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Abstract—For the problem of target localization under the
multipath propagation environment, the existing methods are
mainly restricted to the limited prior information of complex
reflections, especially when the target is embedded in a mixed
interference environment. They may suffer from performance
degradation due to the shortage of target classification ability. To
address this problem, we propose a target localization method
based on iterative implementation with semi-unitary constraint
and eigen-decomposition technique, where a practical propaga-
tion scenario based on the spherical earth model is considered.
Compared to the previous works, the proposed method can
automatically distinguish a real target from the mixed interfer-
ence environment with improved localization accuracy. Neither
additional decorrelation preprocessing nor prior information of
the dynamic scenario is required. Both simulations and real
data experiments validate the effectiveness and robustness of the
proposed method.

Index Terms—Complex multipath propagation, direction of
arrival (DOA) estimation, mixed interference, semi-unitary con-
straint, target classification and localization.

I. INTRODUCTION

TARGET localization via direction-of-arrival (DOA) esti-
mation is an essential task in many radar applications,

such as radio frequency interference source localization for
Earth remote sensing, radar ice sounding, and objects detec-
tion and localization [1]–[3]. One of the challenges is the
presence of target echo embedded in an unknown multipath
propagation environment or in scenarios where interferences
are present [4]–[8]. Classical target localization methods may
no longer be optimal in such environments resulting in
performance deterioration [9], [10]. Solving this problem is
non-trivial since the received signals comprise pure target
reflection as well as the multiple coherent and uncorrelated
interferences, resulting in spatial fluctuation in the received
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signal’s amplitude, phase, and DOA. Moreover, the interfering
sources and the target may be too closely spaced with respect
to the nominal array resolution.

Over the last few decades, a number of techniques have been
developed for target localization [11]–[18]. High-resolution
subspace-based methods, such as the multiple signal classi-
fication (MUSIC) method [11], combined with the decorre-
lation preprocessing of spatial smoothing [12] are commonly
employed in the presence of multipath propagation. However,
the decorrelation process reduces the resolution and the degree
of freedom of the radar system. In [13], the relax method based
on an iterative search is proposed to address the coherent DOA
estimation problem, albeit the extensive multidimensional
search of location parameters being required. By exploiting
prior information of the multipath propagation environment,
a class of refined maximum likelihood (RML) [14], [15]
can directly be utilized to achieve efficient target localization
performance involving coherent interference with less compu-
tation load. The performance of these methods, however, may
be limited in practical applications due to model mismatch of
the dynamic interference propagation environment.

While the use of accurate prior information can enhance
target localization performance in an environment where inter-
fering sources are present, such information may not be readily
available [19]. Moreover, prevalent target localization meth-
ods are based primarily on the classical two-ray propagation
model without considering other reflected waves. Although
this model performs reasonably well in a smooth terrain
environment, it may lead to a significant model mismatch
in a time-varying multipath environment, where an undesired
signal (e.g., the spatial distribution of the reflecting paths) may
vary with time [20]–[22]. To address this problem, a target
localization method was proposed, where the uncertainty of
the multipath propagation is considered [21]. However, the
performance of this method may be reduced when the low-
rank assumption is not satisfied, such as when a target is
present in a mixed interference environment. In such a sce-
nario, the ability to classify targets is required to achieve
accurate localization performance. This problem has not been
addressed in the above-mentioned methods.

We propose a robust target localization algorithm in the
presence of interference without the need for additional decor-
relation preprocessing or any prior information pertaining to
the propagation environment. Our contributions include:

(i) An improved geometric propagation model for target
localization is established. This model takes into account
the coexistence of both uncorrelated and coherent in-
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terferences induced by interfering sources and complex
terrain reflections based on the spherical earth model.
By taking advantage of the proposed model, the non-
practical assumption imposed by the classical two-ray
multipath propagation model can be avoided and the
effect of the mixed interference can effectively be elimi-
nated. Therefore, the robustness of the propagation model
under a practical environment is enhanced.

(ii) A new target localization algorithm based on the itera-
tive implementation of the minimum mean-square error
(MMSE) framework with semi-unitary constraint and the
eigen-decomposition technique is proposed to amelio-
rate the influence of interference to achieve accurate
estimation of target location parameters. By focusing
on the limitation of the prior information in practi-
cal applications, DOAs of the incident paths are first
detected using the iterative strategy without any prior
information about the dynamic environment. The eigen-
decomposition technique is subsequently employed to
associate the detected reflecting paths with their corre-
sponding target by exploiting the spatial signals’ coher-
ence structure. Therefore, a real target can effectively
be distinguished from mixed interference environment,
resulting in an improved localization performance.

In contrast to the previous works, the proposed method
can effectively mitigate the detrimental effects of interference
without additional decorrelation preprocessing. The desired
target signal can automatically be classified from the mixed
interference environment by the proposed method. The main
advantages of the proposed method include that it is insensitive
to the multipath coherence and it does not require any prior
information of the path association and reflections of the
illuminated terrain. It also does not require prior knowledge
of the sparsity level of spatial interferences. We demonstrate
the efficacy of the proposed model and approach via both
simulated and experiment results.

The remainder of this paper is organized as follows:
Section II establishes the geometric propagation model for
target localization in the mixed interference environment. The
mathematical model of the received signal is formulated in
Section III. Section IV describes the proposed method for
target classification and localization in detail. Simulation and
experiment results to validate the performance of the proposed
method under various scenarios are presented and discussed
in Section V. Finally, Section VI concludes the paper.

