 1/h 

Biomass yield 0.44 ± 0.03 gDW/g 

Acetate yield 0.8 ± 0.1 mol/mol 

Glucose uptake rate 21.4 ± 1.3 mmol/gDW/h 

12.3.2 Metabolic Model Construction and Biomass Composition Analysis 

To facilitate quantitative studies of V. natriegens, a detailed network model of 

core metabolism was constructed for 13C-MFA based on reactions annotated in the 

KEGG and BioCyc databases. As illustrated in Fig 12.2, central carbon metabolism of 
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V. natriegens is similar to that of E. coli and includes the following metabolic 

pathways: glycolysis (EMP pathway), pentose phosphate pathway, Entner-Doudoroff 

pathway, TCA cycle, glyoxylate shunt, and various anaplerotic and cataplerotic 

reactions. Compared to E. coli, V. natriegens has one additional cataplerotic reaction, 

oxaloacetate decarboxylase (EC 4.1.1.3), which is not present in E. coli. Further 

analysis of annotated genes revealed that V. natriegens engages the same canonical 

amino acid biosynthesis pathways as E. coli.  

An important reaction in the 13C-MFA model is the lumped biomass reaction 

that captures the drain of precursor metabolites and cofactors needed for cell growth. 

To determine the coefficients for this biomass formation reaction, the biomass 

composition of V. natriegens was determined experimentally in this study. The results 

of this analysis are provided in Appendix Table G.2 and shown in Fig. 12.3, where the 

biomass composition of V. natriegens is also compared to that of E. coli (Long and 

Antoniewicz, 2014b) and the fast-growing thermophile Geobacillus LC300 (Cordova 

et al., 2015; Cordova and Antoniewicz, 2016). Proteins were the most abundant 

component of V. natriegens biomass (47% of dry weight), followed by RNA (29%), 

lipids (7%) and glycogen (3%). The RNA content was higher for V. natriegens (29%) 

compared to E. coli (21%), but similar to that of Geobacillus LC300 (28%). It has 

been observed previously that RNA content is often higher for fast growing strains 

(Long et al., 2016b; Pramanik and Keasling, 1997) (which is thought to reflect the 

need for more ribosomes to support the higher growth rates. The ratio of RNA to 

protein of 0.6 g/g is consistent with a previous report at a similar growth rate (Aiyar et 

al., 2002). The relative distribution of fatty acids in V. natriegens and E. coli were 

similar, with the most abundant fatty acids being C16:1 and C16:0 followed by C18:1 
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and C14:0. No odd-chain fatty acids (e.g., C15 or C17) were detected in V. natriegens. 

The relative distribution of amino acids in biomass was similar for the three microbes, 

with the notable exception of glutamate/glutamine (Glx), which was significantly 

elevated in V. natriegens compared to E. coli and Geobacillus LC300 (Fig. 12.3). The 

relative abundance of aspartate/asparagine (Asx) was lower for V. natriegens and 

Geobacillus LC300 compared to E. coli. 

12.3.3 13C-Metabolic Flux Analysis 

Next, we quantified intracellular metabolic fluxes for V. natriegens during 

exponential growth on glucose using high-resolution 13C-MFA. The analysis consisted 

of first performing two parallel labeling experiments with [1,2-13C]glucose and [1,6-

13C]glucose (an experimental design previously identified as providing optimal flux 

precision (Crown et al., 2016b)). Subsequently, fluxes were estimated by 

simultaneously fitting the measured acetate yield and the labeling data from 

proteinogenic amino acids, the ribose moiety of RNA, and the glucose moiety of 

glycogen to the model described in the previous section. A statistically acceptable fit 

was obtained. The minimized SSR value of 188 was lower than the maximum 

acceptable SSR value of 224 at 95% confidence level, assuming a constant 

measurement error of 0.3 mol% for all GC-MS measurements (Antoniewicz et al., 

2007b). The estimated metabolic fluxes and 95% flux confidence intervals are 

provided in Appendix Table G.3.   
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Figure 12.2: The central carbon metabolic network, as reconstructed from available 

genome annotations. EC numbers corresponding to annotated enzymes 

are shown for each reaction. 
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Figure 12.3: The biomass composition of V. natriegens and comparisons to E. coli and 

the fast-growing thermophile Geobacillus LC300. The fractional dry 

weights of the major biomass components are shown, as well as the 

distributions of fatty acids and amino acids. 

Fig. 12.4 shows the estimated fluxes in central carbon metabolism for V. 

natriegens during aerobic growth on glucose (fluxes were normalized to glucose 

uptake rate of 100). The flux map of V. natriegens was characterized by a high 

glycolytic flux (80 ± 0.5 for phosphoglucose isomerase, and 169 ± 1 for 

glyceraldehyde 3-phosphate dehydrogenase), relatively high anaplerosis flux via 

phosphoenolpyruvate carboxylase (27 ± 1), and low oxidative PPP flux (18 ± 0.4) and 

TCA cycle fluxes (e.g. 17 ± 1 for citrate synthase; and 7 ± 0.4 for α-ketoglutarate 

dehydrogenase). Several pathways were found to be inactive (or nearly inactive) 

during aerobic growth on glucose, including the Entner-Doudoroff pathway (0.6 ± 

0.1), the glyoxylate shunt (0.0 ± 0.1), and gluconeogenesis via phosphoenolpyruvate 
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carboxykinase (0.0 ± 0.3). In our model, the NAD-dependent malic enzyme (EC 

1.1.1.38), the NADP-dependent malic enzyme (EC 1.1.1.40), and oxaloacetate 

decarboxylase (EC 4.1.1.3) were lumped into a single reaction, since it was not 

possible to independently estimate these three fluxes. The combined flux of these three 

reactions was estimated to be low (3.5 ± 0.4). Taken together, we determined that the 

V. natriegens glucose-normalized flux map was similar to that of E. coli during 

aerobic growth on glucose (Crown et al., 2015a; Leighty and Antoniewicz, 2013), 

with the main difference being a 33% lower flux of glucose through oxidative PPP, i.e. 

27% of glucose for E. coli compared to 18% for V. natriegens. Given approximately 

2.5-fold higher glucose uptake rate in V. natriegens compard to E. coli, however, the 

absolute carbon fluxes (i.e., mmol/gDW/h) through the central carbon metabolic 

pathways are much higher in this organism.  

12.3.4 Quantitative Analysis of Co-Factor Balances 

To provide additional insights into the physiology of V. natriegens, we 

analyzed the production and consumption rates of key co-factors in metabolism, based 

on the 13C-MFA estimated fluxes, and calculated the overall carbon balance. In Fig. 

12.5, the results are summarized (see Appendix Table G.3 for additional details) and 

are compared to E. coli based on previous 13C-MFA results (Crown et al., 2015a), on a 

glucose-normalized basis. The overall carbon balance for V. natriegens was similar to 

that of E. coli, with about 50% of glucose being converted to biomass, 25% to acetate, 

and 25% to CO2. Fig. 12.5B shows the normalized production and consumption rates 

of NADH/FADH2, NADPH and ATP, with contributions by the various pathways 

(absolute contributions in units of mmol/gDW/h are shown in  
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Figure 12.4: The central carbon metabolic fluxes of V. natriegens. All fluxes are 

normalized to 100 units of glucose uptake, assumed to be assimilated via 

the PTS transport system. Indicated errors reflect the standard errors of 

the flux estimate. The malic enzymes and oxaloacetate are lumped into a 

single reaction, shown here as malate to pyruvate. 
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Appendix Fig. G.1). The uncertainty introduced by the lumping of the NAD and 

NADP-dependent cataplerotic reaction (malic enzymes and oxaoloacetate 

decarboxylase) is minimal given the small measured flux. The amount of 

NADH/FADH2 produced (per mol of glucose) was similar for V. natriegens and E. 

coli, with glycolysis (~50% contribution) and the TCA cycle (~40% contribution) 

being the main contributing pathways. The vast majority of NADH/FADH2 was 

oxidized to generate ATP via oxidative phosphorylation (~80%), and 20% of NADH 

was converted to NADPH by transhydrogenases. 

There were relatively larger differences in the production of NADPH between 

V. natriegens and E. coli. For V. natriegens, the majority of NADPH was produced 

from NADH by transhydrogenases (56%), with oxPPP contributing 25% and TCA 

cycle 14% to NADPH production, and negligible contribution from malic enzyme 

(<3%). For comparison, in E. coli, transhydrogenases and oxPPP contributed about 

equally to NADPH production (45% and 41%, respectively), with the TCA cycle 

contributing the remaining 13%. Based on the genome annotations, both V. natriegens 

and E. coli are believed to contain two pyridine nucleotide transhydrogenases, the 

membrane-bound PntAB (EC 1.6.1.2) which primarily converts NADH to NADPH, 

and the soluble form SthA (EC 1.6.1.1, also referred to as UdhA) which primarily 

converts NADPH to NADH (Sauer et al., 2004). The absolute net transhydrogenase 

flux from NADH to NADPH was 3-fold higher for V. natriegens (14.7 mmol/gDW/h,) 

compared to E. coli (5.0 mmol/gDW/h), thus suggesting a much more active PntAB 

enzyme. 
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Figure 12.5: Carbon and cofactor balances of V. natriegens and E. coli. (A) The 

overall carbon balances reflect the fates of glucose on a C-mol basis. (B) 

The metabolic pathways responsible for the production and consumption 

of the cofactors NADH/FADH2, NADPH, and ATP are summarized, on a 

normalized (per unit glucose) basis. For the ATP balance, the production 

rate from oxidative phosphorylation and the maintenance cost (‘Other’) 

are based on an assumed effective P/O ratio of 2. As this has not been 

reliably measured in V. natriegens, this result should be interpreted with 

caution. 

Biological energy in the form of ATP is needed for three key cellular 

processes: 1) transport of substrates and nutrients into the cells; 2) anabolism (i.e. cell 

growth); and 3) maintenance. The overall ATP balances were similar for V. natriegens 

and E. coli (Fig 5), with the oxidative phosphorylation contributing the most towards 

ATP production, approximately 65% for both organisms, followed by substrate level 

phosphorylation in glycolysis (~25%), and acetate production (~10%). The 

contribution of the TCA cycle to ATP production was negligible for both organisms. It 

should be noted that the absolute ATP production rates calculated here should be 

viewed with caution, since little information is available about the effective P/O ratio 
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for V. natriegens. For simplicity, we assumed the same P/O ratio of 2.0 for both 

organisms. Once a reliable estimate of P/O ratio for V. natriegens is available, the 

ATP analysis results reported here should be re-evaluated.  

12.3.5 Comparison of V. natriegens Physiology and Other Fast Growing Bacteria 

Finally, we compared key physiological characteristics (i.e. growth rate, 

glucose uptake rate, and oxygen uptake rate) of V. natriegens to three other strains 

(Fig. 12.6): wild-type E. coli (Leighty and Antoniewicz, 2013), adaptively evolved E. 

coli (Sandberg et al., 2016), and the fast-growing extreme thermophile Geobacillus 

LC300 (Cordova et al., 2015; Cordova and Antoniewicz, 2016). Like V. natriegens, 

the E. coli characteristics reflect growth at 37 °C, while those of Geobacillus LC300 

are from growth at 72 °C. The growth rate of V. natriegens on minimal glucose 

medium of 1.70 h-1 (doubling time 24 min) was significantly higher than the growth 

rate of both wild-type E. coli (~0.7 h-1, doubling time 60 min) and evolved E. coli 

(~1.0 h-1, doubling time 40 min), but significantly lower than the growth rate of the 

thermophile Geobacillus LC300, which has a growth rate on minimal glucose medium 

of 2.15 h-1 (doubling time of 19 min). The biomass-specific glucose uptake rates 

followed the same pattern as growth rates (Fig 12.6B), since the biomass yields are 

similar for all four strains, with Geobacillus LC300 having the highest glucose uptake 

rate of 31 mmol/gDW/h, followed by V. natriegens (21 mmol/gDW/h), the evolved E. 

coli (12 mmol/gDW/h), and wild-type E. coli (8.5 mmol/gDW/h). Even more striking 

were the differences between the three mesophilic strains and Geobacillus LC300 

when the biomass-specific oxygen uptake rates were compared. The oxygen uptake 

rate of Geobacillus LC300 (~60 mmol/gDW/h) was more than 2-fold higher than the 

oxygen uptake rate of V. natriegens (28 mmol/gDW/h), more than 3-fold higher 
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compared to evolved E. coli (19 mmol/gDW/h), and about 5-fold higher compared to 

wild-type E. coli (12 mmol/gDW/h). These values suggest that the gram-positive 

thermophile Geobacillus LC300 has a significantly more active electron transport 

chain compared to the gram-negative mesophiles V. natriegens and E. coli. 

Unfortunately, metabolism of Geobacillus LC300 and evolved E. coli strains have not 

been elucidated by 13C-MFA during growth on glucose, so a more comprehensive 

comparison of metabolic fluxes between the four strains is not possible at this time.  

 

Figure 12.6: Overall physiological assessment of four potential host strains for 

biotechnology applications: V. natriegens, E. coli (following adaptive 

evolution and the un-evolved wild-type), and the thermophilic 

Geobacillus LC300. The values reflect growth at 37 °C for the 

mesophilic strains and 72 °C for Geobacillus LC300. The growth rates 

(A), and biomass specific glucose (B) and oxygen (C) uptake rates are 

shown. 

