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ABSTRACT

High-performance systems are evolving to a point where performance is no

longer the sole relevant criterion anymore. Current execution and resource manage-

ment paradigms are no longer sufficient to ensure correctness and performance. Power

requirements are presently driving the co-design of HPC systems, which in turn sets

the course for a radical change in how to express the need for scarcer and scarcer re-

sources, as well as, how to manage them. As a result, systems will need to become

more introspective and self-aware with respect to performance, energy, and resiliency.

To this end, this thesis explores the major hardware requirements that are central to

enabling introspection, the types of interfaces and information that will be needed for

introspective system software, provides an abstract representation of exascale architec-

tures based on current trends, and implements an exascale simulation framework with

built in temperature and power management capabilities. Through this framework, we

demonstrate that localized adaptive policies are not sufficient for exascale systems and

that instead coordinated hierarchical adaptive policies are need in order to effectively

adapt and mitigate oscillation within systems consisting of thousands of independent

cores.

ix



Chapter 1

INTRODUCTION

As we move toward an exascale future with ever expanding capacities in terms

of both cores and resources, we have reached a point in computing where current ex-

ecution paradigms will no-longer suffice. High performance computing systems have

begun to approach a point where the ever growing multiplicity of transistor counts

and components is not sustainable in terms of energy consumption. It has been said

that at the current rates, extrapolated into the future, that an exascale computer

system would consume over 1.5 GW of power [51]. These ever expanding power re-

quirements necessarily result in the need for a fundamental and radical shift in terms

of programmability and adaptation. We believe that systems will need to become hier-

archically introspective and self-aware to be able to adapt to these steep performance

and energy requirements.

There are number of key facets that need to be addressed to enable a truly

introspective and self-aware system capable of performing well and efficiently. The first

is that a form of co-design needs to occur in terms of hardware and software. Exascale

hardware needs to support a number of integral features to enable controlling system

software to monitor and adapt to the current system state and any requirements passed

to it in the form of power or performance. In broad terms, there will need to be some

form of an observe-decide-act (ODA) loop to monitor, make decisions, and to control

both the hardware and software aspects of a system. The second is that the system

needs to be capable of adapting for power and performance while at the same time

maintaining correct and reliable operation. It is key to recognize that these conflicting

goals form a basis for a multi-variable problem which will be further complicated by

the need to run multiple programs on a system with thousands of components. As
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highlighted in my prior work on self-aware systems for exascale architectures [38],

there is an open question on how to self-adjust and to meet these goals. The third

facet is to propose a hierarchical method to control the system using ODA loops in

conjunction with the co-designed hardware and software features available within the

system.

Observe

Decide

Act
Environment / 

Internals
Environment / 

Internals

External
Input

Figure 1.1: A generalized ODA loop consisting of observe, decide, and act stages.

In more detail, adaptation will need to occur using ODA loops as shown in

Figure 1.1. These are a type of self-feedback loop consisting of three stages where

each stage feeds back to another stage in the process. The observe stage collects

information from the system environment. The decide stage is where decisions are

made based upon observed information and possibly some form of external input. In

this context, a decision is answering the question of what to do in the system not

how to achieve the objective. The act stage translates a decision into a set of actions

which are then committed by adjusting some form of actuators. This stage answers

the question of how to adapt. For instance, this could be to adjust core frequencies or

some combination of actuators or knobs.

This thesis serves to discuss many facets involved with these aspects of exascale

systems. The detailed discussion includes an abstract Target Exascale Architecture
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(TEA) representative of the trends seen in the move toward exascale computing, as

well as, the challenges present within self-aware and adaptive exascale systems. As

exascale systems will require specific features to enable adaptation, an exhaustive dis-

cussion of hardware and software requirements is detailed within. Additionally, an

experimental simulation framework for exascale architectures incorporating many of

the hardware/software requirements is implemented and tested to demonstrate adap-

tive control policies. This framework uses hierarchical distributed control to implement

a self-adaptive power management system. Finally, hierarchical adaptive control poli-

cies are evaluated using a number of workloads, and a number of conclusions regarding

self-adaptive exascale systems are made.

The thesis is organized as follows: Chapter 2 defines the abstract Target Exas-

cale Architecture. Chapter 3 discusses the open questions toward self-aware exascale

systems, and a solution methodology toward answering those questions. Chapter 4 dis-

cusses the hardware/software requirements for a self-adaptive exascale system. Chap-

ter 5 discusses our simulation frame and the various models it implements. Chapter 6

discusses the experimental results obtained using the framework. Chapter 7 discusses

various state of the art works on adaptation, as well as, the limitations. Chapter 8

provides concluding discussion.

3



Chapter 2

BACKGROUND

This chapter is devoted to a discussion of our Target Exascale Architecture

(TEA), and the challenges and opportunities for self-awareness within exascale archi-

tectures. The TEA is inspired by the Runnemede architecture used in the Traleika

Glacier Extreme Scale software stack [12, 18], and is representative of the organization

of heterogeneous architectures for exascale computing. In practice, the TG software

stack is used by Intel to simulate exascale-level many core chips.

2.1 Target Exascale Architecture

This section discusses various aspects of our TEA. These range from chip orga-

nization, to the envisioned toolchain. We end with a brief discussion of the challenges

and opportunities within exascale architectures.

2.1.1 Chip Level Organization

At the lowest level, the TEA is organized into blocks consisting of a Control

Engine (CE), several eXecution Engines (XEs), and a block shared memory. This

organization is designed to decouple algorithmic workload from system monitoring and

control. An XE’s fundamental usage is to execute arbitrary code without interruption.

The CE on the other hand is designed to control and schedule work to a number of local

XEs within a given block, as well as, handle I/O negotiation, resource management,

among other things. The overall abstract architecture is shown in Figure 2.1.

Both XE and CE cores contain components commonly found in current archi-

tecture cores to support both data and code locality, such as, a register file (RF),

instruction cache (ICache), and local memory which could be implemented as SPAD,

4



XE

Block Shared Memory

XE XE XE

XE XE XE XE

CE
Net. 

Bridge

PMURFICache
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SP/DP
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Ctrl
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 .
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Chip Shared Memory
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.
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 .

 
.

 
.

 .

 .

 
.

 
.

 

 

Figure 2.1: Our Target Exascale Architecture consists of heterogeneous cores in a
hierarchical configuration with network interconnects at each level, orga-
nized into blocks, clusters, and chips. Given the abstract nature of the
architecture the exact number of cores and levels is not important and
could vary.

a cache, or a hybrid. Additionally, they contain arithmetic and logic units (ALUs) and

floating-point units (FPUs) of some form to support mathematical operations; how-

ever, the type of the support (e.g. vector processing) is abstracted away within the

TEA. In a real architecture, it would be reasonable to assume that XEs and CEs are

architecturally unique from one another in order to save die space and to facilitate the

units to their primary role. As such, arithmetic support would likely be more limited in
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CEs than in XEs. It is worth noting that given the heterogeneous nature of the TEA,

not all blocks must contain the same sets of hardware functionality. For example, some

blocks could contain simpler XEs, and other blocks less but more complex XEs.

To enable fine-grained control over functional unit blocks (FUBs), clock and

power gate control units are also provided. These function as knobs to control the

state of individual FUBs in order to save power and energy, as well as, act as a fine-

grained mechanism to manage on-chip temperatures. Furthermore, these serve to allow

individual units to operate at near threshold voltage (NTV) within the system to

minimize energy usage.

To allow for individual blocks to be organized into a hierarchy, networking func-

tionality is provided at the block level. The actual organization of this hierarchy in

concrete terms, as well as, the on-chip networking hardware (e.g. bus, point-to-point,

etc.) is abstracted away in the TEA. Furthermore, the TEA does not preclude the

implementation of differing types of hardware at different levels of the hierarchy.

Some distinct differences between XE and CE functionality include the addi-

tion of performance monitoring units (PMUs) within XE cores and an advanced pro-

grammable interrupt controller (APIC) within CE cores. Given that XEs are designed

primarily for execution, the PMU provides a monitoring interface for use by the soft-

ware stack running on-top of the TEA. Its use is to facilitate the collection of low-level

metrics and enable high-level runtime decision making within the software stack using

the said collected metrics. The APIC, on the other hand, facilitates CEs in the task of

control by allowing interrupts and traps occurring within a block to be offloaded to the

CE. Furthermore, any XEs requiring control type operations would generate interrupts

to be serviced by the CE.

2.1.2 Target Exascale Architecture Toolchain

The TEA toolchain is shown in Figure 2.2. In the TEA, XEs may be archi-

tecturally distinct from those of CEs and as a result a separate compiler and linker

may be used to produce XE programs. As input, an XE would have basic library

6



Compiler Linker

CE

XE

Compiler Linker
CE 

Binary

XE 
Binary

libce.cRuntime

.c.cLibraries

.c.c
User 

Program

XE

...

Figure 2.2: An abstraction of a toolchain for the TEA. In such an architecture, CEs
and XEs may be architecturally distinct allowing for separate toolchains.
Shown above is one possible toolchain where the runtime system is com-
piled and linked using a separate toolchain from that of user programs.

functionality compiled and linked to a user program. The CE, on the other, may use

a completely separate set of libraries and features oriented toward its primary task. It

is worth noting that given heterogeneous nature of the TEA that different blocks may

be architecturally unique. As such, the TEA does not preclude separate toolchains for

architecturally distinct blocks, and the example toolchain is only one possible toolchain

that a real architecture implementing the TEA could use.

2.2 Challenges and Opportunities for Self-awareness

There are number of challenges in the move toward exascale architectures. En-

ergy becomes a primary and ever increasing issue because of the aforementioned multi-

plicity of components and transistors. Moreover, current execution paradigms will no

longer suffice in terms of either performance, fault tolerance, and energy. Additionally,

because communication and data accesses become prohibitively expensive between far

memories and cores, this leads to the need for intelligent system software designed to
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minimize energy while also maximizing performance. Furthermore, this leads to the

need for additional hardware mechanisms to enable system software to monitor system

state efficiently and accurately. The details of which will be discussed in Chapter 4.