II. PRACTICAL GEOMETRY MODEL FOR TARGET
LOCALIZATION

A target localization scenario is depicted in Fig. 1, where
both the complex reflections from the earth’s ground surface
and the mixed interference are taken into consideration. Points
A, Bk, and T denote for the radar site, the kth ground
reflection point corresponding to the kth indirect path, and
the target position, respectively, where k = 1, 2, · · · ,K with
K being the number of the reflecting multipaths from the
ground surface. In addition, point markers C, Dk, E, and O
represent the projection point of the radar site to the earth
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Fig. 1. Propagation geometry model for target localization under the mixed
interference environment, where the dashed line, the dash-dotted line, and the
double dot dashed line represent the kth reflecting surface plane, the horizontal
plane, and the array centroid, respectively.

surface, the kth projection point of Bk to the earth surface, the
target’s projection point to the earth surface, and the center
of the earth, respectively. Path JiA denotes the ith incident
interference, where i = 1, 2, · · · , I with I being the number
of the undesired signal paths. Definitions of other parameters
involved in Fig. 1 are listed in Table I for convenience.

We aim to derive a set of analytical expressions that estab-
lish the relationships among signal propagation in a dynamic
environment. These expressions will provide some background
for the signal model in Section III and the proposed method in
Section IV. The expression of the kth path difference — de-
fined as the difference between the direct path and the kth
reflecting path, i.e., ∆Rk = R1,k + R2,k − Rtar — is first
derived. With reference to Fig. 1 and employing the law of
cosine to the triangles AOBk and TOBk,

R1,k =

√
(hac − hrp,k)

2 + 4 (Re + hac) (Re + hrp,k) sin
2

(
d1,k
2Re

)
(1)

and

R2,k =

√
(htar − hrp,k)

2 + 4 (Re + htar) (Re + hrp,k) sin
2

(
d2,k
2Re

)
,

(2)

where Re denotes the equivalent radius of the earth [23]. The
variable Re =

(
1 + 10−6R0dN/dh

)−1 × R0, where R0 ≈
6370 km is the actual radius of the earth [21] and dN/dh =
−39 N/km is the refractivity gradient [24]. To compute ∆Rk,
d1,k in (1) and d2,k in (2) are first determined by computing
the length of arc CE and solving

2d3
1,k − 3d2

1,kd+
[
d2 − 2R̄e,k

(
h̄ac,k + h̄tar,k

)]
× d1,k + 2R̄e,kh̄ac,kd = 0,

(3)

0196-2892 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Accepted Manuscript 
Version of record at: https://doi.org/10.1109/TGRS.2021.3131327



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2021.3131327, IEEE
Transactions on Geoscience and Remote Sensing

JOURNAL OF LATEX CLASS FILES 3

TABLE I
NOMENCLATURE OF THE USED VARIABLES IN FIG. 1

Variables Definition

θtar DOA of the target

θim,k DOA of kth reflecting path

θin,i DOA of ith interference path

hac Array center height

htar Target height

hrp,k Height of the kth reflection point

Rtar Target distance

R1,k Distance between radar and kth reflection point

R2,k Distance between target and kth reflection point

d1,k Length of arc CDk

d2,k Length of arc DkE

ϕga,k Grazing angle for the kth reflecting surface

αk Angle between the horizontal plane and the kth
reflecting surface

Re Equivalent radius of the earth

ϕ Angle between CO and EO

for the relationship between d1,k and d2,k [21], [25], where
d = d1,k + d2,k, R̄e,k = Re + hrp,k, h̄ac,k = hac − hrp,k, and
h̄tar,k = htar − hrp,k. According to (3), we have

d1,k = d2,k − 2δk sin
(ηk

3

)
, (4)

where

δk =
√(

4R̄e,k

(
h̄ac,k + h̄tar,k

)
+ d2

)
/3 (5)

and
ηk = sin−1

[
−2R̄e,k

(
h̄ac,k − h̄tar,k

)
d/δ3

k

]
. (6)

By applying the law of cosine to the triangle AOT, we have

R2
tar = (Re + hac)

2
+ (Re + htar)

2 − 2 (Re + hac)

× (Re + htar) cos (ϕ) ,
(7)

where ϕ = d/Re. The length of arc CE can then be found
using

d = 2Re sin−1

(
R2

tar − (htar − hac)
2

4 (Re + hac) (Re + htar)

) 1
2

. (8)

We note that the kth path difference ∆Rk can be determined
by (1)–(6). It is also worth noting that the attenuation coeffi-
cient of the kth reflecting path is dependent on ∆Rk and is
required for the simulated scenarios as will be discussed in
Section III and Section V, respectively.

With reference to the propagation geometry in Fig. 1, there
are two separate paths associated with the target and its kth
image, i.e., the direct path (of the target) with incident angle
θtar (measured w.r.t the array centroid) and the kth reflecting
path from the ground surface with incident angle θim,k. The
expressions of θtar and θim,k can be derived by applying the

law of cosines to the triangle OAT and the law of cosines to
the triangle OABk, respectively, giving

(htar +Re)
2

= R2
tar + (hac +Re)

2 − 2Rtar

× (hac +Re) cos (π/2 + θtar) ,
(9)

and

(Re + hrp,k)
2

= R2
1,k + (hac +Re)

2 − 2R1,k

× (hac +Re) cos (π/2− θim,k) .
(10)

The above equations result in

θtar = sin−1

(
(htar +Re)

2 − (hac +Re)
2 −R2

tar

2Rtar (hac +Re)

)
, (11)

θim,k = sin−1

(
h2

ac +R2
1,k − h2

rp,k + 2Re (hac − hrp,k)

2 (hac +Re)R1,k

)
.

(12)
It is worth highlighting that the unknown derived variables θtar

in (11) and θim,k in (12) will be required in both the signal
model in Section III and the simulated scenarios in Section V.
For more information about the effects of complex multipath
propagation on target localization accuracy, we refer the reader
to the previous works such as presented in [20], [21], and [23].