12.4 Conclusions 

The physiological and fluxomic analysis presented here are important 

foundational components of a developing knowledge base from which the community 

will be able to study and engineer V. natriegens. The verified intracellular metabolic 

pathways and wild-type reference flux map will enable the use of several COBRA 
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model-based analyses and designs. Additional systems measurements, particularly of 

the proteome and transcriptome, will complement these results and help begin to 

answer the fundamental question of how this organism achieves such fast growth. For 

example, these measurements may determine whether V. natriegens has a more 

efficiently allocated proteome for growth. In adaptively evolved E. coli, mutations in 

global regulation are frequently observed which shift gene expression toward catabolic 

processes at the expense of stress response functions (LaCroix et al., 2015; Utrilla et 

al., 2016). There is some limited evidence of less robust stress responses already, with 

the observation of substantially lower intrinsic catalase activity in V. natriegens than 

in E. coli (Weinstock et al., 2016). Other molecular mechanisms may also be 

investigated, such as the DNA replication and protein synthesis machinery (the high 

RNA content measured is believed to be related to high rRNA levels and ribosome 

number (Aiyar et al., 2002)). As more biological knowledge is developed, advanced in 

silico approaches including ME models (Liu et al., 2014; O’Brien et al., 2013), kinetic 

models (Khodayari and Maranas, 2016; Tran et al., 2008), and even whole cell models 

(Karr et al., 2012) may be applied to develop systems-level understanding. 

Insights into fast growing strains like V. natriegens (as well as Geobacillus 

LC300, adaptively evolved E. coli, and others) may enable rational engineering 

approaches of conventional organisms for improved performance. Given its natural 

advantages, however, it has been proposed that V. natriegens may be a superior next-

generation host for biotechnological applications. Its similar flux distribution to E. coli 

in glucose minimal medium is encouraging in that raises the prospect that some 

metabolic engineering strategies previously developed in E. coli may also be 

successful in V. natriegens. Further study of metabolic kinetics and regulation in V. 
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natriegens, and the nature of responses to genetic and environmental perturbations, 

will be critical. Finally, we have shown that although V. natriegens has large 

advantages in rate over its mesophilic counterpart E. coli, it lags behind the 

thermophilic Geobacillus LC300. Similar development would be needed in systems 

knowledge and genetic tools to develop this (and any other non-model organism) into 

a viable host, after which an informed choice based on desired process temperature 

and other characteristics would be possible.  

12.5 Author Contributions 

All authors contributed to the execution and analysis of experimental data. 

CPL and MRA wrote the manuscript with contributions from all authors.  
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CONCLUSIONS AND FUTURE DIRECTIONS 

13.1 Methods in 13C Metabolic Flux Analysis 

Novel contributions to methods in microbial physiological and fluxomic 

characterization were described in Chapters 2-4. These developments shed light on 

critical aspects of designing and executing 13C-MFA, specifically tracer selection, 

measurement choice, and biomass composition. As was discussed in the respective 

chapters, each of these can determine flux observability and flux estimate precision. 

The detailed mapping of optimal tracer selection (Chapter 4) is a particularly 

significant development toward enabling rational and informed experimental design. 

Given the significant nontrivial challenges in predicting the relationship between 

tracer selection and flux estimate quality, many previous studies defaulted to tracers 

which had been previously used (e.g. mixtures of [U-13C] and [1-13C]glucose) or were 

least expensive. The use of RNA and glycogen in 13C-MFA (Chapter 3) is directly 

useful in microbial flux analysis, and the presented approach for identifying value in 

additional measurements is more broadly applicable. For example, with other 

analytical techniques such as LC-MS analysis of intracellular metabolites, additional 

exchange fluxes in metabolism may become observable.  

It has also become increasingly clear that accurate determination of the 

biomass composition is critical for accurate determination of fluxes. Many previous 

flux studies assumed a constant biomass composition, for example among E. coli 

knockout strains in a previous large-scale study (Ishii et al., 2007). Here (Chapters 6 

Chapter 13 
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and 8), we have shown that this assumption is weak, especially across strains with 

diverse growth rates. Significant differences in RNA or glycogen content were 

observed, for example, which affect the mass balance and flux analysis of upper 

metabolism when the drain of the precursors R5P and G6P are properly considered. 

The accurate quantification of fluxes through secondary biosynthetic pathways rely 

entirely on these measurements, which is of high interest as 13C-MFA and kinetic 

models of metabolism grow in scope to incorporate these pathways (García Martín et 

al., 2015; Gopalakrishnan and Maranas, 2015). Furthermore, the demonstrated and 

facile extension of the composition analysis to diverse organisms (Section 2.4.1), 

including algae (Zuñiga et al., 2016) and several genera of bacteria, provides an 

important enabling tool for applying 13C-MFA to non-model (and even unidentified 

(Yao et al., 2015)) organisms. 

These and related improvements to 13C-MFA methodologies in recent years 

have contributed to the technology’s maturation, to the point that highly precise flux 

estimates can be obtained at reasonable experimental effort and throughput. For 

example, the large-scale knockout study presented here (Chapters 7 and 9) utilized the 

parallel labeling experiment identified as optimal ([1,2] and [1,6-13C]glucose), with 

RNA, glycogen, and amino acid labeling measurements and biomass composition 

enabling the highly precise characterization of 45 strains. Altogether in this thesis, 

13C-MFA was applied to 66 E. coli strains (Chapters 7, 9, 10, 11) and the wild-type 

Vibrio natriegens (Chapter 12). Ongoing work is also underway to determined fluxes 

for an additional 26 wild-type and evolved E. coli strains (see Section 13.3.2, below). 

Continued experience and standardization will make 13C-MFA an increasingly 

accessible tool for systems biology research. 
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13.2 Characterization of Metabolic Responses to Gene Knockouts 

Detailed physiological and fluxomic characterizations were performed for 45 

E. coli strains with knockouts of central carbon metabolism enzymes (Chapters 6-9). 

This study revealed physiological relationships such as the dependence of biomass 

components on growth rate, and the fluxomic results provide a detailed picture of 

metabolic flexibility and robustness. Novel reactions were identified, including the 

reversibility of Enzyme I of the PTS system (Chapter 5) and glucose excretion in 

ΔpfkA (Chapter 7). Systems-level analysis revealed some bottlenecks in metabolism, 

including seven knockouts with a growth rate decrease of 50% or greater (in addition 

to the conditionally essential genes not included). In upper metabolism, the oxidative 

phosphate pathway was observed to be inflexible in compensating for blockages in 

glycolysis (e.g., Δpgi and ΔpfkA), an issue which was resolved after adaptive evolution 

(Chapter 10). In lower metabolism, activation of lactate and pyruvate secretion was 

observed in several strains, including in ΔaceE where these were produced with 80% 

carbon yield. Surprisingly, the glyoxylate shunt and PCK reactions were not activated 

in any lower metabolism knockout, and the malic enzyme only activated in one 

(Δmdh).  

13.2.1 Utility in Systems Biology and Engineering 

This dataset of knockout metabolic responses will be a valuable resource for 

the systems biology and metabolic engineering communities. Although we have 

presented an initial analysis and interpretation of the results, additional insights will 

undoubtedly emerge as other researchers apply their own analyses and perspectives. 

Given the complexity of the systems biology literature and even this dataset, it is 

likely that additional inferences can be made based on information not considered 
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here. For example, specialists in specific regulatory mechanisms may be able to 

recognize or explain various phenomena such as the different metabolic responses to 

the two pta/ackA pathway knockouts, or the activated ED pathway in Δgnd. Assembly 

of multi-omics data including these knockout fluxes in appropriate databases will 

facilitate these types of insights. More broadly, the many analytical approaches that 

have been applied to metabolism previously, described in Sections 1.3.1 and 1.3.3, can 

be re-applied to these results. Perhaps most notably, existing models of metabolism 

that aim to predict knockout responses can be assessed, as was done here (Chapter 6-

9) for the COBRA models FBA, MOMA, and RELATCH. The poor agreement that 

was found motivates the need for more approaches that incorporate kinetics and 

regulation.  

13.2.2 Development of Ensemble Kinetic Models 

A direct application of this knockout flux data that is being currently pursued is 

ensemble kinetic modeling. Detailed descriptions of this approach can be found here 

(Khodayari et al., 2014; Khodayari and Maranas, 2016; Tan and Liao, 2012; Tran et 

al., 2008). Briefly, a detailed model is developed based on mass-action kinetics and 

substrate-level regulation. An “ensemble” of candidate models is then generated which 

spans the very large parameter space (e.g., an ensemble size of 131,072 was used in 

(Khodayari and Maranas, 2016) of models that are consistent with wild-type fluxes. 

Subsequently, the models can be challenged to predict knockout fluxes, and those 

inconsistent with experimental observations are discarded. Provided sufficient 

experimental knockout data, the ensemble can be pruned to a unique or nearly unique 

“valid” model. To this end, the comprehensive, self-consistent, and detailed approach 

taken in this study make the collected set of knockout flux measurements ideal for 
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ensemble modeling. In a collaborative effort, transcriptomics measurements for these 

same knockout strains are being obtained, and together will provide an opportunity for 

developing a kinetic model with unprecedented precision. Such a model will be a 

significant advance in descriptive and predictive understanding of metabolism, and 

will be hopefully open new levels of insight and opportunity in systems biology and 

strain engineering. 

13.2.3 Extension to Additional Knockouts 

As discussed in Section 1.3.4, central carbon metabolism under the glucose 

and aerobic growth conditions was identified as the highest priority for knockout 

studies. There are many potentially valuable directions to investigate next. First, the 

global regulation of metabolism is of high interest. There are hundreds of transcription 

factors in E. coli, a much smaller number (~10-20) are known to dominate control of 

metabolic processes (Fang et al., 2017). Other pathways of interest might include 

secondary metabolism, for example in amino acid, nucleic acid, or lipid biosynthesis, 

or metabolite membrane transporters. With regard to glucose transport, further 

investigation of the PTS system mutants (fluxes, transcriptional regulatory impact, 

carbon catabolite repression) would be of particular interest.  

13.3 Metabolic Responses to Adaptive Laboratory Evolution 

The value of adaptive laboratory evolution in developing systems metabolic 

knowledge was demonstrated in Chapters 10-11. In Chapter 10, mechanisms of 

growth recovery in Δpgi were explored. As discussed in Chapters 6-7, this knockout 

strain has a highly perturbed phenotype, with very slow growth and massive flux 

redistribution. The coupling of genetic analysis of mutations with metabolic 
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characterization via 13C-MFA revealed that growth recovery was enabled by the 

alleviation of key rate limitations in cofactor metabolism and the oxidative pentose 

phosphate pathway. What were previously described as important processes of latent 

pathway activation and re-repression were found to represent instead low constant 

levels of flux. In Chapter 11, the metabolic fluxes of fast-growing adaptively evolved 

strains were characterized for the first time, and surprisingly little change was 

observed in relative intracellular pathway usage. This is consistent with the hypothesis 

that the main mechanism of fast growth is a broad shift in the expressed proteome, to 

reduce functions that hedge against environmental change or challenge, and increase 

catabolism and growth functions. Out of these two studies arise new questions about 

the impact of global regulators, for example the RNA polymerase subunits, on 

metabolic control and fitness. In both of these instances, additional systems 

measurements such as transcriptomics or proteomics, would be useful in more fully 

elucidating the regulated responses.  

13.3.1 ALE for Growth Recovery in Gene Knockout Strains 

Just as the ALE of Δpgi revealed mechanisms to overcome bottlenecks in the 

pentose phosphate pathway and cofactor metabolism, so too might similar studies 

provide rich insight into other areas of metabolism. The study of central carbon 

metabolic knockouts (Chapters 6-9) provides a rich set of potential targets. For 

example, the seven knockouts with growth rates more than 50% slower than the wild-

type are likely to have significant fitness enhancements realized in ALE, and each 

could provide unique and specific insights. For example, how the Δrpe mutant corrects 

imbalances in the pentose phosphate pathway is likely to be very different from how 

ΔtpiA modulates its methyglyoxal, glyoxylate, and PCK pathways, which will 
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undoubtedly be different still from how ΔaceE improves the supply of carbon to 

AcCoA and glutamate. If and how ΔpfkA reduces the glucose secretion flux would 

likely shed light onto the mechanism and regulation of that reaction. ALE would also 

illuminate the metabolic potential of various modes of pathway usage, for example 

what growth rates are possible when the pentose phosphate pathway or TCA cycle is 

unable to be used (e.g., Δzwf and ΔsucB, respectively).  

