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ABSTRACT 

 

Determining the behavior of composite materials under impact is an 

important aspect of composite design.  Conducting full-scale ballistic tests gives the 

most realistic insights into impact and penetration behavior, but the expense of these 

tests makes quasi-static testing and scaled testing attractive alternatives. The present 

research expands on a previously developed method for determining the penetration 

behavior of a composite system from quasi-static punch shear testing. While the 

previous work considered a single punch diameter-composite thickness pair, the 

present work lays the foundation for using parametric analysis to generalize this 

methodology for a range of diameters and thicknesses. Experimental results for a 

variety of punch diameters and composite thicknesses are coupled with analytical 

solutions and numerical analyses to understand the scaling behavior of the punch-

composite system under the specialized case of a confined compression loading.  The 

failure mechanisms and necessary specimen dimensions are explored, leading to the 

development of scaling factors based on the parameters which define the experimental 

setup: composite thickness and punch diameter.
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Chapter 1 

INTRODUCTION 

1.1 Background 

Composite materials have seen widespread usage in aerospace and 

military applications in recent decades.  These applications often expose the composite 

to high speed or “ballistic” impacts by flying debris or projectiles.  While composites 

can be designed to resist high tensile and flexural loadings, they often remain 

susceptible to these transverse impacts which can create damage in the weaker matrix 

material.  The engineering design and analysis of composites subjected to transverse 

impacts is further complicated by complex interactions between different damage 

modes.  Composite materials may concurrently exhibit matrix cracking, delaminations, 

fiber crushing, and fiber tension-shear and compression-shear.  In addition, damage 

from transverse impacts reduces the post-impact tensile and flexural capacity of the 

composite, making resistance to transverse impact a desirable property. 

The complications involved in understanding the ballistic behavior of 

composites have motivated a large and growing body of research.  Researchers have 

studied experimental methods and results, analytical formulations, and numerical 

models to enhance design for transverse impact.  Abrate (1991, 1994) and Bartus and 

Vaidya (2007) have presented reviews of hundreds of references related to this field of 

research. 
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1.1.1 Quasi-Static Penetration Method 

The present study builds on a quasi-static penetration model (QS-PM) 

previously developed by Gama and Gillespie (2008). This model provides an estimate 

of the ballistic behavior of a composite material from a series of quasi-static (QS) 

tests.  The advantage of such a method is that quasi-static tests can be performed on a 

standard load frame, while ballistic testing requires high-speed loading capabilities and 

associated instrumentation.  Additionally, quasi-static tests are more amenable to the 

collection of data such as force-displacement curves, specimen deflections, and the 

propagation of damage with penetration depth.  These data would be difficult to 

measure during a ballistic test. 

The ballistic resistance of a composite is quantified in the QS-PM through 

the ballistic limit velocity, VBL.  The ballistic limit of a given projectile-target pair is 

defined as the impact velocity at which the projectile will penetrate the composite with 

zero residual velocity.  Such a parameter is an important measure of ballistic 

resistance, since any impact velocity less than VBL would not be expected to cause full 

penetration of the composite. 

The initial impact energy of the projectile at the ballistic limit, EBL, can be 

defined as: 

 
2

2
1

BLPBL VmE  (1.1) 

where mP is defined as the projectile mass.  Conservation of energy states that at any 

time t during the penetration event: 

 DCECPBL EEEEE |  (1.2) 

where EP is the projectile kinetic energy, EC is the composite kinetic energy, EE|C is the 

elastic strain energy of the deformed composite, and ED is the energy dissipated by 

damage to the composite, all at time t.  For the special case of a projectile impacting at 
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the ballistic limit, there exists a time t at which the projectile velocity will be zero and 

the strain energy of the composite and the energy dissipated through damage will be at 

a maximum.  It can also be assumed that the kinetic energy of the composite will be 

negligible at this time.  Therefore, equation (1.2) simplifies to: 

 DCEBL EEE |  (1.3) 

If the strain energy and energy dissipation capabilities of the composite can be 

quantified the ballistic limit can be determined using equations (1.1) and (1.3).  The 

purpose of the quasi-static penetration model is to estimate these two energies. 

During a ballistic event damage will propagate transversely through the 

composite away from the projectile.  This behavior can be mimicked by performing a 

series of quasi-static tests for a range of support spans.  The energy dissipated to cause 

damage at a given span can be calculated from the integral of the force-displacement 

curve at that span.  By combining the series of force-displacement curves on a single 

graph a “Quasi-Static Envelope” (QS-Envelope) can be created.  The area under this 

curve provides an estimate of the energy the composite can dissipate through damage 

mechanisms. 

Two specialized cases of the quasi-static test are also necessary for a 

proper analysis.  First, the elastic strain energy of the composite can be determined by 

performing a quasi-static test at the support span for the ballistic test in question.  By 

determining the elastic stiffness of the specimen and maximum elastic displacement, 

the strain energy EE|C is calculated.  Second, the “hydrostatic compressive” or “crush” 

strength of the composite can be determined from a quasi-static test performed on a 

fully supported specimen.  This test recognizes that at the start of the ballistic event the 

projectile imparts a stress equal to the peak compressive strength of the composite 
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until complete destruction is achieved ahead of the projectile.  This peak stress is 

determined from a confined compression test. 

A representative QS-Envelope and its constitutive force-displacement 

curves are shown in Figure 1.1.  Further explanation of the development of the QS-PM 

can be found in the paper by Gama and Gillespie (2008) and in a paper exploring 

wider application of the QS-PM by Manzella, Gama, and Gillespie (2009). 

1.1.2 Assumptions 

Some assumptions were made before beginning the present work.  These 

assumptions helped bound the scope of this study and allowed for certain analytical 

simplifications. 

A single composite system (24 oz/yd
2
 S-2 glass fabric infused with SC15 

epoxy resin) was considered in the study.  While a number of individually 

manufactured panels were required for experimental testing, it was assumed that the 

constitutive materials for all panels had equivalent mechanical properties: elastic 

moduli, Poisson ratios, and failure stresses and strains.  This assumption was validated 

by the use of consistent manufacturing techniques and the exclusion of inferior 

materials (see Chapter 2).  Unless otherwise noted, all analytical and numerical models 

of the experimental testing are assumed to have the same idealized material properties. 

Strain-rate and inertial effects were assumed to be negligible.  While some 

rate of displacement or loading is necessary for experimentation, one advantage of 

quasi-static testing is the use of a loading rate for which these effects are insignificant 

(ASTM International, 2004). 
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Figure 1.1 – Representative QS-Envelope (7.62-mm punch, 7.11-mm sample) 
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All test specimens were assumed to be wide enough so that edge effects 

are negligible. Moving radially away from the point of load application, the transverse 

confining stresses and through-thickness stresses will decrease.  At some critical 

distance the inclusion of additional material around the edge of the test specimen will 

no longer contribute to the penetration resistance of the inner material.  While testing 

extremely wide specimens is inefficient, testing specimens with insufficient width may 

affect the measured material behavior.  Analytical expressions for this critical width 

will be developed in Chapter 4 to verify this assumption. 

Finally, it was assumed that the methodology developed by Gama and 

Gillespie (2008) is valid for all projectile-target pairs.  Preliminary research has 

suggested that the QS-PM is indeed valid for specimen dimensions besides those 

considered in the original research (Manzella, Gama, & Gillespie, 2009).  However, an 

assessment of the accuracy and precision of the estimation of the ballistic limit is 

beyond the scope of the present study. 

1.2 Goal of Research 

While quasi-static testing methodologies are simpler than ballistic 

methods, a thorough analysis of the impact behavior of a given composite material still 

requires extensive testing and a significant amount of sample material.  Ideally, every 

possible projectile-target pair, a unique combination of projectile and target geometry 

and dimensions, must be considered to characterize the composite’s behavior fully.  

However, if geometric or inertial scaling laws can be developed for a composite 

system, interpolation or limited extrapolation can reduce the number of tests needed to 

quantify the behavior of that system.  Such a scaling law could be developed to predict 

the ballistic limit velocity output of the QS-PM for a given projectile-target pair from a 
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known projectile-target pair.  However, the basis for this scaling law comes from the 

successful scaling of the individual force-displacement curves used in the QS-PM.   

The goal of the present study is to develop and validate a process for 

creating geometric scaling laws for these component force-displacement curves.  The 

present parametric analysis is limited to the confined compression case.  The confined 

compression test was chosen as a simpler parametric analysis: only two parameters, 

specimen thickness and punch diameter, are important to the problem and a lesser 

degree of interaction between different failure modes is expected.  In contrast, 

specimens tested without full support have three parameters (specimen thickness, 

support diameter, and punch diameter) and will exhibit some interplay between shear 

and bending failure modes. 

The development of a parametric scaling for the force-displacement 

curves comes from a theoretical and experimental framework.  Theoretical models of 

the experimental setup identify parameters of interest to the problem and suggest 

relationships between these parameters.  Ideally, the problem parameters can be 

rearranged in such a way that scaling parameters can be derived.  Alternately, if a large 

matrix of experimental data is obtained, the effects of each parameter can be isolated 

by fixing one problem parameter while allowing others to vary.  The results should 

suggest relationships between the problem parameters and outputs of interest.  

Coupling experimental observations with theoretical expectations permits an 

exploration of the failure modes which dominate specimen behavior.  While the 

formulation of a particular failure criterion should not vary with geometry, different 

geometries may favor different failure modes.  By following the rationale outlined here 

a logical parametric scaling can be developed. 
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1.3 Review of the Literature 

As mentioned previously, a large body of work exists relating to the 

penetration of composite materials.  Three areas of interest to the present study are 

considered here: the use of quasi-static methods for materials characterization, 

parametric studies of the penetration process, and confined compression 

experimentation. 

1.3.1 Studies of Quasi-Static Penetration 

While the present study employs a quasi-static method developed by 

Gama and Gillespie (2008) as described in Section 1.1.1, quasi-static experimentation 

has been used by other researchers. 

A standardized method of quasi-static indentation of composite materials 

has been defined by ASTM International (2004).  The quasi-static loading of a 

composite plate by a hemispherical indenter is used to determine the impact resistance 

of the composite.  Two support conditions are defined: a simply-supported condition 

in which the composite rests on a rigid support with a central circular cavity of 

diameter 127-mm and a rigidly-backed condition in which the composite rests on a 

continuous rigid support at least 12.70-mm thick.  Damage resistance is quantified by 

visual inspection, measurement of the resulting “dent depth” after indentation, and 

measurement of the peak load during testing.  The primary application of the standard 

is to permit comparison of the damage resistance of different materials and provide a 

baseline damage state for further tolerance testing. 

Lee and Sun (1993) developed a method for predicting ballistic behavior 

from quasi-static results.  Ballistic tests were performed on graphite-fiber/epoxy 

prepreg composite panels of various thicknesses to define the ballistic limit and 
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determine the damage modes – delamination and shear plugging.  These damage 

modes were observed to be similar to those which occurred under quasi-static 

loadings.  The force-displacement curves obtained from quasi-static testing were 

correlated with the progression of damage.  The static displacement thresholds for the 

various damage modes were then used to calibrate a finite element model of the 

ballistic impact.  The model was found to give realistic values for the ballistic limit. 

Sun and Potti (1996) refined this methodology.  Again, quasi-static and 

ballistic tests were performed on graphite-fiber/epoxy composites for three specimen 

thicknesses.  The same two damage modes were observed.  Using a finite element 

model with Mindlin ring elements and damage softening through reduction in shear 

modulus, the quasi-static penetration was modeled.  The rate of softening was 

calibrated from the quasi-static force-displacement curves, which were found to 

collapse to a single curve when normalized by specimen thickness.  This quasi-static 

model was used to calibrate another ballistic model.  The displacement failure criterion 

proposed previously (Lee and Sun, 1993) was found to provide the most accurate 

results, and was once again used in the finite element model. 

In the same paper, the authors also investigated the usage of quasi-static 

penetration energy to predict ballistic behavior.  It was recognized that the integral of 

the quasi-static force-displacement curve is a measure of the energy dissipated by 

damage to the composite.  However, it was found that using a quasi-static measure of 

energy over-predicted the residual velocity, while performing the same calculation 

using a dynamic measurement of energy dissipation provided better results. 

Other researchers have used quasi-static testing to characterize composite 

materials.  Caprino et al. (2003) used quasi-static testing of carbon-fiber composites to 
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find the energy dissipated during penetration and calibrate an expression to predict 

indentation depth from the energy imparted by the indenter.  Baucom and Zikry (2003) 

used quasi-static tests to examine differences in behavior between different fiber 

architectures. 

1.3.2 Parametric Studies of Penetration 

As mentioned in Section 1.2, understanding the effects of the various 

parameters in a problem can reduce the required experimentation and provide insights 

into system behavior.  Many researchers have performed parametric studies as a way 

of furthering the understanding of the penetration behavior of composites.  A sampling 

of these studies is provided. 

Bless et al. (1989) performed an early exploration into the ballistic 

behavior of S-2 glass laminates.  They found that the ballistic limit tends to scale with 

the ratio of target thickness to projectile diameter.  Noting that the key failure 

mechanisms appeared to be compressive flow and shear plugging, two expressions for 

the energy dissipated through each failure mode were developed.  The ballistic limit 

was observed to trend as suggested by the shearing parameter, suggesting that shear-

out was the dominant ballistic failure mode. 

Swanson (1993) examined the potential for scaling small-scale laboratory 

penetration tests to full-scale parts.  By considering the governing differential 

equations, it was hypothesized that a linear scaling regime would be appropriate for 

the measured response.  Experimental results from an extensive number of ballistic 

and quasi-static tests suggested that force, displacement, and time all scaled linearly 

with an increase in the geometric scale of the test part.  However, the scaling of 

damage, specifically delamination and fiber fracture, was found to be more 
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complicated.  The author suggested that damage scaling may depend on energy-based 

fracture mechanics and hence depend on impact velocity, not specimen geometry.  He 

concluded that understanding the nature of the failure mechanisms is crucial to 

developing viable scaling parameters. 

Nemes et al. (1998) studied the penetration behavior of carbon-fiber/epoxy 

composites.  A number of parameters were varied: the rate of loading, the thickness of 

the laminate, the lamina stacking sequence, and the thickness of the sublaminates.  By 

analyzing the effect of each parameter separately, the authors concluded that the load-

displacement behavior of the composite is strongly influenced by the rate of loading 

and thickness of the laminate.  However, the loading behavior was similar for different 

stacking sequences, suggesting that models of the material could safely assume 

transverse isotropy in most cases. 

Gellert et al. (2000) explored the effect of laminate thickness on the 

ballistic behavior of glass/vinylester composites.  By observing the damaged regions in 

sectioned specimens, they concluded that the ballistic limit and energy dissipated by 

the composite are bi-linear with thickness.  Expressions were derived for the work 

done by the projectile in the various failure modes, with the expectation that such 

expressions could be useful for later parametric scalings of ballistic behavior. 

Zhou et al. (2001) performed quasi-static tests on carbon fiber/epoxy 

composites while varying four geometric parameters: indenter diameter, indenter 

geometry, support span, and support conditions.  Certain parameters had more 

localized effects, influencing only indentation depth, while others had a more global 

effect, changing the force-displacement response.  Four failure modes were observed, 

but were found to have no correlation with any single geometric parameter.  Moreover, 
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it was seen that the failure modes were an agglomeration of many damage 

mechanisms.  The authors concluded that all four parameters had non-negligible 

effects when scaling quasi-static behavior. 

Naik and Doshi (2008) developed an analytical model to examine the 

parametric effects on the ballistic behavior of composites.  Because of the usage of an 

analytical model, the parameters could be widely varied for comparison.  Specifically, 

the authors studied the effect of projectile mass and diameter and target thickness on 

the ballistic response of the target, discussing a number of qualitative conclusions on 

the effects of these parameters.  Naik et al. (2005) also used a similar analytical 

framework to explore parametric effects on the ballistic penetration of fabrics. 

