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We owe to Ambarzumian the first introduction 
of a principle of invariance in the treatment 
of transfer problems. 

S. Chandrasekhar 
Ref. [43] 

These ideas were further developed and exten- 
sively generalized by Chandrasekhar. 

R.E. Bellman, R.E. Kalaba 
M;C. Prestrud Ref. [Is] 

In three successive generalizations the 
theory ascended from Ambarzumian's concept of 
the invariance of a visual impression of 
brightness up to the concept of the invariance 
of a set of radiance functions under the appli- 
cation of each member of a set of transformatCons 
associated with a given set of opticat media. 

Ref. 12511, p. 167 
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PREFACE 

It is a relatively rare occurrence in applied mathematics 
that one encounters a method of solution of a given type of 
equation that is both effective numerically and rich in physi- 
cal imagery. With the advent of the principles of invariance 
into radiative transfer theory, the equation of transfer un- 
derlying the theory received its natural solution companion. 
Together the principles of invariance and the equation of 
transfer form a combination which illustrates that rare occur- 
rence alluded to above. 

In the present work we use this combination to explore 
the transfer of radiant energy through general optical media 
(exemplified by the atmosphere and the sea) and develop nu- 
merically effective procedures of strong intuitive content. 
The Method of Groups is a case in point. It is summarized in 
Equations (6)-(9) of Sec. 7.11 and shows in outline how the 
complex problem of radiant energy scattered in a general 
three-dimensional medium (such as a cloud) may be reduced to 
an ostensible one-dimensional sweep method--the hallmark of 
the invariant imbedding idea. 

Over the years this useful combination of an equation 
of transfer and the principles of invariance has been extended 
to other fields of physics. In linear hydrodynamics, e.g., 
the counterpart to the equation of transfer is the set of dy- 
namic and continuity equations. Instead of radiance (upward 
and downward into the sea) we have water wave elevation and 
fluid volume flux over the surface of a fluid basin, such as 
the sea. 
unchanged into the hydrodynamic setting. Consequently, all 
of the visualizable physical notions of invariant imbedding 
are transferable intact to hydrodynamics, such as the trans- 
mittances and reflectances of bodies of water--canals, bays, 
oceans. Moreover, the numerical efficiency of the imbedding 
technique is once again realized in this new setting. Work 
in this direction has proceeded far enough to show the thor- 
oughgoing analogy between radiative transfer of light in op- 
tical media and the linear transport of water waves in natural 
bodies of 

ues in still other fields and may be pursued in a recently 
compiled bibliography. 

od 1964-1965 while I was with the Visibility Laboratory at 
Scripps Institution of Oceanography, and has been essentially 
unchanged in its conversion to manuscript form. My recent 
application of invariant imbedding to linear hydrodynamics 
has served to check the correctness of the theory below, and 
to reinforce my confidence in its universal applicability to 
all linear transport phenomena including light, ocean wave, 
electromagnetic or acoustic fields. 

The principles of invariance go over essentially 

The development of the invariant imbedding idea contin- 

The work in this volume was essentially done in the peYi- 

Preceding page blank 
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CHAPTER 7 

Invariant Imbedding Techniques for Light Fields 

7.0 Introduction 

introduced in Chapter 3, our purpose being to give detailed 
derivations of functional relations holding among the various 
interaction operators introduced there and discussions of how 
those operators can be evaluated in practice. For expository 
reasons we shall at first limit the discussions for the most 
part to the case of light fields in isotropic plane-parallel 
media. However, the techniques displayed are all extendable 
in principle to light fields in arbitrarily shaped anisotropic 
media. By carrying out the present program ne not only add 
to the store of solution techniques for light fields discus- 
sed in Chapters 4-6, but illustrate within the domain of radi- 
ative transfer an important procedure of modern theoretical 
physics, the invariant imbedding solution technique. This 
technique gives rise to functional equations governing vari- 
ous physical processes by means of certain general group- 
theoretic and limit-theoretic arguments. These functional 
equation representatives of the physical processes give in- 
sight into the processes and occasionally result in useful 
numerical methods of determination of the processes. Some of 
these methods will be illustrated in this chapter. 

for various radiative transfer operators obtained in recent 
years by means of invariant imbedding techniques, we select 
the following for exposition in the present chapter: 
the derivations of the differential equations governing the 
reflectance and transmittance operators R and T €or plane- 
parallel media. The steady state version of the derivation is 
given in Section 7.1, the time-dependent version is given in 
Section 7.2. A particularly interesting feature of these der- 
ivations is the statement of the local forms of the principles 
of invariance and their conceptual relation to the usual (glob- 
al) forms of the principles of invariance. In Sections 7.3- 
7.5 it is shown how new and possibly useful functional rela- 
tions can be discovered for the various interaction operators 
by treating the operators as algebrsic entities and the equa- 
tions in which they appear as algebraic statements which are 
occasionally subject to simple limit arguments. As a result 
of these heuristic manipulations three novel means of deter- 
mining light fields in natural optical media, which occur in 
Sections 7.4-7.5, are selected for further study in Sections 

We return in this chapter to the general circle of ideas 

From the great number of results on functional relations 

first, 
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7.6-7.8. An example of an actual numerical computation of 
the R and T operators based on the functional relations of 
Section 7.1 is given in Section 7.9 for the case of homogene- 
ous source-free plane-parallel media with isotropic scatter- 
ing. This numerical method is generalized in Section 7.10. 
In Section 7.11 the preceding results are consolidated and 
generalized. Section 7.12 is concerned with the conditions 
of homogeneity and isotropy and related ideas, which will 
help simplify theoretical and numerical work and help classify 
optical media in general. Section 7.13 develops some deep 
connections among the various standard and invariant imbed- 
ding operators within media with internal sources. 
in Section 7.14, it is observed how the Laplace and Fourier 
transform techniques, which have proved so useful in the 
classical formulation of the transport phenomena, can be com- 
bined with the invariant imbedding approach to simplify the 
functional relations of the latter approach and to encourage 
their applications to time-dependent problems, point source 
problems, and other transport problems which ordinarily in- 
volve higher numbers of variables. 

Finally, 

7.1 Differential Equations Governing the Steady State, R ahd 
T Operators 

In Sections 3.6 and 3.7 we saw how the R and T operators 
of plane-parallel (and other) media were used in both theory 
and practice to determine light fields in natural optical 
media. In this section we show how the four R and T operators 
generally associated with stratified plane-parallel media may 
be determined from knowledge of the vofume scattering and 
volume attenuation functions within the medium. This will be 
done by deriving the differential equations governing the op- 
erators as a function of the thickness of the medium. Thus, 
if we know the R and T operators for a given layer of material 
the differential equation will show how the’operators change 
by addition of a very thin layer of the material to the given 
layer. By letting the given layer grow continuously from 
some given thickness, we will therefore know how its R and T 
operators evolve from their given values, and how they may be 
computed in both theory and practice. We turn now to the de- 
tails of the derivations. 

Local Forms of the Principles of Invariance 

We begin the derivations by casting the equation of 
transfer for a stratified plane-parallel medium into a pair 
of equations which are strongly reminiscent of the two main 
principles of invariance for such media (Ex. 3, Section 3.7); 
the main difference being the presence of derivatives of N in 
the new equations. Thus under the assumption that all func- 
tions (radiance distributions and optical properties) depend 
only on depth y in the medium (cf. Fig. 7.1) Equation (3) of 
Sec. 3.15 becomes: 
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Here k is the unit outward normal to the medium,E is an arbi- 
trary direction in E, and a s y 5  b. 

fer we restrict the radiance distribution N(y,*) to the two 
halves 8, and 8- of E, (cf. Fig. 7.1, and Sec. 2.4). We de- 
note the restriction of N(y,*) to 
the restriction of N(y,*) to E, by "N-(y)"; a s y s b .  Next we 
write: 

To obtain the requisite form of the equation of trans- 

8, as usual by q'N+(y)*t, and 

in which E is in E,; and : 

in which 6 is in E+, and in both of which a s y s b .  Purther- 
more, we assume the medium to be isotropic, so that 
u(y;C';E) depends only on the value €'-E for each choice of 
6' and E. Hence for each E,yI the values of the integrals in 
each definition in (3) and (4) are unchanged if E+ is replaced 
by E-, and E- by E+ throughout. The operator p(y) is the 10- 
cat rsftoctance operator and T(Y) is the local transmittance 
operator. In discussions where it is necessary to consider 
the possibility of anisotropic media, the operators ply) and 
r(y) must be defined with specific reference to the domains of 
integration in (3) and (4). Thus "p(y)"in (3) becomes 'rp+(y)8t 
and v*p_[y)" denotes the same kind of integral but over E_ 
with E in E,. Similarly (4) will define what we will call 
"T+(y)" andasimilar integral over E- with 5 in E- will be de- 
noted by "r-(y)". (See, Ref. [251], and Sec. 7.13 below.) 

In (1) let 6 be in Z+, so that N(y,E) = [N+(y)](S). Further- 
more, writing N,(y,S) in (1) as: 

The local operators p(y) and r(y) are used as follows: 

N,(Y,S) = 

we divide through each side of (1) by 
and end up with: 

i 
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I 1 

Similarly, now with 5 in E-, so that N(y,c) = (N-(y))(c), we 
obtain: 

1 1 

Equations (5) and (6) are the desired local (or integrodif- 
ferentia11 f O m 8  of the principles of invariance for plane- 
parallel media. The striking similarity between the pair (5), 
(6) and the pair I, I1 of Ex. 3, Sec. 3.7, is evident once 
"T" is paired with "T" and "R" with "p". These equations can 
be put into a more compact form by first writing: 

and 

Then (5) , (6) become: 
I \ I 

which is an alternate and equivalent rendition of the equation 
of transfer (1) via the local forms (5), (6) of the principles 
of invariance. We shall return to this form of the equation 
of transfer in subsequent sections, wherein it will play an 
important role in determining the radiance functions. For 
the present, we continue the derivation of the desired func- 
tional relations for the R and T operators. 

The Differential Equations for R and T 

equations for the R and T operators will now be taken. We be- 
gin with the operator R(y,b) for an arbitrary subslab X(y,b) 
of the plane-parallel medium X(a,b), a s y r b .  (We now are 
using the notation of Section 3.7). We let N-(a) be an arbi- 
trary incident radiance function over the plane upper boundary 
of X(a,b) at level a. We set N,(b) = 0, and assume that no 
sources of radiant flux are within X(a,b). The two main prin- 
ciples of invariance for an arbitrary subslab X(X,Z), 
a s x S y s a s b ,  of X(a,b) are as given in Ex. 3, Sec. 3.7: 

The main step in the derivation of the differential 

.... 
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11. N_(Y) + N,.(x)T(x,y) + N+(Y)R(Y,x) * 

We next set z = b in principle I, whish with the present 
boundary lighting conditions becomes: 

N+(Y) = N_(Y)R(Y,b) (10) 

Equation (10) states that the upward radiance distributions 
at level y in X(a,b) consist of the reflected flux from X(y,b) 
induced by the downward radiance distributions entering X(y,b) 
at level y. We next take the derivative of each side of (10) 
with respect to y, thus: 

where we have written: 

and where R(y,b;S';S) is defined in Example 3 of Sec. 3.7 (cf. 
also (8)-(11) of Sec. 3.6). Therefore dR(y,b)/dy in (11) is 
an integral operator acting on N-(y). Further, R(y,b) in (11) 
acts on the function dN_(y)/dy. Thus all terms of (11) are 
well defined. Now, we are interested in R(a,b), which we 
may envision as the limit of R(y,b) as y+a. Hence in (11) we 
let y approach a. Thus we are led to consider 

dN+ (Y) 1 im 
y+a dy 

which by (5) is given as: 

By principle I11 of Example 3, Sec. 3.7, which we repeat here 
for convenience: 

111. N+[a) = N+(b)T(b,a) + N_(a)R(a,b) , 

equation (13) becomes: 
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where we have used the boundary condition that N+(b) = 0. 
In a similar manner, we find that the limit of the remaining 
derivative of N_(y) in (la) can be represented via (6) and 
principle IIP as: 

- dN_(Y) 
lim - = N-(a)b(a) + R(a,b)p(a)l - [15) 
. y+a dy 

Let us agree to write: 

(16) "aR(a,b)" for lim dR(Y rb) 
'da Y*a dY 

Then applying the limit operation, lim , to each side of 
(11) we have: Y+a 

-N-(a) @(a,b)t(a)+p(a)] = 

This equation holds for every incident radiance function 
N,(a). Hence we can formally cancel "N-(a)" from each side. 
After rearranging the resultant operator equation, we have: 
I I 

(18) 

Equation I' is the requisite differential equation for R(a,b) 
as a function of the depth parameter a. Observe that I' has 
the form of a Riccati equation for the operator R(a,b) with 
known operators p(a) and r(a). Thus, (18) is in principle 
solvable for R(a,b) with the initial condition: R(a,b) = 0 
whenever a = b, (cf. (30) of Sec. 3.7). Hence from I' we 
have : 

for a = b, showing that the initial rate of growth of R(a,b) 
is given directly by the local reflectance operator, ~(a), 
i.e., the integral operator with the volume scattering func- 
tion as kernel. 

T(a,b) may be made next, starting with principle I1 in which 
x = a, the result being: 

The determination of the differential equation for 

M_(Y) = N_(a)T(a,y) + N+(Y)R(Y,~) (20) 

Taking the derivative of each side with respect to y: 
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Here we have written: 

and where T(a,y;E';E) is defined in Example 3 of Sec. 3.7 (cf. 
also (8)-(11) of Sec. 3.6). Thus dT(a,y)/dy in (21) is an 
integral operator acting on N-(a) . 

y+b dy 

Now in (21) we consider: 

lim 

which by (6) is given as: 
dN- (yl 

lim - = [N-(b)T(b) + N+.(b)~(bll 0 (23) 
Y+b dY 

From principle IV of Example 3 Sec. 3.7: 

IV N-(b) = N-(a)T(a,b) + N+(b)R(b,a) , 
which, applied to (23) yields: 

In a similar way we obtain for the derivative of N+(y) in 
(21): 

dN+ (Y) 
lim - = -N- (a)T(a,b) P (b) (25) 
y+b dy 

Writing : 

9 (26) 
"aT(a,b)" for lim dT (a, y ) 

dY Y+b ab 

we here apply the limit operator lim to each side of (Zl), 
the result being: Y+b 

11' aT(a,b) = T(a,b)[r(b) + p(b)R(b,a)l 
ab 

in which we have used the fact that N-(a) is arbitrary. This 
shows that once R(a,b) is known, the operator T(a,b) is 
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obtainable by a simple quadrature. 

is now clear. By using next the second versions of principles 
111 and IY in Example 3 of Sec. 3.7, together with (5) and (6) 
we arrive at: 

The pattern of derivation of the differential equations 

~ 

111' aR(a,b) - T(a,b)p(b)T(b,a) 
ab 

Discussion of the Differential Equations 

Statements I'-IV1 above are the desired differential 
equations for the R and T operators associated with the plane- 
parallel medium X(a,b). Observe how I' is autonomous with re- 
spect to R(a,b). Thus, as we already observed, I' in princi- 
ple can yield R(a,b), starting with the initial condition 
R(a,b) = 0. By reversing "a" and "b" in I', (i.e-, by liter- 
ally turning X(a,b) upside down in the given coordinate sys- 
tem) we can also obtain R(b,a). Observe that if ply) and ~ ( y )  
vary with depth y in X(a,b), we generally will have R(a,b)f 
R(b,a), i.e., the R operator will exhibit potarity. If X(a,b) 
is homogeneous, then R(a,b) = R(b,a) and clearly depends only 
on the difference b-a of the depth parameters. (Recall, we 
have assumed at the outset that X(a,b) is isotropic.) Once 
R(a,b) and R(b,a) have been found, T(a,b) and T(b,a) both fol- 
low from 11' using first R(a,b) then R(b,a) by reversing ''a" 
and "b" in 11'. If polarity is the case for R-operators, 
then generally, the T operator will possess polarity also. 
Thus I' and 11' are in principle sufficient to determine the 
four R and T operators. However, it is interesting to note 
that I'-IV* are sufficient, as they stand, to determine in 
principle all four operators R(a,b), T(a,b), T(b,a), R(b,?) 
in that order, by successively using I', IV', III', II', an 
corresponding order. Alternatively, the equations may be 
solved in the order I f ,  IV', II', 111'. For the general forms 
of these observations, in the context of general media the 
reader may consult section 25 and other relevant sections of 
Ref. [251]. 

mation about light fields in scattering media neatly summa- 
rized in symbolic form, and which the reader is invited to 
discover. Thus I' and 111' considered together show the two 
distinct modes of growth of R(a,b) when the medium is altered 
by varying the parameter a, and then the parameter b. In oth- 
er words R(a,b) grows differently when layers are added to 
X(a,b) from below, than when layers are added from above. The 
precise manner of growth in each case is clearly discernable 
from each differential equation and can be pictured in terns 
of the interaction of X(a,b) with an infinitely thin layer 
added to X(a,b), e.g., at level a, whose reflectance and 

Equations I1-IV1 constitute a wealth of intuitive infor- 
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transmittance are p(a) and T(a), respectively. The growth of 
RLa,b) when a is varied is far more complex than when b is 
varied. 
to contend with in the task of determining R(a,b). 
of a similar nature can be made about the general growth pat- 
terns,of T(a,b) using 11' and IV'. In the case of T(a,b) the 
difference of growth rates, depending on whether a or b is 
varied, are less subtle than that of R(a,b), and rest mainly 
in the order of application of the operators in the square 
brackets with respect to T(a,b). 

Unfortunately this more complex growth is necessary 
Remarks 

' 

Functional Relations for Decomposed Light Fields 

Some radiative transfer investigations are simplified if 
one is able to treat separately the reduced and diffuse com- 
ponents of the radiance field. Thus in the classical re- 
searches of Chandrasekhar, the computations were limited to 
computing the diffuse radiance transmitted through plane- 
parallel media. In addition, our discussions of the point 
source problem were facilitated in Sec. 6.6 by adopting for 
study not N but the diffuse component N* of N. 
as noted in the RemaPks on the Interaction Method in Sec. 
3.18, the AC property of general interaction operators is eas- 
ily shown to hold for those operators whose response functions 
describe diffuse radiant flux, i.e., radiant flux which has 
been scattered at least once. With such observations in mind 
we are motivated to study some of the salient properties of 
the dsoomposed R and T operators for plane-parallel media, in 
particular the principles of invariance (both local and glob- 
al) which govern them, and the differential equations they 
satisfy. The extensions of the results of the present dis- 
cussion to more general geometries is straightforward and the 
present techniques are presented so as to readily serve as 
the prototype for such extensions. 

used in carrying out the discussion from (1) to (29) above. 
Thus Fig. 7.1 will represent the present geometrical setting. 
Now, the first step in the decomposition of the R and T opera- 
tors is to decompose the light field at general level y into 
its reduced and diffuse components. The basis for this de- 
composition rests in (51, (6) of Sec. 3.13. 

Furthermore, 

We shall work with the setting already established and 

Thus, N,(y), e.g., may be written: 

for every y, a-sy5b, where Nf(y) is the reduced (or residual) 
radiance distribution over the directions of 5- at level y. 
N?(y) is the diffuse radiance distribution over the same di- 
rection set and at the same level. A similar decomposition 
holds €or N+(y). The incident radiance distributions N-(a) 
and N+(b) on the slab X(tn,b) will, by convention, be of re- 
duced form, i.e., we will assume N!(a) - 0 and N$(b) = 0. 
(See the Principle of Relative Scattering Order in Sec. 22 of 
Ref. [ZSl]). Hence Nf(a) and N$(b) serve as the incident ra- 
dianci distributions on X(a,b). 
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Q 

I \ 
I Y 

PIG. 7.1 Plane-parallel setting for the local and global 
forms of the Principles of Invariance. 

The connection between the initial radiance function 
NO(a) over the up er boundary of X(a,b) and the residual ra- 

established, using the results (4) of Sec. 3.10 and (3) of 
Sec. 3.11. Thus we have in general: 

diance function N_(y) g over level y within X(a,b) is readily 

where we have written: 

for a L x 6  zfb, and where p' is a point (i.e., an ordered 
triple of real numbers) in level x, and q is a point in level 
z such that: 
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q - p' ,=. rE' 

where r is determined by: 

(33) 

r * Iz-xI/ IE*kl . 
A companion equation to (31), written for N$(x), is readily 
stated. To see the way in which (32) is used, suppose x = a 
and z - y, and that the value of N!(a) at p' and 5' is spe- 
cifically of the form N!(p',('). Further, let NO(q,E) be the 
residual radiance at point q induced by N?(a). Then To(a,y) 
acting on N??(a) yields the radiance: 

N!(q,S) = I N~(P'~E')T,(P',€')~CE-€') dn(E') 
L - N"P,E)Tr(P.E) , (34) 

where p - 
r = ly-al/~i~Ei. 
the distance to the upper boundary of X(a,b), it follows from 
(31) and (2) of Sec. 3.11 that: 

in which the distance r is determined by 

Recalling that y is the depth parameter for X(a,b), i.e., 

Suppose we write: 

Then (35) becomes : 

A similar equation may be shown to hold for 
I i 

(37) 

The number ~ ~ 1 ~ 3  defined in (361 (and which acts as a 
multiplicative operator on radiance, as 'in (37) , (38)) is 
called the looal residuat for reduced) transmittanoe operator. 
Observe the analogous roles played by ro(y) and T(Y) in (37) 
(38) and (S), (6). This observation prompts us to write: 
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S*T*(Y)~~ for T(Y) - To(y) (39) 

whish we call the local diffuse transmittance operator. 
In view of (392, we have: 

whish is the decomposition of the local transmittance operator 
into its residual and diffuse parts. This should be compared 
with (4), so that ~"(y) is seen to be the integral operator 
part of (4). 

ator p(y) is already in diffuse form, i.e., that it already 
consists of just an integral of a over E,. This fact lies at 
the base of the fundamental distinction between reflectance 
and transmittance operators whenever decomposed light fields 
are considered. This distinction may be carried on up to the 
global level where R(a,b) is necessarily already in diffuse 
form and where T(a,b) may be rendered into reduced and diffuse 
parts by writing in general:. 

We see from (3) and (4) that the local reflectance opes- 

for a s x s z s b ;  50 that: 

T(x,z) = T0(x,z) + T*(x,z) 

A similar definition holds for upward transmittances. It 
follows immediately from (42), (32), and from (291, (30) of 
Sec. 3.7 that: 

(433 

for every y, a s y s b .  That is, the diffuse transmittance op- 
erator T*(x,z) reduces to the zero operator whenever x = z. 
This shows that we may generally picture T"(x,z) as a "soft" 
operator in the same sense that the reflectance operator 
R(x,z) fer the same slab is "soft". The precise mathematical 
description of this "softness" of T*(x,z) and R(x,z) is that 
they possess the AC property with respect to depth measure. 
By contrast with T*(x,z), the operator T(x,z), owing to its 
component TO(x,z), is "hard" in the sense that: 

T°CY,Y) = I (44) 

for every y, a c-y cb, as may be seen by (32). That is, 
To(x,z) (and hence T(x,z)) reduces to the identity operator, 
and certainly does not have the AC property with respect to 
depth measure. 

The terms ltsofttf and "hard" as used above to describe 
the AG properties of operators pictorially go back to certain 
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everyday observable phenomena of light fields in the air or 
the sea. For example consider a slightly hazy morning when 
the sky is otherwise clear. 
haze appears softly variable with direction except for the 
bright sharp sun image discernable through the haze. 
were to describe the diffuse light field constituting the haze 
only (thus omitting the residual radiance of the SUA) the de- 
scription would use the operator T*(x,z) acting on the inci- 
dent sunlight at the top of the haze layer, where x may now 
be the altitude of the haze layer and z the altitude of the 
ground. As the haze "burns off", and the haze layer becomes 
thinner (optically or geometrically, or both) the altitude x 
approaches z, and with the vanishing difference z-x so too 
vanishes T*(x,z). On the other hand the residual radiance 
from the sun transmitted through the haze layer is described 
by TO(,,,) I which approaches the identity operator with de- 
creasing difference z-x thereby depicting the hardening or 
sharpening of the sun's image as seen through the dissipating 
mists. 

strable fact that the operator T*(a,b) for an arbitrary medium 
X(a,b) has the AC property with respect to depth measure. 
This can be shown to imply, via Theorem B of 2°C. 3.16, the 
existence of an interaction kernel function S 
such that: 

The radiance distribution of the 

If one 

The preceding discussion has made plausible the demon- 

for T*(a,b) 

This may be compared with (9) of Sec. 3.6. As in the earlier 
case "X" stands for the medium at hand--X(a,b) in this case. 
Further, Xa is the plane boundary of X(a,b) at level a. A 
similar integral representation for T*(b,a) can be obtained. 

We now have covered all the prerequisites for the main 
part of the present discussion, namely for the derivation of 
the appropriate forms of the local and global principles of 
invariance for decomposed light fields, along with the differ- 
ential equations for T*(a,b). We begin the main discussion 
with the derivation of the local forms of the principles of 
invariance for N: (y). 

and r(y) into their reduced and diffuse parts, we perform the 
following calculations: 

- 
Starting with (5) in which we decompose N+(y) , N-(y) 

In view of (38), this may be simplified and rearranged into 
the form: 
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This shows how the rate of change of N:(y) with depth depends 
on the counter-flowing scattered radiances N,(y) and the 
counter-flowing residual radiances NZ(y). 
we obtain: 

In a similar way 

Equations (46) and (47) constitute the local forms of the 
principles of invariance for the diffuse light field N*(y), 
where we have written: 

Equations (46) and (47) together are equivalent to the equa- 
tion of transfer (1) for N(y,*). 
N ( ~ ~ 0 )  was studied earlier in (7) of Sec. 5.2. With only 
slight modifications, the preceding derivations of (46) and 
(47) can be made directly from (2) and (7) of Sec. 5.2. 

part to (9). Thus writing: 

The equation of transfer for 

We may cast (461, (47) into the decomposition counter- 

we can write the system (461, (47) as: 

Next we look into the matter of the (global) principles 
of invariance for decomposed light fields. Going solely on 
the strength of the analogy between the pair (5),(6) and the 
pair I, I1 of Example 3 of Sec. 3.7, we should be able to im- 
mediately write down the present decomposed counterparts to 
I, 11 of Sec. 3.7, using (46), (47) as a basis. Thus we write: 

IN: (Y) * N+ (z)T(z,y) +Nr(y) R(Y, z1 +N:(z)T*(z ,Y) +N?(Y) R(Y 21 1 
* 

I .  
* 

and * 
I1 . 

(521 

(53) where a L X  k y  Lz. 



The final matter to be taken up in this dicussion of de- 
composed light fields is the derivation of the differential 
equations for the diffuse transmittance operator T*(a,b) . 
The present derivations can be patterned directly after the 
steps (20)-(27) of the derivation of the differential equa- 
tion for T(a,b). Thus, starting with principle I1 in which 
x = a and in which Nt(a) = 0 and N+(b) = 0, we have: 

(57) 
* 

N-(Y) - N"a)T*(a,y) + N;(y)R(y,al 

Taking the derivatives of each side with respect to y: 

* 
11: . N:(a) = N:(b)T*(b,a) N!(a)R(a,b) 

SEC. 7.1 STEADY STATE OPERATORS 

(55) , 

15 

Here we have written: 
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where, Tn turn, we have written (in analogy to (32) of Sec. 
3.7) 

* 
"T bx,z;5';51" for IS-kl / 1 IS*(X;y',E';y,E) 

xx 

and where "X" now stands for X(x,z), a IX c z  cb, and Xw is 
the plane at depth x. Point y is in XZ. Now in (58) consider: 

dN: (Y) 
lim - 

y+b dY 

which by (47) is given as: 

I- 

Using principle IV* above and (31) with y = b, we can redbase 
this limit to: 

a: (Y) 
lim - = NO(a) [T*(a,b)T(b) * T'(a,b)~*(b)]. (62) 

y+b dY 

In a similar way we obtain: 

Writing 

? (64) 
Yi T * (a, b z l  for dT* (a, y ) 

ab Y-+b dY 

we now apply the limit operator, lim , to each side of (SEI), 
the result being: Y*+b 

1 

I 1 

which is the decomposed counterpart to (27). Observe that 
the structure of (65) is an inhomogeneous version of (27). 
That is, the gestalt of (65) is that of: 
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while the gestalt of (27) is that of: 

-111 dT TA 
dY 

17 

(64) 

(47) 

where A and B are known operators. 
This transition from homogeneity to nonhomogeneity of 

an operator equation is the general earmark of a transition 
from the representation of undecomposed to decomiosed light 
fields, in which the latter are reprezented by N , This phe- 
nomenon was already seen in I* and I1 , and earlier still in 
(46) and (47) (whose homogeneous counterparts are (5) and (6)); 
similarly with (51) and (9). A still earlier example of this 
transition is the transfer equation for N* in Sec. 5.2. 

down by inspection of (65), using (29) as a guide: 
The decomposed counterpart to (29) may now be written 

* - * [T(a) + R(a,y)p(a)]T*(a,b) 
aa 

This differential equation may also be derived from 
first principles after the manner of (65); the details are 
left as an exercise for the reader. In analogy to (19), equa- 
tion (68) shows that -aT*(a,b)/aa for a = b is given by 

- (69) 
aa 

* 
Thus when a = b! T (a,b) - 0 and its 'rate of growth' is pre- 
cisely the magnitude of the local diffuse transmittance opera- 
tor r*(b). Thus the analogy between (19) and (69) is perfect. 

7.2 Differential Equations Governing the Time Dependent R 
and T Operators 

We now extend the formulations of the preceding section 
to the time dependent case. 
properties of the medium are unchanged except that now all 
functions in addition vary with time. The first step in such 
an extension is the derivation of the time dependent version 
of the local forms of the principles of invariance for a 
plane-parallel medium. 

The geometric setting and optical 
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Time Dependent Local Forms of the 
Principles of Invariance 

(4) of Sec. 3.15. For every y, such that a s y s b  and 5 in E, 
and time t in an interval E = (to,ti): 

We begin with the time dependent equation of transfer 

where we have written: 

Hence (1) above differs from (1) of Sec. 7.1 in only one es- 
sential respect: the presence of the time derivative term. 
Therefore the transition to the time dependent versions of 
(S), (6), and (9) of Sec. 7.1 should be a straightforward 
matter. Thus, let N+(y,t), and N_(y,t) be the upward and 
downward radiance distributions restricted to E , E-, respec- 
tively, at level y in X(a,b) and at time t in t$, time inter- 
val E. E may be finite or infinite and is generally of the 
form (to,tl), where toItl. Furthermore we write: 

t 

in which 5 is in B-, and: 

in which 5 is in Sa, 
and in both of which a s y  ab, and t is in E. The requisite 
pair of equations now follows directly from (1): 

P 

I I 

where we have written: 

(7) 
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Equations (5), (6) are the required time dependent loaal forms 
of the prinaiplee of invariance. As in the steady state case, 
each is obtained from the other,by an interchange of + and - 
subscript signs throughout; the only salient difference be- 
tween the time dependent and steady state sets is the time 
derivative term, as can be seen from (7). If we write: 

where we have written: 

and 

In applying Do/Dy to N(y,t), all operations proceed as usual 
except that in the case of the time derivative term the de- 
rivative operator a/at acts (say) first and then C acts on 
the resultant derivative. Equation (10) is the time dependent 
version of (9). For brevity of notation we will subsequently 
write: 

Time Dependent Invariant Imbedding Relation 

The next step in the present,discussion can be made on 
any one of several levels of generality. Since our present 
goal is a set of time dependent versions of (18), (27), (28), 
(29), of Sec. 7.1, the most immediate route is the development 
of the time dependent principles of invariance, along with the 
R and T operators they govern. We could develop the latter 
principles very much after the pattern set in Examples 2 and 
3 of Sec. 3.7. However, with only slightly more effort we 
could outline the development of the time dependent version of 
the more general invariant imbedding relation, following the 
pattern of miscellaneous Example(i3 of Sec. 3.17. This we now 
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do, as it affords some further illustrations of the interac- 
tion method of Chapter 3 as we make our way towards the pres- 
ent goal. It will also allow us to illustrate once again how 
the principles of invariance (now in time dependent f o m )  are 
derivable from the more basic invariant imbedding relation. 

Following the three main stages of Sec. 3.18, for Stage 
I, let X(x,z) be the isolated subset of the optical medium 
X(a,b). 
diance distributions defined over the plane surfaces Xy of 
X(x,z), x = y = a  and over a time interval E. 
N,(y,E) are upward and downward radiance functions defined 
on the general plane XY over the time interval E. 

The sets of incident radiometric functions are entamer- 
ated as: 

Let the current set of radiometric functions be ra- 

Thus N+(y?B] and 

A1 : all incident radiance functions like N,(z,E) 

A2 : all incident radiance functions like "_(x,E) 

The sets of response functions of interest are (x sy 5 z) : 

B1 : all response radiance functions like N+(y,E) 

BZ : all response radiance functions like N-(y,E) 

The interaction principle then asserts the existence of four 
interaction operators Sij: 

s11 -- T'(z,y,x,E) 
s12 -- @(z,Y,XrE) 
s21 -- @(X,Y,Z,E) 
522 -- Z(X,Y,Z,E) 

The corresponding interaction equations thus are: 

N+(y,E) = N,(~,E)~(Z,Y,X,E) + N-(x,E)&cx,Y,z,E) (la) 

N-(Y,EI N-(x,E) ~ ( X , Y P ~ , E )  + N+(z,E) h?(Z,YpX,E) 0 (14) 

The requisite invariant imbedding relation then is: 

(15) 

where we have written: 
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Integral Representation of Time Dependent 
R a n d  3 Operators 

erator statement of the invariant imbedding relation. In par- 
ticular we wish to obtain specific representations of the (a 
and T operators as integral operators over the time domain E. 
Thus we must enter Stage I1 of the interaction method. To 
set Stage I1 in motion, we choose an arbitrary time t in E 
and hold it fixed until further notice. Next, consider opera- 
tor r(x,y,z,E). Choose and fix a point p in Xy and fix a 
direction C in E-. Then, by (13), for every N_(x,E) in AZ: 

We currently need to go further than the preceding op- 

is a non negative number--indeed, it is the radiance N-(p,S,t) 
induced by N,(x,E). Thus in the present setting with fixed 
p,E,t, the operator rJ(x,y,z,E) is a positive linear function- 
al on Az. By Theorem A of Sec. 3.16 there is a measure 
p(x,y,z,.,p,r,t) on the set E such that: 

1 
E 

(where p,E,t are implicit in the notation on the left] so that 
(17) may be represented as: 

(191 
E 

where N(x,t') is the value of N_(x,E) for the variable t' in 
E. The next step is to observe that the measure 
p(x,y,z,*,p,E,t) is absolutely continuous with respect to the 
time measure on E. This simply amounts to the physically 
based assertion that: for every subinterval F of E, if F is 
of zero duration, then: p(x,y,t,F,p,t,t) = 0. In other 
words T(x,y,z,F) will not transmit any finite incident radi- 
ance N-(x,F) where F is of zero duration. Thus the measure P 
has the AC property and Theorem B of Sec. 3.16 asserts the 
existence of a kernel function J(x,y,z,t',p,E,k) such that: 

~(x*Y,z.G,P,E,t) = r(X,Y,z,t',PrSrt) dt' (20) 
G 

for every subset G of E. Theorem C of Sec. 3.16 now lets us 
write (le) as 

T(XtYrzrE) = [ 1 z(x,Y,z,t',tJ dt' (21) 
J E  

where we have suppressed the p and 5 in going from (20) to 
(21), since they were arbitrary, and we now wish to work on 
the function level. In this way we arrive at the following 
integral representation of (17). For each t in E: 
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N_(x,E) T(x,y,z,E) = N-(x,t') r(X,y,z,t',t) dt'. (22) 
E 

It should be noted that r(x,y,z,t',t) just found is the time 
dependent version of the complete transmittance operator de- 
fined in Sec. 3.7 and is itself an operator which, under suit- 
able regularity conditions, can be represented as an integral 
operator over E and over the upper boundary Xx of X(x,z), 
and whish acts on downward incident radiance distributions 
over Xx. 
tion has been used in the steady state studies throughout 
this work, there are ample examples of such operators which 
the reader may turn to, so that we may go on with the main 
line of discussion. 

In a similar way we define the remaining three complete 
R a n d  .7 operator kernels and derive the remaining three in- 
tegral forms of the operations in (13) and (14) : 

Since this particular type of integral representa- 

N+(z,E) J(z,y,x,E) = N+(z,t') rCz,Y,x,t',t) dt' (23) 

N-(X,E)A(X,Y,~,W = .I N_(x,t')A(x,~,z,t',t) dt' (24) 

N+(z,E)&(z,Y,x,E) - I N+(z,t')~lz,y,x,t',t) dt' . (251 

E 

E 

E 
This type of integral of N+ with the R a n d  Toperators oc- 
curs SQ often, let us agree to write: 

" f (F) g (7) It for I f(t)g(t) dt (26) 
E 

where f and g are any functions or operators such that for 
every t the "product" f(t)g(t) is defined over E. The "prod- 
uct" could be the customary multiplicative numerical type, or 
matrix type, or general operator type. With this convention 
we may write the invariant imbedding relations (13) and (14) 
as : 

N,(y,t) = N+(z,~")~(z,Y,x,~' ,t) + N-(x,~')L?(x,y,z,~',t) (27) 

N-(y,t) = N-(x,f')~(x,y,z,~',t) + N,(z,f')4(z,r,x,f1,t) (28) 

and so (27). (28) can be written succinctly as: 
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Time Dependent Principles of Invariance 

c 

From the time dependent invariant imbedding equations 
(27), (28), we can deduce the four time dependent principles 
of invariance for plane-parallel media. First, in analogy to 
(44)-(47) of Sec. 3.7, we write: 

for (30) "T(x , z, t I, t) I' r(x, z , z , t ' , t) 
~IR(X, Z, t 1 , t),, for Q(x,x, z, t I , t) (31) 

and require: 

J(X,X,Z,t',t) = I (321 

Q(X,Z?Z,t',f) = 0 (33) 

Definitions (30) and (31) define the time dependent versions 
of the standard reflectance and transmittance operators for 
X(x,z). If we had derived these standard operators directly 
from the interaction principles (after the manner of Ex. 3, 
Sec. 3.7), then (30) and (31) would have become derived equal- 
ity statements (as in the case of (44), (45) of Sec. 3.7). 
In the time dependent setting we impose two further conditions 
on R and T which are useful in numerical work, as well as theo- 
retical manipulations, namely: 

R(x,z,t',t) = 0 for t - t ' I O  (34) 

and 
T(x,z,t',t) 5 0 for t - t'slz-xl/v . (35) 

Conditions (34) and (35) are causality condition8, whose 
physical significance is readily seen. For concreteness in 
the present formulations, we will specify the time interval E 
of the general derivations above, as the interval (-m,t), 
where t is an arbitrary fixed time throughout a given diseus- 
sion. 

With these conventions and observations, we can write 
down the four time dependent principles of invariance for 
X(x,z) and X(a,b), a c x s y s z s b ,  after the manner of Ex. 3 
and Ex. 4, Sec. 3.7, as follows: 

Letting x = y in (27) and using (30), (31): 
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Using I twice, first let y = a, z * b; then y = a, with z 
arbitrary: 

Using I1 twice: 
x arbitrary: 

first let y - b, x = a; then,let y = b with 
IV. N_(b,t) = N-(a,f')T(a,b,T',t) + N,(b,T')R(b,a,%?, 

Differential Equations for the Time Dependent 
R and T Operators 

The differential equations for the time dependent R and 
T operators may be derived by imagining a powerful short pulse 
of light pumped into X(a,b) at its upper boundary Xa. The 
directional structure of this incident radiance distribution 
may be arbitrary as also its dependence with location on Xa. 
We shall a s s m e  that this is the only source of flux in X(a,b) 
and that N..(a,t) is such that N-(a,t) = N-(a,to)6(t-to)9to.s t, 
where to is the time at which the pulse is incident on Xa. 
The subsequent operations with Dirac-delta functions are gov- 
erned by the usual conventions which may, e.g., be found in 

We begin by applying the operator D,/Dy (for time vari- 
[951 

able t) to principle I in which we have set z = b, and have 
used the fact that N+[b,t') = 0 for every t'st: 
D-N+ (Y ,e) D-N- (Y .fO D-R(Ylb,fs ,t) 

T NY,b,Y',t) + N-(YsF') w DY DY 
(36) 

Next the operation lim is applied to each side of 
(36). The left side of Pa (36) yields, by means ~f (5): 

The second equality is derived from principle III and the 
adopted form of N-(a,*). By (5) and (6) we have, on applying 
the operator l)-/Dy (for time variable t) to N-(y,t'): 

L 
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so that: 

where 6'(t1-to) is the symbolic derivative of the Dirac delta 
function with respect to t'. Finally: 

D-R(y,b*t',t) aR(a,b,t',t] p aR(a,b,t',t) 1 im 
Y-- DY aa PV at 

Assembling all these results and using them in (36), rearrang- 
ing (36), and cancelling the arbitrary function N-(a4e)* the 
resultant operator equation is obtained: 

I I 

Now starting with principle I1 and applying in turn the opera- 
tion D+/Dy and the limit operation limy+b, and then making use 
of (S), (6) and principle IV, we have in a similar way: 
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The third differential relation follows from principle 
111 by applying the same general procedure used to establish 
I ' above : 

IIIL 3R(a,b,to,t) 
= T(a,b, to,f') p (b ,F")T(b,a,f', t) 

The fourth differential relation follows from principle IV by 
applying the same general procedure used to establish I I S  
abowe : 

- = T (a, to) T (a, b ,to t) + R( a b , to, t I )  p (a ,F') T (a ,b ,fl t) 

Discussions of the Differential Equations 

The set of equations I1-IVt above is the desired set of 
differential equations for the time dependent R and T opera- 
tors for plane-parallel media. These operators are homogene- 
ous with respect to time--i.e., they depend on the difference 
iz-xl of depth parameters--only if the medium is separable, 
where v8separabilityv8 by definition means that o/a is independ- 
ent of depth (so that a may be separated iqto two factors: 
one spatial, the other directional). When the medium is homo- 
geneous--or more generally, separable--then there are precise- 
ly two R and T operators associated with X(a,b). However, 
when X(a,b) is not separable, then there generally are four 
R-and T operators for X(a,b): a reflectance-transmittance 
pair for flux incident on Xa? and a pair for Xb. 
separable media, R and T exhibit potarity, i.e., we have 
R(a,b,t',t) f R(b,a,tt,t) or T(a,b,tt,t) # T(b,a,t*,t) for 
some tl,t in E. The general order of solution of the preced- 
ing equations is the same as the steady state case; thus one 
may solve the above system in either the order I1,IV~II',III' 
or I1,IV1,III',IIt. Furthermore, the pair I1,IV' is the auto- 
nomous pair of the set of four equations in the sense that' 
they determine R(a,b,t',t) and T(a,b,tl,t) for X(a,b); and by 
interchanging ''a" and *'b" throughout and wherever necessary, 
the algebraic signs of the spatial derivatives, they also de- 
termine R(b,a,t',t) and T(b,a,t',t). Hence I' and IV' may be 
used for the determination of all four R and T operators for 
X(a,b). Numerical procedures for the solutions of I'-IV' may 
be constructed for the set in either undesomposed form or in 
decomposed form (cf. Sec. 7.1) of the T operators. 