13.3.2 ALE of Wild-Type E. coli for Fast Growth 

The results of Chapter 11 show that intracellular flux redistribution is not 

required for fast growth, and does not occur in E. coli MG1655. A key finding was 

that inter-strain differences, e.g., between MG1655 and BL21 wild-type strains, were 

more pronounced than those caused by ALE. Therefore, a key question is whether 

these metabolic distinct wild-type strains would converge to a single ‘optimum’ 

phenotype through ALE, or if they would find alternative optima dependent on the 

initial condition. To address this and gain additional systems insight into fast growth 

in E. coli, our collaborators Bernhard Palsson and Adam Feist have led an effort to 

evolve six different wild-type strains: BL21, C, Crooks, MG1655, W, and W3110. A 

multi-omics approach including genetic resequencing, transcriptomics, and fluxomics 

is being applied to the parent strains and 20 total evolved strains representing multiple 

time points during evolution. These strains have significant metabolic differences, 

particularly the high TCA cycle flux and lack of a pgl gene in BL21, as well as the 

significant ED pathway usage (~10%) in C and Crooks strains (unpublished data). A 

particularly interesting analysis will be to compare transcript level changes to flux 

changes, which will possibly illuminate key areas of kinetic limitation.  
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13.4 Fast Growth and Future Host Strain Development 

The multi-omics approach in this effort, and future similar works in other fast-

growing strains such as Vibrio natriegens, will provide an important picture of the 

limits of metabolic rates. It appears, in E. coli at least, that faster growth is achieved 

through a proteomic “re-prioritization”. Whereas the wild-type allocates some fraction 

of its proteome to preparedness for environmental stress or perturbation, for example 

substrate starvation or switch, temperature or pH change etc., the faster growing 

evolved strain reduces these to allow for increased expression of metabolic and 

biosynthetic genes (Utrilla et al., 2016). Strains with such properties would be 

desirable for bioprocesses, where the controlled environment of a bioreactor would 

require less robustness and absolute rates of productivity are crucial. So far, all the 

evolved E. coli strains have not surpassed a maximum growth rate of ~1.1 h-1. Systems 

biology measurements and modeling will be needed to identify the reasons for this 

limitation, and whether it can be surpassed. Some possibilities, for example, are spatial 

limitations in the membrane (Liu et al., 2014) or kinetic limitations in biosynthesis or 

DNA replication. Comparison to Vibrio natriegens (1.7 h-1) will surely be a relevant 

approach in this effort. This organism should be further characterized in terms of its 

robustness, shape, and enzyme variants. Provided continued development of genetic 

tools, it may become a preferred host in some biotechnology applications. Lessons 

learned in probing these organisms and phenotypes may also inform efforts to create 

genetically  re-factored or minimized chassis microbes (Hutchison et al., 2016; 

Kuznetsov et al., 2017). 
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SUPPLEMENTARY MATERIAL FOR CHAPTER 2 

 

Figure A.1    Following a switch from unlabeled to labeled substrate, the measured 

labeling of RNA and glycogen tracked with the percentage of new 

biomass from growth, demonstrating that low-turnover biopolymers (i.e., 

RNA and glycogen) were measured. 

Appendix A 
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Figure A.2   The abundance of amino acids in E. coli biomass as measured by both 

approaches (labeled sample and unlabeled standard, and vice versa). 

Error bars indicate typical measurement uncertainty for both approaches. 

 

Figure A.3   The abundance of RNA and glycogen in E. coli biomass as measured by 

both approaches. Error bars indicate typical measurement uncertainty. 
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Figure A.4   The abundance of fatty acids in E. coli biomass as measured by both 

approaches. Error bars indicate typical measurement uncertainty for both 

approaches. 
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SUPPLEMENTARY MATERIAL FOR CHAPTER 3 

Table B.1:    Metabolic Network Model for 13C-MFA of E. coli (full model) 

Glycolysis 

v1 Gluc.ext (abcdef) + PEP (ghi)  G6P (abcdef) + Pyr (ghi) 

v2 G6P (abcdef)  F6P (abcdef) 

v3 F6P (abcdef) + ATP  FBP (abcdef) 

v4 FBP (abcdef)  DHAP (cba) + GAP (def) 

v5 DHAP (abc)  GAP (abc) 

v6 GAP (abc)  3PG (abc) + ATP + NADH 

v7 3PG (abc)  PEP (abc) 

v8 PEP (abc)  Pyr (abc) + ATP 

 

Pentose Phosphate Pathway 

v9 G6P (abcdef)  6PG (abcdef) + NADPH 

v10 6PG (abcdef)  Ru5P (bcdef) + CO2 (a) + NADPH 

v11 Ru5P (abcde)  X5P (abcde) 

v12 Ru5P (abcde)  R5P (abcde) 

v13 X5P (abcde)  TK-C2 (ab) + GAP (cde) 

v14 F6P (abcdef)  TK-C2 (ab) + E4P (cdef) 

v15 S7P (abcdefg)  TK-C2 (ab) + R5P (cdefg) 

v16 F6P (abcdef)  TA-C3 (abc) + GAP (def) 

v17 S7P (abcdefg)  TA-C3 (abc) + E4P (defg) 

 

Entner-Doudoroff Pathway 

v18 6PG (abcdef)  KDPG (abcdef) 

v19 KDPG (abcdef)  Pyr (abc) + GAP (def) 

 

TCA Cycle 

v20 Pyr (abc)  AcCoA (bc) + CO2 (a) + NADH 

v21 OAC (abcd) + AcCoA (ef)  Cit (dcbfea) 
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v22 Cit (abcdef)  ICit (abcdef) 

v23 ICit (abcdef)  AKG (abcde) + CO2 (f) + NADPH 

v24 AKG (abcde)  SucCoA (bcde) + CO2 (a) + NADH 

v25 SucCoA (abcd)  Suc (½ abcd + ½ dcba) + ATP 

v26 Suc (½ abcd + ½ dcba)  Fum (½ abcd + ½ dcba) + FADH2 

v27 Fum (½ abcd + ½ dcba)  Mal (abcd) 

v28 Mal (abcd)  OAC (abcd) + NADH 

 

Glyoxylate Shunt 

v29 ICit (abcdef)  Glyox (ab) + Suc (½ edcf + ½ fcde)          

v30 Glyox (ab) + AcCoA (cd)  Mal (abdc)        

 

Amphibolic Reactions 

v31 Mal (abcd)  Pyr (abc) + CO2 (d) + NADPH 

v32 Mal (abcd)  Pyr (abc) + CO2 (d) + NADH 

v33 PEP (abc) + CO2 (d)  OAC (abcd) 

v34 OAC (abcd) + ATP  PEP (abc) + CO2 (d) 

 

Acetic Acid Formation 

v35 AcCoA (ab)  Ac (ab) + ATP 

 

Amino Acid Biosynthesis 

v36 AKG (abcde) + NADPH + NH3  Glu (abcde) 

v37 Glu (abcde) + ATP + NH3  Gln (abcde) 

v38 Glu (abcde) + ATP + 2 NADPH  Pro (abcde) 

v39 Glu (abcde) + CO2 (f) + Gln (ghijk) + Asp (lmno) + AcCoA (pq) + 5 ATP + 

NADPH   

Arg (abcdef) + AKG (ghijk) + Fum (lmno) + Ac (pq) 

v40 OAC (abcd) + Glu (efghi)  Asp (abcd) + AKG (efghi) 

v41 Asp (abcd) + 2 ATP + NH3  Asn (abcd) 

v42 Pyr (abc) + Glu (defgh)  Ala (abc) + AKG (defgh) 

v43 3PG (abc) + Glu (defgh)  Ser (abc) + AKG (defgh) + NADH 

v44 Ser (abc)  Gly (ab) + MEETHF (c) 

v45 Gly (ab)  CO2 (a) + MEETHF (b) + NADH + NH3  

v46 Thr (abcd)  Gly (ab) + AcCoA (cd) + NADH 

v47 Ser (abc) + AcCoA (de) + 3 ATP + 4 NADPH + SO4  Cys (abc) + Ac (de) 

v48 Asp (abcd) + Pyr (efg) + Glu (hijkl) + SucCoA (mnop) + ATP + 2 NADPH   

LL-DAP (½ abcdgfe + ½ efgdcba) + AKG (hijkl) + Suc (½ mnop + ½ ponm) 

v49 LL-DAP (½ abcdefg + ½ gfedcba)  Lys (abcdef) + CO2 (g) 
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v50 Asp (abcd) + 2 ATP + 2 NADPH  Thr (abcd) 

v51 Asp (abcd) + METHF (e) + Cys (fgh) + SucCoA (ijkl) + ATP + 2 NADPH   

Met (abcde) + Pyr (fgh) + Suc (½ ijkl + ½ lkji) + NH3 

v52 Pyr (abc) + Pyr (def) + Glu (ghijk) + NADPH  Val (abcef) + CO2 (d) + AKG 

(ghijk) 

v53 AcCoA (ab) + Pyr (cde) + Pyr (fgh) + Glu (ijklm) + NADPH   

Leu (abdghe) + CO2 (c) + CO2 (f) + AKG (ijklm) + NADH 

v54 Thr (abcd) + Pyr (efg) + Glu (hijkl) + NADPH  Ile (abfcdg) + CO2 (e) + AKG 

(hijkl) + NH3 

v55 PEP (abc) + PEP (def) + E4P (ghij) + Glu (klmno) + ATP + NADPH   

Phe (abcefghij) + CO2 (d) + AKG (klmno) 

v56 PEP (abc) + PEP (def) + E4P (ghij) + Glu (klmno) + ATP + NADPH   

Tyr (abcefghij) + CO2 (d) + AKG (klmno) + NADH 

v57 Ser (abc) + R5P (defgh) + PEP (ijk) + E4P (lmno) + PEP (pqr) + Gln (stuvw) + 3 

ATP + NADPH   

Trp (abcedklmnoj) + CO2 (i) + GAP (fgh) + Pyr (pqr) + Glu (stuvw) 

v58 R5P (abcde) + FTHF (f) + Gln (ghijk) + Asp (lmno) + 5 ATP   

His (edcbaf) + AKG (ghijk) + Fum (lmno) + 2 NADH 

 

One-Carbon Metabolism 

v59 MEETHF (a) + NADH  METHF (a) 

v60 MEETHF (a)  FTHF (a) + NADPH 

 

Oxidative Phosphorylation 

v61 NADH + ½ O2  2 ATP 

v62 FADH2 + ½ O2  1 ATP 

 

Transhydrogenation 

v63 NADH  NADPH 

 

ATP Hydrolysis 

v64 ATP  ATP:ext 

 

Transport 

v65 Ac (ab)  Ac.ext (ab) 

v66 CO2 (a)  CO2.ext (a) 

v67 O2.ext  O2 

v68 NH3.ext  NH3 

v69 SO4.ext  SO4 
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Biomass Formation 

v70 0.470 Ala + 0.281 Arg + 0.236 Asn + 0.236 Asp + 0.087 Cys + 0.280 Glu + 0.280 

Gln + 0.432 Gly + 0.082 His + 0.215 Ile + 0.377 Leu + 0.279 Lys + 0.107 Met + 

0.153 Phe + 0.178 Pro + 0.23 Ser + 0.244 Thr + 0.054 Trp + 0.131 Tyr + 0.315 Val + 

0.270 G6P + 0.071 F6P + 0.851 R5P + 0.081 GAP + 0.628 3PG + 0.051 PEP + 0.083 

Pyr + 1.690 AcCoA + 0.087 AKG + 0.380 OAC + 0.500 MEETHF + 33.601 ATP + 

3.948 NADPH  37.12 Biomass + 1.578 NADH 

 

CO2 Exchange  

v71 CO2.unlabeled (a) + CO2 (b)  CO2 (a) + CO2.out (b) 

 

Table B.2:    Metabolic network model of 13C-MFA of E. coli (upper metabolism) 

Glycolysis 

v1 Gluc.ext (abcdef) + PEP (ghi)  G6P (abcdef) + Pyr (ghi) 

v2 G6P (abcdef)  F6P (abcdef) 

v3 F6P (abcdef)  FBP (abcdef) 

v4 FBP (abcdef)  DHAP (cba) + GAP (def) 

v5 DHAP (abc)  GAP (abc) 

v6 GAP (abc)  3PG (abc) 

v7 3PG (abc)  PEP (abc) 

v8 PEP (abc)  Pyr (abc) 

 

Pentose Phosphate Pathway 

v9 G6P (abcdef)  6PG (abcdef) 

v10 6PG (abcdef)  Ru5P (bcdef) + CO2 (a) 

v11 Ru5P (abcde)  X5P (abcde) 

v12 Ru5P (abcde)  R5P (abcde) 

v13 X5P (abcde)  TK-C2 (ab) + GAP (cde) 

v14 F6P (abcdef)  TK-C2 (ab) + E4P (cdef) 

v15 S7P (abcdefg)  TK-C2 (ab) + R5P (cdefg) 

v16 F6P (abcdef)  TA-C3 (abc) + GAP (def) 

v17 S7P (abcdefg)  TA-C3 (abc) + E4P (defg) 

 

Entner-Doudoroff Pathway 

v18 6PG (abcdef)  KDPG (abcdef) 

v19 KDPG (abcdef)  Pyr (abc) + GAP (def) 
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Xylose Metabolism 

v20 Xyl.ext (abcde)  Xyl (abcde) 

v21 Xyl (abcde)  X5P (abcde) 

 

Out-fluxes 

v22 PEP (abc) + PEP (def) + E4P (ghij)  Phe (abcefghij) + CO2 (d) 

v23 Pyr  Lower Metabolism 

v24 2.040 G6P + 0.536 F6P + 7.463 R5P + 0.612 GAP + 1.400 E4P + 1.156 Phe  

Biomass 

 

Table B.3:    Metabolic network model of 13C-MFA of CHO cells (upper metabolism) 