1.3.3 Studies of Confined Compression Behavior 

An early study of the failure of composite materials under compressive 

loadings was performed by Rosen (1965).  Rosen hypothesized that the fibers in a uni-

directional fiber-matrix composite would buckle under an axial compressive loading in 

one of two modes.  In the first, the fibers buckle out of phase with each other, causing 

“extension” of the matrix material.  In the second, the fibers buckle in phase with each 

other, causing “shearing” deformations of the matrix material.  The “shearing” mode 

was found to be more prevalent, suggesting that the compressive strength of composite 

materials is strongly related to the shear strength of the matrix material. 

Collings (1974) studied the compressive behavior of unidirectional carbon 

fiber composites.  Initial testing was performed on a cube of material loaded normal to 

the fiber orientation, with the remaining four sides unconfined.  Fracture occurred at a 

characteristic angle on planes parallel to the fibers.  It was observed that fracture did 

not occur on the plane of maximum shear, suggesting that a compression-shear 
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interaction was leading to failure.  Additional testing was performed on the same 

materials with additional rigid constraint provided normal to the fiber orientation.  

When confined in this manner, fracture occurred on planes running through the fibers, 

increasing the failure strength of the material significantly.  It was also noted that the 

failure strength was similar to that measured from traditional longitudinal 

compression, suggesting a similar failure mode may occur in both tests. 

Woodward et al. (1994) studied the confined compression behavior of four 

different composite fabric systems: glass-fiber, Kevlar, nylon, and polyethylene.  Two 

different types of damage mechanisms were observed.  Glass-fiber and nylon were 

found to be more “brittle”, fracturing to form a wedge of damaged material at the 

initial load drop.  With continued loading, this wedge was crushed and extruded the 

material ahead of it.  Kevlar and polyethylene were observed to be more “ductile”, 

with the fibers being strained until catastrophic tensile failure.  Elastic rebound 

occurred, leading to continued fracturing.  These damage mechanisms are shown 

schematically in Figure 1.2.  Under higher strain rates, all materials behaved in a 

ductile manner except for glass-fiber, which crushed the fibers ahead of the projectile. 

 

  

(a) Glass-fiber and nylon (b) Kevlar and polyethylene 

Figure 1.2 – Schematics of damage mechanisms under confined compression 

(from Woodward et al., 1994, p 339) 
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Oguni et al. (2000) performed unconfined and confined compression tests 

on unidirectional fiberglass/vinylester composites with loading parallel to the fiber 

direction.  Confinement was provided by placing the composite specimen within a 

tight-fitting metal ring, giving a proportional confinement of σconf/σapp ≈ 0.3.  Both the 

unconfined and confined specimens exhibited similar stiffness and peak load up to 

first damage.  The unconfined specimen was observed to fail catastrophically at the 

peak load due to shear failure of the matrix material by fracturing parallel to the fibers.  

However, the confined specimen exhibited progressive failure due to fiber kinking 

without a complete loss of load. 

Yen et al. (2004) studied the shear failure of fibers due to transverse 

loadings.  A Mohr-Coulomb criterion was proposed to describe the shear failure of the 

fibers.  The fiber shear strength and friction coefficient for S-2 glass/SC15 composites 

were determined using a fixture similar to that developed by Collings (1974).  Fracture 

was observed to occur through the fibers at a characteristic angle.  The material model 

was used to predict the quasi-static punch shear failure of the S-2 glass/SC15 

composite in the finite element code LS-DYNA. 

Potter et al. (2005) carried out biaxial compression tests on [±45]12s and 

[±30]12s graphite/epoxy composite specimens.  Biaxial compression was provided in 

the fiber directions by two sets of loading crossheads, perpendicular to each other and 

programmed to provide a pre-determined level of proportional confinement.  

Increasing the level of confinement tended to increase delaminations and through-

thickness inter-ply shear cracks while curtailing the growth of transverse shear cracks 

in the fiber orientations.  However, transverse shear cracking was still observed in all 

specimens through both the matrix and fibers, depending on fiber orientation.  
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Classical laminate theory was applied to the experimental results to estimate the 

stresses within each lamina.  It was found that for specimens where shear cracking was 

primarily in the matrix material a Mohr-Coulomb type interaction occurred for the 

shear and hydrostatic stresses at the matrix level, though no such interaction existed 

for stresses in the fibers for these specimens.  However, for specimens that exhibited 

predominantly fiber shearing a Mohr-Coulomb type interaction occurred for the fiber 

stresses.  Moreover, it was observed that the global shear and normal stress data could 

be described by a Mohr-Coulomb interaction, regardless of the type of fracture. 

1.4 Outline of Thesis 

In Chapter 2 the materials and methodologies employed in the present 

study are described.  The manufacturing process used to make the composite panels is 

outlined.  Experimental fixtures, testing methods, and data reduction strategies are 

explained.  Numerical and analytical models of the confined compression problem are 

also introduced. 

In Chapter 3 the failure behavior of the confined compression specimens 

is discussed.  Visual observation of experimental specimens suggests that specimens 

fail along a characteristic fracture plane.  The depth of fracturing suggests that two 

different damage regimes may exist in confined compression testing.  The applied 

stress to initiate failure is seen to have a characteristic value regardless of geometry 

although the nature of the internal force reactions is sensitive to geometry.  Stress 

transformations show that a compression-shear interaction occurs on this fracture 

plane, which may explain the behavior. 

In Chapter 4 the constraints on the specimen dimensions are explored.  

The need for a minimum specimen width to ensure consistent results is discussed.  The 
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analytical model is used to derive empirical expressions for this minimum specimen 

width.  The expressions are validated with the numerical model in the fiber orientation 

and an off-axis orientation. 

In Chapter 5 the key parameters defining the confined compression 

problem are presented, as well as the equations for the analytical form of the problem.  

Examination of the analytical form suggests linear scaling exists between the stress 

applied to the punch and the internal stress distributions.  In addition, a geometric 

similarity parameter is derived and validated with the numerical model. 

In Chapter 6 the scaling of the applied stress at first failure is studied.  The 

numerical model is used to demonstrate changing stress behavior with geometry, in 

contradiction to the experimental observation.  Common failure criteria are explored to 

find the stress interactions which reconcile the numerical stress distribution and 

experimental results.  Deficiencies in the failure criteria suggest that a compressive 

stress interaction such as in the Mohr-Coulomb criterion can match the fracture mode 

and experimental results.  The successful calibration of this criterion is used to predict 

the initiation and propagation of damage. 

In Chapter 7 the results of the present study are summarized and overall 

conclusions about the parametric scaling of confined compression testing are drawn.  

The application of the current methodology to the parametric scaling of tests on 

specimens without a full support is discussed as a direction for future research. 
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Chapter 2 

MATERIALS AND METHODOLOGIES 

2.1 Materials 

All experimental tests were performed on a composite layup of plain-

weave 24oz/yd (814 g/m
2
) S-2 glass infused with Applied Poleramic’s SC15 epoxy 

resin.  The infusion was performed using the Vacuum Assisted Resin Transfer 

Molding (VARTM) process.  Maintaining quality during the manufacturing process 

was necessary to justify the assumption of uniform material properties among 

experimental tests and between numerical, analytical, and experimental results. 

Fabric was cut from rolls into plies of a desired size, normally a few 

inches larger than needed for cutting specimens to account for edge fraying.  Any loose 

fabric tows were discarded and the plies were weighed.  The fabric was then laid on a 

steel manufacturing table coated with removal agent, covered with one to two layers 

distribution media depending on panel thickness, and bagged.  An infusion line and 

vacuum line were placed on opposite sides of the fabric with spiral tubing on the ends.  

Breather cloth was also added around the vacuum line.  A schematic of the VARTM 

setup used is shown in Figure 2.1.  Once properly bagged, vacuum was pulled on the 

panel and the infusion line was clamped.  The bag was checked for leaks until a 

leakage rate of less than 0.1 in/Hg/min (2.54-mm/Hg/min) was achieved. 

Based on the weight of fabric in the panel, the two parts of the SC15 

epoxy were measured, assuming a conservative fiber volume fraction (FVF) of 45% 
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a) Plan view of VARTM infusion setup 
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b) Section A-A view of VARTM infusion setup 

Figure 2.1 – Schematics of VARTM infusion setup 
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with an additional 1000g as a safety factor.  The epoxy was thoroughly mixed and 

degassed.  The infusion line was placed in the resin bucket and unclamped, beginning 

the infusion process.  The infusion flow and remaining resin levels were monitored 

throughout the infusion process to ensure no air entered the part and flow remained 

uniform both across the plies and through the thickness.  If necessary, a smaller bypass 

tube was placed on the vacuum line for larger panels to reduce the flow rate and to 

allow the resin to permeate the fabric.  Once the fabric was completely infused, the 

infusion line was clamped and the part cured at ambient temperature under vacuum for 

at least 36 hours. 

Following curing, the panel was removed from the table and post-cured in 

an oven at ambient pressure for 4 hours at 200° F (93° C).  An hour ramp-up from 

room temperature and an hour ramp-down to room temperature were used.  The panel 

was removed from the oven and weighed to determine the final panel weight and FVF.  

All manufactured panels had a FVF of approximately 51%.  Panels were also visually 

inspected for voids.  A void content of approximately 0.5% or less was measured 

using the applicable ASTM standard (ASTM International, 2003), suggesting good 

quality in the manufactured panels. 

Fully cured panels were then sectioned into specimens of the desired size.  

Square specimens from thicker panels were sectioned using a diamond coated wet-

saw.  Circular specimens from thinner panels were sectioned using a diamond-coated 

core drill and surface-ground to the desired thickness.  Following sectioning, 

specimens were again checked for voids. 
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Material properties for the fully cured composite are listed in Table 2.1.  

Properties are listed with respect to the material axes.   The x-axis is oriented in the 

principal fiber direction, the y-axis is oriented in the secondary fiber direction, and the 

z-axis is oriented in the through-thickness.  For plain-weave S-2 glass it is assumed 

that the properties in the x- and y-directions are interchangeable. 

2.2 Test Fixtures 

Two custom fixtures were used to perform the confined compression tests.  

Illustrations and photographs of both fixtures are presented in Figures 2.2 and 2.3.  

They employ the same basic design and are made from high-grade tool steel. 

The punch shear test fixture (Figure 2.2) had a steel square base plate with 

dimensions of length×width×height of 4.0”×4.0”×1.5” (101.6-mm×101.6-mm×38.1-

mm).  A central cavity 3.0” (76.2-mm) in diameter and 1.0” (25.4-mm) deep was cut 

into the base.  Steel rings of varying diameter and a height of 1.0” (25.4-mm) could be 

fit within this cavity to change the support span of the test specimen.  For the 

experiments in the present work a full complement of rings was used such that the 

specimen was completely supported by a flush surface.  After the specimen was 

centered on the base plate a steel cover plate with dimensions of 4.0”×4.0”×0.5” 

(101.6-mm×101.6-mm×12.7-mm) was placed on top.  The cover plate had a central 

hole with a diameter of 1.0” (25.4-mm) to permit free movement of the punch.  A 

square specimen 3.0” (76.2-mm) in width was clamped in the fixture by at least 4 bolts 

between the cover and base plates.  The bolts were hand-tightened to provide a 

clamping force on the specimen.  It was assumed that this force provided vertical 

confinement and prevented excessive lateral movement of the specimen. 
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Table 2.1 – Material properties for S-2/SC15 composite (from Xiao, Gama, & 

Gillespie, 2007, p 191) 

Elastic Moduli Shear Moduli Poisson Ratios 

Ex Ey Ez Gxy Gxz Gyz νxy νxz νyz 

GPa GPa GPa GPa GPa GPa --- --- --- 

27.5 27.5 11.8 2.90 2.14 2.14 0.11 0.18 0.18 

Normal Failure Strengths
1
 Shear Failure Strengths

2
 

Sx (T) Sx (C) Sy (T) Sy (C) Sz (T) Sz (C) TF Txy-M Txz-M Tyz-M 

MPa MPa MPa MPa MPa MPa MPa MPa MPa MPa 

604 291 604 291 75 480
3 

250 75 58 58 

1
 – T = tensile failure, C = compressive failure 

2
 – F = fiber mode, M = matrix mode 

3
 – Unconfined compressive strength 
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a) Schematic of fixture b) Fixture in machine 

Figure 2.2 – Schematic of Punch-Shear test fixture 
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a) Schematic of fixture b) Fixture in machine 

Figure 2.3 – Schematic of Mini Punch-Shear test fixture 

 

The mini punch-shear test fixture (Figure 2.3) had a cylindrical steel base 

component 2.0” (50.8-mm) in diameter with a central cavity 1.0” (25.9-mm) in 

diameter and 1.0” (25.4-mm) deep.  The central cavity provides a clearance of 0.010” 

(0.254-mm) around the edge of the specimen, which was circular with a diameter of 

1.0” (25.4-mm).  A steel support cylinder was placed in this cavity followed by the 

specimen, such that the specimen was almost flush with the top of the base 

component. A cover plate 2.0” (50.8-mm) in diameter and 0.5” (12.7-mm) thick, with 

a slight indentation in the central cavity, was placed on top of the specimen.  As with 

the punch shear fixture, 8 bolts were hand-tightened to provide vertical confinement.  

Lateral confinement was provided by the fixture.  A hole in the center of the cover 

plate allowed passage of the punch with a clearance of 0.010” (0.254-mm). 
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Punches were solid cylinders with a flat head.  A chamfer of 0.01” (0.254-

mm) existed around the perimeter of the punch head to prevent shear stress 

concentrations at the periphery.  Punches were made of high-strength heat-treated 

maraging steel to prevent yielding or buckling in the punch.  Punches for the punch-

shear fixture were directly threaded into the loading machines, while punches for the 

mini punch-shear fixture were driven by a larger punch. 

2.3 Experimental Testing 

All tests were performed on a screw-driven Instron 4484 load-frame under 

displacement control.  The load-cell was rated for 33,720-lbf (150-kN), with the 

limiting load set to 28,000-lbf (124.5-kN).  A driving rate of 0.05-in/min (1.27-

mm/min) was used for tests with the punch-shear fixture, while a rate of 0.02-in/min 

(0.508-mm/min) was used for tests with the mini punch-shear fixture.  Data were 

recorded using Instron’s Bluehill 2 software at a rate of 2-Hz for tests with the punch-

shear fixture and 10-Hz for tests with the mini punch-shear fixture.  The machine load-

head was carefully lowered until contact between the punch and specimen was 

achieved and then raised to the point of zero applied load.  The estimated pre-load was 

less than 0.5% of the load at elastic yield.  Load was applied until the elastic limit was 

reached, as characterized by a load drop (see Figure 2.4).  Once the load drop was 

reached, the test was stopped, the load head was brought back, and the fixture and 

specimen were removed.  The specimen was bagged for later sectioning and the 

recorded time, displacement, and load data were written to a Microsoft Excel file for 

further analysis.  A representative force-displacement curve is shown in Figure 2.4 

(blue curve).  Data were converted from the English units used by the Instron Bluehill 

software to SI units. 
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Figure 2.4 – Force-displacement corrections (7.62-mm punch, 7.11-mm sample) 
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Figure 2.5 – Compliance curve for experimental setup 
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Two corrections were made to the force-displacement data.  The 

compliance C of the machine and fixture was measured and fitted with a curve of the 

form C = aP
b
, where P is the load and a and b are fitting parameters.  The compliance 

data are shown in Figure 2.5.  The compliance was removed by plotting P(δ1), where 

δ1 = δ – C (red curve in Figure 2.4).  It was also recognized that a non-linear loading 

region occurs due to the initial settling of the fixture.  Assuming the curve should 

exhibit linear elastic behavior until first failure, a curve of the form P = cδ1 + d, where 

P is the load, δ1 is the compliance-corrected displacement, and c and d are fitting 

parameters, was fit to the linear-elastic portion of the curve.  The settling effect was 

removed by plotting P(δ2), where δ2 = δ1 + d/c (green curve in Figure 2.4).  By 

correcting curves in this way, the displacements at peak load could be more accurately 

compared without the effects of compliance or different initial loading regimes.  It is 

noted that the corrections affect the measurement of displacement, stiffness, and 

energy dissipation but have no influence on the measured loads. 

