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Summary. In this hybrid method, we consider, in addition to traditional finite elements,
the Trefftz elements for which the governing equations of equilibrium are required to be
satisfied a priori within the subdomain elements. If the Trefftz elements are modelled
with boundary potentials supported by the individual element boundaries, this defines
the so—called macro—elements. These allow one to handle in particular situations involv-
ing singular features such as cracks, inclusions, corners and notches providing a locally
high resolution of the desired stress fields, in combination with a traditional global varia-
tional FEM analysis. The global stiffness matrix is here sparse as the one in conventional
FEM. In addition, with slight modifications, the macro—elements can be incorporated
into standard commercial FEM codes. The coupling between the elements is modelled
by using a generalized compatibility condition in a weak sense with additional elements
on the skeleton. The latter allows us to relax the continuity requirements for the global
displacement field. In particular, the mesh points of the macro—elements can be chosen
independently of the nodes of the FEM structure. This approach permits the combination
of independent meshes and also the exploitation of modern parallel computing facilities.
We present here the formulation of the method and its functional analytic setting as well as
corresponding discretizations and asymptotic error estimates. For illustration, we include
some computational results in two— and three-dimensional elasticity.
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1 Introduction

For the engineer it is necessary to have reliable and detailed information on stress peaks
and gradients in order to make decisions on the design of machine parts for their guaranteed
lifetime. Therefore one needs methods which are able to combine global characterization
of the stress field with locally high resolution in some chosen subdomains. As will be seen,
the proposed hybrid method in this paper will be one of those desired methods.

In recent years, combined methods of boundary and finite elements have received in-
creasing attention in computational mechanics. Now there is a growing body of literature
on these topics. However, in spite of many different formulations of the coupling pro-
cedures, conceptually there are only two fundamental approaches. In the first one, the
domain under consideration is divided into a finite number of subdomains in which either
the boundary element method (BEM) or the finite element method (FEM) will be em-
ployed to construct approximate solutions depending on their suitability (see e. g. [64],
[65], [7], [18], [42], [62], [10]). The second one is merely a variant of the hybrid—element
approach in the FEM analysis [41]. In this approach, by using Trefftz elements, the
governing equations of equilibrium are satisfied a—priori within the subdomain elements,
where the Trefftz elements are modelled with boundary potentials supported by the indi-
vidual element boundaries, the so—called macro—elements. These macro—elements allow us
to handle, in particular, situations involving singular features such as cracks, inclusions,
corners and notches and provide a locally high resolution of the desired stress fields, in
combination with a global FEM analysis. The corresponding global stiffness matrix is
rather sparse and the number of degrees of freedom is smaller than that in conventional
hybrid FEM. In addition, with some slight modifications, the macro—elements can be in-
corporated into standard commercial FEM codes. This is particularly desirable from the
computational point of view, since the macro—elements can be treated efficiently on parallel
multi—processor computers by taking advantage of modern computer architectures.

Incorporating Trefftz elements into FEM where its stiffness contributions are expressed
in terms of local boundary integrals defining a Reissner functional dates back to contri-
butions by Tong, Pian and Lasry [57], Schnack [45] and later by Atluri and Grannell [2],
to name a few. (The approach in [52] is different.) In the present paper, following [61],
we present some error and stability analysis for a macro—element approach. The macro—
elements employed here are based on the hybrid—stress method with boundary elements
developed by Schnack [46] for treating problems in solid mechanics with regions of high
stress concentration. The precise formulation of our hybrid stress method is based on
the variational approach of the coupling procedures in [18] and [62]. This method has
been numerically implemented successfully for two— and three—dimensional problems by
Schnack and his research group (see [12], [32], [47], [48], [49], [50], [51], [58]). The essential
feature of this coupling procedure is the use of a generalized compatibility condition [47]
which allows to relax the continuity requirements for the displacement field. In particular,
the mesh points of the macro—elements can be chosen independently of the nodes of the
finite element structure so that various independent meshes can easily be connected via
mortar—like elements on the skeleton. Moreover, this method can also serve as a basic
algorithm for coupled preconditioned iterative solution schemes in domain decompositions
such as, e. g. the Glowinski-Wheeler algorithm via BEM in [25], [26], [19] or more general
preconditioned iteration schemes (see e.g. [11], [53], [54]).

The paper is organized as follows: In Sections 3-5, we present the functional analytic
formulation of the coupling procedure and consider two particular choices of the so—called



geometric skeleton associated with the macro—elements. Various discrete forms of the
method are presented in Section 8. In particular, for the macro—elements, we consider
BEM-Galerkin, BEM—collocation, and following Tiirke [58], the Neumann series approxi-
mation of the Poincaré—Steklov operator, i. e. , the Neumann—Dirichlet map. It is worth
mentioning that in the latter case the exact stiffness matrix corresponding to the Poincaré—
Steklov operator is symmetric which can be controlled numerically in the discrete case (see
[58]). Section 7 is devoted to error estimates, stability and convergence results. Finally,
in Section 8, various numerical results in mechanics are presented which can be served as
an illustration for the efficiency of the method.

2 The hybrid method for the Laplacian

To illustrate the main ideas we begin with the simple model problem for the Laplacian as
a special scalar case.

Let us consider the boundary value problem

Au = 0inQCR" (n=2 or3), (2.1)
ou

Tu = e ¥ onTpn, (2.2)

u = @ onlp (2.3)

where € is a bounded domain with a piece—wise smooth boundary 02 = I'y UI'p. The
functions ¢ and ¢ are given on the closed Neumann and the Dirichlet parts I'y and I'p,

respectively, of the boundary (see Figure 1) where r N =0Q\Tp.
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Figure 1: Finite and macro elements

To describe the procedure, we first decompose €2 into two subregions Qg and Qg with
QruUQpUTy=Q where I'g = 0Qr N 0N p is the corresponding coupling boundary.

We further decompose Qg into two disjoint subdomains w; and wy as in Figure 1.
The main idea here is to approximate the solution in Qp by finite elements, in w; by
corresponding Trefftz elements modelled via boundary potentials, and an additional ap-
proximation for the trace of the solution on the so—called skeleton Y which will be defined



later on. For the motivation of the corresponding variational scheme we begin with the
generalized total potential functional

M(up, U ur, ug; Aj, Aa) ==

/|vup\2dx+ Z/ujajds—i | wads— [ wupds

jleNﬂaw]' T'nNOQ e

+Z/ (T — uj)ds (2.4)

1
= Ow;

In this functional, as in elasticity, the first four terms resemble the standard total potential
energy where in w; the characterization of Trefftz elements in the form

s
/|Vuj\2dx: /uj%ds for Au; =0 in w; (2.5)

Wi aw]’

has been used. The A; in the last sum in (2.4) play the role of Lagrangian multipliers
enforcing continuity for the solution at dw; in a weak form.

The additional variable u is defined by the trace of the solution only on the skeleton
T which is presently chosen as T := Jw; U Qws. In addition, we enforce the pointwise
continuity by the requirement u = up on I'g, The introduction of u corresponds to the
so—called mortar elements in the work by Bernardi and Maday et al. [4], [5] (see also [6]).

As usual, we consider the first variation of II in an admissible space U,y and the
corresponding test functions (v, U;v1,v2; X1, x2) € V with vp = v on T'g. The spaces U,q
and V need to be specified precisely later on in order to obtain a saddle—point formulation.

oIl
= = / Vup - Vupds + Z / Ajvpds = / Yupds, (2.6)
8uF
Qp J= 16w]ml‘0 0NNy
where we have tacitly used the relation ﬁ|ro = up|p, in (2.4);
oIl ~ - .
% = 0: zzl / Ajvds = / Yuds where vy, =0 since u), = up| ; (2.7)
J Bwj FNﬁ(awlU(‘)w'Q)
oIl ou ov
%j = 0: = / <8nj +8Ju]>ds /)\jvjds:O.
Gw] Ow;
Since for the Trefftz elements Au; =0 and Av; =0 inwj,
these equations take the form
s
/{;;—Aj}vjdpo; (2.8)
Ow;
11
- 0: /Xj(ﬁ—uj)ds:o. (2.9)
O\ p
w;

The equations (2.6)—(2.9) are to be satisfied for all test functions (vg, v;v1,v2; X1, X2) € V.
They are the weak form of the Euler equations of the functional II and define the mixed
variational formulation for the transmission problem associated with the boundary value
problem (2.1)—(2.3).



Before we present the rigorous justification and the details of our method, we first
enforce the following simplification: To eliminate equation (2.8) we require

Aj = % on Ow; (2.10)

which reduces the variational formulation to:
Find (up,u; A1, A2) with & = up on I'g and

/ Ajds = 0 (2.11)

w;
satisfying
/ Vup - Vupdx + Z / Ajvds = / Yupds + Z / Yods (2.12)
J= 1 wj oNpNI'y J= 1FNﬁ8wJ
for all vp and v with v = v on Iy,
/ X;j(t—uj)ds =0 for all ;. (2.13)

Ow;

In the last equations, u; is related to \; by the solution of the local Neumann problem

Au; =0 inw; and —= = \; on Jw;, (2.14)

uj

on
which requires the necessary compatibility conditions (2.11) as normalization conditions
for the desired solution (up,w; A1, A2) of (2.12)—(2.13).

The realization of (2.14) with (2.11) can be achieved by introducing the Poincaré—
Steklov operator, i. e. the Neumann—Dirichlet map

Uj @ Aj = ujlow; = UjA; with respect to Au; =0 inw;; j=1,2. (2.15)

The Poincaré-Steklov operator U; will be expressed explicitly by the use of boundary
integral operators.

In terms of this operator Uj;, the variational formulation reads:

Find (up,u; \j) € Uqq satistying up|r, = ¢, ﬂ‘r = Up|p, such that the equations
(2.12)—(2.13) are fu]ﬁl]ed with u; = U;\; in (2.13) for "all test functions (vp, U5 x;) € V.

For the discretization we use two levels characterized by two meshsize parameters H
and h. The parameter H is used for the global grids, i. e. for the finite element grid in
Qr and for the grid on the skeleton Y. The latter, h, is used for the local macro—element
boundary discretizations on dw; and on Ows, respectively. It is understood, that the
boundary grids on dw; and on dws may be chosen independently. Note that, geometrically,
on dwi N dwy we then may find three different grids since dwy N Odws C T (see Figure 2).
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Figure 2: Finite, skeleton and macro element grids

We denote the finite-dimensional space of admissible functions by (Hg, Hin, Hon)-
Here Hy = {vfl = (v, 51)|vll = 3 on Ty} is a chosen finite element space on Qp
extended to the skeleton T according to the chosen grid. The finite—dimensional spaces
H;p = {X? | [ X?ds = 0} are chosen on dw; as boundary element spaces for the unknowns

w;
)\;L according to the boundary element grids. Now the Galerkin equations to (2.12), (2.13)
read:

Find (uH')\h /\h) € Hy X Hip X Hop such that

aq, (uf?, v™) —i—Z/)\h His = / wdes—i—Z / Yollds  (2.16)

J= lawj oQrNT N BwpﬂFN
for all v € Hy ,
/ XhUh)\hds = / Xh His for all X] € Hjp . (2.17)
Ow; Ow;
Here agq,. (u uwfl o) .= [ Vull.VoHdz and U Jh is a suitable approximation of the Poincaré—

QF
Steklov operator which will be specified in terms of boundary integral operators and

Neumann series on dw; below. To describe the algorithm, let us introduce bases of the
approximating spaces: Hy = span{pg}_; and Hjj, = span{yjﬁ}gil, j =1,2. Then we
seek the solution in the form

N L,
= Z appyr and /\? = Z BjkVir -
k=1

k=1
To solve (2.16), (2.17), we use two levels and solve first the second equation, i. e. (2.17)
for 5] = (ﬂjn)ﬁil in terms of @ = (ax)_,. In matrix notation this amounts to solving the
linear systems

U;3; = B;a for 3; where (2.18)

Ui = ([ vl vnds)gcy and By i= ([ viopnds) ooty - (219)

Ow; Ow;



Substituting the solution )\;L = Zijzl Bjxvjx with (. known into (2.16) we obtain with
the choice v1 = ¢,, the algebraic system

2
Ad+> BfU'Bja=f (2.20)
j=1

where A = ( [ Vi-Vomdz))gm=1,.. N, denotes the stiffness matrix of the finite elements
Q

F
in Qp and f the vector of right-hand sides given by (2.16). The matrix U; is the so—called
flexibility matrix and BjT Uj_lBj describes the stiffness matrix corresponding to the macro—
element w; which is symmetric and positive semidefinit provided U ]h is symmetric. These
properties are controlled in our computational procedure as will be explained in detail
lateron. The resulting algebraic system (2.20) can be solved by using a conventional finite
element procedure.

Note that for resembling the matrix (B}U;lBj) one does not need to compute the
inverse matrix U;lz instead one computes (U;lBj). This amounts to solve equations
(2.18) only for the few right—hand sides & = (8 )2 _; for those k € {1,..., N} for which
supp ¢k N Owj # O (° stands for the interior and dj,,,, for the Kronecker symbol).

To conclude this section, we remark that for our model problem one may also choose the
skeleton T by incorporating the given boundary conditions into the local macro—elements.
In particular, one may require here )\;-‘ =1 on I'y NOw; and choose T := (Owy UOwz) \I'n
(see Figure 3). We will pursue this idea in following chapters.

I'n

¥ £
U

- ~ I I'p
P
w2 %E
¥ +

I'p

Figure 3: Skeleton without the exterior boundary I'

3 The saddle point formulation for second order elliptic sys-
tems

Let Q@ C R"(n = 3 or 3) be a strong Lipschitz domain with strong Lipschitz boundary
(see [38]). We consider the second order p x p system of strongly elliptic equations

"9 ou " ou
= —_— _— —_— — i Q. -1
Pu —Zkg : <1 <agk xk>+;1bg xz+cu—0 m (3 )



The coefficients ag, by and ¢ are constant, real p X p matrices. Although the general
scheme of our coupled method is applicable to systems with variable coefficients, we restrict
ourselves to the self-adjoint constant coefficient case where by, = 0 and ap = aZg =
ape,c' = c. In addition to (3.1) we require the mixed boundary conditions

Tll|FN : Z ngagk = 1,/) on FN and U|FD = @ Oon FD. (3.2)
£,k=1

Here, n = (ny)}_, is the exterior unit normal vector on I' = 02 and the vector fields ¥
and ¢ are the given Neumann and Dirichlet boundary data on the corresponding closed

boundary parts I'y and I'p where I'y = 99 \ FOD.

For the system (3.1) we will impose the following basic assumptions:

(A1) Strong ellipticity: There is 79 > 0 such that

n

> Clang&eérC = lél? I¢]* for all € € R™ and ¢ € €. (3.3)
£,k=1

(A2) Garding’s inequality:

/ D IEAMPA S GRS IVI22q for all v € HA(Q). (3.4)
(o O * Dy, = 0@ =Tl o

(A3) Definiteness:

/ { > ax gka% - vch} dr >0 for allve H'(Q). (3.5)
Lk J k

=1

In what follows, we shall still write H'(Q) instead of (H'(£2))? etc. .