Toward this end, current trends in high performance computing have been in

developing fine-grained program execution models (PXMs) that limit data movement

and allow for better control over resource usage in the presence of massively scale sys-

tems [35, 50, 64, 65, 39, 57]. These types of models are set to improve performance and

reduce power consumption when combined with intelligence adaptive scheduling and

resource management as discussed in my prior work [63]. Additionally, the nature of

these models in terms of self-contained explicit memory movement and code execution

lends itself well to adaptive fault tolerance techniques. Some of my own prior work [33]

was on incorporating containment domains [14] into fine-grained PXMs to enable adap-

tive resilience within these types of models. Containment domains are a hierarchical

scheme for creating robust data replication and task re-execution specifically geared

toward exascale computing. Although, this thesis only touches upon resiliency in terms

of hardware requirements, it is a fundamentally important challenge that needs to be

explored for exascale architectures.

8



Chapter 3

PROBLEM FORMULATION

This chapter provides a problem formulation for self-aware exascale systems

by asking three central questions. From there we will put forth a foundation toward

solving these questions.

3.1 Open Questions

There are number of open questions regarding exascale systems. In this section

we briefly highlight each and in the subsequent section provide answers toward them.

The first open question is how to monitor, make decisions, and control the hardware and

software aspects of a exascale system efficiently. Exascale systems present a challenge

not found in current systems. They are massive in terms of scale and may consist of

thousands of cores, will reach unparalleled energy consumption rates, and cores will

not necessarily all have the same capabilities. The second question is how to manage

conflicting goals, such as, how to maximize performance while adapting for energy.

In exascale systems this problem is burdened by the distributed nature of the control

hierarchy where localized job scheduling will no longer suffice. The third question is

how to demonstrate a self-aware adaptation strategy for an exascale architecture when

to date no architectures have been fabricated; and all are currently in the process of

research and development.

3.2 Solution Methodology

To answer the first question, an exascale architecture such as the TEA will need

to support a number of hardware features to enable monitoring within a block as will

be discussed detail in Chapter 4. From there a system runtime will need to make

9



intelligent decisions to control various hardware features within the architecture to

reduce energy consumption. This will take the form of clock rate adjustments and clock

gating/power gating of components, as well as, bandwidth tapering. From a software

decision perspective, a runtime will also need to schedule tasks and move aggregated

data distilled from information collected via monitoring the system. We mentioned

briefly that this forms the basis for an ODA loop. We foresee each block within the

system having some independent ODA loop for localized decisions. Figure 3.1 shows

at a high level how we foresee the mapping of an ODA mechanism to our TEA. A CE

will implement an ODA loop for self-adaptation. Information will come from various

hardware and software mechanisms within the system and goals will come from the

user or program. And finally, various actions will occur in the form of adjustments to

hardware state or some type of software based change (e.g. a goal adjustment).

Observe

Decide

Act

PMU,
Thermal/Energy 

Sensors,
Runtime 

Information,
...

MSRs,
Runtime 
Comm.,

...

Gathering 
Metrics

Freq. Changes,
State Changes,

Data Move., 
Scheduling,

...

Power/Energy 
Goals,

Performance 
Goals,

...

Figure 3.1: Mapping our TEA to an ODA Mechanism

To answer the second question, it is important to recognize that exascale archi-

tectures are burdened with a more complicated decision making process than what is
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typically seen within current generation systems. Exascale systems must adapt to min-

imize energy, maximize performance, and to be reliable at the very same time. There

are two key challenges: (1) conflict resolution, and (2) achieving multi-dimensional

efficiency [25]. As we stated previously, this is an open research problem that has yet

to be solved in the current state of the art [49]. Multi-variable problems are inherently

difficult because the search space is too large to do an exhaustive search, and an opti-

mal solution is not known ahead of time (or possibly even the set of actions toward an

optimal solution). In exascale architectures, the problem is even further compounded

by the hierarchical and complex nature of the system, as well as, because a local con-

trol engine will not have complete system information and thus local decisions may not

meet overall system goals. We foresee the need for a distributed control in exascale

architectures, as well as, a need for a system model. Ultimately whether the solution

lies in machine learning or some other type of decision making process is currently

unknown. It is worth noting that whatever the mechanism, it needs to operate in real

time and be applicable to general workloads.

To answer the third question, at a high level, we will implement and demon-

strate adaptation within our simulation framework, SAFE, as discussed in Chapter 5.

This incorporates monitoring and decision making processes. As we will discuss in

Chapter 4, much of the monitoring will be enabled via the architectural features found

within the TEA. The implemented features of the TEA within SAFE provide a basis

for monitoring the hardware aspects of the TEA, as well as, for modifying the state of

components.
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Chapter 4

REQUIREMENTS FOR SELF-ADAPTATION

In this chapter, we will discuss the underlying hardware requirements in order

to implement a self-adaptive system. Many of these will be integral toward enabling

a self-adaptive system software and others will simply improve or make its job easier

in adapting. Primarily this section serves as a list of features that we believe are

important for adaptation in any exascale architecture. Much of the discussion found

within parallels my own prior work [38]. Before we discuss these requirements in detail,

we will first discuss the types of adaptation that we target followed by a discussion of

the benefits of a tailored Performance Monitoring Unit (PMU).

4.1 Types of Adaptation

When it comes to a self-aware system, there are a number of types of adaptation

that need to occur. These can be categorized broadly into three distinct types of

adaptation: adapting for energy or power consumption, adapting for performance, and

adapting for resiliency.

Energy adaptation covers any decisions that take into account energy and power

in some manner. This can include such things as monitoring the energy usage of tasks

directly or indirectly, as well as, maintaining a given energy or power envelope. This

can also include any decisions that increase performance with a primary focus on

reducing energy. An example of energy adaptation would be to identify whether a

task is utilizing specific functional units (FUs) and to clock or power gate them if they

are not in use. Performance adaption covers any decision that has a primary goal of

increasing performance. Such decisions might take into account system and network

utilization as well as characterize tasks by the types of operations they are doing. For
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example, this could be to identify whether a task is CPU bound, I/O bound, etc.

Resiliency adaptation covers any sort of detection and/or prevention of faults as well

as the handling of task recovery in the event of failure. Task recovery can entail a

multitude of different features such as task migration and memory redundancy.

While we will discuss all three types of adaption, the primary purpose of this

thesis is to focus on a path forward for demonstrating power and temperature adapta-

tion in our Target Exascale Architecture. It is important to note that there is necessary

coupling between all three categories of adaptation. An example of overlap between

performance and energy adaptation is intelligently scheduling tasks and movement of

data to increase performance while at the same time reducing energy consumption.

An example of overlap between all three types of adaptation is building in hardware

support for the detection of data corruption. Without hardware support, a resilient

runtime would be forced to duplicate work and provide checksumming which increases

energy and decrease performance at the same time.

4.2 Role of the PMU in Exascale Systems

Before moving onto the detailed requirements in the subsequent sections, we

will discuss the Performance Monitoring Unit (PMU) as an important mechanism to-

ward enabling adaptation. From an energy perspective, direct energy counters may

implemented such as seen in the Running Average Power Limit (RAPL) counters of

Intel architectures. Another mechanism could be to combine instruction counters with

instruction energy cost metrics in order to indirectly monitor energy. From the perspec-

tive of performance monitoring, the PMU can directly give many different instruction

count metrics that are useful in characterizing performance. From a resiliency per-

spective, counts of correctable errors can be used to aid in pro-actively monitoring for

potential issues and as a mechanism to determine whether the system software should

be cautious with the work it is scheduling. A plethora of counters and the ability to run

them concurrently will greatly aid in information gathering for a self-adaptive system.

As such, it is our belief that the PMU will serve as the primary means of information
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gathering for both performance and energy adaptation and will be one of the most

important mechanisms of a self-adaptive system.

4.3 Energy Requirements

For any large-scale computer system (including current petascale ones), the

primary goal in self-adaptation is to minimize energy consumption. As discussed pre-

viously, the PMU will be integral to this goal.

At the most basic level, the PMU provides various performance related met-

rics. This may include the accumulated energy expenditure, as well as, the counts of

various different instruction types such as local/remote reads, writes, arithmetic logic

unit (ALU) operations, floating-point unit (FPU) operations, direct memory access

(DMA) operations, etc. These counts are useful directly for determining the work-

load characteristics and optimality of running tasks (and of higher level components

in the system). For example, if the runtime system is able to determine that a task is

spending the majority of its time idling while waiting for remote memory through the

usage of some combination of remote read and DMA operations, it could clock gate

the processor running the task, while the data of the task is moved to a more localized

memory. For another example, through the count of FPU operations, the runtime sys-

tem could determine that only integer calculations are performed on a given eXecution

Engine (XE), and thus decide to power-gate its FPU.

The PMU can also be used indirectly to estimate energy usage. This is possible

if the energy cost of various instructions and components in the system are known

or estimable, and an energy model is developed. Essentially, the costs of instructions

could be combined with the counts read from the PMU to form a picture about the

overall energy usage. This information would then be used in conjunction with specified

power budgets to determine if actions need to be taken in order to meet goals.

We expect exascale architectures to be capable of adjusting the state of func-

tional units (FUs) directly without which they will be unable to cope with power

expenditure budgets or unable to operate at all due to thermal levels. Some may even
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be capable of adjusting state at the functional unit block (FUB) granularity. To clarify,

this is at a finer granularity than FUs, meaning that individual sub-unit pipelines can

be clock gated or power gated. At an individual core level, it is useful to be able to

adjust both the clock rates, and to power down unused cores in order to save energy.

An example of the former is simply adjusting the clock rates to meet a specified power

budget. Another example outside of the realm of energy only adaptation is that some

cores may not be able to run at a full clock-rate due to physical defects or the current

thermal characteristics of the system. It may be advantageous in this case to use the

cores at a lower clock-rate than to simply put them into a power-gated state. As a

final motivating example, a self-adaptive runtime could identify a case where the rate

of data being streamed into a block is lower than the XE using the data for computa-

tion. In this case, the computation XEs would need to idle waiting for the data. The

control engine could identify this and then individually slow the clock rate of the XEs

to match that of the rate at which the data is being streamed in.

We believe it is advantageous to adjust at an even finer-granularity than sim-

ply the core. One interesting motivation would be for task kernel hinting. Given a

compiler with the capability to identify the types of instructions used by a task kernel

and given mechanism for the runtime to hook into this information, it could identify

explicitly which units would not be used by a given task and simply power gate them.