Following data correction, the peak load at the load drop (see Figure 2.4) 

was recorded.  The load drop is taken to represent the initiation of failure in the 

specimen.  Since the measured parameter of interest is the applied stress at failure 

initiation, this peak load was divided by the area of the punch to determine the applied 

stress.  Experimental applied stress results will be presented in Chapter 3. 

Damage within the composite specimens was observed by sectioning the 

specimens.  Specimens were sectioned using a guided diamond-coated wet saw to 

assure a clean and straight cut.  All specimens were sectioned along the fiber direction 

(0°/90° orientation) with select specimens additionally sectioned in the 45° orientation 

for damage comparison around the punch periphery.  The specimens’ sectioned plane 
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was dipped in a solution of either blue ink and ethyl alcohol or red dye penetrant and 

acetone.  Excess dye on the sectioned plane was removed by wiping with a paper 

towel soaked in acetone.  Specimens were allowed to air dry, then digitally 

photographed for further analysis.  A typical specimen section is shown in Figure 2.6. 

 

 

 

Figure 2.6 – Typical sectioned specimen (11.09-mm punch, 5.08-mm sample) 

2.4 Finite Element Model 

Experimental observations do not permit an analysis of the stresses within 

the specimen during testing.  To explore the distribution of stresses leading to failure 

in the specimens, a finite element (FE) model was developed using Dassault Systemes’ 

CATIA software (CATIA v5 R19).  A quarter-symmetric model was created with 

appropriate boundary conditions to reduce the required computational resources. 

The composite specimen was modeled as a 3-D anisotropic material on a 

frictionless rigid foundation.  Use of a 3-D anisotropic material allowed for input of all 

the properties presented in Table 2.1 without any simplifying material assumptions.  
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The punch was modeled as a quarter-cylinder of elastic steel (elastic modulus = E = 

200 GPa; Poisson’s ratio = ν = 0.29; density = ρ = 7850 kg/m
3
).  A chamfer of 0.01” 

(0.254-mm) was included to match the punches used in testing.  The punch was given 

a height of 12.70-mm (0.50-in) to provide sufficient distance for stress redistribution 

within the punch.  The cover plate was neglected in modeling based on an assumption 

that any uplift at the specimen edges is negligible. 

 A uniform stress of 100,000 Pa (14.5 psi) was applied to the top of the 

punch in all models.  The boundary conditions on the punch ensured that translation 

occurred only along the vertical axis.  A surface-to-surface contact was defined 

between the punch and specimen with a friction coefficient of µ = 0.20.  Elastic 

deformation was modeled using the Elfini linear-elastic static analyzer native to 

CATIA.  Since the confined compression experiments performed only considered 

material behavior up to first failure, a linear elastic solver was found to be sufficient 

for analysis. 

The model was meshed using linear 3-D hexahedral (six-sided) elements, 

with a refined mesh near the punch contact and a coarser mesh at the specimen edges.  

A baseline mesh of two through-thickness elements per ply, where HPly = 0.635-mm, 

was considered.  The size of the FE models ranged from 50,000 elements to 183,000 

elements.  Visualizations of the model and meshing are presented in Figure 2.7.  It was 

observed that oscillations in the stress normal to the specimen surface existed for most 

specimens at the baseline level of refinement (see Figure 2.8).  The mesh was further 

refined until a smooth stress distribution was achieved on the specimen surface.  This 

refinement is shown in Figure 2.8, where a mesh of 1.5 to 2.0 times the baseline mesh 

is seen to be sufficient.  Stress concentrations are also noted at the punch periphery on  



 29 

 

Figure 2.7 – Finite element model schematic (12.70-mm punch, 6.99-mm sample) 
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Figure 2.8 – Mesh comparison for σz (6.35-mm punch, 6.99-mm sample) 
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the surface of the specimen.  In a linear elastic model, these stress concentrations will 

approach a stress singularity with continued refinement.  Since linear elements were 

used, maximum stress values only occurred at the nodes, resulting in a more 

pronounced stress concentration for more refined meshes.  However, it was noted that 

the maximum stress values in Figure 2.8 are also dependent on the nodal locations, 

which vary for different mesh refinements. 

The effect of the mesh refinement on the through-thickness shear stress 

distribution at the punch periphery is shown in Figure 2.9.  Again, sensitivity to the 

mesh refinement and nodal locations is noted.    The averaging of stresses at the 

initiation of fracture over the ply thickness will be discussed in Chapter 6 as a solution 

to mesh sensitivity.  The effect of mesh refinement on averaged values of the six stress 

components is shown in Figure 2.10.  It is seen that refinement is achieved for meshes 

with a density greater than 1.5 times the baseline mesh, as observed in Figure 2.8. 

CATIA permitted visualization of all stress components and principal 

stresses.  When a more detailed analysis was required, results for a particular face were 

output to Microsoft Excel for further study.  These stress results will be presented in 

Chapter 6. 

2.5 Analytical Model 

Analytical models of a physical problem are useful for parametric analysis.  

Referencing a valid model allows for easy identification of those parameters which 

affect a problem and suggests relationships between those parameters.  An analytical 

model also provides a theoretically sound comparison for experimental and numerical 

results. 
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Figure 2.9 – Mesh comparison for τxz (6.35-mm punch, 6.99-mm sample) 
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Figure 2.10 – Mesh effect on maximum stress (6.35-mm punch, 6.99-mm sample) 
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The current work uses an analytical model presented by Milovic (1992, pp 

182-189).  This model makes a number of simplifying assumptions when compared 

with the experimental setup.  The specimen is assumed to be infinite in extent in the y-

direction (longitudinal) with an infinite strip stress loading applied in the z-direction 

over a contact area DP.  This configuration allows for a 2-D plane strain approximation 

of stresses in the specimen.  The specimen is treated as an anisotropic material.  The 

contact with the support is treated as rigid and frictionless, while the specimen edges 

are constrained in the x-direction (transverse).  A schematic of the analytical model is 

shown in Figure 2.11. 
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Figure 2.11 – Schematic of assumptions and parameters in analytical model 
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The problem solution is framed by two partial differential equations: 
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where u and w are the displacements in the x and z-directions, respectively, and the 

coefficients A are given by: 
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The necessary material properties for S-2/SC15 composite were given in Table 2.1.  

By solving for the displacements u and w using trigonometric series, the equations for 

the three stress components can be found: 
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Further details on the derivation of equations (2.7-2.9) can be found in Milovic’s text 

(1992, pp 182-189).  It should be noted that the constants shown in equations (2.7-2.9) 

reflect the material properties of the S-2 glass/SC15 epoxy composite.  The complexity 

of the solution required the inputting of material properties in equations (2.3-2.6) 

rather than maintaining the variable form.  A similar solution for a circular load on an 

elastic layer was given by D.M. Wood (1984) using Bessel functions.  However, a 

series solution was found to be more amenable for computational calculations. 

The assumption of plane strain used above is not true for the experimental 

and numerical cases, where the applied load is axisymmetric.  Additionally, an elastic 

punch will not apply a uniform stress to the specimen, but will have a non-uniform 

distribution with stress concentrations around the punch periphery.  Figure 2.12 shows 

a comparison of the stress distributions arising from the analytical model and a plane 

strain loading, a circular region of uniform stress, and an elastic punch loading 

modeled using the CATIA/Elfini software.  It was seen that the numerical prediction 

of the analytical model shows an acceptable level of agreement.  It was also noted that 

the plane strain and axisymmetric loadings exhibit similar behavior, suggesting that a  
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Figure 2.12 – Comparison of stress distributions for analytical model and 

different numerical loading assumptions (12.70-mm punch, 6.99-mm sample) 
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plane strain assumption is acceptable.  However, discrepancies are noted between the 

uniform stress loadings and punch loading, as expected.  These differences will 

necessitate that any analytical conclusions using an infinite transverse (y-axis) strip 

loading be validated against the numerical model of the experimental setup.  

Nonetheless, the analytical model provides insights into the geometric parameters 

governing scaling laws for the punch-composite system, as will be discussed in 

Chapter 5. 

Additional assumptions were made for the boundary conditions of the 

problem.  The assumption of a frictionless rigid support is common to both the 

analytical and numerical models.  In the experimental fixture, the steel of the base 

plate is approximately ten times as stiff as the composite, making the assumption of 

rigidity acceptable.  Both the fixture and specimen surface are smoothed at their 

contact.  While this does not validate the assumption of a frictionless surface, this was 

found to be more acceptable than an assumption of perfect adhesion between the 

specimen and the fixture.  The final boundary assumption is of lateral constraint at the 

specimen edges.  While this assumption does not match the experimental or numerical 

setup, Chapter 4 will demonstrate that the edge effects become negligible under certain 

conditions. 

Analytical calculations were performed by deriving the material 

coefficients shown in equations (2.7-2.9) using Maplesoft’s Maple software (Maple 

13) and encoding these equations in MathWorks’ MATLAB software (MATLAB 

v7.6.0 R2008a).  The analytical formulation provided the state of stress at a point of 

interest.  The specimen domain was discretized into a set of at least 20,000 points in 

MATLAB for which the state of stress was computed.  While the solution is in the 
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form of a Fourier series, summation of a finite number of terms is necessary for 

computation.  An analysis of the convergence of the transverse (x) and through-

thickness (z) stresses at the bottom of the specimen along the axis of loading was 

performed.  It was noted that the number of terms needed for convergence (M) was 

related to the width of the specimen considered (L).  Figure 2.13 shows the 

convergence of the through-thickness stress (σz) as M varies.  Figure 2.14 shows a plot 

of the value of M needed for convergence as a function of L, where L is measured in 

meters.  It was noted that a value of M > 400L ensured convergence of the solution.  A 

value of M = 500L was used in the MATLAB program. 

The MATLAB code was programmed to display results visually, similar 

to output in CATIA.  Results could also be output to Microsoft Excel for more detailed 

analysis as needed. 

2.6 Chapter Summary 

The manufacturing methods used in the present study have been presented 

in the current chapter.  The use of consistent manufacturing ensured consistent 

material properties for experimental testing, enabling accurate comparisons with 

analytical and numerical models.  The experimental testing and data reduction 

methodologies employed were described.  Numerical and analytical models of the 

experimental setup were presented as well as assumptions used in their development.  

Having established consistent methodologies for examining the behavior of S-2/SC15 

composites under confined compression, the failure behavior of the composite can be 

characterized using experimental measurements and observations and numerical 

modeling. 
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Figure 2.13 – Convergence of solution for normal stresses (σz) as a function of 

number of terms (M) for various specimen widths (L) 
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Figure 2.14 – Calibration of relationship between M and L 
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Chapter 3 

EXPERIMENTAL FAILURE BEHAVIOR 

Understanding the failure mode of a mechanical system is important for 

the development of parametric scaling laws.  If similar failure modes are demonstrated 

for specimens with a range of geometries, it would be expected that a single criterion 

could be discerned to characterize failure for any specimen within the range tested.  

Conversely, if specimens display distinct modes of failure over a range geometries, 

different scaling rules would be expected for each damage regime.  This chapter 

explores the observed failure modes and applied stresses for confined compression 

testing of S-2/SC15 composite specimens as a means of establishing limits on the 

applicability of potential scaling laws and providing insights into what mechanisms 

may control such scaling laws. 

3.1 Failure Mode 

A typical sectioned specimen is shown in Figure 3.1.  Some characteristics 

of the damage are noted.  Diagonal fractures are observed in the region beneath the 

punch.  These fractures pass through both the matrix and fiber materials and appear to 

initiate at the surface of the composite around the punch periphery.  The fractures can 

be conceptualized as a “plug” of damaged material within the specimen.  Similar 

characteristics were noted for all the specimens examined during experimental testing. 
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Figure 3.1 – Confined compression failure (11.09-mm punch, 5.08-mm sample) 

While visual inspection permits an initial understanding of the failure of 

S-2/SC15 composites under confined compression, a number of questions are raised.  

Is the angle of fracture constant as specimen thickness and punch diameter vary?  As 

the specimen thickness decreases, the through-thickness stress distribution approaches 

a uniform state of compression in the specimen beneath the punch.  Nearly vertical 

fractures may be expected for thin specimens, while thick specimens would exhibit a 

more conical behavior, as seen in Figure 3.1.  Additional questions remain about the 

development of the fractures.  What is the local state of stress which leads to fracturing 

of the composite?  Do the fractures initiate in a uniform location?  How quickly do 

they propagate through the composite?   

To answer the first of these questions, the fracture angles visible in the 

photographs of sectioned specimens were measured.  The method of measuring is 

illustrated in Figure 3.2 for the same sample shown in Figure 3.1.  Using a program 

with picture-editing capabilities, such as Microsoft PowerPoint, the photograph of the 

specimen was aligned such that horizontal surfaces, such as the bottom face of the 

specimen, were aligned with the horizontal axis of the page.  Lines were drawn  
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Figure 3.2 – Measuring fracture angles (11.09-mm punch, 5.08-mm sample) 

concurrent with the fracture orientations in the specimen.  By recording the height and 

width of the imposed lines, the angle of each fracture was calculated. 

 Once the individual fracture angles were measured for each specimen, 

their average value was taken as representative of that specimen.  This analysis was 

repeated for a test matrix of 29 specimens with various diameters and thicknesses.  

The representative fracture angles are presented in Table 3.1 and plotted as a function 

of diameter (Figure 3.3) and thickness (Figure 3.4).  Examination of Figures 3.3 and 

3.4 shows some experimental scatter in the data, but no clear trend with respect to 

either diameter or thickness.  It is concluded that the angle of fracture is a 

characteristic of the material system regardless of specimen geometry.  A basic 

statistical analysis of the data is presented in Table 3.2.  It is observed that the standard 

deviation and coefficient of variation are both reasonable for the entire data set, 

suggesting a characteristic fracture angle is indeed valid.  It is also observed that the 

deviations in fracture angle measurements within each specimen is minimal, and may 

be influenced by the smaller sampling size within each specimen.  
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Table 3.1 – Experimental test matrix with fracture angle values, θ (in degrees) 

 Punch Diameter, DP, mm 

6.27 7.62 7.92 10.16 11.09 12.70 

S
p

ec
im

en
 T

h
ic

k
n

es
s,

 H
C
, 
m

m
 

20.83 --- 56 --- 56 --- 57 

13.72 --- 51 --- 56 --- 50 

7.62 58 --- 57 --- 53
 

57 

7.11 --- 50 --- 55
 

--- 57 

6.35 57 --- 55 --- 55 54 

5.08 60 --- 62 --- 60 50
 

3.81 58 --- 55 --- 54 51 

2.54 50 --- 56 --- 58 55 
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Figure 3.3 – Fracture angle as a function of punch diameter 
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Figure 3.4 – Fracture angle as a function of specimen thickness 
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Table 3.2 – Statistical analysis of fracture angle 

Complete Data Set Averages from Specimens 

Average 

Angle 

Standard 

Deviation 

Coefficient of 

Variation 

Standard 

Deviation 

Coefficient of 

Variation 

55.6° 3.4° 6.2% 4.8° 8.8% 

 

3.1.1 Off-Axis Fracture Angles 

It is important to note that the results presented above were drawn from 

sectioning planes intentionally chosen to align with the fiber orientation in the 

composite (i.e. a 0°/90° orientation).  For a plain-weave composite, such as the S-

2/SC15 composite tested in the present work, specimen behavior may vary between 

the 0°/90° orientation, where fiber properties dominate, and the 45° (off-axis) 

orientation, where matrix properties have a greater influence.  This characteristic of 

composites could lead to a different characteristic fracture angle in the off-axis 

direction. 

Using the methodology presented above, a subset of six specimens were 

sectioned along a plane in the 45° orientation passing through the axis of loading.  The 

re-sectioned specimens were again dyed and photographed, and the angles were 

measured as described above.  A comparison of the sections in the 0°/90° and 45° 

orientations is shown in Figure 3.5.  It was noted that similar fractures occur in the off-

axis planes.  Moreover, these fractures appear to form at the same angles as those 

fractures in the 0°/90° planes.  Table 3.3 compares the average measured angles and 

their deviation for both on-axis and off-axis cases.  While some variation does exist 
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between the two, this variation is found to be less than the standard deviations for the 

two sectioning planes.  In addition, there was no distinct trend relating to whether the 

off-axis fracture angles were smaller or larger than the on-axis case; the distributions 

appear to be random, as illustrated in Figure 3.5.  Based on these observations, it is 

concluded that the fractures created during the confined compression test form at a 

characteristic angle.  For S-2/SC15 composites, experimental calculations estimate this 

characteristic fracture angle to be 56°.  It is noted that Yen et al. (2004) obtained a 

similar value of 53° for the fracture angle of S-2/SC15 composites by performing 

confined compression testing using a different experimental setup. 