III. MATHEMATICAL MODEL OF THE RECEIVED SIGNAL

Consider an array radar system comprising M isotropic
sensors mounted vertically to the horizontal plane. Assume
that there are I+K+1 narrowband signals with distinct DOAs
impinging on the array. Without loss of generality, suppose
the first I signals are uncorrelated interference signals such
that the ith path originates from direction θin,i corresponding
to the propagation of the far field source si (t), where i =
1, 2, · · · , I . The remaining K+ 1 coherent signals correspond
to the propagation of the far field target star (t), i.e., the direct
path signal from direction θtar and its K multipath reflections
impinging on the array from directions θim,1, · · · , θim,K . In
addition, we assume that the target signal and the I interfer-
ence signals are uncorrelated with each other [26]–[28].

The M × 1 array output at time t can be represented by

x (t) = [x1 (t) , · · · , xm (t) , · · · , xM (t)]
T

= µtar

(
a (θtar) +

K∑
k=1

ρke
−j2π∆Rk/λa (θim,k)

)

× star (t) +

I∑
i=1

a (θin,i) si (t) + n (t) ,

(13)

where µtar, ρk, and λ are, respectively, the target scattering co-
efficient, the specular reflection coefficient of the kth multipath
corresponding to the target, and the wavelength, the M×1 vec-
tor a (θ) =

[
1, e−j2πda sin(θ)/λ, · · · , e−j2π(M−1)da sin(θ)/λ

]T
is the array steering vector towards direction θ with da being
the inter-element distance, (·)T is the transpose operator, and
n (t) = [n1 (t) , · · · , nm (t) , · · · , nM (t)]

T given that nm (t)
denotes the additive noise of the mth sensor. We further
assume n (t) is a white Gaussian noise with mean zero and
covariance E

{
n (t) nH (t)

}
= σ2

nIM , where E {·}, (·)H ,
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σ2
n, and IM denote the expectation operator, the conjugate

transpose, the noise power, and the M ×M identity matrix,
respectively.

Equation (13) can further be expressed compactly via

x (t) = Bs (t) + n (t) , (14)

where

B = [Aθtar
ρ,Aθint

] , (15)

s (t) =
[
µtarstar (t) , sTint (t)

]T
. (16)

Matrices

Aθtar
= [a (θtar) ,a (θim,1) , · · · ,a (θim,k) , · · · ,a (θim,K)]

(17)
and

Aθint
= [a (θin,1) , · · · ,a (θin,i) , · · · ,a (θin,I)] (18)

are formed by the concatenation of the steering vectors
given that θtar = [θtar, θim,1, · · · , θim,k, · · · , θim,K ]

T ,
θint = [θin,1, · · · , θin,i, · · · , θin,I ]

T , and ρ =

[ρ̄0, ρ̄1, · · · , ρ̄k, · · · , ρ̄K ]
T . The variable ρ̄k = ρke

−j2π∆Rk/λ

denotes the attenuation coefficient of the kth multipath with
ρ̄0 = 1 for the direct-path component. With reference to (13),
the I × 1 vector sint (t) = [s1 (t) , · · · , si (t) , · · · , sI (t)]

T

denotes the signal vector of the interfering sources. We
assume that the number of snapshots in a coherent processing
interval (CPI) is T0 and ρ\ρ̄0 = [ρ̄1, · · · , ρ̄k, · · · , ρ̄K ]

T is not
a null vector with the subscript \ρ̄0 denoting the removal
of ρ̄0 from ρ. Given multichannel observations {x (t)}T0

t=1

from an array radar, the key objective is to distinguish the
target of interest from the mixed interference environment
and achieve accurate target localization by extracting the
unknown location parameters. As reported in [20] and [21],
it is reasonable to assume that the effect of the target motion
can be neglected during the observation time of one CPI since
the transmitted waveform of the radar system is narrowband.

To model the propagation channel, we gain insights into the
channel parameter ρk in (13) since it models the interaction
of the kth reflecting path and the correspondingly illuminated
area of the ground surface. As described in [29],

ρk = ρF,kρd,kρs,k, (19)

where ρF,k, ρd,k, and ρs,k are the Fresnel reflection coefficient,
the divergence factor, and the specular scattering factor for
the kth reflecting path, respectively. The Fresnel reflection
coefficient ρF,k, is commonly determined by the polarization
mode, the grazing angle of the kth reflecting path, and the
radar carrier frequency. Expressions for both vertical and
horizontal polarizations can be expressed as [30], [31]

ρFv,k =
βcd,k sinϕga,k −

√
βcd,k − cos2 ϕga,k

βcd,k sinϕga,k +
√
βcd,k − cos2 ϕga,k

, (20)

and

ρFh,k =
sinϕga,k −

√
βcd,k − cos2 ϕga,k

sinϕga,k +
√
βcd,k − cos2 ϕga,k

, (21)

where

ϕga,k = sin−1

(
(hac +Re)

2 −R2
1,k − (htar +Re)

2

2R1,k (htar +Re)

)
+αk (22)

denotes the grazing angle of the kth reflecting path obtained by
applying the law of cosine to triangle ATBk. Here, αk denotes
the angle between the horizontal plane and the kth reflecting
surface. In (20) and (21), the parameter βcd,k — known as the
complex dielectric constant — can be achieved by

βcd,k = βrd,k − jλεk/2πcβ0, (23)

where βrd,k, εk, and c are, respectively, the relative dielectric
constant, the conductivity of the kth reflecting surface, and the
speed of light with β0 = 8.85× 10−12 F/m.

