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Abstract

A thin filament model is used to analyze the stability of a viscoelastic thread

subject to uniaxial stretching. Linear stability analysis is carried out for

a number of different constitutive models, namely the Johnson–Segalman,

Giesekus, Phan–Thien Tanner, and FENE–CR. Our analysis shows that

stability is controlled by the competing effects of surface tension which is

destabilizing and axial normal stress which is stabilizing. Numerical sim-

ulations of the model equations are used to check the prediction of linear

analysis. Results obtained agree with experimental observations.



1 Introduction

Extensional dominated flow of viscoelastic fluids are encountered in many

practical situations (e.g. fiber spinning, spray and atomization, and exten-

sional rheometry) [1, 2, 3]. Understanding the extensional behavior of such

fluids and being able to accurately measure their extensional properties is

therefore vitally important. One such property of interest is the extensional

viscosity. For Newtonian fluids this quantity is three times the shear viscos-

ity. For viscoelastic fluids however, the situation is more complex. Another

property of practical interest is how easily such a thread will rupture when

elongated. Here also, viscoelastic fluids sometimes exhibit behavior quite

different from Newtonian fluids. Whereas a viscous Newtonian thread tends

to break as a result of necking instability, certain viscoelastic fluids display

different failure characteristics [4].

Stability of viscous threads has been extensively studied. Analysis of

capillary instability go back to the linear stability of Rayleigh [5], Taylor

[6] and Tomotika [7]. For a detailed bibliography see the review article of

Eggers [8]. Linear stability analysis of of viscoelastic filaments in extension

has been studied by Chang and Lodge [9], Lagnado et al. , [10] and Olagunju

[11], for the Oldroyd–B model; and by Ide and White [12] and Forest and

Wang [13] the Maxwell model. In this paper we consider the linear stability

of a slender viscoelastic filament undergoing uniaxial stretching for a number

of different constitutive models.
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As a model for studying the extensional stability of viscoelastic threads,

we consider the filament stretching device pioneered by Sridhar and co–

workers [4, 14, 15, 16]. The main use of this device is for measuring the

extensional properties of viscoelastic fluids. The goal is to generate in

the device a flow that is as close to ideal uniaxial elongation as possible.

However due to edge and capillary effects such ideal kinematics is not al-

ways attainable. Both experimental and numerical simulations have shown

that near-ideal kinematics can be generated only for stain–hardening fluids

[11, 17, 18]. For weakly strain-hardening fluids, pronounced necking causes

the deformation to depart significantly from ideal uniaxial elongation [19]. In

[11], Olagunju analyzed the stability of uniaxial extension of an Oldroyd–B

thread. He showed that the flow is stable (unstable) if the Deborah number,

De > (≤) 0.5. This conclusion is consistent with 2-D numerical simulations

reported by Yao and McKinley [18].

In this paper, we examine the stability of viscoelastic threads governed by

a number of constitutive models. Specifically, we will consider the Johnson–

Segalman, Giesekus, Phan–Thien–Tanner, and the FENE-CR models. These

models contain a single nonlinear parameter, in addition to the linear vis-

coelastic parameters. For a comparison of constitutive models of viscoelastic

fluids in uniaxial elongation see [20, 21].
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2 Governing Equations

Consider a cylindrical fluid column placed between two coaxial circular

plates of radius a and initial separation h. Suppose that the bottom plate

is fixed and that the column is stretched by moving the top plate. Let the

gap between the plates at time t̃ be H̃(t̃), so that the top plate moves with

a velocity H̃
′
(t̃) in the axial direction. Our goal is to study the dynamics

of the deformation in the column when the plates are separated at an expo-

nential rate as in certain extensional rheometers [18]. In particular we take

H̃ = heε̇0 t̃, where ε̇0 is the constant stretch rate. We wish to determine if the

deformations approach ideal uniaxial elongation at any point in the column

and what factors enhance or inhibit the attainment of this ideal kinematics.

In the following discussion a cylindrical coordinate system (r̃, θ, z̃) will

be used. The equations of motion are:

∇ · ṽ = 0,(2.1)

ρ̃(
∂ṽ
∂t̃

+ ṽ · ∇ṽ) = −∇p̃ +∇ · T̃.(2.2)

The above system of equations is to be solved subject to no slip conditions

at the solid boundaries:

ṽ = 0 on z̃ = 0,(2.3)

ṽr̃ = vθ = 0, ṽz̃ = H̃
′
on z̃ = H̃.(2.4)

Here ṽ is the velocity vector, T̃ is the stress tensor, and p̃ is the pressure.