Furthermore, the same strategy could be applied at an even finer-granularity to turn

off individual pipelines within FUs.

4.4 Performance Requirements

In exascale systems, the system software will be responsible for task schedul-

ing and resource allocation. Thus it needs to be able to monitor performance in or-

der to achieve adaptation. There are various types of performance metrics that will

be important. These can range from different types of resource utilization (network,

CPU, memory, etc.) to workload distribution, etc. Characterizing sections of the sys-

tem will require monitoring to be relatively fine-grained. We believe that the ideal
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granularity is at the task level. We discussed previously some examples of the dual

energy/performance adaptations that can be yielded from PMU metrics. As we men-

tioned, the key importance here is that the PMU is useful in determining the workload

characteristics and optimality of running tasks within the system.

Using the PMU events described, performance within the runtime can be eval-

uated. To further motivate the usefulness of knowing this information, let us consider

another example. By knowing the frequency and types of memory counts, the system

software can determine network utilization and whether the communication is rela-

tively localized. This information is useful for determining how optimal the current

task scheduling is in terms of performance and energy efficiency. If for instance, the

system software can determine that groups of tasks are communicating frequently but

are not localized to the same block, it could migrate the tasks to one block in order to

localize the network traffic.

4.5 Resiliency Requirements

Though the focus of this thesis is not on adaptive fault tolerance, we discuss

resiliency in terms of hardware/software requirements for completeness sake because

as mentioned previously, the goals of power, performance, and resiliency are not inde-

pendent or mutually exclusive in an exascale architectures. As such, fault tolerance

is necessarily an important aspect of self-adaptive exascale systems. Without proper

hardware support, the software will be unable to cope with failures or to meet goals.

Furthermore, the system software would necessarily be burdened with the detection

and prevention of faults through costly primitive means. This could potentially entail

such things as the duplication of tasks and verifying the results of all task computa-

tions within the system. In short, lack of proper hardware support for resiliency will

significantly affect other aspects of self-adaptation.

It is our belief that the hardware must be able to detect faults within the com-

ponents of the system. The primary motivation for this is to minimize runtime scope

and energy costs. A system software burdened with the aforementioned details will be
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extensive and inefficient. This leads not only to a high cost in software support, but

also a reduction in energy efficiency and performance. For example, task duplication

could force the same task to be re-run three times simply to determine which set of

components is faulty.

However, the hardware needs not only to detect and/or correct faults but also

a means to deliver information about the failure to the system software. As such, it is

essential for an introspective system software to know which FUs have failed in order

to reschedule any tasks that require or depend on the failed hardware resources.

Even with proper hardware detection for faults, the software system is burdened

by the need to schedule tasks efficiently in a non-ideal environment. From a self-

adaptive standpoint, one of the primary tasks will be to achieve a known working

state. On current generation systems, the primary means by which this is achieved

is through extensive quality control tests. In the software stack of an extreme scale

environment, a map of known permanently bad components from quality control testing

will be essential for the system-software to learn and adapt as quickly and efficiently

as possible. This will yield a known good state on the start up of the system without

spending large amounts of energy determining which parts of the system are bad and/or

scheduling tasks to faulty components. This map would need to contain two types of

information: all components that fail under any circumstances, and components that

fail under certain known operating conditions. For example, the latter could contain

Vdd requirements, thermal requirements, limits to the number of XEs that can operate

together, etc.

Another aspect of fault tolerance is proactive preventive measures that can be

taken in both hardware and software. For instance, if the system-software can identify

components with a high probability of failure, it can avoid scheduling critical tasks to

those components. The envisioned form of support is through the dual usage of error

correction and the tabulation of errors exposed through performance monitoring units.

Given such details, the system-software could keep track of the errors and use some

form of built in risk assessment when scheduling and allocating resources.

17



Chapter 5

SIMULATION FRAMEWORK

This chapter discusses the Self-Aware FramEwork (SAFE) developed to test and

experiment with self-aware and self-adaptive control policies. SAFE is a simulation

framework designed to execute instruction traces broken into energies per operation.

SAFE simulates a 2048 core exascale architecture integrated circuit organized into a

three level hierarchy. The simulated chip consist of 16 units organized into 16 blocks;

where each block consist of 8 execution engines and a single control engine. Addi-

tionally, SAFE incorporates thermal simulation modeling of heat distribution among

blocks of the chip. In order to facilitate adaptation and to more accurately model chip

communication, SAFE incorporates a tiered approach to communication of messages

between blocks within the chip. Figure 5.1 shows our Target Exascale Architecture

(TEA) mapped to control engines. Though we only simulate a single chip, we envision

the control hierarchy of SAFE to extend across chips in an exascale system.

The following sections discuss SAFE in more detail. First, we discuss the various

models built into SAFE and then move into a discussion of adaptive policy implemen-

tation.

5.1 Execution and Energy Modeling

SAFE models the execution of individual instructions in terms of their energy

expended during operation. Instructions are grouped into two types: low energy opera-

tions with full and near threshold voltage (NTV) state energies, and memory operations

that use high amounts of energy where energy doesn’t change regardless of the DVFS

state of components within the block. Energy is accumulated on a per block basis

and this is used to compute temperatures as discussed in section 5.5. A simple power
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Figure 5.1: Abstract Machine Model with Adaption: Shown is an abstract repre-
sentation of the TEA with control engines operating at each level of the
hierarchy.

window taking into account a configurable amount of cycles is used in conjunction with

chip clock rates to compute the current power of a block.

All blocks within SAFE operate independently and periodically synchronize to

reduce skew in execution results. Each block is capable of adjusting the execution state

of individual execution engines within it between full frequency and NTV in order to
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facilitate adaptation. Additionally, block control engines have control over network

access of memory requests moving in and out of the block and can choose to throttle

network activity in terms of percentages. This is a requirement because heavy network

traffic will necessarily result in high energy expenditure.

SAFE also incorporates an instruction consolidation mechanism in order to re-

duce simulation run times. Essentially, it uses the law of averages to merge multiple

instructions into a single instruction and reduce the real time execution of a given

simulation. This is configurable on a per run basis. Finally, SAFE models DRAM port

access in order to more realistically limit network energy. This is configurable on a per

port basis at an individual block level.

5.2 Control Engine Modeling

SAFE incorporates a 3 level tiered distributed control hierarchy among blocks.

At the top level, a chip control engine dictates power and temperature goals to units

under its control. Unit control engines further dictate power and temperature goals to

blocks under their control based on the goal dictated from the chip. At the lowest level,

block control engines directly control execution engine DVFS states by individually

throttling cores between full frequency and near threshold voltage (NTV). As discussed

in the prior section, Full and NTV states consist of differing amount of joules. In

essence, SAFE models a distributed and hierarchical system between control engines

at different levels. Figure 5.2 illustrates the control hierarchy.

Additionally, block control engines throttle network activity under their own

discretion on a per block basis. Network throttling simulates bandwidth tapering by

reducing the network communication from full speed to some percentage of the full

speed. This necessarily causes increased latency for memory operations but reduces

energy consumption and thus power. Network throttling is necessary for adaptive

power and thermal control of bandwidth intensive applications without which, power

and temperature goals will unable to be met.
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Figure 5.2: SAFE Control Hierarchy: A generalized example of SAFE’s control hier-
archy. On the left decisions are shown moving down the hierarchy. The
circular arrows indicate that observe-decide-act mechanisms are occur-
ring within each CE. As shown, goals are relative to the central goal
dictated by the root CE.

Control engines dictate adaptive goals to components under their control indi-

rectly or directly. These said goals are decided through observation of system state

either indirectly or directly. For example, direct observation would entail a temperature

machine specific register (MSR), and indirect observation would entail the aggregation

of temperatures among higher level control engines in the hierarchy. These observa-

tions are used in an observe-decide-act (ODA) loop to either make decisions about

goals (at higher level tiered control engines) or to directly tweak control knobs (e.g.

adjust DVFS state, etc.). In essence, the system entails a distributed control hierarchy

synergistically making decisions to meet the highest level goal dictated by the chip level

control engine. This goal is propagated down and lower level control engines decide
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how to allocate their own goals toward meeting this overall goal.

5.3 Data Aggregation

SAFE aggregates directly observed data to parent control engines and pushes

it up the control hierarchy. That is to say, data is distilled and aggregated up the

hierarchy for control engines to make decisions upon. This is further distilled as it

moves up the hierarchy. This relationship is shown in figure 5.3. The aggregated

data is statistical information detailing the state of the components under control of a

given control engine. SAFE employs probability theory in terms of central moments to

meaningfully characterize data distributions across the simulated system. Currently,

the implemented control policies only use the first moment (average) for decision mak-

ing, but more complex policies could incorporate variance and skewness; as well as,

implement other types of data to be aggregated (such as memory movement infor-

mation). Variance and skewness give a notion about the spread of a distribution, as

well as, any asymmetry presence respectively. The rest of this section is devoted to

discussing the use case of the various moments for purposes of adaptation.

In detailed terms, variance can provide a control engine with a notion of system

imbalance. Within an exascale architecture, imbalance may be the result of process and

circuit variance, run-time induced variance, and inherent-program variance. Skewness

on the other hand, can provide a notion of hot spotting within a system that be

the result of the previously mentioned sources. Variance and skew could be used in

conjunction with an intelligent scheduler for adaptive scheduling.

Finally, it is worth noting that the task of aggregation is burdened by two

important design constraints: (1) the need to characterize temperature and power

distributions accurately, and (2) the need to minimize communication and performance

costs across the system. These two design goals can be seen as conflicting in nature

in that minimizing communication and performance costs necessarily decreases the

amount and accuracy of information one can move around the system. One design
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Figure 5.3: SAFE Aggregated Data Hierarchy: A generalized example of SAFE’s
data aggregation hierarchy. The left shows data aggregation moving up
the hierarchy. The circular arrows indicate observe-decide-act mecha-
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goal of SAFE was in minimizing communication while maintaining accurate and up-

to-date information across the hierarchy. The communication model used within SAFE

is discussed in the following section.