Note that strong ellipticity (3.3) implies Garding’s inequality only on the subspace
Hjo(Q) :=={veH|v,, = 0}&H1(Q) [38, Theorem 7.3], whereas Garding’s inequality
(3.4) on the whole space H'(f2) can only be guaranteed under additional assumptions such
as formally positive ellipticity [38, Theorem 7.6].

Note that for any u € H!(Q2) with Pu € L%(Q), the conormal derivative Tu,, €

H 3 (092) is well defined in the weak sense via the first Green’s formula

“ooul Ov
(T, v)sa ::/{ Z Em gka—% —u'ev 4 (Pu)’ }daz (3.6)

o lek=1

for all v.e H'() and v, € H%((?Q) due to the trace theorem.

We further assume negative semidefiniteness for the matrix coefficient ¢ < 0; then the
definiteness (3.5) is an obvious consequence of (3.3).

As in the introductory example, we decompose the given domain €2 into the subsets
Qp and Qp with Q@ = Qp U Qp U Ty where I'g = 0Qp N 0Qp is the global coupling
boundary. The subset Qr will describe the finite element geometry while g will denote
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the macro—element part. In g, we are given some triangulation {’Tg}évzl with Qp= U 7%
=1

where 7, denotes the individual finite element subdomains (which may be of rather general

shape). The solution restricted to the finite element part will be denoted by up := uy, -
The macro—element part 2p consists of M individual macro-element domains w; with

M
Q1p = U wj and piecewise smooth, strong Lipschitz boundaries dw;. Correspondingly, we
j=1
denote the restriction of the solution to the macro—elements by u; :=u,, .
J

Similar to the fundamental concept of FEM— and BEM-analysis, the coupling proce-
dure is based on the weak formulation of a corresponding transmission problem in weak
formulation. For this purpose we shall use the Sobolev space H'(Q) and introduce further
appropriate function spaces. The energy test space corresponding to Qp will be denoted
by

H%)(QF) = {VF €H1<QF)’VF|BQFOFD :0}_ (3.7)

Throughout the paper we assume the property 0f2 FﬁIO‘ p # (. Then, under assumptions
(A1)-(A3), the bilinear form

ap(u,v):= /

Q

n T T
{ Z OLCLgkaL - uch} dx (3.8)

Pyt oxy oxy,

is H},(Qp)-elliptic; i. e. there exists a constant cg > 0 such that

ap(v,v) > a0||VH12L11(QF) for all v € Hh(Qp). (3.9)

The trace spaces of the macro—element spaces H'(w;) are denoted by H %(awj) and
their dual spaces by H ~3 (Owj). The corresponding duality pairing will be written as

(x,v); == /X-Vds forj=1,...,M, (3.10)

&u]-

where x - v is the IR"—scalar product. We will also need the subspaces

1
Hy 2 (0w;) == {x € H 2(0w;) | (x,r;); = 0 for all r; € R;}
where
R; = {r; € H'(w;)|Pr; =0ATjr; =0 on dw;} (3.11)
denotes the solution space of the homogeneous local Neumann problem in w; and 7T}
denotes the conormal derivative on Jw;.

The basis assumptions (A1)—(A3) then also imply on every w; the coerciveness in-
equality
2
aw; (v5,v5) 2 a0;lIVill5 ), (3.12)
with the individual constants ag; > 0 where the H!(w;)/®;—norm denotes the norm in
the quotient space:
Vil ;) m; = r;él@fﬁj v + 1l a1, -

In addition, we define the geometric skeleton T of the macro—elements. In the introductory

M
example, we chose T = |J dw;. In general, one may choose T as a connected, closed part
=1
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M M M

of U Owj satisfying |J Ow; \ 02 C T C |J Ow;. On this skeleton T we introduce the
j=1 j=1 j=1

mortar functions

- 1 - ~ .
ue H(Y) ={w=w| . |we HY(Q) and ”W”H%(T) = inf w510} (3.13)
and the product space of pairs of restrictions
H = {(wp, W) € H'(QF) x H?(T) | W}, = Wgi, } (3.14)

equipped with the norm
(w0 2= inf{ sy [ € HY(Q) Wy, = wr and wi, =W}
The test function space associated with T, will be denoted by
Hp = {(vr,V) € H|vp € Hp(Qp) and Vip,qny = 0}. (3.15)
In addition to the spaces H 2 (Owj) and H -2 (Owj) we shall also need the subspaces
]?I%(ﬁij) ={ve H%((‘)wj) | supp(v) C dwjn}

equipped with the H 3 (Owj)—norm where dw; = dw;p U Ow;jn with closed boundary parts
Ow;jp and Ow;jn = Ow; \ 8cajp to be specified when needed, and

H™%(9wjp) = {x € H™2(0w;) | supp(x) C dw;p}

equipped with the norm of H -3 (Owj). Functions in these subspaces will also be considered
as functions on all of dw;.

The variational saddle point formulation now reads:
Find (up,0;uj; Aj) € Uyq such that

M
GQF(UF,VF)+Z / Aj-vds = / P - vpds + / P - vds (3.16)

I=1gw;nr NI N\ T InNT

and the weak coupling conditions

/ Xj - (l~1 - uj)ds = 0, (317)
Bwj-ﬁT
/ (lelj — Aj) . des = 0 (318)
6w‘7-ﬂT

are satisfied for all test functions (vp,v;vj;x;) € V. The admissible functions U,q are
given by

(up,u) € H withup =¢ ondQrNI'p andu=¢ on Y NI'p; (3.19)

w; € H(wj) satisfying Puj =0 inw; (3.20)
withuj =¢ ondw; NI'p\ T and Tju; =+ ondw; NI'n \ T;

Aj € H_%(awj NY) with the additional constraint that

« ) Aj ondw;NTY and _1 A
Aj = w ondw, NIy \ T } belongs to H™2(0w; \ I'p \ 1))

(3.21)
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The test functions (vp,Vv;Vvj;x;) € V are defined by (vp,Vv) € Hp and

v; in H'(w;) subject to the constraints

Pv; = 0inwj, vj=0 ondw; NI'p\ T andTv; =0 ondw; NI'y\ T;

} (3.22)

1
and x; € Hy ? (0w; N'T)

_1 1
={x € Hy *(0w;) there exists x* € H * (c%)j \ (Cn;\ T)) with x = x* on Ow; N T}
(3.23)
equipped with the norm
Il g = inf Il (324

3
0 (

w;)

In equation (3.14) we have cancelled the common term Zj]\il J % -v*ds on both
8wj nr\Y

sides of (3.16), where v* € g (8(.0]- \ (Tp\ T)) C H%(awj) is any extension of v.

In the following, in order to take into account the constraints (3.19)—(3.21) for U,4 and
to satisfy (3.18) identically, we first identify

Aj =Tju; and x; =Tjv; on dw; NT. (3.25)

Next, we shall reduce the corresponding local boundary value problems for u; and v; in
w; to boundary integral equations. This will simplify the variational formulation (3.16)—
(3.18) from the four unknowns (up,u;uj;A;) to the three unknowns either (up,u; ;)
or to (up,u;u;). For this purpose we need to introduce the local Neumann-Dirichlet
mappings, i. e. the Poincaré-Steklov operators U; — or the local Dirichlet-Neumann
mappings , i. e. the Steklov—Poincaré operators S;.

4 The variational formulation based on the local Neumann
data

In this section we first introduce the abstract local Poincaré—Steklov operator

U; : H2(0wjp) x H2(8w;n) > (9, ) >

1
]|0qu € H2 (aw])

by solving the local mixed boundary value problem
Pu; =0 inwj, uj =¢ ondw;p :=0w; NI'p\ %, Tju; = /\;k» on Owjn = Ow;j \&%D

(4.1)
in H'(w;). The configuration of dw; is described in Figure 4 below.
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Figure 4: Macro element with dwp := dwNTp \ T

Then the variational formulation (3.16)—(3.18) reads:
Find

M
(up,a;Aj) € H x HH_%(Tﬂan') withup =@ onT'pNINp andu=¢ onT'pNT
j=1

such that the global equations

M
GQF(UF,VF)+Z / Aj-Vds = / Y- vpds + / P - vds (4.2)

I=1gw;nr OpNCN\T InNY

and the weak coupling conditions

xj - (5Tl X)) )ds = 0 (43)
&.ujﬂT

1
are satisfied for all test functions (vp,v) € Hp and x; € Hy *(0w; N'Y).

We recall here that AT is defined by A7 =4 on dw; NT'y \ T and Aj = X; on dw; N'Y.
Moreover, the trial functions A; and u have to satisfy pointwise continuity requirements
at the end points of the skeleton in a weak sense, namely, A} € H (Ow;N(I'yUT)) and
uj € }Z%(awj) where 1 is defined by @} = @ on dw; N T and U} = u; on dw; \ T, where
u; = Uj(e, A7).

In the special case dw; NT'p = () we set ﬁj(cp, A7) := Uj(A}). Since then the solution
of (4.1) is only unique modulo R®;, i. e.

u; = U;j(A}) +1; on dw; with somer; € R%;, (4.4)
we require the compatibility conditions
/ vy (8- U5(x5) 1 )ds = 0 for all x; € R, (4.5)
Ow;NYT

determining rj uniquely.

We now state the main theorem concerning the ellipticity property of the mixed vari-
ational form (4.2) which will be needed for existence, uniqueness as well as the stability
and convergence analysis of the numerical scheme.
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Theorem 1 The bilinear form defined by (4.2) and (4.3) is continuous and
1
Hp x ]_[]A/il H, ?(0wj N'T)-elliptic, i. e. there exists oy > 0 such that
M M
a0p (VP VE) + ) / xj - Vds > o [IVEl o + 2 Il g (4.6)
=1 i—1 HO 2 (8wjﬁT)
J Ow;NY J

provided

X - (V - U;(0, xﬂ)ds =0. (4.7)
aw]'ﬂ'r
Since the proof of this theorem depends on the solution of local problems in every
macro—element w; we will postpone the proof to the end of this section.

4.1 Local problems based on local Neumann data
For ease of reading we suppress the index j when dealing with the local problem in w; in

this section.

4.1.1 The local Neumann problem

We begin with the local problem (4.1) for the case dwp = 0. As is well known, the local
Neumann problem is to find u € H'(w) as the solution of

Pu=0 inw, Tu=1 on dw (4.8)

where the given datum + € H, %(&,u) satisfies the compatibility conditions (viz. (3.10))
(p,r) =0 for allr € R(Ow) . (4.9)
For uniqueness we require also the solution to satisfy
(u,r) =0 for allr € R(Ow). (4.10)

Clearly, the solution of the Neumann problem (4.8)—(4.10) is well defined and unique due
to our assumptions (A1)—(A3). Hence, the Poincaré-Steklov mapping

_1 1
U : Hy*(0w) — Hi (0w) with ¢ — U := 1y, (4.11)

1
is well defined where Hg (Ow) = {u € H%(&u) | (u-r)s, =0 for all r € R(Jw)}. Moreover,
1

assumptions (A1)—(A3) imply the H, 2(dw)-ellipticity of U, i. e. there exists ag > 0
such that

N

ap(u,u) = (Y, U)o, > aonHi_%(aw) for all4 € H, 2. (4.12)

Our aim here is to employ the boundary integral equation method for computing the
solutions of the local problems. To this end, let E(z,y) be the fundamental solution for
the operator P in IR"™ which exists due to (A1), (A2) (see e. g. [31], [37]). Then the
solution u admits the representation

u(z) = / E(z, )9 (y)ds, — / (T,1E(.v)]) u(y)ds, forallz € w. (4.13)
Ow ow
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The boundary integral equation of the second kind

By using in (4.13) the standard jump relations from potential theory for x — dw we
arrive at the boundary integral equation of the second kind

AI+Kju=Vyp ondw. (4.14)

In this equation, V and K are, respectively, the boundary integral operators of single and
double layer potentials on the boundary dw, defined by

VA(z) = /E(x,y))\(y)dsy and (4.15)
ow
Kv(z) := p.v./ (TyE(:c,y)>Tv(y)dsy for x € Ow (4.16)
Ow

where p.v. stands for the Cauchy principal value integral.

Mapping properties of V' and K
The following mapping properties can be established for V and K (see [15], [27]):

_1
Vo H_%(&u) — H%(Ow) is continuous and is H;, * (Ow)-elliptic, i. e.  (4.17)
1
(A VA) > agl| A2 1 holds for all A € H, ? (dw). (4.18)
Hy 2 (

w)

The singular integral operator K : H%(aw) — H%(aa)) is continuous (4.19)
(see[13], [14], [15], [27]).

The solvability of (4.14)

1

The inverse (31 + K)~2 exists only on the range (31 + K)H%(ﬁw) since R is the
nullspace of (31 + K). Moreover, the solution of (4.14) exists for ¢ satisfying (4.9) and
Vi is in the range of (31 + K) which is characterized by

range (31 + K) = {cp € H%(é?w) | (p,r") =0 forallr’ € 8?'} (4.20)

where R’ is the finite-dimensional nullspace of (37 + K') in H _%(&u). The solution of
(4.14) is unique only up to R. Since the range (4.20), in general, does not coincide with
1

HO5 (Ow), and in order to express the Poincaré—Steklov mapping explicitly in terms of the
operator (31 + K)~!, we need to modify the equation (4.14) so that (4.11) holds. For this

1
purpose we need to introduce the projection operator Py : H %(Gw) — H§ (Ow) defined
by
(Ppv),ry =0 forallr e R. (4.21)

Then, instead of (4.14), we solve

u— Pp(il - Kju= PpVy (4.22)

1
for u € Hj (Ow) and obtain

u=Uyp={I-Pp(il - K)} 'PpVy, (4.23)
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where U is the Poincaré-Steklov operator (4.11).

The numerical solution of (4.14) or (4.22) and the corresponding approximation of U
can be achieved by any appropriate boundary element method.

The Neumann series for (4.22)

From the practical point of view we want to compute the solution u in (4.23) by using
a Neumann series for {I — Pg}e(%[ — K)}~L. For this purpose we require the following addi-
tional assumption for this particular method for treating the boundary integral equation
(4.14).

(B1) The spectral radius of (31 — K) on H%(E)w)/% is smaller than 1. (4.24)

1
This implies that the spectral radius of Pr(3] — K) on H§ (dw) is also smaller than 1.

It is known that Condition (B1) is satisfied in the case of classical potential theory for
the Laplacian as well as in elasticity for smooth 0w and for rather large classes of piecewise
smooth boundaries (see [33], [35, pp. 362-364],[36, Chap. II], [39, Chap.1, Section 7], [58],
[60]); for elasticity problems see in particular [34]. Under the condition (B1), the operator
U can be expressed in terms of the series

U= i (Pr(31 - K))EP%V (4.25)
=0

which converges in the associated operator norm. In Section 8, the computational results
in elasticity are based on (4.25).