In addition, we have the following conditions at the fluid air interface r̃ =
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f̃(t̃, z̃),
∂f̃

∂t̃
+ ṽ · ∇f̃ = 0,(2.5)

T · n = (2σH− pa)n.(2.6)

where σ is the surface tension, pa is the ambient pressure and H the mean

curvature of the free surface.

3 Constitutive equations

In order to be able to solve the problem posed in equation (2.1)– (2.4), we

must prescribe the relation between the stress and the strain. This relation is

provided by the constitutive equation. In this paper we consider a number of

different rheological models; specifically the Johnson–Segalman, Giesekus,

Phan–Thien–Tanner (PTT), and FENE–CR models. These models con-

tain a single adjustable nonlinear parameter, besides the linear viscoelastic

parameters. While the Oldroyd-B and Johnson-Segalman models exhibit

singularities in the steady state extensional stress, the others predict finite

steady states at large strains [3].

The extra stress can be decomposed as

T̃ = 2ηsD + τ̃ .(3.1)

Except for the FENE–CR model, τ̃ satisfies the following equation

τ̃ + F(τ̃ ,D) + λ[
∂τ̃

∂t̃
+ ṽ · ∇τ̃ − (∇ṽ)T · τ̃ − τ̃ · (∇ṽ)] = 2ηpD,(3.2)
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where

D ≡ 1
2
[(∇ṽ) + (∇ṽ)T ],

and F depends on the constitutive model. Here λ is the relaxation time,

while ηs and ηp are solvent and polymer viscosities respectively. Equation

(3.2) reduces to the Oldroyd–B model when F = 0. The function F(τ̃ ,D)

is defined for each model as follows.

Johnson–Segalman [22]

F = αλ(D · τ̃ + D · τ̃ ),(3.3)

Phan–Thien–Tanner (PTT) [23, 24]

F = τ̃ (exp[
αλ

ηp
tr(τ̃ )]− 1),(3.4)

Giesekus [25, 26]

F =
αλ

ηp
τ̃ · τ̃ .(3.5)

The expression tr(τ̃ ) denotes the trace.

For the FENE–CR model [27] the extra stress is given in terms of the

configuration tensor Ã as

τ̃ =
ηp

λ
[

Ã
1− tr(Ã)/L2

− I](3.6)

where Ã satisfies

λ(
∂Ã
∂t̃

+ ṽ · ∇Ã− (∇ṽ)T Ã− Ã∇ṽ) +
Ã

1− tr(Ã)/L2
= I.(3.7)

Here, I is the identity matrix and L is the extensibility parameter. This

model reduces to the Oldroyd–B model in the limit as L →∞.
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4 One–dimensional model

In order to facilitate the analysis we use the thin filament equations derived

by Olagunju [11] for axially symmetric threads. This model assumes that

inertia and gravity are small and can be neglected. In situations of practical

interest it has been shown that these assumptions are reasonable. One–

dimensional thin–filament equations have been used in the study of fiber

spinning, and jet breakup [28, 29, 30, 31, 32]. We nondimensionalize as

follows,

r̃ = ar, z̃ = hξ/H, t̃ = t/ε̇0, f̃ = af,(4.1)

(ṽr, ṽz) = ε̇0(au, hH
′
w),(4.2)

p = η0ε̇0p, τ̃r̃r̃ = η0ε̇0rτ11, τ̃z̃z̃ = η0ε̇0τ33.(4.3)

Here r̃ = f̃ is the equation of the free surface. The dimensionless time,

t = ε̇0t̃, is the Hencky strain.

The functions w, p, τ11 and τ33 are all independent of r. It follows then

that

u = −r

2
∂w

∂ξ
.(4.4)

Next we introduce new independent variables

W = w − ξ, φ = ln f.(4.5)

After eliminating the pressure, the governing equations become

3(1− β)
∂2W

∂ξ2
= −[6(1− β)(1 +

∂W

∂ξ
) + Ca−1e−φ(4.6)

+2(τ33 − τ11)]
∂φ

∂ξ
− ∂τ33

∂ξ
+

∂τ11

∂ξ
,
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∂φ

∂t
= −1

2
−W

∂φ

∂ξ
− 1

2
∂W

∂ξ
,(4.7)

τ11 + F1(W, τ11, τ33)(4.8)