5.4 Communication Modeling

SAFE incorporates a simple communication protocol consisting of mailboxes

for communicating between control engines. Each control engine has reserved slots for

receiving control information from its parent and aggregated data from its children.
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Messages are designed to minimize data-transfer while maintaining data integrity in

terms of accuracy. A control engine is responsible for checking the slot and emptying

its contents for more data to be placed within. A simple queuing system is used in the

case that messages become backlogged for any reason (i.e. the control engine doesn’t

service them fast enough). In order, to minimize stale data, any queued messages are

checked and old messages of the same type are replaced. This has the effect of aiding

response time during the decision making process.

The communication protocol consists of 64-bit messages in order to minimize

data transfer. Minimizing data transfer is central to the design of SAFE’s communi-

cation hierarchy as large transfers would necessarily result in high energy costs which

contradicts the goal of SAFE to manage power and temperature, as mentioned the

prior section. Additionally, minimizing data transfers also speeds up communication

to allow for better adaptation. In terms of hardware, such a communication network

might use specialized hardware tailored to message size and type to further improve

efficiency.

Messages in SAFE are broken up into a 4-bit header, and 28 reserved bits de-

pending on message type. Temperature data is encoded as 8-bits and power is encoded

as 16-bits. The encoding scheme for temperature uses a simple 2-bit fractional en-

coding for fractional temperatures, reserving the upper 6 bits for the whole number

portion. Figure 5.4 shows the fractional bit encoding scheme for temperature. Es-

sentially, values are encoded in terms of notches always rounding up. For example, a

temperature of 76.1 degrees Celsius would be encoded as 76.25 degrees Celsius using

the encoding. The whole number encoding size was chosen based off of how modern

architectures encode temperature. These typically provide 12 to 13 bit precision MSRs

encoding a temperature differential which is then subtracted from a thermal junction

design point to calculate the actual temperature. For example, some processors use 127

degrees Celsius and others 100 degrees Celsius as the thermal junction design point.

SAFE implements the same mechanism using 100 degrees Celsius as the thermal de-

sign point. However because ambient temperature is 50 degrees Celsius and maximum
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operating temperature is 100 degrees Celsius, only 6-bits are needed to represent all

possible values.

Fraction Bit Encoding for Temperature

Bit Encoding Fractional Interpretation

0b00 0.00

0b01 0.25

0b10 0.50

0b11 0.75

0bXX ...

Figure 5.4: The left column shows an example bit encoding of temperature. The
right column shows an example notch pairing.

Power is more complicated to encode because it ranges from fractional values

at the lowest level to large values at the highest levels when aggregated. Accurately

representing this can be a challenge when attempting to preserve precision and accu-

racy. The employed encoding scheme takes a maximum possible encodable value (e.g.

30 watts) and then uses this value to determine individual evenly spread representable

notch values. For example, an encoding scheme might have notches of 0.04, 0.08, 0.012,

so on so forth. The actual values of the notches depend on the bit-width size employed.

A 16-bit encoding size was decided by testing the accuracy of adaptive policies at var-

ious precisions. This allows for 65536 possible values to be encoded. Given a 30 watt

maximum, this would allow for individual notches of 457.76 microjoules to be encoded.

Employing a different maximum encodable value at differing levels of the control hi-

erarchy allows for varying precisions that fit aggregated value ranges on a per level

basis.

5.5 Thermal Modeling

SAFE incorporates a linear heat simulation of localized heat and temperature

using thermal conductivity and thermal resistivity based off of a prior model [42]. In

the model, localized heat dissipates across the chip over time. SAFE models a 500
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by 500 millimeter chip with a heat sink installed across the top. Figure 5.5 shows a

possible heat distribution in a 3 by 3 grid of blocks.

Figure 5.5: Example Heat Distribution in a 3 by 3 Grid of Blocks: Due to number of
cores and small area of blocks on the simulated chip, high differentials in
temperatures are possible and localized heat could lead to hot spotting.

Heat is modeled in terms of joules accumulated on a per block basis for a 256

block simulation. The model incorporates a tiled layout where each interior block has

4 neighbors (top, bottom, left, right). Exterior blocks have 3 or 2 neighbors depending

on whether they are located on an edge or corner respectively. Heat is dissipated across

neighbor blocks asynchronously as it accumulates, as well as, to the heat sink located

along the top which is modeled at a configurable ambient temperature. Figure 5.6

shows a cross sectional view of a block and its neighbors. The amount of heat flux

moving in or out of a block depends on the temperature gradient between the respective

components. This is modeled as a simple linearly transfer because the chip does not

operate at temperatures where one would see a non-linear relationship. For example,

a block operating at 70 degrees Celsius will transfer heat to the heat sink at a linearly

lower rate than another operating at 80 degrees Celsius.

Specifically, in terms of modeling, heat is translated into temperature (in degrees

Celsius) based on the specific heat and density of silicon, the wafer density, and the
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Figure 5.6: Cross-sectional View of an Individual Block and Neighbors: Heat radiates
along the four boundaries between neighbors and across the heat sink
along the top.

size of the chip. For heat dissipation across the heat sink, thermal conductivity, and

the size of the chip is used. The thermal conductivity has been calibrated such that an

average 100 watt workload across the chip will stabilize the temperature to 100 degrees

Celsius. Heat dissipation to neighbors is modeled using a conductivity constant, the

physical distance between blocks in terms of micrometers, as well as the block width

and height. All of the parameters are configurable for use with a generalized chip

outside of the one modeled in this thesis.

A key aspect of the temperature model, is that temperature can be used to

implement adaptive policies to meet average temperature goals across the chip. Ad-

ditionally, adaptive wattage goals can be used to indirectly meet temperature goals.

This is discussed in more detail within Chapter 6. Though, not explored within this

thesis, temperature variance, as well as skew could be used to further refine adaptive

policies.
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5.6 Control Policies

SAFE is a framework designed to implement and test various control policies

for adaptation, as well as, to explore the types of data needed to enable adaptive

policies. Each of the tiered control engines discussed in section 5.2 implement separate

control policies for their respective sections of the system. How a policy is implemented

naturally depends on the level in the hierarchy.

At the lowest level control engines have direct control over components at their

disposal. They can throttle networking activity or individually adjust the DVFS states

of blocks. Additionally, they can read MSRs to collect information about their state.

Currently, temperature, power, and network activity MSRs are implemented and used

in implemented adaptive policies. Higher level control engines have indirect control

over hardware. They receive aggregated statistics from lower level control engines and

use this information to make informed policy decisions. In terms of control, they give

goals in terms of power or temperature to lower level control engines. The design of

SAFE allows for more complicated control messages to be easily implemented. The

details of the implemented policies are discussed in Section 6.1.3.
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Chapter 6

EXPERIMENTAL EVALUATION

This chapter discusses the experimental evaluation of SAFE using various con-

trol policies, as well as, potential hazards in adaptive mechanisms that can lead to a

maladaptive system. We demonstrate here why proactive adaptive systems are needed

for massively parallel architectures and why reactive localized adaptive systems will not

suffice for future exascale architectures. We additionally demonstrate that fast and ac-

curate collection of pertinent information and quick dispatch of control messages is

crucial for convergence toward goals.

First we discuss our experimental setup and then move onto experimental re-

sults. Within experimental results, we discuss maladaptation, as well as, working

adaptive solutions. For each experiment we discuss the observed behavior and why the

behavior occurs. Finally, we provide an overall discussion of the experimental results

and the conclusions derived from them.

6.1 Experimental Setup

This section discusses the experimental setup. Detailed within is the system used

to run experiments, the different workloads used, and the different adaptive policies

evaluated using said workloads.

6.1.1 System

For experimental evaluation of adaptive policies within SAFE, we ran on a

NUMA quad socket machine with 128 gigabytes of memory and 4 Xeon E5-4610 pro-

cessors for a total of 24 cores and 48 hardware threads. Because SAFE is an asyn-

chronous multi-threaded simulation framework, the use of parallel processors greatly
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decreases run time.

6.1.2 Workloads

In experimentation, we employ synthetic workloads designed to represent vari-

ous types of operations that might occur during the execution of a program. The first

workload type consist of a compute intensive operations individually contributing low

amounts of energy, but additively resulting in around a 104 watt load consistently at full

operation. While individual instructions themselves differ in terms of energy consump-

tion, the workload is highly stable; and thus useful for demonstrating the maladaptive

hazards that can occur in distributed control systems even under highly stable work-

loads. The second workload type consist of high network energy operations mixed with

compute operations. Individually the workload variation may be significant between

cores, but collectively on a 2048 core simulation at full operation, variability in power

consumption over time is on the order of approximately a 3 watt swing. This workload

is useful for demonstrating a maladaptive hazards that can occur under localized adap-

tive schemes and thus motivating the need for hierarchical adaptive schemes. The third

workload is a phased workload consisting of periods of network intensive operations and

compute intensive operations. This workload is designed to stress adaptive schemes

by introducing a high watt swing between operations over small amounts of time. At

full operation, there is about a 90 watt swing at maximum. In essence, this type of

workload represents a worse case scenario for adaptive power management schemes in

the sense that swings in wattage occur rapidly at very quick intervals. This means that

control schemes are more likely to over and under compensate. Other phased work-

loads would cause similar behavior, but to lesser effect depending on the peaks and

dips in wattage. Within an adaptive control system, lower peaks and falls over longer

periods of time are much easier to control than quick large oscillations. Our phased

workload is used to demonstrate the effectiveness of distributed hierarchical adaptive

schemes and why local only adaptive schemes fall short for massively parallel chips.

Finally, we demonstrate that hierarchical adaptive schemes can mitigate the presence
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of maladaptive components within a distributed system; allowing convergence toward

a goal not possible with local only adaptive schemes.

Each workload in the system is run at full frequency and network operation

for around 100 microseconds (0.1 seconds) of simulated execution time. This is to

stabilize the workload power using a 100 microsecond rolling average of accumulated

energy (joules) to compute power (watts). Without this stabilization period, SAFE

would not have a valid power window upon which to perform adaptation. After this

initial stabilization period, each workload is run for an additional 5000 microseconds

(5 seconds) of simulated execution time with adaptive policies enabled. It is during

this period of time that we collected wattage and temperature numbers from each

simulation that was run. The graphs found in this section reflect the latter time period

and exclude the initial stabilization period.

6.1.3 Policies

In terms of policies, localized control engines use a greedy policy that attempts

to utilize resources within the goal given. If they are over or under their goal, they

will attempt to adjust their block state using the various knobs they have access to.