The hypersingular integral equation

Alternatively, from the representation formula (4.13), applying 7, at dw to (4.13),
yields the hypersingular equation

Du= (31— K')y ondw (4.26)

1
for u € Hi (Ow) where D and K' are, respectively, the hypersingular operator and the
adjoint operator to K, defined by

Dv(z) = -T, p.V./(Ty[E(CL‘,y)DTV(y)dSy and (4.27)
Ow
K'Az) = pv. / (TulB(@. )] ) Ay)ds, for o € d. (4.28)
Ow

Mapping properties of D and K’
Similar to V' and K, the mapping properties for D and K’ are available.
_1 1
D : H%(aw) — H, ?(0w) is continuous and H; (Jw)—elliptic, i. e. there exists ag > 0
such that )
2 2
(Dv,v) > aO||V||H%(8w) for all v e Hi (0w) . (4.29)



17

The singular integral operator K’ : H 7%((%1) — H 7%(&0) is continuous. Moreover,
(Kv,A) = (v,K'A) forallv e H%((‘)w) and X € H*%((‘?w),

(see [13], [14], [15], [27]).

Solvability of (4.26)

1
If 4 satisfies (4.9), i. e. ¥ € Hy *(0w), then equation (4.26) admits a unique solution
1

u € H{ (0w) characterized by the variational equation
1
(v,Du) = (v, (3] — K")y) for all v € HE (0w). (4.30)

Let Py’ be the adjoint orthogonal mapping of H > (Ow) onto Ho_% (Ow) with respect to the
duality pairing (e, ®)5,,. Then it is easily to be seen that Pr’ = Py on H3 (Ow) C H> (Ow).
Hence, Py’ is the continuous extension of Py to H _%(&u) and is selfadjoint, in view of
which we shall write Pr = Py’ in what follows.

With Dy := PpDPy then (4.30) implies

U=D;' (31 - K')Py. (4.31)

The symmetric formulation of U

Based on (4.22) together with (4.31), one may also represent U in the symmetric form
U=Pp(3I - K)Dy' (31 — K')Pp+ Vp (4.32)

where Vy := PrV Py.
For the numerical approximation of U, one may apply some appropriate boundary

element method to any of the above representations and corresponding boundary integral
equations such as (4.22), (4.25), (4.30), (4.22) and (4.31).

With u determined on dw one may now use the representation formula (4.13) to find
u(z) in w.

Next we consider the case dwp #0.

4.1.2 The local mixed boundary value problem
In the case dwp # ), we have to solve (4.1), i. e.

Pu=0 inw withu=¢ ondwp, Tu=1 ondwy = dw\ dwp (4.33)
which defines the operator U (e, ¢) := LU

Here, Owp = 0w NTp\ Y is the Dirichlet part of the boundary with dwp # 0. In
order to reduce the boundary value problem (4.33) to boundary integral equations we first
extend the given data as follows:

" € H%(&u) is chosen with ¢* = ¢ on dwp and
(4.34)

¥* € H,?2(0w) is chosen with ¢* =1 on dwy = dw \ wp .
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The missing Cauchy data can be rewritten in the form

1
Tu = v *+X with X € H,?(0wp) ondwp, (4.35)

u = e"+u with uy € ﬁ[é(&uN) on dwy .
1 -
Here both Ao € H, *(0wp) and ug € H%(awN) still need to be determined.

Reduction to the Poincaré—Steklov operator
With the help of the Poincaré-Steklov operator U of the pure Neumann problem given
by (4.11), (4.23), (4.31) or (4.32) we have

u=UTu+r" ondw with somer™ € R. (4.36)

1
By using (4.11) we have the equation for Ag € H;, ? (0wp),

Ul =-Ut¢" —r"+¢"+uy onodw. (4.37)

1
In weak form, (4.37) with test functions x € H,, *(Owp) implies that Ay can be found from
the variational equation

~_1
(x,UXo) = / x - UXods = (x,¢" — Uy™) for all x € Hy ?(0wp) . (4.38)

8wD

1 1
Since H, ?(0wp) is defined as to be a closed subspace of H; ?(dw) and because of the
1 1

H, 2 (Ow)-ellipticity (4.12), there exists a unique solution Ag € Hy 2 (dwp) of (4.38) due
to the Lax—Milgram theorem. Once \g is known, r* € R can be found from the equations

/r~r*ds: /r~(go—U(¢*+>\o))ds for allr € R. (4.39)

owp Owp

This determines completely
u=U("+X)+r"=¢"+uy ondw.

We remark that in practice, for the solution of (4.38), again the Neumann series (4.25)
can be used for utilizing U.

With A\g and ug available, the solution u(z) in w can be determined by Green’s repre-
sentation formula

w@) = [ Bayw s, - [ (BIE@) @ @ds, (1.40)
Oow

Ow
+ / E(x,y)Xo(y)dsy — / (Ty[E(:U,y)])Tuo(y)dsy forallz € w.

&uD awN

Reduction to an unsymmetric system of boundary integral equations
Alternatively, one may reduce the mixed boundary value problem to a system of bound-

1 -
ary integral equations for Ao € H;, *(dwp) and ug € H %((%)N). More precisely, from the
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representation formula (4.40) and the jump relation for the double layer potential, as
x — Ow, we obtain the system

1
GBI+ Kug—Vx = Vg — 51+ K)g* for x € dwy , a4)
4.41
1
—Kug+VXx = (§I+ K)e* — Va* for z € dwp

where we have tacitly taken into account ug = 0 on dwp and Ay = 0 on dwy.

Clearly, this system (4.41) has a solution since our assumptions guarantee that the
mixed boundary value problem (4.18) has a unique solution.

If we assume that the corresponding exterior mixed boundary value problem has at
most one solution u® in H (w°), w®=IR"\w, with a,e(u®, u®) < co then the uniqueness
of the solution up,Ag to the system (4.41) can be established by using the arguments
of classical potential theory. We note that in the special cases of the Laplacian and of
elasticity, (4.41) is uniquely solvable (see e. g. [22], [30], [35]).

Reduction to a ’symmetric’ system of boundary integral equations

Instead of the first equation in (4.41), one may also consider a boundary integral
equation defined with the hypersingular boundary integral operator and solve the system

Dug+K'xy = (31— K')¢*—D¢* ondwy,

: (4.42)
—Kuo—l—V)\o = (§I+K)‘P* —V’IP* on awD‘

This system (4.42) is uniquely solvable due to the Lax—Milgram theorem since both D
1 1

and V are HZ (Ow)-elliptic and H,, ? (Ow)-elliptic, respectively, which implies, with some
constant ag > 0,

(uo,Du0+K’>\o>+<)\0a—Kuo+V)\0>ZOZO{HUOHZ%(%)/%*‘||>\0||%_;(8 )} (4.43)
0 WD

- 1
for all ugy € H%(aw]v) and Ao € H;, ?(0wp) where H%(&u)/% denotes the quotient space.

(For the Laplacian and the elasticity equations see e. g. [59], [26]. For the second
order systems see [27], [36].)

With the solutions of the local problems available, we now are able to define the
operator U associated with dw = dwp U Owy which maps (¢, ) into the trace via

Ulp, ) =g, =¢" +u. (4.44)

In the special case Ow = dwyn we recover U = U and for w = Owp we define U:=1I.

4.2 Proof of Theorem 1

It is understood that we apply the solution procedures in w to each macro-element w;
individually; and corresponding operators will be appended with the index j when neces-
sary.

In Theorem 1, (4.7), ﬁj corresponds to Ow;jp = Ow; NI'p \ T and Jw;jn = Ow; \&f)jD
and the weak coupling condition (4.7) implies

/ X7 vds = / X7 ﬁj(O, Xj)dS .

80.13' nY 8Wj nY
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Since the local test function v; = (7]- (0,x;) + r; satisfies the boundary conditions

1
Tjvi=xj € Hy ?(0w; NY) on 0w; N'T and therefore Tjv; =0 on dwy \ T

whereas R R
\2 Uj(07Xj) + I';f on 8(4)]' and Uj(07Xj) =0 on 8ij ;

then Green’s theorem implies that

aw,; (vj,vj) = /(ijj)'vjdsz /@Vj)'ﬁj(O»Xj)dSZ /Xj-ﬁj(o,xj)ds
Ow; Ow; Ow;
= / Xj . ﬁj(O, xj)ds = / Xj . \Nde .
8wjﬂT awj'ﬁ'r

Now, by the continuity properties of T} it follows that

il ~—1 = |T;|v; + ;]| 1 < ||T;lv; +r; 1 < cillvi 4+ r; .
||X]||HO§(8LUJ‘HT) 1T5[v; ]]HHO%(BwjmT) 1T [v; ]H’Hoé(awjv) il v ]HHl(w])

for all r; € §;. This implies

2
2 2 2 J
Xill o1 < cjl|v;j Vs < ay. (Vi,vi),
12,y S Sy, S s (93,7
where the last inequality follows from (3.12). Collecting terms, we get the proposed
inequality (4.6),

M M
aQF(vF,vF)+Z / X;jvds = aQF(VF,VF)+ZCij(Vj,V]’)
I=19w;nr J=1

M
> {HVF’%{l(QF) +3 Gl s }

=1 Hy ? (0w;NT)

where we made use of vp =0 on 0QrNI'pandu=0onI'pNT. O

5 The variational formulation based on the local Dirichlet
data

In the conventional coupling formulation, the Neumann data A; are eliminated by using
the Steklov—Poincaré operator

S; : H2(wjp) x H 7 (0wjn) 3 (W), ) — A =Tjue H 2(dw;) . (5.1)

This amounts to solving the local mixed boundary value problem
Pu; =0 inwj, Tju; =9 ondw;y = dw; OFN\% and u; = u;f on Qw;p = 8wj\8uo)jN
(5.2)

in H'(wj). Here u} satisfies the constraint u% = ¢ on dw;p\ Y. We notice that, in contrast
o (4.1), here the definition of dw;y is inferred in terms of the given Neumann datum on

Owj NTN\ Y and Owjp is the complement.
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If Ow; = Ow;p then §j = §; defines the standard Dirichlet-Neumann mapping
S; : uj — Tju; on Jw (5.3)

and Uj is the right—inverse to Sj:

_1
SjUj = Ij on HO Q(ij) and UijQOj =@;+r; with r; € §Rj for all wj € H%(awj) .
(5.4)

awN

dw N FD\T

Figure 5: Macro element with dwy := dwNTxN \ T

In terms of §j, the variational formulation (3.16)—(3.18) can be reduced to the following
problem:

M
Find (up,a;u;) € Hx [] H> (Owj) satisfying the inhomogeneous boundary conditions

7=1
ur=¢ onI'pNdQr andu=¢ onI'pNY anduj =¢ ondw;N(I'p\7T)

such that
M ~
aqy(up, Vi) + Y / Sj(uj,0) - vds
Jflaw]ﬂ’r u (55)
= / W vpds + / Y- vds— > / §j(0,¢;f)-vds
I NNIQE\T CnNY I=19w;nr

for all (vp,v) € Hp and, for j =1,...,M:

~

(0j — 1) - §;(v;,0)ds =0 for all v; € H2(dw; N'T). (5.6)
aw]ﬂT

Here we define the space
ﬁ%(awj NY) :={v;| there exists v} € ﬁ%(&uj \(T'p\T)) withv; =v} ondw; NT}
(5.7)
equipped with the norm

infv; HV;HH%(&)J) if 8wj NI'p \ T ?é @,
if 0w; NTp\ T =10.

1Vill 53 (g, v ° (5-8)
d vl
H2 (0w;)/R;
In the formulation of (5.5), (5.6), the solution of the local macro-element problems is
hidden in the action of the operators S;.
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Similar to Theorem 1 we now have

Theorem 2 The bilinear form defined by (5.5) and (5.6) is continuous and
Hp x Hj]\il ﬁ%(awj N Y)-elliptic, i. e. there exists a constant oy > 0 such that

M M
aq (Ve vE) + Y / S;(v;,0) - vds > ag {HVFH%Il(QF) +> HVjH%%(awﬂY)} (5.9)
jzlawjﬂT J=1 ’

provided
(vj —¥)-S;j(vj,0)ds = 0. (5.10)
8(.«)]'I'_1T

The proof will be presented at the end of this section.

5.1 Local problems based on local Dirichlet data

Again, we first collect the results concerning the local problems in w; and, for ease of
reading, suppress the subindex j.

5.1.1 The local Dirichlet problem

In this case, under assumptions (A1)—(A3), the Dirichlet problem defined by
Pu=0 inw withu:goeH%(aw) on dw (5.11)

admits exactly one solution u € H'(w) and the Steklov-Poincaré operator S : H 3 (Ow) —

_1
H, ?(0w) is given by
Su :=Tu on dw

1
which is Hg (Ow)—elliptic since
1
ay(u,u) = (Su,u) > aoHuHi{%(aw) for all u € H (0w) (5.12)

with some o > 0. With this definition it is clear that the Poincaré—Steklov operator U
in (4.12) is the right—inverse of S, i. e. we have (5.4).

To construct S, we may choose one of the following different possibilities:

The boundary integral equation of the second kind

If we use u = ¢ on Jw in (4.26) then we obtain the boundary integral equation of the
second kind
(31 — K')A = D¢ on dw (5.13)

_1
for A € Hj ?(Ow) which can also be written in the form
A= Pp(AT+ K")PpA = D (5.14)
The direct solution of (5.12) provides us with the Steklov—Poincaré operator S via

Se=X={I-Pp(3I+K")} 'De. (5.15)
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The Neumann series for (5.18)

Corresponding to (B1), for solving (5.15) with the Neumann series, we require here:
_1
(B2) The spectral radius of (31 + K') on H;, ?(dw) is smaller than 1. (5.16)

In all cases when (B1) is available, one also has (B2) (see [33], [34], [35, pp. 362—
364],[36, Chap. II], [39, Chap.1, Section 7], [58], [60]).

Under the condition (B2), the operator S can be expressed in terms of the Neumann
series

S = i (P%(%I+K’))€D (5.17)
/=0

which converges in the associated operator norm. Note that, in contrast to (4.25), we have
here PpD = D.

The boundary integral equation of the first kind

One may solve the boundary integral equation of the first kind,

VA= (314 K)g ondw (5.18)

_1 _1
(cf. (4.12)) for A € H, *(0w) by inverting V on the subspace H, *(0w) since V is

1 _1
H, ? (Ow)-elliptic (4.18). In variational form this amounts to determine A € H, *(dw)
from )
(X, VA) = (x, (3] + K)p) for all x € H, > (0w). (5.19)

In terms of boundary integral operators we may express S explicitly via
S=V;'Pr(31 + K) (5.20)

where Py is the projection defined by (4.21) and Vy = PRV Py.