Thus in non- 

e 



SEC. 7.3 ALGEBRAIC AND ANALYTIC PROPERTIES 

7.9 Algebraic and Analytic Properties of the R and T 
Operators 

27 

Consider a thin layer of scattering material in a plane- 
' parallel medium. Suppose that this layer and another layer 

twice as thick are irradiated with radiant flux in the same 
manner. Is the reflectance of the latter layer twice that of 
the first layer? Intuition seems to say yes. Another ques- 
tion we may ask concerns the transmittance of the doubly thick 
layer relative to that of the layer of half its thickness. 
Intuition says the transmittance is simply the square of the 
single thin layer. In certain special cases both these in- 
tuitive guesses are essentially correct. But what of the 
general relation between the reflectances and transmittances 
of a medium of arbitrary thickness with those of its parts, 
arising under a general partitioning of the medium? Is there 
a general formula which relates the reflectances and taans- 
mittances of the 'sum' of two parts with those of each 'sum- 
mand'? In this section we answer such questions for the case 
of an arbitrary, stratified plane-parallel medium. The vari- 
ous formulas we shall find are characteristic of the general 
case, i.e., they are essentially unchanged if one makes the 
transition to more general geometries and asks the same ques- 
tions there. Hence the derivations which take place below are 
algebraically representative of the derivations in the more 
general settings, but the details have the advantage of being 
intuitively and analytically simpler than the general case. 

Partition Relations for R and T Operators 

The setting for the present derivation is depicted in 
part (a) of Fig. 7.2 in which a plane-parallel optical medium 
X(a,c) has been conceptually partitioned into two parts X(a,b) 
and X(b,c). We ask: what is the connection between the oper- 
ators R(a,c), T(a,c) of X(a,c) and the reflectance and trans- 
mittance properties of its parts X(a,b) and X(b,c)? Another 
way of looking at essentially the same problem is to imagine 
that a given medium X(a,b) is imbedded in a larger medium, 
X(a,c) by the adjunction of the given layer X(b,c), and it is 
required to find the properties of X(a,c) in terms of the im- 
bedded medium X(a,b) and the added medium X(b,c). See (b) of 
Fig. 7.2. Throughout the present discussion in our quest for 
the answer to the preceding question, we will draw freely on 
the concepts and relations developed in Secs. 3.6 and 3.7, 
especially Examples 2, 3 of Sec. 3.7. 

bitrary M-(a) and with N+(c) = 0. Using principle of invar- 
iance I11 of Ex. 3 in Sec. 3.7 applied to X(a,b), we have: 

We begin by assuming that X(a,c) is irradiated by an ar- 

N+Ca) = N_(a)R(a,b) + N+(b)T(b,a) a Id I 
Principle I11 is again applied, now to X(a,c), to yield: 

N+(a) = N-(a)R(a,c) (2) 
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c 

FIG. 7.2 Deriving the Partition Relations €or R and T 
Operators. 

by using the condition N+(c) = 0. 
Next, (25) of Sec. 3.7 is adapted to X(a,c) by replacing 

each p'ytt by "b" and each "b" by "c" in that equation. The 
result is: 

in which we have again used the condition N+(c) = 0. 
(2) and (3) in (I), and noting that N-(a) is arbitrary, we ob- 
tain the first of the desired partition relations: 

Using 

R(a,c) = R(a,b) + T(a,b)R(b,c) [I - R(b,a)R(b,c)] -'T(b,a) 
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T(a,c) = T(a,b) [I - R(b,c)R(b,a]]-'T(b,c) (8) 

which is the second of the two desired partition relations. 
We now discuss some of the properties of (4) and (8). 

First of all, we see that our simple intuitive guesses about 
R(a,c) and T(a,c) given at the outset of this section are 
hardly correct fc; general media. The presence of the term 
[I-R(b,c)R(b,a)J in each equation (recall the observation 
on (28) of Sec. 3.7) represents the complex activity of inter- 
reflections between X(a,b) and X(b,c). However, to see that 
our intuitions are not wholly misleading, suppose this inter- 
reflection factor were absent from (4) and (8) or practically 
equal to I. This occurs when, e.g., the media X(a,b) and 
X(b,c) are optically thin so that R(b,c) and R(b,a) are very 
small. For example, to within first order of infinitesimals 
we have from (19) of Sec. 7.1: 

RCa,b) = R(b,a) = p(b)lb-al (9) 

R(b,c) R(c,b) p(b)lc-bl (10) 

where the numerical differences Ic-bl and Ib-a1 of layer 
depths are small compared to the attenuation length L, = l/a. 
(This is what it means for X(a,b) and X(b,c) to be "opticaZty 
thin".) Similarly, from (27) of Sec. 7.1 we have, retaining 
only the first order of infinitesimals: 

T(a,b) = T(b,a) = I + +(b)lb-al (11) 

T(b,c) = T(c,b) = I + T(b)lc-bl (12) 
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where I is the identity operator and once again the absolute 
values IC-bl and Ib-a1 are small compared to La. It may be 
noted that the argument "b" of the p and T operators may be 
replaced by rrall without changing the validity of the apgroxi- 
mations. 

With (9)-(12) in force, (4) becomes: 

R(a,c) = R(a,b) + R(b,c) + o(lc-bl) (131 

and (8) becomes : 

T(a,c) = T(a,b)T(b,c) + o(lc-bl) (14) 

where "~((c-bl)" denotes a quantity which goes to zero faster 
than the difference IC-bl, that is lim o(x)/x = 0. Thus for 
practical work with optically thin x+o media X(a,b) ,X(b,c), 
one may drop 190(lb-cf)" from (13) and (14); the result is a 
pair of equations which bears out the intuitive guesses stated 
in the introductory remarks above. In brief, with respect to 
compoeite properties of optical ty thin media, their Feflec- 
tances add and their transmittances multiply. 

We next cast (4) and (8) into alternative forms using 
the complete reflestance and.transmittance operators associ- 
ated with X(a,c). The advantages accrued from such a refor- 
mulation are both formal and intuitive. Thus from (40) of 
Sec. 3.7 now adapted to X(a,c) by replacing each "b" by t'c*t 
and each 11y91 by llbfl, we have as an alternate to (4): 

(15) 

and (8) becomes : 

using (42) of Sec. 3.7 suitably adapted to X(a,c). The rela- 
tion of (16), to (51) of Sec. 3.7 should not escape notice. 
We see also that (15) is an important addition to the family 
ob functional relations studied in Chapter 3, of the semigroup 
type for interaction operators over X(a,c). We shall see re- 
peatedly below and in Sec. 7.4 the important uses to which 
(15) and (16) and their generalizations may be put, The rela- 
tions (15) and (16) characterize the alternate point of view 
suggested in the introductory remarks; namely, that X(a,b) may 
be considered as imbedded in a larger medium X(a,c). The op- 
erators &(a,b,c) and .7(a,b,c) point up this alternate view, 
being the W a n d  7 operators of the invariant imbedding re- 
lation. 

Similar formulas hold for R(c,a) and T(c,a) associated 
with X(a,c). For purposes of reference these are given below: 
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Partition relations (15)-(18) will be generalized to the case 
of the &' and T operators in Sec. 7.4 (see (76) of Sec. 7.4). 

Alternate Derivations of the Differential 
Equations for R and T Operators 

In Sec. 7.1 we derived the differential equations I1-IVr 
for the four R and T operators associated with X(a,b). One 
of the main ingredients of the derivations was the local forms 
of the principles of invariance (5) (6) of Sec. 7.1, i.e., 
the equation of transfer in operator form. The purpose of 
the present discussion is to show how one may derive the dif- 
ferential equations for the R and T operators without direct 
recourse to the equation of transfer. The knowledge we gain 
from such a tactic is of great theoretical importance: by 
deriving the differential equations for R and T directly from 
(15) and (16) above, we show that the theory of radiative 
transfer can be made to rest on the principles of invariance, 
the equation of transfer then being a law derived incidentally 
from the principles. This point of view of radiative transfer 
was explored in detail in Ref. [251]. We now present a simple 
exposition of this matter in the setting of plane-parallel 
media. 

differential equations from (4), namely, (28) of Sec. 7.1. 
Rearrange (4) as follows: 

We begin with a derivation of the simplest of the four 

We next assert that: 

(20) 
R(a,c) - R(a,b) aR(a,b) 1 im 

c+b (c-b) ab 

= (22) 
T(b,c) - I 1 im 

c+b (c-b) 

for every 
a,b,c: a c b s c  (231 
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Observe that in (20)-(22) we are boldly asserting the exis- 
tence of these limits, and are not deducing them from such 
established results as, e.g., (9)-(12). In effect we are de- 
fining the members on the right sides of (20) -(22). This is 
in accordance with our present aim of starting with the prin- 
ciples of invariance as initial points of the derivation of 
the theory. In the present approach statements (20) - (22) are 
then called z-egularity properties of the R and T operators 
occurring in the statements of the principles of invariance. 
Any physical theory using the calculus and the concept of 
limit in particular must, somewhere along the path of its con- 
struction, in effect assume regularity properties of the prin- 
cipal functions of the theory under study. In the case of ra- 
diative transfer theory, a detailed and systematic enumeration 
of such properties was made in Ref. [216]. In the present 
work, commensurate with its different goals, these properties 
were for the most part implicitly assumed as each was needed 
(see, e.g., Secs. 3.10-3.15). 

proach b in (19). Physically, this amounts to letting the 
slab X(b,c) in Fig. 7.2 approach zero thickness. Mathemati- 
cally, this results in the statement: 

With the preceding assumptions in force, we let c ap- 

= T(a,b)p(b)T(b,a) (24) 
ab 

which is (28) of Sec. 7.1. 

four differential equations, namely (18) of Sec. 7.1. Sub- 
tracting R(b,c) from each side of (4) and using (28) of Sec. 
3.7 to establish the fact that 

[I - R(b,a)R(b,c)]-' = I + R(b,a)R(b,c) + o((b-a/) 

We next derive from (4) the most complicated of the 

(25) 

which follows from (21)) we can rewrite (4) as: 

R(a.c) - R(b,c) R(a,b) + JT(a,b)R(b,c)T(b,a) - R(b,c)] + 

b-a b-a b-a 

+ T(a,b)R(b,c)R(b,a)R(b,c)T(b,a) + o(lb-al1 . 
(26) b-a b-a 

Applying (22) to the operator T(a,b) and T(b,a) we have: 

T(a,b) = I + .r(a)lb-al + ol(lb-a() 

T(b,a) = I + r(a)lb-a( + oi(lb-al1 
where ol(lb-al) and 02(lb-al) are analogous to o(lb-al) de- 
fined above. Hence: 
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Postulating that: 

R(a,c) - R(b',c) = - aR(a,c) 1 im 
b+a b-a aa 

we then see that equation (26), under the application of the 
limit operator lim , becomes: 

-m = p(a) + r(a)R(a,c) + R(a,c)T(a) + R(a,c)p(a)R(a,c) 

which is (18) of Sec. 7.1 in the setting of X(a,c). We may 
go on to deduce (27) and (29) of Set. 7.1 from (8) in a simi- 
lar manner. However, the point of the present derivation now 
seems well made and we leave such details to the interested 
reader and pass on to the next matter of the present section. 

b+a 

aa 

Asymptotic Properties of R and T Operators 

How do the reflectance and transmittances of optically 
thick media behave with depth of the media? As in the case 
of optically thin media (cf. (13), (14)) our intuitions sup- 
ply some rough answers to this question. In the case of re- 
flectance, imagine an observer over a horizontally extensive 
homogeneous fog bank illuminated by the sun. The fog bank is 
optically very thick and is virtually blinding to the observer. 
Suppose now that, as the fog is under observation, it is no- 
ticeably decreasing its depth. However, the brilliantly re- 
flected light does not seem to lose any of the intense magni- 
tude until the final stages of dissipation. From common oc- 
currences such as this we form the opinion that as the optical 
depth of a very deep homogeneous optical medium increases, 
there is eventually no appreciable change in its reflestance 
properties so that an upper limiting value of R(a,b) is ex- 
pected as Ib-al increases without bound. On the other hand, 
to an observer on the ground below the great fog bank every 
bit of decrease in the thickness of the layer is noticeable as 
a corresponding increase in the general radiance distribution 
transmitted down to the observer. From recollections such as 
this, we form the expectation that the transmittance T(a,b) 
should decrease rapidly to zero as lb-al increases without 
bound. We now show how these empirical facts are borne out 
by means of simple arguments using the differential equations 
for the R and T operators. A more detailed and rigorous anal- 
ysis of the present ideas will be made in Chapter 10. For the 
present we simply pursue these ideas on a heuristic level. 
That is, we shall attempt to discover the requisite properties 
of R(a,b) and T(a,b) by treating them as if they were numeri- 
cal magnitudes and the equations they satisfy as ordinary al- 
gebraic or differential equations of numerical valued func- 
tions. 

homogeneous plane-parallel medium X(a,-). 
X(a,-) requires ~ ( y )  and ~ ( y )  to be independent of y for all 
y such that a s y .  It follows from (le) of Sec. 7.9 that the 

Suppose a slab X(a,b) is imbedded in an infinitely deep 
The homogeneity of 
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differential equation for R(a,b) is: 

-am = p + TR(a,b) + R(a,b)T + R(a,b)pR(a,b). (27) 
aa 

From this we infer at once that R(a,b) = R(b,a) and the com- 
mon value depends only on the difference lb-al. Equation (28) 
of Sec. 7.1 implies that: 

since T(a,b), T(b,a) and p are analogous to positive valued 
functions. Thus we recover within the theory the empirical 
fact that for fixed a, R(a,b) increases as b, and hence Ib-al 
increases. It is a bit more difficult to establish: 

3 (291 aT(a,b) < 
ab 

!.e., the fact that for fixed a, T(a,b) decreases as Ib-a1 
increases. This can be made plausible by noting that the 
term T+ R(b,a) in (27) of Sec. 7.1 is negative when there is 
absorption but no scattering in the medium, i.e., when u = 0 
and a > O .  Since T(a,b) is positive, (27) of Sec. 7.1 then im- 
plies (29) above. However, by slowly increasing u from 0 to 
small positive values, the inequality (29) clearly persists 
for a while; and indeed, in all natural optical media, (29) 
can be shown to hold with only mild regularity properties im- 
posed. From (29) and (28) of Sec. 7.1 we now can see that: 

lim W = 0 
b-r= ab 

so that, by (27) above (i.e., since R(a,b) = R(b,a)): 
p + TR(a,=) + R(a,=)T + R(a,-)pR(a,m) = 0 (301 

where we have written: 

"R(a,-)" for lim R(a,b) . (311 
b-Ka 

Equation (30) shows that R(a,-) is independent of a since p 
and T are. This property was formally used by Ambarzumian in 
[l] to derive some of the earliest forms of the integral equa- 
tions indigenous to the invariant imbedding point of view of 
transfer phenomena. When certain reciprocity conditions hold 
for the medium, we have: 

R(a,-)T = rR(a,-) 

R(a,=)p = pR(a,m) 
and 

i.e., we have commutativity of the T, R, T and p operators. 
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Under such conditions (which hold, e.g., when scattering is 
isotropic) (30) becomes: 

p + 2rR(a,-) + pR2(a,-) = 0 . (32) 

The solutions of (30) or the special case (32) yield the form 
for R(a,-). A numerical procedure leading to R(a,b) for a 
range of finite b (fron which R(a,-) is estimable) will be 
given in Sec. 7.6 for spaces X(a,b) in which scattering is 
isotropic. We shall return to these heuristic operations with 
the R and T operators in Sec. 8.7. The operations just per- 
formed can be redone in the irradiance context and can be made 
fully rigorous without the need for advanced mathematical tech 
niques. See (35)-(38) and (39)-(42) of Sec. 8.7. 

7.4 Algebraic Properties of the Invariant Imbedding Operators 

The various invariant imbedding operators introduced in 
examples 4-7 of Sec. 3.7 will now be studied in greater de- 
tail. Our main purpose .in the present section will be to dem- 
onstrate the fact that the collection rr(a,b) of operators of 
the form ?(x,y), which we found in Example 4 of Sec. 3.7 to 
constitute a partial group, may be used as basic building 
blocks to systematically construct, via simple algebraic pro- 
cedures, all other operators of the collections I'r(a,b) and 
rb(a,b)? and hence all R and T operators and their simple 
combinations. The net result of these possible constructions 
will be novel procedures for solving transfer problems in 
plane-parallel and, indeed, general optical media. In other 
words, we shall demonstrate that the operators W(x,y) can 
serve as the computational work horses on both theoretical 
and practical levels in the theory of radiative transfer and 
thereby have them earn their right to reside among the giants, 
the elements of rb(aJb), which in turn serve to unify the 
theory and to link the theory with the interaction principles. 

Throughout this section, unless stated otherwise, we 
shall work with an arbitrarily source-free plane-parallel medi- 
um X(a,b), a s b ,  with arbitrary incident radiance distributjons 
N-(a) and N+(b) over the upper boundary Xa and lower boundary 
Xb respectively. Generalizations of the indicated results to 
general one-parameter media are immediate; generalizations to 
arbitrary media can be patterned after the discussions of See. 
25, Ref. [251]. Throughout the discussion all reference to 
various regularity properties required for inverse operations, 
differentiations, integrations, etc., has been avoided so as 
to bring out the highly intuitive flavor of the operator al- 
gebra. 

The Operator M(x,z) 

The simplest interaction operator associated with a gen- 
eral plane-parallel medium X(a,b), a s b  is that which maps (or 
transforms) the pair (N+(b),N-(a)) of incident radianse dis- 
tributions on X(a,b) into the pair (N+(a),N-(b)) of response 
radiance distributions for X(a,b). It is a simple exercise in 
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the use of the principles of invariance for X(a,b) to deter- 
mine this operator. Thus, from principle 111, in Example 3 
of Sec. 3.7, we have: 

N,(a) = N,(b)T(b,al + N-(a)R(a,b) ; 
and from principle IV we have: 

N..(b) = N-(a)T(a,b) + N+(b)R(b,al . 
The matricial form of this system of equations is: 

The displayed matrix of R and T operators is the requi- 
site interaction operator. More generally, let X(x,z) be an 
arbitrary plane-parallel subset of X(a,b , a s x s z - ~ b ,  and 
suppose (N+(z), N-(x)) and (N+(x), N..(z)] are, respectively, 
the incident and response radiance distributions on X(x,z) as 
they exist in the medium X(a,b) which is irradiated by an ar- 
bitrary set N+(b), N-(a) of radiance distributions on its 
lower and upper boundaries, respectively. (See Fig. 7.1.) 
Then principle I in Example 3 of Sec. 3.7 yields for the case 
x = y: 

N+(x) N+(z)T(z,x) + N-(x)R(x,z) * 

Similarly, principle I1 yields: for the case y = z: 
N-(z) N-(x)T(x,z) + N,(z)R(z,x) 

The matricial form of this system of equations is: 

Let us write: 

T(z,x) R(z,x) [ R(x,z) T(x,z) 
1 '  (21 "M (x , z ) I' for 

where a I x  s z d b. Thus M(x,z) is a 2x2 operator matrix which 
is defined for depth variables x, z such that the preceding 
equalities hold. Some experimentation with (1) will show why 
this restriction (namely x s z )  is necessary if we are to re- 
tain the useful convention of always writing radiance distribu- 
tion pairs with the upward (+) distributions as the first mem- 
ber of the pair. Another advantage in preserving the fixed 
order of variables x,z in M(x,z) shows up in the detailed com- 
putations below wherein it will always be clear whether an op- 
erator on an upward or downward flow in X(a,b) is heing repre- 
sented. Thus in all that follows, M(x,z) with x s z  is a use- 
ful conceptual anchor whose components have simple physical 
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significance. 
erators M(x,z), a s x  sz s b. 

Let us denote by ‘IG2(a,b)“ the set of ab% og- 

The Connections Between M(x,z), %(x,z), and ??‘(z,x) 

We now establish the connections between the operator 
M(x,z) and the operators ?“(x,z),T(z,x) in the setting of an 
arbitrary sub-medium X(x,z) in X(a,b). (Recall (78) of Sec. 
3.7.) Once this connection is established, we will have an 
effective means of computing R(x,z) and e(z,x) in terms Qf 
the standard R and T operators for X(x,z): and conversely, 
the operator M(x,z) will be directly representable in terms of 
the operators 7;rl(x,z), sT(z,x). This latter representation 
will be a prototype of more general representations of the 
members of rs(a,b) and r,(a,b) to be derived subsequently, and 
will be instrumental in developing novel methods of solution 
of light fields in X(a,b), later in this chapter. 

partition of the identity operator I on rz(a,b): 
To establish the requisite connections we require the 

I = c+ + c- 9 (3) 

In C+ and C-, I+ is the identity operator on the set of all* 
upward radiance distributions and I- is the identity operator 
on the set of all downward radiance distributions associated 
with X(a,b). No confusion will result if in the subsequent 
discussions we drop the signed subscripts from the identity 
operators (their positions in the matrices provide adequate 
identification). The general working properties of C+ and C- 
are obtained by direct computation: 

c-c+ = c+c- = 0 

P 
We drop +,- on I+ when direction is clear. - 
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Hence, via suitable pre- and post-multiplications by C+ or C-, 
various elements of a matrix of operators or of a vector can 
be isolated as needed. 

Now, equation (1) holds for all incident radiances 
(N+(z),N,(x)) OR X(x,z). From the definition of the operators 
nl[x,z) and m(z,x) and the paxtition operators of I, we have: 

(N+(x), 0) = (N+(z) ,N-(z))@(z,x)C+ 

(O,N-(z)) * (N+(z) ,N-(z))C- 

On the other hand, solving (9) for 'q(z,x), we have: 
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This may be solved for M(x,z) to yield a companion formula to 
(10) : 

Equations (10)-(13) are the desired connections between 
the operators M(x,z), r(x,z), and q(z,x) for levels x,z in 
X(a,b) with x cz. 

Invertibility of Operators 

can be examined in detail so as to allow us to establish some 
conditions sufficient to insure their existence. The inverses 
generally encountered in computations with (10)-(12) are of 
the form: 

The inverse operators in the preceding representations 

[C+ + AC-1" 

[AC, + C-] 

[C- - C+A]-' 
[C-A - C+]-' 

where : 

"A" denotes either the ?or M matrices so that a, b, c, and 
d are generally operators on radiance distributions. To eval- 
uate these inverses consider for example the first; we require 
a 2x2 matrix with elements u, B, y, 6 such that: 
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From this are obtained the four equations: 

a + b y = I  

8 + b 6 = Q  

dy = 0 
dB = I 

which in turn determine the elements of'the inverse: 

a - I  

B 3 -bd-' 

Hence : 

The remaining three inverses are obtained similarly: 

d-'c d-' 

-I 
[C-A - C+]-l = [ 

From an inspection of this collection of inverses it is 
clear that their existences depend in turn on the existences 
of the inverses of the component operators a and d in A. 
When A is M(x,z), this requires the transmittance operators 
T(x,z) and T(z,x) to have inverses. In most natural optical 
media (oceans, atmosphere), the volume scattering function u 
and volume absorption function a are positive throughout the 
media. This property of a and a generally insures the norm 
contraction property of I-T(x,z) or I-T(z,x) so that under 
these conditions the inverses of T(x,z) and T(z,x) exist. Of 
course in any specific instance, it is good practice to have 
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the invertibility of the transmittance operators verified in 
detail. In the present discussions our interest is sole1 in 
the algebraic structure of and interconnections between tie 
various interaction operators, and the discussion proceeds on 
the assumption that a11 required regularity properties are in 
force . 

Representations for the Components of q(x,z), v(z,x) 

By means of the functional equations (ll), (12) for 
R(z,x) and W(x,z) we can find explicit formulas for the com- 
ponents of these operators in terms of the four standard R 
and T operators for X(x,z). Thus let us write: 

thereby defining, in context, four operator components of 
P?(x,z). A similar definition is made for T(z,x). Next we 
observe that the two factors comprising T(z,x) in (11) may be 
written: 

I -R(z,x) 

I 

and, by (17): 

I '  0 
[C_M(x,z) - C+]-' = [I 

T-'(x,z)R(x,z) T"(x,z) 

With these specific representations of the factors in (11) , 

Next, we use (12) to find the component operators of T(x,z). 
The first factor in (12) is: 
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The inverse operator is evaluated by means of (16): 

Then (12) becomes: 

1 T-' (z,x) TO' (z,x) R( z,x) 

(z,x) T(X, Z) -R(x, ZIT-' (Z ,x)R(z,x) 
;r(x,z) = 

?rr__(x,z) = T(x,z) - R(x,z)T-'(z,x)R(z,x) . (26) 

alent ways, depending on whether (IO) or (13) is used. Using 
(lo), the factors are, explicitly: 

The components of M(x,z) may be represented in two equiv- 

From this: 
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and from (15): 

rq(x,z)c+ + C-3-1 = 

Them 

1 

From this : 

T(z,x) - q;:(x,z) (31) 

R(z,x) = T;:(x,z)T+-(x,~) (32) 

R(x,z) - -~-+(x,z)q::(x,z) (33) 

T(x,z) - 2qy(X,d -q+(x,z);Iz ;:(x,z)*+,(x,z). (34) 

The connections between the two sets of representations 
(27)-(34) of M(x,z) rest on the fact that 9(x?z) and ?(z,x) 
are mutual inverses. The four component equations harbored by: 

~(XIZ)311(Z,X) = 1 
provide the necessary explicit link between the two preceding 
sets of representations. It is interesting to observe that om 
may go from one set of representations to another by siaultan- 
eously interchanging the arguments "x" and "z" along with the 
subscripts l'+lt and l l - l l .  This interchange rule also works for 
the sets (19)-(22) and (23)-(26), and also for the functional 
equations (10) -(13) (leaving M(x,z) inviolate). The physical 
basis of this rule is that such interchanges applied to the 
radiance vector (N+(z) ,N-(x)) and the matrices *(x,z) %7(z,x), 
effectively reverse the incident and response radiances and 
the operators applied to them. 
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The Isomorphism Cp Between r2(a,b) and Gz(a,b) 

The algebraic links just established between the opera- 
tors M(x,z) and q(x,z) suggest a close overall structural re- 
semblance between the members of the set G2(a,b) (i.:., all 
M(x,z), with a s x s z r b )  and the members of the partial group 
rz!a,b) (i.e., all ?(x,z), a s x s b ,  aszsb). We can use 
this strong tie between the two sets to induce a means for 
multiplying together members of Gz(a,b) in a way that faith- 
fully mirrors the natural multiplication of elements of 
rz(a,b). The practical utility of the newly formed multipli- 
cation process will become clear as this discussion nears its 
close. 

Let us denote by "I$(%'(x,z))~~ the operator M(x,z) found 
from ;"l(x,z) using (31)-(34), and let ll@-* (M(x,z))" denote 
the operator v(x,z) obtained from M(x,z) using (23)-(26) 

FIGS. 7.3 .7.4 The meaning of the isomorphism between 
r2(a,b) ani Gz(a,b). 
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where, a s x i z s b .  In this manner we define in context a 
function 4 on part of rz(a,b) (call it the upper triangZe of 
rz(a,b) onto Gz(a,b). 
pairs x,z, but only those such that xrz.) This function is 
one to one in the sense that to each M(A,z) in Gz(a,b) there 
is assigned at most q(x,z) in the upper triangle of rz(a,b) 
for any choice of levels x,z in X(a,b), where xsz. 
"upper triangle" of rp(a,b) is suggested by the fact that in 
a Cartesian coordinate plot of the pairs depths (x,z), those 
pairs such that x s z, lie above the diagonal line. 
region in Fig. 7.3.) An alternate one to one mapping JI from 
the lower triangle of rz(a,b) onto Gp(a,b) is possible using 
the systems (19)-(22) and (17)-(20). Either mapping Cp or 
will suffice for our present purposes. 
+ as far as possible. With this choice of (12), (13) may be 
rewritten as: 

(That is, we do not define 4 for all 

The term 

(See shaded 

We choose to work with 

The induction of the multiplication process on Gz(a,b) 
is now carried out as follows. Let M(x,y) and M(y,z) be any 
two elements of Gz(a,b), provided that they have a depth level 
in common (e.g., y, as shown). It seems natural to re uire 
that their "product" be such that the usual matrix proiuct of 
the corresponding operators Cp- (M(x,y)) and 4-l (fl(y,z)) in 
r2(a,b) maps back, under 4, to the required "product". (See 
Fig. 7.4). Thus we agree to write: 

"M(~,y)rM(y,z)" for 4[Cp-1(M(x,~))4-1(M(~,z))] . (35) 
By definition of Cp" and the one to one properties of +: 

W(X,Y) = 4-1 (WX,YI) 

Hence : 
4(ly(X,Y)) = M(X,Y) 
4(q(Y,z)l = M(Y,Z) ' 

Therefore an alternate way of expressing (35) is: 

I I 

This alternate form of describing the star product of elements 
of Gz(a,b) defined in (35) shows how the structure of multi- 
plication in Gz(a,b) mirrors that of rz(a,b). In modern al- 
gebra the function Cp which induces operations such as the op- 
eration * is called an isomorphism, the etymology of the word 
in this physical case being most appropriate (is0 same; 

i 

I 
/ 
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morph = form). Under the introduction of the star product, 
Gz(a,b) becomes a partial semigroup, with an identity opera- 
tor of the form M(x,x), and with the associativity property 
and inverse properties holding. 

The Physical Interpretation of the Star Product 

The star product on 62(a,b) introduced above has a most 
interesting physical interpretation. 
sue this interpretation as it will permit us to tie together 
the territory covered so far in this section with that of 
Section 7.3. Since M(x,y) describes the reflectance and trans- 
mittance properties of X(x,y), and M(y,z) describes those of 
X(y,z), we ask: What physical description, relative to X(x,z), 
does the star product M(x,y)*M(y,z) represent? The clue to 
this description is given by examining (35). The ri ht side 
of the definition is simply the image, under 4, of &(x,z). 
Hence we see that: 

It is worthwhile to pur- 

I I 

Therefore the star product of M(x,z) and M(y,z) is the opera- 
tor M(x,z) associated with the union (the sum) of the two con- 
tiguous slabs X(x,y) and X(y,z) (as depicted e.$., in (b) of 
Fig. 7.2). 

Let us find the components of the star product 
M(x,z)*M(y,z) directly in terms of the components of the fac- 
tors M(x,z) and M(y,z). We begin the derivation with (35). 
Thus, by (23)-(26): 

T- (Y 9x1 T-’(y,x)R(y,x) 

(Y,x) T(x,Y)-R(x,Y)T-’ (Y,X)R(Y,X) 
0’’ [Nx,r))= 

and where: 
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Each of these may be reduced considerably if we use algebraic 
formulas developed earlier. For example: 

when the last inequality is based on (18) of Sec. 7.3. (See 
also (8) of Sec. 7.3.) In a similar (but slightly more ardu- 
ous) manner the remaining components may be reduced so that 
they may be used in (31)-(34). The net result of the mapping 
back to M(x.2) from T(x,z) is: 

In this way the representation of the star product is rendered 
into a mathematically self-contained form by means of the pa? 
tition relations developed in 7.3. The representation is made 
particularly meaningful physically by using the complete re- 
flectance and transmittance operator for X(x,z), so that each 
component of the product can be read directly in terms of re- 
flectances and transmittances. We summarize (38) by saying 
that: the star product of M(x,y) and M(y,z) is the mathema- 
tical form of the partition relations (15)-(18) of Sec. 7.3 
for the medium X(x,z), and therefore contains all the infor- 
mation for determining the standard reflectance and transmit- 
tance operators of the union x(x,y)Ux(y,z) of two contiguous 
media, knowing the respective operators of each component of 
the union. 

The Link Between 7*/(a,x,b) and nJ(a,y,b) 

Two invariant imbedding operators for X(a,b), such as 
T(a,x,b) and W(a,y?b), may be linked by Zhe operator *(x,y) 
as follows. The definition of the invariant imbedding opera- 
tor yields the equations: 
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?(X,Y) = 7 - l  (a,x,b)nl(a,y,b) 
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(40) 

I 1 
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;r(X,Y,Z) = [nJ(YsZ)C+ + ';y(Y,xIc-]-' 
A 

which is essentially parallel to the radiometric theory for 
Nk(y). This and still other analogies (some of which are 
brought to light below), open up vistas in algebraic radiative 
transfer theory which are beyond the scope of this work but 
which are potential areas of basic research in the theory. 
See Problem X, Sec. 141, Ref. [2511. 

(42) 

Representations of q(x,y,z) by Elements of r2 (a,b) 

In view of the success in representing the basic opera- 
tors M(x,y) by means of the imbedding operator %(x,y) (See 
(10) -(13)) we are led to seek still further representations 
of interaction operators by members of the partial group 
rz(a,b). We shall find that the set rz(a,b) is an extremely 
powerful set of operators in the sense that virtually all op- 
erators in modern radiative transfer theory are representable 
by suitable algebraic combinations of members of FZ(a,b). In 
the next few paragraphs we shall assemble some evidence in 
this direction, The f011Uul8S so gathered will be employed in 
Sec. 7.5 to find various differential equations governing the 
interaction operators, equations which should suggest novel 
solution procedures in radiative, neutron, and generally 
linear transport theory. 

On the one hand the light field at level y in X(a,b) is 
obtained from arbitrary incident light fields at levels x and 
2, x s y  s z, by the relation: 

On the other hand those on levels x and z are related 
by that on level y by using the following operators: 
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L -  

convention (but not essentially) is performed only for the 
depths x, y, 2, in the usual order x s y s  z within X(a,b). But 
since the operators a(y,z) and 7?rl(y,x) are defined for all 
pairs of depths, and since the inverse of the indicated linear 
]combination of these operators should exist just as often as 
those in more orthodox settings, there now is a way, as indi- 
cated by (42), of formally extending the domain of definition 
of the invariant imbedding operators. 

A Constructive Extension of the Domain of ?(x,y, z) 
The preceding observations of the potential extensibility 

of the domain of definition of the invariant imbedding opera- 
tor w(x,y,z) is reinforced by recalling equation (33), in 
particular the interpretation of the equation as implicitly 
defining a mapping which, in effect assigned to each y in the 
interval [a,b] an operator V(a,y,b), as explained above. 
Suppose then we write, ~d hoc: 

It follows that, as long as we have X B U S Z ,  the operator 
R(x,u,z) is, by (39), simply a(x,u,z), But the product of 
the operators in (43) is certainly compatible for any u, given 
each factor associated with that u. In this way, then, we can 
formally extend the domain of m(x,y,z) so that the parameters 
may fall outside of the subinterval [x,z] in [a,b]. Once the 
extension is fully and unambiguously made, the bar above "n/" 
in (43) may be dropped in practice. 

The extension just made is a constructive extension of 
n((x,y,z) in the sense that, given T(x,y,z) and s';r(y,u) there 
is a definite construction procedure that may be followed in 
this case, a simple matrix product effecting the extension. 
It should be recalled, of course, that w(x,y,z) is in "al- 
ready extended" form as it is cut directly from the more com- 
prehensive mold of the generalized invariance imbedding rela- 
tion. (See the discussion of (76) of Sec. 3.7.) Thus we may 
simply write: 

where x,y,z are any three levels in X(z,b), and study 
V(x,y,z), so formed, as a special instance of the generalized 
invariant imbedding operation. Thus (43) without the bar over 
%is in the last analysis simply a consequence of the semi- 
group property (84) of Sec. 3.7. Further, if one returns to 
the derivation of (42) or repeats its derivation, now using 
the definition (44) for T(x,y,z), the same functional rela- 
tion (42) would be obtained, and the speculations on the ex- 
tension Qf (42) to general parameters x,y,z, now have a solid 
affirmative basis. 
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Representation of mv,z;u,y) by Elements of I’2 (a,b) and r3(a,b) 

We begin the derivations by representing *(v,z;u,y) as 
a product of two simpler operators by means of the semigroup 
relation (84) of Sec. 3.7. 

V(v,z;u,y) = ?(v,x;u,x) 7l/(x,z;x,y) (45) 

in which we have set x = w. With this simple identification . 
of x and w we have managed to represent m(v,z;u,y) as a prod- 
uct of two operators of the extended type m(x,y*z). Thus, 
the first factor ;Y(v,x;u,x) in (45)is simply an extended in- 
variant imbedding operator 3ff(v,x,u) as defined in (44). The 
other factor appears to be the inverse of such an extended 
operator. Indeed, using the semigroup relation (84) of Sec. 
3.7 once again, it is clear that: 

n/(xIz;x,Y) ??(z,x;y,x) 1 0 (46) 

Hence : 

q(x,z;x,Y) = (z,x;y,x) 

= W-’(z,x,y) , (47) 

It remains only to return to (42) and make the appropriate 
substitution of variables to obtain the desired representation 
of n((v,z;u,y). Thus from (42): 

jzJ(v,x;u,x) = ?(v,x,u) = [~(x,u)C+ + T(xpv)c-]-l. (48) 

n((z,x;y,x) = 7/l(Z,X,Y) = [?(X,Y)C+ + iy(X,ZlC-] - l *  (49) 

Once again from (42): 

In view of (47), equation (45) therefore becomes: 
1 1 

L I 

whish is the requisite representation of an arbitrary member 
of rr(a,b) by members of rz(a,b), and which holds for every 
u,vIx,y,z in [a,b], provided, of course, that the inverse 
operator in (50) exists in a given setting. An alternate form 
of (SO), using the generalized invariant imbedding operator, 
is : 

I I 

I I 

In equations (50) and (51) the depth variable x is free to be 
chosen anywhere in [a,b]. Observe in (51) how the first fas- 
tor, as a generalized invariant imbedding operator, maps 

, 
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(N+(u) ,N-(v)) into (N+(x) ,N-(x)), and then how the inverse 
factor maps the latter radiance distribution into 
(N+(y),N-(z)). The composite mapping of these functions is 
precisely that performed by q(v,z;u,y). 
most write down (51) by sight if the various ranges and do- 
mains of,the operator are kept in mind. It is of interest to 
compare (51) with (40) which yields a representation of 
7/((x,y) in a similar vein to that of -(v,z;u,y) above in (51). 

under suitable confluence of the variables u,v,y,z? the entire 
family of interaction operators considered so far in this sec- 
tion. This is left as an exercise for the interested reader. 
The derivation of the following alternate representation of 
7;9(v,z;u,y) by extended members of r,(a,b) is also left to 
the reader: 

Thus one could al- 

The representation (50) may be used to yield at once, 

The Connection Between Y(x,y) and q(s,y) 

The interaction operators for media with internally 
distributed sources of radiant flux differ fundamentally from 
those designed to describe radiative transfer in source-free 
media. The origin of this difference was pinpointed in the 
equation (31) of Sec. 3.9 for the operator Y++(s,y); and the 
subsequent discussion of this operator showed that it was dis- 
continuous at the point (s,s) of its domain, a property not 
possessed by operators of the source-free kind. The operator 
Y(s,y) introduced in Example 3 of Sec. 3.9 (of which Y++(s,s) 
is one of four components) is specifically designed to de- 
scribe light fields in a media which have internally distrib- 
uted sources. Since we have apparently reached in this sec- 
tion a culmination point in the discussion of source-free 
media, it would be of interest to relate the operator Y(s,y) 
to the basic operator ?(x,y) for source-free media. 

bout source-free media X(a,b) made at the outset of this sec- 
tion. We postulate instead a source of flux arbitrarily dis- 
tributed over level s in X(a,b), a i  s sb. The source is rep- 
resented as an arbitrary radiance distribution No(s), whgre 
No(s) is conceptually partitioned into the pair (N:(s) ,N-(s)) 
of upward (+) and downward (-) radiance distributions. Then 
the radiance distribution N(y) (= (N+(y),N_(y)) at any level 
y in X(a,b) is given, according to (15) of Sec. 3.9, by: 

We now momentarily abrogate the standing condition a- 

What we must do next is to use the operator q(s,y), 
which is designed for use in source-free contexts, to relate 
the radiance distribution at level s to that at level y. It 
is important, therefore, to renew acquaintance with the manner 
in which the source radiance function No(s) is viewed in radi- 
ative transfer theory. A re-reading of the opening paragraph 
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of Example 3, Sec. 3.9 will serve this purpose. We see that 
the source is pictured very much like a thin transparent lay- 
er of pure light sandwiched between the media X(a,s) and 
X(s,b?. 
this is the condition used throughout the earlier and the 
present discussion. Furthermore, the presence of the source 
is detectable in practice by an effective discontinuity of 
*.radiance readings of a radiance meter as the meter passes 
through the layer containing the sources. However, in levels 
y of X(a,b) distinct from level s, the general properties of 
the light field are identical with those of any source-free 
medium. Therefore, to relate N(y) to the light field at level 
s # y we may use q(s,y) provided we feed into PT(s,y) the 
tot41 incident light field as it is measured at level s. 
This means that the input radiance distribution for y(s9y? 
is to be No(s) + N(s), where N(s) is the resultant light field 
at level s generated throughout X(a,b) by the source NO(s). 
Therefore: 

For true internal sources, we require a <  s eb, and 

(N+(Y) ,N-(Y)] = * N+(5),NP(5) + N-(S))~(S,Y) (53) 

and this equation holds only for y # s. By setting y = s in 
(53) we obtain a contradiction. Herein, then, lies the sali- 
ent difference between ?(s,y) and Y(s,y) in general media: 
W(S,S) = I, but Y(s,s) # I; thus Y(s,s) is that irreducible 
core of Y(s,y) whose task it is to take specific cognizance 
of the presence of the obtrusive layer of light at level s. 

final steps that relate q(s,y) to Y(s,y). Equation (53) may 
be written: 

With the metaphysics over, we can now proceed to the 

(N+(Y) ,N-(Y)) = [(N:(s) ,N'S(s)) + (N+(s) ,N-(s))I ?(§,)PI 
(54) 

Setting s = y in Y(s,y): 
(N+(s) ,N-(s)) = (Nz(s),N!(s))Y(s,s) (55) 

which, when used in (54) in conjunction with the equations (15) 
and (35) of Sec. 3.9, yields (C, for [y-s]: 0): 

(N:(s) ,N?(s))Y(s,y) = ,N?(s)) [C,+ Y(s,s)] ?(s,Y) . 
Since No(s) is arbitrary, we obtain the desired connection in 
the form: 

where we use C+ for s 6 y  and C_ €or s >  y in accordance with 
the jump property of Y(s,y) at s = y. 
(5). 