There are two types of adjustments used. The first is to simply throttle individual

cores up or down depending on whether they are over or under their goal limit. They

will periodically continue to monitor their convergence toward a goal and continue to

adjust accordingly. The second is to adjust network activity if it contributes toward

their inability to meet a goal. This is implemented in terms of percentages to represent

bandwidth tapering. Additionally, if above a certain hard threshold limit and network

activity is detected, control engines will immediately throttle network activity to some

fraction of full speed in order to mitigate large rises to unsustainable power levels.

Eventually, local control engines will converge on a local solution if possible. However,

this may not be possible due to the nature of workloads. For example, if their workload

is too small to reach a goal limit in the first place, they will be unable to meet the

limit. Another example is if control knobs are not fine-grain enough to converge to a
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local solution. In these situations a local adaptive policy will consistently overshoot

and undershoot the goal.

Higher level control engines on the other hands, do not have direct control over

resource usage within the system. These provide goal adjustments to lower lever control

engines depending on whether they are above or below their own goal. The net effect

is that lower level control engines will begin to converge toward a new goal provided

by the higher level engines by using whatever control mechanisms they have. In terms

of policies, two simple policies are implemented.

The first policy adjusts the goals of individual lower level control engines in

increments of different sizes depending on how far the higher level engine is from its

own goal. The exact value of the reduction is configurable. However, the further away

from a goal, the larger the adjustment will be. Slight changes will converge more

slowly but may converge better; whereas, large values may cause overcompensation

and oscillation. The engine upon which a new goal is given is chosen at random. It is

worth noting that adjusting the goal of an engine already over its own goal limit may

not produce useful results because unless it is maladaptive it is already attempting to

meet its power goal, and meeting its own lower level goal may be simply not possible.

Ergo, adjusting other engines will likely be more fruitful in practice.

The second policy directs higher level control engines to tally how far they are

under their own goal and beneficially adjust goals such that other lower level engines

receive portions of the unused goal limit. This enables components that cannot meet

their limit to stop trying and allows those that do meet their limits to run faster if

possible. The idea behind this policy is that if control engines are unable to utilize the

resources to keep at a particular goal level then it is beneficial to raise other engines

goals so that they can increase the utilization of their own resources. Essentially, it

allows for more intelligent use of resources within the distributed system.

All policies use a dampener to mitigate oscillation due to the distributed nature

of the control system. This allows adjustment of the rate of control of engines at various

levels of the control hierarchy and is configurable by level. Larger dampeners reduce
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the rate of adjustments and lower dampeners increase the rate of adjustments. In a

real system, these rates might be dynamically tuned by an adaptive runtime; however,

they are statically configured in these experiments. If no dampener is used, too many

changes will occur at once and the resulting feedback information will come too late

leading to overshooting of goals, oscillation, and non-convergence; rendering policies

ineffective. A dampener that overcompensates will lead to oscillation but with a more

predictable pattern.

6.2 Experimental Results

This section discusses the experimental results obtained. It is organized by

workload type as discussed in Section 6.1.2. For each workload, we demonstrate work-

ing adaptive solutions using various policies followed by a discussion of maladaptive

behavior that can occur.

6.2.1 Compute Intensive Workload

This section is devoted to a discussion of compute intensive workloads as a case

study to demonstrate how adaptive policies may lead to maladaptive behaviors and

what the effects are, as well as, the behavior of correct adaptive policies on stable

workloads.

6.2.1.1 Adaptive Solutions

If hierarchical decision making processes are working correctly then there should

be minimal oscillations and quick convergence toward a goal. For a stable workload,

there should be little to no oscillation following the initial convergence period. Fig-

ure 6.1 shows the behavior of the calibrated goal adjustment policy on a compute

intensive workload. Shown is slight oscillations in activity due to local adaptive en-

gines overcompensating slightly with a collective effect of a slight increase in wattage.
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Figure 6.1: Shown is the effects of a hierarchical adaptive policy after calibration on
a stable compute intensive workload.

6.2.1.2 Maladaptive Behaviors

The experiments discussed in this section highlight the various ways in which

poor policies within distributed hierarchical adaptive systems can give rise to maladap-

tive behaviors even for highly regular workloads. Careful calibration of policies needs

to be done either by hand or automated in order to avoid such issues. The maladaptive

behaviors shown here largely stem from policies either over or under compensating in

some way, and resulting in oscillations and non-convergence toward a set goal.

One way in which a distributed hierarchical adaptive system can cause mal-

adaptive behavior is by not quickly enough adapting to state changes. This will result

in unpredictable oscillations as shown in figure 6.2. In a localized adaptive scheme, one

might see predictable oscillations if miscalibration of this manner were to occur, but

in a distributed system the behavior is more complicated and more difficult to diag-

nose. The key reason for the unpredictable oscillations is that as the control hierarchy

operates independently, control engines will attempt to converge independently of one

another leading to differing levels of over compensation at differing points of time.
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Figure 6.2: Shown is the result of over damping a distributed control policy to adap-
tively reach a target goal for a stable compute intensive load.

In a real system, this behavior could be the result of incorrect information being

aggregated up the control hierarchy, information not being passed quickly enough to

higher level control engines, the result of control decisions taking too long, or the

result of delay in sending control decisions to lower level control engines. It is for this

reason that a complicated decision making process involving long computations will

not be possible in an massively distributed control engine hierarchy. Decisions must

be quick and correct in real time in order to compensate for execution behavior. While

offline learning could be used to improve the behavior of adaptive policies, the online

components must be calibrated and responsive in terms of (1) receiving up-to-date

information, (2) making adaptive decisions, and (3) sending those adaptive decisions

down the hierarchy.

Another way in which a distributed hierarchical adaptive system can cause mal-

adaptive behavior is by making decisions too quickly or not giving enough time for

prior decisions to take effect. This will result in predictable patterns as shown in fig-

ure 6.3. The characteristic saw tooth pattern seen in the figure is the result of a limit
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Figure 6.3: Shown is the result of under damping a distributed control policy to
adaptively reach a target goal for a stable compute intensive load.

cap on increased power changes over a given time period for the particular policy. In a

localized adaptive scheme, an under damped system will result in similarly predictable

oscillations depending on the exact policy. In this particular case, only the higher level

control engines are over damped, meaning that if the lower level layers of the system

were left alone with set goals they would converge to them. However, when the upper

level layers of the hierarchy are maladaptive the effects sweep across the system making

it unable to effectively adapt.

In a real system, this behavior could be the result of simply miscalibrated control

engines. Another way this might occur is in the event that decisions take a long time

to take effect. For example, if a decision is made to power gate a core or block of

a real system, it is possible that a delay could occur and that new aggregated data

information being sent will not include the effect for some time. A hierarchical decision

process needs to be aware of delays in the control knobs that exist in the system in

order to effectively adapt. Additionally, predictive proactive policies that account for

time delay may be needed to actively adapt if the delay is large.
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Figure 6.4: Shown is the result of varying damping rates within a given level in a dis-
tributed control policy to adaptively reach a target for a stable compute
intensive workload.

A third way in which a distributed adaptive control system can go awry is by

differing the control rates of control engines in a maladaptive manner. This behavior is

shown in figure 6.4. This demonstrates that even slightly miscalibrated controllers can

cause rippling oscillations throughout the system instead of convergence toward a goal

in the presence of a stable workload. While the effect demonstrated is not that bad

under stable conditions, it may certainly result in unpredictable behavior in unstable

workloads. This highlights the critical need for distributed control systems to be able

to identity maladaptive components and mitigate their effects.

In a real system, this behavior would most likely be the result of simply mis-

calibrated control engines and only lead to small effects. It is worth noting that such

behavior could cause emergent maladaptive behavior that is not detectable within a

stable isolated workload. As we will demonstrate with other workloads, maladaptive

behavior can cause much worse oscillations within an adaptive system. As such, real

systems should provide mechanisms to identity maladaptive components either online

or offline in order to provide systems engineers with a clear methodology to fix such
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issues, as well as, for system software to adapt in the presence of unstable system

components.

6.2.2 Network Intensive Workload

This section demonstrates effective adaptive policies that generally converge

toward a solution for a network intensive goal once given a goal. Additionally, adaptive

behavior in the presence of maladaptive components is discussed in detail.

6.2.2.1 Adaptive Solutions
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Figure 6.5: Shown is the effect of an adaptive control policy that lowers and raises
sub-control engine goals when its goal is not met for a network intensive
workload. It is capable of meeting its goal; however, undershoots in some
cases possibility due to overcompensating localized control engines.

The experiments discussed in this section show the ability of a hierarchical

adaptive system to adapt to a network intensive workload. The two policies used are

the adaptive goal adjustment and benefit policies discussed in section 6.1.3. These two

policies are designed to make minimal adjustments when near a goal and to let lower

level control engines converge to a solution with minimal interference when lower level
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control engines are doing their job effectively. These higher level policies show good

behavior both when lower level policies are doing their job and when they aren’t. The

subsequently discussed experiments show the former case.
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Figure 6.6: Shown is the effect of an adaptive control policy that attempts to intel-
ligently reduce slack in load by raising the goal of lower control engines
when others fall below their goals. Essentially, it reduces the goal of en-
gines currently below their goal, and increases the goal of other engines.

Figures 6.5 and 6.6 demonstrate the ability of these policies to converge to a

stable solution. The benefit policy is better able to converge to the overall system

goal; whereas, the random goal adjustment policy undershoots in some cases. Though,

these experiments demonstrate that hierarchical adaptive controls work well during

stable network phases, more importantly, the goal adjustment policy is demonstrated

to effectively adapt under unstable maladaptive conditions in Section 6.2.2.2 and under

phased workloads in Section 6.2.3.

6.2.2.2 Maladaptive Behaviors

The experiments discussed in this section highlight how limited granularity of

control mechanisms can lead to maladaptive behavior, as well as, the effect maladaptive
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components can have on convergence toward a goal. They also serve to demonstrate

how hierarchical control can mitigate some of the effects of maladaptive components.
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Figure 6.7: Shown is the result of providing only coarse grain adaptive network con-
trols to lower level control engines. Network activity is capped to a
minimum of 50% for a network intensive workload.