The symmetric representation of S

Alternatively, one may define S in terms of the hypersingular operator D (4.27) by
using (4.22) together with (4.26) in a symmetric form, i. e.

S=((1+K)P)Vg (PR3 + K)) + D. (5.21)

All the above constructions can numerically be executed by solving corresponding bound-
ary integral equations, in particular via Galerkin methods.

5.1.2 The local mixed boundary value problem

Since in Section 4.1.2 we already presented the details for mixed boundary value problems,
we here collect only some relevant formulations in the connection with construction of

~

S(p,¥) =Tu on dw = dwp U dwy .

Here, in contrast to (4.1), we have from (5.2) dwny = dw NI\ Y and dwp = Ow \ BN
and oy # 0. As in (4.34) and (4.35), the missing Cauchy data are written in the form

- 1
u = * +ug and A = ¥* + \g with the unknowns ug € H%(BwN) and Ao € H;, ?(0wp).
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Reduction to the Steklov—Poincaré operator

Similar to (4.36), we use the Steklov—Poincaré operator S of the pure Dirichlet problem
obtained with any of the constructions in the previous section. We write

S(p,9) = S(p* +ug) = * + Ag. (5.22)

~ 1
Since we seek the solution ug € Hz(0wy) and A9 = 0 on dwp, we obtain the variational
equation

(vo, Sug) = / v - Supds = (vo, " — S¢*) for all vo € H %(&UN) (5.23)

own

. 1
The latter is equivalent to finding ug := Prug € PrH %((‘%)N) C Hj (Ow) from

N\H

(wo, Sug) = (wo, Sug) = (wo, " — S¢*) for all wg € PrH2 (Qwy) . (5.24)

The Ho (Ow)— elhptlclty of S implies the existence of a unique solution ug in the subspace

P§RH2 (Own) C Ho (Own). Finally, we obtain in terms of S on Jw:

S(p, ) := Sug + S¢* on dw. (5.25)

Systems of boundary integral equations
First, we solve either the system of boundary integral equations (4.41) or the system

(4.42) for ug € big (Bwn) and Ao € Hy (8wD) Then S can be constructed via

g(go,z,b) =Tu=19*"+ Ay onodw. (5.26)

5.2 The proof of Theorem 2

The proof resembles all the arguments of the proof to Theorem 1. It suﬂices to verify
that with dw; = (I'p NOw; \ T) U (0w; N T) U (C'y NOw; \ T) we have with S; defined for

aw; (vj,vj) = / v;-Tvjds = / V- gj(vj,O)ds.
Bw]- &u]ﬂ’r

Indeed, this relation holds because of (5.10) and v; =0 on I'p N (Ow; \ T) and Tv; =0
on dwjy. Moreover, if v = T'p N dw; \ T # () then from a,, (v;,v;) = 0 one obtains with
v; =0 on v and v; € R; that v; = 0 in H'(w;). Hence, (A2) with (A3) implies the
existence of some constant ag; > 0 such that

tu; (V) = Vil T,

which yields with ||v;| -1 < vl 1 and the trace theorem the desired in-
TUH2 (8w,;nT) TUH2 (Bw;)

equality (5.9). 0
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6 The Discretization of the Hybrid Methods

Now we consider the approximation of the variational equations (4.2), (4.3) or (5.5), (5.6)
by using combined FEM-BEM. These approximations are based on two families of meshes
with parameters of meshwidth H and h(= h;) corresponding to the global domain and
skeleton elements and the local boundary elements on dw;, respectively.

We begin with the finite element approximation based on a triangulation {7}, of
Qp satisfying diam (1) < ¢H for all £ =1,..., N. We always assume that the point set
TnyNTpNQr belongs to the FEM edges (for n = 3) or nodes (for n = 2) of d7y. On {m}}¥,
we choose a conforming finite element space H1,(2r) C H'(Qr) having the approximation
degree d > 2. Then H}, defines grid points of the FEM triangulation on T'g. In addition,
on the remaining part of T, we introduce more global grid points such that the distance
between any two neighboring grid points is less than cH. On the skeleton T we introduce

1
there a familiy of finite-dimensional subspaces of continuous functions B%(Y) C H %(T)
(e. g. for n = 2 one-dimensional splines on the macro—element boundary curves and for
n = 3 finite elements on the macro—element boundary surfaces Ow;) and impose here the
continuity requirements:

HY Q) = BR(D)ir, (6.1)

1
The elements in B (T) will then be used as skeleton mortar elements for the global
1

coupling. The elements wil € H},(Qp) x BZ(Y) defined by the pairs (w, W) with

wil =wH onTy (6.2)

now define the finite-dimensional subspace of ”global” approximations Hy C H
= (H'(9)

For asymptotic analysis we shall consider a whole family of finite and skeleton mortar
element spaces with H — 0 and require further the following properties according to [3]:

|QFUT)’

approximation property:!

For every v € H'(Q)) with 1 < t < d there exists an element family w' € Hy such

that
orllm@e + 11w =%yl 1 < cH ™Y V]giq); (6.3)

)
H3(T) =

[(w —w

inverse assumption:

With some § € (0,%) and for every wl € Hy we have on T

W™l <cH|lw™| 4
HZ(T

HEH(T) )
Here, the norms on the skeleton T are defined by
Iw |

:inf{HvHH )\VEHH‘S(Q) and vy = will.

H3+5(7) 3+5(q

On the individual macro—element boundaries dw; we define local quasi-regular bound-
ary element grids with the mesh—size parameter h characterizing the largest distance be-
tween neighboring grid points on dw;. Also here we assume that the point set I'yNI pNow;,

will lie in the set of nodal points of the BEM grid for n = 2 or on the BEM nodal lines for

!By ¢ we shall denote a generic constant which may have different values in the analysis at different
occasions but is independent of the mesh—sizes.
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n = 3 which are defined by the BEM boundaries of the triangulation of the macro—element
surface Ow;. For n = 2, the macro—element boundaries Jw; are curves where on the local
grids we introduce splines Sf}; C H %(&uj) and S;l,/; , C H _%(&uj) of polynomial degrees
d—-1>d"—1>0andd’ > 1. For n = 3, the boundary element functions are defined on
(local) triangulations of each of the surfaces dw; as associated finite element spaces S]“-l,;

and S]C-l;; /, either by lifting via parametric surface representation in the parametric plane or
by appropriate isoparametric elements. Similar to FEM analysis, the boundary elements
are assumed to provide the

approximation property: For both approximations with d = d’, and d = d” where
h = h', we require:

For every x € H*(Ow;) and t < s < dandt <d—1/2 forn=2ort<d—1 forn=3,
there exists an element family x" € deh (Owj) such that

Ix = X" 1t ow;) < B Xl s (0 - (6.5)

Moreover, the Ly(0w;)-projection Pjj, onto S]dh((?wj) has the uniform boundedness prop-
erty

1 Pinx | e ow;) < cllxllmeow;) - (6.6)

(See [3]). For quasi—uniform BEM grid families, the property (6.6) follows from the inverse
assumption on the fine grids. For more general grids see [16].

inverse assumption (on the fine grids):

With some 6 € (0, 3) and for every x" € Sj%l(@wj) we have on dw

I v gy < 71X et (6.7)

with the +sign for d = d’ and the —sign for d = d".

We remark that — without repetition — the mesh with h’ instead of h should be used
in the formulation of the approximation properties and inverse assumptions on dw; when
the Neumann bases with d = d” will be used.

Note that the global meshes on Qf and T are different and independent of the two
local grids h and h’ on the various macro—element boundaries dw;.

Before discussing the local discretizations on the macro—elements, let us first introduce
the global finite element spaces on Qp U T as follows:

Hpy = span{py|k e N},
Hup = HyNHp=span{p, |k € Np},
Hrp = HHDQH%)(QF) :span{gok\k GNF},

where the index sets satisfy Np C Np C N. Since the discretizations on Ow; will depend
on the choice of the local bases, the corresponding local boundary element spaces will be
presented correspondingly.

6.1 The discretization with local Neumann bases

We begin with the definition of the local discrete spaces on Jw; in terms of Neumann
bases. For ease of reading we suppress the index j whenever possible.
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H;% = §"(0w) N Hy ? (0w) = spanfv, |1 € Ty},
o0\ (v \T) = M3 150w\ Ty \ 1)) = spanfun |1 € Ty},
HyH0wp) = P 0 Hb(0wp) = spanfu, |1 € Ty}
G = Ve S @) (Vo) = 0 e € ) = spanfi |1 € Top)

Here, the index sets satisfy 7 N C1In, T NT+ C Zn according to the corresponding discrete

function spaces. In addition, we define Zyy := {1 € fNTJr | suppr, N % # (0}. Then
INT+ =ZIny UZy and {v, for . € Iny} form a basis of

(0w ) =T, 2 (0w Oy \ 1)) 1 Hy 2 (9w T)

on dwN7Y.

In connection with the mixed boundary value problems on w; for dw; NT'p \ T # 0 we
require the existence of a linear prolongation operator family

1

pv  Hy (0N ) - Hy (0w (D \ 7))

1
with the prolongation properties: For every o € H, (0w N Y):

pyah\(awmf) =o" ondwNnT and |p,o| 1 < c|le”| (6.8)

H™ 3 (0w) B3 (wnT)

with ¢ independent of h.

In terms of these bases we introduce corresponding matrices as the finite element
'stiffness matrix’
A= ((aqp (e, ¢r))) where k, ¢ € N

and the matrices generated by the corresponding boundary integral operators on the
macro—element boundaries:

= (e Vud), M= (i) wheres,u € Iy 69)
D

V

K = (v, K1) s = (Mo, Do) where a, s € Zpp .
We now consider the discretized version of the variational equations (4.2), (4.3) in

_1
discrete spaces where (u’, )\?) € Hy x Hjj‘il H,),? . The trial functions must satisfy ug = ¢
on (0QrpUTYT)NTI'p and )\5-” = on Jw; NT'y \ Y. For simplifying the presentation we
_1
again extend ¢ to ¢* € Hy onto the whole set 9Qp U Y and 4 to wj*h € Hjhz onto each
of Ow; requiring (¢;fh, rj) =0 for all r; € ;. We now write

u =" +ufl and ' ="+ N (6.10)

Here
~_1
u(l]—l = Zakcpk S HHD, k GND, and )\?0 = Zﬁjn’/jﬁ € Hjhz(awﬂr), K € :Z'—jNTu
k K
(6.11)
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are the unknown approximations satisfying
ull =0 on (0QrUY)NTp and )\?0 =0 ondwj NIy \ T, correspondingly. (6.12)

In terms of the bases, Galerkin’s formulation of the variational equations (4.2), (4.3) is
equivalent to finding the coefficients @ = (ay,) with k € Np and 5; = (Bjx) with k € Zjny
from the global equations

M
> ap(er e+ Y .Y ( / Vji * pu dS)ﬁjn
; =R ol
M
_ / - peds —ap(p™ o) = S / Wi - oy ds (6.13)
(8QFUT)NT x I=1gu;n

where k € Np, k € Zjnyy and £ € Np, and with ap (e, ¢¢) = 0 for £ € Np \ Np;

and the local equations

Z ( / Vjo - ‘Pkd'g)ak — Z ( / Vjo ﬁ]h((], ujn)ds)ﬂjﬁ

ko dw;nr ® w;nT
= - / ng'(so*H—ﬁf(so,@b}‘h))dS (6.14)
8w]‘ﬁT

where k € Njp; k,0€ Zjyy and j=1,...,M.

Here Njp :={k € Np| supp () N Ow; # 0} and U]h denotes one of the approximations
of the Poincaré—Steklov operators ﬁj which will be specified in what follows.

In terms of matrix and vector notation, the equations (6.13), (6.14) are

M
Ad+> B/ = f, (6.15)

j=1
Bja—U;3; = g forj=1,....,M. (6.16)

Here the vector and matrix elements in (6.15) and (6.16) are defined in an obvious way

A

from (6.13) and (6.14). In (6.16), the matrix U; describes the local macro—element and is
invertible. However, in (6.16), one only needs to solve the equations on Jw; with the few
right—hand sides B;&;, — g; with & = (d,) for ¢,k € Njp. The determination of

Bj=U0;'Bja—U;'g; forj=1,....M (6.17)
can completely be executed in parallel. This then yields the global system for a&:
M M
- BT-18 .~ BT-14
Aa+ZBjUj Bja:f+ZBjUj g;- (6.18)
j=1 J=1

Here A is the so-called ’stiffness matrix’ for Qp whereas U ;j is the "flexibility matrix’ and
BjT Uj_lBj is the ’stiffness matrix’ for the individual macro-element wj.
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6.1.1 The discrete local Neumann problem

In the following, we again suppress the index j.

Since in the case of the local Neumann problem we have dwp = dw NT'p \ T where

O p = 0, the operator U" = U is the associated discrete Poincaré-Steklov operator for
the whole boundary dw and we omit™ The Neumann datum in (6.10) has the form

AP = g AR (6.19)

where )

is the unkwon datum in (6.19).

The central effort here is to compute the coefficient matrix U and its submatrix U
and the right-hand side vector g in (6.16) for the individual w. This reduces to compute
approximations of

1 2
Upr = / vo-U(vg)ds and g =8 + & where

. JwnY N (620)
g:= / Vo - U(yp*™™)ds and g:= — / Vo - oHds for o,k € Iny C Iy .
ownY JwnY

Depending on the local boundary element implementation chosen for the approximation
of the operator U defined in (4.11) we present four different approaches in terms of one of
the boundary integral equations (4.26) or (4.34), respectively:

UX) — Pr(31 — K)PRUX) = VoPrX, (6.21)
DoU(X) = (31— K')Ppx (6.22)

as if A is given.

Direct inversion of the discrete boundary integral equation of the second kind

For the integral equation (4.22) of the second kind, we define the approximation

h o+ o
Pgv = Z M,, (v, V)l where o € Zop, t € Iy (6.23)

al

o+ o
of Ppv for any v € H %(aw) where M is the pseudoinverse to M [56]. Equation (6.21)
with XA = v, tested with v, and substituting (6.23) for PrU(v,) yields

Ugi = (v, UM(wi)) == I\OA:L<UL7 U (v)) (Ver (BT = K )ita) + Ve (6.24)

where the summation runs for o € Zyp and ¢ € Ty and the indices g,k € Iy are fixed.

In matrix form, the latter implies

o o ot
{I-GM—KM }U=V, (6.25)
from which one can obtain U by using either direct or indirect inversion of the ZTn x Zn—

. 1.0 o o+t
matrix {I — (M —K)M }.
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1
Similarly, we find for the approximate g in the right—hand side g in (6.20) the linear
equations

o o o+t 1
{I-(3M—K)M }&=p wherep, = (v, Voy*"), 1 € Iy . (6.26)

With the T x Iy matrix U available, U in (6.16)—(6.18) is then the Zyy X Zyy submatrix
of U and g is there the Zyy subvector.

The discrete Neumann series

If the additional assumption (B1) in (4.24) is satisfied, then one can use the Neumann
series also for the discrete equations (6.25), i. e.