 

 

 

Section at 0°/90° Orientation Section at 45° Orientation 

Figure 3.5 – Comparison of fracture angles on different sectioning planes  

(10.16-mm punch, 7.11-mm sample) 

Table 3.3 – Comparison of average fracture angles on different sectioning planes 

0°/90° Orientation 45° Orientation 

Average Standard Deviation Average Standard Deviation 

54.3° ±8.4° 51.5° ±8.6° 
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3.1.2 Defining “Thin” and “Thick” Specimens 

If the angle of fracture is assumed to be constant, the damaged region in 

the composite specimen can be idealized as a conical “plug” of material.  The height of 

this plug, HP, can be estimated knowing the angle of fracture and the diameter of the 

punch: 

  tan2
1

PP DH  (3.1) 

This relationship is illustrated in Figure 3.6. 

 

 

HP

θ

DP

 

Figure 3.6 – Schematic of idealized fracture plug formations 

 

If a specimen has a thickness which is less than the theoretical plug height 

(i.e. HC < HP) the fracture angles would be expected to propagate through the 

specimen to the support, forming a “truncated cone”.  A specimen with greater 

thickness (i.e. HC > HP) will fracture completely within the specimen, with no effect 

from the support.  This change in plug formation is used to define a “thin” and “thick” 

specimen, respectively.  Using equation (3.1) these “thickness regimes” can be 

expressed mathematically: 
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The difference between interactions of the plug either with the “rigid” 

support or with the softer undamaged composite material could reasonably be 

expected to affect the stress distribution of the specimen at failure.  In the remainder of 

this study, these two thickness regimes will be considered as geometric sets with 

potentially distinct behaviors. 

3.2 Applied Stress at Failure 

The typical force-displacement relationship for confined compression 

testing of S-2/SC15 composites is presented in Figure 3.7.  The load drop in Figure 3.7 

is assumed to represent the initiation of fracturing in the specimen, as verified by 

sectioning of specimens.  The peak load at this load drop, normalized by the area of 

the punch to define an applied stress, is taken to be the applied load (stress) at the 

initiation of failure.  The relationship between this applied stress and diameter and 

thickness was studied using the test matrix of 29 experimental specimens with various 

thicknesses and punch diameters.  The combinations used and corresponding values of 

applied stress are shown in Table 3.4.  The applied stresses at failure for all specimens 

are also plotted as a function of diameter and thickness in Figures 3.8 and 3.9, 

respectively. 

It is noted that, although some scatter exists in the data, the applied stress 

remains relatively invariant as a function of both diameter and thickness (see Figures 

3.8 and 3.9).  A basic statistical analysis of the data in Table 3.4 likewise suggests that 

the applied stress has an average value σavg = 887 MPa regardless of specimen  
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Figure 3.7 – Force-displacement curve (7.62-mm punch, 7.11-mm sample) 
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Table 3.4 – Experimental test matrix with applied stress values, σapp (in MPa) 

 Punch Diameter, DP, mm 

6.27 7.62 7.92 10.16 11.09 12.70 

S
p

ec
im

en
 T

h
ic

k
n

es
s,

 H
C
, 
m

m
 

20.83 --- 868 --- 924 --- 903 

13.72 --- 752 --- 951 --- 718 

7.62 912 --- 898 --- 822
 

933 

7.11 --- 996 --- 913
 

--- 838 

6.35 851 --- 819 --- 832 820 

5.08 954 --- 991 --- 877 895
 

3.81 870 --- 856 --- 787 870 

2.54 974 --- 1014 --- 1059 831 
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Figure 3.8 – Applied stress at failure as a function of punch diameter 
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Figure 3.9 – Applied stress at failure as a function of specimen thickness 
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geometry, with a standard deviation of 78 MPa and a coefficient of variation of 8.8%.  

Given the randomness of the scatter in the data in Figures 3.8 and 3.9, this error is 

considered reasonable. 

The result of a characteristic applied stress for initial failure regardless of 

specimen thickness is inconsistent with expected behavior.  As the specimen becomes 

thinner (or the punch becomes larger) the stress distribution is expected to exhibit 

more uniform compression.  To conceptualize this expected change in behavior, a 

cylindrical “column” of material defined by the punch diameter (Figure 3.10) is 

considered.  Performing a force balance in the vertical direction on this column gives: 

 SupportPeripheryapp FFP  (3.3) 

where Papp is the force applied by the bunch, FPeriphery is the shear reaction force acting 

on the sides of the column, and FSupport is the normal reaction force acting at the 

specimen support.  Equation (3.3) can also be expressed using the average stress 

components acting on the hypothetical column of material: 

 
4
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P
app

D
HD

D
 (3.4) 

The average stress components can be expressed in terms of the forces on the column 

or integrals of the stress distributions acting on the column: 
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The expression within the integral in equation (3.5) is intended to capture the radial 

shear stress, with the angle υ being measured from the x-axis. 
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Figure 3.10 – Force reactions on a “column” of material beneath the punch 

Increases in FPeriphery indicate shear-dominated behavior while increases in 

FSupport indicate compression-dominated behavior.  A comparison of these two reaction 

forces as a ratio with the applied load (Papp) is shown in Figure 3.11 for a 12.70-mm 

punch using results from the numerical model.  It is observed that compressive 

behavior does dominate for thinner specimens, while shear behavior is more prevalent 

for thicker specimens.  This change in internal behavior with specimen geometry 

suggests that the applied stress at initial failure should also vary with specimen 

geometry. 

A similar force balance can be performed for the radial (x and y direction) 

forces acting on the “column” in Figure 3.10.  Because no external forces act in the x 

or y directions, all internal forces are self-equilibrating.  Stresses arising from the 

Poisson expansion of the column are counteracted by confining stresses produced by 

the undamaged material outside the column.  These confining stresses can be 
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Figure 3.11 – Comparison of normal and shear reactions (12.70-mm punch) 
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Figure 3.12 – Normalized confinement vs. specimen thickness (12.70-mm punch) 
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 integrated over the surface area of the column to yield a net confining force, Fconf.  

Using the numerical model, the ratio of Fconf to the applied force Papp for specimens of 

various thicknesses loaded with a 12.70-mm punch was plotted in Figure 3.12.  It is 

observed that the value of the confining force increases with increasing thickness.  

This result is expected, since a thicker column will experience greater through-

thickness displacement and exhibit greater Poisson expansion effects. 

The observed experimental applied stress behavior (Figures 3.8 and 3.9) 

contradicts the behavior of the internal applied stresses (Figure 3.11).  The consistent 

fracture behavior for all geometries (Section 3.1) also contradicts the varying behavior 

of the internal stresses.  These observations raise the question of what combination of 

stress interactions give a characteristic applied stress and fracture mode despite the 

variations in the internal stresses.  Chapter 6 will present a more detailed analysis of 

the internal stress distributions and use various failure criteria to explain this 

contradiction of the confined compression test. 

3.3 Stresses on the Fracture Plane 

To begin investigating the stress interactions in confined compression 

specimens, the internal stresses in the specimen were transformed into components on 

the fracture plane.  Such a transformation enables an analysis of the stress state that is 

causing fractures to form.  Based on the observation of a characteristic fracture angle 

regardless of specimen geometry or circumferential location with respect to the punch, 

it was assumed that the stress components in the radial direction (i.e. xz-plane) were 

rotated by an angle θ, but that the stress components in the circumferential direction 

(i.e. y-axis) remained unrotated.  The transformation is illustrated in Figure 3.13, with 

the y-axis going into the page. 
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Figure 3.13 – Schematic of transformation of stresses into fracture plane 

 

Directional cosines were defined to transform the stresses from the 

material coordinates (x-y-z) into the fracture plane (x′- y′- z′) described above (Boresi 

& Schmidt, 2003, p 31): 

  

cos0sin

010

sin0cos

      

z

y

x

zyx

 (3.7) 

Knowing the directional cosines it is possible to define the transformed stress 

components in term of the stresses in the material coordinates (Boresi & Schmidt, 

2003, p 32): 
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2
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zx  (3.10) 

 yy  (3.11) 

 cossin xyyzyx  (3.12) 

 sincos xyyzzy  (3.13) 

It is noted that equations (3.8-3.10) are the same as those for a two-dimensional 

transformation of stress (Hibbeler, 2005, pp 456-458).  Since the y-axis is not rotated, 

the normal component of stress (σy) remains unchanged, although the shear stresses on 

the xy and yz-planes are transformed. 

Some comment is also necessary on the choice of a value for θ.  While the 

fracture plane is oriented at 56°, maintaining the x-direction across the fracture and the 

z-direction along the fracture necessitated a rotation of -34°.  This is illustrated in 

Figure 3.13. 

Representative stress distributions in the fracture plane orientation are 

shown in Figure 3.14 for both a “thin” and a “thick” specimen using results from the 

numerical model.  It is noted in both cases that the stresses acting across the fracture 

face (i.e. σx′) are compressive.  Thus the fracture is not formed due to tensile failure; 

rather, compressive stresses act to keep the fracture plane closed.  Likewise, the 

stresses acting parallel to the fracture (i.e. σz′) are compressive.  However, the shear 

stresses along the fracture plane (i.e. τxz′) are positive.  Referring to Figure 3.13, it is 

noted that positive shear corresponds to the kind of sliding fracture a confined 

compression test would cause.  It was also noted that the circumferential normal and 

shear stresses (i.e. σy′, τxy′, and τyz′) were at most 30% of the maximum value of the  
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Figure 3.14 – Comparison of transformed stresses on the fracture plane for a 

“thin” and a “thick” specimen 
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shear and normal stresses on the fracture plane.  This suggests that the radial stress 

components will dominate the fracture behavior.  

These observations suggest that fractures in the specimens are caused by a 

compression-shear interaction on the fracture plane, initiating at the punch periphery.  

It is also noted that the shear stress distribution is slightly more uniform in the “thin” 

specimen (see Figure 3.14).  This characteristic may explain why fractures tend to 

proliferate throughout the width of the plug for “thin” specimens, but not for “thick” 

specimens.  The observation of a compression-shear interaction will be considered in 

Chapter 6 to explain the contradictory experimental applied stress behavior described 

previously.  The development of an appropriate failure criterion for this behavior will 

also be used to determine the locations of crack initiation. 

3.4 Chapter Summary 

In the present chapter the failure behavior of S-2/SC15 composite 

specimens under confined compression was examined.  Cross-sectioning of specimens 

showed diagonal fractures of the fibers as the main failure mode.  Fractures were 

observed to occur at a characteristic angle regardless of the dimensions of the punch 

and specimen and the orientation with respect to the fibers.  While the fracture 

mechanism appeared consistent regardless of geometry, it was noted that the “cone” of 

damaged material either propagated to the support or was contained within the 

specimen.  This criterion was used to define “thin” and “thick” specimens, which may 

exhibit different behaviors. 

A similar analysis of the applied stress to initiate failure was performed.  It 

was observed that the value of applied stress remains constant for all punch diameters 

and specimen thicknesses considered.  This behavior was seen to be contradictory to 
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the internal stress distribution, which is more shear-dominated for thicker specimens 

and more compression-dominated for thinner specimens.  To begin exploring how 

dissimilar stress states lead to similar applied failure stresses, the stress components 

were transformed into the fracture plane at the characteristic angle.  It was seen that a 

compression-shear interaction exists along the fracture.  It was concluded that the 

fracture is caused by shearing failure of the fibers.  The observations discussed in this 

chapter motivate the analysis of various failure criteria presented in Chapter 6. 
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Chapter 4 

MINIMUM SPECIMEN WIDTH 

4.1 Background 

When performing experimental and numerical studies, it is typically 

impractical and undesirable to test extremely large samples.  Ideally, one goal of an 

experimental setup should be to minimize the size of the specimen to conserve the 

amount of material used in testing.  However, this desire for minimum size must be 

balanced with the need for consistent behavior regardless of specimen size. 

To conceptualize the calculation of the minimum experimental specimen 

width, a confined compression test that is carried out on a hypothetical circular 

specimen with a diameter equal to the punch diameter is considered.  As the specimen 

is compressed along the axis of the punch (z-axis), bulging would occur in the 

transverse and longitudinal directions (x and y-axes) due to Poisson expansion effects.  

If a ring of material were added around the specimen, it would provide added lateral 

confinement, restricting the Poisson expansion in the x and y-directions.  However, at 

some critical width the addition of further material would provide no additional 

confinement.   

For any specimen with a diameter greater than this critical width the load 

path from the punch to the support would not pass through the additional material.  

Therefore the stress distribution within the specimen would remain the same, 

regardless of the amount of additional material.  Calculating this critical width ensures 
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that all specimens are sufficiently large to allow for the maximum possible load 

distribution (i.e. the amount of load distribution expected in a specimen of infinite 

width). 

4.2 Analytical Calculation 

The critical specimen width for S-2/SC15 composites under confined 

compression was initially calculated using Milovic’s analytical solution for an infinite 

longitudinal (y-direction) strip load (see equations (2.7-2.9)).  The critical width for a 

given specimen, denoted as Lcrit, was defined as the diameter at which the stress 

normal to the support (σz) becomes zero. This choice is rationalized as follows.  The 

load path through the specimen passes from the punch to the support.  At the diameter 

where the stress normal to the support becomes zero, the load from the punch has been 

completely transferred into the support and no additional load distribution is expected.  

Any material beyond this value of Lcrit will not affect the stress distribution within the 

specimen.  This definition of Lcrit is illustrated in Figure 4.1. 

In calculating the critical width it was recognized that, for a given 

material, the critical width could be a function of both the diameter of the punch and 

the thickness of the specimen.  Stress distributions on the support were calculated for 

two diameters (12.70-mm and 25.40-mm) with a variety of thicknesses and two 

thicknesses (12.70-mm and 25.40-mm) with a variety of diameters.  Plots of these 

stress distributions for a varying thickness (constant diameter) and varying diameter 

(constant thickness) are shown in Figures 4.2 and 4.3, respectively. 
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Figure 4.1 – Schematic of definition of critical width, Lcrit 

 

Using the data from the plots in Figures 4.2 and 4.3, the coordinate at 

which the support stress became zero was identified.  Some characteristics of these 

stress distributions were also noted.  For specimens with a large punch diameter to 

specimen thickness ratio the stress distribution in the region below the punch has an 

almost constant value equal to the applied stress, but drops off to zero almost 

immediately outside the punch.  For specimens with a small punch diameter to 

specimen thickness ratio, the stresses are more distributed, since the greater thickness 

allows for a greater distribution by the load path. 

Once all values of Lcrit were measured for the given specimens, they were 

plotted as a function of either thickness or diameter.  These plots are shown in Figures 

4.4 and 4.5 for the stress distributions shown in Figures 4.2 and 4.3, respectively.  

Plots of Lcrit as functions of thickness and diameter are also shown in Figures 4.6 and  
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Figure 4.2 – Stress distributions for varying thickness (12.70-mm punch) 
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Figure 4.3 – Stress distributions for varying diameter (12.70-mm sample) 
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Figure 4.4 – Critical width as a function of thickness (12.70-mm punch) 
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Figure 4.5 – Critical width as a function of diameter (12.70-mm sample) 
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Figure 4.6 – Critical width as a function of thickness (25.40-mm punch) 
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Figure 4.7 – Critical width as a function of diameter (25.40-mm sample) 
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4.7 for DP = 25.4-mm and HC = 25.4-mm, respectively.  In Chapter 3 it was noted that 

two “thickness regimes” existed for the specimens based on fracture depth, and that 

these two regimes could potentially exhibit different behaviors.  The results presented 

in Figures 4.4-4.7 suggest that this is the case for critical width.  The thickness or 

diameter at the boundary between the regimes (i.e. (HC)crit or (DP)crit) is noted in all 

figures. 