Glycolysis 

v1 Gluc.ext (abcdef) + PEP (ghi)  G6P (abcdef) + Pyr (ghi) 

v2 G6P (abcdef)  F6P (abcdef) 

v3 F6P (abcdef)  FBP (abcdef) 

v4 FBP (abcdef)  DHAP (cba) + GAP (def) 

v5 DHAP (abc)  GAP (abc) 

v6 GAP (abc)  3PG (abc) 

v7 3PG (abc)  PEP (abc) 

 

Pentose Phosphate Pathway 

v8 G6P (abcdef)  6PG (abcdef) 

v9 6PG (abcdef)  Ru5P (bcdef) + CO2 (a) 

v10 Ru5P (abcde)  X5P (abcde) 

v11 Ru5P (abcde)  R5P (abcde) 

v12 X5P (abcde)  TK-C2 (ab) + GAP (cde) 

v13 F6P (abcdef)  TK-C2 (ab) + E4P (cdef) 

v14 S7P (abcdefg)  TK-C2 (ab) + R5P (cdefg) 

v15 F6P (abcdef)  TA-C3 (abc) + GAP (def) 

v16 S7P (abcdefg)  TA-C3 (abc) + E4P (defg) 

 

Out-fluxes 

v17 PEP  Lower Metabolism 

v18 1.21 G6P + 1.01 R5P + 0.47 DHAP  Biomass 
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SUPPLEMENTARY MATERIAL FOR CHAPTER 7 

Table C.1:    Metabolic Network Model for Ch. 7 

Glycolysis 

v1 Gluc.ext (abcdef) + PEP (ghi)  G6P (abcdef) + Pyr (ghi) 

v2 G6P (abcdef)  F6P (abcdef) 

v3 F6P (abcdef) + ATP  FBP (abcdef) 

v4 FBP (abcdef)  F6P (abcdef) + Pi 

v5 FBP (abcdef)  DHAP (cba) + GAP (def) 

v6 DHAP (abc)  GAP (abc) 

v7 GAP (abc)  3PG (abc) + ATP + NADH 

v8 3PG (abc)  PEP (abc) 

v9 PEP (abc)   Pyr (abc) + ATP 

 

Pentose Phosphate Pathway 

v10 G6P (abcdef)  6PG (abcdef) + NADPH 

v11 6PG (abcdef)  Ru5P (bcdef) + CO2 (a) + NADPH 

v12 Ru5P (abcde)  X5P (abcde) 

v13 Ru5P (abcde)  R5P (abcde) 

v14 X5P (abcde)  TK-C2 (ab) + GAP (cde) 

v15 F6P (abcdef)  TK-C2 (ab) + E4P (cdef) 

v16 S7P (abcdefg)  TK-C2 (ab) + R5P (cdefg) 

v17 F6P (abcdef)  TA-C3 (abc) + GAP (def) 

v18 S7P (abcdefg)  TA-C3 (abc) + E4P (defg) 

 

Entner-Doudoroff Pathway 

v19 6PG (abcdef)  KDPG (abcdef) 

v20 KDPG (abcdef)  Pyr (abc) + GAP (def) 

 

TCA Cycle 

v21 Pyr (abc)  AcCoA (bc) + CO2 (a) + NADH 

Appendix C 
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v22 OAC (abcd) + AcCoA (ef)  Cit (dcbfea) 

v23 Cit (abcdef)  ICit (abcdef) 

v24 ICit (abcdef)  AKG (abcde) + CO2 (f) + NADPH 

v25 AKG (abcde) + CO2.int (f) + NADPH  ICit (abcdef) 

v26 AKG (abcde)  SucCoA (bcde) + CO2 (a) + NADH 

v27 SucCoA (bcde) + CO2.int (a) + NADH  AKG (abcde) 

v28 SucCoA (abcd)  Suc (½ abcd + ½ dcba) + ATP 

v29 Suc (½ abcd + ½ dcba)  Fum (½ abcd + ½ dcba) + FADH2 

v30 Fum (½ abcd + ½ dcba)  Mal (abcd) 

v31 Mal (abcd)  OAC (abcd) + NADH 

 

Glyoxylate Shunt 

v32 ICit (abcdef)  Glyox (ab) + Suc (½ edcf + ½ fcde)          

v33 Glyox (ab) + AcCoA (cd)  Mal (abdc)        

 

Amphibolic Reactions 

v34 Mal (abcd)  Pyr (abc) + CO2 (d) + NADPH 

v35 Mal (abcd)  Pyr (abc) + CO2 (d) + NADH 

v36 PEP (abc) + CO2.int (d)  OAC (abcd) 

v37 OAC (abcd) + ATP  PEP (abc) + CO2 (d) 

 

Acetic Acid Formation 

v38 AcCoA (ab)  Ac (ab) + ATP 

 

Amino Acid Biosynthesis 

v39 AKG (abcde) + NADPH + NH3  Glu (abcde) 

v40 Glu (abcde) + ATP + NH3  Gln (abcde) 

v41 Glu (abcde) + ATP + 2 NADPH  Pro (abcde) 

v42 

Glu (abcde) + CO2 (f) + Gln (ghijk) + Asp (lmno) + AcCoA (pq) + 5 ATP + 

NADPH   

Arg (abcdef) + AKG (ghijk) + Fum (lmno) + Ac (pq) 

v43 OAC (abcd) + Glu (efghi)  Asp (abcd) + AKG (efghi) 

v44 Asp (abcd) + 2 ATP + NH3  Asn (abcd) 

v45 Pyr (abc) + Glu (defgh)  Ala (abc) + AKG (defgh) 

v46 3PG (abc) + Glu (defgh)  Ser (abc) + AKG (defgh) + NADH 

v47 Ser (abc)  Gly (ab) + MEETHF (c) 

v48 Gly (ab)  CO2 (a) + MEETHF (b) + NADH + NH3  

v49 CO2.int (a) + MEETHF (b) + NADH + NH3  Gly (ab) 

v50 Thr (abcd)  Gly (ab) + AcCoA (cd) + NADH 
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v51 Ser (abc) + AcCoA (de) + 3 ATP + 4 NADPH + SO4  Cys (abc) + Ac (de) 

v52 
Asp (abcd) + Pyr (efg) + Glu (hijkl) + SucCoA (mnop) + ATP + 2 NADPH   

LL-DAP (½ abcdgfe + ½ efgdcba) + AKG (hijkl) + Suc (½ mnop + ½ ponm) 

v53 LL-DAP (½ abcdefg + ½ gfedcba)  Lys (abcdef) + CO2 (g) 

v54 Asp (abcd) + 2 ATP + 2 NADPH  Thr (abcd) 

v55 
Asp (abcd) + METHF (e) + Cys (fgh) + SucCoA (ijkl) + ATP + 2 NADPH   

Met (abcde) + Pyr (fgh) + Suc (½ ijkl + ½ lkji) + NH3 

v56 
Pyr (abc) + Pyr (def) + Glu (ghijk) + NADPH  Val (abcef) + CO2 (d) + AKG 

(ghijk) 

v57 
AcCoA (ab) + Pyr (cde) + Pyr (fgh) + Glu (ijklm) + NADPH   

Leu (abdghe) + CO2 (c) + CO2 (f) + AKG (ijklm) + NADH 

v58 
Thr (abcd) + Pyr (efg) + Glu (hijkl) + NADPH  Ile (abfcdg) + CO2 (e) + AKG 

(hijkl) + NH3 

v59 
PEP (abc) + PEP (def) + E4P (ghij) + Glu (klmno) + ATP + NADPH   

Phe (abcefghij) + CO2 (d) + AKG (klmno) 

v60 
PEP (abc) + PEP (def) + E4P (ghij) + Glu (klmno) + ATP + NADPH   

Tyr (abcefghij) + CO2 (d) + AKG (klmno) + NADH 

v61 

Ser (abc) + R5P (defgh) + PEP (ijk) + E4P (lmno) + PEP (pqr) + Gln (stuvw) + 3 

ATP + NADPH   

Trp (abcedklmnoj) + CO2 (i) + GAP (fgh) + Pyr (pqr) + Glu (stuvw) 

v62 
R5P (abcde) + FTHF (f) + Gln (ghijk) + Asp (lmno) + 5 ATP   

His (edcbaf) + AKG (ghijk) + Fum (lmno) + 2 NADH 

v63 Ser (abc)  Pyr (abc) + NH3 

 

One-Carbon Metabolism 

v64 MEETHF (a) + NADH  METHF (a) 

v65 MEETHF (a)  FTHF (a) + NADPH 

 

Oxidative Phosphorylation 

v66 NADH + ½ O2  2 ATP 

v67 FADH2 + ½ O2  1 ATP 

 

Transhydrogenation 

v68 NADH  NADPH 

 

ATP Hydrolysis 

v69 ATP  ATP:ext 

 

Transport 

v70 Ac (ab)  Ac.ext (ab) 
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v71 CO2 (a)  CO2.ext (a) 

v72 O2.ext  O2 

v73 NH3.ext  NH3 

v74 SO4.ext  SO4 

 

Biomass Formation 

v75 

Ala + Arg + Asn + Asp + Cys + Glu + Gln + Gly + His + Ile + Leu + Lys + Met + 

Phe + Pro + Ser + Thr + Trp + Tyr + Val + G6P + F6P + R5P + GAP + 3PG + PEP + 

Pyr + AcCoA + AKG + OAC + MEETHF + ATP + NADPH  Biomass + NADH 

*strain-specific coefficients, based on the measured biomass composition, were used 

 

CO2 Exchange  

v76 CO2.16G (a)  CO2.int (a) + X1 

v77 CO2.12G (a)  CO2.int (a) + X1 

v78 CO2.unlabeled (a)  CO2.int (a) + X1 

v79 CO2.int (a)  CO2.out 

  

Additional Reactions  

ΔpfkA (glucose excretion) 

v80 G6P (abcdef)  Glucose.out (abcdef) 

ΔtpiA (methylglyoxal pathway) 

v80 DHAP (abc)  Mglx (abc) 

v81 Mglx (abc)  Lact (abc) 

v82 Lact (abc)  Pyr (abc) 

 



 328 

Physiological measurements 

Physiological characteristics of these strains, including growth rate, yields, and 

biomass composition, were previously reported (Long et al., 2016b). Here, the growth 

rates from the tracer experiments were found to be consistent with the reported values, 

and used to update the values (Fig. S2). The acetate yield of ΔrpiB was updated. The 

biomass yield estimated from 13C-MFA was used here, including in the calculation of 

glucose uptake rate. These values agreed well with the previously reported, directly 

measured values, assuming a constant dry weight to OD600 conversion of 0.32 

g/L/OD600.  

 

Calculation of glucose secretion 

Let c(t) [mM] be the concentration of medium glucose, X(t) be the labeling of 

medium glucose, Xglg be the labeling of intracellular G6P (i.e., glucose moiety of 

glycogen), v1 be the rate of cellular glucose uptake (e.g., mM/h), and v2 be the rate of 

glucose secretion. 

 
𝑑𝑐

𝑑𝑡
= 𝑣2 − 𝑣1       (Eq. 1)  

 
𝑑(𝑐∗𝑋)

𝑑𝑡
= 𝑣2 ∗ 𝑋𝑔𝑙𝑔 − 𝑣1 ∗ 𝑋     (Eq. 2) 

After substitution: 

𝑑𝑋

𝑑𝑡
=

𝑣2

𝑐
∗ (𝑋𝑔𝑙𝑔 − 𝑋)      (Eq. 3) 
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Dividing (Eq. 1) by (Eq. 3): 

𝑑𝑐

𝑑𝑋
= (

𝑣2−𝑣1

𝑣2
) ∗ (

𝑐

𝑋𝑔𝑙𝑔−𝑋
)      (Eq. 4) 

After integration: 

ln (
𝑋𝑔𝑙𝑔−𝑋

𝑋𝑔𝑙𝑔−𝑋𝑡=0
) = 𝛼 ∗ ln (

𝑐

𝑐𝑡=0
)     (Eq. 5) 

where α = v2/(v1-v2) 

Regression of measured values allows for the estimation of α, and relative secretion is 

calculated as: 

 

v2/v1 = α/(1-α) 

Random flux map generation (for Fig. 4B) 

Random flux maps were generated as described previously (Crown et al., 

2016b). The random flux maps captured a wide range of flux scenarios, with 

glycolysis flux ranging from 10 to 100 (normalized to glucose uptake of 100), oxPPP 

flux ranging 0 to 80, ED flux ranging 0 to 80, TCA cycle ranging 16 to 180, 

glyoxylate shunt ranging 0 to 30, acetate secretion ranging 0 to 70, and growth rate 

from 0.01 to 0.80 h-1. 
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Figure C.1:   Physiological characteristics of wild-type and 20 knockouts. Consensus 

growth rate (average, standard error of the mean) were calculated by 

combining previously reported measurement (Long et al., 2016b) and the 

tracer experiments performed in this study (see Fig. S2). Acetate yield 

was previously reported (Long et al., 2016b), with the value for ΔrpiB 

updated here. Biomass yields were estimated via 13C-MFA here (standard 

errors shown), in good agreement with directly measured values (Long et 

al., 2016b) where a constant dry weight per OD600 is used (0.32 

gDW/L/OD600). Glucose uptake rates were calculated as growth rate 

divided by biomass yield.  
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Figure C.2:   Consensus measured growth rates for all strains. Growth rates were 

previously reported (Long et al., 2016b) (n=3), and are compared to those 

measured during the tracer experiments reported in this study (typically 

n=2; where additional tracer experiments were performed, e.g. for ΔpfkA, 

these were also included). Agreement was excellent, and all 

measurements were combined to calculate consensus growth rate values 

(blue bars, average and standard error of the mean shown).  
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Figure C.3:  Correlation coefficients of predictions and measurements for eleven key, 

normalized, intracellular fluxes. This is as shown in Fig. 4F, with values 

for all strains explicit. The gray shows the correlation of knockout values 

to the wild-type values (i.e., a trivial model assuming no change). This 

serves as a benchmark for judging COBRA methods, as fluxes change 

very little across many of the knockout strains. In the wild-type and these 

strains, FBA scored well but not perfectly (ρ=0.93), with the biggest 

disagreement being that FBA predicts higher oxPPP usage. MOMA and 

RELATCH use the measured wild-type fluxes as the reference, so 

agreement is excellent in the cases of minimal change. The cases of more 

substantial departure from the wild-type are highlighted in Fig. 7.7.  
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SUPPLEMENTARY MATERIAL FOR CHAPTER 9 

Table D.1:   Network model for 13C-MFA. 