If controls are too coarse-grained this can lead to the inability to effectively

adapt for any control system. Figure 6.7 shows an example of the effects that might

occur in such cases. Shown is a network control mechanism that is limited to 50% of

the maximum rate. By capping the limit, the effective minimum wattage of a network

intensive workload is around 60 watts because the lowest level control engines can do

nothing else to limit activity under the policy. If one were to limit activity to large

percentage, 5% for example, these engines would similarly be unable to meet a goal and

would simply oscillate around the goal never converging. While in some sense, this is a

unnatural example, it serves to highlight an important point about the granularity of

adaptive mechanisms. For example, a real system with hard limits on the granularity of

core DVFS states might similarly be unable to meet goals. Instead, cores may oscillate

around a goal. As such, the granularity of controls will be a critical aspect in exascale

systems.
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Figure 6.8: Shown is the result of introducing 64 maladaptive lower level control
engines under an adaptive control policy for a network intensive workload.
Essentially, the working control engines have mitigated the effects of these
other malicious components when possible. In cases such as this, higher
level control engines revaluate and assign goals accordingly.

Given a distributed system, components may be maladaptive in some way. That

is to say, unable to meet a goal for some reason. For example, as discussed above,

coarse-grain controls may lead localized control engines to be unable to directly meet

a goal. However, in the event of a maladaptive component within the system, a dis-

tributed control hierarchy should be resilient enough to detect maladaptive components

and minimize the effects; and to meet their own goal if possible. Shown in Figure 6.8

is a hierarchical adaptive policy’s ability to cope in the event that 1
4

of components

within the system ignore commands and continue operating at maximum frequency

and network state. While the system cannot meet a goal below 40 watts, it is perfectly

able to converge to a solution for higher goals. This serves as testament to the ability

of distributed control engines to cope with maladaption. Local static control policies

would simply be unable to cope with such behavior. This is explored in more detail in

Section 6.2.3.
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6.2.3 Phased Workload

This section is devoted to discussion of hierarchical and local adaptation schemes

under phased workloads. The particular phased workload, and conditions under which

it is run, is designed to stress adaptive schemes, such that, they have a very difficult

time converging to an acceptable solution. The central idea is to operate these adaptive

schemes under the worst conditions and to demonstrate their effectiveness or non-

effectiveness.

6.2.3.1 Adaptive Solutions

This section demonstrates effective adaptive solutions for the phased workload.

Both wattage and temperature levels for the adaptive goal adjustment policy are shown.

As will be denoted below, wattage goals directly translate into temperature goals. The

duality of the two is an important aspect not to be understated.
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Figure 6.9: Shown is a hierarchical adaptation scheme adapting to a phased work-
load of local and network operations. Demonstrated is that hierarchical
adaptation schemes are capable of effectively mitigating and managing
the effects of over and under compensating local control engines.
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Figure 6.9 demonstrates that even for highly oscillating workloads consisting

of quickly varying phases, hierarchical adaptive schemes are effective and converge to

their goal even in the event of a 70 Watt swing at full operation. In this particular

case, we see an initial drop in wattage as the scheme takes effect and then a rise and

quick convergence. The reason for this behavior is that the policy used immediately

drops network activity to a minimum if it is causing control engines to miss their goal

by a large amount. As will be demonstrated with subsequent experiments, complete

convergence is not possible with static localized schemes and under conditions with

maladaptive components, no localized adaptive solution is possible.
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Figure 6.10: Shown is a hierarchical adaptation scheme adapting to a phased work-
load of local and network operations. Demonstrated is that hierarchical
adaptation schemes are capable of meeting temperature goals indirectly
through wattage goals.

Figure 6.10 shows the same phased workload collecting average temperature

instead of wattage. It demonstrates that wattage goals necessarily translate into tem-

perature goals. This is due to the nature of average chip temperature levels being the

direct result of wattage levels. A hierarchical scheme capable of meeting wattage goals
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will necessarily be able to meet temperature goals as well. In fact, because tempera-

ture changes more slowly than wattage levels, it is easier to for an adaptive scheme to

meet temperature goals on average. This is evident when comparing Figure 6.9 to Fig-

ure 6.10 where it is shown that temperature levels converge more quickly than wattage

and have less variation over time. As such, it is reasonable to expect wattage goals to

be used in conjunction with chip specifications to meet a temperature goal instead of

directly using temperature goals and temperature machine specific registers. However,

this does not preclude using temperature goals directly if so desired. A policy capable

of meeting wattage goals within SAFE would need only to collect temperature averages

instead of wattage and adapt on those directly. In fact, the aggregation of temperature

data is already implemented, but the adaptive policies within SAFE simply use wattage

instead. The purpose here is to simply demonstrate that there is a duality between

wattage and temperature and that meeting one goal necessarily means meeting the

other. Of course, in reality, absolute temperature junction thresholds should always be

met. That is to say, if a chip cannot operate above a certain temperature, then built

in safe guards should be in place to ensure that it never goes above that temperature

outside of higher level system software adaptive schemes. One would expect such a

mechanism to be implemented in low level firmware.

6.2.3.2 Maladaptive Behaviors

This section demonstrates the effectiveness of hierarchical adaptation under mal-

adaptive conditions, as well as, the behavior of localized adaptation schemes under

non-optimal conditions. As will be shown, localized adaptive schemes perform poorly

in the presence of maladaptive behavior.

Figure 6.11 shows the behavior of the phased workload under a statically allo-

cated local adaptive policy. Essentially, what we see is that minor overcompensation

by individual control engines leads to oscillations within the system. This reason for

this behavior is that though individual overcompensations by themselves are minor,
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Figure 6.11: Shown is the result of using a localized adaptation scheme with preset
goals for adapting a phased workload of local and network operations.
Oscillation is present for all goals and convergence toward a stable so-
lution is not guaranteed.

accumulated together, they result in a large wattage swing all at once. Localized adap-

tion schemes cannot mitigate this behavior because they do not have an idea about

the current overall wattage state of the system.

Figure 6.12 demonstrates this more clearly by plotting the localized adapta-

tion scheme against the hierarchical scheme discussed above. For a localized adaptive

scheme, there are consistently 10 watt swings as the system over and under compen-

sates repeatedly. Where as, the hierarchical adaptive scheme detects and mitigates the

trend through the aggregation of data at higher levels of the control hierarchy. Essen-

tially, higher level engines see the large trend that localized schemes are incapable of

detecting. This is an important adaptive behavior the spans not only power, but also

temperature, or any other system goal. When combined with thousands of individual

cores, maladaptive localized behaviors such as these will become a significant problem.

The subsequent experiments introducing maladaptive behavior into the control system

will demonstrate this even more profoundly.
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Figure 6.12: Shown is a close up view of a local adaptive policy against a hierarchical
policy in adapting to a phased workload.

Figure 6.13 shows the same localized adaptation scheme for the phased workload

in the presence of 1
4

of the system exhibiting maladaptive behavior. In this particular

case, not only is the system not able to converge to a goal, the localized adaptation

scheme results in very large oscillations on the order approximately 40 watts. This

behavior is not surprising given that a localized scheme means that well behaved control

engines only know about the behavior of components under their control and not other

maladaptive sections of the system. But, it highlights an important aspect of adaptive

policies within massively scale systems. That is to say, maladaptive components will

cause systems to be unable to meet goals without hierarchical adaptive schemes in

place.

If we take a look at Figure 6.14, it shows that even in the presence of large oscil-

lations that result from the maladaptive components, that the hierarchical distributed

adaptive schemes perform extremely well considering the conditions under which it is

operating. This is shown more clearly in Figure 6.15 comparing the localized adaptive

scheme to the hierarchical adaptive scheme. In one case, the goal is met following small
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Figure 6.13: Shown is the result of using a localized adaptation scheme with preset
goals for adapting a phased workload of local and network operations
in the presence of 64 maladaptive control engines. Extensive oscillation
is present for all goals and convergence is not possible due to the nature
of localized adaptive schemes to not account for the behavior of other
components within a system.

oscillations to convergence and in the other case the goal never met.

In essence, this shows the effectiveness of hierarchical adaptive solutions and

makes an argument for the usage of these types of solutions in systems operating at this

scale. Demonstrably, localized static schemes will certainly not suffice in cases such as

this. With the variability in the operating states of individual cores due to yield, these

types of behavior are set to become more common in exascale hardware. Even in cases

where the hardware works appropriately, localized maxima and minimas could result

in behaviors such as this due to workload patterns or non-optimal localized adaptive

engines. Additionally, optimized workloads will certainly result in hot spotting in

terms of system resource utilization not shown in these experiments. Static allocation

of resources would result in non-optimal solutions not only affecting the wattage as

shown here, but also the performance of executing workloads. Ideal adaptive solutions

would allocate wattage where needed while converging toward overall system goals.
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Figure 6.14: Shown is a hierarchical adaptation scheme adapting to a phased work-
load of local and network operations in the presence of 64 maladaptive
control engines. Despite an extensive amount of maladaptive compo-
nents within the system, the control hierarchy does a good job mitigat-
ing the effects and demonstrates the resiliency of hierarchical solutions.
Convergence toward a solution would be impossible under such condi-
tions with a localized adaptive scheme.

6.2.4 Overall Discussion

Overall, the experimental results demonstrate the need for hierarchical adaptive

policies in exascale architectures. Even for relatively stable non-phased workloads,

problems meeting goals will occur if individual components are unable to meet their

local goal and no higher level adaptive policies are in place to mitigate the effects. In

cases with phased workloads, the effects will result in unpredictable behavior due to

localized oscillation in different sections of the chip. In conjunction with high levels of

maladaptive behavior, this can result in a very large deviation from the specified goal.

On other hand, hierarchical adaptive policies are capable of significantly mitigating the

effect of maladaptive behavior. Additionally, hierarchical adaptive schemes perform

better even when all sections of the system are behaving appropriately in comparison

to localized schemes. As discussed earlier in this chapter, this is primarily due to the
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Figure 6.15: Shown is a close up view of a local adaptive policy against a hierarchical
policy in adapting to a phased workload in the presence of maladaptive
system components.

higher level adaptive engines having a more complete picture of system behavior; and

thus, being able correct the overcompensation of localized adaptive engines.