C+ are defined in (4), - 
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A Star Product for the Operators v(x,y,z) 

We end the present section on three ascending general 
notes, of which the present discussion sounds the first: we 
wish to extend the concept of the star produce of the opera- 
tors M(x,z) , as developed in (35), to the invariant imbedding 
operators w(x,y,z). This product, which we found to be the 
algebraic essence of the partition relations (15)-(18) of 
Sec. 7.3, serves to show how to combine the interaction prop- 
erties of two contiguous media X(a,b) and X(b,c) to find the 
corresponding interaction properties of their union X(a,c). 
We now attempt to do the same for the complete reflectance 
and transmittance operators of any two adjacent media. 

Figure 7.5 depicts the present setting. We imagine a 
plane-parallel optical medium X(a,b) to be the union of two 
arbitrarily overlapping sub-media: X(a,z) and X(x,b). Let y 
be any level in X(a,b) such that x s y s z .  The problem before 
us is: to represent &(a,y,b), T(a,y,b), and ;*l(a,y,b) in 
terns of a suitable algebraic combination of the complete 
and Toperators associated with X(a,z) and X(x,b). The pres- 
ent problem is geometrically slightly more general than its 
counterpart posed in Sec. 7.3 for the R and T operators in 
the sense that we require not contiguity of X(a,z) and X(x,b) 
(so that necessarily x = z), but merely intersection of the 
media (so that x 52). 

The incident radiance distributions N-(a) and N+(b) on 
X(a,b) generate a light field at general levels x,y,z in 
X(a,b) which may be computed several ways depending on which 
medium one envisions the levels to be in, i.e., as light 
fields in X(a,b), or in X(a,z) or in X(x,b). Thus N,(y), as 

I ............ 

......... 

....... Y * - * *-.. ": .------- 

............ 

........ 

X '  

b 

FIG. 7.5 The setting for the star product in r3(apb). 
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radiance distributions in X(a,b) are given by: 

N+(Y) = N-(a)Q(a,y,b) + ~+(b)T(b,y,a) (57) 

N-(Y) = N-(a)T(a,y,b) + N+(b) (58) 

which follows at once from the invariant &bedding relation 
for X(a,b). On the other hand, the distrxbution N+(y) con- 
sidered as being in X(a,z), is given by: 

N,(Y) = N-(a)h?(a,Y,z) + N+(z)T(z,Yra) 

N-(Y) = N_(X)lJ(X,Yl,bl + N+(b)&(b,Y,X) (60) 

(59) 

and N-(y), considered as being in X(x,b) is given by: 

which are the results of applying the invariant imbedding op- 
erators of X(a,z) and X(x,b), respectively. Now the distri- 
butions N+(z) and N-(x) appearing on (59) and (60) can be 
found by solving the system: 

N+(z) = N-(x)42(x,z,b) + N,(b) J-(b,Z,X) (61) 

PJ-(x) = N-(a)3-(a,x,zl + N+(z)&z,x,a) (62) 

which is derived similarly to (59), (60) by considering level 
x as occurring in X(a,z) and level z as occurring in X(x,b). 
The solutions are: 

N+(z) = 

= LN- (a>J(a,x, ~)A(x, z ,b) +N+ (b)T(b, z ,XI] [I -JNZ ,x,a)h'(x, z ,b) J - 
(63) 

(a)r(a,x, z) +N+ (b)J(b, z ,x)bz(z ,x, a)] [I -R(X, z ,b)A(z ,x, a)] -' 
(64) 

N-(x) = 
= 

These equations should be compared with (93, (lo), (25) and 
(26) of Sec. 3.7 and (49), (50) of Sec. 3.9 for structural 
similarities. 

Next consider the two alternative ways of describing 
N+(y) in (57) and (59). 
are equated and if N+(z) as given in (63) is used, then sance 
N+(b) and N-(a) are arbitrary, we derive the following two 
operator equations as a result: 

If these two expressions for N+(y) 

h?(a,y,b) = 
= 8( a, Y , z I + X a, x , z )Rx, b 1 [I -& z , x , a)htx, z , b 11 - 'J( z , Y , a) 

(65) 

(66) n b , Y  f a) = a b 9  z 9x1 CI -La2 9x9 a)&(x 9 z ,bl J - ' X Z  ,Y , a) 

r 
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These two equations constitute a' rather interesting generali- 
zation of (15) and (18) of Sec. 7.3. For by letting y = z in 
(65) and (66) we have: 

@a, z ,b) = r(a,x, z) &(x, z,b) [I- A(z 9x,a)&?(x, z ,b) I 

and these representations may be plowed back into (65) and 
(66) to yield the following compact forms of (65),(66): 

&(a,y,b) = &(a9y,z) + &(a,~,b) T(z,y,a) (69) 

z(b,y,a) = r(b,z,a> T(z,Y,~) (70) 

The latter equation is simply the semigroup property (52) of 
Sec. 3.7 for the Toperator. However, (69) is a relatively 
novel equation, much in the way (15) of Sec. 7.3 was a new- 
comer to the semigroup scene in that setting. Equation (69) 
will be used at crucial points of the investigation in 7.13. 
The analogy between the present derivation and those leading 
to (15) and (16) of Sec. 7.3 appears to be a throughgoing 
one, on the strength of which we can write down the remaining 
two correspondents of (16) and (17) of Sec. 7.3: 

r(a,y,b) = T(a,x,b)Xx,y .b) (71) 

(72) 

( 7 3) 

.& (b ,x ,a) = 33, z ,x) &'(z ,x, a) [ 1 -&x, z,b)&?(z ,x, a> 1 -' (74) 

L?(b,y,a) = &(b,Y,X) + 63(b,x,a) J(X,Y,b) 
where 

J( a, x , b 1 = Zt a, x , z) 1 I - &(x, z , b) A?( z , x a) 1 - 

The requisite star product for the invariant imbedding 
operator ?(a,y,z) and T(x,y,b) associated with the sub- 
media X(a,z) and X(x,b) may then be defined as follows. We 
write: 

")3/(a tY 9 2) * q(x Y I b) " for 7/(a,Y r b) (75) 

where 3n(a,y,b) in (75) is constructed Prom the operators of 
P(a,y,z) and *(x,y,b) using (69)-(72) in which-&(a,z,b), 
J(b,z9a), T(a,x,b) and &(b,x,a) are as given in (67), (68) 
(73) and (74), respectively. Thus: 

7;r(a9~,b) = T(a,~,z) *?rl(x,~,b) = 
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FIG. 7.6 The star product of invariant imbedding op- 
erators can be defined for arbitrary media. 

Recall that the depth variables x and z in (75) are 
arbitrary, subject only to the condition xcyc-z, i.e., that 
the media X(a,z) and X(2,b) overlap, and that y be chosen in 
the intersection of these media. Equation (76) is to be com- 
pared with (39). 

The power of the present algebraic approach to radia- 
tive transfer theory can be appreciated in some detail if we 
now turn to the general invariant imbedding relation (51) of 
Sec. 3.9 and observe that all activity we have gone through 
to reach (76) can be repeated for the general medium X of 
examples 4 and 5 of Sec. 3.9. Thus if we have a medium X 
with two overlapping submedia A and B of a one-parameter medi- 
um as in Fig. 7.6, and more generally, if we have two media 
X and Y which intersect in a region z as in Fig. 7.7, then we 
can form a star product of the invariant imbedding operators 
of X and Y to obtain the invariant imbedding operator of their 
union XUY, in exact analogy to (76). 

further exploration of the algebraic theory of radiative 
transfer are clearly mounting in number and in depth. The 
possibilities branch off into topological and algebraic direc- 
tions which, if kept bound together by suitably defined con- 
cepts, will raise the theory of radiative transfer the re- 
maining distance to its logical haven: a possible general 
theory of linear transport processes. Such a pursuit is un- 
fortunately beyond the scope of the present work, and we rest 
the matter here. 

In view of these observations, the possibilities for 
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Y 

FIG. 7.7 A general setting for the star product of 
interaction operators in general optical media. 

Possibilities Beyond fl(v,x;u,w) 

the possibility of operators more comprehensive than those in 
r,(a,b) will be considered. We shall show that such possibil- 
ities of arbitrarily great comprehensiveness are easily con- 
structed. However, in a sense, such generality is no longer 
needed now that operators like q(x,y) harnessed in parallel 
have been shown to have sufficient computational power (cf. 
(SO), (51) and (52)) to do everything *(v,x;u,w) can do. 
For simplicity, we shall remain in the setting of one-parame- 
teT idedia during the present discussion. 

m(v,x;upw), let us return to its definition in (56) of Sec. 
3.7, Recall that the primary motivation for ;rrC(v,x;u,w) was 
thelneed for an operator which would take as input the pair 
(N+{u) ,N- (v)) of radiance distributions on arbitrary levels 
of e and v in X(a,b) and yield as output the pair (N+(w),N.-(x)) 
on still two more arbitrary levels w, x in X(a,b). In this 
way,we achieved a comprehensive, symmetric setting €or all 
classical operators. In particular, these choices of input 
and; response distributions constitute the natural generaliza- 
tion of the classical type of inputs and responses of M(x,y) 
(cf;. (2) above) and the general invariant imbedding operator 

In this the penultimate note of the present section, 

To see what direction we may take in generalizing 

1 .  
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7rl(xry,z). 
to a reasonably general kind (there is still room beyond here 
too--consider, e.g,, partitioning 9+ and E, into many and 
sundry pieces) we turn to consider the effect of an increase 
in the number of levels. 
which takes as input the 2m component radiance vector: 

Having thus extended the input and output types 

Thus, suppose we ask for an operator 

and yields as output the 2n component radiance vector: 

where u1. ..., ulp and v ...., vm are 2m arbitrary levels in 
X(a,b) and wl,... ,wn And x ,. ..,xn are 2n arbitrary levels in 
X(a,b). 
over level Ui. Similarly with the other radiances. Then the 
interaction principle supplies an operator 

N+(Ui) is as usuaf the upward radiance distribution 

*(vmsxm; ... ; vl,xl;un,wn; 9.. ; u1w1) (791 

which is a 2m x 2n matrix of operators of which Zmn are 
. T-like and 2mn are &?-like (which we need not display here) 
and which clearly reduces to V(v,x;u,w) by setting m - n = 1. 
le shall now show that the operator (79) can be represented 
as a linear combination of generalized invariant imbedding 
operators of the form q(vi#Xi;u.,w.]; Then, in view of (SO), 
the algebraic representation of t79f in terns of members of 
the partial group r,(a,b) will stand established. 

the following two partitions of identity operators: 
The key to the desired representation of (79) rests in 

m 

1-1 
I, = ci[trn ci1 (80) 

where Ci is a 2m x 2 matrix and D; is a 2n x 2 matrix of the 
form: - 

= ci 

J 

= Dj (82) 

and where 8'Og' denotes the 2 x 2 zero matrix and "I" the 2 x 2 
identity matrix considered earlier (e.g., in (3)). The 



60 INVARIANT IMBEDDING TECHNIQUES VOL. IV 

notation "trn Ci" denotes the transpose of Ci, i.e., 2 x 2m 
matrix obtained by turning Ci on its side so that the identity 
operator I, in Ci is the ith matrix counting from the left as 
usual. That (80) and (81) represent, respectively, the 
2m x 2m and the 2n x 2n identity matrices is readily estab- 
lished, and is left as an exercise to the reader. Observe 
also that [trn CiJCi is the 2 x 2 identity matrix I, for 
every i. 

The operators Ci have the useful properties that: 

(83) 

for 1 s i  sm, 1 zs j sn, and where "a" and "b" denote (77) and 
(78), respectively. We shall continue to use these abbrevia- 
tions "a" and "b" in the remainder o'f this discussion, 

Now, we know how to relate (N+(u~), N_(vi)) and 
(N+(wj), N-(x~)). Such relating is the specific task of 
r(Vi,Xj ;Ui,Wj) Thus: 

[N+(Wjl, N-(xjl) (N+(uiI,N_(viI)iZr(vi,x.;ui'w.) 3 J (841 

In other words (84) states that: 

b Dj = a C i q .  
1j 

where we have written, ad hoc: 

(851 

"Yij" for T(vi,xj;ui,wj) . (861 

Equation (85) therefore suggests that we start with: 

b = a q  , (871 

where "att at present denotes (79), and insert the 2m x 2m 
identity operator Im, in the form (801, between a a n d q i n  
(87) to obtain: m 

b = a 1 Ci[trn Cil . (881 
i=l 

Once this is done we operate on each side of (88) with Dj to 
obtain: 

It is clear from (89) and (85) and the fact that these equa- 
tions hold for every incident radiance vector a, that: 

I I 
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In this way we see the 2x2 operator matrix *ij is a special 
case of %'. Going on with the present analysis of (87), we 
operate on each side of (89) with trn Dj and sum over all j. 
Thus : 

Again, since a is arbitrary, we have, from (87) and (91): 

By means of this equation, we see that @is representable as 
an mxn block matrix with T i j  as the element in the ith row 
and j th column. 

terms of ?is, i.e., in terms of the members of r4(a,b). 
Thus we see ghat ?may be represented by a suitable algebraic 
combination of elements of Pz(a,b), using (SO). 

Equation (92) is the desired representation of T i n  

Possibilities Beyond rz(a,b) 

possible direction in which the notion of the partial group 
rz(a,b) for a plane-parallel medium X(a,b) may be extended. 

one-parameter three-dimensional optical medium in which ''a" 
and "b" are indices of the two-parameter surfaces bounding 
the general curvilinear medium X(a,b). The resultant alge- 
braic structures are isomorphic, (i.e., algebraically identi- 
cal) to that of the plane-parallel case and so will not be 
explicitly considered. 

An extension of r2(a,b) beyond one-parameter media 
would be to an arbitrary connected medium X in which "x" and 
"y" in 7t((x,y) now denote two arbitrary points of X or possi- 
bly small subsets of X. We shall call x a point in either 
case in what follows. This extension is of great physical 
interest and we pause to examine it using formal operations 
in just enough detail to see how the generalization nay go. 

Let X be an optical medium in three-dimensional Euclid- 
ean space, i.e., the space which represents an ordinary every- 
day world. Within X we can simulate portions of the earth's 
atmosphere, or its seas and lakes. Let No be the incident 
radiance function on X and N the associated response radiance 
function on x. Then the interaction principle supplies an 
interaction operator ;?y(x) which maps No into N: 

We conclude this section with some observations on the 

An immediate extension of rz(a,b) may be made to a 
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The reader will recall that N is a function which 
assigns to each x in X and 6 in E the radiance N(x,E) at x in 
the direction 6. Thus, from N we can obtain the radiance 
distribution N(x) at point x. Let E(x) be the operator which 
assigns to point x in X the radiance distribution N(x) at 
point x.as induced by the radiance function N. Thus: 

N(x) = NE(x) (94) 

In other words, E(x) is a continuous (or generalized) 
version of Ci or I). introduced in (82). Conversely, from 
knowledge of N(x) at each point x of X, we can reconstruct N. 
Let " t m  E(x)" be the operator such that: 

(95) 1 - I IE(x) [trn E(x)l dV(x) 
X 

where I is the identity operator (transformation) on the vec- 
tor space V(X) of all radiance functions defined on X. (The 
use of vector space concepts was introduced in an earlier 
discussion; see Example 15 of Sec. 2.11.) We shall not go 
into the details of construction of the operator trn E(x). 
It will suffice to note that it is intended to be analogous 
to the transpose operators discussed in (80) and (81) and may 
be constructed using theorems A,B,C of the interaction method 
in Sec. 3.16. Using this partition of I in (93) we have: 

N = NO1 q(X) = ,/ N0E(x) [trn E(x)] ?(x) dV(x) . (96) 
X 

Applying the operator E(y) to each side of (96) we have: 

N(y) = NE(y1 = / N0E(x) [trn E(x)l Mx) E(Y) dV(x) (97) 
X 

Let us write: 

11 qo (x;x,y) 11 or *17y0 (x , y) 11 for 

/ [ I [trn E(x)l;r(x) E(Y) dV(x) * (98) 
X 

Then (97) can be written as: 

(99) 

where : 
N'CX) - NOE(X) . 

We shall now assume that the operator qo(x,y) is one to on8 
for every pair (x,y) of points in X, in the sense that two 
distinct incident radiance distributions Nlo(x), NtO(x) $1- 
ways are mapped into distinct corresponding response radiance 
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distribution functions N1 (y) , Nz (y) using (93). By di~tinot 
radiance distribution N1, N2 it shall be understood that for 
some set Eo of directions in E, ~Ho[N~(~,S)-N2(~,E)! dQ(S)>O. 
Matters can usually be arranged so that an optical medi- 
um X can be partitioned into pieces Xi over each of which the 
operator ?'O(Xi;x,y) is one to one. Hence no essential loss 
in generality will be engendered in what follows if we assme 
2Vo(X;x,y) is one to one over an arbitrary optical medium X. 
The one to one gropertylof WO6X.y) is used to insure that 
the inverse (R (x,y))- of (x,y) exists. For, once this 
inverse is available, we can directly relate any two radiance 
distributions in X. Thus, from (99) used twice: 

N(Y) = N"(X)TO(X,Y) 
N(z) - N0(X) T0(X,Z) 

whence : 

N(Y) (?'o(x,~l) = N(z) (eo(x,z)]-l 
whence again: 

N(z) - NCY) [741°(x,Y)l - I  TO(XPZ) 

which holds for every x in X, so that if we write: 

qqq(~,z)qq for [~o(x,~)] -'V'(X,Z) (1011 

we have : 

N(z) = N(Y) nl(Y,d (1021 I 
for every pair y,z of points in X. 
the invariant imbedding operator v(u,x) of Sec. 3.7 to a wid- 
er geometric setting, i.e., to one in which x and y are not 
surfaces, but possibly points or subsets of X. 
notation tqT(x,y)q'without fear of confusion with the simpler 
concept in the present discussion. Recall that x and y are 
now points or subsets of X rather than depth parameters for 
surfaces. We shall denote the set of all q(x,y) with x and 
y in X, by Y2(X) .Iq 

T(x,y) in r2(X) form a partial group in the sense explained 
in the discussion around equation (79) in Sec. 3.7. Hence 
r2 (XI is a proper generalization of rz(a,b). 

Several directions of further development of (102) are 
possible at this exploratory stage of the analysis. For ex- 
ample, using Stage 11 of the interaction method we can repre- 
sent W(y,z) as an integral operator over E. Alternatively, 
we could partition v(y,z) into a 2x2 matrix analogously to 
the partition in (18) for the plane-parallel case, and develop 
a theory for 37(y,z) analogous in every detail to that be- 
tween (18) and (92) above, but now for the general medium X. 
Since this is representative of a nontrivial extension of the 
invariant imbedding group I'z(a,b) to more general settings, 
we shall now explore the initial details of such an extension. 

In this way we generalize 

We retain the 

It follows at once from (101) that the operators 
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In the plane-parallel case we had the terrestrially- 
based coordinate system as a frame of directional reference 
for the partition of W(X,Z) as shown in (18). In the present 
case there is no preferred or pre-existing coordinate frame 
from which to launch the construction of the present counter- 

Therefore for the flrst stage of the present extension we 
simply assign to each point x in X a partition Sl(x), E~(x) 
of E into two parts. This partition can follow any rule, so 
that Ei(x) need not be a hemisphere. Once the partition is 
specified at each x in X, the radiance distribution N(x) is 
restricted to H1 (x) and 52 (x) resulting in N1 (x) and N2 (x), 
respectively--in complete analogy to the N+(y) and N_(y) of 
the plane-parallel case. This partitioning of N(x) at each x 
in X into the pair (NI (x) ,N2 (x)) in turn induces a cleavage 
of q(y,z) into a 2x2 operator matrix such that: 

parts to V++(x,zl,.V+-(x,z), ;5-+(x,z), and q--(x,!). 

(10 3) I '  7 1  1 (Y, 2) ?r12 (Y, 2) 

?2l(Y,Z) T22(Y,Z) 
?(Y,Z) = 

The details of this partitioning of q(y.2) are very much like 
those used to establish qo(y,z) from ?(x) above or ?'ij 
from 711in (go), except now (95) is replaced by a formula like 

2 

i=l 

(80) : 

I = Ci[trn c.] 1 (104) 

where Ci, i = 1,2, is the operator which assigns N-(y) to 
N(y), so that the Ci are like C+ and C_ in (4), (Sj. 
the partition (103) is obtained in precise analogy to (92) 
for the case m = n = 2. Hence we may refer the reader to 
equations (80)-(92) for the general outline of the details. 

With this decomposition (103) of v(y,z), equation 
(102) may be written: 

(Ni (2) ,N2 (2)) 

Indeed, 

T 1 1  (Y ,z) 59712 (Y,Z) 

72l(Y,Z) 722(Y,Z) 
(105) 

(Ni (Y) ,N2 (Y)) 

As a specific instance of (105), let fl(y,z) be a smooth di- 
rected ath in X connecting point y to point z (in that order). 
Once &y,z] is specified then any point x along it is located 
by a single parameter--the distance of x from y along the 
curve, and the tangent to the curve is given the usual sense 
at X. See Fig. 7.8. At each point x of p(y,z), let C(x) be 
the tangent to the curve. Then let E1(x) and 5:2(x) of the 
general discussion above be 5+(<(x)), E-(<(x)), respectively, 
where E+((<x)), it will be recalled (Sec. 2.4), is the hemi- 
sphere of =. consisting of all directions 5' such tbat 
Et*C(x)2O, and E-(<(x)) consists oi all 5' such that 
f'.((x) c 0. With these assignations of 21 (x) , E2 (x) , the 
formula (105) takes the form: 
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FIG. 7.8 Extending the T(x,y) operators to general 
geometries. 

, (106) 1 I""" n/+(Y,Z) T - A Y J )  

7y,-(Y,Z) 
( N + W  ,NAz)) - (N+(Y),N_(Y)) 

where N+(x) and N,(x) are now the restrictions of N(x) to 
=+(F;(x)) and S-(E(x)), respectively. Thus (106) is formally 
indistinguishable from its plane-parallel counterpart; fur- 
thermore the algebraic properties of V(y,z) in (106) are 
identical to those of its algebraic counterpart and (106) re- 
duces to the stratified plane-parallel case when i?(y,z) is 
the straight path from level y to level z and such that 
&y,z) is perpendicular to the parallel planes of X(y,z) in 
X(a,b). As we shall see in Sec. 7.11, (106) reduces the type 
of solution procedures used for light fields in a general me- 
dium X to those used in plane-parallel media, with arbitrary 
lighting and optical conditions. . 

yond r2(a,b) there is a general pattern forming for one such 
family of extensions. We conclude these explorations with a 
summary and review of the incipient pattern for the case of 
an arbitrary subset S of a medium X. The formation of the 
extensions begins with an invocation of the First Stage of 
the interaction method, This yields the generic equation: 

N - NoT(S) 

- 

In the preceding explorations of the possibilities be- 



66 INVARIANT IMBEDDING TECHNIQUES VOL. IV 

where S may be all of X or a proper part of X. 
N may now be radiance functions for polarized light, and may 
depend explicitly on scattering Htith change in wavelength, 
etc. Hence X may be more than three-dimensional. Let us as- 
sume X is n-dimensional. (See opening remarks, Sec. 99 of 
Ref. [251].) Using the technique of decomposing the identity 
operator, as in (80), (81), (951, or (104), the basic equa- 
tion (107) can be systematically taken apart leaving an op- 
erator which forms a member of a new partial semigroup r2(S). 
The ways in which (107) may be so analyzed are manifold. The 
examples cited above show that the partition of the identity 
operator may be over spatial variables (as in the case of 
(80), (81), and (95)) or over directional variables (as in 
the case of (104)). The work of Ref. [251] shows how the 
partition of the identity operator may in other contexts be 
over the location space of a disorete optical medium (Sec. 90, 
Ref. [251]) with the resultant generation of the local opera- 
tor $0 analogous to To in (98). In addition, the technique 
of partitioning the identity operator is applicable to the 
polarized radiance context (Sec. 114, Ref. [251]) and also 
the heterochromatic radiative transfer and even the general 
Markov-process context.of general radiative transfer of equa- 
tion VII, (Sec. 119 of Ref.[251]). With these examples in 
mind let us assume a quite general partitioning of the identi- 
ty operator I on the vector space of radiance functions on S, 
thus : 

I = IC(X) [trn C W I  ~ x )  (108) 

Furthermore 

Y 

\ 

S 
where now x is a point of the subset S of the n-dimensional 
space X, and V is the volume measure on X. (The various di- 
mensions of X may arise from the various parameters needed to 
describe N--location variables, direction variables, polari- 
zation parameters, wavelength parameters, etc.). The opera- 
tors C(x) are analogous to E(x) in (95). Therefore we write: 

"N(X)'~ for NC(x) (109) 

in complete analogy to the earlier special cases of N(x). 

No and q ( S )  in (107) to obtain: 
Next we insert I, in the form given by (108), between 

N = NoIV(X) * N°C(x) [trn C(x)]a(S) dV(x) . L 
By (109) we have: 

No(x) - N°C(x) 
and in analogy to (98) we wrife: 

~ ~ ~ ~ ( ~ ; x , y ) f ~  or ~lqO(x,y)rt for 

I,[ I [trn C(x>l?(s)C(~> dV(x1 . 
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Therefore, upon operating on each side of (110) with C(y) we 
have : 

(113) 

Assuming the integral operators qo(x,y) to be one to one for 
every x and y in S we define: 

Z(Y, z) for [q0 O,Y) I O (x, z) (114) 

in analogy to (101). The collection l-2 (S) of all operators 
*(y,z), with y,z in S is seen to be a partial group as in 
the earlier instances; so that for every y,z in S: 

(115) 

which holds for an arbitrary radiance field N in S. 
Further partitions of the identity can now be made on 

the vector spaces of radiance distributions with elements 
N(x), x fixed in S. For example, if x is simply the spatial 
variable then further partitioning of the direction space or 
wavelength space can be made if desired. Thus in general, 
let D,(x) and DB(x) be operators such that: 

is the partition of the identity operator on the vector space 
of functions N(x) at x in X. The space A is the space (either 
discrete or continuous) which is being partitioned and P is 
the measure, and could be direction space or wavelength space, 
etc. Let us write: 

"Nu (x) '' for N (x) D, (x) (1171 

and 

"3)1,6(S;s,~)" or "TaB(x,y)" for [trn D,lx?lT(x,~?D~(~l . 
(118) 

The functions N,(x) with a in A; and% ~(x,y) are generali- 
zations of Ni(x), and Wi*(x,y) in (lOSp, where now the space 
A is quite arbitrary. Sek also the discrete example (85) of 
[llg]. Then to see how far these generalizations can go, we 
return to (115) and observe that we may write: 
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Since N(y) is arbitrary, we have from this and (115): 
r I 

L I 
‘ (120) 

which is one of the possible generalizations of the type to 
which (92) belongs. This concludes the summary and overview 
of a possible general method of constructing partial groups 
I’2(S) of operators on the subset S of the optical medium X. 
The problem of generalizing rz(a,b) to r2(S) will be consid- 
ered once again in Sec. 7.11. 

7.5 Analytic Properties of the Invariant Imbedding Operators 

We now continue the work, begun in Sec. 7.1, of deriv- 
ing the differential equations governing the main invariant 
imbedding operators. In particular we shall derive the var- 
ious functional differential equations governing the opera- 
tors %‘(x?y), ;5y(x,y,z), and ;y(v,x;u,w). Since these opera- 
tors are in turn 2x2 matrices of operators, each such differ- 
ential equation is a potential plethora of differential equa- 
tions for its component operators. Such a superabundance of 
operator differential equations would constitute an embarrass- 
ment of riches for the theory were it not for the insight 
gained into such operators in the preceding section. Indeed, 
our studies there showed that the operators of the form 
3‘j‘(v,x;u,w) could be studied in terms of those of the form 
@l(x,y,z), and the latter in terms of those of the form 
T(x,y). 
victors in any contest of conceptual simplicity and inherent 
power of representation. In summary, then, it was shown how 
the members of Y2(a,b) could represent, via simple algebraic 
formulas, all the other invariant imbedding operators of 
r,(a,b) and rs(a,b), plus the operators of Gz(a,b), and even 
the classical R and T operators. Hence the multitude of 

Hence the operators W(x,y) emerge as the undisputed 

c 
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operators can be reduced, formally at least, to just those in 
r*(a,b). 
rz(a,b) will be used again in the present section to derive 
the requisite differential equations for all invariant im- 
bedding operators from those for w(x,y]. Prom these differ- 
ential equations, in turn, the operators may be systematically 
constructed by various solution procedures using the inherent 
optical properties of the appropriate media. 

Throughout this section, unless otherwise stated, we 
shall work with an arbitrary source-free plane-parallel medi- 
um X(a,b), a s b ,  with arbitrary incident radiance distribu- 
tions N-(a) and N+(b) over the upper boundary Xa and the 
lower boundary xb, respectively. As in the case of Sec. 7.4, 
the present results are readily generalized to wider settings, 
namely general one-parameter settings and general unparameter- 
ized optical media. Also, as in the case of Sec. 7.4, the 
exposition is primarily heuristic, with rigorous developments 
left for future study. 

This power of representation of the members of 

Differential Equations for *(x,yl 

Starting with the basic equation concerning the opera- 
tor W(x,y);. namely: 

N(Y1 = N(XI*(X,Y) 
introduced and studied in Ex. 7 of Sec. 3.7, we apply the 
differential operator d/dy to each side of this equation, 
where the differential operator occurs in (1) of Sec. 7.1. 
Thus : 

For the reader unfamiliar with analytic (i.e., differential, 
integral, and general limit) operations on operators, we may 
note here that the rules governing these operations are the 
same in all essential respects as those for the everyday type 
of function encountered in the domain of elementary calculus. 
Hence for the purposes of the present discussion, the reader 
will require no more advanced techniques than those encounter- 
ed in such a domain. Needless to add, however, the physical 
content of the ensuing statements are far from trivial and 
are worthy of further analysis and application. 

7.1 to reduce the preceding result to: 
Continuing now with the derivation, we use (9) of Sec. 

dN0 = N(y)X(y) = N(x) . 
dy dY 

Using the basic equation for %(x,y) once again, we obtain: 
d W x , y I  . N(Y)X(Yl = (N(x)r(x,Y))X(Y) = N(x1 

dY 
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Under the present lighting conditions, N(x) is arbitrary so 
that: - - *(X,Y)7C(Y) (1) 

which is our first main result and which holds for arbitrary 
x,y in X(a,b). This differential equation for V(x,y) harbors . 
the four differential equations for its four components, whicfi 
are operator-valued functions. For future reference, these 
are : 

Observe how (2) , (4) and (3), (5) are autonomous and indeed are 
copies of (5),(6) in Sec. 7.1. Hence (e++,?+-) pair with 
(N+,N,) as do also (?-+,%?--). The initial value of 
(-++,-+-) is (I,O), while that of (?-+,---) is (0,I). 

when the differentiation is performed with respect to x rather 
than y. To obtain the companion equation observe that: 

A companion equation to (1) (its adjoint) is obtained 

Hence : 
= -V(x,y) - rn(x,y) . (6) 

ax ' ax 

Applying (1) to the derivative on the right in (6) we have 

whence : 
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Equations (1) and (7) are reducible to nxn matrix equations 
using angular discretization techniques such as those to be 
described in Secs 7.7, 7.9 and 7.10. The initial values are 
of course in each case m(x,x) = I, the identity matrix, The 
four functions taken in the above pairs comprising 7, are 
called ,the fundamental solutions of the equation of tranefer. 
AS we have already seen in 7.4, by judicious linear combina- 
tions of these solutions, we can obtain all the useful scat- 
tering properties (e.g., R, T, W,T) of an optical medium. 
the general procedure for finding the derivative of the in- 
verse A-' of an operator, knowing the derivative of A. 
if A is differentiable and depends on x: 

The tactic used above to find (6) is a special case of 

Thus, 

whence : 

This formula is based on the standing assumption that the in- 
verse of A exists so that the product AA-' is defined, and 
that A and A" are in some sense differentiable. Equation 
(8) is a general form of the formula: 

dCllrl, - - y - l  iy Y-' 
dx y2 dx dx 

encountered in elementary calculus for the derivative of the 
numerical valued function l/y in terms of that of y. Now, 
however, we generally are not permitted to join together the 
two inverses A-I in (8) since operator multiplication is gen- 
erally not commutative. 

Differential Equations for q[x,y,z) 

By means of the representation of a(x,y,z) in terms 
of m(y,z) and m(y,x), as given in (42) of Sec. 7.4, we can 
find the differential equations governing e(x,y, z) e 'There 
are generally three such equations, one arising froin differen- 
tiation of 97(x!y,z) with respect to each of the three dis- 
tinct depth variables x,y,z within [a,b]. Throughout the de- 
rivations, then, x,y,z will be distinct variables, unless 
specifically noted otherwise. 

Thus, differentiating each side of: 

with respect to x and using (8) and (1) : 
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= - V(X , x , z) K (XI c - 270 , Y , z) aPi(x,y,z) 
ax 

* (11) 

We defer discussion of (11) until its two companions have 
been derived. Toward this end, differentiating each side of 
(9) with respect to y and this time using (8) along with (7): 

mx * * z, = -27 (x , y , z) [-my) 59 (Y , z) c+ -KlY)fl (Y ,XI c -137 (x , Y, z) 
aY 

= T(X,Y,Z)K (Y) [V(Y,ZIC+ + S*;r(Y,X)C-)?(X,Y,Z) 

E m(x,y,z)K (Y) [n/(x,yDz)]-lq(x,Y>z) 
Hence : 

Finally, differentiating each side of (9) with respect to z: 

which may be simplified, using (lo), to: 

I 1 

I I 
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Now for a brief discussion of (111, (12), and (13). 
All three equations show how to construct m(x,y,z) given the 
relatively simpler operators Zp(x,z,z) ,R (z), C+ (in the case 
of (13) or w(x,x,z), K (x) , C- (in the case of (11)). For 
example, in the case of (ll), part (a) of Fig. 7.9 shows that 
by starting with the basic slab X(y,z) (shaded) and building 
it up to level x as shown, we can compute W(x,y,z) for every 
x, such that x s y s z .  All that is needed to start the calcu- 

-lation is information on W(x,y,z) for the special ease x=y. 
This informat’ion, in view of (44)-(47) of Sec. 3.7, is tanta- 
mount to kno&,edge of the standard operators R(y,z) and 
T(y,z). 
mittance and reflectance operators for the required range of 
x above the level y. A similar observation holds for (13) 
whose geometric significance is depicted in part (c) of Fig. 
7.9. Finally, Eq. (12) strikes the middle road between (11) 
and (13) and shows how 7;r(x,y,z) can be obtained by working 
inwapd from either boundary of X(x,z), and initially knowing 
-(r,x,z) or w(x,z,z), as the case may be. The former of 

Of course, one must know in addition the, local trans- 

FIG. 7.9 Three ways in which to generate invariant irn- 
bedding operator T(x,y,z). 
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these cases is shown in (b) of Fig. 7.9. 

contained in these equations. We begin with (12) which yields 
the following four differential equations for the complete re- 
flectance and transmittance operators: 

It is instructive to unravel some of the information 

- J(z,r,x).r(y) + LaZ,Y,X)P(Yl (14) a T(z,Y,x) 
aY 

- a R x * y a z )  - &(x,Y,z).r(Y) + 2-(X,Y,Z)P(Y) (15) 

= 3’(Z,Y,X)P(Yl + RIz,Y,x).r(Y) (16) 

aY 

a4?(z,y,x) 
aY 

a T(X,Y,Z) 
aY 

= &(X,Y,Z)P(Y) + J~x,Y,z).~(Y) . (17) 

Observe how (14), (16) are fundamentally similar to (5), (6) 
of Sec. 7.1, while (151, (17) are likewise autonomous and sim- 
ilar. Recall also the discussions of (l), (7) above. These 
earlier equations are no more fundamental than the present 
equations. Indeed, (14)-(17) may be used as the basis for 
all two-point boundary value problems by adopting the set of 
(two-point) fundamental solutions defined in (38)-(40) below. 

Next, since the situations depicted in parts (a) and 
(c) of Fig. 7.9 are basically alike, we shall give only the 
details of unravelling Eq. (ll), which goes with part (a) of 
the figure. The result is readily obtained by first noting 
that: 

-nXx,x,z)K(x)C_ * - 

% -  

I .  Tlz ,XI P (XI 

In view of this, (11) reduces to : 

whence : 
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(R(x,z)P(x) + T(X)]T(XrYsZ) (2f) - aqx,y,z) 
ax 

The various physical interpretations of these equations 
are instructive and the reader may gain understanding of the 
dynamics of scattering problems by translating each of the 
preceding equations into words or appropriate mental images. 
For example, (18) describes how steadily flowing upward radi- 
ance (imagined incident at level z) changes at level y in 
X(x,z) when material is added to X(x,z) at its upper boundary 
XX. Thus (refer to part (a) of Fig. 7.9) when a thin layer 
is added to X(x,z) at level x, the normally transmitted radi- 
ance (represented by T(z,x)) is now locally reflected in the 
new layer (represented by p(x)) and then globally reflected 
(as represented by &(x,y,z)) down to layer y in X(x,z), 

sorbing media is forthcoming from the present differential 
equations for m(x,y,'z) by observing how the differential 
equations for R and T, as derived in Sec. 7.1, may be derived 
anew in the present setting. As an example, consider Eq. (18) 
of Sec. 7.1. That equation describes, in essence, how re- 
flected radiance at level a in X(a,b) changes when an incre- 
mental layer is added to X(a,b) at level a. In terns of the 
present equations such a change in R(a,b) is the sum of the 
changes in &?(a,y,b) when a and y are simultaneously varied 
for the special instance when a - y, i.e., when the deriva- 
tives of &a,y,b) with respect to y and a are added together 
for the case a = y. Thus, from (15) and (20) : 

Further elucidation of the dynamics of scattering-ab- 

- (ala(xsysz) ax + aY 1 = 
= Lax, Y 9 21 T (Y 1 + a x ,  Y , 2) P (Y 1 + (Nx, 1 P (XI +T (XI ) L2 (x , Y , z 1 

(22) 

Letting y approach x, the right side of this equation becomes, 
after rearrangements: 

P(X) + .r(x)R(x,a) + R(x,z)~(x) + R(x,z)p(x)R(x,z) . 

Furthermore, the left side of (22) is related to R(x,z) by 
the equation: 
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5 lim A?(x,y,z) . 
Y+X 

These limit equalities devolve on (45) of Sec. 3.9 and the 
usually available continuity of -&(x,y,z) and its derivative. 
Combining these results, (18) of Sec. 9.1 is obtained from 
(22) but now as seen in the light of a superposition of 
changes of the complete reflectance function &(x,y,z). 

The remaining three equations of Sec. 7.1 may also be 
viewed from the new vantage point of the invariant imbedding 
relation. For instance, Eq. (27) of Sec. 7.1 mas be obtained, 
in essence, from (14) and (18) via the observation that: 

- 

which follows from: 

T(Z,X) - 1im T(z,y,x) . 
Y+X 

These limit equalities devolve on (44) of Sec. 3.7 and the 
usually available continuity of T(z,y,x) and its derivatives. 
On the other hand, Eq. (28) of Sec. 7.1 is obtained directly 
from (19) after passing to the limit y+z and suitable rear- 
rangement of coordinate variables. Finally, (29) of Sec. 7.1 
follows directly from (21) in a similar way. The reason for 
the direct derivations in the latter two cases stems from the 
observation that: 

and 

and that the derivatives in (19) and (21) are with respect to 
X. 

Differential Equations for %( v,x ; u, w) 
Our starting point for the present derivations may be 

either (SO), (51) or (52) of Sec. 7.4. We choose the repre- 
sentation (51) of v(v,x;u,w) so as to build directly on the 
results (11)-(13) just obtained and to gain some practice in 
the semigroup properties of the ?-operators. In the present 
notation, (51) becomes: 
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am(v*x;u,wl - rn(V,X ; u, w) q (It, x , w)X (x) c 
ax 
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(27) 

* (v,x;u,w) = w ~ v , Y , ~ ) ~ - ' ~ X , Y s w )  (251 

We generally expect four distinct differential equations to 
govern each member ob Cs(a,b). 
be painrise distinct variables, we have first of all: 

Thus, assuming u,v,w,x,y,z to 

afl(v,x;u,wl I aa(v,y,u) M-l (x,y,w) . 
av av 

By (11): - -q(v,v,ul~(v)C_ W(V,Y,U) a;r (v ,y .UI 
av 

Hence : 

This is the first of the requisite differential equations. 
Next, from (25): 

ae-l (x,Y,w) a * (v,x;u w, = T(v,y, u) 
ax ax 

But from (8) and (11) : 

-W* (x,y,w) [-~(x,x,w)K(xlC,~(X,Y,w)lnl"(x,Y,W) - m-' (x,y,w) 
ax 

Hence the second requisite differential equation is: 
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a m(vpx;u w, = w(v , x; u, w)v (x ,w , w) )c (w) C, . (30) 
aw 

$ 

Of the two preceding differential equations, (27) is the nat- 
ural form of the requisite differential equation (the opera- 
to+ sought occurs explicitly on both sides of the equation). 
From a conceptual and computational point of view, (28) shows 
that, as far as dependence on the variable x is concerned, 
r(v,x;u,w) behaves essentially like the members of ra(a,b) 
or rr(a,b) (cf. (1) and (12)). 