A regression analysis was performed on the data, expecting that Lcrit 

would be a simple polynomial function of HC, DP, or a combination of the two.  These 

fitting curves and equations are shown in Figures 4.4-4.7.  Recognizing that the 

functional forms for the individual parameters (HC and DP) should match in a more 

general functional form including both parameters, the following general equations for 

Lcrit were developed: 

  (thin) CPcrit bHaDL  (4.1) 

  (thick) 

2

C

C

P
crit dH

H

D
cL  (4.2) 

where a, b, c, and d are fitting coefficients.  The coefficients for equations (4.1) and 

(4.2) were calculated from the fitting curves in Figures 4.4-4.7.  By averaging the 

values of the fitting coefficients obtained, the equations for Lcrit for the S-2/SC15 

composite were found to be: 

  (thin) 48.295.0 CPcrit HDL  (4.3) 

  (thick) 11.336.0

2

C

C

P
crit H

H

D
L  (4.4) 

The correlation coefficients between equations (4.3) and (4.4) and the data in Figures 

4.4-4.7 are shown in Table 4.1.  It should also be noted that the error in the value of 

Lcrit at the intersection of equations (4.3) and (4.4) is 0.11%. 
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Table 4.1 – Correlation of equations (4.3) and (4.4) with data in Figures 4.4-4.7 

Const. Dim. DP = 12.70-mm HC = 12.70-mm DP = 25.40-mm HC = 25.40-mm 

Assoc. Figure Figure 4.4 Figure 4.5 Figure 4.6 Figure 4.7 

r
2
 Coefficient 0.996 0.997 0.996 0.991 

 

 

Limits exist for the applicability of the expressions for Lcrit in equations 

(4.3) and (4.4).  The use of the analytical solution necessitates an assumption of 

material homogeneity.  Specimens with HC less than a single ply thickness or Lcrit 

smaller than the unit cell of the fabric are likely to exhibit distinguishable matrix and 

fiber behaviors, violating the assumption of homogeneity.  The specimens considered 

in the present study are significantly larger than these bounds, and usage of equations 

(4.3) and (4.4) is valid.  The curve fitting in Figures 4.4-4.7 was performed for the 

range 1.27-mm < HC < 76.20-mm and 1.27-mm <DP < 63.50-mm.  Extrapolation of 

equations (4.3) and (4.4) outside these ranges should not be performed.  All specimen-

punch combinations tested in the present study fall within these ranges. 

4.2.1 Effect of Varying Moduli on Lcrit 

It is important to note that the coefficients in equations (4.3) and (4.4) are 

purely empirical fits to the normal stress distribution decay behavior for the S-2/SC15 

composite.  The fitting coefficients shown in equations (4.3) and (4.4) are not valid for 

different material systems.  A parametric study of the effect of the three moduli (Ex, Ez, 

and Gxz) was performed to explore the effect of varying these moduli on the stress 
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distribution normal to the specimen support.  The results of this analysis are shown in 

Figure 4.8 for a specimen with DP = HC = 12.70-mm. 

Each modulus was varied by doubling or halving its value relative to the 

baseline S-2/SC15 composite material (see Table 2.1) while holding the other moduli 

constant at their baseline values.  Analysis of Figure 4.8 leads to observations about 

the effects of these moduli on Lcrit.  Increasing the axial modulus (Ex) causes a slight 

increase in the spread of the stresses normal to the support.  Recalling that increasing 

the modulus tends to draw load, this increase in the spread of stresses in the axial 

direction is expected.  Increasing the through-thickness modulus (Ez) causes a more 

pronounced decrease in the spread of the stresses normal to the support.  This increase 

should tend to transfer more load in the through-thickness direction, which would 

decrease the axial spread of the stresses, as observed.  Lastly, increasing the through-

thickness shear modulus (Gxz) causes a significant increase in the spread of the stresses 

normal to the support.  An increase in the shear modulus should increase the transfer 

of stresses from the through-thickness to axial directions, as observed.  It is also noted 

that Ez and Gxz have a much greater effect on the value of Lcrit than Ex, though Ex still 

has a measureable effect on the stress distribution at the support. 

From the proceeding discussion, it is apparent that the values of Lcrit are 

highly dependent on the properties of material tested.  Therefore, the values of Lcrit 

given in equations (4.3) and (4.4) are only valid for the S-2/SC15 composite material 

considered in the present study.  Different equations for Lcrit should be derived for 

different materials, following a methodology similar to that presented above. 
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Figure 4.8 – Effect of varying moduli on the stress distribution normal to the 

support (12.70-mm punch, 12.70-mm sample) 
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4.2.2 Off-Axis Verification of Lcrit 

Equations (4.3) and (4.4) for Lcrit were calculated from stresses in the fiber 

(0°/90°) orientation.  Because of the anisotropy of composite materials, the effective 

material properties will be different between the fiber direction (0°/90° orientation), 

where the stiffer fibers allow for greater lateral redistribution of the load, and off-axis 

orientations (e.g. 45°), where the fiber properties are less dominant.  From the 

discussion in Section 4.2.1 it is noted that different properties in the off-axis 

orientation will likely lead to different values of Lcrit.  Therefore it is important to 

verify that the values of Lcrit given by equations (4.3) and (4.4) are conservative for all 

circumferential orientations. 

The off-axis moduli were calculated using the Composite Design and 

Simulation (CDS) software developed at the University of Delaware’s Center for 

Composite Materials (CDS v2.0.2b).  The material properties from Table 2.1 were 

used to define an S-2/SC15 composite lamina.  The lamina was then rotated 45° 

transversely (i.e. about the z-axis) and the material properties calculated for the un-

rotated global axes were recorded.  The resulting off-axis properties are shown along 

with the 0°/90° orientation properties in Table 4.2.  It is seen that the through-

thickness moduli (i.e. Ez, Gxz, and Gyz) are unchanged by the transformation. 
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Table 4.2 – Comparison of material properties in the 0°/90° and 45° orientations 

 

Elastic Moduli Shear Moduli Poisson Ratios 

Ex Ey Ez Gxy Gxz Gyz νxy νxz νyz 

GPa GPa GPa GPa GPa GPa --- --- --- 

0°/90° 27.5 27.5 11.8 2.90 2.14 2.14 0.11 0.18 0.18 

45° 7.5 7.5 11.8 12.39 2.14 2.14 0.76 0.06 0.06 

 

 

 

The values of Ex′, νxy′, and νxz′ for the off-axis (45°) orientation were 

substituted into the analytical model and the analysis presented above was repeated to 

obtain values of Lcrit for the off-axis orientation.  Plots of Lcrit in the off-axis 

orientation as a function of thickness and diameter are presented in Figures 4.9 and 

4.10, respectively, and compared with the curves from the fiber orientation.  It is noted 

that the value of Lcrit in the 45° orientation is always less than the value of Lcrit in the 

0°/90° orientation.  The decrease in influence from the fibers in the off-axis orientation 

causes a reduction in the axial modulus (Ex), leading to less transverse load 

distribution for the off-axis orientation.  This causes a narrower stress distribution on 

the support (cf. Figure 4.8), and a lower value of Lcrit in the off-axis orientation, as 

observed.  Therefore the expressions for Lcrit presented in equations (4.3) and (4.4) are 

found to be conservative for all circumferential orientations, as desired. 

4.3 Numerical Validation 

The analytical model assumes a uniform strip loading in the longitudinal 

(y-axis) direction (see Figure 2.11).  However, the experimental punch setup generates  
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Figure 4.9 – Off-axis critical width as a function of thickness (12.70-mm punch) 
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Figure 4.10 – Off-axis critical width as a function of diameter (12.70-mm sample) 
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stress concentrations at the periphery of the punch.  Verification of the expressions for 

Lcrit presented in Section 4.2 is required since the analytical and experimental loadings 

are different.  The estimates of Lcrit presented in equations (4.3) and (4.4) were 

compared with support stress distributions calculated using the finite element model.  

Two examples of this comparison are shown in Figures 4.11 and 4.12 for a “thin” and 

a “thick” specimen, respectively.  The colors used in the plots show the support 

stresses as a percentage of the applied load, while the white dashed line shows the 

location of Lcrit calculated for that particular specimen using equation (4.3) or (4.4).  It 

is apparent that the numerical critical width is slightly less than the analytical value in 

Figure 4.11.  The same conclusion is not as apparent in Figure 4.12.  However, closer 

inspection shows that the stress on the support beyond Lcrit in Figure 4.12 is less than 

0.5% of the applied load and can be considered negligible.  Therefore, good agreement 

is seen between the analytical values of Lcrit and the extent of the numerical stress 

distributions. 

To complete the validation of the calculated values of Lcrit it is necessary 

to compare the stress distributions within the specimen for a range of specimen widths 

larger than Lcrit.  A comparison of stress distributions from the FE model are shown in 

Figures 4.13-4.15 for shear stresses at the punch periphery, normal stresses at the 

specimen surface, and confining stresses at the punch periphery, respectively.  For 

these three figures, DP = 12.70-mm and HC = 6.99-mm.  Employing equation (4.3), the 

critical width for the specimen is found to be Lcrit = 29.19-mm.  It is seen that the 

stress distributions shown in Figures 4.13-4.15 are essentially constant regardless of 

the width of the specimen, which is always greater than Lcrit. 
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Figure 4.11 – Comparison of numerical stress distribution with analytical value 

of Lcrit (12.70-mm punch, 3.81-mm sample) 
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Figure 4.12 – Comparison of numerical stress distribution with analytical value 

of Lcrit (12.70-mm punch, 13.97-mm sample) 



 76 

-7

-6

-5

-4

-3

-2

-1

0

0 0.1 0.2 0.3 0.4 0.5 0.6

101.6

76.2

50.8

32.0
L

C
 (mm)

Normalized Shear Stress, 
xz

/
app

z
-c

o
o

rd
in

a
te

, 
m

m

 

Figure 4.13 – Comparison of shear stress at punch periphery for varying widths, 

LC (12.70-mm punch, 6.99-mm sample) 
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Figure 4.14 – Comparison of normal stress at specimen surface for varying 

widths, LC (12.70-mm punch, 6.99-mm sample) 
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Figure 4.15 – Comparison of confining stress at punch periphery for varying 

widths, LC (12.70-mm punch, 6.99-mm sample) 
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The discrepancies in the stress distributions are noted to be essentially 

negligible.  The slight differences observed are attributed to minor differences in the 

location of meshing nodes in the FE model.  However, these discrepancies show no 

trend with specimen width, and are therefore assumed to be random and insignificant.  

It is also noted that since the three stress components which contribute to the stresses 

on the fracture plane (σx, σz, and τxz; see equations (3.8-3.10)) are invariant for L > Lcrit 

(see Figures 4.13-4.15), stresses on the fracture plane will also be invariant for L > 

Lcrit. 

The consistency of the stress distributions validates the definition of Lcrit 

given in equations (4.3) and (4.4).  Using the concept of a maximum area of stress 

distribution in a specimen, a “critical width” has been defined beyond which additional 

material provides no additional confining pressure (see Figure 4.15).  Using the 

expressions presented, specimens can be sized for any geometry (i.e. punch diameter 

and specimen thickness) such that the internal stress distribution is not affected by the 

specimen width. 

4.4 Experimental Comparisons 

Table 4.3 shows the values of Lcrit for the specimens in the experimental 

test matrix.  Samples with L < Lcrit are indicated in boldface and brackets, recalling 

from Section 2.2 that L = 25.4-mm for specimens in the mini punch-shear fixture (HC 

= 2.54, 3.81, 5.08, 6.35, and 7.62-mm) and L = 76.2-mm for specimens in the punch-

shear fixture (HC = 7.11, 13.72, and 20.83-mm).  It is seen that five specimens are 

below Lcrit by more than 1% of Lcrit.  Figure 4.16 compares the experimentally 

measured applied stress at failure for specimens with L ≥ Lcrit and specimens with L < 

Lcrit.  It is observed that the specimens which violate the critical width condition show  
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Table 4.3 – Experimental test matrix with critical width values, Lcrit (in mm) 

 Punch Diameter, DP, mm 

6.27 7.62 7.92 10.16 11.09 12.70 

S
p

ec
im

en
 T

h
ic

k
n

es
s,

 H
C
, 
m

m
 

20.83 --- 65.8 --- 66.6 --- 67.6 

13.72 --- 44.2 --- 45.4 --- 47.0 

7.62 25.6 --- [26.7] --- [29.2]
 

[30.8] 

7.11 --- 25.1 --- 27.1
 

--- 29.5 

6.35 22.0 --- 23.4 --- [26.1] [27.6] 

5.08 18.7 --- 20.0 --- 23.0 24.5
 

3.81 15.3 --- 16.9 --- 19.8 21.3 

2.54 12.2 --- 13.7 --- 16.7 18.2 

 

Note: [Boldface and bracketed] terms represent L < Lcrit 
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Figure 4.16 – Effect of L < Lcrit on the experimental applied stress at failure 
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no unique trend and all fall within one standard deviation of the experimental average.  

It is also seen that the greatest deviation of L from Lcrit is 18%.  Figure 4.16 suggests 

that the specimens that violate the critical width condition are still valid for the 

analysis.  It is possible that the value of Lcrit given by equations (4.3) and (4.4) is 

conservative.  Figure 4.11 suggests this may be the case, especially for thin specimens.  

It is also possible that the effects of L < Lcrit are only noticeable for L << Lcrit, and that 

this threshold is not violated by the specimens considered.  Therefore, while having L 

> Lcrit is ideal when sizing experimental specimens, the specimens with L < Lcrit in 

Figure 4.16 demonstrate acceptable agreement for consideration in the remainder of 

this study. 

4.5 Chapter Summary 

The present chapter focused on the development of a criterion for the 

minimum allowable specimen width.  Recognizing that an ideal finite-sized specimen 

should capture all transverse Poisson expansion effects induced by through-thickness 

compression, the critical width was defined as the diameter at which the stress normal 

to the support became zero.  Using Milovic’s analytical model (1992), values of Lcrit 

were calculated for a range of punch and specimen dimensions.  Curve-fitting of the 

analytical results was used to develop two empirical equations for “thin” and “thick” 

S-2/SC15 specimens in terms of the punch diameter and specimen thickness.  A 

parametric study of the specimen moduli showed that varying the material properties 

can greatly affect Lcrit.  Therefore, equations for Lcrit were calculated in the off-axis 

(45°) orientation, showing that the value of Lcrit calculated in the fiber orientation is 

most conservative.  Comparison of stress distributions from numerical analysis of 

specimens of various widths showed equivalent behavior for all L > Lcrit.  This 
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conclusion ensures that Poisson expansion effects are negligible for all specimens 

considered and allows for simplifications to Milovic’s analytical solution, enabling 

further parametric analysis. 
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Chapter 5 

GEOMETRIC SCALING PARAMETERS 

5.1 Problem Parameters 

Identifying the parameters present in a physical system is an important 

step in developing parametric scaling laws for the system (White, 2003, pp 298-301).  

A schematic of the experimental confined compression setup is shown in Figure 5.1.  

Three parameters are identified which define the geometry of the system, 

characterizing its layout.  These are the punch diameter (DP) and the specimen 

thickness (HC) and width (LC).  Two additional parameters are identified which define 

the response of the system, characterizing its behavior.  These are the angle of the 

fracture plane (θ) and the peak stress at failure (σapp). 

The properties of the material forming the specimen and the punch are 

also important in characterizing the system and would influence any scaling laws.  

Their importance was demonstrated in Section 4.2.1, where different material 

properties yielded different values of Lcrit.  However, since only one consistent 

material is considered in the present work, the parametric effects resulting from the 

material are beyond the scope of this study.  Likewise, it was demonstrated in Section 

3.1 that the angle of fracture is constant for all geometries for the material tested.  

Therefore, the angle of fracture is not expected to be influenced by the geometric 

parameters of the problem, although material parameters would likely affect the angle. 
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Figure 5.1 – Parameters in the confined compression problem 

5.2 Analytical Form 

If a given system has an analytical form which describes the system 

behavior, the analytical form can be used to suggest parametric scaling ratios.  Other 

methods of deriving parametric ratios exist, such as the Buckingham Pi Theorem 

(White, 2003, pp 302-304).  However, while the Pi Theorem provides all possible 

parametric combinations for a given system, an analytical form suggests only those 

combinations which are likely to influence the system. 