Without loss of generality, the second factor ρd,k is intro-
duced since the power of the multipath reflected by a spherical
reflecting surface is expected to be lower than that reflected
by a flat reflecting surface. Considering the curvature of the
earth surface [25]

ρd,k ≈

(√
1 +

2d1,kd2,k

Re (d1,k + d2,k) sinαk

)−1

. (24)

The last factor ρs,k, models the reduction effect of the re-
flecting path caused by the rugged topography of the practical
terrain [32], [33] and is given by

ρs,k =

{
e−8π2γ2

k , 0 ≤ γk ≤ 0.1;
0.8125

1+8(πγk)2
, γk > 0.1.

(25)

Here, γk = σsd sinϕga,k/λ is the roughness factor with
σsd denoting the standard deviation of the terrain height
distribution.

IV. PROPOSED METHOD FOR TARGET LOCALIZATION

We propose a target localization method based on the
iterative implementation of the MMSE framework with semi-
unitary constraint and eigen-decomposition technique. The
proposed method can cope with the challenging interference
environment and is implemented in the following three steps.
Firstly, the respective DOAs of the incident paths are detected
and estimated using an iterative strategy. The detected paths
are subsequently associated with different groups by employ-
ing eigen-decomposition with a combinatorial optimization
method. Finally, accurate target location is achieved by ex-
ploiting the path association information and the geometrical
relationship of the target tracking scenario.

A. DOA Estimation Based on Iterative Implementation

DOAs of individual paths are estimated based on an iterative
structured implementation of the MMSE framework without
any prior knowledge of the spatial sources. By exploiting the
signal’s sparseness characteristic in the spatial domain, we
formulate the received signal model in (14) as a parameterized
version. An overcomplete dictionary of size M ×N is firstly
constructed as

D = [a (θ1) ,a (θ2) , · · · ,a (θn) , · · · ,a (θN )] , (26)
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where n = 1, · · · , N with N being the number of potential
path directions and {θn}Nn=1 is the sampling grid set of the
potential directions of interesting paths with N � M . Using
an overcomplete representation, the problem in (14) can then
be reformulated as

x (t) = Dξ (t) + n (t) , (27)

where ξ (t) ∈ CN×1 denotes the sparse (parameterized)
coefficient vector with the nth element

ξn (t) =


µtarstar (t) , θn = θtar;

ρ̄kstar (t) , θn = θim,k, k = 1, 2, · · · ,K;

si (t) , θn = θin,i, i = 1, 2, · · · , I;

0, otherwise.

(28)

With sufficient quantization of the sampling grid, we infer
from (14) and (27) that ξ (t) will, in theory, consist of all zeros
except for I +K + 1 non-zero elements corresponding to the
paths of the target and the interference sources. The overcom-
plete representation in (27) makes it possible to reformulate
the DOA estimation problem as estimating ξ (t), from which
the DOAs of the incident paths can be determined [34].

Based on the observed data x (t) in (27), the objective of the
proposed DOA estimation technique is to estimate the M×N
adaptive filter bank W and ξ via the cost function(

ξ̂,Ŵ
)

= arg min
ξ,W

f (ξ,W) , s.t.WWH = IM , (29)

where f (ξ,W) =
∥∥ξ−WHx

∥∥2

2
with ‖·‖2 being the `2-norm,

IM denotes the M × M identity matrix, and the semi-
unitary constraint is employed to avoid dual zero solutions.
For brevity, we have removed the time indices in (29) and the
remainder of this paper.

To solve (29), we introduce an iterative optimization strat-
egy [35]–[37] implemented by alternating between updating
the estimate of W and the estimate of ξ. The optimization
strategy starts with the initial estimate of ξ by employing the
matched filter bank [38] such that

ξ̂0 = DHx. (30)

Defining ξ̂q and Ŵq as the estimated parameterized vector
and adaptive filter bank in the qth iteration, respectively, the
method estimates Ŵq+1 by minimizing the cost function
f (ξ,W) in (29) via

Ŵq+1 = arg min
W

∥∥∥ξ̂q −WHx
∥∥∥2

2
, s.t.WWH = IM . (31)

It is important to note that the above optimization is not
convex. A re-parameterization method was proposed in [39]
to simplify the above optimization of the unitary constrained
problem. Instead of finding a general unitary matrix that
minimizes the cost function in (31), a full-row rank matrix
F was proposed to minimize the cost function, i.e.,

Fq+1 = arg min
F

∥∥∥ξ̂q −WHx
∥∥∥2

2
, s.t.W =

(
FFH

)− 1
2 F.

(32)

Algorithm 1 Accelerated optimization scheme
Input: Received data collection x, overcomplete dictionary

D, step size η and threshold ∆µ1;
1: µ← 1, F0 ← D, H0 ← F0, Gin

0 ← 0;
2: for g = 0, 1, · · · , G do
3: Compute ∇H∗f

(
ξ̂q,
(
HqHH

q

)− 1
2 Hq

)
by (33);

4: Fg+1 ← Hq − η∇H∗f
(
ξ̂q,
(
HqHH

q

)− 1
2 Hq

)
;

5: Hg+1 ← Fg+1 + (µ− 1) / (µ+ 2) (Fg+1 − Fg);

6: Gin
g+1 ←

∥∥∥∥ξ̂q − ((Fg+1FHg+1

)− 1
2 Fg+1

)H
x

∥∥∥∥2

2

;

7: if
∣∣Gin

g+1 −Gin
g

∣∣ ≤ ∆µ1 then
8: Break the iteration
9: else

10: µ← µ+ 1;
11: end if
12: end for
13: Ŵq+1 ←

(
F̂optF̂

H
opt

)− 1
2

F̂opt,where F̂opt is the final
estimation of F;

Output: Estimation of Ŵq+1.

According to the Lemma 1 stated in [39], the Euclidean
gradient of the cost function f

(
ξ̂q,
(
FFH

)− 1
2 F
)

w.r.t. F∗ can
be computed using

∇F∗f
(
ξ̂q,
(
FFH

)− 1
2 F
)

=U
(

CH + C
)

ΣVH + UΣ−1

× UH∇W∗f
(
ξ̂q,W

)
.