Glycolysis 

v1 Gluc.ext (abcdef) + PEP (ghi)  G6P (abcdef) + Pyr (ghi) 

v2 G6P (abcdef)  F6P (abcdef) 

v3 F6P (abcdef) + ATP   FBP (abcdef) 

v4 FBP (abcdef)  DHAP (cba) + GAP (def) 

v5 DHAP (abc)  GAP (abc) 

v6 GAP (abc)  3PG (abc) + ATP + NADH 

v7 3PG (abc)  PEP (abc) 

v8 PEP (abc)   Pyr (abc) + ATP 

 

Pentose Phosphate Pathway 

v9 G6P (abcdef)  6PG (abcdef) + NADPH 

v10 6PG (abcdef)  Ru5P (bcdef) + CO2 (a) + NADPH 

v11 Ru5P (abcde)  X5P (abcde) 

v12 Ru5P (abcde)  R5P (abcde) 

v13 X5P (abcde)  TK-C2 (ab) + GAP (cde) 

v14 F6P (abcdef)  TK-C2 (ab) + E4P (cdef) 

v15 S7P (abcdefg)  TK-C2 (ab) + R5P (cdefg) 

v16 F6P (abcdef)  TA-C3 (abc) + GAP (def) 

v17 S7P (abcdefg)  TA-C3 (abc) + E4P (defg) 

 

Entner-Doudoroff Pathway 

v18 6PG (abcdef)  KDPG (abcdef) 

v19 KDPG (abcdef)  Pyr (abc) + GAP (def) 

 

TCA Cycle 

v20 Pyr (abc)  AcCoA (bc) + CO2 (a) + NADH 

v21 OAC (abcd) + AcCoA (ef)  Cit (dcbfea) 
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v22 Cit (abcdef)  ICit (abcdef) 

v23 ICit (abcdef)  AKG (abcde) + CO2 (f) + NADPH 

v24 AKG (abcde) + CO2.int (f) + NADPH  ICit (abcdef) 

v25 AKG (abcde)  SucCoA (bcde) + CO2 (a) + NADH 

v26 SucCoA (bcde) + CO2.int (a) + NADH  AKG (abcde) 

v27 SucCoA (abcd)  Suc (½ abcd + ½ dcba) + ATP 

v28 Suc (½ abcd + ½ dcba)  Fum (½ abcd + ½ dcba) + FADH2 

v29 Fum (½ abcd + ½ dcba)  Mal (abcd) 

v30 Mal (abcd)  OAC (abcd) + NADH 

 

Glyoxylate Shunt 

v31 ICit (abcdef)  Glyox (ab) + Suc (½ edcf + ½ fcde)          

v32 Glyox (ab) + AcCoA (cd)  Mal (abdc)        

 

Amphibolic Reactions 

v33 Mal (abcd)  Pyr (abc) + CO2 (d) + NADPH 

v34 Mal (abcd)  Pyr (abc) + CO2 (d) + NADH 

v35 PEP (abc) + CO2.int (d)  OAC (abcd) 

v36 OAC (abcd) + ATP  PEP (abc) + CO2 (d) 

 

Product Formation 

v37 AcCoA (ab)  Ac (ab) + ATP 

v38 Pyr (abc) + NADH  Lact (abc) 

 

Amino Acid Biosynthesis 

v39 AKG (abcde) + NADPH + NH3  Glu (abcde) 

v40 Glu (abcde) + ATP + NH3  Gln (abcde) 

v41 Glu (abcde) + ATP + 2 NADPH  Pro (abcde) 

v42 

Glu (abcde) + CO2 (f) + Gln (ghijk) + Asp (lmno) + AcCoA (pq) + 5 ATP + 

NADPH   

Arg (abcdef) + AKG (ghijk) + Fum (lmno) + Ac (pq) 

v43 OAC (abcd) + Glu (efghi)  Asp (abcd) + AKG (efghi) 

v44 Asp (abcd) + 2 ATP + NH3  Asn (abcd) 

v45 Pyr (abc) + Glu (defgh)  Ala (abc) + AKG (defgh) 

v46 3PG (abc) + Glu (defgh)  Ser (abc) + AKG (defgh) + NADH 

v47 Ser (abc)  Gly (ab) + MEETHF (c) 

v48 Gly (ab)  CO2 (a) + MEETHF (b) + NADH + NH3  

v49 CO2.int (a) + MEETHF (b) + NADH + NH3  Gly (ab) 

v50 Thr (abcd)  Gly (ab) + AcCoA (cd) + NADH 
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v51 Ser (abc) + AcCoA (de) + 3 ATP + 4 NADPH + SO4  Cys (abc) + Ac (de) 

v52 
Asp (abcd) + Pyr (efg) + Glu (hijkl) + SucCoA (mnop) + ATP + 2 NADPH   

LL-DAP (½ abcdgfe + ½ efgdcba) + AKG (hijkl) + Suc (½ mnop + ½ ponm) 

v53 LL-DAP (½ abcdefg + ½ gfedcba)  Lys (abcdef) + CO2 (g) 

v54 Asp (abcd) + 2 ATP + 2 NADPH  Thr (abcd) 

v55 
Asp (abcd) + METHF (e) + Cys (fgh) + SucCoA (ijkl) + ATP + 2 NADPH   

Met (abcde) + Pyr (fgh) + Suc (½ ijkl + ½ lkji) + NH3 

v56 
Pyr (abc) + Pyr (def) + Glu (ghijk) + NADPH  Val (abcef) + CO2 (d) + AKG 

(ghijk) 

v57 
AcCoA (ab) + Pyr (cde) + Pyr (fgh) + Glu (ijklm) + NADPH   

Leu (abdghe) + CO2 (c) + CO2 (f) + AKG (ijklm) + NADH 

v58 
Thr (abcd) + Pyr (efg) + Glu (hijkl) + NADPH  Ile (abfcdg) + CO2 (e) + AKG 

(hijkl) + NH3 

v59 
PEP (abc) + PEP (def) + E4P (ghij) + Glu (klmno) + ATP + NADPH   

Phe (abcefghij) + CO2 (d) + AKG (klmno) 

v60 
PEP (abc) + PEP (def) + E4P (ghij) + Glu (klmno) + ATP + NADPH   

Tyr (abcefghij) + CO2 (d) + AKG (klmno) + NADH 

v61 

Ser (abc) + R5P (defgh) + PEP (ijk) + E4P (lmno) + PEP (pqr) + Gln (stuvw) + 3 

ATP + NADPH   

Trp (abcedklmnoj) + CO2 (i) + GAP (fgh) + Pyr (pqr) + Glu (stuvw) 

v62 
R5P (abcde) + FTHF (f) + Gln (ghijk) + Asp (lmno) + 5 ATP   

His (edcbaf) + AKG (ghijk) + Fum (lmno) + 2 NADH 

v63 Ser (abc)  Pyr (abc) + NH3 

 

One-Carbon Metabolism 

v64 MEETHF (a) + NADH  METHF (a) 

v65 MEETHF (a)  FTHF (a) + NADPH 

 

Oxidative Phosphorylation 

v66 NADH + ½ O2  2 ATP 

v67 FADH2 + ½ O2  1 ATP 

 

Transhydrogenation 

v68 NADH  NADPH 

 

ATP Hydrolysis 

v69 ATP  ATP:ext 

 

Transport 

v70 CO2 (a)  CO2.ext (a) 
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v71 O2.ext  O2 

v72 NH3.ext  NH3 

v73 SO4.ext  SO4 

v74 Ac (ab)  Ac.ext (ab) 

v75 Lact (abc)  Lact.ext (abc) 

v76 Pyr (abc)  Pyr.ext (abc) 

v77 Cit (abc)  Cit.ext (abc) 

v78 Suc (abc)  Suc.ext (abc) 

 

Biomass Formation 

v79 

Ala + Arg + Asn + Asp + Cys + Glu + Gln + Gly + His + Ile + Leu + Lys + Met + 

Phe + Pro + Ser + Thr + Trp + Tyr + Val + G6P + F6P + R5P + GAP + 3PG + PEP + 

Pyr + AcCoA + AKG + OAC + MEETHF + ATP + NADPH  Biomass + NADH 

*strain-specific coefficients, based on the measured biomass composition, were used 

 

CO2 Exchange  

v81 CO2.16G (a)  CO2.int (a) + X1 

v82 CO2.12G (a)  CO2.int (a) + X1 

v83 CO2.unlabeled (a)  CO2.int (a) + X1 

v84 CO2.int (a)  CO2.out 

  

Additional Reactions  

ΔaceE (aspartate/fumarate exchange) 

v80 Asp (abcd)  Fum (abcd) 
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Figure D.1   Physiologies of wild-type and 25 knockout strains from lower central 

carbon metabolism, as estimated by 13C-MFA. 

Supplementary Figures for Chapter 9  



 338 

 

Figure D.2:  Carbon balance as estimated by 13C-MFA.  
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SUPPLEMENTARY MATERIAL FOR CHAPTER 10 

Table E.1:    Metabolic network model of E. coli used for 13C-MFA 

Glycolysis 

v1 Gluc.ext (abcdef) + PEP (ghi)  G6P (abcdef) + Pyr (ghi) 

v2 G6P (abcdef)  F6P (abcdef) 

v3 F6P (abcdef) + ATP  FBP (abcdef) 

v4 FBP (abcdef)  DHAP (cba) + GAP (def) 

v5 DHAP (abc)  GAP (abc) 

v6 GAP (abc)  3PG (abc) + ATP + NADH 

v7 3PG (abc)  PEP (abc) 

v8 PEP (abc)   Pyr (abc) + ATP 

 

Pentose Phosphate Pathway 

v9 G6P (abcdef)  6PG (abcdef) + NADPH 

v10 6PG (abcdef)  Ru5P (bcdef) + CO2 (a) + NADPH 

v11 Ru5P (abcde)  X5P (abcde) 

v12 Ru5P (abcde)  R5P (abcde) 

v13 X5P (abcde)  TK-C2 (ab) + GAP (cde) 

v14 F6P (abcdef)  TK-C2 (ab) + E4P (cdef) 

v15 S7P (abcdefg)  TK-C2 (ab) + R5P (cdefg) 

v16 F6P (abcdef)  TA-C3 (abc) + GAP (def) 

v17 S7P (abcdefg)  TA-C3 (abc) + E4P (defg) 

 

Entner-Doudoroff Pathway 

v18 6PG (abcdef)  KDPG (abcdef) 

v19 KDPG (abcdef)  Pyr (abc) + GAP (def) 

 

TCA Cycle 

v20 Pyr (abc)  AcCoA (bc) + CO2 (a) + NADH 

v21 OAC (abcd) + AcCoA (ef)  Cit (dcbfea) 
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v22 Cit (abcdef)  ICit (abcdef) 

v23 ICit (abcdef)  AKG (abcde) + CO2 (f) + NADPH 

v24 AKG (abcde)  SucCoA (bcde) + CO2 (a) + NADH 

v25 SucCoA (bcde) + CO2.int (a) + NADH  AKG (abcde) 

v26 SucCoA (abcd)  Suc (½ abcd + ½ dcba) + ATP 

v27 Suc (½ abcd + ½ dcba)  Fum (½ abcd + ½ dcba) + FADH2 

v28 Fum (½ abcd + ½ dcba)  Mal (abcd) 

v29 Mal (abcd)  OAC (abcd) + NADH 

 

Glyoxylate Shunt 

v30 ICit (abcdef)  Glyox (ab) + Suc (½ edcf + ½ fcde)          

v31 Glyox (ab) + AcCoA (cd)  Mal (abdc)        

 

Amphibolic Reactions 

v32 Mal (abcd)  Pyr (abc) + CO2 (d) + NADPH 

v33 Mal (abcd)  Pyr (abc) + CO2 (d) + NADH 

v34 PEP (abc) + CO2.int (d)  OAC (abcd) 

v35 OAC (abcd) + ATP  PEP (abc) + CO2 (d) 

 

Acetic Acid Formation 

v36 AcCoA (ab)  Ac (ab) + ATP 

 