Next, from (25): 

V-'(X*y,w) . a *(v,x;u,w) am(v,y, 
au au 

Finally, from (25) once agairl: 

From (8) and (13): 

It then follows that: 

This equation, as (27), can be simplified slightly if we use 
the fact that: 

w(v,x;~,w)~(x,w,w~ - ?(v,w;u,w) 
= rn(V,W,U) * 

Hence (30) becomes : 
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This equation and (28) show that, as far as the response var- 
iables x, w are concerned, fl (v,x;u,w) behaves essentially 
like the members of rr(a,b) or rr(a,b) (see (1) and (12)). 
These observations could have been obtained directly using 
(52) of Sec. 7.4; however, the plausibility of (28) and (31) 
has now been reinforced by taking the preceding route. 

Differential Equations for M(x,y) and Y(s,y) 

for the simplest of operators M(x,y) and the most complex of 
operators Y(s,y) encountered so far in our studies. Simpli- 
city and complexity are measured here in terms of the osten- 
sible algebraic structure of the components of M(x,y) and 
Y(s,y). As far as the simplicity and complexity of their dif- 
ferential equations are concerned, matters are reversed, as 
we shall now see. Thus for Y(s,y) we use (56) of Sec. 7.4 
and find that; 

It is interesting to derive the differential equations 

ar[s,y) = [I + 'y[s,s)] - 
aY aY 

* 
whence : 

This result shows that the dependence of I(s,y) on y is essen- 
tially that of m(x,y) on y. The integration of (33) starts 
from the initial given operator 'P(s,s). 
the differential equation showing how 'P(s,y) varies with s is 
somewhat more complex and left to the reader. The differen- 
tial equations for the I-operators will be considered again in 
Sec. 7.12 wherein they will be represented in terms of com- 
plete reflectance and transmittance operators. 

tion for M[x,y), we use as a base the representation given by 
(10) of Sec. 7.4, From this we see that it is necessary to 
find : 

The derivation of 

Turning now to the derivation of the differential equa- 

in which we have used (8). Hence, with the aid of (71 and 

*For all y we add I_G(s-y) where 1- = (i 
(11) : 

-!),by (56) of Sec. 
7.4. 
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Hence 

Replacing n((z,x) in (34) by either of its representations, 
(11) or (12) of Sec. 7.4, the desired differential equation 
is obtained. The details are left to the interested reader. 

Analysis of the Differential Equation for R(y,b) 

The differential equation for R(a,b), as given in (18) 
of Sec. 7.1, was shown in the discussion of that section to 
be of central importance in evaluating the reflectance and 
transmittance operators associated with a plane-parallel med- 
ium X(a,b). In view of this importance, it is desirable to 
gain as much insight as possible into the structure of the 
differential equation governing R(a,b). We now analyze the 
equation for R(a,b), in two different manners, into a rela- 
tively simple pair of linear operator equations using the in- 
variant imbedding relation. The result will perhaps shed 
some light on the methods of determining radiance fields with- 
in natural optical media. 

We begin with the semigroup relation (53) of Sec, 3.7: 

&(a,z,bl = r(a,y,b)R(y,z,b) . 
By setting y = z in this relation, @(y,z,b) becomes R(y,b), 
so that: 

I R(Y,~) = r-’(a,y,b)H(a,y,b) 1 (35) 

This is the key representation for the reflectance operator 
R(y,b) in X(a,b) using the complete reflectance and transmit- 
tance operators &(a,y,b) and T(a,y,b). The inverse of the 
operator T(a,y,b) usually exists in most natural media, and 
SO we shall proceed on the assumption of its availability, in 
order to see where it leads. Now, it follows from (15) and 
(17) that: 
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- = &(a,y,b)?(y) + z(a,y,b)P(y) (36) 
aY 

aY 
aJ(a*y*b) = dP(a,y,b)p(y) + J(a,y,blr(y) . (37) 

Therefore, on differentiating each side of (35) with respect 
to y: 

zcYd?l.* 
aY 

*~-'(a,y,b)[-ata,Y,b)T(Y) - J(~,Y,~)P(Y)] 
Using (35) again, this may be simplified to : 

-R(y,b)p(y)R(y,b) - ~(y)R(y,b) 
- R(Y,blT(Y) - P(Y1 - aY 

On rearranging the preceding equation, we obtain (18) 

We may summarize 
of Sec. 7.1. Equations (35), (361, (37) therefore constitute 
the required analysis of (18) of Sec, 7.1. 
this finding alternatively as follows: The system (36), (37) 
of tinear diffsrentiat equations for the complete H a n d  7 
operutor8 together wieh (35) uniquety determines R(y,b) in 
X(a,b). The system (36), (37) may be represented succinctly 
by : 

where we have written: 

CUYI'~ for (R(a,y,b) ,7(a,~~b)l 

Therefore the construction of .&a,y,b), a < y < b 
mount to solving (38) over the interval [a,b] with the initial 
condition: 

is tanta- 

a(bl = (O,T(a,b)) (39) 

and then working up from level b to level y in X(a,b); or 
with the initial condition: 

&(a) = (~(a,b),~) (403 
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and then working down from level a to level y in X(a,b). 

quite interesting. Suppose we are confronted with a plane- 
parallel optical medium X(a,b) (such as a portion of the at- 
mosphere or the sea) and know only its overall transmittance 
T(a,b). It is therefore in principZe possibte, via (38) and 
(39), to find &(a,y,b), T(a,y,b) for every intermediate Zevet 
y within X(a,b), and h e m e  R(y,b) for every intermediate ZsveZ 
y within X[a,b) knowing the inherent opticat properties of 
X(a,b). A similar observation may be made using (40) and 
knowledge of R(a,b). Putting this in even more practical 
terms: 
phere at any altitude y knowing the overall transmittance 
T(a,b) of X(a,b) and X(y) throughout X(a,b); or the light 
field in the sea at any depth y can be obtained from R(a,b) 
and K(y) throughout X(a,b). The initial incident radiance 
distributions in each case are, of course, assumed given at 
levels a and b. Thus under suitable conditions the system 
(38) can yield knowledge of the radiometric situation inside 
a medium X(a,b), by knowing either the overall transmittance 
T(a,b) or overall reflectance R(a,b) of X(a,b). These obser- 
vations are especially useful in the context of separable 
plane-parallel media, for in such media the R and T operators 
do not possess polarity (Sec. 7.1). Hence T(a,b) = T(b,a) 
and R(a,b) = R(b,a), so that the number of interaction opera- 
tors for X(a,b) is cut in half. 

The second manner of analyzing (18) of Sec. 7.1 is carried 
out by starting with the representation: 

The physical significance of these observations is 

one can essentially find the light field in the atmos- 

We turn now to the second analysis of (18) of Sec. 7.1. 

which is obtained from (29) of Sec. 7.4. The similarity of 
this representation with (35) is quite close: in each case 
the inverse operator is that of a transmittance-like operator, 
the remaining factor being a reflectance-like operator. In 
the present analysis we have, corresponding to (36) and (37), 
the following equations: 

which are derived from (3) and (5). It should now be clear, 
without any further detailed discussion, that the system (42), 
(43), along with (41), determines R(y,b) for every level y in 
X(a,b). The parallel with the preceding analysis is completed 
by writing (42), (43) in matricial form and adducing the re- 
quisite initial condition, the present counterparts to (39) 
and (40). The only salient difference between the two analy- 
ses just given is that the concepts used in the first analy- 
sis are slightly more meaningful physically, and that the ini- 
tial conditions in the second analysis are perhaps more 
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convenient numerically. Thus, writing: 

I 1 

for a = y = b ,  and we have as initial condition: 

7.6 Special Solution Procedures for R(a,b) and T(a,b) in 
Plane-Parallel Media 

In this and the remaining sections of this chapter we 
shall discuss some of the solution procedures for light fields 
in natural media suggested by the theories of the preceding 
sections. The discussions will also serve to exhibit the in- 
ner analytic structure of the functional equations for the R 
and T operators. We begin with the differential equation (18) 
of Section 7.1 for the reflectance operator R(a,b) of a plane- 
parallel medium. In order to illustrate the procedure of re- 
ducingR(a,b) to the appropriate forms on a numerical level, 
we assume in this section that the medium X(a,b) ic homogen- 
eous and that its volume scattering function u is isotropic, 
i.e., that: 

u(z;E';s) = s/4r (1) 

where s is the volume total scattering function for the medi- 
um. 

Starting with (18) of Sec. 7.1, reproduced here for 
convenience; we have: 

- = p(a) +'I (a) R(a,b) +R(a,b) T (a)+R(a,b) p (a) R(a,b) (2) 
aa 

This is the differential equation for the reflectance opera- 
tor R(a,b) for downward incident flux on X(a,b). Our immed- 
iate objective is to "shell" each term of (2) and to extract 
the kernel function of each of the indicated operators. It 
is the kernel function of R(a,b) which is to be evaluated in 
the present discussion, and we must somehow lay bare its pres- 
ence in (2). An effective means towards this end is to postu- 
late that the only radiance distribution on X(a,b) is incident 
on the upper boundary Xa of X(a,b) and is a radiance function 
N-Ca) with Dirac-delta structure, i.e., for some positive ra- 
diance NO and vector 50 in E-, 

N- (a) (X,SI = N O ~ ~ E - E O I  (31 
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for every point x in Xa and direction E in 8,. 
sponse of X(a,b) to this arbitrary singular input is deter- 
mined, the corresponding response to an arbitrary input is 
determinable by an integration over the direction set of the 
new input radiance distribution. The basis for this rests on 
the additivity and continuity properties of the function S de- 
fined in (7) of Sec. 3.6. This function, via the definitions 
(8)-(11) of Sec. 3.6, and (31),(32) of Sec. 3.7, yields the 
desired integral representations of R(a,b) and T(a,b) for 
X(a,b). Thus: 

Once the re- 

(41 

. (51 T(a,b) - - I [ lT(a,b;E';E) dQ(E') 
IE*kl 0 I 

Our present goal is to describe a solution procedure 
for the reflectance function R(a,b;*;*) on S-xE,. Toward 
this end, we apply each of the five terms in (2) to the func- 
tion N_(a) as defined in (3): 

N-(a) aR(a,b) = 2 N06(5'-50) aR(a,b;E';E) dnC€') 
IS*kl 0 aa 

I 

aa - 
=- No aR(a,b;So;E) 

I aa IE*kl 

As for the term .r(a)R(a,b) in (Z), we reduce it in two stages; 
first: 
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Second: 

85 

- R(a,b;E';E) . I e0-kl I E-kl 
Next, the term R(a,b)r(a) yields up, in turn: 
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The General Equation for R(a,b;S';S) 

Assembling the results (6), (7), (8), (10) and (11) by 
means of (2), and rearranging terms, we have: 

R(a,b; 5'; 5 ')a (a; E ' ; E) 
-+ V' 

where we have written: 

"pl' for IS*kl (-1 3) 

whenever E is in 2- and: 
(14) 11 u I1 for IS*kl 

whenever E is in J+. The minus sign before the derivative 
term in (12) rests on the physically based convention of meas- 
uring distance positively in the downward (or inward) direc- 
tion in X(a,b) from the boundary Xa. Equation (12) is the 
general integrodifferential equation for the reflectance func- 
tion. Despite its apparent formidability, the equation is, 
in the last analysis, relatively tractable, since R(a,b;S';S) 
is constructable from (12) starting with the initial condi- 
tion: 

R(b,b;S';S) = 0 (15) 

for every (E',() in E-xE,. In other words, (12) and (15) de- 
fine the R function in terms of an initial value (or one-point 
boundary value) problem, a type of problem eminently suitable 
for the grist of modern electronic computer mills. 

The Isotropic Scattering Case for R 

now possible, using the homogeneity and the isotropic scatter- 
ing property (1) of X(a,b). Writing: 

A further simplification in the reduction of (2) is 

"p" €or s/a 
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as usual, (12) reduces to: 

SPECIAL SOLUTIONS 
--- 

R(a,b;F';E) = 

87 

A further reduction is possible in (16) by noting the 
following two facts. First, from an examination of (16) or 
the equation of transfer for the uniform scattering case 
(i.e., under the assumption (1) on (I) it follows that the ra- 
diance distribution N(z,*) at depth z in X(a,b) is azimuth- 
independent, that is 

N(z,E) e N(z,t') 

whenever 

Indeed, the path function for such a medium as the present 
one is of the form: 

5-k = E'*k . 

N,(z,E) = /_N(z,S')o(z;E';51 .. dQ(5') - 
= I N(z,S') dn(E') 

4n B 

=she 
4n 

Hence N, depends on depth only so that the path radiance of a 
path of sight with initial point of depth zo, direction 5, 
and length r is: 

r 
N:(z,O = / p z ~  ,5)Tr-rI (zo,E) dr' 

r 

4n 0 
II 2 / h(z')e-a(r-r') dr' 

where 

z' = zo - r'5.k 
This shows quite clearly that Nl(z,C) is azimuth inde- 

For if the path is changed only in azimuth, (so pendent. 
that 6-k is unchanged) the result N: of the preceding calcu- 
lation is basically unchanged. This azimuthal independence of 
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N: is then inherited by Nr(Z,E) for all ranges r, depths z, 
and all directions E in E+ (and, interestingly, for all E@ in 
E-, except one, namely to, because of the singular residual 
radiance No(z,Fo) at each depth 2). Hence in particular 
Nr(a,E) with r = (b-a)//E*kl, namely the reflected radiance 
from X(a,b), is azimuth independent. In this way the values 
R(a,b;E';E) themselves are seen to be azimuth independent of 
each direction 5', and E. This independence serves to cut 
down the number of variables needed to describe R(a,b;E@;E). 
Indeed, we need henceforth only write: 

"R(a,b;P' ,v)" for R(a,b;E';F) (17) 

in order to go on with the solution procedure, where i~' and 
v are defined in (13), (14). (See Fig. 7.10.) Hence we re- 
duce the number of directional variables from four (two real 
numbers each for (',E) to two, namely p' and v. This, then, 
is the first simplification (16) may undergo, 

~~ 

FIG. 7.10 Direction conventions for reflectance and 

Xa 

x b  

f X 

1 

transmittance operators on a slab X(a,b). 
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The remaining simplification of (16) is to note that 
the sum of the four terms on the right of (16) may be neatly 
factored into the product of two terms. Combining these two 
reductions, and noting that, in view of (17), we may write: 

2n 1 
dv'dt I R(a,b;t';&) I R(a,b;v',v) - v' 

I v' 0 0  

1 

along with: 

we have, at last: 

- -  1 aR[a,b;v',v) + [: + $)R(a,b;vl,v) - 
a aa 

This equation may be 'rationalized' if desired, by writing: 

"r(a;vl ,v)" for 4nR(a,b;v1,v) , 

thereby suppressing also the inactive fixed variable b and re- 
sulting in the equation: 

I I 

,v) - 
V 

The variable a in (21) may be changed to one, say x which is 
the distance, in terms of attenuation lengths, measured posi- 
tively upward from the lower boundary Xb of X(a,b). See Fig. 
7.10. Then the derivative term becomes positive, the initial 
condition becomes: 

r(O;v',v) - 0 

I 
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for O < p * S l ,  0 < w  $1, and (21) is thereby ready for numerical 
solution. The numerical solution is facilitated by using re- 
ciprocity, namely that r(x;vr,y) = r(x;w,y*). This is readi- 
ly established using the functional equations for R(a,b;{*,() 
and the isotropy of the medium. Reciprocity will be discus- 
sed further in Sec. 7.12. Observe that the homogeneity of 
X(a,b) is used in an essential way in reaching (21). Hence 
(21) may be used as it stands for separable media, i.e., me- 
dia in which P is independent of depth. A slight generaliza- 
tion is possible by letting p vary with depth. 

A Sample Numerical Solution for r(x;vI,w) 

using an electronic computer [15]. Figures 7.11, 7.12, 7.13, 
and 7.14 summarize some typical results of the computation. 
Reference [15] should be consulted for full details. However, 
the following basic information of radiative transfer inter- 
est may be noted here: for homogeneous media with scattering- 
absorption ratios pr0.5 (called "X" in the cited reference) 
a thickness of three optical depths is essentially equivalent 
to infinite thickness as far as reflectance is concerned, the 
agreement being to two or three decimal places. Thus 
r(3,v1,w) differs insignificantly from r(w,vI,w) for P values 
encountered in natural optical media. In general, as p in- 
creases (i.e., as s/a increases) toward 1, the infinite medi- 
um reflectance r(w,v,v) is approached more slowly by 
r(x;v*,u). For example when p = 0.9, six optical depths are 

A numerical solution of (21) was recently constructed 

Angle of Incidence = 60° 
p = 0.3 0.08 - 

0.04 

0.03 

0- 
90 60 30 

Angle of Incidence 

0. 

90 60 30 
Angle of Reflection, 8 

FIG. 7.11 Some typical curves with scattering-atten- 
uation ratio p - 0.3. (From [15] by permission.) 
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needed to reasonably simulate infinite optical depth; and 
when p - 1.0, more than twenty attenuation lengths are needed 
to obtain agreement with r(-,pl;w) where three lengths suf- 
ficed above. 

equation (21) yields immediately the equation governing 
r(-.ld',w). For, the derivative of r(-,p',U) with respect eo 
a is zero (cf. (30) of Sec. 7.3 and the comments below it), 
so that we obtain the following nonlinear integral equation 
€or r(-,vl ,u), (written, for brevity, as "r(pl ,\))'I) : 

We observe in passing that the integrodifferential 

I r 1 1 

L 0 J L  0 J 

This equation played an important part in the early phases of 
modern radiative transfer theory (cf. [ll, [Z], [431). 

c: 
0 

0 
Q) 

.- c 
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a 

0.07- 

\ 

I ? 

90 60 30 I 
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1 
0.5 

I 
90 60 30 0 

Angle of Reflection, 8 

FIG. 7.12 Some typical curves with scattering-atten- 
uation ratio p = 0.5. (From [15] by permission.) 
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FIG. 7.13 Some typical curves with scattering-atten- 
uation ratio p = 0.9. (From [15] by permission.) 
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FIG. 7.14 Some typical curves with scattering-atten- 

uation ratio p = 1.0. (From [151 by permission.) - - . -  
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The General Equation for T*(a,b;S* ;c) 
The tabulations of R(x;p,v) in [16] may be built upon 

to obtain the companion transmittance function T(x;p',p) by 
using equations (27) or (29) of Sec. 7.1, suitably reduced. 
Since the R and T operators for the present homogeneous space 
X(a,b) do not possess polarity, i.e., since we have 
R(a,b) = R(b,a) and T(a,b) = T(b,a), X(a,b) has associated 
with it only two operators, so that finding T(x;p*,p) will 
round out the basic information needed to determine the light 
field within X(a,b) given the external incident radiances. 

form generally proceed as do those of the operator equation 
for R(a,b). Since the resultant equation is of some impor- 
tance, we now pause to sketch the details of the reduction. 
First we observe that the ultimate use of the reduced equa- 
tion will be in a numerical procedure rather than a theoreti- 
cal discussion; therefore it would be desirable to use (68) 
of 7.1 instead of (29) of Sec. 7.1, for the reason that the 
angular dependence of T*(a,b;E* ;E) is continuous while that 
of T(a,b;E*;E) is discontinuous. The basis for this fact is 
given in detail in the discussion on "Functional Relations 
for Decomposed Light Fields" in Sec. 7.1. 

we have : 

The reduction details of (29) of Sec. 7.1 to function 

Starting with the derivative term in (68) of Sec. 7.1 

Then, analogously to the second stage of finding (8) of Sec. 
7.6: 
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Using the expression for N(a)R(a,b)p(a) found just prior to 
a (11) of Sec. 7.6, we have: 

(N-(a)R(a,b)p(a))T*(a,b) = 

R( a, b ; Eo;5') u (a;S';G')T* (a, b ;5";5 ) dQ (E') dQ 02') = &I ~[&l&l] 

Some entirely new terms are next forthcoming from (68) of Sec. 
7.1: 

I 

Next, using (32) of Sec. 7.1 on the result just obtained: 

where : 

Finally, applying To(a,b) now to N-(a)R(a,b)p(a) : 

(N- (a) N a ,  b) P (a) To (a, b) = 

r = Ib-al/lE*kl . (27) 

where r is given in (27). 
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The preceding results are now ready for assembly in (68) of 
Sec. 7.1: 

* 
+ ax T*(a,b;So;E) = aT (a,b;Eo;E) 

aa Po 

This is the requisite integrodifferential equation for 
T*(a,b;E';E) associated with the initial condition: (cf. (43) 
of Sec. 7.1): 

T*(b,b;E';E) = 0 
for every 6' in 5- and E in 5,. 

* 
The Isotropic Scattering Case for T 

Under the conditions of homogeneity and isotropic 
scattering, (29) may be further reduced. Thus,analogously to 
the reduction of (12) to (16), (29) now goes over into: 

- -  1 aT*(a,b;Eo;E) + - T (a,b;Fo;E) = l *  
a aa U0 

+ -  R(a,b;Eo;S')T*(a,b;5";E) dn(+l) + 

P' V 'I -- -+ 
+ e-"r[l + R(a,b;Eo;S') -1 . 
4r I V' 
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1 
1 at (a;VI,p) + - 
U aa VI 

- -  t*(a;Vf,u) = 

1 1 

p1-u' + :\ot*(a;VI,v) yp v' + :[ r(a;vf,v) - V 

The preceding iterated integrals now uncouple, and, as before, 
the induced azimuthal symmetry encourages us to write: 

* 
"T (a,b;V1,V)I1 for T*(a,b;E';E) , (30) 

so that we may use (19), and its present counterpart: 

(32) 

to come down to: 

4n 

4n 

dv 
* 

V 

which depend generally on a and V I ,  are known from the solu- 
tion procedure for (21) and enter the solution procedure of 
(32) as given data, along with the initial condition: 



SEC. 7.7 PLANE-PARALLEL GENERAL SOLUTIONS 97 

L 
t (O;Fl',v) - 0 

e 
for t 0 < p l  151, 0 -=p Sl. Matters can be arranged so that 
the depth variable x of t*(x;p',p) is in attenuation lengths 
measured upward from the lower boundary X of X(a,b), thereby 

the derivative notation. That is, for numerical purposes, we 
can always change variables in (32) according to the equation 
x = -yu, a s y  sb. 
of (32) is now a straightfornard initial value problem which 
may be reduced, by standard Gaussian quadrature procedures 
applied to the indicated integrals, to a finite system of 
simultaneous first order differential equations. 

eliminating the minus sign in (32), and a t: sorbing "a" into 

(See Figure 7.10.) The solution problem 

7.7 General Solution Procedures for R(a,b) and T(a,b) in 
Plane-Parallel Media 

We return to the general integrodifferential equations 
for R(a,B;E';E) and T*(a,b;E';E) as given in (12) and (29) of 
Sec. 7.6, and develop a general numerical procedure for their 
solution without the benefit of homogeneity and isotropic 
scattering within the medium X(a,b). The approach we shall 
follow is quite direct, one which requires a minimum of numer- 
ical preliminaries, thereby leaving such matters for choice 
in the individual programming procedure for the numerical so- 
lution. For example, with only minor changes, the following 
analysis may be repeated using Gaussian quadrature procedures. 
For the purposes of the present exposition, the determination 
problem for the operators R(a,b) and T(a,b) is considered 
solved when their correct functional equations have been found 
and suitably reduced to an initial value problem for some set 
of approximating (or occasionally exact) differential egua- 
tions. Perhaps the greatest value of the following discus- 
sion is to allow students of the subject to come to grips with 
the inner workings of the integral operators R(a,b) ,' and 
T(a,b). Once this is done, perhaps some efficient solution 
procedures will eventually come to mind, 

sets of directions Ai and Bi, respectively (see Fig. 7.15); 
that is, we assume: 

We begin with a partition of 8, and 8, into m and n 

m 
E - =  U A i ;  A i n A  = 4 1  (13 i=l j 

n 

i-1 
E + -  U B i ;  B i n B j - $  . (2) 

These partitions of 8, and H,, if sufficiently fine, 
let the integrals over them be reduced to simple numerical 
sums, as follows. 

(12) of Sec. 7.6: 
Consider, for example, the integral term occurring in 
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FIG. 7.15 General partitions of each half of the 
sphere of unit directions. 

which with the partition of E- in force, may be written equiv- 
alently as the sum: 

r 

Now, if the partition of E- is sufficiently fine and (r and R, 
as functions of 5' are continuous (a condition always avail- 
able in geophysical settings) the integral over Ai may be rep- 
resented arbitrarily closely by a term of the form: 
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u(a;EO;E;)R(a,b;Ef; E) 
'i 

where €1 is a direction in Ai and pi is IE;*kl. 
Now eo and 6 as they occur in the reduced term, happen 

also (for some j and k) to be in partition members Aj and Bk 
respectively, so that we can completely replace the functions 
u and R, for the present purposes, by sets of numerical quan- 
tities, as follows. We write: 

"R(a,b;i,j)*' for R(a,b;Si;Ej) 13) 

where Ei and ej are selected fixed directions in Ai and Bj, 
respectively. Hence the function R(a,b;*;*) is replaced by 
the mn numbers R(a,b;i,j). 
fixed for the remainder of this discussion. Further, we 
write : 

These direction selections are 

"p-(a; i , j ) I' for u (a; Si; 5 j) (4) 

)'P+(a;i,j)" for a(a;Ci;Sj) (5) 

'qT-(a;i,j)'* for u(a;Si;Sj9 (6) 

'?+(a;i, j)l' for u(a;Ei;Sj) In 

whenever Ei is in Ai and 6.j is in Bj: 

whenever si is in Bi and <j is in Aj: 

whenever Ei is in Ai and 5j is in Aj: 

whenever Ei is in Bi and Sj is in Bj. 
The values in each of the four cases just defined are 

readily determinable from the given volume scattering func- 
tion Q. Observe that we are not assuming that the medium is 
isotropic, so that no use will be made of reciprocity princi- 
ples (of which r(a;'I,v) - r(a;v,vl) was an instance in Sec. 
7.6k With these four definitions we may disassemble (12) of 
Sec. 7.6 into the following system of differential equations 
which can approximate (12) of 7.6 arbitrarily closely: 

+ a(.)[: + t]R(a,b;i,j) - - aR(asb;i'j) aa 

n a(Bk) 
+ R(a,b;i,k)r+(a;k,j) - 

k=1 Vk 
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The unknowns in this system are the mn functions R(a,b;i,j), 
i = 1, ..., m; j = l,..., n. Holding b fixed, a is allowed to 
vary from b up to any arbitrary distance above b. 
have an initial value problem, which is got underway using 
the initial condition: 

Hence we 

R(b,b;i,j) - 0 
for every choice of the mn directional pairs. 
mensionless numbers such as: 

The (m+n)2 di- 

i = 1, ..., m 
j = l*..., n 9 

n(Ak) 1 # i - l,..., m 
k 5 1, ..., m T-(a;i,k) - - 

a(a) 

n(Bk) 1 , k - l,..., n 
j * l,..., n T+(a;k,j) - - 

vk a(a) 

can be assembled neatly into four matrices, denoted, say, by: 
'*t-(a)", '*+_(a)Il, "t+(a)", l'r+(a)l', respectively. (For an 
alternative procedure, see (17)-(21) below) Then writing 
"R(a,b)" for the mxn matrix formed of the numbers R(a,b;i,j)* 
(8) can be written succinctly as: 

-- + [DR(a,b) + R(a,b)El = 
a(a) aa 

= r-(a) + t-(a)R(a,bl + R(a,b)t+(a) + R(a,b)r+(a)R(a,b) 

I I 

(9) 

where we have written: 

"D" for (10) 
l h m  

"E" for 
I I 

L 
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A check of the linear dimensions of the matrices shows that 
they are all properly commensurate. Thus, r,(a) is mxn, 
t,(a] is mxm, t+(a) is nxn and r+(a) is nxm. The choice of 
the partitions of 8, and 9, governs the dimensions of these 
matrices. In some settings it is quite possible and, indeed, 
desirable to partition 8, and H+ in essentially the same man- 
ner so that m = n and the vi and Vi are equal for each 
i - l,..., n. Hence we would have D = E and all matrices 
would be nxn, and there would be n' equations in n2 unknowns 
implicit in (9). As in the earlier reductions in Sec. 7.6, 
a transition to dimensionless depth parameters would be nu- 
merically convenient. Hence the change of variables given 
there should be adopted for numerical work. Equation (9) can 
be used to find both R(a,b;F';E) and R(b,a;E";€') in the case 
of non-separable media, simply by integrating from level Xb 
to Xa in the first case and from X, to X in the second case 
(cf. Fig. 7.10 in which the integration Prom Xb to Xa is de- 
picted). 

It remains to reduce Equation (29) of Sec. 7.6 to its 
approximating matricial counterpart. We retain the general 
partition of H used for R(a,b) and write: 

* * 
*IT (a,b;i,j)*I for T (a,b;Ei,tj) 

whenever Fi is in Ai and Ej is in Aj. 
the mxm matrix T*(a,b). 
tions approximate to (29) of Sec. 7.6 may then be written: 

In this way we generate 
The system of differential equa- 

, aT*Ea.b;i,j) + w T*(a,b;i,jl = 
Pi aa 

m * Ii (Ak) = r_(a;i,k)T (a,b;k,j) - + 
'k k= 1 

where "Tr. (a,b)" denotes the beam transmittance Tr. (a,c .) and 
r -  is nowlthe distance r, as defined in (27) of Sec! 7.6, 
agsociated with E-. 
above, this can bi cast into the compact matricial form: 

Using the battery of matrices defined 
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The differential equation (13) may be written, compactly as: 
r * 

+ D!C*(a,b) = [t-(a)+R(a,b)r+(a)]T(a,b) 
I 1 

(15) 

where we have written: 

"T(a,b)" for To(a,b) + T*(a,b) * (16) 

The resemblance of the right side of (15) with that of (29) 
of Sec. 7.1 is striking. Similarly with (9) above and (18) 
of Sec. 7.1. The solution procedures for (9) and (15) can 
run along parallel to each other, for as (9) is solved for 
R(a,b), these values could be fed into (15) a fraction of a 
second later to help construct T*(a,b). Indeed, a study of 
(9) and (15) shows that whole groups of terms of matrices are 
shared by both equations and that their simultaneous computa- 
tion would help produce efficient computation programs. 

the various matrices, such as r-(a) and R(a,b) made above, is 
in order. These definitions are not unique and may be re- 
placed by variants which, in the press of numerical work, may 
be found more amenable to the computational procedures than 
those exhibited above. For example, instead of R(a,b;i,j), 
we could use as unknowns the terms: 

A concluding word about the choice of definitions of 

R(a,b; i , j 1 /v (17) 

and then R(a,b) would be made up anew of such entries. Once 
this is done, it automatically dictates the following recom- 
binations of terms which are guided by an examination of (8) 
and the list of terms following it. Thus, instead of 
~-(a;i,j)/a(a) we would have: 
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Further, we would adopt: 

as before. But now we would use: 
Q(Bk) n(A1) 

p+(a;k,l) - - 
v i  ala) 

10 3 

The resulting equations would have the same gestalt as (9) 
and (15) so that the same general numerical procedure would 
be applicable to either system. 

7.8 The Method of Modules for Deep Homogeneous Media 

Now that we have some explicit computational procedures 
for finding the R and T operators for a plane-parallel medium 
(as given, for example, in Secs. 7.6 and 7.7), we turn to the 
task of finding the actual light fields within the medium. 
Finding R(a,b) and T(a,b) for a plane-parallel medium X(a,b) 
allows one to determine the reflected and transmitted radiance 
at the boundaries of X(a,b), but they do not directly supply 
the radiance distributions at internal depths y, a e y e b ,  in 
X(o,b). The concept that allows the systematic determination 
of these internal radiance distributions, given the standard 
reflectance and transmittance operators R(x,z) and TCx,z), 
a s x  ,Cz s b ,  within X(a,b), is the invariant imbedding rela- 
tion (36) of Sec. 3.7. 

depths y, a ey-=b, in X(a,b) is delineated by the equations 
of Example 4 in Sec. 3.7 in which the invariant imbedding re- 
lation is derived. Our present purpose is to apply those gen- 
eral equations to a commonly encountered situation in hydro- 
logic optics: the problem of the penetration of light into 
the sea, lakes, and other natural hydrosols. Now, some in- 
teresting features about such natural hydrosols is, first of 
all, that they are in many important instances homogeneous 
(or separable) and infinitely deep optically. This implies, 
among other facts, that the reflectances R(a,y) reach an 
asymptotic value within a few attenuation lengths down from 
the surface Xa. That is, for all practical purposes, 
R(a,y) - R(a,z) for y and z below some depth x. This phenom- 
enon was touched upon in the discussions of the numerical so- 
lutions for r(x;u',v) in See. 7.6. Another fact that may be 

The general method of obtaining N+(y) and N-(y) for 
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of use in considering such deep natural hydrosols is that 
R(y,=) = R(z,=) for all depths y and z below the surface Xa. 
This is the type of insight which arose in the study of (3) 
of Sec. 7.3; it now arises in a planetary oceanographic con- 
text rather than a stellar atmospheric context. Finally, the 
homogeneity (or more generally the separability) of X(a,b) 
bars polarity from infecting the R and T operators, so that 
R(x,z) - R(z,x) and T(x,z) = T(z,x) for all depths x,z in 
X(a,b). 
thickness (or optical thickness if X(a,b) is separable) of 
X(a,b). 
hydrosols in the discussions,now to begin. 

Hence these operators depend only on the geometrical 

We shall use these three major features of natural 

The Invariant Imbedding Relation for Deep Hydrosols 

Let us examine the invariant imbedding relation (36) 
of Sec. 3.7: 

(N+ (Y) ,N- (Y) 1 - IN+ (2) ,N_ (XI )yc.,r, 2) (1) 

with the preceding physical observations in mind. To repre- 
sent the fact that the medium X(a,b) is a natural hydrosol 
and infinitely deep either optically or geometrically, we set 
a = 0 and b = - in X(a,b). This fact of infinite depth makes 
itself felt in (1) when we set z = b = and x = a = 0, in 
such a way that (1) becomes: 

Note that our observations lead us to set N+(b) = N+(-) = 0; 
a physically obvious condition to impose at present. 
tion (2) is the invariant imbedding relation for deep hydro- 
sols (and for semi-infinite media in general) which are irra- 
diated only at their upper boundaries Xa. The operator equa- 
tions yielded by (2) are: 

Equa- 

N-(Y) - N-(O)3-(o,Y,=) (4) 

These equations, as simple as they are, can be made simpler 
by invoking the semigroup property for the complete reflec- 
tance operator&(a,y,-) as given in (53) of Sec. 3.7. when 
that property is adapted to the present case, we have: 

b!(O,y,-) = T(O,Y,-INY,-) . (5) 

N+(Y) = N-(O)~(O,Y,~)R(Y,~) (6) 

This was obtained by setting y = z and b = - in (53) of Sec. 
3.7. Using this in (3), we go on to obtain: 

Now our introductory discussion elicited the fact that R(y,-) 
is independent of y in deep homogeneous media. In view of 
this, let us write: 

(7) II I1 R, for R(ys-1 

for every y ~ 0 .  %, is 
of Secs. 7.6 or 7.7. 

readily calculated using the techniques 
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The problem of describing the upwelling (N+(y)) and 
downwelling (N_(y)) radiance distributions in X(a,-) has now 
been reduced to the determination of %. for X(0,-) and the 
complete transmittance operator T'(O,y,-) for x(a,q.). 
amining the representation of 3"(a,y,b), as given in (42) of 
Sec. 3.7 for the present case, we see that: 

On ex- 

J(O,Y,~.) T(O,Y)[I - R,,,R(YsO)I" (8) 

In view of our observations about the effects of homogeneity 
of X(O,-) on the imbedding relation we see that T(O,y,-) 
depends only on the difference Iy-01 = y of the depths 0 and 
y. More generally, we may state that for any three depths 
X,Y,z: 

rJ(x,Y,m) = T(x,y) [I - RmR(y,x)lp' 
Sr(r,z,-) = T(y,z)II - R,R(z,Y)l" 

(9) 

(10) 
and : 

in which Z(x, -) and T(y,z,m) depend, respectively, only 
on ~y-xi, anti 1 1 - y ~  . 
tance operators together we obtain, by virtue of the semi- 
group property (52) of Sec. 3.7: 

By multiplying these complete transmit- 

X X ,  s-1 - J(x , Y ,=I T(Y t z ,-I (11) 

where J(x,z,-) again depends only on Iz-XI. These observa- 
tions suggest that we write: 

llJ(s)'l for T(x,z,-) 

whenever: 

Hence (11) may be written more succinctly as: 

s = Iz-XI . 

J ( r  + s) = J(r) J(s) 

and equations (3) and (4) may be reduced to: 

I 1 

These are the requisite invariant imbedding equations for the 
light field at depth y in an infinitely deep homogeneous hydrc- 
sol irradiated at its upper boundary by an arbitrary given ra- 
diance distribution N-(O). The equations (13) may be inter- 
preted in either the integral operator form (the general, exact 
interpretation) or in matrix form (the approximate interpre- 
tation) where the matrices are built up from those in Sec. 7.7. 
When the matrix interpretation of (13) is intended in the 
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discussions below, bold face type will be used. 
It is Equation (12) which brings the name “semigroup” 

into the present discussion. For by considering the collec- 
tion {r(r)I of all complete transmittance operators .7(r), 
120, we see that this collection is closed under composition 
\r(r)T(s) of every two operators J(r) and T ( s )  (the compo- 
sition, by (12), is T(r+s)). Further, the associativity law 
holds : 

and finally, J(0) - I, the identity property holds. The col- 
lection {.7(r)l, so endowed, is called a semigroup, with unit, 
and is an instance of a more general concept of the same name 
in advanced functional analysis. 

The Module Equations 

light field at depths y in X(0,-) is suggested by the system 
(13) and (8). Suppose we agree to partition the natural hy- 
drosol into layers of equal thickness d (in either meters or 
attenuation lengths). For example, a practical choice of d 
may be between 1/2 to 1 attenuation length. Once d is fixed, 
we compute the operators T(0,d) or the matrices T(O,d),R(O,d), 
and &, according to the procedures in, say, Sec. 7.7. Then, 
by (S), we find J(d). It follows from (12) and (13) that we 
can go on to obtain N+(jd) and N-(jd) for any integer j = O  by 
means of the equations: 

A practical numerical procedure for determining the 

Hence the problem of finding Nk(y) in the sea or in lakes or 
other deep natural optical media has been reduced to the prob- 
lem of raising a fixed matrix or integral operator J(d) to 
an integral power, a relatively simple operation in this day 
of electronic computers. A slab in X(0,m) of thickness d is 
called a module of X(0,-), and once this thickness is fixed, 
the determination of N*(jd) is a mere mechanical detail. of 
computation from the module equations (14). Linear interpola- 
tion procedures should be sufficient to determine N*(y) for 
jdsyd(j+l)(d). 

Empirical Bases for the Use of the Module Equations 

from the invariant imbedding relation, are basically theore- 
tical equations whose lineage can be traced all the way back 
to the interaction principle of Chapter 3. Be this as it may, 
the system (14) nevertheless suggests the intriguing possibil- 
ity of computing the light fields in natural optical media by 
knowing just two bits of empirical information about the 
media, namely R, and r(d). 
measurements of these quantities consider the following ideal 
experiment. We calm the surface of the sea and remove the 

The module equations (14), which have been deduced 

To explain the idea behind the 
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atmosphere of the earth, and position the sun in the sky SO 
that its parallel rays irradiate the sea, in turn, in each of 
the directions E *  associated with the m parts Ai of H,, as 
defined in (1) 0) Sec. 7.7. For each incident direction E-, 
we then measure the radiance reflected from the sea in eack 
of the response directions 6 -  associated with the n parts Bj 
of H+, as defined in (2) of iec. 7.?, 
can determine the mn numbers R(O,-;i,j) as defined in (3) of 
Sec. 7.7. Analogously to R(a,b;&';E), J(d) can be given a 
matricial form, that of a mxm matrix to be exact. By going 
down d units of depth in the sea and measuring N(d E-) when 
the sun is irradiating the surface in the directio; 'Eis we, 
in effect, find the entry rij(d) of r(d). (The sun's ra- 
diance must be normalized to 

trices J(d) and.% is, of course, not to be taken seriously 
--at least not literally. It does, however, contain the germ 
of a possibly workable procedure for finding r(d). Our ob- 
servations, in the form of (9) and (lo), show that 7(d) is 
in principle determinable if we measure a sufficient number 
of N- (x) and N,(x+d) values at some convenient depths x z  0 
below the surface. For then: 

and converting the measured radiances N-(x+d) and N-(x) into 
m-component vectors (on the basis of the partition of B, into 
the parts Ai) and T(d) into an mxm matrix of unknown parts, 
we have a set of m equations in m2 unknowns rij(d). What is 
needed, then, is a set of m measured vectors H,(x) and their 
m measured correspondents H-(x+d), and obtained in such a way 
that the set of vectors N,(x) is linearly independent. 

To see this in more detail, let us denote the jth col- 
umn of the matrix T(d) by llJj(d)ll, and le$ us denote the 
ith measured radiance vector N,(x) py '*N-~(X)'' for every 
depth x in X(0,qp). Further, let "N3(x)" denote the jth 
component of #-1(x). Then the expanded matrix form of 
(15) leads to the following relation: for every i, j=l, ..., m: 

Thus, in effect, we 

unity €or each irradiation.) 
The procedure just sketched for determining the ma- 

N-(x+d) N-(x) J(d) 115) 

Nf(x+d) J - N!(x) 3 (d) (16) 

where the dot denotes the dot product for vectors. 
Suppose we write: 

Then assembling the m2 equations of (lfi), we have: 

The linear independence of the vectors k?-i(x), i-l,...,m, im- 
plies the existence of the inverse N-'(X) of the mxm matrix 
#(x). Equation (18) then yields: 
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which holds for every depth x and module X(x,x+d) of X(O,-). 
In this way we find an empirical basis for the complete trans- 
mittance matrix for a module in a natural hydrosol. 

However, this determination is exactly analogous to that of 
r(d) and if %,(x)~~ and W+(X)~~ denote the incident and re- 
flected mxm matrices of radiances measured at any depth x such 
that N,(x) is invertible, then: 

It remains to determine the matrix R, empirically. 