+De(
∂τ11

∂t
+ τ11 + W

∂τ11

∂ξ
+ τ11

∂W

∂ξ
) = −β(1 +

∂W

∂ξ
),

τ33 + F2(W, τ11, τ33])(4.9)

+De(
∂τ33

∂t
− 2τ33 + W

∂τ33

∂ξ
− 2τ33

∂W

∂ξ
) = 2β(1 +

∂W

∂ξ
),

with boundary conditions

W = 0 on ξ = 0, 1.(4.10)

The dimensionless quantities appearing above are the Deborah number

De=λε̇0, the capillary number Ca = aη0ε̇0/σ, and the retardation parameter

β = ηp/(ηs + ηp).

The functions F1 and F2 for the different constitutive equations are

given below.

Johnson–Segalman

F1 = −αDeτ11(1 +
∂W

∂ξ
),(4.11)

F2 = 2αDeτ33(1 +
∂W

∂ξ
).

Phan–Thien–Tanner (PTT)

F1 = τ11(exp[
αDe
β

(2τ11 + τ33)]− 1),(4.12)

F2 = τ33(exp[
αDe
β

(2τ11 + τ33)]− 1).
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Giesekus

F1 =
αDe
β

τ2
11,(4.13)

F2 =
αDe
β

τ2
33.

FENE–CR

For this model we have in place of equations (4.9) and (4.10), the fol-

lowing equations

A11 + g De[
∂A11

∂t
+ W

∂A11

∂ξ
+ (1 + A11)(1 +

∂W

∂ξ
)] = 0,(4.14)

A33 + g De[
∂A33

∂t
+ W

∂A33

∂ξ
− 2(1 + A33)(1 +

∂W

∂ξ
)] = 0,

where

g = 1− 3 + 2A11 + A33

L2
,

τ11 =
β

De
A11

g
,

and

τ33 =
β

De
A33

g
.

Here we have A11 = Ãrr − 1 and A33 = Ãzz − 1.

The 1–D equations (4.6)–(4.10) do not satisfy all the boundary condi-

tions at the rigid end–plates. However, all the conditions at the fluid–air

interface are satisfied. Consequently, we expect the model to give a good

approximation to the deformation in the central portion of the filament. In

[11], it was shown that the results for the Oldroyd–B model agree very well

with numerical results of the full two–dimensional axisymmetric problem

[17, 18].
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5 Stability of ideal uniaxial extension
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(c) α = 0.4

Figure 1: Solution of linearized equations of the Johnson–Segalman model
for β = 0.08, Ca = 21.0, and selected values of α and De.

One solution of equations (4.6)–(4.10) is W = 0, and φ = − t
2 , which

corresponds to ideal uniaxial elongation. The normal stresses τ11(t) and

τ33(t) satisfy two decoupled ordinary differential equations which are easily
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Figure 2: Solution of linearized equations of the Giesekus model for β = 0.08,
Ca = 21.0, and selected values of α and De.
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Figure 3: Solution of linearized equations of the PTT model for β = 0.08,
Ca = 21.0, and selected values of α and De.
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Figure 4: Solution of linearized equations of the FENE–CR model for β =
0.08, Ca = 21.0, and selected values of α and De.
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solved. For the Oldroyd–B model it was shown in [11] that this solution is

unstable if the Deborah number De is less than or equal to 0.5, and stable

if De > 0.5. Here we examine the linear stability of this base flow for each

of the constitutive models given above. We introduce small perturbations

to the base flow and the linearize the governing equations in the usual way.

If the solution of the linearized equations grows with time then we say that

the base flow is unstable, otherwise it is stable. Calculations were done

for selected values of the nonlinear parameters α and L and the results are

shown in Figures 1– 4 where the norm of the perturbation relative to the

base flow |X| is plotted against time t.

As the figures indicate, increasing the nonlinear parameter destabilizes

the base flow. This means that the Oldroyd-B model is the most stable of

all the models. For this reason our calculations were restricted to values of

Deborah number for which the Oldroyd–B model is stable i.e. De > 0.5

For all values of Deborah number considered, the flow is stable if α or L−1

is sufficiently small and unstable otherwise. Note that perturbations in-

crease initially due to surface tension. For small α, this destabilizing effect

is overcome by the large transient axial stresses which cause the filament to

strain–harden. As a result the flow is restabilized and the filament deforms

almost uniaxially. However, as α increases and nonlinear effects become im-

portant, the amount of strain–hardening is sufficiently curtailed that elastic

stresses are unable to overcome the destabilizing effect of surface tension.