It is important not to understate the need to maintain a particular granularity

of control in terms of adjustable system knobs. As was shown in experimental results,

coarse-grain control can lead to an inability for the lower level control engines to meet

localized goals. This could simply be the result of an inability to turn off enough

components to lower power or temperature to a desired level, or it could be the result

of knobs not having enough levels and simply causing oscillations above and below the

localized goal. An example of this would be a control engine only capable of switching

off an entire block of execution engines at once (8 XEs within SAFE). While higher

level adaptive schemes will no doubt mitigate the bad effects of this behavior, the

lower level engines may never converge to a solution (depending on their workload);

thus causing, jitter and a higher convergence time for higher level system goals.
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Chapter 7

RELATED WORK

This chapter discusses prior related work in self-adaptation and self-awareness

to give the reader a brief understanding of the many different aspects of adaptation.

Approaches range from designing adaptive hardware to cross-layer techniques that fo-

cus on using hardware and software together to build adaptive systems or applications.

Many approaches focus on specific applications or subclasses of application and as such

do not consider any notion of system level adaptation which is of an integral importance

within exascale systems. Other approaches focus on providing some type adaptation

for specific components within a system and could be incorporated into exascale hard-

ware or even exposed to system software. Research into system level adaptation is

generally in the form operating systems or management of resources. Newer bodies

of work attempt to treat adaptation more holistically, and provide solutions that span

multiple layers of the system from hardware to the high-level software.

For the purposes of this discussion, we group different approaches to adaptation

into four categories: Application Centric Adaptation, Component Centric Adapta-

tion, System Centric Adaptation, and Cross-layer Adaptation. Application Centric

Adaptation focuses on adaptation within specific applications using either hardware or

software techniques. Component Centric Adaptation focuses on monitoring or adapta-

tion within a particular component or resource of a system. System Centric Adaptation

focuses on adaptation at the system level. Cross-layer Adaptation focuses on adapta-

tion across multiple layers of the system software stack. Following this, we discuss the

aspect of predictive system modeling. Finally, we discuss state of the art self-adaptive

frameworks and the features they exhibit and the aspects of exascale adaptation that

make it fundamentally different from prior research.
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7.1 Application Centric Adaptation

Application centric approaches focus on adaption for specific applications or

a subclass of applications within a given domain. Because this type of adaptation

is largely not generalizable outside of specific applications; and thus, incompatible

with our goal of a general self-aware system, we mention these only in passing for

completeness sake.

Quality of service (QoS) is one large area of active research [1, 11, 31, 43, 62]

due to the real time requirements and the ever changing field of computing resources.

Many newer works focus on cloud computing in particular [37, 60]. Other works focus

on changing application specific algorithm policy [58].

Some approaches are more akin to toolkits designed for application programmers

to use to enable adaptation within their software [22, 23]. Many of these approaches

listed incorporate some form of classical control theory because of various provable

guarantees such as stability and linearity, etc.; however, in more recent years, there

has also been a shift toward heuristic based tuning and machine learning techniques [44]

because, though not providing the provable guarantees of classical control theory, these

tend to provide more robust adaptivity in practice with real applications.

7.2 Component Centric Adaptation

Component centric approaches are a form of adaptation that focuses on mon-

itoring and adapting a particular components or resources of a system. These can

include such facets as networking, memory, and cache, among other things. Many of

these works focus on introducing dynamic reconfigurability into the hardware or at the

software level. There is much work to be found along these lines but for brevities sake

we focus on only a few newer works.

Some work focuses on introducing adaptive reconfigurability into memory or-

ganization. One such work [45] proposes a self-aware memory (SaM) which includes

a self-optimization process. The memory itself is partitioned into self-managing com-

ponents and dynamic memory allocation is done using a client-server style technique
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to reduce bottlenecks. In order to optimize memory allocation, each memory compo-

nent has knowledge of allocated blocks, access rate, and ownership, as well as, limited

knowledge of the state of neighboring memory components. An extended memory

management unit (MMU) is responsible for memory requests and uses acquired knowl-

edge to to optimize memory allocations. Another work [30] proposes a self-optimizing

memory controller that operates using the principles of reinforcement learning (RL).

It works by formulating the scheduling of data reads and writes as a reward based

structure. If a command leads to data bus utilization, this is marked as a reward of

one; otherwise, zero. Using accrued data in conjunction with the controller’s state

(number of reads, writes, and misses, etc.), the controller can learn to optimize various

aspects of its operation, such as, balancing reads and writes, detect states that lead to

low levels of requests and avoid those in advanced by prioritizing load misses, amortize

write-to-read delays, etc.

Other work focuses on introducing hardware reconfigurability into the caching

aspects of memory. One such work [7, 8] proposes incorporating dynamic reconfigura-

tion into the caching levels of memory hierarchies. In essence, the hardware is capable

of detecting phase changes in the access pattern of applications to react to hit and miss

intolerance by adjusting the hierarchy from a three-level cache to a two-level cache and

vice versa. Another work [59] proposes dynamically adjusting the associativity and line

sizes using similar techniques. Still other works [34] focus on the non-uniform cache

access (NUCA) times associated with large multi-megabyte caches and propose logical

policies to allow data to migrate adaptively to memory banks with less cycle access

times for given processors depending on the access pattern.

There are a number of works that focus on introducing adaptive reconfigurability

into networks or network interfaces. One such work [15, 17] develops a network-on-chip

(NoC) with dynamically configurable memory buffers (FIFO depth) and a dynamically

configurable time division multiple access (TDMA) scheduler which can adapt the

number of time slots for different communications according to measured bandwidth.

Hardware mechanisms are incorporated to expand and shrink FIFOs depending on
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utilization. Additionally, genetic algorithms are used to optimize TDMA table access.

There has been additional work done on tackling network adaptation at the software

level. One such work [19] focuses on retaining past QoS performance information for

given hops along destination from source to enable the source to make better decisions

about the path to send packets along in the future.

7.3 System Centric Adaptation

System centric approaches focus on adaptation at the system level. These are

software level approaches that tend to use existing hardware and the operating system

(OS) for adaption. Historically the role of resource management has been given to

the operating system. In the case of highly parallel systems, we can divide these

approaches into several categories: full OSes, lightweight kernels, micro kernels, and

high-level runtime systems.

7.3.1 Full OSes

High-performance systems which use so-called Full OSes take advantage of off-

the-shelf systems, and tune them to reduce system noise. Such approaches are often

embodied in cluster-like environments [56]. Even on dedicated supercomputers, these

approaches have been followed, as they provide a programming environment which

allows for maximal flexibility. However, such systems are in general ill-prepared for the

requirements of future extreme-scale/exascale high-performance environments: their

control over the power envelope is only at a very coarse-granularity; resilience is left

to third party systems, and is not considered as part of the whole; they are oblivious

of the needs of the application they host; etc. Finally, full OSes leave very little room

for specialization.

7.3.2 Light-Weight Kernels

Another approach is to rely on so-called light-weight kernels or LWKs [20, 9].

LWKs offer many advantages over full OSes: They are usually written from scratch,

and only re-implement features needed for an HPC environment. The source code
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being much smaller, means bugs are easier to track and fix. Finally, being specialized

kernels, they usually emit very little noise when running an application on top of LWKs.

They also do expose significant limitations: they very often require the user to learn a

new API to communicate with the system; if a feature usually provided by full OSes is

missing from the LWK, the user’s application may not be portable to the system. In

general, the application programmer does require features found in traditional OSes.

Some LWKs do forward calls to “missing” features to a “heavier” kernel however.

7.3.3 Micro-Kernels

Micro-kernels strip down OSes to the bare minimum (i.e. address space man-

agement, process/thread management, inter-process communication). These so called

kernels run in privileged mode (e.g. ring0 on x86 architectures), while providing satel-

lite features which enrich the overall system, but in an unprivileged mode (for example,

a file system driver). Micro-kernel OSes have shown they could be robust and thus

fulfill the resiliency and maybe even the power and energy requirements (as only the

required services are running). However, for many years, performance was lacking, due

to the message-driven orientation of most implementations.

New approaches have tried to revive micro-kernels, as well as, remove the layers

that historically introduced overhead [5, 36, 46, 48]. Indeed, message-driven communi-

cation in micro-kernels tend to suit multi- and many-core systems very well. However,

there is no approach that tries to provide a holistic view of performance, power, and

resiliency for different granularities. However the latest efforts around micro-kernels

have evolved toward a more library-oriented approach for operating systems [4]. Such

approaches tend to have goals that are closer to our own.

7.3.4 High-level Runtime Systems

High-level runtime systems typically implement some form of resource manage-

ment on top of an existing OS. Typically they intend to provide some type of policy

management that doesn’t exist in the underlying OS. Some focus on providing QoS
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of system resource [40, 41, 52] or provide resource management with dynamic poli-

cies [61]. Others are in the form of languages or frameworks that provide mechanism

for an application to adapt [13, 29, 47, 54].

7.4 Cross-layer Adaptation

Cross-layer approaches involve implementing introspective capabilities across

multiple levels of the system software stack. These differ from the system level ap-

proaches discussed in section 7.3 in that they are designed specifically to expose ca-

pabilities to differing levels of the software stack; whereas, system centric approaches

tend to keep most control at the operating system level. For example, these approaches

may place monitoring capabilities at the OS kernel level and adaptive capabilities at

the application level. These types of approaches served as inspiration for the work

contained within this thesis.

The SElf-awareE Computing (SEEC) model [27, 28, 25] by Hank Hoffman in

many ways is the father of self-aware computing, as well as, father of cross-layer ap-

proaches to adaptation. It incorporates an observe-decide-act feedback loop with, at

its core the notion of expressing goals as application heartbeats. In essence, using a

HeartBeat API, an application registers heartbeats at some specified interval as well

as a target heart rate to reach. Additionally, a precision goal can be registered (e.g.

maximize performance at some user defined peak-signal-to-noise ratio - PSNR). In the

background, SEEC observes the heart rate and the controller calculates the adjust-

ments needed at the next time step. Offline, a series of actuators, possible states, and

the costs/benefits of those states are defined. The cost/benefits associated with each

actuator are used in the decision making process to determine the best course of action

in the next time step. SEEC then applies actions by adjusting actuators to the appro-

priate state. Actuators can either be system level (e.g. core frequency) or application

specific (e.g. which video codec to use). Additionally, reinforcement learning is used

to adjust the costs/benefits of each actuator, thus enabling the system to eventually

converge to meet the demands of the target heart rate. Video decoding is an often
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seen example application used with SEEC. In this particular case, frames-per-second

(FPS) can easily be expressed as a target heart rate. After each frame is rendered the

application registers a heart beat and SEEC keeps track of the heart rate (FPS). If the

current heart rate is either lower or higher than than the target heart rate then SEEC

will adjust a number of different actuators until the heart rate is met. In this particular

case, various decoding parameters can be adjusted on the fly as well as system specific

actuators. Because the actuators affect the quality of rendered images, a PSNR goal

can be used to ensure that the output quality does not become too low. Similarly,

power goals can be specified to allow for the application to reach a target heart rate

while minimizing power usage. The generalized controller design and cross-layer na-

ture of SEEC has shown promising results when used in conjunction with specialized

hardware features. One such work combines SEEC with a processor that incorporates

energy monitoring circuits [53] to augment SEEC’s energy adaptation capabilities.