Amino Acid Biosynthesis 

v37 AKG (abcde) + NADPH + NH3  Glu (abcde) 

v38 Glu (abcde) + ATP + NH3  Gln (abcde) 

v39 Glu (abcde) + ATP + 2 NADPH  Pro (abcde) 

v40 Glu (abcde) + CO2 (f) + Gln (ghijk) + Asp (lmno) + AcCoA (pq) + 5 ATP + 

NADPH   

Arg (abcdef) + AKG (ghijk) + Fum (lmno) + Ac (pq) 

v41 OAC (abcd) + Glu (efghi)  Asp (abcd) + AKG (efghi) 

v42 Asp (abcd) + 2 ATP + NH3  Asn (abcd) 

v43 Pyr (abc) + Glu (defgh)  Ala (abc) + AKG (defgh) 

v44 3PG (abc) + Glu (defgh)  Ser (abc) + AKG (defgh) + NADH 

v45 Ser (abc)  Gly (ab) + MEETHF (c) 

v46 Gly (ab)  CO2 (a) + MEETHF (b) + NADH + NH3  

v47 CO2.int (a) + MEETHF (b) + NADH + NH3  Gly (ab) 

v48 Thr (abcd)  Gly (ab) + AcCoA (cd) + NADH 

v49 Ser (abc) + AcCoA (de) + 3 ATP + 4 NADPH + SO4  Cys (abc) + Ac (de) 

v50 Asp (abcd) + Pyr (efg) + Glu (hijkl) + SucCoA (mnop) + ATP + 2 NADPH   
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LL-DAP (½ abcdgfe + ½ efgdcba) + AKG (hijkl) + Suc (½ mnop + ½ ponm) 

v51 LL-DAP (½ abcdefg + ½ gfedcba)  Lys (abcdef) + CO2 (g) 

v52 Asp (abcd) + 2 ATP + 2 NADPH  Thr (abcd) 

v53 Asp (abcd) + METHF (e) + Cys (fgh) + SucCoA (ijkl) + ATP + 2 NADPH   

Met (abcde) + Pyr (fgh) + Suc (½ ijkl + ½ lkji) + NH3 

v54 Pyr (abc) + Pyr (def) + Glu (ghijk) + NADPH  Val (abcef) + CO2 (d) + AKG 

(ghijk) 

v55 AcCoA (ab) + Pyr (cde) + Pyr (fgh) + Glu (ijklm) + NADPH   

Leu (abdghe) + CO2 (c) + CO2 (f) + AKG (ijklm) + NADH 

v56 Thr (abcd) + Pyr (efg) + Glu (hijkl) + NADPH  Ile (abfcdg) + CO2 (e) + AKG 

(hijkl) + NH3 

v57 PEP (abc) + PEP (def) + E4P (ghij) + Glu (klmno) + ATP + NADPH   

Phe (abcefghij) + CO2 (d) + AKG (klmno) 

v58 PEP (abc) + PEP (def) + E4P (ghij) + Glu (klmno) + ATP + NADPH   

Tyr (abcefghij) + CO2 (d) + AKG (klmno) + NADH 

v59 Ser (abc) + R5P (defgh) + PEP (ijk) + E4P (lmno) + PEP (pqr) + Gln (stuvw) + 3 

ATP + NADPH   

Trp (abcedklmnoj) + CO2 (i) + GAP (fgh) + Pyr (pqr) + Glu (stuvw) 

v60 R5P (abcde) + FTHF (f) + Gln (ghijk) + Asp (lmno) + 5 ATP   

His (edcbaf) + AKG (ghijk) + Fum (lmno) + 2 NADH 

v61 Ser (abc)  Pyr (abc) + NH3 

 

One-Carbon Metabolism 

v62 MEETHF (a) + NADH  METHF (a) 

v63 MEETHF (a)  FTHF (a) + NADPH 

 

Oxidative Phosphorylation 

v64 NADH + ½ O2  2 ATP 

v65 FADH2 + ½ O2  1 ATP 

 

Transhydrogenation 

v66 NADH  NADPH 

 

ATP Hydrolysis 

v67 ATP  ATP.ext 

 

Transport 

v68 Ac (ab)  Ac.ext (ab) 

v69 CO2 (a)  CO2.ext (a) 

v70 O2.ext  O2 
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v71 NH3.ext  NH3 

v72 SO4.ext  SO4 

 

Biomass Formation 

v73 0.488 Ala + 0.281 Arg + 0.229 Asn + 0.229 Asp + 0.087 Cys + 0.250 Glu + 0.250 

Gln + 0.582 Gly + 0.090 His + 0.276 Ile + 0.428 Leu + 0.326 Lys + 0.146 Met + 

0.176 Phe + 0.210 Pro + 0.205 Ser + 0.241 Thr + 0.054 Trp + 0.131 Tyr + 0.402 Val 

+ 0.205 G6P + 0.071 F6P + 0.754 R5P + 0.129 GAP + 0.619 3PG + 0.051 PEP + 

0.083 Pyr + 2.510 AcCoA + 0.087 AKG + 0.340 OAC + 0.443 MEETHF + 33.247 

ATP + 5.363 NADPH  39.68 Biomass + 1.455 NADH 

 

CO2 Exchange  

v76 CO2.16G (a)  CO2.int (a) + X1 

v77 CO2.12G (a)  CO2.int (a) + X1 

v78 CO2.unlabeled (a)  CO2.int (a) + X1 

v79 CO2.int (a)  CO2.out 

  

 

Table E.2:    Physiology of strains 

 

Growth Rate Biomass Yield Acetate Yield Glucose Uptake Rate 

 
1/h S.E. g/g S.E. mol/mol S.E. mmol/gdw/hr S.E. 

WT 0.72 0.02 0.38 0.02 0.70 0.05 10.47 0.52 
pgi 
(unevolved) 0.14 0.00 0.48 0.01 0.00 0.02 1.59 0.05 

ALE-1 0.37 0.01 0.43 0.01 0.34 0.02 4.80 0.15 

ALE-2 0.46 0.01 0.52 0.01 0.10 0.01 4.94 0.16 

ALE-3 0.51 0.02 0.49 0.01 0.24 0.01 5.73 0.24 

ALE-4 0.35 0.00 0.52 0.01 0.05 0.00 3.72 0.08 

ALE-5 0.33 0.01 0.50 0.01 0.15 0.00 3.66 0.10 

ALE-6 0.49 0.03 0.52 0.01 0.12 0.01 5.32 0.28 

ALE-7 0.42 0.02 0.53 0.01 0.11 0.02 4.44 0.20 

ALE-8 0.41 0.00 0.52 0.01 0.05 0.05 4.39 0.07 

ALE-9 0.49 0.01 0.46 0.01 0.15 0.03 5.83 0.24 

ALE-10 0.43 0.01 0.50 0.01 0.10 0.01 4.77 0.18 
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Figure E.1:   Additional physiology of wild-type and Δpgi knockout strains. The 

estimated glucose uptake rates (a), and biomass yields (b) for all strains. 

The wild-type is shown in black, unevolved Δpgi in red, and Δpgi ALE 

strains in blue. The biomass yield was estimated as part of the full 13C-

MFA fitting, with the error bars reflecting standard deviations of the 

estimate. The estimated values were seen to be consistent with those 

estimated from culture measurements. Glucose uptake rates were 

calculated from the growth rates (Fig. 1a) and biomass yields (b), with 

propagated standard errors shown. 

Supplementary Figures for Chapter 10 
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Figure E.2:   Additional cofactor balances. Pathway specific contributions to cofactor 

production and consumption. Balances for NADH/FADH2 (a) and ATP 

(b) are shown in absolute units (normalized contributions are shown in 

Fig. 3). The NADPH balance (c) is shown in normalized units (absolute 

contributions are shown in Fig. 4). 
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Figure E.3:   PYR to PEP flux estimated independently via two 13C tracer methods. 

The percentage of PEP derived from pyruvate, as calculated via 13C-

MFA and via the [U-13C]alanine tracer method were in good overall 

agreement. 
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SUPPLEMENTARY MATERIAL FOR CHAPTER 11 

Table F.1:    Metabolic network model of E. coli used for 13C-MFA 

Glycolysis 

v1 Gluc.ext (abcdef) + PEP (ghi)  G6P (abcdef) + Pyr (ghi) 

v2 G6P (abcdef)  F6P (abcdef) 

v3 F6P (abcdef) + ATP  FBP (abcdef) 

v4 FBP (abcdef)  DHAP (cba) + GAP (def) 

v5 DHAP (abc)  GAP (abc) 

v6 GAP (abc)  3PG (abc) + ATP + NADH 

v7 3PG (abc)  PEP (abc) 

v8 PEP (abc)   Pyr (abc) + ATP 

 

Pentose Phosphate Pathway 

v9 G6P (abcdef)  6PG (abcdef) + NADPH 

v10 6PG (abcdef)  Ru5P (bcdef) + CO2 (a) + NADPH 

v11 Ru5P (abcde)  X5P (abcde) 

v12 Ru5P (abcde)  R5P (abcde) 

v13 X5P (abcde)  TK-C2 (ab) + GAP (cde) 

v14 F6P (abcdef)  TK-C2 (ab) + E4P (cdef) 

v15 S7P (abcdefg)  TK-C2 (ab) + R5P (cdefg) 

v16 F6P (abcdef)  TA-C3 (abc) + GAP (def) 

v17 S7P (abcdefg)  TA-C3 (abc) + E4P (defg) 

 

Entner-Doudoroff Pathway 

v18 6PG (abcdef)  KDPG (abcdef) 

v19 KDPG (abcdef)  Pyr (abc) + GAP (def) 

 

TCA Cycle 

v20 Pyr (abc)  AcCoA (bc) + CO2 (a) + NADH 

v21 OAC (abcd) + AcCoA (ef)  Cit (dcbfea) 

Appendix F 
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v22 Cit (abcdef)  ICit (abcdef) 

v23 ICit (abcdef)  AKG (abcde) + CO2 (f) + NADPH 

v24 AKG (abcde)  SucCoA (bcde) + CO2 (a) + NADH 

v25 SucCoA (bcde) + CO2.int (a) + NADH  AKG (abcde) 

v26 SucCoA (abcd)  Suc (½ abcd + ½ dcba) + ATP 

v27 Suc (½ abcd + ½ dcba)  Fum (½ abcd + ½ dcba) + FADH2 

v28 Fum (½ abcd + ½ dcba)  Mal (abcd) 

v29 Mal (abcd)  OAC (abcd) + NADH 

 

Glyoxylate Shunt 

v30 ICit (abcdef)  Glyox (ab) + Suc (½ edcf + ½ fcde)          

v31 Glyox (ab) + AcCoA (cd)  Mal (abdc)        

 

Amphibolic Reactions 

v32 Mal (abcd)  Pyr (abc) + CO2 (d) + NADPH 

v33 Mal (abcd)  Pyr (abc) + CO2 (d) + NADH 

v34 PEP (abc) + CO2.int (d)  OAC (abcd) 

v35 OAC (abcd) + ATP  PEP (abc) + CO2 (d) 

 

Acetic Acid Formation 

v36 AcCoA (ab)  Ac (ab) + ATP 

 

Amino Acid Biosynthesis 

v37 AKG (abcde) + NADPH + NH3  Glu (abcde) 

v38 Glu (abcde) + ATP + NH3  Gln (abcde) 

v39 Glu (abcde) + ATP + 2 NADPH  Pro (abcde) 

v40 Glu (abcde) + CO2 (f) + Gln (ghijk) + Asp (lmno) + AcCoA (pq) + 5 ATP + 

NADPH   

Arg (abcdef) + AKG (ghijk) + Fum (lmno) + Ac (pq) 

v41 OAC (abcd) + Glu (efghi)  Asp (abcd) + AKG (efghi) 

v42 Asp (abcd) + 2 ATP + NH3  Asn (abcd) 

v43 Pyr (abc) + Glu (defgh)  Ala (abc) + AKG (defgh) 

v44 3PG (abc) + Glu (defgh)  Ser (abc) + AKG (defgh) + NADH 

v45 Ser (abc)  Gly (ab) + MEETHF (c) 

v46 Gly (ab)  CO2 (a) + MEETHF (b) + NADH + NH3  

v47 CO2.int (a) + MEETHF (b) + NADH + NH3  Gly (ab) 

v48 Thr (abcd)  Gly (ab) + AcCoA (cd) + NADH 

v49 Ser (abc) + AcCoA (de) + 3 ATP + 4 NADPH + SO4  Cys (abc) + Ac (de) 

v50 Asp (abcd) + Pyr (efg) + Glu (hijkl) + SucCoA (mnop) + ATP + 2 NADPH   



 348 

LL-DAP (½ abcdgfe + ½ efgdcba) + AKG (hijkl) + Suc (½ mnop + ½ ponm) 

v51 LL-DAP (½ abcdefg + ½ gfedcba)  Lys (abcdef) + CO2 (g) 

v52 Asp (abcd) + 2 ATP + 2 NADPH  Thr (abcd) 

v53 Asp (abcd) + METHF (e) + Cys (fgh) + SucCoA (ijkl) + ATP + 2 NADPH   

Met (abcde) + Pyr (fgh) + Suc (½ ijkl + ½ lkji) + NH3 

v54 Pyr (abc) + Pyr (def) + Glu (ghijk) + NADPH  Val (abcef) + CO2 (d) + AKG 

(ghijk) 

v55 AcCoA (ab) + Pyr (cde) + Pyr (fgh) + Glu (ijklm) + NADPH   

Leu (abdghe) + CO2 (c) + CO2 (f) + AKG (ijklm) + NADH 

v56 Thr (abcd) + Pyr (efg) + Glu (hijkl) + NADPH  Ile (abfcdg) + CO2 (e) + AKG 

(hijkl) + NH3 

v57 PEP (abc) + PEP (def) + E4P (ghij) + Glu (klmno) + ATP + NADPH   

Phe (abcefghij) + CO2 (d) + AKG (klmno) 

v58 PEP (abc) + PEP (def) + E4P (ghij) + Glu (klmno) + ATP + NADPH   

Tyr (abcefghij) + CO2 (d) + AKG (klmno) + NADH 

v59 Ser (abc) + R5P (defgh) + PEP (ijk) + E4P (lmno) + PEP (pqr) + Gln (stuvw) + 3 