Therefore, a small initial defect will grow and ultimately cause the thread to
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fail in finite time like a Newtonian fluid. For a fixed value of the nonlinear pa-

rameter (α 6= 0, L 6= ∞), linear theory also shows that the flow becomes less

stable as the Deborah number De increases. Increasing the Deborah number

also increases the importance of nonlinear terms which tend to destabilize

the flow. This is in contrast to the Oldroyd–B model for which the reverse

is the case where an increase in Deborah number produces an increase in

the axial normal stresses which leads to greater strain–hardening.

6 Numerical simulation

In this section we solve the nonlinear equations (4.6)–(4.10) numerically.

Equation (4.6) can be solved explicitly for W (see [11]). Thus we are left

with three equations which we solve using a finite difference scheme. The

equations were descretized using a third–order upwind scheme in space and

a second order Runge–Kutta scheme in time. For the retardation parameter

β, and the capillary number Ca, we used the data from the experiments and

numerical simulations of McKinley et al. [4, 18]. We took an initial free

surface profile f(0, ξ) = 1 − eξ(1 − ξ) where e is small so that initially the

free surface is a small perturbation of a cylinder. The stresses are taken to

be zero initially.

In Figure 5, we plot the axial velocity w vs. the spatial variable ξ at the

end of the simulation, and the extension rate rate ε̇ ≡ −2∂φ
∂t , of the mid–

filament radius for selected values the nonlinear parameters α and L. For the

Johnson–Segalman model, Figure 5(a), we see that axial velocity approaches

14



0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

ξ

w

ideal
0.01 
0.2  
0.4  

0 2 4 6 8
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

t

ε
.

ideal
0.01 
0.2  
0.4  

(a) Johnson–Segalman

0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

ξ

w

ideal 
0.0001
0.001 
0.1   

0 2 4 6 8
0.5

1

1.5

2

2.5

3

3.5

4

4.5

t

ε.

ideal 
0.0001
0.001 
0.1   

(b) Giesekus

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

ξ

w

ideal 
0.0001
0.005 
0.1   

0 2 4 6 8
0

1

2

3

4

5

6

7

8

9

10

t

ε.

ideal 
0.0001
0.005 
0.1   

(c) PTT

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

ξ

w

ideal
80.00
10.00
5.00 

0 2 4 6 8
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

t

ε
.

ideal
80.00
10.00
5.00 

(d) FENE–CR

Figure 5: Axial velocity and the extension rate at the mid–filament radius,
for De = 1.0, β = 0.08, Ca = 21.0, e = 0.1, and selected values of α and L
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Figure 6: Trouton ratios for De = 1.0, β = 0.08, Ca = 21.0, e = 0.1, and
selected values of α and L.
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uniaxial extension w = ξ, at the end of the simulation except for α = 0.4.

This is also evident from the plot of ε̇ vs t. For α = 0.4 the extension rate

increases with strain so that necking is accentuated. However, for smaller

values of α, the extension rate decreases with strain and approaches ideal

uniaxial extension. The results for the Giesekus and PTT models depicted in

Figures 5 (b, c) respectively, show that for α very small, the flow approaches

uniaxial extension but as α increases we see greater departure from ideal

kinematics for reasons explained above. For the FENE–CR model, Figure

5(d), the deformation is very close to uniaxial extensional provided that the

extensibility parameter is sufficiently large. These observations are all con-

sistent with the results of linear stability analysis given above. In Figure

6, we show Trouton ratios based on the imposed stretch rate (L), and on

the extension rate at the mid-filament radius (R). We also show the Trou-

ton ratio for pure uniaxial extension for the same parameter values (dotted

curve). In all cases the three calculations agree very well when the de-

formation approaches uniaxial extension. When significant departure from

uniaxial elongation occurs, the Trouton ratios based on the stretch rate is

unable to predict the correct values of the steady state extensional viscosity.

Note that approach to uniaxial flow is marked by large transient extensional

viscosities, a sign of strain hardening. As the nonlinear parameter increases

the filament does not show significant strain–hardening. Consequently, the

initial defect in the filament profile becomes more pronounced with increas-

ing strain. This can be clearly seen from Figure 7 which depicts the shape
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Figure 7: Filament at the end of simulation, for De = 1.0, β = 0.08, Ca =
21.0, e = 0.1, and selected values of α, and L.
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Figure 8: Evolution of mid–filament radius , for De = 1.0, β = 0.08, Ca =
21.0, e = 0.1, and selected values of α, and L.
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of the filament at different stages in the deformation. All calculations for

each model were done with the same initial conditions and were terminated

at the same time.