The analytical form used is a solution of the confined compression 

problem given by D. Milovic (1992, pp 182-189).  The solution gives expressions for 

the three stress components under plane strain components (σx, σz, and τxz) in terms of 

the four parameters previously identified (DP, HC, LC, and σapp).  The expressions are 

repeated from Section 2.5: 
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 (5.3) 

Note that the subscripts C and P, denoting “composite” and “punch” respectively, have 

been dropped from equations (5.1-5.3) to simplify the presentation.  The constants 

shown represent the material constants present in the analytical form, as discussed in 

Section 2.5. 

Examining equations (5.1-5.3), the analytical form is observed to contain 

three basic expressions: the applied stress (σapp), material constants, and geometric 

ratios of thickness or diameter with specimen width (HC/LC or DP/LC).  In all three 

equations, the applied stress can be divided through such that the stress components 

can be expressed as a ratio with the applied stress (i.e. σz/σapp).  Since only linear-

elastic behavior is considered, this result is expected.  
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5.3 A Geometric Scaling Parameter 

In Chapter 4 it was demonstrated that there exists a critical specimen 

width, LC = Lcrit, for which all wider specimens have equivalent stress distributions.  

Since any specimens with LC < Lcrit are considered invalid in the present study and all 

specimens with LC > Lcrit are expected to exhibit equivalent behavior, only specimens 

with LC = Lcrit need to be considered in the analytical form.  Therefore LC can be set 

equal to Lcrit in equations (5.1-5.3).  If the expressions for Lcrit in equations (4.3) and 

(4.4) are substituted into the ratios of HC/LC and DP/LC in equations (5.1-5.3) the 

following simplifications result: 
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In a similar manner, the expressions for z/LC and x/LC in equations (5.1-5.3) can be 

simplified as demonstrated below employing the results of equations (5.4-5.7): 
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Equations (5.4-5.11) demonstrate that the analytical form can be 

simplified in terms of three dimensionless geometric ratios.  The first is the ratio 

DP/HC (or its inverse), described as a “relative thickness” parameter.  The second and 

third are the coordinate scaling parameters z/HC and x/DP, which normalize each 

coordinate to the defining geometric parameter in its respective axes.  Thus, if two 

specimen setups have different physical dimensions but share the aspect ratio DP/HC 

they will have equivalent stress distributions in a scaled geometric space. 

5.4 Numerical Validation 

A numerical validation of this geometric scaling for the experimental 

setup is shown in Figures 5.2 and 5.3 for specimens with DP/HC = 0.909.  Slight 

discrepancies in the stress distributions at the punch periphery are noted.  These are 

attributed to the use of a chamfer on the punch.  A 0.25-mm chamfer was used in all 

numerical punches to mimic the experimental setup as discussed in Section 2.4.  For 

smaller specimens (i.e. the DP = 6.35-mm/HC = 6.99-mm sample in Figures 5.2 and 

5.3) this chamfer has a greater effect than for larger specimens (i.e. the DP = 12.70-

mm/HC = 13.97-mm and DP = 19.05-mm/HC = 20.96-mm samples in Figures 5.2 and 

5.3) since the point of contact is further from the punch periphery.  Thus the applied 

stress concentration (Figure 5.3) is further from the punch periphery (i.e. x/DP = 0.5) 

for the smaller specimen than the larger specimen.  This effect reduces the shear 

stresses measured at the actual punch periphery, as seen in Figure 5.2.  Moreover, it is 

noted that as the chamfer radius, rC, decreases relative to the punch diameter (i.e. 

rC/DP → 0), the stress distributions become convergent.  This is illustrated by the DP = 

12.70-mm/HC = 13.97-mm and DP = 19.05-mm/HC = 20.96-mm combinations in 

Figures 5.2 and 5.3.  Recalling that rC = 0.254-mm for the numerical punches, this  
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Figure 5.2 – Comparison of shear stress at periphery for DP/HC = 0.909 
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Figure 5.3 – Comparison of normal stress on surface for DP/HC = 0.909 
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observation suggests that a ratio of rC/DP ≤ 0.02 would give convergence for equal 

values of DP/HC in the present study.  It is also noted that the stress distributions in 

Figure 5.3 are essentially equivalent except for this minor discrepancy, and that the 

stress distributions in Figure 5.2 agree except for the discrepancy explained here. 

Two numerical models without punch chamfers were created to explore 

the effects of chamfering on scaling by DP/HC.  The through-thickness stress 

distribution and surface normal stress distribution are shown for these models in 

Figures 5.4 and 5.5, respectively.  The scaled stress distributions in Figures 5.4 and 5.5 

show significantly improved agreement when compared with Figures 5.2 and 5.3.  The 

maximum error between the two scaled curves is 5% in Figure 5.4, and may be 

attributed to slight meshing differences at the punch periphery.  Figures 5.4 and 5.5 

suggest that geometric scaling by DP/HC is valid for the elastic punch loading when the 

value of DP/HC measured at the contact between the punch and specimen is constant.  

The introduction of a chamfer, however, only approximates a constant value of DP/HC, 

leading to discrepancies.  The sensitivity of the stress singularities to the meshing at 

the point of contact also introduces discrepancies. 

5.5 Experimental Comparisons 

The values of DP/HC for the punch-specimen combinations in the 

experimental test matrix are shown in Table 5.1.  Geometrically similar specimens 

within a 2% error are noted in boldface with superscripts.  Recognizing that the two 

experimental measures, θ and σapp, have already been shown to have characteristic 

values for all punch diameters and specimen thicknesses (Chapter 3), the experimental 

results alone cannot be used to demonstrate the effectiveness of scaling by DP/HC. 
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Figure 5.4 – Comparison of shear stress for DP/HC = 0.909 with no chamfer 
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Figure 5.5 – Comparison of normal stress for DP/HC = 0.909 with no chamfer 
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Table 5.1 – Experimental test matrix with geometric ratios of DP/HC 

 Punch Diameter, DP, mm 

6.27 7.62 7.92 10.16 11.09 12.70 

S
p

ec
im

en
 T

h
ic

k
n

es
s,

 H
C
, 
m

m
 

20.83 --- 0.37 --- 0.49 --- 0.61 

13.72 --- 0.56 --- 0.74 --- 0.93 

7.62 0.82 --- 1.04 --- 1.46
b 

1.67
c 

7.11 --- 1.07 --- 1.43
b --- 1.79 

6.35 0.99 --- 1.25
a --- 1.75 2.00 

5.08 1.24
a --- 1.56 --- 2.18 2.50

d 

3.81 1.65
c --- 2.08 --- 2.91 3.33 

2.54 2.47
d --- 3.12 --- 4.37 5.00 

 

Note: Superscripts 
a, b, etc.

 represent similar values of DP/HC 
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5.6 Chapter Summary 

The present chapter examined the parameters present in the analytical 

model of the confined compression setup.  Four parameters were identified in the 

analytical form: applied stress, punch diameter, specimen thickness, and specimen 

width.  It was demonstrated that all three stress components can be normalized by the 

applied stress.  Recalling the definition of critical width from Chapter 4, it was 

demonstrated that a geometric scaling parameter DP/HC can be used for all L > Lcrit.  

The numerical model was used to show that punch-specimen pairs with equal values 

of DP/HC have similar stress distributions, though the effects of the punch chamfer 

prevented direct equality.  However, it was shown that as the ratio of the chamfer to 

the punch diameter decreases the validity of DP/HC scaling increases.  Likewise, 

punch-specimen pairs with no punch chamfer demonstrated equivalent behavior when 

the ratio DP/HC was constant.  Chapter 6 will explore the behavior of the peak stress 

distributions to explain why punch-specimen pairs with different values of DP/HC 

exhibit similar applied stress values at failure. 
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Chapter 6 

STRESS STATE AT FAILURE 

In Chapter 3 it was seen that the experimental fracture angle and applied 

stress at failure both appeared to have characteristic values regardless of variations in 

specimen geometry.  A basic force-balance analysis on the specimen showed that 

compressive reactions dominated for thinner specimens while shear reactions 

dominated for thicker specimens.  It was concluded that the experimental behavior 

contradicted the variable behavior expected from these changes in the internal stresses.  

In the present chapter the internal stress distribution will be considered in more depth 

and used to evaluate a number of common failure criteria to explain the apparent 

contradiction in experimental behavior. 

6.1 Internal Stress Distribution 

The internal stress distributions for representative thin and thick 

specimens are shown in Figure 6.1.  Only the components σx, σz, and τxz are shown 

since the circumferential components are significantly smaller at the point of damage 

initiation.  Some characteristics of the stress behavior are noted.  For the thin 

specimen, a state of nearly uniform compression in the z-direction exists beneath the 

punch through the entire thickness.  However, the stress is concentrated at the punch 

periphery at the specimen surface for the thick specimen.  The axial and shear stress 

components (σx and τxz) exhibit concentrated stresses at the punch periphery at the 

specimen surface for both thin and thick specimens.  A comparison of the stress  
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Figure 6.1 – Comparison of “thin” and “thick” stress distributions 
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distributions for σx and τxz in Figure 6.1 suggests that the magnitude of the 

concentration is indeed more significant for the thicker specimen since a uniform 

distribution, as observed for thinner specimens, tends to lessen the magnitude of the 

concentrated stresses. 

For both thin and thick specimens within the range of geometries 

considered the point of maximum stresses in the material axes occurs at the punch 

periphery in the fiber direction.  This is the point at which failure would be expected to 

initiate, and hence the stresses at this point are of interest.  Recalling that the internal 

stress components can be normalized by the applied stress if linear-elastic behavior is 

assumed (Section 5.2), stress components are represented by α = σ/σapp, where α is the 

“normalized stress” and a negative value of α indicates compression.  The stress 

components can then be calculated for any applied stress as σ = α × σapp.  Conversely, 

since the material strengths (σ = S) are known from Table 2.1, the applied stress to 

cause failure can be predicted by calculating σapp = S/α. 

Figures 6.2-6.7 show the numerically calculated through-thickness stress 

distributions for each stress component at the punch periphery in the fiber direction for 

a 12.70-mm punch. It is observed that significant stress gradients exist in the top ply 

for all the normal stress components (σx, σy, and σz) and the in-plane shear stress 

component (τxy) (Figures 6.2-6.5).  It should be noted that material strengths are 

measured at the macroscopic level, typically using specimens with a thickness greater 

than a single ply which are subjected to uniform stress and strain conditions.  

Consequently, it is necessary for the internal stress distributions to have no significant 

stress gradients over distances below the macroscopic level when using strength-based 

failure criteria.  For consistency with the known failure strengths in cases of a  
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Figure 6.2 – Transverse stress in the x-direction (12.70-mm punch) 
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Figure 6.3 – Transverse stress in the y-direction (12.70-mm punch) 
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Figure 6.4 – Through-thickness stress in the z-direction (12.70-mm punch) 
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Figure 6.5 – Shear stress on the xy-plane (12.70-mm punch) 
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Figure 6.6 – Shear stress on the xz-plane (12.70-mm punch) 
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Figure 6.7 – Shear stress on the yz-plane (12.70-mm punch) 
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significant stress gradient, the maximum stress in the first ply is approximated by the 

average value of the stress distribution within the first ply.  A similar method was 

proposed by Whitney and Nuismer for stress concentrations caused by holes and 

cracks (1974).  For the S-2/SC15 composite, the thickness of a single ply is taken to be 

0.635-mm.  The values of the stress components averaged over the top ply are given in 

Table 6.1.  These values are also plotted as a function of DP and HC in Figures 6.8 and 

6.9, respectively.  It should be noted that tensile stresses are positive while 

compressive stresses are negative. 

Figures 6.8 and 6.9 provide additional insights into the internal stress 

behavior shown in Figure 6.1.  It is noted that the circumferential stress components 

(σy, τxy, and τyz) are smaller than the radial stress components (σx, σz, and τxz).  Figure 

6.9 suggests that as the specimen becomes thinner the maximum magnitude of all of 

the stress components decreases.  As noted above, this behavior is expected as the 

stress distribution becomes more uniform.  The maximum stresses in Figure 6.8 appear 

to remain almost constant or increase slightly as punch diameter increases.  Increasing 

punch diameter, which has the effect of making the punch-specimen pair “thinner”, 

would be expected to cause the stresses to decrease, which is not observed in Figure 

6.8.  For punches with smaller diameters, this discrepancy is attributed to the punch 

chamfer which tends to decrease the values of the stress components (see Section 5.4).  

A slightly smaller range of “relative thicknesses” as measured by the ratio DP/HC may 

also explain the more uniform behavior shown in Figure 6.8 and subsequent plots 

which are a function of punch diameter.  Figure 6.8 includes punch-specimen pairs in 

the range 0.91 ≤ DP/HC ≤ 2.73, while Figure 6.9 includes punch-specimen pairs in the 

range 0.61 ≤ DP/HC ≤ 5.00. 
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Table 6.1 – Normalized average stresses at punch periphery in the fiber direction 

  Normalized Stress Components (α = σ/σapp) 

DP HC αx αy αz αxy αxz αyz 

mm mm --- --- --- --- --- --- 

6.35
a 

2.54
a 

-0.200 -0.195 -1.616 -0.006 0.348 0.059 

6.35
b 

6.99
b 

-0.420 -0.398 -1.706 -0.009 0.406 0.012 

7.62 6.99 -0.437 -0.414 -2.000 -0.007 0.476 0.080 

10.16 2.54 -0.165 -0.189 -1.692 -0.004 0.347 0.065 

10.16 6.99 -0.450 -0.426 -1.955 -0.011 0.470 0.027 

10.16 13.97 -0.651 -0.563 -2.109 -0.013 0.531 0.030 

10.16 20.96 -0.711 -0.615 -2.149 -0.013 0.544 0.031 

11.43 6.99 -0.494 -0.424 -1.996 -0.012 0.489 0.026 

12.70 2.54 -0.127 -0.219 -1.495 0.012 0.288 -0.013 

12.70 3.81 -0.252 -0.270 -1.739 -0.010 0.392 0.021 

12.70
a 

5.08
a 

-0.355 -0.337 -1.888 -0.011 0.445 0.024 

12.70 6.99 -0.461 -0.418 -2.044 -0.012 0.495 0.026 

12.70
b 

13.97
b 

-0.705 -0.596 -2.277 -0.013 0.569 0.029 

12.70 20.96 -0.776 -0.656 -2.179 0.011 0.522 -0.063 

15.24 6.99 -0.488 -0.413 -2.059 -0.011 0.500 -0.027 

19.05 6.99 -0.477 -0.406 -2.117 0.013 0.511 -0.036 

19.05
b 

20.96
b 

-0.950 -0.698 -2.412 0.0225 0.608 -0.138 

Note: Superscripts 
a
 and 

b
 indicate geometrically similar specimens with DP/HC ratios 

of 2.50 and 0.91, respectively 
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Figure 6.8 – Average stress components α as a function of DP (6.99-mm sample) 
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Figure 6.9 – Average stress components α as a function of HC (12.70-mm punch) 
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The observation of similar behaviors with varying punch-specimen 

geometries for all stress components is significant for understanding the behavior of 

confined compression specimens.  While the global specimen-level stress distributions 

(Section 3.2 and Figure 6.1) exhibit a significant change from compression-dominated 

behavior to shear-dominated behavior, it is possible that the localized stresses at the 

point of failure are self-equilibrating for all geometries and lead to the characteristic 

value of applied stress at failure observed experimentally.  The next section will 

consider common failure criteria to mathematically capture this behavior.   

It should be noted that discrepancies exist in the values of α for specimens 

with equivalent geometric ratios DP/HC as shown in Table 6.1 (DP/HC = 0.91 and 

DP/HC = 2.51).  These discrepancies are attributed to two sources.  The first is the 

effect of the punch chamfer discussed in Section 5.4.  The second is the decision to 

average the stress gradients over the thickness of the first ply.  For thinner specimens, 

this will average a greater portion of the through-thickness stress distribution, leading 

to a lower calculated value of the average stress component.  Comparison of values for 

the geometrically similar specimens in Table 6.1 (indicated in boldface) shows that 

this effect is seen. 