ATP + NADPH   

Trp (abcedklmnoj) + CO2 (i) + GAP (fgh) + Pyr (pqr) + Glu (stuvw) 

v60 R5P (abcde) + FTHF (f) + Gln (ghijk) + Asp (lmno) + 5 ATP   

His (edcbaf) + AKG (ghijk) + Fum (lmno) + 2 NADH 

v61 Ser (abc)  Pyr (abc) + NH3 

 

One-Carbon Metabolism 

v62 MEETHF (a) + NADH  METHF (a) 

v63 MEETHF (a)  FTHF (a) + NADPH 

 

Oxidative Phosphorylation 

v64 NADH + ½ O2  2 ATP 

v65 FADH2 + ½ O2  1 ATP 

 

Transhydrogenation 

v66 NADH  NADPH 

 

ATP Hydrolysis 

v67 ATP  ATP.ext 

 

Transport 

v68 Ac (ab)  Ac.ext (ab) 

v69 CO2 (a)  CO2.ext (a) 

v70 O2.ext  O2 
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v71 NH3.ext  NH3 

v72 SO4.ext  SO4 

 

Biomass Formation 

v73 0.488 Ala + 0.281 Arg + 0.229 Asn + 0.229 Asp + 0.087 Cys + 0.250 Glu + 0.250 

Gln + 0.582 Gly + 0.090 His + 0.276 Ile + 0.428 Leu + 0.326 Lys + 0.146 Met + 

0.176 Phe + 0.210 Pro + 0.205 Ser + 0.241 Thr + 0.054 Trp + 0.131 Tyr + 0.402 Val 

+ 0.205 G6P + 0.071 F6P + 0.754 R5P + 0.129 GAP + 0.619 3PG + 0.051 PEP + 

0.083 Pyr + 2.510 AcCoA + 0.087 AKG + 0.340 OAC + 0.443 MEETHF + 33.247 

ATP + 5.363 NADPH  39.68 Biomass + 1.455 NADH 

 

CO2 Exchange  

v76 CO2.16G (a)  CO2.int (a) + X1 

v77 CO2.12G (a)  CO2.int (a) + X1 

v78 CO2.unlabeled (a)  CO2.int (a) + X1 

v79 CO2.int (a)  CO2.out 
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Supplementary Figures for Chapter 11 
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Figure F.1:   Quantitative cofactor balances, normalized to glucose uptake. For each 

strain, the contributions of metabolic pathways to the production and 

consumption of cofactors are calculated. Positive values reflect 

production of cofactor, and negative values reflect consumption. Shown 

are balances for NADH/FADH2 (lumped) (A), NADPH (B), and ATP 

(C). “Other” in the ATP panel represents the estimated ATP maintenance 

cost (here, assuming P/O ratio=2.0). 

 

Figure F.2:   Biomass yield (gDW/ggluc) as directly measured (as in Fig. 11.1) and as 

estimated via 13C-MFA. 
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SUPPPLEMENTAL MATERIAL FOR CHAPTER 12 

Table G.1:   Metabolic network model of Vibrio natriegens used for 13C-MFA 

Glycolysis 

v1 Gluc.ext (abcdef) + PEP (ghi)  G6P (abcdef) + Pyr (ghi) 

v2 G6P (abcdef)  F6P (abcdef) 

v3 F6P (abcdef) + ATP  FBP (abcdef) 

v4 FBP (abcdef)  DHAP (cba) + GAP (def) 

v5 DHAP (abc)  GAP (abc) 

v6 GAP (abc)  3PG (abc) + ATP + NADH 

v7 3PG (abc)  PEP (abc) 

v8 PEP (abc)  Pyr (abc) + ATP 

 

Pentose Phosphate Pathway 

v9 G6P (abcdef)  6PG (abcdef) + NADPH 

v10 6PG (abcdef)  Ru5P (bcdef) + CO2 (a) + NADPH 

v11 Ru5P (abcde)  X5P (abcde) 

v12 Ru5P (abcde)  R5P (abcde) 

v13 X5P (abcde)  TK-C2 (ab) + GAP (cde) 

v14 F6P (abcdef)  TK-C2 (ab) + E4P (cdef) 

v15 S7P (abcdefg)  TK-C2 (ab) + R5P (cdefg) 

v16 F6P (abcdef)  TA-C3 (abc) + GAP (def) 

v17 S7P (abcdefg)  TA-C3 (abc) + E4P (defg) 

 

Entner-Doudoroff Pathway 

v18 6PG (abcdef)  KDPG (abcdef) 

v19 KDPG (abcdef)  Pyr (abc) + GAP (def) 

 

TCA Cycle 

v20 Pyr (abc)  AcCoA (bc) + CO2 (a) + NADH 

v21 OAC (abcd) + AcCoA (ef)  Cit (dcbfea) 

Appendix G 
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v22 Cit (abcdef)  ICit (abcdef) 

v23 ICit (abcdef)  AKG (abcde) + CO2 (f) + NADPH 

v24 AKG (abcde)  SucCoA (bcde) + CO2 (a) + NADH 

v25 SucCoA (abcd)  Suc (½ abcd + ½ dcba) + ATP 

v26 Suc (½ abcd + ½ dcba)  Fum (½ abcd + ½ dcba) + FADH2 

v27 Fum (½ abcd + ½ dcba)  Mal (abcd) 

v28 Mal (abcd)  OAC (abcd) + NADH 

 

Glyoxylate Shunt 

v29 ICit (abcdef)  Glyox (ab) + Suc (½ edcf + ½ fcde)          

v30 Glyox (ab) + AcCoA (cd)  Mal (abdc)        

 

Amphibolic Reactions 

v31 Mal (abcd)  Pyr (abc) + CO2 (d) + NADPH 

v32 PEP (abc) + CO2 (d)  OAC (abcd) 

v33 OAC (abcd) + ATP  PEP (abc) + CO2 (d) 

 

Acetic Acid Formation 

v34 AcCoA (ab)  Ac (ab) + ATP 

 

Amino Acid Biosynthesis 

v35 AKG (abcde) + NADPH + NH3  Glu (abcde) 

v36 Glu (abcde) + ATP + NH3  Gln (abcde) 

v37 Glu (abcde) + ATP + 2 NADPH  Pro (abcde) 

v38 Glu (abcde) + CO2 (f) + Gln (ghijk) + Asp (lmno) + AcCoA (pq) + 5 ATP + 

NADPH  Arg (abcdef) + AKG (ghijk) + Fum (lmno) + Ac (pq) 

v39 OAC (abcd) + Glu (efghi)  Asp (abcd) + AKG (efghi) 

v40 Asp (abcd) + 2 ATP + NH3  Asn (abcd) 

v41 Pyr (abc) + Glu (defgh)  Ala (abc) + AKG (defgh) 

v42 3PG (abc) + Glu (defgh)  Ser (abc) + AKG (defgh) + NADH 

v43 Ser (abc)  Gly (ab) + MEETHF (c) 

v44 Gly (ab)  CO2 (a) + MEETHF (b) + NADH + NH3  

v45 Thr (abcd)  Gly (ab) + AcCoA (cd) + NADH 

v46 Ser (abc) + AcCoA (de) + 3 ATP + 4 NADPH + SO4  Cys (abc) + Ac (de) 

v47 Asp (abcd) + Pyr (efg) + Glu (hijkl) + SucCoA (mnop) + ATP + 2 NADPH   

LL-DAP (½ abcdgfe + ½ efgdcba) + AKG (hijkl) + Suc (½ mnop + ½ ponm) 

v48 LL-DAP (½ abcdefg + ½ gfedcba)  Lys (abcdef) + CO2 (g) 

v49 Asp (abcd) + 2 ATP + 2 NADPH  Thr (abcd) 

v50 Asp (abcd) + METHF (e) + Cys (fgh) + SucCoA (ijkl) + ATP + 2 NADPH   
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Met (abcde) + Pyr (fgh) + Suc (½ ijkl + ½ lkji) + NH3 

v51 Pyr (abc) + Pyr (def) + Glu (ghijk) + NADPH  Val (abcef) + CO2 (d) + AKG 

(ghijk) 

v52 AcCoA (ab) + Pyr (cde) + Pyr (fgh) + Glu (ijklm) + NADPH   

Leu (abdghe) + CO2 (c) + CO2 (f) + AKG (ijklm) + NADH 

v53 Thr (abcd) + Pyr (efg) + Glu (hijkl) + NADPH  Ile (abfcdg) + CO2 (e) + AKG 

(hijkl) + NH3 

v54 PEP (abc) + PEP (def) + E4P (ghij) + Glu (klmno) + ATP + NADPH   

Phe (abcefghij) + CO2 (d) + AKG (klmno) 

v55 PEP (abc) + PEP (def) + E4P (ghij) + Glu (klmno) + ATP + NADPH   

Tyr (abcefghij) + CO2 (d) + AKG (klmno) + NADH 

v56 Ser (abc) + R5P (defgh) + PEP (ijk) + E4P (lmno) + PEP (pqr) + Gln (stuvw) + 3 

ATP + NADPH   

Trp (abcedklmnoj) + CO2 (i) + GAP (fgh) + Pyr (pqr) + Glu (stuvw) 

v57 R5P (abcde) + FTHF (f) + Gln (ghijk) + Asp (lmno) + 5 ATP   

His (edcbaf) + AKG (ghijk) + Fum (lmno) + 2 NADH 

 

One-Carbon Metabolism 

v58 MEETHF (a) + NADH  METHF (a) 

v59 MEETHF (a)  FTHF (a) + NADPH 

 

Oxidative Phosphorylation 

v60 NADH + ½ O2  2 ATP 

v61 FADH2 + ½ O2  1 ATP 

 

Transhydrogenation 

v62 NADH  NADPH 

 

ATP Hydrolysis 

v63 ATP  ATP:ext 

 

Transport 

v64 Ac (ab)  Ac.ext (ab) 

v65 CO2 (a)  CO2.ext (a) 

v66 O2.ext  O2 

v67 NH3.ext  NH3 

v68 SO4.ext  SO4 

 

Biomass Formation 

v69 0.418 Ala + 0.240 Arg + 0.188 Asn + 0.188 Asp + 0.074 Cys + 0.340 Glu + 0.340 
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Gln + 0.384 Gly + 0.071 His + 0.186 Ile + 0.314 Leu + 0.261 Lys + 0.104 Met + 

0.134 Phe + 0.144 Pro + 0.203 Ser + 0.210 Thr + 0.046 Trp + 0.094 Tyr + 0.280 Val 

+ 0.260 G6P + 0.071 F6P + 1.002 R5P + 0.129 GAP + 0.764 3PG + 0.051 PEP + 

0.083 Pyr + 2.490 AcCoA + 0.087 AKG + 0.443 OAC + 0.588 MEETHF + 33.912 

ATP + 5.482 NADPH  38.093 Biomass + 1.891 NADH 

 

CO2 Exchange  

v70 CO2.unlabeled (a) + CO2 (b)  CO2 (a) + CO2.out (b) 

Table G.2:    Biomass composition analysis of V. natriegens grown on glucose under   

aerobic conditions. 

Overall biomass composition (%DW) 

Protein 46.5 

RNA 28.6 

Lipid 7.5 

Glycogen 3.4 

  Amino acids (umol/gProtein) 

Ala 898 

Arg not measured 

Asx 807 

Cys not measured 

Glx 1464 

Gly 825 

His 153 

Ile 399 

Leu 675 

Lys 560 

Met 224 

Phe 288 

Pro 310 

Ser 437 

Thr 452 

Trp not measured 

Tyr 203 

Val 603 

  Fatty acids (umol/gFA) 
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C14:0 454 

C16:1 1628 

C16:0 1263 

C18:1 469 

C18:0 91 

 

Table G.3     Metabolic fluxes for Vibrio natriegens as estimated by 13C-MFA 

 

Shown are the estimated net and exchange fluxes (normalized to substrate uptake rate 

of 100). 