U= (Gm—iom ")V and =3 (Gm—iom ' )'p (6.27)
=0 =0

with p given in (6.26). For iteration, one may define the usual recurrence sequence of
matrices

o oy ot
UM = (IM=K)M U 4V with U@ =0 (6.28)

for  =1,2,.... In practice, one may control the convergence of U") numerically.

Remark: A very important special case of (6.25), respectively (6.27), (6.28) arises when
o o+ o—1

M given in (6.9) is invertible; then M = M . This can be achieved by special
combinations of the bases {v,} and {lola} An important special choice ist o = Vig;

then M = V is invertible due to (4.14). Another important choice is Ity = vq where one
needs 1 < d’ =d".
The discrete hypersingular integral equation

1 o
For equation (6.22), we first approximate U(X) in H,, test the equation with #, for
a € Zpp and invert [O) Then we use (6.23) and finally obtain

(o] O_]- (o] e}
U= MD (3M-K)',
1 o 0—1(2 ) (629)
g = MD q with a3 = <(%p’ﬁ —Kﬂﬂ),d)*h), B EIUD‘

We note that, although the operator U is symmetric, its approximations in the form
of U in (6.29), in general, are not.

The discrete symmetric formulation

The discrete and symmetric approximation of the symmetric formulation (4.32) is given
by
1 [¢] [ole] -1 1 [¢] o T
U=(GM-KD (GM—K) +V. (6.30)
The use of this matrix representation is equivalent to solving the system of Galerkin
equations for U via U,

UMNX" = (G = KU XM+ (oA x")
oh - oh (6.31)
(0, DUM = (FI-K", w)
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1 h 1
where A", x" € H, 2 (0w) and e Hey, (Ow).
The forcing term can be expressed correspondingly as

] Oil

=(AIM-KD q+p (6.32)

with q given by (6.29) and p given by (6.26).

6.1.2 The discrete local mixed boundary value problem

As in Section 4.1.2, now the boundary dw is decomposed in the form dw = dwp N dwy
where dwp = Ow NTp \ T with dwp # 0 for equations (4.37). Let

-

=Y YiveH,?, ey (6.33)

be an approximation of the extension 1*. Then we seek the solution in the form

A=t £ 3" 9, with s € Ty (6.34)
K

and an approximation for u = ¢* 4+ uy where ug € ﬁ%(awN). Note that for (6.14) we
need to solve the local mixed boundary value problem also for ¢* = 0 and ¥*" = v, where
0 € Iny.

The use of the discrete Poincaré—Steklov operator U

In this approach we solve the mixed boundary value problem (4.33) in two steps. In
the first step we determine the full matrix U as for the pure Neumann problem (4.8) in
w, by any of the methods in the previous section. With U now avaiblable, in step two
we solve the equation(4.38) approximately where U is approximated by U in order to find
the solution of the mixed boundary value problems needed in (6.14). With (6.34) this
amounts to determine J = (94) by solving the linear system

Z Upu¥s = Vg, ™) — Z Uotp, where k € In, L€IN, forpely (6.35)
K L

with given ¢* and with ¢ in the right-hand side given via (6.33). We denote by U the
submatrix ((U,.)) of U for o, x € Iy. With ¥ known, we find

St p") = A" = 2 > 1U>mwbum+2 wlve v (6.36)

LK

where ¢ € Ty and g,k € In.
For the matrix U and the right—hand side g we obtain

UM0,v,) - vpds = Ugy = Uy — (UUTIU),, with s, 0 € Iy

ownNY
= 11—1 * -1 * «H (637)
8= 3 (Vo — (VU'U), )07 + (U0 ) vy = [ 0y

¢ R owNY

where « € Ty and o,k € In~.
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We remark, for the discrete local boundary value problem, one may also discretize
(4.41) or (4.42). This will involve the Neumann as well as the Dirichlet bases. We shall
pursue this idea after having discussed the case involving only the local Dirichlet bases.

With the computed coefficient matrices and right-hand sides in (6.15) and (6.16) we
can solve the system (6.15), (6.16) for §; and & which provides uff and A? forj=1,...,M.

To compute
oh o ~
u =) yaka =U"e" 9", a €Top (6.38)

«

from A" = S, \v,, ¢ € Iy, one may use (6.23) to recover (6.38) from the weights
(U(p,%"),v,), 1 € Iy. Then we find

o+ o o+ °
u" = ST(M U)o bt +1° = ST(M Uy (07 + 9, )it + 1° (6.39)

a,L a,L

where o € Zpp and ¢« € Iy with ¥, =0 for « € Iy \fN

The rigid motion r* can be determined explicitly from

o+ o
/ rrds — / r- (tph - Z Mo Ur () + 19L)Na> ds for allr € R (6.40)

Q,T,L
3OJD 3OJD [

with the indices as in (6.39) and 7 € Zx.

6.2 The discretization with local Dirichlet bases

For the discretization with local Dirichlet bases, the following function spaces are needed:

HE = St (0w) = span{p, |t € Ip},
ﬁg(aw\(FD\T)) = 'H,fﬁﬁ%<8w\(I‘D\T)) :span{,uL\LefDT},
HE (Bwy) = HP NH?(dwy) =span{p, |t € Ip}.

We use the index sets fD C1Ip, fDT C Ip and Zyp C Ip according to the correspond-

~ o
ing discrete function spaces. Moreover, we define Zpy := {¢t € Ipyy | suppu, N Y # 0}.
Then Zpy+ = Zpy UZp and {p, for o € Ipy} form a basis of the discrete space

(OwNT) = H 0w\ (Tp\ 1)) N H (0w T)

Sl

H
on dwnNT.

Again, we require for the mixed boundary value problems on wj for dw; NT'x \ T # 0
in terms of the Dirichlet bases the existence of a linear prolongation operator family

Pu t HE(OwNT) — 7 (0w (Tp\ 1))

1
with the prolongation property: For every v/ € Hp(OwnY):

h h h h
= < .
OuV' gy = V" on dwN Y and ||p,v HH%(&U) <c|v Hﬁ%(&um{) (6.41)

with ¢ independent of h.
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The discrete version of the variational equations (5.5), (5.6) with Dirichlet bases is
1

defined by Galerkin’s scheme for (uf ,u?) € Huy x ]_[j]\il Hfh where the trial functions
must satisfy

H— ¢ on(0QruY)NTp andug?:cp ondw; NTp\T.

1
As before, we extend ¢ to ¢*f € Hy on 9Qr U T and to go;h € Hfh onto each of dwj,
respectively. Now we write

ul = o*% L ull and u = go] + uJO (6.42)

with the unknown approximations

u(l){ = ZakgokGHHD,kGND and

X F 1 (6.43)
uj, = Z’ngujg € Hi(Ow;NT) on dw;j NY where § € Ipy,
B
satisfying
ull =0 on (0QrUY)NTp and u?on ondw; NI'p\ T, (6.44)
correspondingly.

By using these representations (6.43), the Galerkin approximation of the variational
equations (5.5), (5.6) consists of the global equations

ZGF Pk Pl ak"‘ZZ( / 7 (ki )“Péds)%’ﬁ

j=1 g Ow;NY

M
= [ weds—anlee) - Y / St (e aey) - peds) (6.45)
(8QFUT)AT =1 fw;
where k € N ; 3 € Zpy and £ € Np;
and the local equations
/ S (1;5,0) - ‘Pkds)ak - Z / S (15, 0) - H3<d3>%< (6.46)
k dw;NYT S QwnY
= / (<p;fh — oty §§l(uj/3,0)d8 where k € Np and,8 € Ipy.

6(/.)]' nY

Here §j is associated with w;jn = Ow; NT'x \ Y and Owjp = dw; \ &?}jN, which implies
that (Ow; NT) C dw;jp. Note that here the boundary parts 0w,y and Ow;p are different
from those in Section 6.1.

In terms of matrix and vector notation, the equations (6.45), (6.46) are written as

Z (6.47)

607 S;7; = dj forj=1,....M (6.48)

where the coefficient matrices and right-hand sides are defined in (6.45) and (6.46).
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We note that, in contrast to the matrix §j in (6.15), (6.16), here the matrix Ej can
only be evaluated via the solution of the local problems. In principle, we can use the
local equations (6.48) to eliminate 7 in (6.47) to obtain global equations as for the case of
local Neumann bases (cf. (6.16)). However, we observe that the matrix §j is not always
invertible, e. g. if dw;y =0, i. e. for the pure Dirichlet problem in Section 5.1.1. On the
other hand, due to the special form of Ejo_i — aj defined in (6.46), one can verify that the
latter always belongs to the range of §j and, hence, each ¥; can still be eliminated, even
if it is nonunique. Hence, this leads to the global system for &

M M

AG+> C/SICa=b+> C/SHd; (6.49)
j=1 j=1

where we denote by g;r the pseudoinverse of §j. (See e. g. [56].) We emphasize that the

macroelement stiffness matrix €JT§]+EJ is unique. We remark that §;r = §]—1 when the
latter exists which is the case for the mixed boundary value problem with dw;n # 0.
System (6.49) now corresponds completely to the system (6.18).

6.2.1 The local discrete Dirichlet problem

In the following, we suppress the index j.

If we have w NTx \ T = 0 then S* = S" will be the associated discrete Steklov—
Poincaré operator for the pure Dirichlet problem in w and Zpy = Zpy4+. Hence, we
suppress here” The Dirichlet datum in (6.42) is now given by u” = ¢** 4+ u} where

ug = ypup and Sug =Y v5S(up) with § € Ipy (6.50)
s B8

is the unknown datum in the equations (6.45), (6.46). For the local problem, we need to
evaluate the approximations

Sy — / (S"ug) - peds, Cpp = / (8"ug) - pods (6.51)
JwnNY owNY

ds = / (S"ug) - (@ — @*H)ds for B, € Ipy and £ € Np (6.52)
dwnNY

1 2
and by =by + by where

! h _xh 2 *H
bg:: - / (S [¢2] ) i~y dS, bg:z / ’(/J . QOgdS - CLF(QO ,(pg) . (653)
OwNY (OwpUY)NC'N

Depending on the implementation of boundary integral operators available, one may
use one of the following three approximation schemes. The above matrices are defined for
all indices 8,¢ € Zp whereas g, C and d in (6.45)—(6.49) are given by the Zpy X Zpy—
submatrix of S in (6.51) and the submatrix of C and subvector of d, respectively.

The direct inversion of the boundary integral equation of the second kind

The idea here is to represent the action of the local Steklov—Poincaré operator in terms
of the local Dirichlet basis {uq},« € Zp by utilizing the integral equation of the second
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kind (5.14). We need the matrices generated by the corresponding boundary integral
operators on the macro—element boundaries as follows:

K:= ((vk, Kpg))), D:= ({pg, Dpc))) wherex € Iy, B, €Ip. (6.54)
We will also need the mass matrix

M := ((v,, pup)) wherer €Iy and S €Ip. (6.55)

We now define the approximation

Phx = Z MZ, (ptas A)v, where a € Ip, 1 € Iy, (6.56)

of Pp on H 7%(&)) in terms of the Neumann basis with Dirichlet weights. By inserting
(6.56) for PrA = PrSpg into (5.14) we obtain the approximate equation

Shug = Z M, (b, Spa) Pr(51 + K ')v, + Dpg . (6.57)

Testing with u, and replacing the left—hand side yields the discrete system

Sys = (g, S™ug) =D ML Sap(pn, Pr(31 + K ")) + Dyg. (6.58)

a,t

By decomposing p,, = Prpuy + ry) with r;) € R we obtain

(n, Pr(31 + K"v,) = ((31 + K)Prpn,v)
= (A1 + K)py,v) — (3] + K)ryv) = 3My, + Koy

Inserting this relation into (6.58) we obtain
-
_ 1
Sns = za: (M (M + K)>n,asaﬁ + Dy fora, e Ip. (6.59)

In matrix form, the equations read
+/1 T _
{I-M (IM+K)T}s=D. (6.60)

If {l - (MT((3M + K)) T} is invertible, S can be determined, e. g. by direct inversion.

When S is available then S is the 7 pY X Ipy submatrix of S. Moreover, we find C and
d in (6.51) and (6.52) from (6.57), correspondingly, i. e.

Coe = / @o - (S"pg)ds
dwnY (6.61)
= ZSQQML / oo (31 + K'vds+ / o - Dpgds
¢ dwnY dwnY
and
dg = Zsﬁa / (" = ™) (31 + K wds + / (™" — ™) - Dpgds
ownNY ownNYT

where 1t € Iy ; o, €Ip and L € Np. (6.62)
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The matrix C and d are obtained for 8 € Zpy in (6.61) and (6.62).

1
For computing by we write

e =" phua
«
and obtain

1
b=~ ¢}, /

@i (S"pa)ds = = Cappl, with o € Ip. (6.63)
dwNY @

The discrete Neumann series

Under the additional assumption (B2), equation(6.60) can also be inverted by using
the Neumann series. One obtains

o0

s = S (M EM+k)T)D (6.64)
=0

or the recurrence sequence of matrices

-
SO = (MF(GM+K)) SUU 4D forr=1,2,... withs©:=0  (6.65)

1(T)
In terms of S, corresponding C("), and b may be obtained by inserting S(") for S into

(6.61), (6.62), and C(") into (6.63).

The discrete boundary integral equation of the first kind

The Galerkin method applied to (5.18) finally yields with C = C from (6.45)—(6.48)
and B = B from (6.13)—(6.16) the approximations:

Sas = (MTV(IM+ K))a’g, Car = (BTVTH(AM+ K))m ,acTp, C€Ipr
and (6.66)
do = > (GMT+ KT)v*)a’L / v (" — o MYds e Ty
t Aw;NY
blg = —ZCagan fora € Zp and f € Np.

The use of the symmetric discrete representation of S

With the Galerkin approximation applied to equations (4.26) and (4.14) we obtain the
discrete version of (5.21) in the form

Sge = (AM +K) TV 1AM + K) g + Dge with 3,5 € Ip (6.67)
and S is the 7. DY X Ipr—submatrix. For computing C and d we introduce the Gram matrix

Gp = ((pg, k) for B, €Ip
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and its inverse GBl. In terms of this matrix, we have

C@g = Z(SGBl)@g / e - ppds for B eIpy, s €lp and ¢ € Np,

N dw;NYT (6.68)
dg = > (5Gp s / pe - (@ — @)ds for B € Ipy, s € Ip,
s Aw;NT
and
blg = —ZCM@Z fora€Ip, L€ Np.

6.2.2 The discrete local mixed boundary value problem

Now we consider the case dwy = dw N TN \ ’i‘ with dwp = dw \ 85)1\; and &?}N # () as in
Section 5.1.2. Let

ZgoTuTEHh,TEID and y*" = ZwbuLEHh , LETIN

be the appropriate extensions of the given data ¢ and 1. Then we seek the solution pair
u” and A" in the form u" = ¢*" + u}y and A" = *" + A}, Then here

1 -
ug = Zfaua € Hj (Own) with o € Tp and
«

1 N (6.69)
A = > U, €Hy, 2 (0wp) with o € Iy.

are to be determined.