6.1.1 Comments on Fiber Shear Strength 

It was mentioned above that material strengths are typically measured 

from macroscopic specimens with uniform stress and strain.  The fiber shear strength 

(TF) given in Table 2.1 was measured using a punch shear test with a support span to 

punch diameter ratio of DS/DP ≈ 1.1 (Xiao, Gama, & Gillespie, 2007).  This test 

methodology forces the specimen to fail under fiber shear with the shear strength taken 

as the average shear stress through the thickness: 
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CP

avg
HD

Pmax  (6.1) 

To investigate if a state of uniform stress exists during punch shear testing, a finite 

element model was created in CATIA, using a similar methodology to that described 

in Section 2.4.  It was observed that stress concentrations for the shear stress 

component (τxz) exist at the top of the specimen.  Because stress concentrations exist in 

the punch shear test, τavg is not an appropriate measure of the true fiber shear strength 

TF, since the failure of the fibers is governed by a strength greater than τavg.  Thus, the 

fiber shear strength should be calculated based on the concentrated shear stresses. 

Experimental measurements of τavg for a range of punch-specimen 

combinations are shown in Figure 6.10 as a function of DP/HC.  The values are taken 

from experimentation as well as an unpublished paper by Gama et al. (2006).  It is 

observed that the value of τavg increases as thickness decreases (i.e. as DP/HC → ∞) 

due to the diminishing concentration of the shear stress for thinner specimens.  The 

values of the shear stress concentrations normalized by the average applied shear stress 

(τavg) are shown in Figure 6.11, also as a function of DP/HC.  To obtain valid 

macroscopic values of the stress concentration, the shear stress distribution was 

averaged over the top ply of the specimen, as described above.  It is observed that the 

stress concentration decreases as thickness decreases (i.e. as DP/HC → ∞), with a 

limiting value of τavg for very thin specimens. 

Knowing the value of the stress concentration as normalized by the 

average stress (i.e. τxz/τavg) from Figure 6.11, the experimental value of the stress 

concentration can be estimated by multiplying the normalized stress concentration and 

the experimentally measured average stress.  A trend line is fit through the data in 

Figure 6.11 to permit interpolation between the data points, recognizing that τxz → τavg  
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Figure 6.10 – Experimental values of average shear stress 
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Figure 6.11 – Numerical values of concentrated normalized shear stress 
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as DP/HC → ∞.  This trend line suggests the following relationship between τxz and τavg 

within the geometric range of the numerical models (0.61 ≤ DP/HC ≤ 5.00): 

 1
226.0

973.0

CP

avgxz
HD

 (6.2) 

Using equation (6.2), the predicted experimental stress concentrations are presented in 

Figure 6.12.  It is observed that the data in Figure 6.12 have an average value of τxz = 

270 MPa, with a standard deviation of 31 MPa.  In the following analysis of various 

failure criteria, this corrected value of TF = 270 will be used for the fiber shear strength 

in place of the value shown in Table 2.1. 
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Figure 6.12 – Calculated values of experimental concentrated shear stress 
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6.2 Comparison of Failure Criteria 

A large number of criteria have been developed to characterize the failure 

of composite materials (Vinson & Sierakowski, 2002, pp 309-315).  Five failure 

criteria are considered here: the maximum stress criterion, the Tsai-Hill interactive 

criterion, the Tsai-Wu interactive criterion, a hydrostatic crushing criterion, and a 

maximum stress criterion based on the deviator stress.  It should be noted that in the 

following discussion a contracted notation may be used in which the subscripts i and j 

are to be replaced with x, y, z, xy, xz, or yz to represent the stress component of interest. 

Evaluation of each failure criterion using the material strengths given in 

Table 2.1 and the normalized stress coefficients given in Table 6.1 yields a failure 

coefficient, f.  Failure is defined as occurring when f = 1.  By varying the applied stress 

in the system using the normalized stress coefficients (α’s), the applied stress to cause 

failure for a given criterion (i.e. to cause f = 1) can be determined.  This applied stress 

to cause failure is notated as σfail.  The ratio of σfail to the experimental value of σavg = 

887 MPa is defined as the predicted factor of safety F given by the failure criterion for 

a specific punch-specimen pair.  A value of F > 1 indicates that the specimen is 

predicted to fail at an applied stress value greater than the experimentally measured 

value of applied stress at failure (σavg) and would not be expected to fail 

experimentally.  A value of F < 1 indicates that the specimen is predicted to fail at an 

applied stress value lower than the experimentally measured value of applied stress at 

failure and would be expected to fail earlier than observed.  It is desirable to find a 

failure criteria for which F = 1 regardless of punch-specimen geometry, suggesting 

that failure should occur when the applied stress is equal to the experimentally 

measured value.  
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6.2.1 Maximum Stress Criterion 

 The maximum stress criterion is the simplest of those considered here.  

Failure is assumed to occur when any one stress component is greater than or equal to 

the material strength in that direction.  This can be represented mathematically as: 

   i

i

i f
S

 (6.3)  

where Si is the material strength in the i direction (see Table 2.1), accounting for 

whether the stress σi is in compression or tension.  The factors of safety Fi are 

displayed in Figures 6.13 and 6.14.  It is observed that failure is almost always 

predicted below the experimental value of applied stress for the through-thickness 

normal stress σz and radial through-thickness shear, τxz.  Figure 6.14 shows that the 

transverse normal stress components σx and σy fail prematurely for thicker specimens 

but are not predicted to fail for thinner specimens.  The circumferential and in-plane 

shear components τxy and τyz have factors of safety significantly greater than F = 1 and 

are not shown in Figures 6.13 and 6.14.  Both τxy and τyz are not predicted to fail below 

the experimental applied stress within the range tested.  It is also seen that the through-

thickness normal stress controls failure by the maximum stress criterion, since it has 

the smallest factor of safety. 

The maximum stress criterion reflects many of the geometric trends noted 

in Section 6.1.  Figure 6.14 shows that as the specimens become thicker the stress 

concentrations become more significant, leading to a smaller factor of safety.  

Likewise, increasing the punch diameter is expected to increase the factor of safety as 

the stress concentrations decrease.  If chamfering effects are accounted for, a weak 

increasing trend is noted in Figure 6.13.  Because each stress component is evaluated 

individually, the maximum stress criterion is unable to capture the stress interactions  
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Figure 6.13 – Maximum stress criterion as a function of DP (6.99-mm sample) 
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Figure 6.14 – Maximum stress criterion as a function of HC (12.70-mm punch) 
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that may be influencing the failure behavior of the confined compression specimens.  

Thus the maximum stress criterion is found to be too simplistic for the present study. 

6.2.2 Tsai-Hill Criterion 

Interactive criteria assume that failure initiates due to a combined stress 

state, not an individual stress component.  The Tsai-Hill failure criterion is one of the 

most basic interactive stress criteria for anisotropic materials such as composites.  The 

failure coefficient is given by the following equation (Hill, 1948, p 285): 

 fNMLHGF xyxzyzyxxzzy

222222 222)()()(  (6.4) 

where the coefficients F, G, H, L, M, and N are: 
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 (6.5) 

Because compressive stresses are observed at the point of failure (see Table 6.1), 

compressive strengths from Table 2.1 are used for the values of Sx, Sy, and Sz in 

equation (6.5). 

The factors of safety F are shown in Figures 6.15 and 6.16.  It is observed 

that the Tsai-Hill criterion under-predicts the experimental strength of the composite, 

as the values of F are all significantly less than unity.  The Tsai-Hill criterion 

demonstrates almost no dependence on specimen geometry when compared with the 

maximum stress criterion (Figures 6.13 and 6.14).  The inclusion of interaction terms 

appears to account for some of the differences arising from different stress behaviors.   
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Figure 6.15 – Tsai-Hill and Tsai-Wu criteria as function of DP (6.99-mm sample) 
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Figure 6.16 – Tsai-Hill and Tsai-Wu criteria as function of HC (12.70-mm punch) 
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It is noted that while the normal stress components interact in equation (6.4), the shear 

stress components are still treated individually.  The through-thickness radial shear 

component has been observed to be significant relative to its failure strength (Figures 

6.13 and 6.14).  Because of the lack of shear-normal stress interactions, the Tsai-Hill 

criterion is found to be ineffective for explaining the experimental behavior. 

6.2.3 Tsai-Wu Criterion 

A more thorough interactive criterion including all possible quadratic 

stress combinations was developed by Tsai and Wu (1971).  It is expressed as: 
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 (6.6) 

where Fi, Fi,i, and Fi,j are strength coefficients which are calculated as follows: 
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The superscripts T and C represent tension and compression, respectively.  For the 

shear components it is assumed that Si
T
 = Si

C
.  The expression for Fi,j is traditionally 

hard to derive; the expression in equation (6.7) was suggested by Vinson and 

Sierakowski (2002, p 314).  The form of equation (6.6) requires that Fi,iFj,j – Fi,j
2
 ≥ 0 

(Tsai & Wu, 1971, p 60), and it can be shown that the expressions in equation (6.7) 
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satisfy this requirement.  It should be noted that the Tsai-Wu criterion is an 

improvement on the Tsai-Hill criterion (equations (6.4) and (6.5)), since it accounts for 

unequal tensile and compressive strengths and includes quadratic interactions between 

all normal and shear stress components. 

The factors of safety calculated with the Tsai-Wu criterion are shown in 

Figures 6.15 and 6.16.  It is seen that the values of F are again less than unity, 

predicting failure of the specimen below the experimentally observed applied stress 

value.  They show very similar trends to the Tsai-Hill criterion (also shown in Figures 

6.15 and 6.16).  Capturing quadratic interactions between all stress components does 

not generate the behavior observed experimentally.  The Tsai-Wu criterion is observed 

to under-predict the confined compressive strength of the experimental specimens by a 

greater margin than the Tsai-Hill criterion.  While the stresses in the experimental 

specimen may be interacting to increase the strength of the material, the interactions in 

both the Tsai-Hill and Tsai-Wu criteria underestimate the apparent strength of the 

specimen.  A failure criterion which accounts for strengthening due to stress 

interactions is needed. 

6.2.4 Hydrostatic Crush Criterion 

A hydrostatic failure criterion is used when all three normal stress 

components (i.e. σx, σy, and σz) are compressive, as seen in Table 6.1.  The criterion 

predicts failure when the compressive stresses acting on an element of material crush 

the material in a brittle manner.  The criterion used in the LS-DYNA MAT162 

material model (Livermore Software Technology Corporation, 2007, pp 626-636) is 

considered here.    This criterion is expressed as: 
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  f
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 (6.8) 

where SHS is the hydrostatic crush strength of the material, taken to have a value of 850 

MPa (Xiao, Gama, & Gillespie, 2007, p 191).   

The factors of safety for the hydrostatic failure criterion are presented in 

Figures 6.17 and 6.18 as a function of punch diameter and specimen thickness, 

respectively.  The values of F are observed to be much closer to unity than the 

previous three criteria.  This suggests that hydrostatic effects may be important for 

confined compression failure.  Since a state of 3-D compression exists, this result is 

expected.  However, while the values of F in Figure 6.17 are approximately constant 

and may suggest good agreement with the experimental results, Figure 6.18 suggests a 

strong dependency on specimen thickness.  While the hydrostatic crush criterion 

accounts for the interactions of all three normal stress components in a manner 

consistent with the observed stress state within a confined compression specimen, it 

still does not capture strengthening due to geometric effects on the stress interactions. 

6.2.5 Maximum Deviator Stress Criterion 

If hydrostatic compression exists in a specimen, it is possible to redefine 

the normal stresses in terms of hydrostatic (HS) and deviator (D) stress components 

(Boresi & Schmidt, 2003, p 37): 

  
D

izyx

D

i

HS

ii )(3
1  (6.9) 

This analysis is based on an assumption that an element of material compressed 

uniformly in all three directions will not fail in compression, regardless of the value of 

the hydrostatic stress applied.  The amount of deviation (σi
D
) in each component from 

this uniform stress can then be considered as the stress leading to failure.  Failure of  
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Figure 6.17 – Crush and deviator criteria as a function of DP (6.99-mm sample) 
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Figure 6.18 – Crush and deviator criteria as a function of HC (12.70-mm punch) 
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this deviator stress can be evaluated using the maximum stress criterion given in 

equation (6.3): 

 f
S C

i

zyxi )(3
1

 (6.10) 

In equation (6.10) σi is taken to be σz, recalling from Figures 6.8 and 6.9 that the most 

significant normal stress component is the through-thickness stress.  The factors of 

safety for the maximum deviator stress criterion in the through-thickness direction are 

given in Figures 6.17 and 6.18.  It is observed that the values of F remain 

approximately constant as the specimen geometry varies.  This suggests that the 

compressive hydrostatic stresses present in the confined compression specimen create 

the apparent increase in the strength of the specimen.  However, the strength of the 

material is still under-predicted, with all the values of F being less than unity. 

6.3 Mohr-Coulomb Criterion 

In Chapter 3 it was observed that failure of the confined compression 

specimens occurred due to fracturing of the fibers and matrix at a characteristic angle.  

Using transformed stresses, it was determined that a compression-shear stress 

interaction acted along the fracture plane.  The evaluation of the maximum deviator 

stress criterion in Section 6.2.5 also suggests that the compressive normal stresses 

within the specimens may be causing the apparent observed changes in material 

strength for different geometries. 

Compression-shear interactions have traditionally been described using 

Mohr-Coulomb fracture theory.  Mohr theorized that for such cases, the shear strength 

of the material along the fracture plane is a function of the normal stress on the 

fracture plane: 
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 )(g  (6.11) 

It should be noted that the terms τ and σ in equation (6.11) represent the shear stress 

along the fracture plane and the stress normal to the fracture plane and are calculated 

with respect to the orientation of the fracture plane.  Equation (6.11) is commonly 

written using a form originally proposed by Coulomb, which assumes that the function 

g is linear: 

  T  (6.12) 

In equation (6.12) μ is a friction coefficient and T is the unconfined shear strength of 

the material in the plane of fracture (Chatterjee, 1997, p 240).  Xiao and Gillespie 

(2007, p 1299) developed a quadratic form of equation (6.11) to obtain better 

agreement with experimental data and account for the compressive strength of the 

material: 

  T
S

a
C

1  (6.13) 

where a is a fitting parameter and S
C
 is the compressive strength of the material in the 

direction normal to the fracture plane.  They also hypothesized that a compressive cut-

off existed above which the material failed due to crushing instead of shear.  Because 

of its simpler form, only equation (6.12) will be considered in the present study. 

The Mohr-Coulomb failure envelope is defined using Mohr’s circle to 

represent the state of stress at a point.  The theory is illustrated schematically in Figure 

6.19.  The stresses in the material axes are plotted in normal-shear (σ-τ) stress space as 

shown.  It is noted that a shear component usually exists for stresses oriented in the 

material axes and must be accounted for when creating Mohr’s circle.  Once the angle 

of fracture (θ) is known, the stress components on the fracture plane can be found by  
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Figure 6.19 – Schematic of the development of a Mohr-Coulomb failure envelope 
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rotating an angle of 2θ counterclockwise from the stress components in the material 

axes.  Because the fracture plane is expected to be the orientation of incipient failure, 

the Mohr-Coulomb envelope must pass through the point defining its stress 

components, but not pass through any other point; otherwise, failure would be 

expected in a different orientation.  Thus, the Mohr-Coulomb envelope ideally is 

tangent to Mohr’s circle at the point defining the stress components on the fracture 

plane (Chatterjee, 1997, p 240-242; Das, 2005, pp 205-209). 