(33)
In (33), the matrix F = UΣVH is decomposed us-
ing economy-sized singular value decomposition (eSVD),
where U ∈ CM×M is a unitary matrix whose columns are
the left-singular vectors of F, Σ ∈ (0,∞)

M×M is a diagonal
matrix with entries being the singular values of F, V ∈
CN×M is a semi-unitary matrix with columns being the right-
singular vectors of F, ∇W∗f

(
ξ̂q,W

)
denotes the gradient of

f
(
ξ̂q,W

)
w.r.t. W∗ with (·)∗ being the conjugation operator,

and W =
(
FFH

)− 1
2 F = UVH . In addition,

C = −
(
Σ−1UH∇W∗f

(
ξ̂q,W

)
V
)
�
(
1MσT + σ1TM

)
,

(34)
where σT , 1M , and � are the diagonal vector of Σ, the all-
one column vector, and the element-wise division operator,
respectively.

With reference to (33), existing optimization algorithms
such as the Nesterov accelerated gradient algorithm [40], can
be employed to solve (32) to obtain the (q + 1)th estimate
Ŵq+1. Algorithm 1 summarizes the above approach.

To update the estimate of ξ in the (q + 1)th iteration, we
then minimize f (ξ,W) w.r.t. ξq+1 resulting in

ξ̂q+1 = ŴH
q+1x. (35)

The above process is repeated until a stop criterion is satisfied
and the final estimate ξ̂opt ∈ CN×1 can then be obtained.
Elements within ξ̂opt, therefore, describe the estimated spatial
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spectrum corresponding to the spatial signals impinging on
the array. Defining N as the set of indices n corresponding to
peaks of the following function

PSpec (n) = 10log10

(∣∣∣ξ̂opt (n)
∣∣∣2) , (36)

where ξ̂opt (n) denotes the nth element of ξ̂opt, the set of
estimated DOA is then given by

θ̂ = {θn | n ∈ N} . (37)

B. Target Classification via Eigen-decomposition Technique

To identify and locate a target accurately in the complex
interference environment, it is necessary to discriminate paths
associated with the target and the interference sources via the
process of path association [41]. We employ the subspace
method [1]–[3], [10], [11] for target classification. According
to x (t) in (14), the array covariance matrix can be expressed
as

Rx =E
{
x (t) xH (t)

}
=BRsB

H + σ2
nIM ,

(38)

where the signal covariance matrix Rs = E
{
s (t) sH (t)

}
∈

C(I+1)×(I+1) is positive definite since the target signal and
all the interference signals are statistically independent each
other.

We claim that when M ≥ I + K + 1, matrix B is of
full column rank and rank

(
BRsB

H
)

= I + 1. The proof
is given in Appendix A. Therefore, matrix Rx has only I+1
large eigenvalues as opposed to I + K + 1 number of all
incident paths. Performing eigenvalue decomposition (EVD)
on Rx ∈ CM×M results in

Rx = UsΛsU
H
s + UnΛnUH

n , (39)

where Λs ∈ (0,∞)
(I+1)×(I+1) and Λn ∈

(0,∞)
(M−I−1)×(M−I−1) are two diagonal matrices with

diagonal elements representing, respectively, the eigenvalues
of the signal and the noise, Us ∈ CM×(I+1) denotes
eigenvectors corresponding to the I+1 larger eigenvalues, and
Un ∈ CM×(M−I−1) denotes eigenvectors associated with
the remaining small eigenvalues. Matrices Us and Un span
the signal- and noise-subspace, respectively, and since these
subspaces are orthogonal to each other, we have

span (B) = span (Us) = null
(
UH
n

)
, (40)

where span (B), span (Us), and null
(
UH
n

)
are the range space

of B, the range space of Us, and the null space of UH
n ,

respectively. It is important to note that the signal subspace
is spanned by the columns of B and exploiting the property
in (40), we have∥∥UH

n B
∥∥
F

=
∥∥UH

n [Aθtar
ρ,Aθint

]
∥∥
F

= 0, (41)

where ‖·‖F stands for the Frobenius norm. Therefore,∥∥∥(Aθtarρ)
H

Un

∥∥∥
2

=
∥∥āH (θtar,ρ) Un

∥∥
2

= 0, (42)

and ∥∥aH (θin,i) Un

∥∥
2

= 0, i = 1, 2, · · · , I, (43)

where ā (θtar,ρ) = a (θtar) +
K∑
k=1

ρ̄ka (θim,k) is the linear

combination of the steering vectors corresponding to the target.
From (40), (42), and (43), we have ā (θtar,ρ) ∈ span (Us),

a (θin,i) ∈ span (Us), and the signal subspace is spanned
by the steering vectors of the interfering sources and the
linear combination of the steering vectors of the target
paths. However, for subspace-based DOA estimation meth-
ods (e.g., as the classical MUSIC method), it is known that
the signal subspace may diffuse into the noise subspace
in a multipath propagation environment due to the highly
correlated nature of the target signals. In fact, we have the
following result.

With the above formulations, we claim that a (θtar) /∈
span (Us) and a (θim,k) /∈ span (Us). The proof is given in
Appendix B. Therefore, we have∥∥aH (θtar) Un

∥∥
2
6= 0, (44)

and ∥∥aH (θim,k) Un

∥∥
2
6= 0, k = 1, 2, · · · ,K. (45)

According to (43)–(45), the MUSIC pseudospectrum [1]–[3],
[10], [11]

g (θ,Un) =
1

aH (θ) UnUH
n a (θ)

(46)

generates a peak for any direction θ corresponding to the
I interference paths, i.e., if θ ∈ {θin,1, · · · , θin,I}

∆
= θ̂int,

while peaks do not exist for any direction θ corresponding to
the target paths, i.e., if θ ∈ {θtar, θim,1, · · · , θim,K}

∆
= θ̂tar.