Another work, CoAdapt [26], also by Hoffman, seeks to alleviate some of the

shortcomings of the prior work. While SEEC could only provide guarantees for a

single dimensional goal in terms of power or performance, or accuracy; CoAdapt, can

provide guarantees for two out of the three dimensions while also optimizing the third.

CoAdapt segments goal dimensions such that one is the lead and the other is the

subordinate. The overall configuration of the lead dimension is used to predict how the

primary goal will affect the subordinate dimension and the system uses this information

to dynamically adapt and ensure the latter dimension doesn’t oscillate and instead

converges to its goal.

Some approaches focus on runtime level adaptation using information from lower

levels of the software stack. A work, by Gioiosa [21], applies classical control the-

oretic techniques to implement adaptive behavior across the software stack using a

self-feedback control loop. At the kernel level, a kernel module based monitor ob-

serves current system values and compares those to reference values in order to apply

self-correction. A controller, implemented at the runtime level (e.g. OpenMP, etc.),

communicates with the monitor to make adjustments, such as, adjusting the number
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of process threads. A well defined communication interface is used to facilitate the

sending and receiving of information and commands between the components. The

primary focus of the work is on decoupling the low-level details of the system (from

a monitoring sense) from high-level programming models or runtimes which want to

incorporate adaptive decision making.

7.5 Modeling

A number of works focus primarily on the aspect of predictive modeling of sys-

tem behavior. Though these works do not necessarily implement a cross-layer adaptive

approach, they are an integral piece in an adaptive solution that could be used in any

layer of a software stack from application level to runtime level. For this reason, we

discuss these works here. It is worth noting that these types of work do not conflict

with work found in this thesis, and indeed, we expect modeling to be an important

aspect of the predictive capabilities of future exascale systems.

One work develops a power model based on PMU information and extends

linear and neural network models to account for external temperatures to build an

adaptive predictive power modeling solution for existing hardware [2]. The model

separates events into three categories: (1) local within a core, (2) events occurring

within shared resources, and (3) events available at the OS level. Algorithmic models

are used to adaptively choose relevant events for modeling while discarding irrelevant

events for performance overhead reasons. The novelty of the approach is that the

interactions of events is considered during the selection process. The selection process

uses a data mining inspired sub-space method to greedily search for the best events

using Correlation Feature Selection [24]. For power modeling, a linear approximation

of traditional RC circuits is used.

7.6 Discussion

This section is devoted to discussion of the important aspects toward developing

a truly self-aware exascale system. Let us begin by discussing the numerous challenges
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of exascale and then following this by a discussion of the general limitations in current

bodies of research. Some of the important challenges of exascale include the manage-

ment of power and energy [16], as well as, performance across hundreds to thousands

of cores. Furthermore, these seemingly conflicting goals cannot be considered in isola-

tion. A coordination between system resources, components, and applications will be

integral at the exascale level to coordinate and adapt.

In terms of exascale applicability, application level approaches to adaptation

focus far too narrow in scope on specific applications and lack a holistic view. These

tend to lack an appreciation for the system level challenges discussed above, and in

many cases could directly conflict with or hinder cross-layer adaptive goals, such as,

minimizing energy expenditure. That is not to say that application goals should not be

considered in an exascale system. In fact, applications will need to become first class

citizens in the sense that their goals will need to be accounted for by a self-adapting

system. However, application goals should be expressed in the form of hints to system

level software given that such software will have better and more complete information

to make scheduling and other decisions upon.

For exascale adaptivity, component level adaptation does not necessarily hinder

a cross-layer approach to adaptation. Indeed, if the right interfaces were exposed

within the hardware, it could very well aid a cross-layer approach to adaptation. And

software level component adaptation (such as software QoS) could be incorporated

directly into cross-layer approaches. For the most part, these types of approaches are

neither here nor there with respect to the work discussed in this thesis; however, we do

take inspiration from these in terms of exposing hardware features or creating software

features that allow cross-layer adaptation of specific hardware components.

Research into system level adaptation, as discussed previously, is generally in

the form of operating systems or in the management of resources. However, these

approaches lack fine-grained control over hardware components due to limitations in

hardware. Exascale architectures will need to adjust the state of components at a

very fine granularity in order to conserve energy and to meet power envelopes. This
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is one important area where exascale research breaks from the current state of the

art in that a co-design of hardware and software will yield a system that is capable

of adapting in ways not possible in current generation systems. As such, outside of

limited research, system software design has not generally attempted to conquer the

challenges of exascale. Moreover, there is a large change in scope both in terms of

hardware heterogeneity and the vast expansion in the number of components that will

need to be taken into account for adaptation. As previously mentioned, there is also an

expansion in the goals and types of adaptation that need to occur in exascale systems.

The current trend in adaptive computing has been to focus on energy adaptation

in some form [6, 55] as this is integral for low power domains and now increasingly for

exascale architectures. SEEC, one of the seminal works in self-aware computing, [25]

focused on both energy and performance adaptation using a notion of “application

heartbeats.” These allowed for an application to communicate goals to a system as

well as progress toward those goals. The results showed that various applications could

be instrumented with heart beats and capable of adapting to meet both energy and

performance goals. However, SEEC relied heavily on application instrumentation and

thus is arguably limited to applications that fit a certain paradigm. Additionally, it

supported only application goals; as opposed to more more general system level goals.

It also relied on the programmer to understand and provide a notion of progress to-

ward a goal; which may not be possible in all applications. Finally, it lacked support

for handling conflicting goals or more generally multi-variable problems. CoAdapt [26]

sought to eliminate some of these shortcomings by providing limited support for adapt-

ing to multiple conflicting goals; however, many of the other challenges and limitations

mentioned above were not addressed. Other cross-layer approaches while focusing

on exposing hardware monitoring to runtime level software tend to focus on existing

hardware and thus tend to be narrow in scope in terms of applicability to future scale

systems.
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Chapter 8

CONCLUSION

High performance systems are evolving to the point where performance is no

longer the sole relevant criterion anymore. This thesis makes an argument that current

execution and resource management paradigms will no longer be sufficient to ensure

performance or to meet goals. Power requirements are rapidly driving the co-design

of HPC systems, which in turn has set the course for a radical shift in how to express

the need for scarcer and scarcer resources, as well as manage them. This thesis opened

with a discussion of why systems will need to become more introspective and self-aware

with respect to performance, energy, and resiliency.

To this end, we explored the background and design of a Target Exascale Ar-

chitecture based off of current trends in HPC, as well as, the experimental design of

new exascale architectures. Then, we discussed relevant hardware and software metrics

for adaptive exascale systems; as well as, the challenges and opportunities within self-

aware systems. Following this, we focused on formulating the problem of self-aware

systems in concrete terms, and discussed hardware/software requirements to enable

adaptation. Next, we detailed, SAFE, a framework and simulator for experimenting

with distributed self-adaptive control policies. Following this, we provided an exper-

imental evaluation of adaptive control policies ranging from localized to hierarchical

adaptive schemes under various conditions. Through this, we demonstrated the need

for hierarchical adaptive control mechanisms, as well as, characterized the effects of

maladaptive conditions on adaptive policies. Finally, we characterized the current field

of adaptive computing focusing on different types of adaption from application centric,

component centric, to system centric designs. We additionally looked at cross-layer
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adaptation (as focused on in this thesis), modeling, and the current state of the art in

self-adaptive systems.

Through the discussion and experimentation, several important conclusions were

reached. These conclusions are stated succinctly as follows: (1) Distributed control

yields more risks than traditional control systems. (2) Bad actors give rise to un-

predictable oscillation and this behavior is demonstrably mitigated by hierarchical

distributed adaptive solutions. (3) Delayed control is particularly maladaptive leading

toward unstable oscillations even for stable workloads. (4) The correctness and timely

movement of observation data is critically important for distributed adaptation. (4)

Quick decisions are needed otherwise reactive decision making is not possible within a

distributed system. (5) Localized adaptation is not enough to converge to system level

goals because it may not be possible for localized control engines to converge toward

a goal. (6) Aggregation of information is critical to mitigate the effect of maladaptive

components and a proactive controller is needed to identify such cases and quell them.

(6) Fine-grained control over system resources is needed for adaptive policies, without

which control engines may be unable to meet their goals.

These conclusions necessarily require that hardware support the infrastructure

to monitor system state, as well as, provide the capability to quickly move data among

sections of the system. Moreover, granular control over system state is needed to

ease the the burden of adaptive control by enabling localized convergence to goals not

otherwise possible. In essence, the development and design of hardware supporting

these features is a hard requirement if exascale systems are to become more self-aware

and handle the variability of complex workloads spanning thousands of cores. As

we draw nearer to rise of exascale, we will begin to see the issues detailed in thesis

become more prevalent. Research and development will need to yield better and more

optimized system software capable of efficient scheduling and introspective behavior.

And necessarily, hardware will begin to reflect these needs.

Though only touched upon briefly in this thesis, resilience and fault tolerance
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will also become large issues moving into the exascale era due to the variable of compo-

nent yield, increased transistor counts due to submicron scaling [32], and the complexity

of massively scaled chip designs; as well as, the move to near threshold voltage (NTV)

operation [3, 10]. In such systems, introspective system software capable of adaptive

and predictive behavior will be needed to manage all of these new aspects of exascale

computing, and new bodies of research will need be developed in order to meet these

new demands.
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