R, = N:’ x)N+[x) 

In (20) we have assumed that E, and B are both partitioned 
similarly into m pieces. Once measurements within a natural 
hydrosol have been made so that r(d) and %. are obtained, 
then the module equations yield the light field at any inte- 
gral depth jd in the medium knowing N,(O). These observations 
show that the radiative transfer problem of the penetration 
of light into the sea can be solved on either an empirical 
level or a theoretical level knowing the basic reflectance op- 
erator R, for X(0,m) and complete transmittance operatorT(d) 
for a module X(x, x+d) of X(0,m). 

optical properties of the hydrosol in the sense that they are 
independent of the light fields within the medium and that 
they depend only on the intrinsic physical makeup of the med- 
ium (cf. closing remarks of Sec. 3.12, and also Chap. 11 for 
definitions and discussions of inherent optical properties). 

tions is that they may be formulated, solved, and applied c o w  
pletely on the global level within the medium X(O,-), and 
need make no appeal either directly or indirectly to the lo- 
cal properties of the medium such as the volume attenuation 
and scattering functions a and Q of the medium. Further dis- 
cussion of the problem of determining the global optical prop- 
erties of a medium using measured radiometric data is made in 
Sec. 13.10. 

L2-J (20) 

The operators R.,, and r(d) as used above are inherent 

One of the significant features of the module equa- 

7.9 The Method of Semigroups for Deep Homogeneous Media 

The results of the preceding section, in the form of 
the module method of solution of radiative transfer problems 
in the sea and the air, were so simple and direct that we are 
encouraged to explore the method in more detail, with an eye 
toward obtaining a general method applicable to all media. 
Thus our purpose in this section is to begin with the basis 
for the module equations, namely the system (13) of Sec. 7.8, 
and study the effect on the module equations when the module 
thickness is allowed to go to zero but with the depth z (=jd) 
held fixed. 
pattern which suggests the requisite generalization, namely 
the method of usrn~g~oupe. 

The resultant equations will reveal a general 
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The Semigroup Equations for r(z) 
Gonsider (14) of Sec. 7.8, which describes the down- 

ward radiance distribution at depth jd, j h  0. and where d is 
the thickness of the module X(0,d) for the homogeneous infi- 
nitely deep medium X(O,=). If we halve the depth of the mod- 
ule, then we must double the powers to be used to find N-(jdl, 
i.e., 

which 
every 

which 
j - 1  

we are observing that: 

J2j(d/2) = Jj(d) , (11 

rnj(d/n) - Tj(d) . (2) 

follows from (12) of Sec. 7.8. More generally, for 
positive integer n: 

follows by induction on n, starting with (1). Setting 
in (2) we see that the resulting equation, namely 

J n ( W d  = J(d) # 

demonstrates quite graphically that the module transmittance 
is the product of an arbitrarily large number of transmit- 
tances of 'submodules' of thickness d/n. Now, (12) of Sec. 
7.8 shows that 3-10) = I, the identity operator on the set T- of all downward radiance distributions (7(, is defined in 
the invariant imbedding statement Sec. 3.9). The continuity 
of J(s), which holds for the most part in all natural opti- 
cal media, then implies that the transmittance operators for 
the submodules X(O,d/n) approach the identity operator I. 
That is : 

lim T ( s )  = I . 
s-to 

All this is quite clear when one reflects on the definition 
of TIS), being an instance of a complete transmittance oper- 
ator. But now, in the light of the present approach, wherein 
the analogy of r(s) and beam transmittance TS just waiting 
to appear explicitly upon the scene, in this 
moved to consider next the limit: 

light we are 

I - J ( s )  1 im 
S-CO S 

which is motivated by the defining equation for volume atten- 
uation function a (Sec. 3.11): 

The limit involving J(s) will, of course be an operator of 
some kind rather than a number, as is a; however, the analogy 
now a-building seems so suggestive that we are next moved to 
write: 

(3) *'A*' for lim I - T ( S )  
s+o S 
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Hence, for any depth differences s, we have directly from (3): 

A + ~ ( s )  - I 3'(sl (4) 
S 

where '*E (-)" denotes an operator (actually defined implicitly 
by (4)) which goes to zero as its argument goes to zero. 
ing (4) for 7(s): 

Solv- 

where "o(*)" denotes ~(0)s. The closer s is to zero, the 
closer o(s) is to the zero operator. This equation is analo- 
gous to 

Ts = (1 - sa) + o(s) 
for beam transmittance (where "o(=)" in the latter equation is 
of course distinct from that in (5)). 

analogy carry us on to consider the present analogous structure 
to the differential equation for beam transmittance: 

The momentum of these definitions, and discoveries of 

-= dTr -aTr 
dr 

(cf. (2) of Sec. 3.11). Thus, we are led to form the differ- 
ence quotient : 

T(r+s) - T(r) 
S 

and obtain its limit as s goes to zero. In preparation for 
this, we write: 

- I n r )  7(r+s) - 7(r) Z(s) 
S S 

= -(A + E(s))r(r) 
which follows on use of (12) of Sec. 7.8 and (4) above. There- 
fore we have : I = -AJ(r) 

wherein we have written 
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We pause now to restate the purpose of the present dis- 
cussion. We wish to find the continuous counterparts to the 
module equations (14) of Sec. 7.8. The first step, just com- 
pleted, makes clear the structure of J(s) when s is allowed 
to approach zero. This structure is shown in (5) and (6).. 
The next step is to find the continuous counterpart to JJCd) 
as d goes to zero but such that jd is some fixed depth z. In 
view of the analogy between rr and Tr which has guided the 
developments so far, it is clear that this next step should 
be equivalent to finding the operator version of: 

Tr = exp I-arl 

This observation requires us to find the operator ana- 
At this point we recall that the Maclaurin log of exp {-ar}. 

series development of exp I-arl shows promise of being extend- 
able to the operator context, especially since we have the bas- 
ic derivative formula (6) to work from. Therefore by means of 
(6), taking all the integral .derivatives of T(r) in succes- 
sion, we obtain: 

and in general: 

j,r 
drJ 
d = (-l)jAjT(r) , 

Using the identity property of T(r), namely that 
J(0) = I, (7) yields: 

r=O 

Following through on the Maclaurin series analogy we then 
write: 0 

(8) ( - 1) j (Ar) j "exp {-Ar)" for 
j=o j! 

This definition makes sense from a strictly operational 
point of view. For we can perform, at-least in principle, the 
iterations of the operator A $0 find AJ for every integer.j. 
Furthermore we can multiply AJ by the rea1 number (-llJrJ/j! 
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in each case; and we can add together any finite number n of 
such combinations to end up with 

'f (-l)j(Ar)j 
j=O j! 

as a well-defined operator. Granted all this, it appears that, 
at least on a numerical or empirical level, the exponential 
characterization of y(r) is settled. The mathematical reader, 
however, will wish to dwell on the convergence problem en- 
tailed in the definition (8). Such considerations are quite 
simple and are readily characterized in terms of the radio- 
metric norm (Ex. 15 of Sec. 2.11) which supplies the necessary 
machinery in algebraic radiative transfer theory to handle 
problems of convergence of operator sequences. Such a digres- 
sion is not pertinent in the present discussion, and we can 
safely pass it by without serious effect on the remainder of 
our study. Interested readers wishing to study such matters 
in more detail are referred to Ref. (1101, a book devoted al- 

e-ar, to their most general settings. 

of (8) with the scalar (numerical) context, we see that: 

.most exclusively to the extension of the ideas, inherent in 

With the definition (8) and on the basis of the analogy 

r 

1 I 

With this representation, J(r) exhibits directly and su'ccinct- 
ly all its important properties ((12) of Sec. 7.8, and (3), 
(S), (6) above). We now may write (13) of Sec. 7.8 as: 

Equations (9), (10) are the requisite semigroup equations for 
J(r) as they are applied to the determination of N,(y) in an 
infinitely deep homogeneous plane-parallel medium. The oper- 
ator A is called the infinitesimat generator of the semigroup 
formed by the transmittance operators 7(r). (The semigroup 
structure stems primarily from the property (12) of Sec.,7.8.) 
Readers acquainted with the theory of stochastic processes (in 
continuous time, say) will observe via (6) or (9) that a radi- 
ative transfer process in a deep homogeneous optical medium 
may be viewed as a Markov process which evolves continuously 
with depth in that medium. 

The Infinitesimal Generator A 

tem (10) for actual numerical application, or in further theo- 
retical work, and that is in determining the explicit 

One final point remains in the preparation of the sys- 
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dependence of A on the inherent optical properties of the med- 
ium. Thus we have the task of finding how A depends on the 
volume attenuation and scattering functions a and u. 

The key to the required answer rests in the equation 
(37) of Sec. 7.5. For, setting a - 0 and b = -, in that equa- 

. tion, we have: 

or, in the contracted notation presently in use, this is: 

By (5) of Sec. 7.8 this can be reduced to: 

a = w pep + T] (11) 
dY 

Comparison of (11) with (6) leads us to the required represen- 
tation: 

Equation (9) can now be written as: 

T(r) = exp (T + R,P)r (13) 

Thus, the infinitesimal generator A of the semigroup 
{ T(r) 1 of complete transmittance operators is characterizable 
as the sum of two operators: T the local transmittance opera- 
tor, and &p, the product of the (global) reflectance operator 
%. of X(0,-) and the local reflectance operator P. Observe 
that, by the homogeneity of X(O,=), all three operators c ~ m -  
prising A are independent of depth in X(O,-) , so that A has 
the same property. Further, observe that: 

J(r)A = AT(l.1 , 
by virtue of the discussion leading to (6), and in particular 
the semigroup relation (12) of Sec. 7.8. The approximate ma- 
tricial form of A is readily forthcoming from those of T, p 
and %, as given by the discussions in Sec. 7.7 and 7.8. In 
particular, we use p+ and T- in place of p and T. 

The role of the infinitesimal generator A as compared 
to that of the volume attenuation function a, as these roles 
are viewed from the theory of radiative transfer as a whole, 
is characterizable succinctly as follows: A is to N as a is 
to No. 
observable radiance distributions in a plane-parallel medium, 
while a is the logarithmic derivative of directly transmitted 
(i.e., residual) radiance along a path. Putting it still 

That is, A is the logarithmic derivative of downwelling 
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such as the seas; lakes, 
ia. This may be seen by 
taking the derivative of 

another way, A is the 'volume attenuation function' for the 
natural (undecomposed) light field in deep homogeneous media 

and optically dense atmospheric med- 
returning to 1131 of Sec. 7.8 and 
N_(y) wizh respect to y. Thus: 

= -N_ (?')A 
When we apply the derivative operator d/dy to the upwelling 
radiance distributions as given in (13) of Sec. 7.8, we have: 

This representation of the depth rate of change of 
N+(y), while not as direct as that for N_(y), still shows that 
the logarithmic depth rate of change of N+(y) is essentially 
A. Since commutativity of A and %. need not generally hold, 
we cannot generally place ttbt' next to "N-(y)" in the preced- 
ing equation to get N+(y) as a result. This asymmetry in the 
local behaviour of N+(y) and N,(y) is a slight and inessential 
notational irregularity in the otherwise conceptually pleasing 
and powerful formulations of the method of modules and the 
method of semigroups. A search for a more symmetric treatment 
of the depth rates of change of N+(y) and N_(y) leads to the 
method of groups to be considered in the following section. 

7.10 The Method of Groups for Deep Homogeneous Media 

Once the flush of discovery of the semigroup equations 
(10) of Sec. 7.9 has passed and the critical eye runs over 
their asymmetric forms, one is moved to search for a new set 
of equations which incorporates both the conceptual and com- 
putational power of that set with a more pleasing symmetry of 
form. In this section we embark on such a search and are re- 
warded with a set of equations which fulfills all these re- 
quirements and more. The additional dividend is a novel per- 
spective of Chandrasekhar's classical method of solution of 
the transfer equation in plane-parallel homogeneous media [43] 
from the heights of group theory and the modern theory of dif- 
ferential equations. As a result, we can view Chandrasekhar's 
classical method as but one of a large family of possible so- 
lution procedures unified from the viewpoint of invariant iQ- 
bedding theory. This insight then unites with that encounter- 
ed in Secs. 6.1-6.4, in which novel views of the spherical 
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harmonic method were developed, to give an overview of all the 
classical solution techniques in radiative and neutron trans- 
port theory, and, indeed, all linear transport theories. 

The setting for the present section is once again (as in 
Sections 7.7-7.9) an infinitely deep homogeneous source-free 
plane-parallel optical medium X(a,b) with a = 0, b = w. X(fl,m) 
is irradiated at each point of its upper boundary by a given 
arbitrary incident radiance distribution N-(O), and has an ar- 
bitrary volume scattering function u, and scattering-attenua- 
tion ratio s/a. 

The Return of the Group rz(0,w) 

The natural candidate for the task of symmetrizing the 
semigroup relations (10) of Sec. 7.9 is the group rZ(0,m) in- 
troduced in its general form in Sec. 3.7 (see, in particular 
(79)-(32) of that section) and studied at some length in Secs. 
7.4 and 7.5. Toward this end, we direct some attention to 
the specific form of rz(0,m). 

Now that we have a particularly simple physical setting, 
the structure of rz(O,=) takes on some rather interesting 
properties. For example, the homogeneity of X(0,w) makes each 
member ?(x,z) of r2(0,-) depend only on the difference z-x, 
where x and z are any two depths in X(0,m). This fact may 
readily be seen by an inspection of equations (19)-(26) of 
Sec. 7.4. Consider, for example (19) of Sec. 7.4. Since 
X(0,w) is homogeneous and isotropic our findings (of Sec. 7.7, 
e.g.) show that T(x,z) and R(x,z) depend only on the absolute 
difference Ix-zI. Further, from (23) of Sec. 7.4 we see that 
T++(x,z) is not generally the same as @++(z,x), but still 
T++(x,z) depends only on the magnitude of the difference z-x. 
Hence the operator matrix ~*/(x,z) depends only on z-x for 
which we shall write "s" for brevity, so that W(x,z) is writ- 
ten as II*(s)" whenever s = z-x. The general group closure 
property of rz (O,=) , namely: 

now takes the form: 

This should be compared with (12) of Sec. 7.8. We see that 
there is an important difference in the range of parameters s 
in wjs) and those of T(s). Whereas s z 0 in (12) of Sec. 7.8, 
we have -=SSCW for s in (1). We may summarize these dif- 
ferences as follows: The set r2(0,-) forms u group which is 
isomorphic to the additive group of real numbers. Thus, to 
each pair of real numbers r,s there correspond operators 
q(r), v(s) of rZ(O,-), and to the sum r+s corresponds the 
operator T(r+s), such that (1) holds. On the other hand the 
set {3'(r) 3 of aomptete transmittance operators discussed in 
Seo. 7.9 forms a semigroup which is isomoPphCc to the additive 
semigroup of non negative real numbers. Thus to each pair r,S 
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of non ne ative real numbers, there correspond operators T(r), 
T(s) of fT(r)l and to the sum r+s corresponds 7(r+s] such 
that (12) of Sec. 7.9 holds. In this way, by means of (I), wo 
oan view the theorg of radiative transfer in homogeneous in- 
finite plane-paratlet media a8 an instanoe of tho theory of 

. oontinuoue groups on the real line. (That all of radiative 
transfer theory is essentially attainable via r2(a,b) was de- 
monstrated in Sec. 7.4. See also the remarks leading to (19) 
of Sec. 7.3.) 

The Infinitesimal Generator of r2(0,-) 

The concluding insight arrived at in the paragraph just 
above can be put into quite concrete terms. One way of put- 
ting it is to say that, conceptually, the theory of determin- 
ing the radiance distribution N(y) at depth y in X(0,m) is as 
simple as determining the reduced radiance N F o f  a beam a dis- 
tance r from the source, for both quantities are governed by 
the exponential law. To see this in the case of N(y), recall 
the operator forms of the equation of transfer (9) of Sec. 7.1: = = N(Y)K(Y) (2) 

dY 

where x(y) is defined in (7) of Sec. 7.1, and “N(y) as usual 
denotes (N+(y), N,(y))”. Next recall the functional equation 
governing w(x,y) as given in (1) of Sec. 7.5: 

where X(y) is the same operator a8 in (21. In view of the 
homogeneity properties of X(0,m) we can write (3) simply as: 

%!E!- = W(Y)K 
dY 

with the initial condition: 

m(0) = 1 

and where: 

Here p and T are the local reflectance and transmittance op- 
erators for X(O?-). 
K is the infinztesimat generator of the group l”2(0,-). 

They are independent of depth y in X(O,-). 
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The Exponential Representation of m(y) and N(y) 

By following the same motivations as those leading to 
(8) of Sec. 7.9, we write: 

in which --syd*. This operator is a function of y and sat- 
isfies the same differential equation as q(y) in (4). Fur- 
ther, exp {X 01 = I - sY(0). Hence: 

I I 

The exponential representation of N(y) at any depth y in 
X(0,m) follows immediately from (2) using the same reasoning 
which yielded (8); or one may use the fact that: 

N(Y) 31 N(O)W(Y) 9 

which with (83 implies: 

From this, we also have: 

N(z) = N(y) exp {X (z-Y) 1 (10) 

for every pair z,y of depth in X(0,m). 
requisite symmetric rendition of (13) of Sec. 7.8. 

Equation (9) is the 

The Exponential Representation of a(y) 

In Sec. 7.5 it was noted how close the connection was 
between the operators 7/y(x,y) and the pair of complete opera- 
tors .6?(a,x,b) , r(a,x,b). 
summarized in (38) of Sec. 7.5. We pause to explore this sim- 
ilarity in the light of the present developments. 

The similarity between equation (38) of Sec. 7.5 and (3) 
above shows that the operator Q(y) has the same depth behavior 
as m(y), though their initial values differ. Thus, (38) of 
Sec. 7.5, adapted to X(O,-), becomes: 

The basis for this connection is - = a(Y)K(Y) 
dY 

in which: 
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, 

where we have written: 

"&(Y)" for &(O,y,=) 

and 

".7(y)" for T(O,y,m) . 
Hence, while a(y) and %(y) satisfy the same differential 
equation, the initial condition for m y )  is: 

ace, - (&o>, no)) - (R&I) 
which follows from (40) of Sec. 7.5. Therefore, analogously 
to (8) we have: 

It is interesting to note the effect of the presence of 
ntcZ(0)'t in (11) on the multiplication law of the operator 
L?(y). It turns out that the set {LZ(y)) does not form a semi- 
group under ordinary operator composition. Indeed, from (ll), 
used three times as follows: 

a(r) = a(0) exp C K r )  
ats) = a(o> exp {%SI 

a(r+s) = d(o) exp EX(r+s)) 
we find that, at least formally: 

This shows that we have gained the symmetry of (9) at the 
expense of the simple semigroup property for the set {a(y)). 
However, the loss is not essential. For by defining the fol- 
lowing star product of members of {a(y)j, we establish a 
group structure for {a(y)). In view of the semigroup proper- 
ties (52) and (53) of Sec. 3.7, let us write: 

"a(r) * (~IS)" for (T(r)&(s),T(r).77s)). (13) 

Then it follows immediately that: 
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The see Qd(y)l, with the preceding star product defined for 
its elements in the manner shown in (13), becomes a group iso- 
morphic to r2(0,-), once the definitions of r(r) and &(r) 
are extended to negative values of r. This can be done direct- 
ly through (11) by simply computing exp {Yyf for negative 
values of y. Further, the semigroup relation 

which is a special case of (53) of Sec. 3.7, is formally ex- 
tended, for this purpose, to the domain of negative arguments. 
This extension can be rigorously included in the theory de- 
ducible from the interaction principle by adapting the exten- 
sion of the group rc(a,b) (now for the special case a = 0, 
b = m) suggested in (44) of Sec. 7.4. 

Numerical Procedures for N(y): The Exponential Technique 

noted, is the primary goal for the present section. Ir? its 
symmetric form rests the solution of the problem of the pene- 
tration of light into the sea, atmosphere, and other plane- 
parallel media. 
general information from its terse mathematical form, and we 
shall study such ways in this and the following paragraphs. 
Each technique to be considered is based on a preliminary re- 
duction of (9) to am approximating matrix statement. This 
reduction is quite analogous to those developed in Sec. 7.7 
for the differential equations of R and T. Hence we may pass 
through this preliminary reduction stage with relatively lit- 
tle explanation. 

The reductions center principally on the operators p 
and T making up the exponent operator x in (9). x is given by (6), and p and T in turn are defined in (3) 
and (4) of Sec. 7.1. For the purposes of the present reduc- 
tion we may drop references eo the depth variable; however, 
the directional variable E in the integral form of P and T, 
must be explicitly exhibited: 

Equation (9) for the radiance field N(y), as already 

There are several ways of coaxing numbers and 

The form of 

Thus, the homogeneity of X(0,m) allows a convenient suppres- 
sion of the depth variable y in a,p,u, and T. When p is ap- 
plied for example to the upward radiance distribution N+[y), 
we use H, in (16) along with in E-. By means of the general 
partitions of E, and E- established in (11, (2) of Sec. 7.7 
we can replace p by an nxm matrix whose general elemcnt in the 
ith row and jth column is: 
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in which si is in Bi (CI+) and 5. is in Aj (CI-1 and ''virt 
denotes 1Si*k/. 
We denote this matrix by "p+". A similar matrix p- can be 
manufactured such that it has elements of the form: 

n(Bi) 1s the silid angle content of Bi. 

a(Si;Sj) W i )  
(19) .- 

vi a 

where si is in A. ( C E - )  and [j is in Bj (CE,), and where 
"Pi" denotes IcciI. Hence p -  has dimension mxn. Further, we 
use : 

as the ij-th element in an mxm matrix denoted by t*7-" . An 
nxn matrix t+ is constructed in a similar manner for upward 
radiance, its ij-th element being: 

The preceding mode of reducing the operators P and T is the 
most simple and direct mode. Alternate modes of a more so- 
phisticated type (such as those using various quadrature for- 
mulas for a) are possible; however, the structure of the main 
formula (25) below is independent of the choice of such modes. 
Reassembling these matrices into one grand matrix x where we 
have written: 

and writing: 

when, 

and writing: 

si in Bi , 

"N (Y 1 'I for [ N (Y , E 1 1 , . . . , N ( Y ,Em) I (241 

when Si in Ai , 
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counterpart to (9) is seen to be: 

121 

and which shall stand as our base of operations for the re- 
mainder of this section. 

Clearly N(y) is an (m*n)-component vector and x is a 
square matrix of order (m+n). As noted above, the general 
form of (25) is invariant under the choice of mode of reduc- 
tion of the operators P,T and radiance functions N+(y), N-(y). 
Therefore what we have to say about (25) below will hold above 
and beyond the details of the reduction procedure leading from 
(9) to (25). 

Equation (25) as it stands can form the basis of perhaps 
the simplest and most direct of all techniques of solution of 
radiative transfer problems in homogeneous plane-parallel me- 
dia with stratified light fields. For by simply raising the 
matrix to the first p integral powers and constructing the 
sum: 

L j=o j! 

where p is, perhaps as small as 5 or 6, one obtains a reason- 
able approximation to exp {X yl, so that when applied to N(0) , 
we have : 

as a correspondingly reasonable estimate of N(y). Observe 
that knowing N(0) means knowing all m+n components of N(0). 
Hence we can predict N(y) once N(O), the surface or boundary 
lighting conditions are known. More generally, in view of 
(lo), N(z) is cornputabte whenever N(x) is known, where z and 
x are any two depths. This most remarkable fact points up in 
sharp clear detail our rather general assertions about the 
"strong inner structure" of natural light fields discussed in 
Sec. 3.7 (cf. Ex. 7 of Sec. 3.7). 

the matricial counterpart to (2) : 
An alternate scheme to that just discussed is based on 

where p( (y) may now depend on y (hence X(0,m) may be non homo- 
geneous but stratified]. Thus we work with (26) directly and 
integrate that system of linear ordinary differential equa- 
tions on a general purpose computer. The initial condition on 
N(y), namely N(0) is assumed known. 
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It is unlikely that any computation techniques could be 
simpler in concept or in execution than those based on (25) 
or (26) (or on the decomposed versions of (26)) using N in 
the manner just explained. This points up one of the ear- 
marks of invariant imbedding techniques, i.e., the ability to 
replace some of the classical and somewhat numerically cumber- 
some eigenvalue techniques by relatively simple initial value 
or one-point boundary value techniques, and which may be han- 
dled generally by the tools of semi-group theory. 

The Chqracteristic Representation of N(y) 

In deep homogeneous media with stratified light fields, 
such as those we are studying in this section, the exponential 
law (25) for radiance distributions N(y) can be cast into a 
particularly instructive form using the Jordan canonical form 
of K. The Jordan canonical form of a matrix is defined in 
most works on modern algebra, and in some texts on ordinary 
differential equations such as [47], and we therefore need not 
digress to discuss the details of its computation. However, 
we shall define the canonical form and discuss its physical 
interpretations in the radiative transfer context. Our pur- 
pose in casting X into its Jordan canonical form is two-fold. 
First, we shall be able thereby to fulfill our promise, made 
at the outset, to show the special place of Chandrasekhar's 
theory of solution of the equation of transfer within the gen- 
eral theory of solutions as given by the invariant imbedding 
and interaction principles of radiative transfer. Second, 
the characteristic representation of N(y), as we shall call 
the resultant equation obtained below, deepens our understand- 
ing of the exponential structure of light fields in natural 
optical media by showing explicitly the delicate interplay of 
the various streams of radiant flux as they penetrate the 
body of an extensive optical medium, each s.tream with a char- 
acteristic mode of decay. In particular, we shall be able to 
explicitly observe the eventual dominance of a characteristic 
radiance distribution at great depth within the medium, the 
shape of the characteristic distribution being determined 
solely by the volume scattering function u of X(0,-) and being 
independent of the directional structure of N(O), the radiance 
at the boundary of the medium. All of this knowledge is pos- 
sible without explicitly solving the equation of transfer for 
X(O,=), as we shall now see. 

To begin, we recall from the theory of linear algebra 
that the Jordan canonical form of the (m+n)x(m+n) matrix- 
can be obtained by the construction of a suitable (m+n)x(m+n) 
invertible matrix P and performing the operation: 

P - l K P  

Let us denote this resultant matrix by "f". 
mediately that: 

It follows im- 

and that: 
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exp I K ~ I  = exp. {P@P-'~I 

9 P exp I$yl P" 

The latter equality may be verified by using the definition of 
exp IgyI. 

Now, the general gestalt of the Jordan canonical matrix 
is as follows: 

where : 

and where: 

for i = 1, ..., s and, where is an ri x ri matrix, so that 

( .f ri)+ q = m + n. t i  is constructed so that all elements 

below the main diagonal (which has all 1s displayed in it) are 
zero. Further, the elements in the upper jth diagonal, count- 
ing the main diagonal as the zero-th, are all the same, and 
of the common form: These upper main 
diagonals are marked off by the inclined straight lines in the 
matrix symbol. The numbers Xj, j = 1, ...,q,q+ 1,. ..,q+s are 
the distinct characteristic (or eigen) values associated with 

The Xj from j = 1 to j - q have multiplicity 1, those of 
the form Xq+i, Ociccs, have multiplicity ri. Hence, altogeth- 
er, counting multiplicities, there are m+n characteristic val- 
ues Ai, as expected. So much for the abstract algebra of Jor- 
dan canonical forms. 

Let us turn now to the particular matrix at hand, namely K ,  and attempt to block out the salient structure of its 
canonical Jordan form. 

1'1 

yJ/j!, j - O,..., ri-1. 

K. 

Imagine the operator X ,  as given in 
. (6) for the present context, to be replaced by its matricial 
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approximant. The main outlines of (6) will persist and we 
will have, according to (22): 

For the purpose at hand, namely to deduce the special 
form of Chandrasekhar's equations, we adopt a special parti- 
tion of 8, as follows: Let 9- be partitioned in an arbitrary 
manner. Then reflect E-, in its partitioned form, in a hori- 
zontal plane. The result is a partitioning of B+ which will 
be a mirror image of that of Z-. In particular, we number the 
partition elements Ai, Bi such that Ai and Bi are mirror images 
of one another. The effect of this type of partitioning on 
the Jordan canonical form of the resultant matrix K can be 
seen by examining typical entries of X as given in (18)-(21). 
Thus we find that, under the mirror image partition of 8: 

?+ = T- 

and K becomes: 

where each indicated block matrix is an m x m  matrix (since 
m = n, by virtue of the mirror partition). 
mentary fact of matrix theory that a matrix such as , in its 
newly obtained form, has eigenvalues which come in signed 
pairs. Thus, if A is an eigenvalue of X, then so is -A. For 
example, consider the following 2 x 2  matrix made up of the 
numbers a,b: 

Now it is an ele- 

[:: J 
The characteristic equation for this matrix is: 

-a-A b 

1-b a - J =  0 
det 

The A'S which satisfy this equation are the required charac- 
teristic values. The preceding equation simplifies to: 

-(a+A)(a-A) + b 2  = 0 
so that, A is required to be: A +  or A _  where 

A* = ?(az-b2) , 
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that is A +  = - A _ .  Furthermore, it may be shown, on physical 
grounds, that the component matrices gi of 
do not occu in the case of x. 
appear in it is necessary that there exist components of 
#(y) such that they can have scattering orders of at most fi- 
nite order ri. No component o N(y) has this property, so 
that the p i  do not occur in 8. Hence the Jordan canonical 
form of 3c must then be such that s 0, i.e.,g consists 
only of $lo. 

$- (other than gd 
Briefly, for p i ,  i > 0, to 

The resultant form of (25) is then quite simple: 

It is easy to see that: 
I A1Y \ 

We define the aharaateristic 

'"(y) I' 

Then (25) can be written: 

Equation 
radionos 

X 2 Y  
e 

' A  
e 2mY 1 

radiance vector by writing: 

for N(y)P 

(27) is the requisite squation-for the characteri8tic vector N(y). Observe that if N.(y) is the jth com- 
ponent of N(y), then we have: 3 

Hence each component R.(y) of the characteristic radiance vec- 
tor has a specific r a d  of growth (if Aj > 0) or decay (if 
A.  <O). In infinitely deep media such as X(0,-), wherein 
tiere are no internal sources and the only incident radiance 
is at the upper boundary, the components Nj(0) associated with 
the positive valued eigenvalues are set to zero.- The eigen- 
values and components can be renumbered SQ that Nj(0) = 0 for 
m+lsj:2m. To see the effect of this on the physical r a d i a e  
vectors N(y1, let the elements of P be of the form aij, and 
those of P- be of the form bij, then from (27): 
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A IY Hence : 
~ ( y )  = (fil (ole , . . . , i;Jm(o)e ,o, . . . ,o)P" . 

Therefore: 

whish holds for 
of N(0) that: 

j = 1,...,2m . We observe from the definition 

Hence : 

j = 1,. ..,2m I 
This is the desired charaotepistic representation of N(y) . 
Each Ai is non positive, i.e., Ai50 for i = 1, ..., m. Ob- 
serve that each of the 2m quantities Nj(y) is completely de- 
terminable, knowing the 2m quantities N (0) , the entries aki 
and bij of the matrices P and P-I, and o$ course the m eigen- 
values Xi. By retracing the steps leading to (29) and assum- 
ing X(O,-) to be replaced by a finitely deep homogeneous med- 
ium X(O,d), d <  m s  we see that (29) changes only slightly: 
the upper limit of the i-sum becomes 2m and the non negative 
eigenvalues Ai, m + l c i s 2 m  can enter the representation. 
Equation (29) or its counterpart for X(0,d) is representative 
of the general form of Chandrasekhar's equations in his clas- 
sical work [43]. The salient difference between them rests 
in the manner of representing N and a over B, thereby fixing 
the associated values of ski, b.. and Ai. Chandrasekhar uses 
Gauss' method of representing ti4 N and u functions by Legendre 
polynomials, whereas the present method appeals directly to Dhe 
observable partition of the radiance function as given in (l), 
(2) of Sec. 7.7 and (23), (24). In this way we have arrived 
at the first goal of the present discussion, namely, the illus- 
tration of the place of Chandsasekhar's mode of solution of 
the equation of transfer in the general scheme of radiative 
transfer theory, as seen from the invariant imbedding point of 
view. 
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Asymptotic Property of N(y) 

The final topis €or discussion in this section is the 
matter of the asymptotic property of radiance distributions 
in deep homogeneous media. The property states that the shape 
of the radiance distribution N(y,*) approaches a limit as y- 
in X(0,-), and that this limit is determined solely by the 
structure of the volume scattering function CI on X(0,m); and 
so, in particular, this limiting form of N(y,*) is independent 
of the radiance distriubtions at the surface of X(0,m). We 
shall discuss this matter in detail in Chapter 13. However, 
there exists a simple instructive proof of the asymptotic ra- 
diance property using the general system of equations (29), 
i.e., the characteristic representation of N(y), and while the 
momentum of the present discussion is still high, we shall 
give a demonstration of the asymptotic radiance property using 
(29) as a base. 

Our present goal, therefore, is to show that the 2m-corn- 
ponent vector N(y), whose jth cQmponent is given by (191, ap- 
proaches a 2m-component vector I(=) as a limit, that N(=) is 
determined only by a, and that N(-) is independent of N(0). 
Now, the first thing to notice is that the m numbers Xi are, 
in real media, all negative, so that N(y) generally goes to 
the zero vector 0 (i.e,, the 2m-component vector with all com- 
ponents zero). This, of course is not the vector N(-) we are 
seeking. The decrease in size of N(y) as y- is distracting 
as one seeks its asymptotic shape, and this decrease can be 
erased by normalizing N(y) with respect to some factor which 
decreases to zero with y at the same rate as N(y). The graph- 
ical interpretation of this normalization is quite simple: 
the radiance distribution at each depth y is magnified in size 
so that one of the radiance components, say that representing 
vertically downward radiance, is of unit magnitude. Then all 
other components arrange themselves in size relative to this 
unit component. If N(y), so plotted, apgroaches a fixed vec- 
tor, as y-, then we say that the limit N(=) exists. 

In the present casf the 'normalization factor! may con- 
veniently be chosen as e Y where k is the smallest of the num- 
bers -Xi, i = l,...,m . Specifically, we write; ad hoc: 

"k" for min { - h l , - X ~ ,  ..., -Am) 
This implies that e-ky goes to zero with tk least speed of 
all the factors eXiy. 
goes to for every i, except for when Xi = -k. To be specific 
suppose X j  = -k. Armed with this factor, we multiply each side 
of (29) by eky and let y-: 

In particular e Xi+ yy goes to 0 as y 

for j = 1,. .., 2m. 
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Let us write 
lth row of P' . Then the system of 2m limits (29) can be 
written: 

for the .th column of P, and **be" for the 

where in turn we have written: 

and : **iij(-)** for lim ~ ~ ( y ) e ~ y  . 
Y- 

Equation (31) shows clearly that the directional structure of 
tl_(y).is simply that of the Pth row of P-'. The Lth row of 
P 1s determined solely by the matrices p and ? which are 
manufactured from u. Observe that the directional structure 
of N(0) is wiped out by the taking of the dot product of N(0) ' 

and the Ith column sf P. Hence the asymptotic directional 
structure of N(y) can be so determined solely by computing 
P" I, and this is independent of N(0) . Looking back on the 
trail we have travelled, we recall that P is the matrix which 
$aps K into its Jordan canonical form. Thus we can find 
N(-) by purely algebraic operations on K which, as we have 
seen, is the infinitesimal generator of the group r2(0,-) of 
invariant imbedding operators associated with the medium 
X(O,-) 

Asymptotic Properties of Polarized Radiance Fields 

We conclude the discussion of the characteristic form of 
the radiance solution by noting that the techniques just used 
for the unpolarized context can equally well be applied to po- 
larized radiance distributions. This means, in particular, 
that the thsoreticaZ questions of the asymptotic properties of 
polarized radiance fields raised in Sec. 4.6 and still earlier 
in Chapter 1 can be fully resolved using the preceding tech- 
nique. Equation (31), as it stands, has the gestalt of the 
corresponding equation for polarized radiance, differing from 
the polarized version only in the dimensions of the vectors 
and matrices involved. This difference is precisely deter- 
minable: all vectors in the unpolarized context go over into 
the polarized context with a four-fold increase in components, 
and all matrices go over with a corresponding four-fold in- 
crease in their linear dimensions. However, beyond these 
quantitative differences, the two theories of polarized and 
unpolarized radiance distributions are algebraically alike. 
(See, e.g., Section 114 of Ref. [251] .) Some experimental 
work on the asymptotic polarized light field has been done by 
Herman and Lenoble [107]. Otherwise, there exists at present 
very little experimental study of the asymptotic polarized 
light field. 
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7.11 Method of Groups for General Optical Media 

The various methods of solution of the equation of trans- 
fer, such as the method of modules (Sec. 7.8), the method of 
semigroups (Sec. 7.9), and the method of groups in the preced- 
ing sec'tion hold within them a common core which, if extracted, 
can guide the construction of a method of solution of the ra- 
diance field in arbitrary optical media. This section is de- 
voted to the isolation of the common conceptual kernel of 
those methods and to a brief exposition of the general method 
of solution it suggests. 

Analysis of the Group Method: Initial Data 

We begin with a recapitulation of the ground-forms for 
the two basic methods. The semigroup method rests OR the 
semigroup relation (12) of Sec. 7.8 for the complete transmit- 
tance operator T(r) (i.e., 3'(x,z,-) where r = I z - x ~ ) .  The 
fundamental equations for the light field in this method are 
given by the system (10) of Sec. 7.9 or the system (14) of 
Sec. 7.8, depending on whether the continuous variable y or 
the discrete variable y = jd is used. The method of groups 
rests on (1) of Sec. 7.10 for the invariant imbedding operator' 
V(r) (i.e., q(x,z) where r = z-x), which holds for a11 real 
numbers r and s. The equations (9) or (25) of Sec. 7.10 may 
be used to find the light field at any depth y in X(0,m). 

What are the basic data needed in the computational ap- 
plications of each method? The data needed are: (a) a,(s 
throughout X(O,-) and either (b): N(O), the complete radiance 
distribution at level 0; or (e) N,(O) and lh, i.e., the down- 
ward incident radiance N,(O) at level 0, and the reflectance 
operator %D for X(0,m). Thus, the inherent optical properties 
a and u are indispensable in finding N(y) using either method. 
However, we clearly have an option on the initial radiance 
data. Alternative (b) requires the full radiance distribution 
at level 0. Alternative (c) requires only the downward inci- 
dent radiance on level 0, but along with the reflectance oper- 
ator for X(0,q.). Alternative (b) is possible when preliminary 
empirical estimates of N(0) are available. As a result of 
having both N,(O) and N+(O) available, we then obviate the 
need of IL,. However, in theoretical studies only N-(O) is gen- 
erally available for use. The remaining part of N(D), namely, 
N+(O), is simply some more unknown data to be sought along 
with N(y), y >  0. Clearly, for deep homogeneous media X(O,a), 
having to find N+(O) is tantamount to finding R, for X(0,m). 
We thus come to the first conclusion in our analysis of the 
group and semigroup methods: Each method requires as given 
data either alternatives fa) and (bl; OP fa) and (cl. The 
first alternative is the empiricaZ alternative; the second, 
the theoretical alternative. In discussion the extension of 
the method of groups to more general media, the theoretical al- 
ternative demands more attention than the empirical alterna- 
tive. Hence when the extension is made below, it will be made 
with an eye to the adoption of the theoretical alternative, 
thereby resulting in a more powerful method of solution in the 
sense that it does not depend on basically superfluous prelim- 
inary empirical measurements. 
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Analysis of the Group Method: 
Limitations of the Equation of Transfer 

shall be required in the general method, we seek the tkeoreti- 
cal equations which may be the basis of the new method. Now, 
both equations (12) of Sec. 7.8 and (1) of Sec. 7.10 use one- 
dimensional parameters, namely the depths r and s in X(0,m). 
Physically, the interpretation of these equations is that, 
given the operators Z(r) and J(s) (or R(r) and nC(s)) for 
two contiguous segments of a vertical path in X(O,m), one 
knows how to find the operator J(r+s) (or fl(r+s)) associated 
with the union of the two path segments. What is the analo- 
gous case in general media? To fix ideas, suppose we still 
have X(O,m), but that X(0,m) is no longer homogeneous, nor 
even stratified: X(0,m) is a natural chaos of variations in 
a,a and initial incident radiances over the upper boundary Xo. 
It is now clear that the light field can vary markedly over 
planes Xy at depth y in X(0,y). 
cient to simply give the depth in X(0,m) in the description 
of the light field in X(0,m); a full specification of the 
point in question must be gi.ven. 

part to the simple vertical path used in the stratified plane- 
parallel case? Figure 7.16 depicts a possible candidate in 
the form of a general path @ with initial point xo at the 
boundary Xo of X(0,") and terminal point x in X(0,m). Here 
~ l ~ ~ l l  and r r X l l  denote ordered triples of real numbers giving 
the coordinates of xo and x with respect to some terrestrial 
frame of reference. It should be noted that xo need not be 
on Xo for what follows. We have simply placed it there to 
fix ideas. In the homogeneous stratified case, 8 can be 
vertical and, given N(0) at x , we can find N(y) at any dis- 
tance y along busing (9) of 8ec. 7.10 (in the method of 
groups) or using (10) of Sec. 7.9 (using the method of semi- 
groups). Alternatively, we can integrate directly along 6' 
using (26) of Sec. 7.10 or (38) of Sec. 7.5 to find N(y). 
This then suggests that we merely need to specify P a s  in Fig. 
7.16 and, with the initial radiance N(0) given at xo integrate 
methodically along a. But what of the curvilinear structure 
of a? This appears to present no obstacles, at least in 
principle. For, let "t" denote the unit vector to @at x, 
and let Z be given a fixed partition as in Fig. 7.15 [see 
also (1) , (2) of Sec. 7.7). Thus no matter where x is in 
X(O,m), 5 has the given fixed partition. 
equation of transfer at x may be written: 

Having settled the matter of what kind of initial data 

Hence it is no longer suffi- 

In this more general setting what then is the counter- 

Then for 5 in E the 

S e t  = -a(x)N(x,C) + N,(x,E) (1) 
dr 

where r is distance measured along p a t  x in the direction of 
the tangent t. If the partition of E is now introduced, an 
approximating system to (1) can be formed using the techniques 
explained, e.g., in Sec. 7.7 or in (25) of Sec. 7.10. As a 
result, at each point x of a system of ordinary differen- 
tial equations just like (26) of Sec. 7.10 describes the light 
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FIG. 7.16 Analysis of the group method; limitations of 
the equation of transfer. 

field at x. Thus, if we write: 

"Ni(r)" for N(x,Si) 

(r) 'I for N, (x, Ei) 
'ra(r)ll for a(x) 

where ti is a fixed representative in the partition of 9 and 
x is at a distance r from Xo, then (1) becomes: 

dNi 
Ei-t - - -a(r)Ni(r) + NAi(r) , (2) 

dr 

i = l,..., p where p - m+n, and we no longer explicitly dis- 
tinguish between tiE members Ai, Bj of the partition. It 
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appears that by knowing all p components Ni(r) at x, we can 
compute dNi(r)/dr for each i from the right side 0% (a), and 
then use this derivative value to estimate each of the p val- 
ues Ni(r+Ar) for some reasonable incremental distance Ar along 
the path in the direction t. In this way we can perhaps com- 
putationally inch our way along @ and find N(X,Ei), at least 
in principle, at any point x in X(0,-) and for any of the p 
directions Si! 