This is also the reason why the classical MUSIC method
described by (46) does not achieve good performance in a
multipath propagation environment. Under such operating con-
dition, decorrelation preprocessing is required to mitigate the
detrimental effect of multipath on target localization accuracy
described in Section I.

In addition, ∀i ∈ {1, 2, · · · , I} and ∀k ∈ {1, 2, · · · ,K}, we
have

g (θin,i,Un)>g (θtar,Un) , (47)

and
g (θin,i,Un)>g (θim,k,Un) . (48)

The above analysis can be used to address the target classifi-
cation problem without any prior knowledge of the attenuation
coefficients {ρ̄k}Kk=1 that are generally unknown in practical
applications.

Since the target signal and all the interference signals are
statistically independent of each other, conventional estimation
algorithms such as MDL and AIC [42]–[44], can be employed
to identify I number of interfering sources. Therefore, we
assume I is known apriori. According to the properties of (47)
and (48), the DOA association set of interfering sources
θ̂int can be identified by selecting elements that generate
I largest values of the objective function g (θ,Un) from θ̂
in (37). The association set of the target paths can accordingly
be determined via the set difference of θ̂ and θ̂int, i.e.,
θ̂tar = θ̂\ θ̂int with \ denoting the set subtraction. Therefore,
the final estimate of the target direction denoted by θ̂tar can
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Algorithm 2 Proposed target classification and localization
algorithm
Input: Received data collection x, overcomplete dictionary

D, the maximum iteration number Q and threshold ∆µ2;
1: q ← 0, Gout

0 ← 0;
2: Compute the initial parameterized vector ξ̂q by (30);
3: while q ≤ Q do
4: Update Ŵq+1 by using Algorithm 1 in Section IV-A;
5: Update ξ̂q+1 by (35);

6: Compute Gout
q+1 =

∥∥∥ξ̂q+1 −WH
q+1x

∥∥∥2

2
;

7: if
∣∣Gout

q+1 −Gout
q

∣∣ ≤ ∆µ2 then
8: Break the iteration
9: else

10: q ← q + 1. Go to step 4;
11: end if
12: end while
13: Identify θ̂ by implementing the peak-searching operation

to PSpec (n) in (36);
14: Achieve the noise subspace Un by (39);
15: Identify θ̂int by selecting the elements that generate I

largest values of the objective function g (θ,Un) from θ̂
in (37);

16: Identify the estimation of the real target direction θ̂tar

from θ̂tar = θ̂\θ̂int by exploiting the spatial relationship
between the direct and reflecting paths with respect to the
horizontal plane;

17: Compute the target height ĥtar by (49).
Output: Estimation of target height ĥtar.

be identified from θ̂tar, where directions of the direct and
reflecting paths of the target are, in general, separated by the
horizontal plane based on the geometric relationship of the
multipath propagation as reported in [20]–[22]. It is worth
mentioning that the focus of this paper is addressing the target
localization problem under multipath propagation environment
with uncorrelated interferences. We therefore expect that the
performance may be reduced for correlated interferers. By
considering this, we refer some exist algorithms that focus
on correlated interferers [45]–[47].

C. Target Height Computation Based on Spherical Earth
Model

With reference to the geometrical relationship of the propa-
gation model described in Section II, the target height can be
estimated via the law of cosine to the triangle AOT with θ̂tar
giving

ĥtar =

√
R2

tar + (hac +Re)
2 + 2Rtar (hac +Re) sin

(
θ̂tar
)
−Re.

(49)

For clarity, the complete procedure of the proposed target
classification and localization method is summarized in Al-
gorithm 2.

TABLE II
SIMULATION SETUP FOR THE FIRST SIMULATION

Parameters Value or mode

Polarization pattern Horizontal polarization

Height of the array center 80 m

Number of snapshots 64

Interference source direction −10◦ and 10◦

Reflection point height 5 m

Relative dielectric constant 7

Number of iterations 10

Conductivity 4× 10−2 S/m

Standard deviation 0.15 m

Target distance 80 km

Target height 5 km and 8.5 km

Halt threshold 10−5

V. RESULTS

A. Simulation Results
We conduct simulations to evaluate the performance of the

proposed method, where a 22-sensor uniform linear array
(ULA) with half-wavelength element spacing is employed.
Estimation performance associated with target direction and
height are evaluated in terms of root-mean-square error
(RMSE)

RMSEθtar =

√√√√ 1

LMon

LMon∑
l=1

(
θ̂tar,l − θtar

)2
(50)

and

RMSEhtar =

√√√√ 1

LMon

LMon∑
l=1

(
ĥtar,l − htar

)2
, (51)

where θ̂tar,l and ĥtar,l are, respectively, the estimates of θtar

and htar in the lth trial, and LMon is the number of Monte
Carlo trials. We compare the performance of our proposed
method to baseline algorithms including SS-MUSIC [12], the
relax method [13], the RML method [15], and that described
in [21] under various scenarios. Similar to the simulations
performed in [6] and [8], we assume that the interference
sources and the target have the same power. In particular,
to reflect actual deployment, information pertaining to path
association is not provided to the proposed method. In contrast,
the baseline algorithms require such information to achieve
reasonable performance.