Accurate 95% confidence intervals of fluxes (LB95 = lower bound, UB95 = upper 

bound) were determined by evaluating the sensitivity of the minimized SSR to flux 

variations (Antoniewicz et al., 2006) 

Number of fitted data sets: 2 

Number of fitted measurements: 224 

SSR: 188 

Statistically Accepted: Yes 

 

ABSOLUTE GLUCOSE UPTAKE RATE (mmol/gDW/h): 21.4 

FLUXES NORMALIZED TO 100 UNITS GLUCOSE UPTAKE 

Rxn Flux best fit LB95 UB95 

1 Gluc.Ext + PEP -> G6P + Pyr 100.0 99.9 100.1 

2 G6P <=> F6P (net) 80.2 79.2 81.1 

3 F6P + ATP <=> FBP (net) 83.9 82.7 85.1 

4 FBP <=> DHAP + GAP (net) 83.9 82.7 85.1 

5 DHAP <=> GAP (net) 83.9 82.7 85.1 

6 GAP <=> 3PG + ATP + NADH (net) 168.7 166.0 171.3 

7 3PG <=> PEP (net) 153.8 149.7 157.8 

8 PEP <=> Pyr + ATP (net) 22.3 15.6 28.2 

9 G6P -> 6PG + NADPH 17.6 16.9 18.4 

10 6PG -> Ru5P + CO2 + NADPH 17.0 16.3 17.9 

11 Ru5P <=> X5P (net) 4.3 4.0 4.7 

12 Ru5P <=> R5P (net) 12.7 11.8 13.7 

13 X5P <=> GAP + E-C2 (net) 4.3 4.0 4.7 

14 F6P <=> E4P + E-C2 (net) -1.0 -1.3 -0.8 

15 S7P <=> R5P + E-C2 (net) -3.3 -3.5 -3.2 

16 F6P <=> GAP + E-C3 (net) -3.3 -3.5 -3.2 
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17 S7P <=> E4P + E-C3 (net) 3.3 3.2 3.5 

18 6PG -> KDPG 0.6 0.3 0.9 

19 KDPG -> GAP + Pyr 0.6 0.3 0.9 

20 Pyr -> AcCoA + CO2 + NADH 109.7 101.3 117.8 

21 AcCoA + OAC -> Cit 17.0 15.5 18.4 

22 Cit <=> ICit (net) 17.0 15.5 18.4 

23 ICit <=> AKG + CO2 + NADPH (net) 17.0 15.5 18.4 

24 

AKG <=> SucCoA + CO2 + NADH 

(net) 7.3 6.5 8.0 

25 SucCoA <=> Suc + ATP (net) 4.3 3.5 4.9 

26 Suc <=> Fum + FADH2 (net) 7.3 6.5 8.0 

27 Fum <=> Mal (net) 10.0 9.0 10.8 

28 Mal <=> OAC + NADH (net) 6.5 5.4 7.2 

29 ICit <=> Glyox + Suc (net) 0.0 0.0 0.3 

30 AcCoA + Glyox -> Mal 0.0 0.0 0.3 

31 Mal -> Pyr + CO2 + NADPH 3.5 2.8 4.6 

32 PEP + CO2 -> OAC 26.5 24.1 28.1 

33 OAC + ATP -> PEP + CO2 0.0 0.0 1.2 

34 AcCoA   <=> Ac + ATP (net) 65.6 53.1 77.6 

35 AKG + NADPH  + NH3 -> Glu 46.4 42.0 50.8 

36 Glu + ATP  + NH3 -> Gln 5.9 5.3 6.4 

37 Glu + 2 NADPH + ATP -> Pro 1.2 1.1 1.3 

38 

Glu + CO2 + Gln + NADPH + Asp + 

AcCoA + 5 ATP -> Arg + AKG  + Fum 

+ Ac 2.0 1.8 2.2 

39 OAC + Glu -> Asp + AKG 12.2 11.0 13.3 

40 Asp  + 2 ATP + NH3 -> Asn 1.6 1.4 1.7 

41 Pyr + Glu -> Ala + AKG 3.5 3.2 3.9 

42 3PG + Glu  -> Ser + NADH + AKG 8.4 7.7 9.2 

43 Ser <=> Gly + MEETHF (net) 4.8 4.4 5.3 

44 

Gly <=> CO2 + MEETHF  + NADH + 

NH3 (net) 1.6 1.4 1.7 

45 Thr  <=> Gly + AcCoA + NADH (net) 0.0 0.0 0.2 

46 

Ser + AcCoA + SO4 + 3 ATP + 4 

NADPH + SO4 -> Cys + Ac 1.5 1.4 1.6 

47 

Asp + Pyr + Glu + 2 NADPH + ATP + 

SucCoA -> LL-DAP + AKG + Suc 2.2 2.0 2.4 

48 LL-DAP -> Lys + CO2 2.2 2.0 2.4 

49 Asp + 2 NADPH + 2 ATP -> Thr 3.3 3.0 3.6 

50 Asp + METHF + Cys + 2 NADPH + 0.9 0.8 1.0 
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ATP + SucCoA -> Met + Pyr + Suc + 

NH3 

51 

2 Pyr + NADPH + Glu -> Val + CO2  + 

AKG 2.4 2.1 2.6 

52 

2 Pyr + AcCoA + Glu + NADPH  -> 

Leu + 2 CO2 + AKG  + NADH 2.6 2.4 2.9 

53 

Thr + Pyr + Glu + NADPH -> Ile + 

CO2 + AKG + NH3 1.6 1.4 1.7 

54 

E4P + 2 PEP + Glu + NADPH + ATP -

> Phe + CO2 + AKG 1.1 1.0 1.2 

55 

E4P + 2 PEP + Glu + NADPH  + ATP -

> Tyr + CO2 + AKG  + NADH 0.8 0.7 0.9 

56 

E4P + 2 PEP + R5P + Ser + Gln + 

NADPH + 3 ATP -> Trp + CO2 + Pyr 

+ GAP + Glu 0.4 0.4 0.4 

57 

R5P + FTHF + Gln + Asp + 5 ATP -> 

His + 2 NADH + AKG + Fum 0.6 0.5 0.7 

58 MEETHF + NADH -> METHF 0.9 0.8 1.0 

59 MEETHF  -> FTHF + NADPH 0.6 0.5 0.7 

60 NADH + 0.5 O2 -> 2 ATP 253.0 236.2 268.9 

61 FADH2 + 0.5 O2 -> ATP 7.3 6.5 8.0 

62 NADH  <=> NADPH  (net) 68.9 59.1 78.2 

63 ATP -> ATP.Ext 364.3 279.1 448.3 

64 Ac -> Ac.Ext 69.1 57.0 80.7 

65 CO2 -> CO2.Ext 141.4 134.2 148.2 

66 O2.Ext -> O2 130.2 121.9 138.0 

67 NH3.Ext -> NH3 49.8 45.1 54.6 

68 SO4.Ext -> SO4 1.5 1.4 1.6 

69 Biomass production (Cmol of biomass) 320.6 290.5 351.8 

70 Intracellular CO2 dilution 19.7 6.2 33.6 

     EXCHANGE 

FLUXES 

   2 G6P <=> F6P (exch) 84.5 57.2 124.9 

4 FBP <=> DHAP + GAP (exch) 109.2 0.0 Inf 

5 DHAP <=> GAP (exch) 202.6 0.0 Inf 

6 GAP <=> 3PG + ATP + NADH (exch) 201.1 0.0 Inf 

7 3PG <=> PEP (exch) 202.7 0.0 Inf 

11 Ru5P <=> X5P (exch) 73.7 23.7 Inf 

12 Ru5P <=> R5P (exch) >1000 0.9 Inf 

13 X5P <=> GAP + E-C2 (exch) 38.7 23.7 Inf 
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14 F6P <=> E4P + E-C2 (exch) 3.4 3.1 3.7 

15 S7P <=> R5P + E-C2 (exch) 0.8 0.4 Inf 

16 F6P <=> GAP + E-C3 (exch) 7.3 4.4 11.4 

17 S7P <=> E4P + E-C3 (exch) 103.1 0.4 Inf 

22 Cit <=> ICit (exch) 25.6 0.0 Inf 

24 

AKG <=> SucCoA + CO2 + NADH 

(exch) 1.8 1.3 2.8 

25 SucCoA <=> Suc + ATP (exch) >1000 17.7 Inf 

26 Suc <=> Fum + FADH2 (exch) >1000 14.4 Inf 

27 Fum <=> Mal (exch) >1000 >1000 Inf 

28 Mal <=> OAC + NADH (exch) 3.6 1.0 7.1 

29 ICit <=> Glyox + Suc (exch) 0.3 0.1 0.5 

34 AcCoA <=> Ac + ATP (exch) 67.7 0.0 Inf 

43 Ser <=> Gly + MEETHF (exch) 2.0 1.8 2.2 

44 

Gly <=> CO2 + MEETHF  + NADH + 

NH3 (exch 0.0 0.0 0.0 

62 NADH <=> NADPH (exch) 130.1 0.0 Inf 

     FRACTIONAL 

LABELING OF 

AMINO ACIDS 

(G-VALUES) 

   

 

Fractional labeling of Gly (data set #1)                                    94% 93% 95% 

 

Fractional labeling of Val (data set #1)                                    89% 89% 90% 

 

Fractional labeling of Leu (data set #1)                                    87% 86% 87% 

 

Fractional labeling of Ile (data set #1)                                    88% 87% 89% 

 

Fractional labeling of Ser (data set #1)                                    97% 96% 98% 

 

Fractional labeling of Thr (data set #1)                                    92% 91% 93% 

 

Fractional labeling of Phe (data set #1)                                    86% 85% 86% 

 

Fractional labeling of Asp (data set #1)                                    94% 93% 94% 

 

Fractional labeling of Glu (data set #1)                                    94% 93% 94% 

 

Fractional labeling of Tyr (data set #1)                                    94% 93% 95% 

 

Fractional labeling of R5P (data set #1)                                    99% 98% 100% 

 

Fractional labeling of G6P (data set #1)                                    98% 98% 99% 

 

Fractional labeling of Ala (data set #2)                                    89% 88% 89% 

 

Fractional labeling of Gly (data set #2)                                    89% 0% 100% 

 

Fractional labeling of Val (data set #2)                                    84% 83% 84% 

 

Fractional labeling of Leu (data set #2)                                    80% 79% 80% 

 

Fractional labeling of Ile (data set #2)                                    81% 80% 81% 

 

Fractional labeling of Ser (data set #2)                                    97% 97% 98% 
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Fractional labeling of Thr (data set #2)                                    88% 88% 88% 

 

Fractional labeling of Phe (data set #2)                                    79% 79% 79% 

 

Fractional labeling of Asp (data set #2)                                    91% 91% 92% 

 

Fractional labeling of Glu (data set #2)                                    92% 91% 92% 

 

Fractional labeling of Tyr (data set #2)                                    0% 0% 100% 

 

Fractional labeling of R5P (data set #2)                                    97% 97% 98% 

 

Fractional labeling of G6P (data set #2)                                    96% 96% 97% 

 

** data set #1 = [1,2]Glucose 

   

 

** data set #2 = [1,6]Glucose 

   

     CARBON 

BALANCE 

(mol/100 mol 

substrate) 

   

 

Substrate uptake 100.0 

  

 

Biomass production 320.6 

  

 

Acetate production 69.1 

  

 

CO2 production 141.4 

  

     CARBON 

BALANCE 

(Cmol/Cmol) 

   

 

Biomass production 53% 

  

 

Acetate production 23% 

  

 

CO2 production 24% 

  

     CO-FACTOR 

BALANCES 

(mol/100 mol 

substrate) 

 

NADH/FADH2 NADPH ATP 

 

Sustrate uptake 0.0 0.0 100.0 

 

Glycolysis 168.7 0.0 207.1 

 

PPP pathway 0.0 34.7 0.0 

 

TCA cycle 130.8 17.0 4.3 

 

Product formation 0.0 0.0 65.6 

 

Biomass formation 29.7 -124.0 

-

326.0 

 

Transhydrogenase -68.9 68.9 0.0 

 

Oxidative phosphorylation -260.3 0.0 513.4 

 

Other 0.0 3.5 364.3 
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     CO-FACTOR 

BALANCES 

(mmol/gDW/h) 

 

NADH/FADH2 NADPH ATP 

 

Sustrate uptake 0.0 0.0 -21.4 

 

Glycolysis 36.1 0.0 44.3 

 

PPP pathway 0.0 7.4 0.0 

 

TCA cycle 28.0 3.6 0.9 

 

Product formation 0.0 0.0 14.0 

 

Biomass formation 6.4 -26.5 -69.8 

 

Transhydrogenase -14.7 14.7 0.0 

 

Oxidative phosphorylation -55.7 0.0 109.9 

 

Other 0.0 0.7 -78.0 

     GLUCOSE 

UPTAKE AND 

BIOMASS 

DATA 

   

 

Substrate uptake rate (mmol/gDW/h) 21.40 

  

 

Biomass reaction (ATP/Cmol) -0.890 

  

 

Biomass reaction (NADPH/Cmol) -0.144 

  

 

Biomass reaction (NADH/Cmol) 0.050 
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Figure G.1:  Carbon and cofactor balances of V. natriegens and E. coli. (A) The 

overall carbon balances reflect the fates of glucose on an absolute 

(mmol/gDW/h) basis. (B) The metabolic pathways responsible for the 

production and consumption of the cofactors NADH/FADH2, NADPH, 

and ATP are summarized, on a normalized (per unit glucose) basis. For 

the ATP balance, the production rate from oxidative phosphorylation and 

the maintenance cost (‘Other’) are based on an assumed effective P/O 

ratio of 2. As this has not been reliably measured in V. natriegens, this 

result should be interpreted with caution. 
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