Encouraged by the seemingly successful generalization 
of the homogeneous stratified case to the nonhomogeneous case 
as outlined above, we go on to see whether the preceding com- 
putational scheme can be phrased succinctly in group-theoretic 
terms. Granted the system (2) can be integrated along a given 
path &'starting with the initial radiance distribution N(xo), 
we can then find N(xI) at XI, a point a distance F along p 
from xo. Then for the same reasons we may go on to find Pl(x2) 
at point xz of 8. Suppose we summarize the construction 8%- 
tivity over the segment between xo and x1 by means of an oper- 
ator 7((xo,x1), and similarly let 7l(x ,XZ) map N(x1) info 
N(x2). Then we could say, 

in analogy to the group relation which 
n/(x?y) of r2(0,=). We thus appear to 
requisite group-theoretic relations in 
general case. 

(3) 

holds for the operator 
have arrived at the 
the form of (3) for the 

Before going any further and before we develop specific 
numerical schemes on (3) as a base, it would be well to test 
the validity of that scheme on some easily visualized case 
for which we know the answers. Toward this end, we suppose 
X(0,-) is homogeneous once again. Now, however, we assume the 
incident radiance distributions on the upper boundary Xo of 
X(O,-) to vauy with location on Xo. To fix ideas, let N-(Q) 
be vertical collimated radiance and let it undulate sinusoidal- 
ly in magnitude along the direction from left to right with 
period roe as in Fig. 7.17, and be constant along directions 
normal to the Figure. Thus the light field in X(0,w) is quite 
clearly no% stratified, ewen though the inherent optical prop- 
erties of X(0,m) are about as innocuous as can be without be- 
ing trivial. Since the argumentation leading to (3) was for 
an arbitrary path LP in X[O,-), let us now choose to be a 
horizontal infinitely long path going from left to right just 
below Xo, as in Fig. 7.17. With this arrangement fixed we 
now turn to the system (2) and observe that the assclciated 
matrix operator K. is, by the homogeneity of X(O,m), independ- 
ent of distance r along @ 
intrinsic structure of (2) is concerned, we have reverted to 
the full group-theoretic context of Sec. 7.10. In particular, 
the asymptotic radiance theorem states that N(r) ekr should 
have a limit as r-, i.e., there should be a fixed radiance 
distribution toward which " t h e  p-component vector H(P] goes. 
Now, under the conditions just defined this conclusion is pat- 
ently false! Quite obviously the radiance distributions along 
pvvary sinusoidally in dependence with distance r along d . 
Observe next that while we do not know exactly what N(F) is at 
r from xo, we do know that N(a) = N(r+ro), i.e., that %he 

It follows that, as far as the 
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FIG. 7.17 The equation of transfer cannot directly 
relate radiances along parallel paths. 

light field varies periodically with the same period ro as the 
incident radiance field on Xo. We have thus come to a contra- 
diction, and the next task is to understand just where the 
reasoning leading to the general integration scheme along fl 
was fallacious. 

To detect the fallacy at hand, we quickly can dismiss 
equation (2) itself as the epicenter of difficulty; similarly, 
the asymptotic radiance theorem based on the characteristic 
representation (28) of Sec. 7.10 cannot be the trouble center. 
We therefore descend on the remaining possibility; namely, the 
equation of transfer itself, and this, understandably, is done 
with a measure of trepidation. The trouble appears to stem 
from the use of the equation of transfer in the setting de- 
picted in Fig. 7.16. We therefore review with care the mean- 
ing of the terms in (1). The only strange aspect of (1) is 
the derivative term. But this has been correctly translated 
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from the genessll directional derivative term E*VN(x,C) that 
customarily appears in the equation of transfer. Indeed, let 
s be distance measured alomg direction 4, as in Fig. 7.16. 
Then: 

I ,w&& P E.t dN(x,S) S*VN(x,S) 
dS dr 

by virtue of the simple geometric fact that: 

SmtAs - Ar 
where As and Ar are two arbitrary distances along directions 
5 and t but related as shown in Fig. 7.16. Therefore, what- 
ever the source of difficulty, it is not one born of simple 
algebraic errors. It remains, therefore, to consider concep- 
tual errors of application of the equation of transfer. 

In going from (2) to the integration scheme over path6' 
some error of interpretation of (1) was committed. The error 
must center on the intended meaning, i.e., the intended phys- 
ical interpretation of the derivative term of (1). It was 
hoped that knowledge of the value of E,etdN(x,S)/dr would per- 
mit an estimate of N(y,E) at the neighboring point y = x+tAr 
on 0. When phrased in this way (rather than in the abbrevi- 
ated notation of (2)) the difficulty starts to resolve: the 
derivative tePm E-VN(x,E) of the equation of transfer is in- 
tended to give the rate of change of N(x,E) at x in the direc- 
tion E and in no other direction. Hence an attempt at estrap- 
otating the value N(x,E) ut x in some direction E', using the 
equation of transfer, is permissible only when 5' 5 5. There- 
fore the integration scheme of (2) along @ holds only w h e n p  
is a straight line with direction 5. 

The preceding italicized observation stands out in bold 
relief when, now forewarned, we consider the following quite 
simple test situation. Let X(0,m) be a purely absorbing me- 
dium. Thus u = Q throughout X(0,m). Let X(Q,m) be irradiated 
by vertical collimated light as in Fig. 7.16, but now the spa- 
tial dependence over the upper boundary need not even be peri- 
odic, but simply some arbitrary given form. The equation of 
transfer can readily predict N(x, -k) , the downward radiance at 
any point x along any vertical path 8. 
N(x,-k), we cannot use the equation to predict N(y,-k) where y 
is a point the same depth from XO and just next to x. From 
this we infer that in any optical medium the equation of trans- 
fer is generatty powertese to describe or interretate directly 
the radianoe %tow at two neighboring points x and y which are 
direoted along paratlet paths aontaining x and y. 

In the simple case of a purely absorbing medium, it is 
clear that to know N(x.0) at each point of plane Xy in X(O,-), 
it is necessary to know N(O,9) at each point of plane Xo for 
the directions 5 in E,. It seems reasonable that this is in- 
deed the case also for media with arbitrary scattering mecha- 
nisms extant within them. It shall turn out that this is so. 
Thus, in the counterexample of Fig. 7.17, the initial data at 
point xo is generally inadequate to predict radiance parallel 
to P a t  points above and below d'. What is needed is initial 

Iiowever, given 

. .  

I 
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data over a whole vertical plane A (seen dashed, end on] 
throughout X(0,-) which then permits a methodical computation- 
al march away from the data plane in the direction of its nor- 
mal t, a march which eventually can in principle sweep through 
all of X(0,-). 

i.e., from (1) to the preceding fallacy, and then to the reso- 
lution of the fallacy just above, principally to uncover the 
resultant insight into the nature of the equation of transfer 
enunciated above. Thus, while it is quite obvious from fol- 
lowing any of the classical derivations of the equation of 
transfer, just what the equation can do in a given optical 
medium, it does not seem to have been emphasized what the 
equation of transfer cannot do by way of direct interrelation 
of the light fields at two neighboring points in the medium. 

We have deliberately travelled the route just taken, 

Analysis of the Group Method: Summarized 

These observations on the limitations of the equation of 
transfer complete our analysis of the semigroup and group meth 
ods by showing themininnrm number of necessary steps that must 
be taken in generalizing the methods to arbitrary optical me- 
dia. In particutor, we have .Learned that the general opera- 
tors V(X,Z) of the simple homogeneous case, which worked w e t 1  
in predicting N(z) knowing N(x) along a vertical path on a 
stratified ptane-paratlel X(0,-), must now be replaced by opepe 
ator8 V(X,Z) which retate the radiance distributions over all 
of ptane Xx to the radiance distributions over all of plane 
XZ. In short, we must develop the generalization of the group 
l'z(O,-) for X(O,-) in the context of a one-parameter represen- 
tation of the space X(0,-), i.e., a representation of X(O,-) 
which conceives of X(O,-) as a full three-dimensional body 
comprised of a one-parameter set of parallel planes. In this 
way we return to the general concept of a one-parameter opti- 
cal medium as given in Example 2 of Sec. 3.9. Furthermore, 
the discussions following (93) of Sec 7.4 may now be restudied 
with profit. In the light of the preceding analysis, that dis- 
cussion now takes on a deeper meaning which can be developed 
in concrete terms as follows. 

The General Method of Groups 

The geometric setting for the general method of groups 
is a rectangular parallelepiped li(a,b,c) of dimensions a,b,c, 
and which is oriented and defined with the help of Fig. 7.18. 
The unit vectors i,j,k of the usual right-hand Cartesian co- 
ordinate frame are shown. The standard hydrologic optics co- 
ordinate system measures depth z as positive, increasing in 
the direction -k. Analogously, the x and y measurements are 
positive, increasing in the directions -i?--j, respectively. 
This measuring convention is simply a logical extension of the 
useful plane-parallel convention of measuring z positive along 
-k. If desired, the i and j unit vectors may be reversed to 
obtain a right-hand coordinate system of more familiar appear- 
ance. Also the k unit vector may be reversed wit11 i and j 



FIG. 7-18 The parallelepiped within which an arbitrary 
radiative transfer process can evolve and be studied. 

suitably adjusted. We shall not adopt this latter reversal, 
as it will necessitate a massive revision of all direction 
conventions developed so far, and will cause difficulties in 
treating the unified planetary radiative transfer problems in 
which the atmosphere above the top plane boundary X(0) of 
X(a,b,c) is allowed to interact with X(a,b,c). We call 
X(a,b,c) a msnobtoc: it is the general version of a plane- 
parallel medium. The latter type of medium is the special 
case, of X(a,b,c) for which a = b = a. We assume that an in- 
cident radiance distribution is defined over X(0) and that 
there are no further s o u ~ ~ e s  on or within X(a,b,s). We assme 
also that a and u are specified throughout X(a,b,c). 
parameter representation of the monobloc is fixed by writing: 

A one- 

X(a,b,c) = U X(z) (41 
D Z Z S C  
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where X(z) is the plane section of X(a,b,c) normal to the 
direction k and at depth z below the plane X(0). Hence each 
X(z) is a plane of fixed dimensions a by b. Ilaving fixed the 
Parametrization direction of X(a,b,c) as being parallel to k, 
we can suppress the dimensions a and b of X(a,b,c) and write 
simply: 

l'X(O,c)" for X(a,b,c) . (5) 

More generally, an arbitrary subslab of X(0,c) between levels 
x and z is denoted by "X(x,z)" in complete analogy to the 
plane-parallel context discussed earlier in this chapter. 

parametrization need not be along k. It can, for example, be 
along i or j, i.e., we could slice up X(a,b,c) by planes nor- 
mal to i (in which case X(a,b,c) is denoted by "X(0,a)'' in 
analogy to (5)) or normal to j (so that X(a,b,c) is denoted 
by "X(O,b)r'). For the general theory developed below we could 
even slice up X(a,b,c) by parallel planes cocked at some out- 
landish angle, and being normal to an arbitrary direction Eo. 
Finally, the parametrization could even be accomplished with 
non-plane surfaces. However, as we shall presently see, the 
apparently special monobloc X(a,b,c), the orthodox-looking 
parametrization (4), and the special lighting conditions are 
of sufficient generality to 'subsume all cases encountered in 
practice. 

The basic equation of the group method is the operator 
form of the equation of transfer: 

We note in passing that the choice of the direction of 

as developed in Sec, 7.1. Under the present lighting condi- 
tions we have, from principle of invariance I of Example 2 in 
Sec. 3.9: 

This was obtained by setting z = c in principle I and using 
thc fact that N+(c) = 0. Finally,for convenience, we repeat 
(18) of Sec. 7.1 here (now adapted to X(y,c)): 

It is clear that the derivation of (B), originally performed 
in a stratified plane-parallel setting, holds also for the 
present monobloc setting. Indeed, as shown in Equation I' of 
Sec. 25 of Ref. [251], the gestalt of (8) persists in arbi- 
trary optical media in euclidean three space. Equations (G), 
(7) and (8) are the basic equations of the general method of 
groups, and are used in numerical procedures as follows. 
Stage One. Discretize the directional variables of equations 
(6), (7), (8) by partitioning 2 after the manner of Sccs. 7.9, 
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7.10. The end results are matricial versions of the three 
basic equations. 
written below in boldface type. Thus the function N(y) be- 
comes the vector N(y) and the functional components of N(y), 
namely N+(y) and N,(y) become vectors N+(y), N,(y) as illus- 
trated earlier in this chapter. 
Stage Two. Solve (8) for all reflectance matrices W(y,c), 
O r y c c  given the initial condition R(c,c) = 0 (the zero ma- 
trix). Integration proceeds from R(c,c) through R(y,c) eo 
R(0,c). Thus, we in effect build up X(0,c) layer by layer 

(y,c) at each intermediate stage X(y,c) of con- 
struction. 
Stage Three. Solve (6) for all radiance vectors N_(y), O s y s c  
given the initial radiance N-(O). Toward this end, use (6) in 
expanded form: 

The matrix version of each term will be 

3 
in which (7) has been substituted in the equation for N-(y): 

Equation (9) is solved, starting at level y = 0, and is 
used to work down through X(0,c) to level c. At each level y, 
O s y s c ,  R(y,c) is used, as indicated, and is taken from the 
result of Stage Two. At each level y, N+(y) is obtained from 
the matricial version of (7). Equation (9) governs N-(y) ; the 
latter is an m-component vector (cf. (23), (24) of Sec. 7.10). 
Equations (7) and (9) are therefore used to burrow methodically 
from one layer in X(0,c) down to the next, gathering up new 
values of M+(y) along the way. Observe how knowledge of N-(y) 
over a12 of-level y permits the derivatives of the components 
of N-(y) to be computed,from which estimates of the components 
N-(y+Ay) are obtained. Equation (7) then yields N,(y+Ay) . 

Observations on the Method of Groups 

A comparison of the preceding three stages of computa- 
tion, especially the last two, shows that we are generalizing 
the method of semigroups as summarized in the system (13) of 
Sec. 7.8. In the present case %, is replaced by R(y,c) and 
the infinitesimal generatorA (as in (12) of Sec. 7.9) now uses 
depth-variable operators p, ‘I, and R. 

A further examination of the three stages outlined above 
shows that in any radiative transfer problem, of all the glob- 
al properties of an extended medium, only its standard reflec- 
tance is really indispensable along with the complete trans- 
mittance operator T(O,y,c): 
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which implies (9) upon differentiation of each side with re- 
spect to y. (Use (17) of Sec. 7.5 and (52), (53) of Sec. 
3.7.) These two operators and their governing laws are exhi- 
bited in general in (52) and (53) of Sec. 3.7. These were 
used in Sec. 7.8 to develop the semigroup method in the homo- 
geneous plane-parallel setting. 
ture residing just below the surface activity of Stages One, 
TUQ, and Three is latent in (14) of Sec. 7.10 and may be sum- 
marized as follows. Write: 

The group-theoretic struc- 

where @(x,z,c) and T(x,z,c) are the complete reflectance 
and transmittance operators associated with X(0,c) and x,z 
are arbitrary levels in X(0,e) such that x s z .  Observe that 
Q(x,z) operates on N-(x) to yield (N+(z),N,(z)). For any 
two such operator pairs as Q(x,y) and Q(y,z), write: 

a(x,Y)*a(y.z)" for (.7(X,Y,C)42(Y,Z,CI ,XXrY,C)J(Y,Z9C1I 

(11) 
I 

By (52) and (531 of Sec. 3.7 we see immediately that: 

(12) 

Furthermore, the binary operation * defined in (11) is asso- 
ciative and a(x,x) for every x clearly serves as the identity 
element in the sense that: 

d(x,x)* Q(x,r) = Q(X,Yl . (131 

By extending the meaning of J(x,y,c] and #(x,y,c) to the 
case where x and y are not restricted to the relation XSY, 
the set {R(x,y): O s x ,  y s c l  becomes a partial group. This 
extension can be made by following the suggestions given 
around (44) of Sec. 7.4. The partial group {a (x,y) : 0 5 x, 
ycc), which we denote by zlA2(0,~)'P, is clearly isomorphic to 
rZ(0,c) introduced in Example 7 of Sec. 3.7. 

It may be well to also make some observations of a 
practical nature concerning the integration of equations (8) 
and (9). Consider (9) first. The ith component of the ra- 
diance vector function N-(z) at level z is of the form 
N(x,y,z,Ei) where si is in the ith partition element Ai of 
1,. Here x,y,z now are the three coordinates of a point in 
the monobloc (see Fig. 7.18). Let us write "Ni(x,y,~)~~ or 
"Ni(p)" for this ith component of pl-(z), where "p" stands for 
"(x,y,z)". Equation (9) gives the rate of change of Ni(P) at 
point p from which we may estimate Ni(p+ciAr) where A r  IS an 
increment of path length along the direction Si. Our detailed 
analysis of the equation of transfer earlier in this section 
shows that this is the only type of extrapolation that the 
equation permits. However, now that Ni(p) is known for every 
i 1,. ..,m9 and for every p over the plane X(z), this limited 
mode of extrapolation is clearly adequate to propagate the 
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FIG. 7.19 How to propagate the radiance computations 
from one parameter surface to the next. 

radiance field from plane X[z) to plane X(z+Az) %or suitably 
chosen Az. Pig. 7.19 helps show how the function I_(z+Az) 
over X(z+Az) is obtained from N-(z) known over X(z). In par- 
ticular we have for each p (= (x,y,z)) in X(2) and E;i in p_: 

JNi (PI 
az 

Ni(P+&iAr) = Mi(p) + - A 2  (141 

where : 
Az -Ei*kbr (15) 

Once M-(z+Az] has been obtained, we use (7) to find 
by means of the formula: 
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Now that (14) and (15) have been displayed, and the 
mode of propagation of mJ-(z) to N-(z+Az) has been made clear, 
it may be well to observe that there is no royal road to the 
solution of the radiative transfer problem in a general mono- 
bloc such as X(a,b,c). The sheer number of dimensions of 
X(a,b,c) and E -  must always combine to dampen the enthusiasm 
of the most intrepid computer. At least now that the invar- 
iant imbedding techniques have shown the fundamental struc- 
ture of the present type of transfer problem (as outlined in 
Stagee Ons to Three above), we can rest in the knowledge that 
the theory has progressed as far as it can go on the phenomeno- 
logical level, and that what remains is the development of 
more adequate numerical procedures to use on (8) and (9) for 
the general monobloc X(a,b,c). Of course this is not meant 
to discount the use of other procedures such as those based on 
the classical techniques of Chapter 6, or on the natural mode 
of solution (Chapter 51, or the canonical mode (Chapter 4), or 
their equivalents. As far as Eq. (8) is concerned, one such 
attempt has been made using invariant imbedding techniques in 
Ref. 12511 wherein the solution of (8) is carried out on a 
monobloc using the approach of discrete-space theory developed 
in that reference (see, in particular, Chapter X). 

The Method of Groups and the Inner Structure 
of Natural Light Fields 

We now round out our discussion of the method of groups 
and also bring to a close some matters raised in Example 7 of 
Sec. 3.7 by outlining a proof of the general group-theoretic 
structure of light fields in natural optical media. 

Let X be an arbitrary connected source-free subset of 
euclidean three-space. Let a,a be given throughout X and let 
X be irradiated arbitrarily on its boundary. A parametriza- 
tion of X is introduced so that: 

x =  u X(2) . 
a s z s b  

This decomposition of X into a family of two-dimensional sur- 
faces X(z) is illustrated in (a) of Fig. 7.20. In this way X 
becomes a one-parameter optical medium. 

To each subslab X(x,z) of X,shaded in (a) of Fig. 9.20, 
we can assign reflectance and transmittance operators after 
the manner explained in Examples 2, 4, and 5 of Sec. 3.9 so 
that the invariant imbedding relation holds for X. Hence 
equations (6), (7), (8) can be suitably extended to the set- 
ting in X so that the general counterpart to (12) holds, and a 
partial group Az(a,b) can be assigned to X. In particular a 
computation procedure for N-(y) can be initiated and sustained 
that will propagate N-(z) across each parameter surface X(z) 
within X in a manner completely analogous to that based on 
(14)-(16). 

The parametrization (17), being quite general , leads to 
an instructive mode of description of the inner structure of 
the light field. As an interesting special case of (17), 
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X 

X 

FIG. 7.2Q There are many ways in which an optical medi- 
wn can be made over into a one-parameter medium. 

consider the parametrization of X by spherical shaped surfaces 
X(r) within X of radius r about an internal point p of X. We 
define X(r) as the intersection of a sphere of radius T with 
X. See (b) of Fig. 7.20. Suppose the light field is given 
on arbitrarily small spherical surface X(r). Then using the 
general one-parameter versions of (lZ), the radiance field 
can be computed at any point q in X, where q lies on X(s) for 
some radius s. Conversely, knowledge of the light field on 
some sphere about q a5 center could lead in principle to the 
determination sf the light field at p after re-parametrization 
of X about q. This then is the most general description of 
the inner structure of natural light fields in an arbitrary 
optical medium X as defined above. 
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7.12 Homogeneity, Isotropy and Related Properties of Optical 
Media - 

In this section we collect together some special know- 
ledge that has been gathering during the development of this 
and earlier chapters, knowledge concerning the properties of 
homogeneity, isotropy, polarity, and related concepts associ- 
ated with optical media. This accumulation of facts is time- 
ly in that it will play an important role in rounding out the 
theory of internal-source generated light fields in natural 
optical media to be considered in the following section, and 
in Example 10 of Sec. 8.7. 

As we shall see, the problem of internal sources in op- 
tical media requires for its solution no new concepts beyond 
those presented in Example 3 sf Sec. 3.9. However, this bat- 
tery of concepts gives rise to some relatively complex (but 
highly instructive) operations with the standard reflectance 
and transmittance operators for optical media. Any insights 
into the reduction of the number of the participating opera- 
tors and their assemblies in the final formulations will cor- 
respondingly reduce the amount of labor required to effect 
specific numerical or theoretical answers to the source prob- 
lems. 

One of the classical means of simplifying radiative 
transfer formulations is the use of "symmetry principles", 
chief among which are various reciprocity principles governing 
the R and T functions. It is one of the purposes of the pres- 
ent section to define and discuss these symmetry properties, 
outline their extensions to general media, and to indicate 
when the extensions are or are not helpful. Perhaps the most 
important outcome of this discussion, at least from a practi- 
cal point of view, is the unpleasant fact that most of the 
"symmetry principles" of the classical theory no longer hold 
in the general settings of arbitrary optical media. In other 
words, many of the "symmetries" that arose in the classical 
settings arose because the settings themselves were symmetri- 
cal and generally quite idealized, and not because there sub- 
sisted some inherent invariant character of the symmetry. 

For example, by graduating from the use of irradiance 
or from scalar irradiance (or radiant density) within infinite 
or semi-infinite homogeneous isotropic media, to the use of 
radiance in such media, at least one important reciprocity 
theorem falls by the wayside. By making the space inhomogen- 
eous, but still isotropic, an important symmetry property van- 
ishes into the void. By making the space finite, inhomogen- 
eous and irregular in geometric structure essentially all but 
one of the classical symmetry properties (reciprocity for ra- 
diant density) leave the investigator with handfuls of func- 
tional equations whose associated analytic difficulties must 
be squarely faced without any essential help forthcoming from 
the lone surviving symmetry principle. In short, the moment 
one steps from the nice one-dimensional spaces with their nice 
one-dimensional radiometric concepts and enters the represent- 
er of the real world, namely euclidean three-space, and at- 
tempts to describe radiant flux in that setting in terms of 
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radiance rather than radiant density, then, except in the most 
singular cases, the classical symmetries no longer subsist and 
hence are no longer available to facilitate numerical and the- 
oretical activity. 

Despite the predominantly negative features of the fol- 
lowing discussion it will still be instructive for the reader 
to have consolidated and clarified some of the more frequently 
used "symmetries" and "uniformities" in the processes of cow- 
structing models of natural optical media. To this task we 
now turn. 

bout this section let X be an optical medium in 
o which is associated a voPume atten- 
e scattering function ET and an im- 
domain of n is X, the domain of a is 
x E, the values a(x,E) and a(x;tt;S) 
ers. It seems best to proceed by 

making formal definitions and following them with appropriate 
comments that illustrate their physical meanings and interre- 
late them. We begin with the local concepts, i.e., concepts 
associated with the pointo of X. Following this the global 
concepts are introduced (those associated with saabsegs 0% X) 
and an attempt will be made to define the global concepts anal- 
ogously to the local concepts whenever possible. One 0% the 
main problems af the present'area of radiative transfer theory 
is to determine whether a valid local concept in a given nedi- 
um X carries over to the global context. We shall indicate, 
by theorem and example, some instances of this probller as the 
discussion proceeds. 

Local Concepts 

Definition 1. X is said to be homogeneous if the values n(x), 
a(x,E) and a(x;E';E) a38 independent of x for every S",E in 2. 

Since 01 depends generally on x and E ,  the values o(x,S1 
in a homogeneous space, while independent by definition of x, 
may possibly depend on E. Thus, e.g., while a(x,S) = a(x',S) 
for every x, x 1  in X, this comon value may depend on e. Per- 
haps this is an academic point in the sense that h o ~ ~ ~ ~ ~ e i ~ y  
is rarely found in such a general form in nature. Be that as 
it may, the present definitiow, being necessarily framed with 
n, o and u as the basic concepts at hand, some decision must 
be made as to the 6-dependence of n, a and IJ in the hsmasgen- 
eous case. The decision adopted above imposes the lease re- 
strictions on the functions while capturing the basis idea 
behind homogeneity: the m&fopmity in the spatiat domaen of 
the values of n,a and (1. 

Homogeneity helps simplify the equations of radiative 
transfer in many ways. The most immediate effect is in the 
structure of the beam transnittanse function. In general, for 
a path @r(xopF) we have: 

r 
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n(xl) is the index of refraction at x' - xo + r l E I  a distance 
r' along 
geneous, the index of refraction function n is independent of 
location in X so that in particular &(Xo,&) is a straight 
line segment with direction E. Further, n(x) = n(xo) , along 
with a(x',E) = a(xo,C). Thus under homogeneity, Tr(Xo,() be- 
comes : 

Pr(xo,E) from the initial point xo. When X is homo- 

'Q(X0, E) r 
Tr(XoPE) = e (2) 

where a(xorE) is the fixed value of a in X associated with 
the direction E s  and r is the length of Pr(X0,E). 

It may be possible to have the index of refraction es- 
sentially constant on X without having a or B independent of 
location. When this is the case we have ~ e s t ~ i c t e d  inhomoge- 
neity of X. Such inhomogeneity is ideal for the theorist in 
radiative transfer: he has the opportunity of studying the 
main problems of radiative transfer without the anno ing and 
distracting possibility of curved or broken paths d(x,$) 
and of varying radiance values in an otherwise clear medium 
(cf. Sec. 21 of Ref. [251]), or in the beam transmittance 
function (cf. (1)). Therefore, throughout this section, when 
we consider X to be inhomogeneous it will be understood to be 
a restricted inhomogeneity of X. 

We conclude this discussion of homogeneity by rephrasing 
the definition in terms of the notion of a displacement trans- 
fopmation on X. A function D on X with values in X is a di.8- 
placement transformation if, and only if, there exists a fixed 
point y such that: 

D(x) = x + y 
Here we are using the fact that the points of E3 (and hence 
those of X) are ordered triples of numbers, as in analytic 
geometry, SQ that there is an algebraic basis for adding them 
together. The main part of Definition 1 may now be phrased 
analytically as follows. "X is homogeneous" means: 

whenever D(x) is in X, then n(D(x)) = n(x) 

A less restrictive notion than homogeneity but one that 
still permits all the analytic blessings of homogeneity tQ be 
enjoyed by the theorist is the notion of separability of X: 

Definition 2. X is said to be separable if the index of re- 
fraction function is constant and a(x,() is independent of E 
and if u(x;E';E)/a(x) is independent of x for every (',E in E. 

fixing x in x and writing: 
The reason for the name "separable" becomes clear on 
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The function p on X * B x B so defined is called the phatse 
funatCora in astrophysical optics (cf. Ref. [ 4 3  I) and by means 
of it u(x;SI;&) may be written: . 

(4) 1 u(x;S';E) = a(x)p(x;S';€) 

Hence in separable media a(x;E';&) may be written as the prod- 
uct of two functions: one which is free of x and the other 
which depends on x--so that the spatial dependence is uncou- 
pled or separated from the main directional dependence. In 
particular, in a separable medium the spatial dependence of 
0 is carried by a, while the directional dependence of 0 is 
carried by p. The utility of the separability assumption be- 
comes clear on examining, e.g., the definitions of the ma- 
trices r-(a), t-(a), etc., occurring in (9) of Sec. 7.7. If 
the medium were assumed separable, then r-(a) , t-(a), etc. 
would be independent of a, while still allowing a measure of 
inhomogeneity of the medium to be present. 

In separable optical media, the natural measure of dis- 
tance is not geometric distance but optical distance, in the 
following sense: If P (x,S) is a path in a separable medium, 
then its optioaz tmgtf; is the number drl , the in- 
tegration being taken along the path. This nuw- 
ber is usually designated by "T(r)" and enters into the theory 
via the equation of transfer when a transition from r to ~ ( r )  
is made. Thus the equation: 

P -aN + N1 
dr 

1 dN - - = -N + (N,/a) . 
a dr 

becomes : 

Since : 

we have : 

Beam transmittance in separable media becomes: 

If the dependence of T on r is suppressed and T is made the 
basic measure of distance, then the medium X is homogeneous, 
in the sense of Definition 1, with respect to the distance 
measure T. Furthermore, the volume attenuation function in 
such a separable medium with optical distance T is replace- 
able by a unit-valued function at all points of X. In other 
words, in a separable optical medium one can normalize the 
volume attenuation function and effectively remove it from 
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the scene, and the volume scattering function is replaceable 
by the phase function. 

Definition 3. An optical medium X is said to be isotropic at 
x if the values a(x,F;) are independent of E and the values 
a(x;E';E) depend only om the scalar product F;@*C of 5' and E. 
X is isotropio if it is isotropic at every point. 

From this we see, first of all, that while homogeneity 
of X is constancy of a and a on X, isotropy of X is a con- 
stancy of a on 9 along with a certain special constancy of ci 
on E x E. Specifically, "X is isotropic at x'~ means 

for every E',€ in 3, a(x,El] = a(x,E), and (7) 

u(X;El;Ez) = a(x;E,;Eb) . (8) 

for every EI,F;Z,F~,EC in E, if E 1 9 4 2  = E s * E ~ ,  then 

Isotropy of X can be characterized by means of rotation trans 
formations of E,. Let T be a rotation of E3 at x. Then the 
preceding isotropy conditions may be rendered as: 

for every E',& in E and every rotation T at x. 

Definition 4. A scattering process (or a) is said to be iao- 
tropic at x in X if a(x;E';E) is independent of E',( in 3. 
An attenuation process (or a) is said to be isotropic at x in 
X if a(x,E) is independent of E in E. A scattering or atten- 
uation process is isotropic if it is isotropic at every x in X. 

The distinction between the medium X being isotropic and 
the scattering process on X being isotropic is thus clear. 
The connections between the two ideas are as follows: If a 
and a are isotropio, then X is isotropic. On the other Rand, 
if x is isotropic then a is isotropic, but a need not be $80- 
tropia. This anomaly of symmetry in the isotropy properties 
stems from the fact that a has two spatial variables while Q 
has only one, Hence nailing down isotropy of X fixes that of 
a but leaves a a margin of variability, a margin, incidentally, 
which has been found most useful in the classical theory. 

Observe that if a is isotropic at x, then: 

a(x;E';E) = s(x)/4t (9) 

where s(x) is the value of the volume total scattering func- 
tion of x. Furthermore, if X is separable and a is isotropic, 
(4) and (9) combine to yield: 

s(x) = a(x)P(S';S) 

p(E';E) = s(x)/u(xl . 
so that: 
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From this we see that the phase function value p(&*;;E) is in- 
dependent of E' and E and is a real dimensionless n 
tween 0 and 1, a number which we have called the 84 
attsnuation ratio. 

Definition 5. A scattering process (or G) is said to be ~ 6 -  
uersibte a% x in X if the following property of a holds: for 
every &',E in E, (~(x;t';E) g(x;-E;-E'). An a t t ~ n ~ ~ t i ~ n  pro- 
cess (or a) is said to be muersibte at x in X if 
a(x,E) = a(x,-T;) for every E in E. 
uation) pmeess is reuersibte if it is reversible at every x 
in X. 

It is clear that if a medium is isotropic at a point x, 
then a is reversible at x, for, indeed, since E'*E 5 [-;E)*[-Eo] 
the reversibility follows from (8). However, the converse 
need mot be true: reversibility of a at x does not logically 
imply isotropy of X at x, and the reader may devise theoreti 
examples which show this. 

3p main local properties of an opti- 
ish shows the class 0% all optical 

media in Ea grouped into families which are homogeneous, sep- 
arable, isotropic, and reversible. Observe how the class of 
homogeneous spaces is included in the class of $ ~ ~ ~ ~ ~ b ~ e  
spaces, and of how the class of reversible spaces (iaea, 
spaces with reversible a) includes the isotropic spaces as 
special cases. The classes partially overlap in the Figure, 
showing that generally a space may have several, owe, or none 
of the four general uniformities. 

A scattering ( or attern- 

Globral Concepts 

We shall now show that the local concepts of ~ o ~ o ~ e n e ~ t ~  
and isotropy can be carried over, after suitable ~ ~ ~ ~ f ~ c a t ~ o ~ s ~  
to the global description of the scattering properties of ex- 
tended media. To keep the introduction to these ideas simple 
and intuitively meaningful we shall at first consider only 
stratified plane-parallel media, i.e., media whose ca and Q 
are independent of location on planes parallel to the basmda- 
ries. Later in the discussion more general media will be 
briefly discussed. 

Now the counterpart to Q in the global context is the 
reflectance function R(a,b;E';E) and the transmittance function 
T(a,b;E'; E) associated with a plane-parallel medium X(a,b). 
These pairings are intuitive and not to be taken in a formal 
sense. They suggest various analogous properties of the global 
functions that one ray seek. For example, the analogous global 
property to homogeneity is the condition that W(X,Z;~';~) and 
T(x,z;E';E) depend only hpn the difference z-x, where,e.g., 5' 
is in f,, and E is in E+, as the case may be. It is easy to 
see that, if and only if X(a,b) is homogeneous or separable, 
then this pr~perty holds for R and T, either directly, or 
after shifting over to the optical length parameter. 

The mext concept which may be profitably extended to the 
global setting is that of isotropy of the medium X at a point x. 
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Polar ["on separable or 

Set of all optical media in euclidean space 

FIG. 7.21 The four principal categories for local prop- 
erties of optical media and their general logical interdepen- 
dence. 

Instead of a point we now have a general subslab X(x,z) in 
X(a,b), and instead of the condition that ('-5 be fixed in 
magnitude, we require that the directions be related by means 
of a reflection in a plane parallel to X, thus: 

Definition 6. A stratified plane-parallel medium X(a,b) is 
said to be symmetric if the following properties hold for 
every subslab X(x,z) of X(a,b): 

R(x,z;E';S) = R(z,x;MIS') ;M(Sl) (11) 

T(x, 2; 5' ; 5) = T(z ,x;M(S '1 ;M(E)) 
and : 

1121 

for every reflection transformation M of Z in a plane parallel 
to x,. 
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I 2 

I X 

Z I 

FIG. 7.22 The reflection of directions E,&' in plane P, 
as used in describing polarity of an optical medium. 

The opposite notion to that of symmetry in the present 
context is polarity. Thus X(a,b) is polar or exhibit8 pozar- 
ity if it is not symmetric; and this, by Definition 6, means 
that there exists a subslab W(x,z) of X(a,b) such that either 

or 
T(x,z;E';E) f T(z,x;WE') ;WE)) 

for some reflection transformation M of E in a plane P paral- 
lel to Xa (see Fig. 7.22 for the case of reflectance). The 
main theorem about polarity is the following: 

Potarity Tkeorarm: Let X(a,b) be a stratified plane-parallel 
medium. ial If X(a,b) is sspa~ebte and isotropiu, then X(a,b) 
is symmotrio; (bl If X(a,b] io F Z Q ~  sepmabls and isotropic, 
then X(a,b) io potcar. 

R(x,z;E';F) f R(z,x;M(E') ;WE)) 
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The proof of the theorem may be made to devolve on the differ- 
ential equations for R(a,b) and T(a,b) in Sec. 7.3, but will 
be omitted here. The main point of the theorem is that sym- 
metry of X(a,b) may be lost by the presence of essential in- 
homogeneities in X(a,b) ; by "essential inhomogeneity" is 
meant that the medium is not just separable, but rather such 
that a(z;e';t)/a(z) depends on depth z in X(a,b). A proof of 
the polarity theorem along with examples for discrete spaces 
is given in some detail in Sec. 57 of Ref.[251] 

we have : 

Definition 7. A stratified plane-parallel medium X(a,b) is 
said to be reciprocal if the following properties hold for 
every subslab X(x,z) of X(a,b): 

and : 

and : 

and : 

Going on now to the global counterpart of reversibility, 

R(x,z;E';E) = R(x,z;-S;-S') (13) 

T(x,z;E';E) T(Z,X;-S;-S') (14) 

R(z,x;F ' ;El = R(z ,x; -5; -<'I (15) 

T(z,x;S';S). = T(x,z;-S;-S') . (16) 

Examples can be given which show that symmetry and re- 
Thus 

That this is 

ciprocity o% X(a,b) are generally independent notions. 
X(a,b) may be symmetric but not reciprocal; and conversely, 
X(a,b) may be reciprocal but exhibit polarity. 
plausible may be seen without too much preliminary work by 
letting X(x,z) approach zero thickness so that symmetry of 
X(x,z) becomes a manifestation of isotropy of U ;  and recipro- 
city 0% X(x,z) reduces nearly to reversibility of 6. Since 
reversibility and isotropy of a are partially independent, 
this independence can be inherited at least by very thin slabs 
X(X,Z). The main theorem on reciprocity is the following: 

Rsciprooity Theorem. Let X(a,b) be a stratified plane-paral- 
le1 medium. If a on X(a,b) is revereible, then X(a,b) is pe- 
uiprooal. 

Observe that this theorem, which can be proved using the 
differential equations for R(a,b) and T(a,b) in Sec. 7.3, holds 
in particular %or nonseparable media. 
stated and proved for separable plane-parallel media X(a,bI by 
Chandrasekhar in Ref. [43]. A proof of the reciprocity theorem 
for general isotropic media is sketched in Ref. [40]. 

The theorem was first 

Summary 

To summarize the main results of this section so far we 

More precisely, 

may say that in going from the local to the global level in 
stratified plane-parallel redia one generally can carry over 
the concept of reciprocity but not symmetry. 
and in terms of the defined concepts above, a locally rever- 
sible medium is always reciprocal, but a locally isotropic 
medium may exhibit polarity. 
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The loss of symmetry (where we use the term in the 
sense of Definition 69 is a phenomenon that arises because of 
the adoption of radiance as the basic radiometric concept ra- 
ther than irradiance or alternatively, radiant density. Had 
we used the latter concept, then symmetry would hold (in the 
scalar irradiance context) for inhomogeneous isotropic plane- 
parallel media. 
when isotropy was lost. By adopting radiance over irradiance 
we reap the benefits of a more detailed description of the 
light field at the expense of the classical symmetries pos- 
sessed by irradiance. Furthermore, the reflectance and trans- 
mittance functions R and T in the scalar irradiance context, 
being scalars, commute; i.e., symbolically, RT = TW. By adopt- 
ing radiance, R and T become integral operators or matrices, 
and these objects are notoriously noncommutative, thus block- 
ing still further the passage of certain symmetries of the 
scalar formulations to the: field of operator formulations. 

Symmetry would be lost in such a context only 

Conclusion 

In conclusion, then, the elevation of the local notions 
of homogeneity, separability, isotropy, and reversibility to 
the global settings in plane-parallel media is quite possible. 
However, only the local concept of reversibility is generally 
inherited by the space on the global level (in the form of re- 
ciprocity). But this inheritance is precarious and can con- 
ceivably vanish on graduation to arbitrarily shaped anisotrop- 
ic media in which the radiometric concept used is radiance 
rather than irradiance or scalar irradiance. Thus all the 
classical symmetries are in principle left behind in the 
search for general invariant properties of scattering-absorb- 
ing media. The general principles of invariance, the invariant 
imbedding relations and their various semigroup properties are 
important examples of general properties of optical media 
which are invariant under the transition from local to global 
formulations within those media. This has been shown in de- 
tail in Chapter VI of Ref. [251], for general discrete spaces. 

Further study of the problem of the extension of local 
symmetries to he global level are best handled by means of 
the standard J-operator d(X;a,b). 
extensioms has yet to be made. It would be of interest to 
formulate the appropriate counterparts to homogeneity, and 
isotropy for general media using (X;a,b), and then to find 
theorems, if possible, which are the appropriate generaliza- 
tion of the Polarity and Reciprocity theorems. 