6.3.1 Calibrating the Mohr-Coulomb Envelope 

It was noted in Section 6.1 that significant stress gradients on scales below 

the macroscopic level can confound proper usage of material strengths.  Figures 6.20 

and 6.21 show the transformed through-thickness shear and normal stress 

distributions, respectively.  It is noted that stress gradients do exist.  Using the 

methodology outlined in Section 6.1, these stress gradients were averaged over the 

thickness of the first ply and normalized to obtain stress components of the form α = 

σ/σapp.  Because the parameters μ and T in equation (6.12) are not known, the stresses 

on the fracture plane at the experimentally determined applied stress at failure (σapp = 

887 MPa) were calculated, as discussed in Section 6.2. 

These transformed shear stress data are shown as a function of the 

transformed normal stress in Figure 6.22.  The values of μ and T in equation (6.12) 

were calculated by performing a linear regression on the normal-shear data: 

 589131.0 xzx  (6.14) 

Because compression is assumed to be negative, the value of μ is negative, unlike in 

equation (6.12).  It is also noted that the value of T in equation (6.14) (T = 589 MPa) is 

significantly larger than the value of unconfined shear strength calculated in Section 
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Figure 6.20 – Transformed shear stress distribution (12.70-mm punch) 
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Figure 6.21 – Transformed normal stress distribution (12.70-mm punch) 
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Figure 6.22 – Calibration of the Mohr-Coulomb envelope 
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6.1.1 (T = 270 MPa).  However, the strength calculated in Section 6.1.1 is for the 

material axes, and may not accurately represent the shear strength of the S-2/SC15 

composite for diagonal fracturing of the fibers. 

Equation (6.14) can be rewritten as a failure criterion for comparison with 

the other criteria presented in Section 6.2: 

 f
x

zx

589131.0
 (6.15) 

The factors of safety F for the Mohr-Coulomb criterion are shown in Figures 6.23 and 

6.24 as a function of punch diameter and specimen thickness, respectively.  It is 

observed that almost all of the data points lie within the experimental standard 

deviation of unity.  Figure 6.23 may appear to suggest that some trend exists with 

punch diameter, but recalling that the smallest punch diameter considered likely 

exhibits chamfering effects, the trend is less significant for the remaining data points.  

The data in Figure 6.24 also do not suggest a consistent trend with specimen thickness. 

The Mohr-Coulomb criterion is observed to capture the apparent 

compressive strengthening behavior of confined compression specimens.  It also 

accurately predicts the strength of the specimens.  It should be noted that equations 

(6.14) and (6.15) were calibrated by assuming the experimentally measure average 

peak stress at failure (σavg).  Nonetheless, a Mohr-Coulomb form is able to accurately 

capture the expected stress interactions in a confined compression specimen.  The 

maximum deviator stress criterion (Figures 6.17 and 6.18) also predicted constant 

failure behavior, though the magnitude of failure was inaccurate.  Considering these 

two criteria together, it is concluded that a compressive strengthening interaction is 

responsible for the contradictory behavior of the experimental applied stress first noted 

in Section 3.2. 
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Figure 6.23 – Mohr-Coulomb criterion as a function of DP (6.99-mm sample) 
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Figure 6.24 – Mohr-Coulomb criterion as a function of HC (12.70-mm punch) 
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6.4 Point of Failure Initiation 

In Section 3.1 the question of determining the point of damage initiation 

was raised.  The development of an appropriate failure criterion permits an analysis of 

initiation of damage at various locations on the specimen. 

Knowing the stresses in the material axes from the finite element model 

(assuming σapp = 887 MPa), the radial and tangential components of those stresses 

with respect to the centerline of the punch can be determined.  Assuming that the 

fracture plane is oriented at a constant angle around the punch periphery (see Section 

3.1.1), the stresses on a hypothetical fracture plane at any radial and circumferential 

location can be found using the stress transformations in equations (3.8-3.10).  By 

inputting the transformed stresses into equation (6.15) the proximity of each point to 

failure can be determined. 

The results of this analysis are shown in Figures 6.25 and 6.26 for a thin 

and thick specimen, respectively.  The values shown are the failure coefficients f for 

each point on the specimen.  Thus values greater than unity are predicted to fail while 

values less than unity have not exceeded the failure criterion.  Regions beyond the 

punch periphery are ignored since stresses in these regions are insignificant relative to 

the stress level required for failure.  It is observed that failure initiates in the fiber 

direction (0°/90° orientation) at the punch periphery.  However, the whole punch 

periphery is close to failure, and it is expected that the fracture propagates around the 

punch periphery in a brittle manner almost immediately after initiation.  It is also noted 

that the center region of the thin specimen (Figure 6.25) is closer to failure than that of 

the thick specimen (Figure 6.26).  This phenomenon may explain why multiple 

fractures were observed in thin experimental specimens, but not thick specimens.  It is 

recalled from Figure 3.14 that the peak stresses on the fracture plane occur at the top  
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Figure 6.25 – Damage propagation through a thin specimen (12.70-mm punch, 

6.99-mm sample) 
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Figure 6.26 – Damage propagation through a thick specimen (7.62-mm punch, 

6.99-mm sample) 
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of the specimen, suggesting failure initiates in the top ply and propagates through the 

thickness. 

6.5 Scaling of the Applied Stress at Failure 

It was observed in Section 3.2 that the experimentally measured peak 

stress at damage initiation in confined compression specimens remains constant 

regardless of punch diameter or specimen thickness for the range of geometries 

considered.  This suggested that the applied stress at damage initiation is a 

characteristic value of the S-2/SC15 composite material in confined compression.  

This result was initially viewed as contradictory when compared against the varying 

behavior of the internal stress distributions (Figure 6.1).  However, it has been shown 

that a compression-shear stress interaction provides apparent specimen strengthening 

which generates the observed experimental behavior (Figures 6.23 and 6.24).  With 

this conclusion, the applied stress at failure initiation can be found for any 

combination of specimen and punch. 

However, it is important to determine the range of applicability of these 

results.  The present study only considered a single material, an S-2/SC15 composite.  

While this result may be used to suggest similar behavior for other materials, 

especially materials that demonstrate a similar fracturing mode, such a scaling should 

not be assumed without additional verification.  Likewise, only circular punches with 

significantly higher rigidity than the tested material were considered.  Results cannot 

be applied to punches with different geometries or lower rigidities, which would cause 

significantly different stress distributions. 

While a range of specimen and punch dimensions were tested (see Table 

3.3), the range was not exhaustive.  The conclusions presented may be valid as the 
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geometric ratio DP/HC → 0 (i.e. thick specimens and narrow punches), since the 

behavior of the stress distribution in such specimens is expected to be similar to the 

behavior observed in the present study.  However, as DP/HC → ∞ (i.e. thin specimens 

and wide punches), the stress state exhibits a more uniform state of compression (see 

Figures 3.11 and 6.1).  While hydrostatic stresses were observed in the specimens in 

the present study (see Section 6.2.4), there is a reasonable expectation that geometries 

exist for which the compressive stresses have a greater effect than the shear stresses.  

Xiao and Gillespie hypothesized that such an effect would occur and introduced a 

compressive failure cut-off in their interlaminar Mohr-Coulomb envelopes (2007).  

The development of such a cut-off is beyond the scope of the present study, which is 

focused on “thick-sectioned” composites (e.g. DP/HC < 1).  Therefore, the present 

results should only be considered safely applicable within the range tested (i.e. 0 < 

DP/HC < 5) and for the material used in testing and modeling. 

6.6 Chapter Summary 

Having examined the fracture mode and applied stress at failure of the 

confined compression specimens, developed a criterion for specimen sizing, and 

extracted a geometric similarity parameter, the present chapter sought a scaling 

expression for the applied stress at failure by considering the contradictory behavior of 

the experimental applied stress at failure (Section 3.2).  The behavior of the internal 

stress distribution was investigated, showing stress concentrations at the punch 

periphery for thicker specimens but a uniform compressive stress for thinner 

specimens.  To explain how different stress states could generate the same applied 

stress for failure, five common failure criteria were considered: maximum stress, Tsai-

Hill, Tsai-Wu, hydrostatic crush, and maximum deviator stress.  The deficiencies of 
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each criterion were presented, suggesting the need for a criterion which captured the 

apparent strengthening of the material due to compressive stress interactions.  

Recalling the compression-shear stress interaction observed on the fracture plane in 

Chapter 3, a Mohr-Coulomb failure criterion was proposed and calibrated.  This 

criterion accurately predicted failure within the experimental variability.  It was 

concluded that the compression-shear interaction explained the existence of a 

characteristic applied stress at failure despite internal changes in the stress behavior. 
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Chapter 7 

CONCLUSIONS 

7.1 Summary 

The present study has examined the development of scaling parameters for 

a confined compression test.  The key measure of the confined compression test is the 

applied stress at damage initiation, which is used as a measure of the crush strength of 

the material under ballistic penetration.  While complete characterization of the crush 

strength necessitates experiments for a range of specimen thicknesses and punch 

diameters, a scaling parameter would negate the need for more than a few tests over a 

range of dimensions. 

Only S-2 glass/SC15 epoxy composites were considered in the present 

study.  The failure mode for this material was determined to be diagonal fracturing 

through the fiber and matrix within the punch periphery, creating an approximate 

“cone” of damaged material.  The fracture angle (θ) was found to be constant 

regardless of specimen thickness.  However, two regimes of specimen thickness were 

noted with potentially different behaviors: “thin” specimens in which fractures 

propagated through the entire specimen thickness and “thick” specimens in which 

fractures were wholly contained within the specimen.  The applied stress at failure 

(σapp) was also found to be constant regardless of specimen geometry.  However, an 

analysis of the force reactions in the specimen showed that the internal behavior is 

dominated by compression for thin specimens, but by shear for thick specimens.  This 
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contradiction raised a central question of the present study: how does a stress 

distribution which varies with specimen geometry lead to failure initiation at a 

characteristic applied stress?  A transformation of stresses into the fracture plane using 

a finite element model showed that a compression-shear stress interaction occurred 

along the fracture plane.  It was noted that this observation may be a possible 

explanation for the behavior of the applied stress at failure. 

It was recognized that the width of the specimen could have a significant 

effect on the stress distribution in the specimen.  To ensure consistency in the 

generated results and provide a range of applicability for the scaling law, the minimum 

specimen width to ensure consistent behavior, Lcrit, was calculated by finding the 

width of the stress distribution normal to the specimen support.  This width was found 

to be a function of both the punch diameter and specimen thickness, and an empirical 

expression for the S-2/SC15 composite material was derived from an analytical form 

of the confined compression problem and validated with the numerical model of the 

experimental setup. 

Having determined boundaries for specimen geometry, the analytical form 

was examined for scaling parameters.  It was observed that all three stress components 

could be normalized by the applied stress.  Knowing that the specimen stress 

distributions were constant for all LC > Lcrit, expressions of DP/LC and HC/LC in the 

analytical form were simplified to yield a single geometric parameter: DP/HC.  

Numerical modeling demonstrated consistent stress distributions when the ratio DP/HC 

was equal for two different specimens.  However, the use of a punch chamfer was 

found to prevent accurate scaling of results unless the chamfer is insignificant relative 
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to the punch diameter.  The development of a geometric scaling allowed for 

extrapolation of results between geometrically similar punch-specimen pairs. 

The behavior of the applied stress at failure was considered again by first 

examining the behavior of the internal stress distribution.  It was observed that stresses 

are concentrated at the punch periphery for thicker specimens but become more 

uniform for thinner specimens, as suggested by the internal force balance.  Five 

common composite failure criteria were evaluated to capture the observed behavior of 

confined compression specimens: the maximum stress, Tsai-Hill, Tsai-Wu, hydrostatic 

crush, and maximum deviator stress criteria.  While none of the criteria accurately 

captured the experimental behavior, their deficiencies suggested that a compressive 

stress interaction was important to the behavior.  Recalling the compression-shear 

fracture behavior of the samples, a Mohr-Coulomb type failure was proposed as a 

potential failure criterion.  Numerical calibration of the Mohr-Coulomb envelope 

produced a failure criterion that showed good agreement with the experimental results.  

The Mohr-Coulomb criterion suggested that fracture of the S-2/SC15 material under 

confined compression initiates in the upper ply at the punch periphery in the fiber 

directions. 

It is concluded that two scaling laws exist for confined compression 

testing of S-2/SC15 composites.  First, specimens that have equivalent values of the 

ratio DP/HC have equivalent stress distributions in scaled geometric space.  Second, the 

applied stress at failure has a characteristic value regardless of specimen geometry. 

However, there are limitations on the application of these results.  

Experimental and theoretical specimens should be larger than a circle with a diameter 

of Lcrit.  Experimental and numerical models only considered the range 0 < DP/HC < 5.   
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Results should only be considered valid in this range, since the failure mode may 

change outside this range, especially for DP/HC >> 5.  Numerical and analytical 

modeling assumed that the composite was a monolithic material, neglecting any 

interactions on a scale smaller than the ply level.  Comparisons using DP/HC may not 

be valid for extremely thin specimens, where interactions below the ply level could 

become important. 

7.2 Directions for Future Work 

Additional study is possible on the mechanics of the confined compression 

failure.  The nature of the stress concentrations at the punch periphery (see Figures 

6.2-6.7) is not well understood.  For the present study, the through-thickness stress 

gradients were averaged using a single ply thickness as the characteristic depth.  

However, this method has limitations when geometric scaling is used to compare 

similar DP/HC ratios as discussed in Section 6.1.  A more detailed analysis of the 

fracture mechanics was beyond the scope of the present study, but could be a direction 

for future research.  The present study also considered only linear-elastic behavior.  A 

future numerical study of the propagation of damage using a finite element code with 

failure analysis could validate the fracture behavior postulated in Section 6.4. 

Determining the strength of a material under confined compression is only 

one phase of the Quasi-Static Penetration Method (Gama & Gillespie, 2008).  Material 

behavior is also studied for specimens without full support over a range of support 

diameters.  It remains to be determined what scaling laws and damage regimes exist 

for these specimens.  The present work provides a systematic methodology for 

establishing scaling parameters and limits of application.  However, testing specimens 
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without a full support introduces additional difficulties not encountered when 

considering the confined compression case. 

A third geometric parameter must be considered: the support span 

diameter, DS.  Scaling from experimental results requires the development of a test 

matrix from which two parameters can be held constant while the remaining parameter 

varies.  The range of experiments must be sufficiently large to accurately develop 

scaling parameters. 

While the failure mode was essentially consistent for all the confined 

compression specimens considered, this is not the case when the support span is 

allowed to vary.  In cases where the support diameter is similar to the punch diameter, 

a shear dominated failure would be expected.  In cases where the support diameter is 

much larger than some function of the punch diameter and specimen thickness, a 

bending dominated failure would be expected.  For intermediary cases a mixed 

bending-shear failure would be expected.  Each failure mode will likely have a 

different scaling behavior.  Additionally, expressions must be developed for the 

boundaries between the different modes. 

There is also a potential for different damage regimes within a single load-

displacement curve.  While only the peak stress value at the end of the linear-elastic 

regime is important in confined compression testing, the complete load-displacement 

curve is used in the QS-PM analysis for specimens without full support.  A 

representative curve is shown in Figure 7.1.  Sectioning of specimens at different 

displacement levels suggests that the specimen undergoes a number of damage phases 

during penetration, which are illustrated in Figure 7.1.  It may be necessary to partition 

the load-displacement curve based on these damage phases and then develop  
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Figure 7.1 – Representative load-displacement curve for a specimen without full 

support (7.62-mm punch, 7.11-mm sample, 15.24-mm span) 
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parametric scaling laws for each portion of the curve.  Approximating each partition 

with a basic mathematical form could permit comparison of data for development of 

scaling parameters from experimental results. 

It is apparent that a final scaling law for the QS-PM will be significantly 

more complicated than the relationships derived in the present study for the confined 

compression test.  However, a similar methodology can be employed.  The 

experimental damage modes must be determined to identify regimes with the potential 

for unique scaling laws.  Analytical solutions for plate-bending problems could be 

applied to identify potential scaling parameters.  Numerical modeling would both 

validate the analytical forms and provide insights into the stresses within experimental 

specimens.  Geometric limitations would also need to be established: a similar critical 

width phenomenon likely exists for specimens that aren’t fully supported and would be 

a function of the support diameter as well as the punch diameter and specimen 

thickness.  Comparing predictions from well-established failure criteria with the 

experimental results could suggest scalings for the applied stress.  An additional set of 

parametric expressions for specimens without full support would permit further 

interpolation of results and exploration of the mechanics of the QS-PM.  
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