The use of the discrete Steklov—Poincaré operator S

If 8:)jp = ( we have Jw;y = Odw and gjujﬂ,O) = 0 and gj(cp}“-,@bj) = 1p; in the
corresponding terms of (6.45) and (6.46). In this case, the local pure Neumann problem
in wj is still to be solved but is not necessary for the global equations (6.49).

Hence, let us now confine to the case where both dwp # () and N # () and drop j.
Again, we solve the problem in two steps. First compute the matrix S by using one of the
procedures in Section 6.2.1. By using S, the discrete Galerkin equations for (5.23) become

> Sasba = Mgt —> Sgrpt witha,€Zp, L€y, TE€Tp. (6.70)
(07 L T

Now we define S = ((Sga)) as the corresponding Zp x Zp submatrix of the Z x Z matrix S.
Note that S is invertible for dwp # (). This follows from the fact that any eigensolution in
the kernel of S will also be in the kernel of S, i. e. a rigid motion which, however, cannot
vanish identically on dwp. By solving equations (6.70) for 5, the approximate solution u”
can be written as

. —wuz{z S M)~ 61557 s 6.7
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where 3 € Ip, T € Ip, ¢ € Iy. Here, it is understood that S—1 is extended by zero—
entries for the indices Zp \ Zp. Then

1 —~
by = — / St (o™ 1) - pyds = — / (M) - yds

dwnNYT ownNY

= - Z ( T CT 15)6,7) (p;k— - Z(Sg_lMT)f,szk with £ € ND

for the macro—element contribution to the right-hand side in (6.45). Correspondingly,
with o™ = pg and *" = 0 in (6.71) we find

UM(pp,0) = pg — Z(Sg_l)@,gug where 8 € Zpy and¢ € Zp.

N

This yields for the matrices in (6.45) and (6.46) the approximations

ﬁﬂg = / S\(ug,()) cppds = Cg,g — (ngl(:)g’g,
OwNY

Sﬁﬂ' = / S(uﬁ, 0) -;J,Tds = 5577— — (SS_IS)@T where ﬂ, T€Ipy, LE ND .
owNY

(6.72)

The coefficients dg for the pure Dirichlet problem are defined by (6.52) and they are
computable via (6.62), (6.66). With these coefficients we obtain here

ownYT
= dg— Z(Sg_l)ﬁ,cdc where 3 € Ipy ands € Zp.
S

Similar to the Neumann bases approach, we now are in the position to compute v; and
@ from (6.48) and (6.49) providing u’’ and ug-l for j=1,..., M. To compute
A;‘ =3, 9w, 1 € Iy, we write u" in (6.71) in short as

uh = Znaua, a€lp
o
and define here the approximation of local X by
A= "1 (p1a) = Zna PgS"(va)
o
and, by using (6.56), obtain

Z”a Z M, (ks Spa)ve = D (SMT)amars (6.73)

a,L

6.3 A simplified construction of the macro—stiffness matrix

If the Poincaré-Steklov operator S* in symmetric form-based on the Dirichlet bases is
available (viz (6.67))then the global algebraic equations (6.18) or (6.49) can be simplified
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without explicit inversion of the matrices U ; and §j, respectively, provided the grids satisfy
additional mesh restrictions:

(R1) Py, (4fl,) C M3, (0wj);  (R2)rank(M;) = dim Hg, (9w;) (6.74)

As we shall see, these assumptions allow the identification of Py, ufl and Py, u;? on T.
Then the local )\? can be directly associated with S]huH .

We begin with the representation (6.43) of uf’ on the skeleton:

ull = o L ull = <p*H—|—Zozkcpk, keNp. (6.75)
e

The basis function ¢y, is only defined on Y which will be extended to dw;. Let
Gjk = @i + Vo on dw;

1 1
where cp%‘ is a continuous fixed extension of ¢jj;, from H;? (0w; NT) to H} (&uj \(I'p\ T))
1
and ngk € Hp (Ow;NTN\T).

To approximate Sj@;, = 0 on dw;jy = Ow; NT'N \ ’% we require that ngk is the solution
of
(SIvE, Wh) = —(Shele, wi) for all wi € H2(0w; NTy \ T).

With ngk available, the extended basis functions @;; are known on the whole dw;. In
terms of the extended basis functions we will also express an extension of u’’ in the form

W =+l + > dr; on Ow; (6.76)
k

1
where go;‘»H € H} (Owj) is a fixed extension of ¢*/ onto dw; and u” iy € Hz 2(0wNTN\T)
is the local solution of

(Shulty, why; = ( — St why for all wh € H2 (0w N Ty \ T).

Now we consider the weak coupling
(uff — u?,xh/>j =0 for all x" € ﬁ_%(ﬁwj NIy \T)

which becomes .
@ —ul x""); =0 for all X" € H,, 7 (9wy). (6.77)

These equations are the basis of the following lemma.

Lemma 3 Assume the mesh restrictions (R1), (R2) in (6.74). Then

Py, (Ufh,,) = PR " = Ppull ondw; . (6.78)

Proof: Again, we drop the index j. From the definition of PQQ in (6.23) we have for any
o 1

o+ o
Pé}?wh = Z MaL VLawh Ma = Z MabMLﬁwﬁp’a
aL 76’



Hence, with the properties of a pseudo—inverse,

O+O

o+t o o
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<VgaP£Wh> = Z Ma,Mosws(ve, Ha) = Z MoaMy, M, gws = Z Mosws = (Vg Wh)

a,ﬂ,b a’/Bvb ﬂ
or ) )
XM, PRw) = (X w) for all x' e H, ?(0w) and wy, € HE, (Ow).
The rank condition (R2) implies the inequality

< 70(h) sup [{x

/
Ix™ I
H

1l 73

Nj—=

(8w)
with some vo(h) > 0 which yields with (6.79)
h —0-
||Wh - PgRWhHH%(Bwj) - 07
1
Pjwy, = wy, for every wy, € HE, (Ow)

1
and (6.78) with wy, := (P;RﬁH) € H,(0w) due to (R1).

la

Now the global equations corresponding to (6.45) take the form
M /
aF(uH,cpg)—i—Zj{ )\? -ngdSZ/’(b‘gogdS for all £ € Np.
=1 Ow; Iy

With

h' h~H h xH h..h h~
A= SiRS = Sjei + Sjug 4+ ) anSies
k

we obtain the global equations

M
> apar(er o) + Y an(SI@ik. @je);
keNF Jj=1
M
= / ¥ pds — ap(e™, p0) = > (St + SMl, 3i0);
r =1
N
or, in terms of matrix and vector notation
M
Ad+ Y Ajd=z.

I
_

J

(6.79)

(6.80)

(6.81)

(6.82)

where A; = ((<S§1Cojk, ®je)j)) is the stiffness matrix contribution from the macro element
w; and the vector z is defined from the right-hand side of the global equation (6.81). Note
that in this formulation the local Steklov—Poincaré operators S Jh are used directly without

inversions as in (6.49).
h

Finally, from (6.78), the local solutions u’’ can be determined up to rigid motions from

J

(6.76) once @ is computed from solving (6.82). Correspondingly, )\?/ is given by (6.80).
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7 Stability and Convergence

The stability and convergence results depend on how the local Poincaré—Steklov or Steklov—
Poincaré operators, respectively, are approximated. In case the approximations preserve
the corresponding strong ellipticity properties of the original mappings, one obtains sta-
bility which implies that the well known Babuska—Brezzi inf-sup conditions for the mixed
formulation are satisfied and we do not need to corrolate the meshes of the finite— and
skeleton elements to the local boundary element meshes. Then Cea’s convergence lemma
follows in the standard manner.

On the other hand, if coercivity is not preserved on the discrete spaces, our proof of the
stability is more involved and requires additional restrictions such as inverse assumptions
and mesh restrictions.

We begin with the error analysis of the discretizations with local Neumann bases.
7.1 Stability and convergence with local Neumann bases

7.1.1 Coercive approximate Poincaré—Steklov mappings

We first show that the construction of U’ in Section 6.1 with the discrete symmetric

1
formulation (6.30) provides the discrete H, * (0w N Y)-ellipticity without any restric-
tions on the meshes. For ease of reading, the macro—element index j is occasionally
suppressed.

Lemma 4 If U is defined by the discrete symmetric approximation (6.30) and UM is the
o, a1 1
corresponding approzimation in (6.37) then U™ is Hy ? (0w n Y)—elliptic on 'H,, 7, i. e.

[0 0 X ds = ol
ow

1
h' 17732
o) for allx™ € H,?(OwnTY). (7.1)

Moreover, U™ as well as U are uniformely bounded, i. e.

Y R (7.2)
or
~7 7 _1
0% @03y S Xl oy + eIl s ) o X € Ha 2 (0) (79

respectively, where the constant ¢ is independent of h'.

1 , 1
Proof: For any given x"" € H, (9w N T), the definition of A} € H, ? (dwp) via (6.36),
(6.37) is equivalent to the Galerkin approximation of (4.38), i. e.

/

’ ’ ’ ’ ’ , ~_ 1
W UMY = — (" UM XY for all "' € H, 2 (Bwp),

which is particularly true for v»" = Xb'. From U"'(0,x"") = U" (x"" + Al"), it follows
that

@0, x" ), X"y = (U M+ A = U M AR A
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Since the symmetric approximation U"" is H,? (8w) —elliptic on H,,
implies that

1
* due to (4.18), this

Th' h' h' h' h'12
0 > A
(U™ (0,x" ),x") = lx" +Xp HH,%(M
> hl Ahl 2 _ h/ 2 > 2
> yllx" +Ag HH_%(&JN) Yollx IIH_%(awN)_Vollx IIH_Q(a )

Od
For the uniform boundedness of U"" we first consider the case 9w p=0wNTp\T=0.
1
Let 0" € Hg, (Ow) be given by the Galerkin solution of

oh ~h oh 1 , Oh %

_1
for any given x € H, *(w). Since Uy satisfies the equations
oh oh 1 oh 1
(u,DUx) = (u , (51— K'")x) forallp € HE, (0w),

1
it follows from the H§ (Ow)—ellipticity of D in (4.29) that

la* — Ux| <ellUxll 1, < lixll, -3

H3 (0w) = H™3 (0w)

where ¢ and ¢’ are independent of h. By the definition of U"'x via (6.30) we have
Uhlx = Ph’(%-[ — K)ﬁh + Ph’VX'
Hence, with (6.6) and the triangle inequality, we obtain

!
10 X 3 gy < N3 < €l ) < €l

H3 (9w ) = ~% (0w) H % (0w)’

where the constant ¢ is independent of h and h', i. e. (7.2).
For the case dwp # () and for any x € s (OwN T) the define the prolongation

’ _1
X*h = pl,Ph/X S Hh/2 (&u)
and decompose
h' _ xh' | \h! i yh - a7
X' =x" + Ay withAy € H, *(0wp).
The definition of U"' (¢, x) implies
Uh (QD;X) — Uh Xh — Uh X*h + Uh )\g
where )\8/ is the solution of the Galerkin equations

/

’ ’ 2 / ’ ’ ~_1
(UMY MY = (o — UM X WMy for all b € H, P (0w) .

The coerciveness of U"' implies the estimate

sh'
I oy < L1008 gy + I Wb} (7.4
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where c is independent of h'.
Recalling the definition of U" (¢, x), we find

~

I 220N 14 5 < c{”"*h/”H%(a@ 1363, >}

with the help of (7.2). Inserting (7.4) and using

sh’
I W1 oy = Xl 54 )

which is obtained from (6.6) and (6.8), we find the desired uniform boundedness of U"".

Clearly, the system (6.13), (6.14) is equivalent to the variational formulation:

Find u
/ ~_1
(ugl,)\?(]) e HY, == Hpyp x H H, 2 (0w;NTY)
j=1
such that
! M ! ! !
A, Mgsv X3 = ap(ull v+ 3 TN VY — 8 all + 68T (0,M00)) 5}
j=1
= LX) for allv? € Hyp, X} € 773 (8w; N ) (7.5)
where
E(VH,X?I) = / ¥ -vilds — ap(e*, vl
(8QFUY)0FN
+ Z{ — (@ v = O U (e, )} (7.6)

Based on the property (7.1), it follows easily that A satisfies the BBL—condition. (For
the BBL—condition and its extensions see [8, 11.1.2].)

Theorem 5 Under condition (7.1), the bilinear from A in (7.5) satisfies the BBL—condition

M
sup AGf Noiv x| {1V s + 21 - T
H ~yh' N
(v :Xj )GHh/ 7=1 (7 7)
- |
> yo{ 10§ ¢ Z 66173 ey )

where v9 > 0 is a constant independent of H and h'.

Proof: The result follows immediately by choosing (v ,x;’/) = (uff ,)\gj’ ) with the

help of the coercivity condition (3.9) for ap, assumption (7.1) for U"" and the uniform
boundedness (7.2) or (7.3) . O

As a consequence of the stability result (7.4) given in Theorem 5, Céa’s lemma is valid
[8, I1.2.4]. This together with the approximation properties (6.3) and (6.5) yields the
asymptotic error estimate:
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Corollary 6 There exist constants ci,co which are independent of H and h' such that

H h'
Ju HH+J21||Tu X g4 i

< ¢ iInf ||11*VH||H+02 inf ZHTu X
VHEHH ’
xh'en, 23 1

5 (wy)

IN

C1 Ht 1”uHHt + o h’s+2\|u||Hs+3/2( Q) (78)

where 1 <t <d and —5 < s<d".

l\')\H

We note that in the estimate (7.8), the error contribution (Tju — Ah/) is only available
on Ow;NY. For the estimate of the remaining part and for the estimate of ||u - u” 13 (6
()]
we present the following results.

Corollary 7 There exist constants ci,co, c3 which are independent of H,h and h', such
that

o H X h
Ju—u ||H+Z(||Tu Ny * 10 = )

7=1
M
< o of flu=vTyted nf flu-p
vHeHy w;)
Jj= luheH2
M /
- G
et T
J=lxh'en, ?

IN

1 1
e H' M lall gy + 2’ W72 u +eg" Tl g

7.9

i)

where 1 <t < d, % < s'"<d and —% < s < d”, which becomes the right-hand side of
(7.8) if we can choose d’' =d" +1 and s’ = s+ 1.

Proof: The proposed estimate will be a consequence of the stability of A;-‘ on the whole
Ow;. For simplicity, in what follows, the subscript j will be suppressed. We recall that
A" is defined by (6.31), (6.35)-(6.37) where U” is given in matrix form by (6.30). This is
equivalent to the Galerkin equations

’

’ / ’ ~_1
(UMM X8 = (. xty ) for all x € Hy,* (dwp)

;o
From A" € H, ? (0w N'Y) we now take the prolongation

, 1 -1
v (A o) € Hy, 7 (0w \ (Dn \ 1)) € H, 2 (0w)
and obtain for )
A=A — o, (W | gunr) € H,, P (Bwp)
the Galerkin equations

!