A detailed study of such 

7.13 Functional Relations for Media with Internal Sources 

In this section we return to the problem of internal 
sources in optical media introduced in Example 3,of Sec. 3.9 
and reconsidered in Sec. 6.7. From a theoretical point of 
view the problem was completely solved in Sec. 3.9 and, in 
view of the methods of determination of the R and T operator 
discussed in Sec. 7.7, we may say that the practical wuwerical 
means of solvimg the internal-source problem are also well in 
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hand. However, there remain several most interesting ques- 
tions on the conceptual level, questions that arise when one 
examines the functional relations (35) and (36) of Sec. 6.7 
with an eye toward the intuitive meaning of the equations and 
of their connection with the invariant imbedding relations 
that may be written down for the same medium. Specifically, 
we are confronted with two equations (35), (36) of Sec. 6.7, 
derived directly from the equation of transfer, and whish are 
ostensibly statements of a certain type of invariance for sca- 
lar irradiance h(x). Their physical meanings as given by 
Elliott [88], are, however, occluded by the fact that their 
main terms fo and f, are Fourier transforms of the scalar ir- 
radiance function h(x) (cf. (23) of Sec. 6.7) rather than 
h(x) itself. Therefore, one of the principal goals in this 
section is the development of a systematic method of deriva- 
tion of the counterparts to (SS), (36) of Sec. 6.7 for the 
case of radiance in a general one-parameter optical medium 
X(a,b) with an arbitrary set of sources on variolas levels 
within X(a,b), using only the concepts inherent in the invar- 
iant imbedding relation for the medium. We therebye shall 
establish intuitively meaningful generalizations of the 
Elliott equations and also extend their domain of validity. 
An additional dividend is accrued throughout in the form of 
further insight into the interconnections among the I-operators 
and the invariant imbedding.operators. These connections 
arise as a matter of course during the derivations. Through- 
out this section, let "X(a,b)" denote a one-parameter optical 
medium with artibrary a,u, In particular X(a,b) will not be 
assumed isotropic, so that these are generally four local op- 
erators p (t) , T*(t) (cf. Sec. 7.1). Throughout this section 
sources &all be confined, for simplicity and without any 
serious loss of generality, to single depths s within the slab 
X(a,b), o s s c b .  For sources at several discrete levels, su- 
perposition of the results below will yield the desired field 
expression. By passing to the limit of numbers of discrete 
sources, the theoretical way to continuously distributed 
sources is opened. These generalizations are left to the 
reader. For helpful hints in this direction see (36) of Ses. 
3.9 and its discussion. Also see the paragraph on Two-D 
Models for Internal Sources in Sec. 8.5, and CQnSUle Example 
10 of Sec. 8.7. 

Pre 1 irninary Relations 

One important dividend of the present efforts is a col- 
lection of auxiliary functional relations between the e, T 
operators and the y -operator of Sec. 3.9. These equations 
place the interrelations of the y-operator into a deeper per- 
spective than is available from (31)-(34) of Sec. 3.9. Of 
particular interest at present are the connections between 
G(a,s,b), r(a,s,b), and y(s,s) , where a s  S L  b. It follows 
from (20)-(23) of Sec. 3.9 and (40)-(43) of Sec. 3.7 that: 
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\r(a,s,b) - T(a,s)(I + Y--(s,s:a,b)) (3) 

J(b,s,a) - T(b,s) (I + y++(S,S:a,b)) (4) 

where we have written; for a s s  sb, a 5  y s b :  

I' Y (s,y:a,b)" for V(s,y) (5) 

to point up specifically the fact that Y(a,y) belongs to 
X(a,b). (See the remarks following the applications of the 
interaction method in Example 3 of Sec. 3.9.) 

the complete reflectance operators and the local Y -operator 
for X(a,b). These relations will be helpful in constructing 
a dual class of .& or 7 operators needed subsequently. 

Equations (1)-(4) show clearly the interrelation between 

Another set of functional relations, needed in the der- 
ivations below, is the following, which again is based on 
(20)-(23) of Sec. 3.9: 

V,+(s ,s :a,b) = Y+- (s ,s:a,b) R(s,b) 

= R(s,a) V-+(s,s;a,b) 

I + Y,+(s,s:a,b) = [I - R(s,a)R(s,b)]" 
(s ,s :a,b) - Y-+(s ,s: a,b)R(s,a) 

= R(s,b) Y+_(s,s:a,b) 

I + Y--(s,s;a,b) = [I - R(s,b)R(s,a)]" 

Y_,(s,s:a,b) = R(s,b) [I + Y++(s,s:a,b)] 

= [I + Y--(s,s:a,b)]R(s,b) 

Integral Representations of the Local Y -Operators 

We are now ready for the derivations of the representa- 

We fix 
tions of the local Y -operators in terns of the simpler A? 
and 3- operators of the invariant imbedding relation. 
attention at first on the setting within X(a,b) depicted in 
Fig. 7.23. 

may be a point, or some arbitrary discrete or continuous set 
of points on level s, and of arbitrary directional structure 
at each point ob the set. We consider first the upward 

An internal source is at level s in X(a,b). The source 
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a 

b 

FIG. 7.23 An internal source situation in medium X(a,b). 
The first main case: source level (s) below observation level 
(t) 8 

components N:(s) of the source No($). 
field at level s generated throughout X(a,b) by this source 
component is, as explained in Sec. 3.9, given by the local 
Y -operator components Y++(s,s:a,b) and '~'+-(s,s:a,b). The 
first of these gives the resultant upward field, the second 
gives the resultant downward field. Now consider Y ++(s,s:a,b). 
We wish to study the dependence of '9 ++(s,s;a,b) on a, holding 
s and b fixed. It will turn out that knowledge of this de- 
pendence will lead directly to the requisite integral repre- 
sentation of Y(s,s:a,b), in terms of a fmily of invariant 
imbedding operators for X(a,b). 

Thus, imagine a family {X(t,b);astsbl of optical me- 
dia in which the original medium X(a,b) is imbedded (i*e.# 
X(a,b) is a member of the family), The associated family of 
the local '9 -operator is { y++(s,s:t,b): ajtcb}. The effect 
of varying t in y ++(s,s:t,b) can be determined by taking the 
derivative of '9 ++(s,s:t,b) in the following way: 

The resultant radiance 

a Y ++(s,s:t,b) a '9 +-(s,s:t,b) = R(s rb) 
at at 

which is suggested by (6). Furthermore, (13) suggests that we 
write: 
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+ [I + Y++(s,s:t,b)] 
at 

The last equality comes from (28) of Sec. 7.1, applied to 
X(t,s). es from the fact that depth is 
measured positive from a to b, Returning to the original 
equation, we have: 

The minus sign s 

a y++(s,s:t,b) a Y ++gs,s;t,b) 
I R(s,t)T(s,b) 

at at 

- [I + P,,(s,s: t ,b)] T(s ,t) P+(t)T(t,slR(s ,bl- 

The derivative term may therefore be solved for and found to 
be of the form: 

3 'I ++(s,s:t,b) 
.I 

at 

Upon examination, this seemingly complex representation sol- 
lapses into the composition of three highly intuitive forms. 
One of these is ba(t,s,b), since, by (42) of Sec. 3.7: 

&(t,s,b) = T(t,s)R(s,b) [I - R(s,t)R(s,b) I-' . 
The next term to consider is: 

[I + ++(s,s:t,b)lT(s,t) (16) 

This is an unfamiliar combination of operators. It has 
not arisen in our work as yet. However, there is a PantaPiz- 
ing asymmetry between it and (3) above. When the variables 
t,s,b are placed in (3) we have: 

.T(t,s,b) = T(t,s)[I + Y -_(s,s:t,b)J 

x 
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c 

The interpretation of r(t,s,b) is at this stage of our 
studies well understood: downward incident radiance at level 
t generates a light field in X(t,b) and f(t,s,b) gives the 
downward component of that field of level s in X(t,b). (See 
Figure 7.23) The term (16) seems to give a dual interpseta- 
tion to that of T(t,s,b). Thus, it says that upward source 
radiance at level s generates a light field within X(t,b] and 
(16) gives the upward component of that light field at level 
t in X(t,b). Hence (16) acts like a complete transmittance 
operator, but one whose input level (5) and output level (t) 
are exactly reversed from their customary relative orientations 
within X(t,b). With these interpretations and the dual kin- 
ship of (16) and r(t,s,b) in mind, let us write lqTT(s,t,b)q' 
for (16). Then the differential equation for Y ++(s,s:t,b) 
becomes : 

Integrating each side of (17) over the interval [a,s], and 
using the fact that: 

Y++(s,s;s,b) = 0 , 

we have : 
7 

The simple physical interpretation of (18) should not 
escape notice. Consider X(t,b). Imagine the source N$(s) at 
level s giving rise to the upward emergent radiance at level 
t in the space X(t,b). Then imagine a thin incremental layer 
added to X(t,b) at level t. This thin layer reflects some of 
the emergent flux via (p+(t)) back down into X(t,b). This re- 
flected flux sets up a light field in X(t,b , the upward com- 

ting X(t,b) grow another thin layer at level t, still another 
incremental light field is added to that at level s. 
up all such increments, starting from level s and working up 
to level a, we obtain the total field at level s induced by 
the upward source component NY(s). The analytical representa- 
tion (18) summarizes all this compactly, as shown. The little 
ideograph next to (17) and (18) serves to depict the relative 
positions of the depth variables in X(a,b). 

The representation (18) is one of a pair of representa- 
tions for Y++(s,s:a,b), the other arising when we imbed X(a,b) 
in the family iX(a,t): a z t s b l  of spaces. (See Figure 7.24) 
Then we consider: 

ponent of which at level s being given by B (t,s,b). By let- 

By adding 
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-.-I- -- - ----si- s "-\-- 

"%I 

b 

FIG. 7.24 An internal source situation in medium X(a,b). 
The second main case: source level (s) above observation 
level (t) . 

ar ++ (5, s :a, t) ar -+ls,s:a,t) - R(s,a) s 
at at 

using (7). This is analyzed further using (141, which yields: 

ar -+(s,s:a,t) = [I + y++(s,s:a,t)l + 

at at 

Once again a complex group of terms can be collapsed into a 
composition of three physically meaningful groups of terms, 
The operator p-(t) separates the two remaining terms. The*, 
last group of terms is simply r(t,spa) (cf. (43) of Sec. 33.7). 
The first group of terms is one of those tantalizing duals to 
the invariant imbedding operators. This time, by studying 
(41 of Sec. 3.7 and (1) above, we see that we should write 
"63 4 (s't,a)" (see (26) below) so that the preceding dif- 
ferential equation for Y ++(s,s:a,t) becomes: 

I I 

- t  at 
- - b  
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Integrating (19) over the interval [s,b] and using the fact 
that: 

Y++(s,s:a,s) - 0 , 
we have : 

a s s s t s b  

The physical interpretation of (20) is as follows: 
consider the medium X(a,t) with upward source N:(s) at level 
s (Fig. 7.24). The light field in X(a,t) generated by this 
source has a downward component at level t given by d?'f(s,t,a). 
(If source flux is upward directed at s, then, since &'f is a 
reftootor, response flux is downward directed at t.) Adding a 
thin increment to X(a,t) at level t causes a Corresponding in- 
crement of reflected radiance (via p-(t)) to re-enter X(a,t) 
and to be completely transmitted by T(t,s,a) to level s. By 
adding all such incremental layers on X(a,t) from t = s to 
t = b, the representation of Y++(s,s:a,b) is obtained. 

clear. On the basis of this emerging pattern the differen- 
tial equations for Y --(s,s:t,b) and Y ,-(s,s:a,t) and other 
corresponding integrals can be written down directly without 
any further detailed cierivation. However. the interested 

The pattern emerging in these derivations should now be 

reader should verify the formulas so obtained: 

These equations are companions to (17) and (18) and go 
Fig. 7.23. The following equations are companions to (19) and 
(20) and go with Fig. 7.24. - a t  1 
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We now consolidate the definitions of the dual invariant im- 
bedding operators. For this purpose, we use a general one- 
parameter setting X(a,b) and an arbitrary level s in X(a,b). 
The resultant definitions then will be completely dual to 
their counterparts in (1)-(4). Thus, for a s s s b  we write: 

It&* (s ,a ,b) 'I for 

for 

Y - + (s , s :a ,b) T( s ,a) 
Y+ - (s , s :a ,b) T( s ,b) 

(25) 

(26) 

''l;rt(s,a,b)" for [I + Y++(s,s:a,b)]T(s,a) (271 

lB~t(s,b,a)tl for [I + Y--(s,s:a,b)]T(s,b) . (28) 
The reader should study (1)-(4) and (25)-(28) to discover the 
rhyme and rule which bridges the gap between each of the pairs 
(1) and (25), (2) and (26), (3) and (27), (4) and (28). We 
call the four operators in (21)-(25) the duat invariant im- 
bedding operators; Ai?* being a duat complete reflectance op- 
erator, 7-t. a dual complete transmittance operator. 

be completed without any further derivative operations. To 
find the representation for Y+-(s,s:a,b) we may use either 
(12) or (13). For example, using (12) and (24) we have: 

(s ,b , a) 

The set of representations of the local I-operator caw 

v+-(S,s:a,b) = R(s,a) + Ib~t(s,t,a)~-(t)W(t,$,a) S dt] 

From this, we have at once: 
1 1 

L I 

in which we have used the readily verified fact that: 

&(s,t,a) = R(s,a)T*(s,t,a) . 
On the other hand, using (13) and (20) , we arrive at the same 
equation (291, as may be verified by the reader. (The dual 
relation to (30) is now used, namely (53) of Sec. 3.7.) 

For example, (14) and (18) yield: 
Finally Y-+(s,s:a,b) is found using either (14) or (15). 

S 

Y-+(s,s:a,b) - R(s*b) [I .+ I ~'t(s,t,b)p,(t)~(t,s,b) dt] - 
a 

From this and the fact that: 
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-S 
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Our goal requires US to find atL possible representa- 
tions of the local and global Y-operators. Thus, having 
found Y+-(s,s:a,b) in terms of an integral over [s,b], we 
are led to seek the representation of Y+,(s,s:a,b) in terms 
of an integral over [a,s]. Equation (6) provides the clue: 
in (18) we should factor R(s,b) from .&(t,s,b) by mean5 of 
(53) of Sec. 3.7. The result is: 

a 

By (6) we conclude that: 

a 
- t  

S 
- b  

- 
- 

Equation (32) in turn spurs a search for a representation of 
Y,+(s,s:a,b) in terms of an integral over [s,b]. This time 
57) makes it quite clear that, by factoring R(s,a) from (20), 
in this manner: 

b 
I++b,s:a,b) = R(s,a)l Tt(s,t,a)p_(t) J(t,s,al dt , 

a 

which is possible by (30). we must end up with: 

- a  
(341 S 

- t  
- b  

- 
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T 
b 

y++(s,y:a,b) = J(s,y,aI + 1 .@'(S,t,a)p-(t) CT(t,u,a) dt 
s 

a s  y <  $5 b 

VOL. IV 

-a 

-S 
-y 

Integral Representations of the Global Y -operators 

' b  
v+-(s,y:a,b) -B(S,Y,a) + I ~t(s,t,a)p_(t)~(t,y,a) at 

s 
a s y < s C - b  

Finally, according to (34) of Sec. 3.9 and (34) above: 

The relations (35)-(38) constitute the set of functional 
relations for the case where the source level s is below the 
observation level y within X(a,b). For the case where the 
source level s is above the observation level y within X(a,b] 
we use the following readily verified set of dual equations 
to (31)-(34) of Sec. 3.9: 
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The preceding equations hold for a s s c y s b .  
derivations go in the present case, we use (22) and (39) to 
find: 

To see how the 

-a 
-S 
-Y 
-b 

143) 
Equation (22) and (40) yield: 

I 1 

(441 
Equation (33) and (41) yield: 

(45) 

Finally, (33) and (42) yield: 

a I aC-s'=yc_b 
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Incipient Patterns and Nascent Methods 

The preceding development of the eight integral repre- 
sentations of the local Y -operator and the eight of the glob- 
al r-operator, followed fairly closely the actual sequence of 
discovery of the representations. This sequence was repro- 
duced because it seems the most natural didactic path into the 
present subject matter. We have thus progressed far enough 
into the forest of integral representations to become acquaint- 
ed with some of the important individual "trees". It is time, 
however, to rise above the trees and obtain a glimpse of the 
entire forest. 
tern of the derivations given so far and thereby organize ef- 
ficient methods of derivation of tho remaining functional re- 
lations. 

The principal observation to make on all the foregoing 
activity is on the manner of construction of the 'I -operators 
in terms of simpler components; namely, the invariant imbed- 
ding operators and their duals and, of course, the local op- 
erators p* and T+_. We note in particular the way in which a 
layer in X(a,b) is made to grow from an imbedded core X(s,y) 
to the entire slab X(a,b), and how during this growth the 
original simple operators (standard R and T operators) are 
built up continuously and in a corresponding manner to obtain 
the I -operator. This mode of construction of X(a,b) is 
closely related to the Categorical Synthesis Method developed 
in Ref. [251] for discrete spaces. Figure 7.25 helps describe 
the synthesis in the present continuous setting. 

parameter surface 6 
radiance No(s) (=(N+ts) ,NO(s)). Then a layer X(y,s) , y c  s, is 
produced by letting Xy move 
ard operators R(s,y), T(s,y) are shown in the figure as asso- 
ciated with X(s,y) or X(y,s) ("R(s,y)" denoting a reflectance 
for upward or downward radiance distribution, as the case may 
be). The response of X(s,y) or X(y,s) the source No(s) at 
level s is given by these standard operators, since the source 
is external to the slabs. This completes the first stage of 
growth: we began with a single surface X and continuously 
built up a slab X(s,y) or X(y,s) from it geeping the irradia- 
tion NO(s) constant, and fixing attention on the response at 
level y. 

ities, as shown in Fig. 7.25. For example, we could start 
with the upper slab X(y,s) and let it grow to be X(a,s), a S y .  
During this growth process, the source No(s) is retained and 
we still want to know what the response at layer y is. We 
have just the conceptual tools to give us the answer, namely 
the complete reflectance and transmittance operators &(s,y,a), 
T(s,y,a). Alternatively, we could let X(y,s) grow into 
X(y,b), s s b ,  with the source NO(s) remaining at level s. Now 
the source becomes "submerged" or imbedded in X(y,b) and the 
conceptual tools which will give us the response at level y 
are the duat invariant imbedding operators defined in (25) and 
(27) (with y = a]. The two other remaining cases in the 

By doing so we can discern the general pat- 

We begin with a degenerate case X(s,s), i.e., a single 
of X(a,b) which is irradiated by a source 

The stand- upward away from Xs. 

The second stage of growth gives rise to four possibil- 

\ 
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FIG. 7.25 A complete classification of the invariant im- 
Starting bedding process €or a one-parameter medium X(a,b). 

with the surface at level s, successive possibilities of 
growth of slabs are depicted in stages 1, 2, and 3. 
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second stage of growth are explained similarly. 
The third stage of growth also gives rise to four dis- 

tinct possibilities. For example, in case 1, starting with 
X(a,s) we let it grow downward to become X(a,b), S C ~ ,  still 
retaining the source at level s and still inquiring as to the 
response at level y. The interaction operator that describes 
this situation is the indicated global I-operator. The re- 
maining three cases are described similarly. 

The results of the third stage of growth fall uniformly 
within the scope of the global 
most general source-response irradiation configuration within 
X(a,b) can be described using Y(s,y:a,b). Thus, under the 
suitable confluence of the variables s,y,a,b, the invariant 
imbedding operators, their duals, and the standard slab opera- 
tors are all forthcoming from Y(s,y:a,b). This will be shown 
in detail later. 

The overview of the preceding derivations of the eight 
integral representations of the local Q-operator is now be- 
fore us. The settings of the derivations initially took place 
in the third stage of growth of Fig. 7.25 for the degenerate 
instance s = y. For example, Fig. 7.23, which goes with the 
derivation of (18), (22), (32), (33), falls under the degen- 
erate instances of cases 2 and'4 in stage three. Finally, 
Fig. 7.24, which goes with the derivation of (ZO), (24), (29), 
(34), falls under the degenerate instances of cases 1 and 3 
in stage 3. 

The overview of the derivations of the global 'i-opera- 
tors in (35)-(46) given by Fig. 7.25 is quite interesting. 
Had we not made the systematic analysis of all growth possi- 
bilities, we might have missed the eight remaining possibili- 
ties beyond (35)-(46). To see this in detail, first note that 
representations (35)-(38) all fall under case 1 of stage three, 
and that representatives (43)-(46) all fall under case 4. 
Note further that cases 1 and 4 spring from the two associated 
invariant imbedding cases in stage 2. The two remaining cases 
yet to be derived spring from the dual invariant imbedding 
oontexta of stage 2 and are depicted as cases 2 and 3 in Fig. 
7.25. This will be done below. 

A final facet of the overview obtained by means of Fig. 
7.25 is that we should expect to find somewhere 
of functional relations currently under study a set of func- 
tional relations for the dual invariant imbedding operators 
67t and Tt analogous in all respects to those for the invar- 
iant imbedding operators &,J, and? obtained in Sec. 7.5. 
The dual invariant imbedding operators encountered during the 
original versions of the derivations above appear to exist as 
intimate neighbors of the original operators and we should ex- 
pect every property of the invariant imbedding operators &? 
and 7 to have some 'dual' property in the other camp made up 
of the operators A* and 7 . Some of these relations for the 
dual operators will be derived subsequently. 

terns of similarity, in the functional relations at all stages 
of construction, forming during the invariant imbedding process 
on X(a,b), and also permit us to become aware of the possibility 

Y-operator and thereby the 

in the forest 

These observations permit us to see the incipient pat- 
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of a systematic method of derivation of the various integral 
representations of I(s,y:a,b). In the remaining space of 
this section we shall round out the family of integral and 
differential representations obtained so far by working on 
cases 2 and 3 in the third growth stage of Fig. 7.25. Fur- 
thermore, we shall look briefly into the matter of the func- 
tional relations for the dual invariant imbedding operators. 
Finally, we shall be able to make a thorough critique of the 
equations (35), (36) of Sec. 6.7, the equations which inspired 
the research leading to the results of the present section. 

For a systematic imbedding procedure developed in com- 
plete detail in the discrete space context analogous to that 
depicted in Fig. 7.25, the reader may consult the Categorical 
Analysis method, Chapter X, Ref. [251]. 

Dual Integral Representations of the Global Y-operators 

We now derive the dual integral representations to (43)- 
(46). Recall from our discussion of Fig. 7.25 that (43)-(46) 
are covered by Case 4 in stage 3 of the growth pattern of 
X(a,b). The dual case to this is case 2. Therefore we are to 
consider the situation where the source level is below the ob- 
servation level, i.e., we have a s y e s s b .  Equations (31)- 
(34) of Sec. 3.9 are therefore called up for use. Consider 
the component I++(s,y:a,b). During the third stage of growth 
we have for case 2, with the help of (31) of Sec. 3.9: 

The derivative in the first term is given by (17); the deriva- 
tive in the second term is given by (18) of Sec. 7.5. The 
resultant rate of change equation is: 

The latter equation follows by use of (27). The final seep 
uses (69) of Sec. 7.4, and we have the desired result: 
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Observe that (47) is identical to (17) in all respects save 
one: (47) has "y" in place of "s" in Y++ and in 62. This 
shows that the differential equation governing Y++(s,y:t,b) 
as a function of t holds for all y, t s y s b .  This fact also 
holds for the differential equations governing the remaining 
three components of Y(s,y:t,b). The requisite integral rep- 
resentation now follows from (47) by integrating from a to y 
and using the fact that: 

I++(s,y:y,b) = Jt(s,y,b) 
The result is: 

I asy'ssb I 
(48) 

This equation is the dual to (43). The dual to (44) is based 
on the differential equation: 

a s  t s y': s s b  --b - s  I 
I ,  I 

which is derived analogously to (47), using (32) of Sec. 3.9. 
The corresponding integral representation is: 

in which we have used the fact that: 

y+_(ssY:Y,b) 0 
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The dual representation to (45) is based on the differ- 
ential equation: 

a 
- t  
- Y  

S 

- 
I 

I - b  1 a s t c y . c s 5 b  

The corresponding integral representation is: 

using the fact that: 

Y-+(s,Y:Y,b) = m s , Y , b )  - 
Finally, the dual to (46) is based on: 

- a  
- t  
- Y  
- s  
- b  

a 
- Y  
- b  

- 
S - 

a s t r y - = s s b  I 
Whence : 

(53) 

a 
a s y = s s b  

in which was used the fact that: 

It remains to derive four pairs of differential-integra1 
representations of the components of Y(s,y:a,b) for case 3 of 
stage 3, as depicted in Fig. 7.25. However, the details will 
be left as an instructive exercise for the interested student. 
The results should be dual to (35)-(38) (which is case 1 of 
stage 3) in the same general way that the preceding integral 
relations were dual to (43)-(46). The derivations must be 
carried out for the case s <  y, so that one begins with (39)- 
(42). It should be observed that the sets (43)-(46) and their 
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duals just derived are sufficient to completely describe the 
internal-source problem within X(a,b) . 
of the dual relations to (35)-(38) is an academic matter. 
Nevertheless a full understanding of the present method of 
derivation of the integral representations of P(s,y:a,b) is 
contingent on a complete list of the dual relations; for this 
reason they are appended below: 

From: 

Hence the derivations 

aY- - (s,y:a,tl = 7 )(s,t,a)P-(t)~(t,Y.a> # (55) 
at 

we have the dual to (35) : 

Y 
From : 

we have the dual to (37) : 

(59) 

at . 
(60) 
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All these preceding equations (55)-(62) are valid for 
asscyyctc-b, and so may be envisioned by means of the ideo- 
graph : 

a 
S 

- Y  
t 

- b  

- - 
- 

Logical Descendents 

In our survey of the dynamics of the internal-source 
problem, as depicted in Fig. 7.25, we encountered during the 
building up of the medium X(a,b) through three stages, all 
the various interaction operators ranging from the standard 
operator for a slab (stage 1) through the invariant imbedding 
operators and their duals (stage 2), and culminating finally 
with the '4-operators. 
I-operator, all these special interaction operators should be 
recoverable from Y(s?y:a,b) under suitable choice of the para- 
meters s,y,a,b. Various special cases were already encounter- 
ed in the preceding work of this section. We now list these 
special instances of Y for convenient reference. One immedi- 
ate use of the list is to reexamine the preceding representa- 
tions and see how the Y-operator is built up from its most 
rudimentary special cases--an operation which on first view is 
reminiscent of pulling one's self up by one's bootstraps. 

The setting for the present discussion is a general one- 
parameter space X(a,b) with an arbitrary source on level s, 
a s s s b .  We shall consider two cases: first the case summa- 
rized as (s=a or s=b), and then the case summarized as (acscb). 

The invariant imbedding operators are, by their defini- 
tions, concerned with media X(a,b) which are source free. To 
simulate this, we set s - a or s = b in Y(s,y:a,b). If we use 
(31)-(34) of Sec. 3.9 or (39)-(42) above, then the results are: 

It follows that! given a general 

of Y(s,y:a,b) 
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Setting y * a in (63), we have: 
* 

VOL. IV 

1 (a ,a: a, b) I+- (a, a: a,b) 
Y-+(a,a:a,b) I_-(a,a:a,b) 

Y(a,a:a,b) - 
Further y = a in (64) yields: 

1 (b , a: a, b) Y+ (b, a: a ,b) 

Y(b,a:a,b) = Y--(b,a:a,b) 

Setting y = b in (63): 

1 (a ,b : a ,b) I+- (a,b : a,b) 
y(a'b:aDb) P__(a,b:a,b) 

* 
Setting y = b in (64): 

1 (b, b: a, b) I+_ (b ,b: a,b) 

P(bDb:a*b) Y-_(b,b:a,b) 

A dual collection follows from I(s,a:a,b) by letting the 
source level s be inside X(a,b) (i.e., a<s<b) and limiting the 
response level y to be a or b. Thus we have: 

'The operators I++ and Y-- in these cases by convention (Sec. 
3.9) must be interpreted as local '4-operators; hence the 
presence of the zero entries where formally one would have 
expected identity entries (cf. (20), (23) of Sec. 3.9). 
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1 Y++ (s ,a: a ,b) 

Y -+ (s ,a: a, b) 

Y+_ (s ,a: a ,b) 

Y- - (s, a: a,b) U(s ,a: a,b) = 

1 Y++ (s, b : a ,b) Y+- (s, b : a, b) 

Y--(s,b:a,b) 

The remaining four possibilities dual to (65)-(68) cannot be 
obtained directly from (69) and (70) by letting s = a or s = b. 

(26) - (28) that: However, it is easy to see directly from the definitions 

rt(a,a,b) = 1 (71) 

d'(a,a,b) = R(a,b) (72) 

T'f.b,a,b) = T(b,a) (73) 

&'(b,a,b) = 0 (74) 

d(a,b,a) - 0 (751 

Differential Equations for the Dual Operators 

Our analysis of the three stages of the.invariant imbed- 
ding process as depicted in Fig. 7.25 showed that certain dual 
operators to the invariant imbedding operators arose in stage 
two. The physical properties displayed by these dual opera- 
tors throughout the discussions of this section indicated that 
we should expect the duality to be a thorough-going one--one 
that went deeper than their defining forms (26)-(28) or their 
physical interpretations pictorially summarized in Fig. 7.25. 
We now embark on a verification of th t expectation by deriving 
the differential equations for the Re and 7 t  operators aris- 
ing in case 3 of stage 2 of the imbedding process. Case 2 of 
that stage, which proceeds analogously, will be left as an ex- 
ercise for the reader who wishes to fix the method of deriva- 
tion firmly in mind. The net result of the present activity 



174 INVARIANT IMBEDDING TECHNIQUES VOL. IV 

a 
- t  
- 
- s  
- y  
- b  

will be a set of differential equations for the operators Q t  
and 3 t  which parallel in all essgntial respects those of the 
kind exemplified by (8)-(21) of Sec. 7.5 for the invariant 
imbedding operators and which can be used in practical numeri- 
cal computations leading to approximate matricial forms of LRf 
and 3f. The model for the reduction of the ensuing differ- 
ential equations to rnatricial forms, amenable to numerical 
computations, was developed in Sec. 7.7. 

case 3 of stage 2, depicted in Fig. 7.25. In that case the 
slab X(s,y) is allowed to grow upward or, in the terminology 
of invariant imbedding theory, we imbed X(s,y) in the family 
iX(t,y): a s t s s )  of spaces and then consider the rates of 
change of Tt(s,t,y), and b?+(s,t,y). From (27), on setting 
b = y, a = t, and on differentiating with respect to t, we 
have : 

In view of the introductory remarks, we fix attention on . 

ay++ (s * s : t ,Y) - art(s,t,y) I - T(s,tl - 
at at 

- a Jt(s’t’y) - Tt(s,t,y) [T+(t) + p+(t)R(t,y)] (79) 
at 

a s t s s s y s b  

T(s,t) -[I + Y++(srs:t,Y)] 
at 

Using (17) (in which we set b = y) and using (27) of Sec. 7.1, 
suitably adapted to the present setting, we have: 



t The initial condition for 6( (s,t,y) is (according to (72)): 

L5?t(s,s,Y) = R(S,YI - 
Thus when integrating (El), we start with t * s. 
the derivative at the initial point is known, being: 

The value of 

- aAt(sps~Y) = R(s,y) [T+(s) + ~,(s)R(s,yll 
as 

where R(s,y) is known from the constructions of stage 1, de- 
picted in Fig. 7.25. 

Together, (79) and (El) determine the dual invariant im- 
bedding operators for case 3, stage 2 of the imbedding process 
on X(a,b). Yet the complete set of equations for that case 
requires four equations, as a perusal of the originals (18)- 
(21) of Sec. 7.5 would indicate. Evidently (81) and (79) 
are, respectively, the dual counterparts to (20) and (21) Qf 
Sec. 7.5. Recall that the operators p(t) and T(t) in Sec. 7.5 
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, 

where R(s,y) is known from the constructions of stage 1, de- 
picted in Fig. 7.25. 

Next, we return to (25), set b * y, a = t, and differ- 
entiate with respect to t: 

Using (32), we can find the derivative of Y-+(s,s:a,t) using 
the fundamental theorem of calculus (now applied to operator 
integrals). The remaining derivative is the same as before. 
The net result is: 
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I - aJt(s,Yrt) = gt(s,t,y)p+(t)T(t,y) 
- s  at 

were constructed in an isotropic medium, so that subscript 
signatures were not needed there, since p+(t) = p-(t), and 
r+(t) - r-(t). In the present setting isotropy was not as- 
sumed, principally to point up the interesting and thorough- 
going dualities under study in this section. For, without 
isotropy, we have generally distinct pairs of local operators 
p+(t), p,(t) and r+(t), r-(t). The subscripts on the local 
operators also help one to more readily write and read equa- 
tions associated with upward (+) and downward (-) radiant 
fluxes. The remaining two equations for case 3, stage 2 are 
obtained from (26) and (28) on setting a = t, b = y and dif- 
ferentiating with respect to t: 

. (85) 

whence : 

- y  
- b  

Similarly: 

a s t s s s y r b  I 
These equations are subordinate to (79) and (81) in the 

sense that they are powerless to support computations for their 
respective operators. Equations (79) and (81) are the auto- 
nomou8 equations for the present case. Once these are solved, 
(82) and (83) nay be used to find &t(s,y,t) and 5't(s,y,t). 

A Colligation of the Component Y-operator Equations 

We now reach one of the goals of this section by means 
of a study of equations (35), (36) of Sec. 6.7, as derived by 
Elliott in the neutron transport context in Ref. [88]. Specif- 
ically, our goal is to place the equations into their proper 
perspective within the domain of invariant imbedding techniques, 
to see their domain of validity, and to indicate their proper 
generalizations. In order to do this efficiently we must bind 
together the relatively massive collection of integral repre- 
sentations for the components of the global Y-operator obtained 
so far. To this task we now turn. 

First of all we observe that equations (35), (36) of Sec. 
6.7 are associated with two cases of location of the source 
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-y 

-b 

4 

-S 

level c relative to the observation level z. We can see these 
two cases in perspective by means of Fig. 7.25. Thus we find 
that the proper setting of Elliott's equations is in Stage 3 
of the invariant imbedding process for the semi-infinite me- 
dium X(O,-) (a = 0, b - = in X(a,b)). In particular cases 2 
and 3 correspond, respectively, to the source level below the 
observation level (Vas) and the source level above the obser- 
vation level (say). 

In case 2 the medium X(y,b) with internal source at lev- 
el s, y c s s b  is imbedded in the family {X[t,b): 
spaces. The source at level s is described by the incident 
source radiance distribution NO(s) which ha5 an upward compon- 
ent N:(s) and a downward component NO(s) defined at each point 
of the parameter surface Xs. 
sponse radiance distribution N(y) over Xy, where 
N(y) = (N+(y),N-(y)). By (15) of Sec. 3.9 we have: 

a s  t s y l  of 

We are interested in the re- 

Y(s,y:a,b)= Y(s,y:y,b)+ Y(s,t:t,b) K(t)Y(t,y:t,b) dt (85) Iy a 
ac=y-=sbb case 2, stage 3, Fig. 7.25 

where now, by (48), (SO), (52), and (54), Y(s,y:a,b) can be 
given a specific representation in terms of integral opera- 
tions on the invariant imbedding operators and their duals: 

Y[s,y:a,b) = 

Here X(t) is the local interaction operator defined in (7) of 
Sec. 7.1. Equation (85) is the desired generalization of (35) 
of Sec. 6.7. We can pair of€ the corresponding functions in 
(35) of Sec. 6.7 and (85) as follows: Y(s,y:O,-) pairs off 
with fs(y,w) (replacing "c" by "s" and "z~' by 'ty" in (35) of 
Sec. 6.7). 
This pairing is understood more clearly by noting at this point 
a certain reciprocity property of fo(z,w) proved in Ref. [88]. 
This property is the following: 

Further, Y(s,y:y,-) pairs off with fo(s-y;wj. 
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- a  

- Y  
- b  

- s  
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P( s ,y:a, b) = I (s ,y: s ,b) + Y(s, t: t ,b) X (fly (t,y: t,b) dt 
a 
r 

fo(Z,W) - fZ(0,4 
for every depth z in X(0,-). 

In words, this states that the Fourier transform of the 
scalar irradiance field at depth 0 produced by a point source 
at depth s (represented by Itfo(s,w)") is equal to that at 
depth s produced by a point source at depth 0 (represented by 
'lfS(O,o)"). In this way we see how Y(s,y:y,-) pairs off with 
fo!s-y,o) (: fs-y(O,o)). Further, the operator Y(s,t:t,-) 
pairs off with fo(s-t,o), and Y(t,y:t,=) pairs off with 
f ((y-s)+(s-t) ,@I = fo(Y-t,w) Finally, K(t) pairs off with 
s7hq. The pairings between the terms of (85), and (35) of 
Sec. 6.7, of course, cannot be exact, for the obvious reason 
that (35) of Sec. 6.7 is a vastly simpler equation than (85). 
Yet, remarkably, the general forms of the two equations are 
identical and this is an attestation of the invariant nature 
of the semigroup formulation of transport processes with re- 
spect to both the changes in the superficial geometric struc- 
ture of the media within which they evolve, and also with re- 
spect to the type of radiometric concept used in the formula- 
tion. 

Having dispatched case 2, we now consider case 4 in 
stage 3 of Fig. 7.25, according to our present purposes. 
Equations (43)-(46) may be used to obtain the following matri- 
cia1 form of Y(s,y:a,b), s<y: 

Y(s,y:a,b) = 

By means of (63) and (69) we can reduce this to the intuitively 
meaningful form: 

a s s c y s b  Case 4, stage 3, Fig. 7.25 

(86) 

Equation (86) is the general correspondent to (36) of 
Sec. 6.7. le have now reached the first of our main goals of 
this section, in the form of (85) and (86), and we pause to 
make some observations on their structure and further observa- 
tions on their physical interpretations. 
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The first things to observe about (85) and (86) are 
some of their common features: they both use the same inte- 
grand in their integral terms; however, the limits differ and 
this difference reflects the two cases of source-observation 
levels in X(a,b). Both equations yield an expression for 
Y(s,y:a,b) using invariant imbedding operators and their duals 
(cf., (63), (69)). These operators are found in stage 2 of 
the invariant imbedding process on X(a,b). Hence (85) and 
(86), in the framework of Fig. 7.25, are simply instructions 
on how to construct the operators of stage 3 from those of 
stage 2. 

Asymmetries of the YY-operator 

Next we observe a most interesting dissimilarity between 
(85) and (86). This occurs in the form of the term added to 
the integral. In (86) the added term is made up of the invar- 
iant imbedding operators &(s,y,b) -and Y(s,y,b). In (85) the 
added term is made up of the dual invariant imbedding opera- 
tors At(s,y,b), rt(s,y,b). 
of X(a,b) next to the equations helps to immediately recall 
the physical interpretations of these various opefators. Now, 
in the scalar irradiance context, one form of counterpart to 
Y(s,y:s,b) is fo(y-s,o) and that of Y(s,y:y,b) is, as we have 
seen, fs- (O?w). 
half s p a d  wfth scalar irradiance as the radiometric quantity 
described by fs(y,cJ), that the reciprocity relation: 

The diagrammatic representations 

Elliott has shown, in a homogeneous isotropic 

holds when y>s, say. This being so, our attention turns im- 
mediately to Y(s,y:s,b) and I(s,y:y,b) and we ask: under what 
conditions on the geometry of X(a,b) and its inherent optical 
properties do we have: 

Y (s,y: s,b) = Y(y,s: s,b) 

- s  
- Y  
- b  

as a valid equation? 

metric context in which the question is asked. It should be 
observed that this is equivalent to the equation: 

The diagrammatic insert under the equation shows the geo- 

Y(s BY: s,b) = Y(s,y:y,b) (89) 

S - Y  
- Y  
- b  - b  

- 
S - 

in the geometric context where names of the levels s and y are 
interchanged in the same medium as shown by the diagrams below 
(89). 
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To see the conditions under which (88) holds, it is suf- 
ficient to examine each of the four operator equations within 
(88). Thus, consider, for example, the equation arising from 
the t'++rt components of (88): 

y++(s,~:s,b) y++(Y,s:s,b) * (90) 

From this we see at once that (88) cannot generally hold 
on the operator level since the left side is always zero, 
while the right is generally not zero. This establishes the 
fact that the simple scalar condition (87) has no exaat coun- - 
terpart in the general operational transport formulations we 
are now considering. However, we still may inquire as to the 
other pairs of components in (88). Those pairs that are not 
zero--are they ever equal? Or: are the sums of the compo- 
nents of the left side equal to the sums of the components on 
the right side of (88)? The latter question is prompted by 
energy conservation considerations. The latter question will 
be considered subsequently in Chapter 8 in a setting where 
the question makes physical sense (Example 10, Sec. 8.7). For 
the present we examine the former question out of simple cur- 
iosity. 

corresponding pair of nonzero components in (88), it would be 
those with the signature tt-+'t . (Cf. (63), (69) ,) Consider 
then, for possible validity, the statement: 

The diagram below (88) suggests that if we are to find a 

Y-+@ ,Y :s ,b) = 'y-+(Y 9s:s.b) 
which is equivalent to: 

&(s,y,b) = d(Y,s,b) . 
By (1) and (25) this is equivalent to: 

RCY ,b) [I-R(Y ,SI R(Y,~) 1 -'T(Y ,SI T(s [I -RCy,b) R(Y 1 "R(y,b) 
which in turn is equivalent to: 

[I-R(y,s)R(y,b) 1 T(s ,Y) R(Y rb) R(Y ,b)T(Y [I-R(Y ,SI R(Y ,b) I 
For this to be valid, it is sufficient to have commutation 
freely possible between R(y,s),R(y,b) and T(s,y), T(y,s) along 
with 

T(S,Y) - T(Y,S) (91) 

and, among other things: 

R(Y,s)R(Y,b)T(s,Y) T(Y~~)R(Y,~)R(Y,~) - (92) 

At this point, our studies of Sec. 7.12 may be used to 
help clear the air of present question. The polarity theorem 
asserts that a ptane-parattsl medium X(a,b) must be isotropic 
and separable in order that (91) hold, This is not too strin- 
gent a requirement on the medium and its inherent optical prop- 
erties. However, if X(a,b) is not plane-parallel, it is gen- 
erally the case that (91) no longer holds, no matter how 
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regular its inherent optical properties. 
and condition (92) are also to hold--i.e., to have a recipro- 
city condition--is hopeless in general. One exception occurs 
in the scalar context, i.e., when the R(y,b), R(y,s) and 
T(s,y) are real valued functions of s, y, b and not matrices 
or integral operators (as in the present discussion). 

In this way we see that (35) and (36) of Sec, 6.7 can- 
not be directly generalized to the operator level without loss 
of the rather special reciprocity condition (87). This is a 
small loss in view of the fact that (85) and (86) are capable, 
as they stand, of solving in principle the most general point 
source problems on continuous one-parameter optical media. 
Their complementary counterparts associated with cases 1 and 5 
in stage 3 of Fig. 7.25 are also capable of performing this 
service. The derivation of the associated equations are left 
to the reader as an important exercise (cf., (108) -(111) below. 