In the first simulation, we investigate the performance of
DOA and elevation estimation involving a horizontal reflecting
surface and well-separated interferers. In this simulation, the
information pertaining to the multipath propagation is un-
known and the other parameters for the simulation setup are
listed in Table II. How the RMSE varies with signal-to-noise
ratio (SNR) is shown in Fig. 2, where the target is located at
80 km from the radar with a height of 5 km for Fig. 2(a)–(b)
and 8.5 km for Fig. 2(c)–(d). We note that the performance
of the RML method is severely impacted even under high
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Fig. 2. Variation of RMSE in terms of DOA and height estimates with
input SNR in the scenario involving a horizontal reflecting surface and well-
separated interferences. (a) Target direction estimation for htar = 5 km. (b)
Target height estimation for htar = 5 km. (c) Target direction estimation for
htar = 8.5 km. (d) Target height estimation for htar = 8.5 km. All results at
every given SNR are averaged over 500 Monte Carlo trials.

SNR conditions. This is due to the model mismatch of the
conventional symmetric multipath propagation model under
the complex propagation environment. It can be noted for
Fig. 2(a)–(d) that the SS-MUSIC method achieves a lower
estimation performance compared to the relax method, the
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Fig. 3. Variation of RMSE in terms of DOA and height estimates with input
SNR in the scenario involving two reflecting surfaces and closely spaced
interferences. (a) Target direction estimation for htar = 6 km. (b) Target height
estimation for htar = 6 km. (c) Target direction estimation for htar = 9 km.
(d) Target height estimation for htar = 9 km. All results at every given SNR
are averaged over 500 Monte Carlo trials.

algorithm described in [21], and the proposed method for both
target heights. This is because the decorrelation preprocess
in SS-MUSIC reduces its angular resolution. In addition,
the method described in [21] and the relax method show
similar performance when the SNR is less than 12 dB, with
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TABLE III
EXPERIMENT SETUP FOR THE SECOND SIMULATION

Parameters Value or mode

Polarization pattern Horizontal polarization

Height of the array center 80 m

Number of snapshots 64

Interference source direction θim − θ3dB/2 and θtar + θ3dB/2

Included angles of the reflecting paths 0◦ and 3◦

Reflection point height 5 m and 15 m

Relative dielectric constant 4 and 7

Number of iterations 10

Conductivity 1× 10−5 S/m and 4× 10−2 S/m

Standard deviation 0.2 m and 0.4 m

Target distance 80 km

Target height 6 km and 9 km

Halt threshold 10−5
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Fig. 4. Target direction relative to the radar site versus the observation time.

the proposed method out-performing other baseline methods.
The results in Fig. 2 show that satisfactory classification
performance can be achieved by the proposed method under
SNR between 0 to 20 dB. It is useful to note that the relax
method and that described in [21] may suffer from degradation
in localization performance under practical scenarios since
they lack path association ability. The proposed method, on the
other hand, can achieve satisfactory target classification and
localization performance under the mixed interference scenario
(such as the scenario considered in this simulation) without
using any prior information associated with the multipath
propagation environment.

To investigate the effectiveness of the proposed method
in a more complex but generalized environment, a complex
terrain environment and closely spaced interfering sources
are employed in next simulation. Without loss of generality,
spatial distribution of the illuminated terrain is unknown a
priori. Parameters associated with this simulation setup are
listed in Table III, where θ3dB, θtar, and θim denote the half-
power beamwidth (HPBW), the computed target direction, and
the maximal angle of a reflecting path in the environment
considered, respectively.
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Fig. 5. Target distance relative to the radar site versus the observation time.

Variations of RMSE with SNR are shown in Fig. 3(a)–(b)
for a target located at a distance 80 km from radar with a
height of 6 km and in Fig. 3(c)–(d) for a target height of 9 km.
We note that neither the SS-MUSIC method nor the relax
method can perform effectively under low SNR conditions;
they are not capable of achieving an accurate estimate of the
target location under this condition. In addition, the baseline
methods achieve almost similar performance when SNR is
higher than 6 dB. In addition, the variation in performance
of the method described in [21] may be attributed to the joint
effect of the uneven ground reflections and the closely spaced
interferers. We can also note from Fig. 3(a)–(d) that the RML
method can hardly estimate the target location for both target
height conditions due to the significant model mismatch. These
results also highlight that the proposed method outperforms
other baseline methods under the same SNR condition. It
is also important to note that information pertaining to path
association is unknown in practice but is required when imple-
menting the baseline algorithms unlike the proposed method
which does not require such information. Therefore, Fig. 3 also
indicates that the proposed method can achieve satisfactory
classification performance under low SNR conditions. It is
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worth emphasizing that any path association information only
facilitates the discrimination of target from the detected paths
but does not mitigate any detrimental effect contributed by
mixed interference. These results indicate that the proposed
method can effectively classify and localize the target (under
the considered scenario) without the need of prior information
associated with the multipath propagation environment. This
advantage makes the proposed method attractive, especially
for scenarios with mixed interferers. The proposed method can
still outperform baseline algorithms in the presence of two sets
of multipath signals.

B. Experiment Results via Measured Data

We present results obtained from a real dataset collected by
an array radar system with eight channels to validate the ef-
fectiveness of the proposed method in a practical environment.
It is worth highlighting that the radar system was set up in a
geographical environment where ground reflections exist.

After performing several preprocessing tasks such as pulse
compression, moving target indication, and constant false
alarm detection, the direction and distance of the target relative
to the radar site are shown across observation time in Figs. 4
and 5, respectively. We note that the target direction varies
from 5.9◦ to 6.7◦ and the target distance from 98.1 km to
87.1 km across the observation duration. We also compare the
performance of the proposed method to baseline algorithms
mentioned in Section V-A with a step-size of 0.01◦ under
various scenarios. It is worth mentioning that the proposed
algorithm achieves similar performance when the step-size is
varied between 0.002◦ and 0.01◦ for the measured data. The
results with different step-sizes are not included here due to the
space constrain. Estimated target location parameters achieved
by different methods are shown in Fig. 6(a) and (b), where
the dashed lines denote the real target direction and height,
respectively.