For small (large) values of α (L), the initial defect in the filament heals

itself to a large extent as the fluid begins to strain–harden. This can also

be seen from Figure 8 which shows the evolution of the mid-filament radius.

These results agree with the finite element simulations of Sizaire and Legat

[17], for a FENE-CR thread. Similarly, the numerical simulations of Yao

and McKinley [18] show that when initial aspect ratio is not too small (so

that the filament was a little slender initially) the evolution of the mid-plane

radius approaches uniaxial kinematics with increasing Hencky strain. Their

simulations were done with an Oldroyd–B fluid. This shows that our one–

dimensional model gives an accurate description of the deformation in the

middle portion of the filament in the stretching device.

7 Conclusion

A thin filament model is used to analyze the stability of viscoelastic fil-

aments under uniaxial elongation for a number of constitutive equations.

We have considered the Johnson– Segalman, Giesekus, Phan–Thien Tanner

and FENE–CR models. In addition to the usual linear viscoelastic param-

eters these models contain an additional non–linear parameter α ( L for

the FENE–CR model). Stability is controlled by the competing effects of

surface tension and elastic normal stresses. Linear stability analysis shows
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that the filament is stable if α (L) is sufficiently small (large), and unstable

otherwise. Initially capillary forces dominate and perturbations grow expo-

nentially. However, for very small values of α, there is a sharp increase in

the axial normal stresses causing the filament to significantly strain–harden.

If the degree of strain hardening is sufficiently large, the destabilizing effect

of surface tension is overcome and the initial defect partially heals itself. In

such a case the filament deforms almost uniaxially. On the other hand if

α is not small the amount of strain hardening is not sufficient to overcome

capillary instability and any initial defect will grow and lead to a failure of

the thread just like a Newtonian thread. Numerical solution of the nonlinear

model equations were also obtained which confirm the prediction of linear

theory. These results agree with experiments and numerical simulations.
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FIGURE CAPTIONS

Figure 1: Solution of linearized equations of the Johnson–Segalman
model for β = 0.08, Ca = 21.0, and selected values of α and De.

Figure 1a: α = 0.01
Figure 1b: α = 0.2
Figure 1c: α = 0.4
Figure 2: Solution of linearized equations of the Giesekus

model for β = 0.08, Ca = 21.0,
and selected values of α and De.

Figure 2a: α = 0.0001
Figure 2b: α = 0.001
Figure 2c: α = 0.1
Figure 3: Solution of linearized equations of the PTT

model for β = 0.08, Ca = 21.0,
and selected values of α and De.

Figure 3a: α = 0.0001
Figure 3b: α = 0.001
Figure 3c: α = 0.1
Figure 4: Solution of linearized equations of the FENE–CR

model for β = 0.08, Ca = 21.0,
and selected values of α and De.

Figure 4a: α = 80.01
Figure 4b: α = 10.0
Figure 4c: α = 5.0
Figure 5: Axial velocity and extension rate at the mid–filament radius,

for De = 1.0, β = 0.08, Ca = 21.0, e = 0.1,
and selected values of α and L.

Figure 5a: Johnson–Segalman
Figure 5b: Giesekus
Figure 5c: PTT
Figure 5d: FENE–CR
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Figure 6: Trouton ratios for De = 1.0, β = 0.08, Ca = 21.0, e = 0.1,
and selected values of α and L.

Figure 6a: Johnson–Segalman
Figure 6b: Giesekus
Figure 6c: PTT
Figure 6d: FENE–CR
Figure 7: Filament profile at the end of simulation for De = 1.0, β = 0.08, Ca = 21.0,

e = 0.1, and selected values of α and L.
Figure 7a: Johnson–Segalman
Figure 7b: Giesekus
Figure 7c: PTT
Figure 7d: FENE–CR
Figure 8: Evolution of mid–filament radius for for De = 1.0, β = 0.08, Ca = 21.0, e = 0.1,

and selected values of α and L.
Figure 8a: Johnson–Segalman
Figure 8b: Giesekus
Figure 8c: PTT
Figure 8d: FENE–CR

27