That commutativity 

A Royal Road to the Internal-Source Functional Relations 

It was perhaps somewhat of an anticlimax for the atten- 
tive reader to see the four operator equations of case 2, 
stage 3 (in Fig. 7.25), so hard-won through the early portions 
of this section, unceremoniously collapsed into the simple op- 
erator equation (85). Still another such revelation may have 
occurred when (86) was reached. Be that as it may, the rela- 
tive simplicity of (85) and (86), compared with the system of 
their progenitors, attests to the correctness of the deductions 
and to the power of the invariant imbedding approach which gave 
us the general Y-operator concept. But yet the very simplicity 
of these results invites an attempt of a correspondingly simple 
derivation of (85) and (86). We shall now indicate the out- 
lines of such a derivation. We shall be very careful not to 
add all the rigorous details or else we shall simply retrace 
the work of this section. Thus we shall embark on a 'royal 
road' to (85) and (86), in the sense that it is ostensibly 
well-paved with no long steep grades, and along which the ana- 
lytic and algebraic pitfalls have been filled and smoothed with 
rhetoric. 

The present derivation begins with a partition of X(a,b) by 
the internal surface Xt, a s t s y .  The only source on or in 
X(a,b) is at level s, y-= s s  b; and this is of an arbitrary na- 
ture. Having partitioned X(a,b) into two parts X(a,t), X(t,b), 
we isolate X(t,b) and consider all sources incident on it. 
There are two incident sources on K(t,b): the hypothesized in- 
ternal source at level s, and the externally incident flux at 
level t coming from X(a,t), and which is part of the integral 
light field set up throughout X(a,b) by the source at level s. 
Therefore, by the interaction principle (cf. (38), Sec. 3.9) ~ 

we have two operators Y(s,y:t,b) and Y(t,y:t,b) associated with 
X(t,b) such that the response field N(y) at level y in X(t,b) 
is given by: 

We choose as a setting case 2 of stage 3 in Fig. 7.25. 

N(y) = N*(s)Y(s,y:i,b) + N(t)Y(t,y:t,b) . (93) 
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A detailed analysis by means of the principles of invariance 
onX(a,b) shows that the radiance distribution over Xt is the 
result of two activities: the overall transmission of the 
effects of NO(s) within X(t,b) up to Xt and the response at 
level t of the total interaction of this transmitted flux as 
it oscillates between X(a,b) and X(t,b). For the first of 
these we have: 

No (5) Y (s , t : t , b) , 
and accounting for the second of these we have: 

N(t) = [No(s)Y(s,t:t,b)]Y(t,t:a,b) . (94) 

Using this in (93) we see that: 

N(y) = No (s) [Y (s ,y : t ,b) + Y (s, t : t ,b) I( t , t : a ,b) Y (t ,y : t ,b)] 
(95) 

Since we have also: 

N(Y) = No(s)Y(s,y:a,b) , 

the conclusion is: 

Y(s,y:a,b) = Y(s,y:t,b) + Y(s,t:t,b)Y(t,t:a,b)Y(t,y:t,b) 

a s t s y ,  t s s s b  

(96) 
Equation (96) is the desired functional relation for 

case 2. An examination of its derivation shows that it is ac- 
tually quite general, holding also for case 4 and within an 
arbitrary one-parameter space X(a,b) with a source at level 5. 
Equation (96) is a finite atgebraic counterpart to (85) and 
(86). Observe in particular how Y(s,y:a,b) can be calculated 
from knowledge of Y(s,y:t,b) (the operator for a smaller mediun 
X(t,b) within X(a,b)) and the invariant imbedding operators 
I(s,t:t,b), Y(t,y:t,b), and the local Y-operator Y(t,t:a,b). 

quotient : 
The next step is to use (96) to form the difference 

and go to the limit as t+a. The left side becomes 
-aY(s,y:a,b)/aa; the right side can be reduced with the aid 
of (63), (69) and the set (20)-(23) of Sec. 3.9. The result 
is : 

I I 

a'(s * y:a b, = Y (s ,a : a, b) K (a) Y (a, y : a, b) I -  aa 
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where x(a) is defined in (7) of Sec. 7.1. The reader may al- 
so find (21) of Sec. 7.3 helpful in the verification of (97). 

Equation (85) is now readily forthcoming from (97): in 
(97) replace tra" by "t" and integrate over all t from a to y. 
To obtain (86), integrate the modified (97) from a to s. 
Once the integral expressions have been obtained, they may be 
dissected to release their associated quartets of operator 
equations. In this way eight of the earlier integral expres- 
sions are obtained--namely those for cases 2 and 4 in stage 3 
of Fig. 7.25. 

The preceding derivation has demonstrated. the rich ana- 
lytic harvest that can be yielded up by (9%). However, the 
potentialities of (97) have by no means been exhausted. Sup- 
pose we return to Fig. 7.25 and now move over to stage 2 ~n 
the invariant imbedding process for X(a,b). Equation (97) will 
now be associated with cases 2 and 4 in stage 2. For example, 
in case 2 we have a - y and we are therefore led to consider 
derivatives of the form: 

aY (s,y:y,b) 
aY 

It will be helpful to note that Y(s,y:y,b)C+ - Y(s,y:y?b). 
By the rules of elementary calculus, the preceding derivative 
is to be interpreted as: 

al(s,y:a,b) 
lim "Y(s*a:y*bl C, + lim =+ a+Y aa a+Y aa 

The matrix C+ serves to keep the second columns of the two 
matrices zero, as required. This type of derivative operation 
has been considered earlier in connection with the standard re- 
flectance and transmittance operators (cf. (23), (24) of Sec. 
7.5). The first of these derivatives has been studied earlier 
((33) of Sec. 7.5) and we have: 

Y(s,y:a,b)K (a) lim aY(s,y:a,b) I lin 
a+Y aY a+Y 

= Y(s,y:y,b) X(Y) 

The second derivative is obtained from (97): 

1 im rY: b, = -Y (s ,y:y,b) K(y) Y (y,y :y, b) . 
a+Y aa 

Hence : 
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by noting that I(y,y:y,b)C+ = Y(y,y:y,b). Equation (98) is 
the generic differential equation for the invariant imbedding 
operators in case 2 of stage 2 in Fig. 7.25. These operators 
were already obtained piecemeal in (79)-(83). 
the operators of stage 1 of Fig. 7.25 may be obtained from 
(98) (and its com lement associated with cases 1 and 3 of 

This is left to the reader as an important exercise. 

into a form which explicitly exhibits the invariant imbedding 
operators. 

In like manner, 

stage 2) by suita 1 le confluence of variables (namely b-cs). 
It is of interest to note that (97) and (98) may be cast 

First recall that we have written: 

(99) I [,i a,y,b) J(a,y,b) 

T(b,y,a) k7(b,r,a) 
*' fl(a ,y , b) " for 

With this and (69) and (70) as guides, we write: 

Jt (s ,a ,b) 

R'(s,a,b) Tt(s,b,a) 1 &' (s ,b ,a) 
. (100) qt (s ,a ,b) for 

Then (97) becomes: 
1 -  I 

where C+ and C- are defined in (4), (5) of Sec. 7.4. Turning 
now to (98) for the purpose of converting it into invariant 
imbedding operator form, we note that: 

Y(s,y:y,b) + Y(s,b:y,b) - I'(s,y,bY (102) 

for y s s s b .  This may be checked by recalling (loo), (69), 
and (70). To find the derivative of mf'(s,y,b) with respect 
to y, we need only find those of Y(s,y:y,b) and Y(s,b:y,b) 
with respect to y. Equation (98) gives us one of these; and 
(97) gives us the other on making the permissible substitu- 
tions: (y-+b), (a-cy) in (97). With these observations, we 
have : 

a311t(s,y,b) I -rY(s,;;,b) + aY(s,b:y, 
aY aY 
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Recall (102) and note that: 

Then the net result is: 
1 

185 

y s s s b  1 
If this operator equation is opened up, the four resultant 
component equations have precisely the forms of (79), (Sl), 
(82), (83). The dual to (103) is (11) of Sec. 7.5, as a pe- 
rusal of cases l, 2 of stage 2 in Fig. 7.25 would indicate. 

It is a relatively-simple matter to derive the comple- 
mentary functional relations to (96) and (97). Toward this 
end, we partition X(a,b) into pieces X(a,t), X(t,b) such that 
a s s s t ,  y s t s b .  This partition goes with cases 1 and 3 of 
stage 3 in Fig. 7.25. Using the preceding derivation of (96) 
as a pattern, the reader may show that: 

Y(s,y:a,b)= Y(s,y:a,t) + Y(s,t:a,t)Y(t,t:a,b)Y(t,y:a,t) 

I a s s s t ,  y s t s b  

11041 

Forming the difference quotient via (98): 

Y(t,Y :a,t) Y(s,y:a,b)-Y(s,y:a,t) I y(s,t:a,t) Y( t, t : a, b) 
b-t b-t 

we go to the limit as t+b. The result is: 

,y:a b, = Y( s , b : a, b) X( b) Y (b , y : a, b) 

. (105) 

Equation (105) can be used to generate the eight functional 
equations governing cases 1, 3 of stage 3 in Fig. 7.25. To do 
so, replace "b" by fTtf' in (105) and integrate over all t from 
s to b for case 1, and from y to b for case 3. Two integral 
expressions will result which are the complements of (85) and 
(86). These results will be summarized below. 
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Summary and Prospectus 

The problem of internal sources in an arbitrary optical 
medium X has presented the opportunity to develop in the pres- 
ent section the full strength of the invariant imbedding tech- 
nique as applied to radiative transfer--or generally, linear 
transport--phenomena. We shall now summarize this technique. 

Let X be an arbitrary optical medium with internal 
sources. Let "X(a,b)" denote the parametrization of X, i.e., 
the representation of X as partitioned into a family 
EXy: a s  y s  b) of surfaces Xy, each indexed by a real number 
y drawn from a closed interval [a,b] of real numbers. In the 
case of plane-parallel media the Xy are planes parallel to the 
boundary planes. In the case of an arbitrary X, any slicing 
up of X by a one-parameter family of surfaces will do €or the 
present summary (re: (17) of Sec. 7.11). For simplicity of 
exposition (and without any attendant loss of generality), we 
let the sources in X be confined to a single surface X,. For 
if the sources are several discrete sources or are continuous 
and are confined to an interval of depths, the resultant light 
field is obtained by a suitable superposition operation, since 
the theory is completely linear. 

and imbeds it in a family {Xz: 
upward ease or in the family {Xz: 
case. This is stage 1 of the imbedding process and serves to 
develop the four standard R and T operators associated with 
the slabs X(y,s) and X(s,y). The theory of these operators 
has been the primary concern of various earlier sections of 
this chapter and in Chapter 3. 

the advent of the invariant imbedding operators &?, J and 
their duals At, Ti. The operators &' and 7 have been 
studied at some length in this chapter and Chapter 3. The 
dual operators are newcomers to the scene and fulfill the role 
of completing with 4 and J the full description of Stage 2 
of the invariant imbedding process in X(a,b). The theory of 
the dual operators was shown in the present section to be 
parallel in all essential respects to that of the original in- 
variant imbedding operators. 

Stage 3 culminates the imbedding process and is the set- 
ting for the derivation of the functional relations for the 
global Y-operators. There are two generic differential equa- 
tions which go with Stage 3. The first is (97), repeated here 
for convenience: 

The general invariant'imbedding process begins with Xs 
y s z = s l  of surfaces for the 

s s  z c y l  for the downward 

Stage 2 of the invariant imbedding process gives rise to 

and which governs cases 2 and 4 of Stage 3. The second equa- 
tion is (195): 



SEC. 7.13 INTERNAL SOURCES 18 7 

I I 

and which governs cases 1 and 3 of stage 3. 

productive equations in the invariant imbedding theory of ra- 
diative transfer phenomena, in the sense that they yield dif- 
ferential equations €or the various R, T, a, r , and nf op- 
erators (cf., (63)-(78)). Thus, as was shown at great length 
above, they hold within themselves the means toward the dif- 
ferential functional relations of all three stages of an in- 
variant imbedding process on X(a,b), and this includes in par- 
ticular the differential equations for the operators V(a,y,b) 
and mf(y,a,b), and hence the differential equations for the 
standard R and T operators K(a,b), R(b,a), T(a,b), T(b,a). 
Their algebraic progenitors are (96) and (104). 

an integration, to a pair of integral representations, depend- 
ing on whether s<y or y<s. Going down the four cases in 
stage 3, as depicted in Fig. 7.25, the associated integral 
representations are: 

Equations (106) and (107) are perhaps two of the Most 

Each equation (106) and (107) gives rise, by means of 

Y(s,y:a,b)= Y (s,y:a,s)+ Y(s,t:a,t)K(t)~Yt,y:a,t) dt Ib S 
Y (s, y : a ,b) = Y (s ,y : y, b) + Y (s, t:t,b)X (t) Y(t ,y: t ,b) dt Iy a 

b 
Y(s,y:a,b) = Y(s,y:a,y)+ IY(s,t:a,t)X(t) Y(t,y:a,t) dt 

Y 

Y(s,y:a,bp = Y(s,y:s,b)+ Y(s,t:t,b)fi(t) Y(t,y:t,b) dt I' a 

From (107) 
Case 1 

y<s (108) 

From (106) 
Case 2 

Y<S 009) 

From (107) 
Case 3 

S<Y om 
From (106) 
Case 4 

S<Y 011) 

in which ac-ssb, aclysb. These four operator equations blos- 
som into the sixteen operator equations scattered here and 
there throughout this section and which completely describe 
how to find Y(s,y:a,b) in every case of stage 3 using the op- 
erators (&,At; y,J?) which belong to the results of stage 
2. 

in Fig. 7.25, is closely related to the Cuesgoricat Analysis 
Method described in detail in Ref. [251]. In that work the 

The invariant imbedding process for X(a,b), as depicted 
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geometric setting is a discrete space rather than a continuous 
space, and the analysis is thereby permitted to descend direct- 
ly to the point level in the medium. Together, the invariant 
imbedding process for one-parameter continuous media X(a,b) 
as summarized in Fig. 7.25, and the Categorical Analysis Meth- 
od for discrete media Xn as given in Ref. [251] present a po- 
tentially complete means of solving all steady state internal 
source problems in radiative transfer theory. Be that as it 
may, much work remains yet to be done in exploring the many 
special cases arising in particular geometries and physical 
settings, Thus many opportunities for original research lie 
in the relatively unexplored new territory of radiative trans- 
fer theory surveyed in this section. 

Final Observations on the Relations Between the 
Operators ?((v,x:u,w) and Y(s,y:a,b) 

The two most general radiative transfer operators con- 
sidered in this work are the *-operator ?I((v,x:u,w) intro- 
duced for the purpose of formulating the generalized invariant 
imbedding relation (51) of Sec. 3.7, and the internal source 
operator Y in the form Y(s,y:a,b), introduced in (15) of Sec. 
3.9 for the study of internal sources. The latter operator 
we have discussed at length in this section; the former op- 
erator was discussed in Sec. 3.7 and at length in Secs. 7.4 
and 7.5. Here, by way of summary, is the manner in which one 
may view these operators conceptually and analytically: the 
%-operator is to be used in source-free settings; the Y-op- 
erator is to be used in settings with sources. The 7H-opera- 
tor is sufficiently fundamental SO that Y may be characterized 
in terms of it, as in (20)-(23) and (31)-(34) of Sec. 3.9. 
On the other hand, the nl-operator can also be represented by 
and built up from special cases of Y, as shown in this section 
(cf., (63)-(78), in particular). An important relation be- 
tween them is summarized in (56) of Sec. 7.4. The %'-operator 
enjoys deep algebraic and differential properties, as shown in 
Secs. 7.4, 7.5; the operator \y enjoys a sweeping analytical 
power as shown in this section and summarized in (106)-(111). 
Therefore each operator, 7 or 'Y, is sufficient to carry ra- 
diative transfer theory by itself; and each has algebraic and 
analytic properties worthy of independent mathematical study. 

7.14 Invariant Imbedding and Integral Transform Techniques 

I' 

In this the final section of the present chapter on in- 
variant imbedding techniques we shall briefly consider one of 
the more serious types of problems which, if left unchecked, 
may keep invariant imbedding techniques from reaching their 
full practical utility. This is the problem of the exploding 
variable-population. To see what is meant, consider the fol- 
lowing observations. 

tent with solving the Wiener-Hopf equation which described 
energy density in a homogeneous source-free infinitely deep 
medium. (See, e.g., (1) of Sec. 6.7 in which X is one-dimen- 

There was a time when the radiative transferist was con- 
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sional, i.e., the real line, and h, = 0.) 
idealized problem, deliberately idealized so that the Wiener- 
Hopf equation was a singular integral equation of the first 
kind in one dimension and eventually dispatched by a technique 
which has now become classical. There was also a time when 
it was a major breakthrough 60 have solved the radiative 
transfer problem on homogeneous plane-parallel media with iso- 
tropic scattering and stratified light fields (re: Sec. 6.4). 
The breakthrough was possible because of some judicious appli- 
cation of the spherical harmonic method to reduce the integro- 
differential equation of transfer to a set of coupled differ- 
ential equations. 

over, there remained the more difficult high ground to take, 
and progress was correspondingly slower: the spaces arising 
in practice became odd-shaped and inhomogeneous, scattering 
became unmanageably anisotropic and heterochromatic, sources 
were encountered in the hitherto inviolate interiors of media, 
and matters were made worse by giving all physical quantities 
rapid temporal variations. The number of variables needed to 
fully describe the new radiometric environments grew from one 
(the depth location for scalar irradianse or radiant density) 
to five (steady-state monochromatic radiance transfer) to 
seven (time-dependent heterochromatic radiance transfer) to 
tosnty-sight (when polarized light fields were considered). 
Clearly, the halcyon days of the subject were in the past and 
further progress with new real problems seemed to require new 
techniques and concepts, not only to solve them but to formu- 
late them in the first place! 

The advent of the principles of invariance (circa 1943) 
helped further high ground to be taken on the island of radi- 
ative transfer theory. The work of Ambarzumian and Chandra- 
sekhar showed the potentialities of the concept of the global 
approach to transfer problems. This approach was subsequently 
considerably extended with the advent of the principles of in- 
variance (Ref. [43]). The remaining high ground was surveyed 
using the invariant imbedding relation, Ref. [233], and its 
generalizations attained in Ref. 12481, culminating in the in- 
teraction principle of Ref. [251] and the further results de- 
veloped in the present work; the net result being compact for- 
mulations of transfer problems by means of one-point boundary 
value settings. The latter type settings are, as we have 
seen repeatedly throughout this chapter, simply elaborations 
of the basic integration problem: 

This was a highly 

However, when these victories on the beachhead were 

over an interval [a,b] given f and g on [a,b] and given the 
value y(a). The first equation is for linear, the second for 
nonlinear problems. In this way the invariant imbedding ap- 
proach, the logical outgrowth to the principle of invariance 
approach, reduces radiative transfer problems to their simplest 
conceivable mathematical form. 
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Now the theoretical bases of the solution procedures 
of equations of the kind (*) and small finite systems of such 
equations are straightforward and usually dispatched in an 
introductory course in ordinary differential equations. The 
only serious difficulty such a system can present is on a 
practical and not a conceptual or theoretical level: the 
functions f, g, and y may no longer be scalar-valued, but 
matrix-valued, whose entries themselves are operators in in- 
tegral or matricial form, and where the combinations f(x)y(x) 
or g(y(x),x) are no longer simple products but compositions 
of operators or functions f(x), y(x). In short, an uncontrol- 
lable, almost explosive increase in the number of variables 
needed to describe the domains and ranges of f, g, and y and 
their combinations could render (*) worthless from a practical 
point of view. 

Since formulations of the kind (1) are quite clearly the 
simplest analytic forms into which the manifold problems of 
radiative transfer theory can be cast, the next major task on 
the practical front that faces radiative transfer theory is 
the successful handling of the variable-population explosion 
associated with (e). One immediate measure that can be taken 
is the judicious application of Laplace or Fourier transform 
techniques, or more generally, the application of integral 
transform techniques to the transport equations and the vari- 
ous principles. These integral transform methods have as 
their primary purpose in applied mathematics the reduction of 
the number of variables in a given physical formulation. For 
example, time derivatives can be transformed away and spatial 
or frequency convolution integrals can be transformed away 
resulting in two very important variable-reducing operations 
which can be effected by suitably chosen integral kernel trans- 
forms. In the case of the equation of transfer in radiative 
transfer theory, these two measures take on quite practical 
significance: the possibility of transforming away time de- 
rivatives means that a time-dependent problem can be reduced 
to a steady-state problem, solved in that context, and the so- 
lution so found, transformed back to the original setting. 
The possibility of transforming away convolution integrals 
could mean that various special heterochromatic transfer prob- 
lems (in which scattering takes place from one wavelength to 
another) can be reduced to monochromatic transfer problems, 
solved in that context, and the solution transformed back to 
the original setting. Furthermore, since the multidimensional 
spatial settings used in the statement of the invariant imbed- 
ding relations (and their special principle of invariance 
forms) employ convolution integrals, relatively complex three- 
dimensional settings can occasionally be reduced to more tract- 
able one-dimensional settings for a solution interim. 

transforms can be used to reduce the number of variables in 
transport problems. We shall choose three examples for this 
purpose: the case of time-dependent radiative transfer; the 
case of heterochromatic radiative transfer; and the case of 
multidimensional radiative transfer on a plane-parallel medium 
with a non-stratified light field. For the benefit of readers 
not acquainted with the notions of integral kernel transforms, 
we precede the illustrations with a few introductory comments 
on this subject. 

We now illustrate under what conditions integral kernel 



SEC. 7.14 INVARIANT IMBEDDING AND INTEGRAL TRANSFORMS 191 

An Integral-Transform Primer 

To introduce the notion of an integral kernel transform 
in sufficient detail for our present purposes requires re- 
markably little mathematical machinery. From the welter of 
formulas and theorems of transform theory we prescind the 
idea of a real or complex valued integral operation: 

which can act on a real valued function f defined on a set X. 
Thus : 

f(x)K(x,w) dx I, 
is a number, denoted by Il$(ocr)It or by It F [f ,w3 
result of integrating the product of the functions f and 
K(-,w) over X. The function K determines the form of the in- 
tegral' transform (1). The numbers w are drawn from some set 
Si; the significance of Si is immaterial for the present discus- 
sion. On the other hand X will take various familiar forms: 
the real line R extending from -- to 00, or the half line R+ 
from 0 to -, or the xy-plane (i.e., the Cartesian product 
R x R), etc. The real or complex valued function K on X * Si 
is the kerneZ of (1). One may think of X x Si, i.e., the set 
of all pairs (x,~) with x in X and w in n, as a 'plane' with 
X and n as axes. We shall assume K to be continuous on X x Sl. 

for K in the present discussion is that, for some xo, we have 
K(xo,o) # 0; and that: 

which is the 

It is remarkable that the only formal property needed 

K(x+y,w) = K(x,w)KIy,w) (2) 

which is the group property of K. 
the set R of real numbers, we can formally deduce from (2) the 
differential property: 

When x,y are drawn from 

= K(x,w)g(w) 
ax 

much in the way we deduced the differential property of beam 
transmittance in (2) of Sec. 3.11. Indeed, the similarity is 
not accidental since K(x,w) is an ex onential function over X. 
For example, K(x,w) can be exp f-iwx!. or exp {wx), or 
exp {1/2 x (w-l/w)l for the cases of Fourier, Laplace, and 
Hankel-type transforms, respectively. There are other kernels 
K used in practice which do not have the group property (2) 
(e.g., Mellin and Euler kernels) but we shall consider only 
kernels with property (2). 

tegral kernel transform (1) with a most useful theorem, which 
is attained as follows. Suppose we write: 

Now the group property of K endows the theory of the in- 
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"f*g(y)" for (4) 
X 

where f and g are functions on X for which the integral exists. 
The function frg is the convotution of f and g. 
f+g at y in X is denoted by "f*g(y)", as shown. 
and g be defined on X, and zero elsewhere. 
if X is either R+, R, R+ x R+, R x R, or R x ... x R to n 
factors: 

The value of 
Now let f 

Then observe that 

If*g(Y)K(Y,4 dY a 
X 

I- 

d.] dx 

1 

In words: the transform of the convolution f*g of two func- 
tions on X is equal to the numerical product of their trans- 
forms. In this way a complicated operation (the functional 
product (4)) is seen to be replaceable by a vastly simpler op- 
eration (the numerical product (5)) by means of integral trans- 
form operations. Statement (6) is the convolution theorem for 
the operator (1). It is by far the single most important prop- 
erty of integral kernel transforms whose kernels obey (2). 

The second most important property of integral kernel 
transforms whose kernels obey (2) is the derivative property. 
We shall need this property only for the case where X is R+ or 
some interval [a,b] of R+ (which could be all of R'). Thus 
consider the transform of the derivative f' of a function f on 
la,bl: 
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f' (x) K(x,w) dx Ib a 
which via integration by parts and (3) becomes: 

b 
f(x)YL..Y)/b I f(x)K'(x,w) dx = 

a a  

b 
if(b)K(b,w)-f(a)K(aaw)l - g(w)l f(x)K(x,w) dx * 

a 

From this we conclude that: 

This follows from the necessity of having lim, f(x)K(x,o? = 0 
as x+= for an integrable function f, and from (2) which m- 
plies: 

K(0,w) = 1 
for every o in Q. To see this, set y = 0 in (2) and note 
that for every x, K(x,w) cannot be zero. Equation (8) shows 
how the integral transform can do away with derivatives. It 
is true that the price one pays for ridding the scene of f' is 
the linear combination of l(w) and f (0) a but this atgebraio 
combination is usually more tractable than the generally 
traneoendental object f' (i.e., one whose definition requires, 
in addition to the usual algebraic operations, the operation 
of limit). 

concept of the inverse of T. We need only remark here that 
the inverse T" of 5 is generally of the form: 

One final matter, and that is the explication of the 

where x is in X, and Y is some subset of s1. Matters can often 
be arranged so that 7-' exists in the mathematical sense. 
For example, in the Fourier transform case, if 
K(x,w) = I/- exp {-iwx), then H(x,w)= I/- exp Eiwx), or if 
K(x,u) - exp {-iux), then tI(x,w)= 1/2r exp {iwx), and in 
either case Y - X = R. Further, in the Laplace transform case, 
if K(x,w)- exp {-xw), then H(x,w')= K(-x,w)/Zri ; and if X = R, 
then for some real y, Y= {y+iw: OER). The inverse operation 

I 
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'3: undoes what 3 does: 
A 

If 3[f;w] = f(w), then 7"[;;x] = f(x) . 
For example, in the one-dimensional Fourier Integral setting: 

m 

:(to) - 3[f;o] - f(x)e-iox dX 

OD (9) 

-0 

3 -'[;;XI = & I 2(w)eiwx dw . 

In the two-dimensional Fourier Integral setting: 

-m 

Time-Dependent Radiative Transfer 

Let us begin our studies of integral transform tech- 
niques with the time-dependent equation of transfer (4) of 
Sec. 3.15, to which is appended a source term N,,: 

-- 1 aN{x,C,t) + dN(x,F,t) = 
v at dr 

We require for the present discussion that N(x,E,t) = 0 
for t5O. We choose the following form of the integral oper- 
ator (1) : 

X * R+ = to,-] 
K(t,w) = e-tw , so that g(w)= -w 

Q is the set of complex numbers 

with w a positive real number in R+. Let us write: 

6 Ir(x.f.r)e-tw dt . 
"N (x , E, o) 'I for 

0 
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Applying the operator: 

to each side of (11) and using its linearity property, namely: 
a3 I [cf(t) + dg(t)]e-twdt = ĉ f(o) + di(o) 
0 

we see that by (8) the time derivative term becomes: 

The spatial derivative term becomes: 
a0 * 
dN(x,E,t) e-todt I dN(x,{,w) (, dr dr 

On the right side we have, for the first term: 

-(a (x ,E, t) N(x, E, t) e- dt . 
0 

At this point we realize that, for the Laplace transform to 
be effective in the present case, we require a x,(,*) be a 
constant function of time (i.e,, constant on R ). Hence ne 
may study time-dependent transfer problems in which the radi- 
ance field is truly time-varying but this variation is of a 
transient nature traceable to the finite speed v of propaga- 
tion of radiant flux throughout the medium and not to the 
time-dependence of the inherent optical properties of the me- 
dium. We therefore assume for the remainder of this discus- 
sion that a and u are independent of time, and shall write 
"a(x,E)" for a(x,E,O) and %(x;E~;E)~~ for u(x;&*;E;O). With 
this agreement the preceding transformed term becomes: 

I 

-a (x, E) h, 5 ,o) . 
Altogether, the transformed terms of (11) become: 
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Equation (12) is the Laplace-transformed equation of transfer. 
It has clearly the gestalt of a steady state equation of trans- 
fer with source term, and with a slightly-odd volume attenua- 
tion function. It seems that under transformation from trans- 
ient to steady state, the volume attenuation function has been 
altered artificially by a fixed amount w/v. 
(12) thus yields the following observation: The entire theor# 
of the steady state fietd (all ctassicat and invariant imbed- 
ding techniques) oan be apptied to (l2)--the variable w is a 
fixed, passive complex variable, dangling throughout all the 
subsequent steady state proceedings like a useless appendix, 
but ready to play its role in the final movements of the so- 
lution procedure. The return to physical setting is made by 
means of the inverse operation: 

Inspection of 

N(x,E,t) = lim 2 [ii:,c,w)etw dw . (13) 
y-iS 6- 2ri 

This inversion operation can be written as a real integral 
and performed numerically on computers. The details of the 
real. integral representation may be found, e.g., in Ref. [46]. 

The reader can obtain practice with the Laplace trans- 
formation procedure by transforming (S), (6) of Sec. 7.2 di- 
rectly into their 'steady state' forms. The results should 
agree with the local forms derived from (12). 

forms (27), (28) of Sec. 7.2 can be transformed directly by 
means of the Laplace integral operation. A typical term of 
the relation is: 

The time-dependent invariant imbedding relation in its 

where we now choose E to be R+ and require N+(z,t') = 0 for 
t= 0. We assume that: 

whenever t-t' - u-u'. This is tantamount to assuming that a 
and Q are time independent, and is the corresponding assump- 
tion on the global level of radiative transfer that one must 
make before the Laplace transform method can be invoked. With 
this agreement, we shall write: 

T(z,y,x,t-t')" for T(z,y,x,t',t) 

so that (14) becomes : 

I N+(z,t') J(z.~,x,t-t') dt' = N+(z)* ~(Z,Y,X) 

Therefore, operating on this convolution of N+(z) and the com- 
plete transmittance operator T(z,y,x), we have, by (6): 

(15) 
R+ 
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n A 

JIN+(z)* J(z,y,x;oI = N+(z,w) J(Z,Y,X,W) . (16) 

By our remarks in Sec. '7.2,Aespecially those after (22) of 
Sec. 7.2, we realize that r(z,y,x,w) is itself an integral 
operator over 9+ and the parameter surface X,, so that we are 
bask again in the steady state context. 
found, the physically meaningful radiance N(z,t) can be re- 
covered using (13). Or, again, T(z,y,x,t-t') can be recov- 
ered using (13). This is all new territory and is free to be 
explored by interested students of the subject. 

The complete set of transformed invariant imbedding re- 
lations (27),(28) of Sec. 7.2 is given as: 

Once fi,(z,w) has been 

$(Y,w) = i+(zsul ?CZ,Y,X,~) + i-(x,wl &(X,Y,~,W) (17) 

a-(Y,4 = fi-(X$U) ?IX,Y,Z,Wl + fj4(Z.W)2(2,Y,X,4. (181 

From these we can find the Laplace-transformed principles of 
invariance in the usual manner and all the functional rela- 
tions for the transformed R and T operators paralleling those 
of Sec. 7.1. Or then, again, these functional relations may 
be obtained directly by transforming principles I'-IV' of Sec. 
7.2. 

Heterochromatic Radiative Transfer 

When radiative transfer takes place across the spectrum 
of frequencies in addition to spatial and directional transfer 
we have heterochromatic radictive transfer. The volume trans- 
pectral scattering function u is designed to do for the heter- 
ochromatic context what u does in the monochromatic setting. 
The function 2 is defined in Ex. 3, Sec. 3.17, and discussed 
in detail in Sec. 19 of Ref. [251]. Suppose the radiance 
field is of frequency v and is in steady state (either real 
or the pseudo steady state, in tu-space, of a Laplace trans- 
formed N-field). 
that in addition to the term: 

For our present purposes we need only note 

we have the term: 

Ns(x,E,v) = I I N(x,S' ,u')~(x;S';S;u',v) dQ(F'Idl(v'1 

where "A" denotes the spectrum of frequencies, and is mathe- 
matically simply another name for R+. Now if it is possible 
to find a mapping T on R+ onto itself so that: 

E A  

S(X;S';E;T(V'),T(V)) = G[x;F';s;T(uv,Tw) 
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whenever 

T(v) - T(V') = TCM) - T(M') , 
then we may view: 

VOL. IV 

N(~,EI,~')~(~;E~;E;T(~') ,TW) w v ' )  
A 

as a convolution of N(x,E',*? and z. 
possible to find such a mapping T (in neutron transport theory 
such a mapping exists and can be used to develop the so-called 
'Fermi-age theory') some reflection would show that the La- 
place transform method will not be applicable in the present 
case. Thus, unless very-limited regions in A x A are consid- 
ered , outside of which u is zero and inside which the follow- 
ing translation condition holds: 

However, even if it is 

whenever v-VI = u-p', the Laplace transform method fails to 
simplify the heterochromatic radiative transfer problem. It 
is also physically unlikely that (19) will hold in the usual 
settings. Nevertheless, assuming (19) holds, then the convo- 
lution theorem yields: 

fis(x,E,w) = / fi(x,€,o)i3(x;E';E;o) ants') - - 
and the transformed N,-term is: 

Since u generally depends on v, we encounter a difficulty 
similar to that with the term a(x,E,t)N(x,E,t) in (11) when 
the time-dependent case is considered. It is simply too much 
to ask u to be generally independent of v (whereas it was not 
too much of a sacrifice in accuracy to ask a to be independent 
of time during the course of a given transfer process). Hence 
we conclude that except in the most special of settings, the 
integral transform method is generally of no use in the solu- 
tion of heterochromatic radiative transfer problems. We 
shall instead rely on such methods as given in Refs. 11361, 
[137] or more generally in Ref. [288] or Ref. E2511 to solve 
the general heterochromatic radiative transfer problem. 

Multidimensional Radiative Transfer 

MuILtidimensional radiative transfer problems arise most 
frequently in practice in plane-parallel media in which the 
optical properties are all well behaved--stratified with 
depth or altitude or simply constant--but in which the light 
field is not stratified with depth and which is generally var- 
iable laterally over the plane surfaces parallel to the 
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boundaries. The practical instances of these problems arise 
when clouds induce a checkerboard pattern of light and dark 
over a horizontal plane in an otherwise homogeneous body of 
air, sea, or lake, or when an isotropic point source or nar- 
row beam of flux is present within or near these natural me- 
dia. The "multidimensional" as ect of these settings consists 

to the two direction variables to describe the radiance field 
in such media. 

To see how the integral tramsform methods are of use in 
such radiometric situations as just described, recall first 
of all the discussion of the point source problem for scalar 
irradiance in Sec. 6.7. Then, consider a general internal or 
external source problem on a stratified plane-parallel medium 
X(a,b). The theory of Example 3 of Sec. 3.9 and the work of 
Sec. 7.13 showed how this problem can be solved using invar- 
iant imbedding techniques, and of how the operators in the 
solution procedure could always be reduced to suitable assem- 
blies of the standard R and T operators. Therefore we are to 
consider the R and T operators in their full generality as 
given in (8)-(11) of Sec. 3.6. To fix ideas, consider the 
operator R(a,b) acting on the incident radiance function 
N,(a) over the surface Xa. Then by (12) of Sec. 3.6: 

in the full three spatial varia E les being required in addition 

N(x' ,S')S(X;xw,E';x,s) dA(x')dSt(S') !I N_(a)R(a,b) - 
=. xa 

where "X" denotes X(a,b). If the medium X(a,b) is stratified 
over horizontal planes, then: 

S(X;x',E';x,E) = S(x;Y',5q;Y,Sl 
whenever x-x' = y-y', where x, X I ,  y, y' are points in Xa. 
Thus, e.g., x' is an ordered triple of the form (x~,x~,xs) 
with x3 = a. Assuming stratification, we can write: 

"S(X;x-x';E';E)" for S(X;x',S';x,f) 

so that: 

N+(a)= N_(a>R(a,b)= I [/N(x',E')S(X;x-x';S';S) dA(x')] dQCS') 

(20) E xa 
Next we cnoose the following form of the integral operator (1): 

X = R x R  

K(x,o) = exp C-i(ixl+jx2)o(iw,+jw2) 1 

Q = R x R  

where now clearly we need x - (ixl+jxt) and w = (iwl+jwz). 
See, e.g., (23) of Sec. 6.7. Hence (1) now becomes a two-di- 
mensional Fourier transform. Applying the resultant integral 
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transform to (20), we have by (6) : 

VOL. IV 

= $(a, a) R( a b ; w) 
which is vastly simpler to deal with than (20). In (211, l'X1l 
stands for X(a,b). Comparing the S-operator in equation (21) 
with the corresponding operator for stratified plane-parallel 
media with etrcrtifisd tight fietd ((31), (32) of Sec. 3.7), 
we see that we have returned to the fully stratified context 
and can apply the theory of stratified light fields to the 
following set of Fourier-transformed principles of invariance 
for X(a,b) (obtained from I, I1 of Example 3, Sec. 3.7 by 
applying the present Fourier transform operator): 

fj+(Y,W) = fj+(z,w)f(z,r;4 + fi_(Y,w)i(Y,z;w) 

fi-(Y,d = i,(X,w)i(x*Y;4 + i+(Y,dkY.X;o) . (23) 

(22) 

Of course in actual practice we can drop the carets and the 
omegas so as to work with simpler notation. Equations (22) 
and (23) serve to show that the general structure of Fourier- 
transformed principles of invariance in the nonstratified 
case are the same as those of the stratified case, under the 
present assumptions. 

Conclusion 

Sufficient examples have now been given to show some of 
the power and the limitations of the integral transform method 
in radiative transfer theory in general, and particularly in 
conjunction with the operator equations of the invariant im- 
bedding technique. Spatio-temporal inhomogeneities of the me- 
dium and heterochromatic radiative transfer severely limit the 
a plicability of the integral transform techniques. Much work 
tterefore remains to be done in the time-dependent and multi- 
dimensional problems. 

7.15 Bibliographic Notes for Chapter 7. 

The steady state functional relations for the standard 
R and T operators in Sec. 7.1 are based on the work in Ref. 
[234]. The time-dependent functional relations for R and T in 
Sec. 7.2 are drawn from Ref. [235]. The partition relations 
of Sec. 7.3 are continuous-operator versions of similar matri- 
cia1 relations developed in Ref. [251]. The algebraic studies 
of Sec. 7.4 grew out of Refs. [248] and [249]. We draw atten- 
tion to some interesting related results in electrical network 
theory and diffusion theory found independently by Redheffer 
in Refs. [252]-[259]. Also the work of Reid is of interest in 
the present invariant imbedding studies [261], [262]. The 
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1 

analytic properties of the invariant imbedding operators in 
Sec. 7.5 appear to be new. The examples of numerical solu- 
tions for R(a,b) given in Sec. 7.6 are based on the work o€ 
Bellman, Kalaba and Prestrud in Ref. [15]. The general solu- 
tion procedures of Secs. 7.11 are new, along with the devel- 
opments of Sec. 7.15 concerned with the general internal 
source problem. 

text of neutron transport theory, see the work of Elliott 
[ES], and that of Bellman, Kalaba, and Wing 1171. 

fields as developed by Chandrasekhar and applied in natural 
hydrosols may be found in [lOS], [lS7]. Also the work of 
Sekera [284], although applied to the atmosphere, illustrates 
further the applications of Chandrasekhar's approach to the 
theory of polarized light fields. 

The general functional equation approach of this chap- 
ter may be divided into the integral and differential ap- 
proaches, and the hybrid integro-differential approach. The 
tap root of integral equation formulations of radiative trans- 
fer theory lies in the work of King [138], and that of the 
differential approach is the work of Schuster (2791. A brief, 
readable account of these two approaches, which places them 
in historical perspective, wais given by Duntley (701. Impor- 
tant future developments of the theory rest in using func- 
tional analysis along the lines developed throughout this 
chapter, particularly using the notions of semigroup theory. 
See, e.g., the discussion of the equation of evolution in 
[326], and recall the closing remarks of 12161. 

For a study of the internal source problem in the con- 

Further discussion of the theory of polarized radiance 
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integral representation,l62 
groups (method of), 114 
group property (of integral 

transform kernel), 191 

heterochromatic radiative trans- 
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integral transform techniques, 
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convolution theorem, 191 
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internal-source problem, 152 
invariant imbedding relation 

time dependent, 22 
algebraic properties, 35 
analytic properties, 68 
for deep hydrosols, 104 
dual form, 166 
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transfer, 194 

invertibility of operators, 39 
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isotropic scatter, 83, 86 
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Kernel (of integral transform), 
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light field 
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local principles of invari- 

local Y-operators, 154 
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local residual (reduced) 

local transmittance, 3 
logical descendents of Y, 

method of modules, 103 
semigroups, 108 
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transmittance operator, 
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143 et seq. 
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partition relations, 28 
phase function, 146 
polarity (of R,T), 26 
polarity theorem, 150 
Dolarized radiance 
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local form (equation of 
transfer), 4 
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radiative transfer 
heterochromatic, 197 (i 

multidimensional , 198 
reflectance 

local, 3 
differential equations, 6,8, 
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causality condition, 23 
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scattering-attenuation ratio, 
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tance, 11 

148 
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separable (optical medium) , 

star product, 45 

erators, 54 

145 

physical interpretation, 46 
for invariant imbedding op- 
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of light fields, 152 
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time dependent equation of 

149 

transfer, 18 
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invariant imbedding relation, 
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differential equations for 

integral transform method, 
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transmittance 
local, 3 
differential equations 
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local residual, 14 
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causality condition, 23 
time dependent differen- 
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