It can be noted form Fig. 6 that the RML, the relax, and
the SS-MUSIC methods are adversely affected by the complex
environment during almost the entire observation time. This
implies that the three baseline methods can hardly estimate
accurate target location in a real scenario. On the contrary, lo-
calization performance of the method described in [21] and the
proposed method outperform that of the other three methods.
In particular, the proposed method can effectively eliminate
the detrimental effect of the convoluted interferences and
achieves higher localization accuracy. The time variation of
the estimation errors of target location parameters is shown in
Fig. 7(a) and (b). These results demonstrate that the proposed
method achieves a relatively consistent estimation performance
during the entire observation time; it outperforms the baseline
methods in terms of estimation accuracy and robustness.

Statistical result of the estimation percentage across differ-
ent threshold values for different methods is shown in Fig. 8.
It can be observed that the estimation percentage achieved by
the proposed method is significantly higher than that achieved
by the other four methods. The proposed method can achieve
a 98% rate when the comparison threshold is larger than
240 m. In contrast, when the comparison threshold is equal
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Fig. 6. Location parameter estimation results versus the observation time
via measured data. (a) Estimation result of target angle produced by different
methods. (b) Estimation result of target height produced by different methods.

to 240 m, the estimation percentages achieved by the RML,
the relax, the SS-MUSIC methods, and that described in [21]
are 7.3%, 5.8%, 10.1%, and 37.7%, respectively. These results
based on measured data demonstrate that the proposed method
can achieve target localization under a practical environment
without any prior knowledge of the propagation environment.

VI. CONCLUSIONS

We investigated the target localization problem under a
complex interference environment. Motivated by the lack of
prior information in practical applications, we first formulate
a generalized propagation relationship based on the spherical
Earth model, where the non-ideal assumption of the classical
two-ray multipath propagation model can be avoided, and the
robustness of the propagation model in the practical environ-
ment is enhanced. A new target localization method based on
the iterative implementation of the MMSE framework with
semi-unitary constraint and eigen-decomposition technique is
proposed to mitigate the influence of mixed interference on
the target localization accuracy. The main advantage of the
proposed method is that it can automatically distinguish the
target from the mixed interference environment and signifi-
cantly improve the accuracy of the target location estimates
without requiring additional decorrelation preprocessing nor
prior information pertaining to the dynamic propagation en-
vironment. Simulation and experiment results based on both
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Fig. 7. Estimation errors of location parameters versus the observation time
via measured data. (a) Estimation error of target angle produced by different
methods. (b) Estimation error of target height produced by different methods.
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Fig. 8. Relationships between the estimation percentage and different thresh-
old values for different methods.

synthetic and measured data showed improved performance in
terms of localization accuracy for the proposed method.

APPENDIX A

Define θ1 = [θtar, θin,1, · · · , θin,i, · · · , θin,I ]
T consisting

DOAs of the target and the interference sources, and θ2 =
[θim,1, · · · , θim,k, · · · , θim,K ]

T consisting DOAs of the reflect-

ing paths. Matrix B can be rewritten by

B = [Aθtarρ,Aθint ] = [Aθ1 ,Aθ2 ]

 II+1

M

 , (52)

where II+1 is the (I + 1)× (I + 1) identity matrix and M =[
ρ\ρ̄0 ,OK×I

]
∈ CK×(I+1) with OK×I denoting the all-zero

matrix of size K + I . Since the matrix [Aθ1
,Aθ2

] is of full
column rank if M ≥ I+K+1, with reference to (52), matrix
B is of full column rank and rank

(
BRsB

H
)

= rank (B) =
I + 1 since Rs is positive-definite. The proof is completed.

APPENDIX B

Assume a (θtar) ∈ span (Us). According to (40), there must
exist a nonzero vector h = [h1, h2, · · · , hI+1]

T that yields

Bh = [Aθtar
ρ,Aθint

] h = a (θtar) . (53)

Let h\h1
= [h2, · · · , hI+1]

T with \h1 denoting the removal
of h1 from h, (53) can then be rewritten by

[Aθtarρ,Aθint ] h− a (θtar) = [Aθtar ,Aθint ]

×

 h1ρ− ρ̃tar

h\h1

 = 0,
(54)

where ρ̃tar = [1, 0, · · · , 0]
T of size (K + 1) × 1. Since the

matrix [Aθtar ,Aθint ] is of full column rank if M ≥ I +K +
1, (54) implies that ρ\ρ̄0 = [ρ̄1, · · · , ρ̄k, · · · , ρ̄K ]

T
= 0 and

h\h1
= 0, which contradicts the assumption of ρ\ρ̄0 6= 0.

Thus, we have a (θtar) /∈ span (Us).
Similarly, assume a (θim,k) ∈ span (Us). According

to (40), there exist a nonzero vector r = [r1, r2, · · · , rI+1]
T

that yields

Br = [Aθtarρ,Aθint ] r = a (θim,k) , k = 1, 2, · · · ,K. (55)

Let r\r1 = [r2, · · · , rI+1]
T with \r1 denoting the removal of

r1 from r, (55) can then be rewritten as

[Aθtar
ρ,Aθint

] r− a (θim,k) = [Aθtar
,Aθint

]

×

 r1ρ− ρ̃im

r\r1

 = 0,
(56)

where ρ̃im = [0, · · · , 0, 1, 0, · · · , 0]
T is a zero vector of

size (K + 1) × 1 with a single value of one positioned at
the (k + 1)th element. Since matrix [Aθtar

,Aθint
] is of full

column rank if M ≥ I +K + 1, (56) implies that r1 = 0 and
r\r1 = 0, which contradicts the assumption of r 6= 0. Thus,
we have a (θim,k) /∈ span (Us) and the proof is completed.
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