UM AL XY = (o = UM 0, (A gunr), xB ) -
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The definition of U"" via (6.30), (6.31) and based on (4.32), together with the coerciveness
of V in (4.18) yields with x = AR’ the inequality

apl|AR|? <(:{ +[|U" o, (A } Ar :
OH()HHg%ww)" 161113 (o) T NU™ 00O lowr)l 3 1 OHHg%ww)

Hence, with the realtion between )\6‘/ and A"" and the prolongation assumption (6.8) we
find the stability estimate

I -1y = € (1, + I3 -4 gy ) (7.10)

oh
Based on this estimate, we also obtain stability for u” = u +r* defined by (6.38)—(6.40):

oh o o h'\h'
a i, = [P Ay

H?2 (0w) w)

h' h'
N N y-bpy <€ (190t 0y + N Nty ) (71D
oh

b < 10t + 19 d gy + 18 o}

IN

o 1
Here Py, denotes the L?—projection onto Hp, (Ow) satisfying (6.6). Hence, we finally obtain
from (7.10) and (7.11) the stability estimate

h
19"]3 5 < Ml -

Collecting the stability estimates for uff, A " and u", we see that the family of linear
’ 1 _1
Galerkin projectors H'(Q) > u — (u’, u;?, )\? ) € Hu X Hj]\il ( 2 (Ow;) x 'Hjh%(@wj)) is

uniformly bounded. Then Cea’s lemma follows and the appoximation properties give the
desired asymptotic estimates [7,11.2.4]. O

Remark 7.1: For the computations we have employed the Neumann series approach
which, in general, does not provide stability and convergence without additional restric-
tions on the relation between the mesh sizes H, h and h'.

In addition, in our actual computations and also in [58], the convergence of the Neu-
mann series is controlled numerically for fixed H. Then, by using the spectrum of the
matrix ((<§]k(gog),<pk>j)) or of BJ-TU]-_lgj as an indicator, the mesh size h is adapted in
order to ensure the condition (7.1).

7.1.2 Neumann bases on restricted grids

In what follows, we give a rigorous proof of asymptotic stability and convergence in case of
utilizing the boundary integral equation of the second kind (6.21) by (6.25) or the Neumann
series approach (6.27) if the grids satisfy appropriate additional assumptions. In this
case, our analysis is based on the coerciveness condition (7.1).

More precisely, as we shall see, our several additional mesh restrictions are the

(CF) coarse—fine grid relation

h<h'<cH, (7.12)
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(with a constant ¢y to be chosen small enough) the inverse assumption (6.4), the restric-
tions (R1) and (R2) (6.74) and the condition (B1) (4.24) for the Neumann series.

In this case, as in [61], the asymptotic error analysis is based on an auxiliary problem
associated with the coarse grid approximation u’’ given on QpUY with uf = pon I'pNY.
We define an auxiliary function 4! in the following way:

o :=uf on Qp

whereas on each of the macroelements w; we determine i by solving the mixed boundary
value problem

pﬁf =0 inwj;
ﬁ? = u’ on Ow; NT and ﬁf = ¢ on dw;p; (7.13)

el = on Owin \ T;

1. e. uj is the P-harmonic extension into wj.

Then 47 € HY(Q) N C%(Q) and the familiy of auxiliary functions form a family of
generalized conforming finite elements associated with the coarse grid approximation. We
denote this function space by Hp. The corresponding test function space is then defined
by

Hup = {VAV(IJLIEHI(Q)HCO(Q)‘ =0onl'pNT, WO‘ =wil e H,(Qp),
Pwy =0 inwj, vAv(I){|3wj = WO low ,\7V0 |ow;p = O, TJ\/A\I[? =0 on aij\T.}
(7.14)

By using 6/ and the true solution u we now may rewrite equations (6.13) and (6.14) as
modified standard Galerkin FE equations:

ao(u”, Vi) = ap@”,v{") —i—Zaw

= )+ 27{ . ratds

Ow;

M
— ap(uf vl +z]§ v51~>\?’ds+272 i (Tt — A )ds
= Jou,
= ap(u,v(l)q)—I—z:jl({9 Vi Tuds—l—Z% (T;a" — )\h)d
j=1

1. e.

ag@?, vl = (u, v —|—Z% (T;a" )\ s for all Vil € Hyp. (7.15)
Ow;
With 67 = 3*7 + 6l where 4} € Hyp, the HL(Q)-ellipticity of aq yields for v& = 6l
the inequality
~H H ~
apl[dg H%{l(ﬂ) < a(le” 1) + [allgr @)l 7@

M (7.16)
+ZlcQJIITuH ) IIH_j || up IIHQ(B "
J

Next, we need to estimate the last terms on the right—hand side.
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Lemma 8 Let u! and )\;‘/ be the solution of (6.13), (6.14) with Uj realized via (6.25) and
(6.37). Let 6 be chosen with 0 < § < % Then

It =Xy < ellPr ! = PRET e B TR - (7.17)

(Dwy) H2 (0w;) H™ 2% (9u;)

Proof: Since the proof concerns only w;, we suppress the index j. We begin with the

case dwp = (. Similar to (7.15) replacing (6.13), the equations of weak coupling (6.14)
are equivalent to

’ , _1
(", o —uMy =0 for all x"" € H, ? (8w)
with u® € span{ﬁa}, a € Typ. Hence, with (6.23),
o — gl

H

Since 4" in w is the P—harmonic extension, the boundary integral equation

Pr(3I + K)Ppu" = PRV (T4") on ow
is satisfied, whereas u” satisfies the Galerkin equations
(Mt = Pr(zl — K)u') = (X", VA")
corresponding to (6.21) and (6.25). Hence,
O A" = Prat) — (31 - K)(u" = Pra)}) = (M V(A - Tat)), (7.18)
which is equivalent to

M VAN = (M v{Ta! - v (o - Praf!) - (A1 - K) (0" - Prah)})) . (7.19)

1
Then the asymptotic error estimates for Galerkin’s method with V' on M, yield the
estimate (7.17).
If 8(3,3 # () then (uh — Pg%ﬁH)bwD
of the mixed boundary value problem. Therefore, the equations (7.18) are still satisfied,
not only on dwy but also on dwp. Then (7.17) follows in the same manner. g

=0 and u”, A" are related by the Galerkin solution

Corollary 9 If under condition (B1) the Neumann series (6.27) with (6.28) is used for
utilizing U then there exists ho > 0 and to every e > 0 there exists ro(e) € IN such that

h'(r
17 =0 Wy < I T3 (7.20)
for allr > rg and all 0 < h' < hg. Moreover, then, with §(0, %) from Lemma 8,
1T =X (7.21)
Hy (8“’J)
< PR = Py e s e PR

where ¢j and ¢;’ are independent of h,h', H,e (but may depend on w;).
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Proof: Again, we omit j. First we consider the case dwp = 0. Let 0 < 1 be the spectral
radius of (31 — K). We first show, that the Galerkin equations (6.24), (6.25) define a
so—called a—proper approximation family U h' to U.

Definition: The family of operators A" : X — Y approximating A : X — Y is
called a—proper (approximation—proper) if every bounded sequence {Ah} Cc X with

limy,_.g APA" = v € Y contains a convergent subsequence A" — A and the limit A satisfies
AN = .

If UM A =wh e H,% we choose to w = limy,/_o w" in Hoé(aw) the element X := Sw.
Then, by definition of U"’, we have the Galerkin equations
(v, wh — (31— K)wh) = (v, VA" forall. e Iy
and
—(3I-K)w = Va.
Hence, from the Galerkin approximation with V' we obtain

I =y ) < @l = PV By B VA ‘I

(0w) Hdow T caflw —w H? (0w)

and A" — X for b’ — 0. Then, the family U"" is here a—proper for U. In this case
it is known that for A’ — 0 the spectral sets converge [29]. Hence, there exists ho >0
and 0 < gg < 1, such that for all 0 < ' < hg the spectral radii of {(3 M — K)M } can
uniformly be bounded by gy [29]. As a consequence,

[ e — U < cof (7.22)

1
H™ 2 (Ow;)—H 2 (0wj)

where c¢ is independent of r and h’ and h. Since U is invertible on H -2 (Ow)/R, so is U™
for r > ro and (7.22) implies a uniform bound

h'(r)y—1
IO N 4 gy gy = M-

Since U"'(") is used instead of U h,, here the weak coupling equation (6.14) reads
UR' XM = phatl; and UM AP = PR 4+ (UM — UM O)AR
implies
M VAN = PRTET)) = (M (51 + K) (PR - Pr)a + (UM - UM )

, _1
for all A" € H, 7 (0w). These Galerkin equations, together with continuity yield the
estimate

ITa" — 2
H™ 2 (Ow)
< ~H  ph=H 10 (| H / h'
< cllPeat = PRIy o TRy e Iy
Choose ¢ such that of° - M < ¢ and use ||A""|| 24 (o) < M|]P£ﬁHH%(6 | to obtain (7.21).
(99)
For Ow p # 0, the proposition follows in the same manner as in Lemma 8. O

In the Lemma 8 and the Corollary 9 we see that the term Py, all — Pﬁ_ﬁH appears in
all the estimates. But as we have seen in Lemma 3 this term vanishes under the rather
mild mesh restrictions (R1), (R2) in (6.74).



49

Theorem 10 Assume that the assumptions of Lemma 8 (and Corollary 9 for the Neu-
mann series approach) and, in addition, the mesh restrictions (R1), (R2) are satisfied.
Then we have the asymptotic stability estimate

M
" B h
[u™ [l +jz_:1 (||>\j HH—%(aw]-) + [luj ’H%(awj-)) < cllullze (7.23)

for all 0 < h' < hg with a constant ¢ independent of h', H provided the constant co > 0
in the coarse—fine grid relation (CF) in (7.12) is sufficiently small.

Under the above conditions, the asymptotic error estimates in the Corollaries 6 and 7
are valid again.
Proof: We begin with the estimate (7.16) for the P—harmonic extension 6} = afl —g*
and make use of (7.17) (or (7.21) in the case of the Neumann series—approach). This yields

~H ~xH ~H
o8 20y < e (18" sy + Il o) 188 110

M
+¢(h°| Ty [
7=1

el ey o 8 ol

(7.24)
By using the inverse assumption (6.4) on dw; together with the coarse-fine grid relation
(CF) in (7.12), we obtain the estimate

H_%+5(8

WONTET s < el o) (7.25)

(0uw;)
From (7.25) and (7.24) we now conclude

OéoHuo HHl sa (H‘P*HHHI(Q + HuHHl ) [up HHI(Q)
M

) = £} ~xH ~
+ (g +e)er” Y115 7 o) + c2(co + ™ @186 10 -
=1

We now require ¢y and ¢ sufficiently small so that ¢y + ¢ < 2a0 Then we obtain the
desired Stablhty result for ||} || ;1 (q) and, hence, for ||| f1(q). Since G is the harmonic
extension of u’; we obtain from (7.13) the stability estimate (7.23) for [[uf?|z,i. e.

a7 < cllull (o)

For the local )\?/ we use (7.19) where u? = Py, 4 due to (R1). This implies

% —~ =
Xy, < GITE 0, <6 187 I,
and
h ~
s, < 18 -

Collecting these inequalities yields the final estimate (7.23). ]
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7.2 Stability and convergence with local Dirichlet bases
7.2.1 Coercive approximate Steklov—Poincaré mappings

In contrast to Section 7.1.1 we show now that the construction of §” in (6.67) and (6.72)
provides discrete H %(awj) /R or H %(&uj N Y)—ellipticity. Again, we do not need any
additional restriction on the grids — as in Section 7.1.1.

Lemma 11 If S is defined by the discrete symmetric approzimation (6.67) then S is
H? (Ow)/R—elliptic,i. e.

Riwh) - whds > hy2
[ Sty whds = oWy

1
for allwh € H? (0w) . (7.26)
If, in addition, Gong + 0 and S" is defined via (6.72) then S is %(aw N Y)-elliptic, i.
e.

Shiwh 0) . whds > hyj2 '
[ 5wt 0) - whds = 0wty (7.27)
Ow

Moreover, S* as well as S™ are uniformely bounded, i. e.

I1s"wll,, cllwll 3 (7.28)

T2 (0w) = H2 (Ow)

or

1"y < AV ouriny * b oy (729)

respectively, where the constant c is independent of h.

Proof: In the case dwy # 0, for (7.26), it follows from (6.67) that

)

/Sh(wh) whds > /Wh - Dwhds > *yonhHi{%(aw)m

because of (4.29).
Let A" be given by the solution of
OV = MG+ K)w)
Since Sw satisfies
(M VSw) = (M (BT + K)w),
and the Galerkin method for the operator V' is stable (cf. (4.18)) we find

A" = Swl| .
H

oy S lSWl,

2(0w) T

< ¢ Il

where ¢’ is independent of h’. The definition of S" via (6.67) means
S'w = P,(I+ K")A" + P,Dw .

Hence, with (6.6) and the triangle inequality, we obtain
h h' /

L IR T TR

(@w)
< ||S"w|

(Ow)
e Il o < I

H™ % (0w) Ow) =



o1

In the case dwy # 0 let us ﬁrst recall the construction of S"(w, 0) from (6.70)—(6.72).

Let A" = Sh(w,v) € Hh, (Ow \ Owy) and w*" := p, Pyw be the prolongation of
P,w. The construction of S" is now equivalent to ﬁndlng

~1
wh = w4 wh € H? (8w \ (dwp \ T))

satisfying the Galerkin equations

/(Shwh) vhds = /¢ -vhds
Ow Ow
or

~1
/ (S"wl)-vhds = / (¢ — S"w*) . vlids for all vi € H}? (Qwy). (7.30)
ow ow

1 .
Here w{ € H}? (Owy) is to be determined such that S"(w", ) = S*(w"). We therefore
define R

Sh(w,p) = Shw*h 4+ Shwh .

Note that (7.30) has a unique solution wf if dwy # Ow and is unique up to a rigid

motion if a&j NTp\ YT =0,i e Owy = Odw. With w" determined, we have in the special
case ¥ = 0, from (7.26)

Sh (b O . whide — hiwhY . whds > hy2
/S (w",0) - w"ds /S (w") - w'ds > yol|w HH%(&U)/%’

For the remaining case in (7.27) with dwp \ Y # 0 we proceed as follows:

We note that HVH is equivalent to a,(v,v) where v is the P—harmonic exten-

3 (0w)/R
sion of v € Hz (Ow) to v € HY(w). As in the proof of Theorem 2,

ay(v,v) > a”v”fw(8 )

as in the case dwp \ Y # 0.
With the previous uniform boundedness (7.28) of S and (7.26), (7.30) it follows that

ho. xh
[w OHHQ(a) < cf|stw HH‘?(& )+ cll¥ll *%8 mFN\“Or)
< e 0Pl ) Nl
S CHWHI’_}%((«) OY)+ H,l’bHH_?(awﬂF \T)

and, correspondingly,

Gh *h
Iy by < I gty 00 Il |
< AWl e + e

|

Similar to Section 7.1.1, the discrete system (6.45), (6.46) is equivalent to the varia-
tional formulation:
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Find
M-
(' ul) € HY ==Hup x [[ HE (0w; N T)
j=1
such that
B(“(J)V{vuglO;Vvagp) = aF ( (IJLI H)

M
Z ( ]07 aVH>j - <S]}'Z(W?a0)ﬂu(1)q>j + <S]h(wgl70)7u?0>j)

= M(VH,W?) for all (VH,W;-L) c HP (7.31)
where
M ~
Mty = [ wevas= Y [ 80 vids
eraQFuT I=1gw;nr (7.32)
+Z / cpj) §Jh(w§l,0)ds
i= ldw]ﬂ'f

is the given linear functional defined by (6.45) and (6.46).

Based on Lemma 11, Theorem 5 and Corollary 6 now are replaced by:

Theorem 12 If (7.26) and (7.27) are satisfied then the bilinear form B in (7.31) satisfies
the BBL-condition

,_.

su BuHhvw/vH + whf
b Bl /AN It ]Zln 74 ey}

> yo{llug It + > 195oll 34 0 o)}
7j=1

(7.33)

where vg > 0 is a constant independent of H and h.

Proof: Take (v, W;Z) (uf,u jo) in (7.31), then (7.26) and/or (7.27) together with the

uniform boundedness (7.28), (7.29) guarantee the proposed inequality (7.33). O

Again, (7.33) together with the approximation properties (6.3) and (6.5) implies the
asymptotic convergence in the form of Céa’s lemma:

Corollary 13 There exist constants ¢i and co which are independent of H and h such
that

M
_ —all .
‘]:

M
< ¢ inf Jlu—-v +co iInf u-— Wh
1VH6HH|| 3 + 2 D |

H2 (Owy)
W EHQJ 1

IN

o H 1HUHHt +co' BT 2HuH (7.34)

1
HT3(Q)

where 1 <t <d, s<d’.

N[
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In a similar manner as in Section 7.1.1 with the Neumann bases, we now present the
complete asymptotic error estimate in the case of the Dirichlet bases.

Corollary 14 There exist constants cy,ca,c3 which are independent of H, and h' such
that

I h u =\
Ju—u ”“]Zl(”“ W08 0w, 150 =X HH%W)
M
: CH —wh
< a jof v-v I +cad  inf Wil it o
Jj= 1w €H2

M
+632 inf [|Tju— )\ gl

Jj= lxheH p Hﬁ%(awj)
< o Bl + e (0077 + 17 u 1) (7.35)
where 0 < s < min{d’,d"” + 1}.
Remark 7.2: For dw; N T # Owj, the term |ju — uhH on the left-hand side in

H (9w;) /%,

(7.35) can be replaced by ||u — uhH o)

Proof: We note that the equation (6.72) together with (6.70) corresponds to the discrete
version of (5.23), namely

(8™l vhy = (4, vl for all vi € Hh (Own) .
(Here, the subscript j is again suppressed.) Now we write

" = 0,0 gurr) +uf (7.36)

1
in terms of the prolongation operator defined in (6.8) with u} € H7? (Owy). Then, with
vl = ul, the definition (6.67) of S* and the coerciveness (4.29) of D, we find

aollulZy < (8" uul) = (& — 5" (pu(0" auer) )u)

< {18ty * 15" (906 ) 1y o P

< ! h
< 10l 1y + 19 e § 198 78

where ¢’ is independent of H and h. This, together with (7.36) and (7.34) yields the

stability estimate
0,3 ) < oo (737

With the stability of u” on the whole dw in (7.37) available, we find from the definition
(6.73) of A" on dw and the uniform boundedness of S (7.28) the stability estimate

I - y = [P S|y <l < el [u®lgi).
2 (0w 5 (ow) H (0w)

Here Ph/ denotes the L?-projection onto Hh, (Ow) satisfying (6.6). With stability of

ufl u" and A" available, uniform boundedness of the corresponding family of Galerkin

projections implies Cea’s lemma and the proposed asymptotic error estimates. O
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7.2.2 Dirichlet bases on restricted grids

In an similar manner as in the case of Neumann bases we consider the asymptotic sta-
bility and convergence without using the coerciveness property (7.26), when the Steklov—
Poincaré operator is constructed based on (5.20) under additional restrictions on the
grids.

Specifically, we need the additional mesh restrictions (R1) in (6.74) and the mesh
restriction

(R3) h/ S C()Qh (738)

with a constant cp2 > 0 to be chosen small enough, and the inverse assumption (6.7). We
note that because of (R1), h < H is still satisfied.

Again, let il denote the P-harmonic extension defined in (7.13). Then, from (6.45)
we obtain the variational equation

M
ag(@l vl = aF(uH,v§)+Zj{ Vit Tyat ds
Ow;
J=17"""

M M
H H SH . gh GH  (choH _ gh h
= ap(u’,vy)+ E jgw.vo - Sjujds + E ﬁw.vo -(Sju” — Sjuy)ds,
j=1"9w; j=19wj

ag@?, v = ap(u,vi) + Z]{ Vil Tjuds + 27{ v (S]HﬁH - thu?)ds
j=1 8(4}]' j=1 &uj
for all test functions v € Heub (7.39)

With @ = 3*7 + 6l where G € Hpp, the H(Q)-ellipticity of aq yields for

vl =G}l the inequality

M
~H |2 ~xH ~ ~H ~H hoh
aol|g' I () < c1ll@™ lar o) + [l @) 00" | 10 +Z|]2 Uy - (Sju” — Sjuj)ds|
Jj=1 wi
(7.40)
To analyze the last term we have to rewrite these integrals in such a way that we
can make use of the consistency (S; — S]h) For this purpose we need the weak coupling
conditions (6.46) which we write in the form

1
@ — u;l, thv;?)j =0 for all v;‘ € Hp (Owy) . (7.41)

Due to assumption the mesh restriction (R1) in (6.74) we may choose in (7.41) V;-L =

af — u? to obtain
@" —ul s;@" —u)); = @ -l (S - sHE" - u))),
or
(Pr@@” —u), s;Pp@@" —ul)); = (Pr@” —u)), (8- SH@" —ul));.

1
With the coerciveness of S; on Hj (Ow;) this yields

a|| Pr (6" — u?)HiI%(aw) < el Pr(@ —up)ll ;1085 = 57 @7 = u?)HH_f(awj)
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1
Lemma 15 Under the mesh restrictions (R1), the inverse assumption for H; and (R3)
where cpa > 0 is independent of h and is to be chosen sufficiently small we have the
consistency estimate

1
1(S; — Sh) hH < c(;cggHwhHH%(aw) for every wh € H} (0w) . (7.43)

4 (o) =
The constant cg is independent of h.

Proof: Here, we suppress the subscript j. Let o := Sw” and o’ := S"w". Then with
(5.20) we have

’ ’ ’ / ’ _1
XM Vel = (XM, BT+ K)ywh)y = (X", Vo) for all X" € M, ? (0w).

Hence, o' is the V—Galerkin projection of & providing the standard asymptotic estimate

h' 18 h -
— <
By the inverse assumption (6.7) for Sff/(@w) we finally obtain
0
o h % h T
Iswh =8ty o< e(B) W o S € ()W,
g
With the consistency (7.43) available, we now return to (7.42) and obtain
~H . h _ qhy(H _ . h
PR =)y S = SM@EE b
S|H _ kb
< cleo)” 0 —uf o
< el {187 g ) + 18y b (40
Equation (7.41) with v = u” implies
agl[u”|? < (ut,5u") = @7, ") + (W, (S - 5")u")
H2 (0w)
< eIy o ISy o (e i
- H™ % (0w) 02 03 (0w) [
From (5.19) we have
’ ’ / _1
(XM, VSt = (X", (31 + K)u") for all X" € H,, 2 (0w)
from which the coerciveness of V' implies that
18", o < Pl (7.46)
where ¢ is independent of h’. Insert this inequality into (7.45) to obtain
0 h ~H
(a0 = o)l ) < IR (7.47)
Then, by choosing cp2 sufficiently small, we obtain from (7.44) the estimate
1Pp(@ —u®)| < c'(co2)’ @) g o - (7.48)

H3 (0w) — HE (9w)

Now we are in the position to estimate the last terms in (7.40).
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Lemma 16 Under the assumptions of Lemma 15 with coa chosen sufficiently small, the
following estimate holds:

ya ug - (Sja’l — Sfuf)ds| < echy | | 24 HAHII
Wy

ihom (7.49)

Proof: By the triangle inequality we have

[ all (50" - S hds\<\fw (8;— S Hdsmfw all - Sh(@a — ut)ds| .

The first term can be estimated by the consistency (7.43) with w" = 4 due to (R1);
this gives

~ Ay~ PERTES ~
(s - spattast < e el |y o 187
wj

For the second term we use (7.48) and the uniform boundedness of S]}-’ which can be seen
in the same manner as in (7.46), to obtain

~H =H h ~H = ’\H
\@fo&m wmarg%%5£wl wi)ds| < ey 18113 o 187000

These two estimates give (7.49). O

Now it is clear that for cpe sufficiently small, (7.40) will provide the asymptotic stability
of |6 || 1 (q

Collecting the inequalities (7.40), (7.46) and (7.47), these results can be summarized
in the following theorem.

Theorem 17 Assume that the assumptions of Lemma 15, i. e. the mesh restrictions
(R1) and (R3) are satisfied. Then we have the asymptotic stability estimate

s 3 (I ) I, ) < il (750)
7=1

for all 0 < h < hg with a constant ¢ independent of h', h and H, provided the constant cgo
in (R3) is chosen sufficiently small.

As a consequence of the stability (7.50) and the approximation properties, the asymp-
totic error estimates in Corollary 14 remain valid.

7.3 Stability and convergence for the simplified macro—stiffness matrix.

If the mesh restrictions (R1) and (R2) hold and the local Steklov—Poincaré operators S}
are approximated by the symmetric form (6.67) then the global equations in (6.81) take
the form (6.81) which is already stable without further restrictions on the grids.

We begin with the stability of the approximate solution of @’ of the global equations
(6.79) which are equivalent to

pull vl +Z% uOJ Mds

/v,b~véqu—ap( Gl Z(S]hgoj SJ GV Vi, (7.51)
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(see also (7.37)). Now choose v§l = 1}l and in view of the ellipticity (3.9) and (7.51) one
obtains the following stability result.

Lemma 18 Under the mesh restrictions (R1) and (R2), the solutions of (7.51) are uni-
formly bouded:

M

168 o) + 31813, < AMelpepy * Wls ey} (752

where the constant c is independent of h,h' and H.

Remark 7.3: It follows from (7.52), the definition (6.75) of u}! and 6 and from (7.51)
that uff and uf are also uniformly bounded, i. e.

M
H ~H
I i)+ 32103, <l

where the constant c is independent of h,h’ and H.

By using Lemma 3 with Py, ﬁf = Py, u? and the definition of )\?/ in (6.78), we obtain
from Lemma 18 the stability result:

Lemma 19 Under the assumptions of Lemma 18 there holds the following stability esti-
mate:

M
H h' h
1+ 32 (P8 1y 11, ) < Al

where the constant ¢ is independent of h,h’ and H.
As a consequence, Céa’s Lemma is valid:

Corollary 20 Under the assumptions of Lemma 18, i. e. the mesh restriction (R1),
(R2), Corollary 14 remains valid.

8 Numerical Results

In this section we present numerical results for the notch problems in two and three
dimensions, where the macro—elements are in the near field of the notch. The examples are
based on the local Neumann bases approach given in Section 6. The governing equations
(3.1) are now the Lamé equations in linear elasticity:

Pu=A"u:=pAu+ A+ p)grad (divu) =0 in QCR", n=2,3. (8.1)
with the Lamé constants satisfying A > %u and g > 0. The mixed boundary conditions
(3.2) now consist of the tractions

T'[u]|

'n

= A(divu)n + QHZ—Z + pn X curlu, =1 on I'y (8.2)
and the displacement field
u. =¢ on I'p. (8.3)

The given stress and displacement fields ¥ and ¢ will be specified explicitly according to
the examples.



58

8.1 The two-dimensional example

Figure 6 shows a quadratic plate under uniform symmetric tension og = 1N/mm? in
direction of the y-axis. In the center of the plate an elliptic cutout is located as the notch
configuration.

In the numerical treatment the problem is analyzed as a pure Neumann problem. The
discretization is based on the local Neumann bases introduced in Section 6.1 where also the
discrete Neumann series is employed. The domain decomposition is also shown in Figure
6. Two macro-elements w; and woe are placed in the center near the elliptical cutout.
The skeleton T is chosen as the union of the boundaries 8wy and Bws, T = Sw; U Bws.
The boundaries duwy and dws of the macro—elements are discretized with elements on one
fine grid, where ' = h, while the far field is discretized with triangular finite elements
by using quadratic trial functions for the displacement field u¥. In order to obtain a
positive definite global system for the Neumann problem under consideration, we have to
eliminate the three degrees of freedom of the rigid body motion. This is achieved by fixing
the following finite element nodes at A, B and C:

We are working with a rather coarse grid of meshwidth H for the global finite ele-
ments in {F as well as on T, while the density of the fine grids for the macro-elements
will be refined adaptively. The constructions of these grids are totally independent from
each other. With this strategy it is possible to resolve the high stress peaks and high
stress gradients which occur in the near field of the elliptical cutout. In comparison with
conventional finite element techniques it is here not necessary to work with an adaptive
scheme concerning the refinement of the coarse grid (H). In our method the numerical
properties of the problem can be controlled adaptively by the macro—element operators.
This is simpler since here adaptivity involves only the local boundary element method.

So
o - g
y 1] 1 ]
@) g @, p
X
i 1) i 3
i1}
A

Og

Figure 6: Discretization of a notch problem, two macro—elements

For the determination of the constant ¢, in the coarse—fine grid relation (CF) in (7.12),
in order to achieve stability and convergence, we use an indirect method by introducing
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error indicators for the discrete operators. These error indicators control the main prop-

erties of the macro—element stiffness matrix H; = @; Gj_lgj approximated by the partial

sums (6.28) of the Neumann series as symmetry and positive definiteness. The exact

macro—element stiffness matrix is symmetric and positive definite. Hence, its minimum

eigenvalue Ay, has to be bounded away from zero. We define an averaged symmetry

defect for the quadratic M; x M; matrix H; with the elements Hyy = > ng (U_l)bp ép@
L,p )

by

M; k-1
Py |Her — Hiel
_ E=14=1
MSD = M, b1
> > |Hew — Hiel
h=1 =1

and introduce error bounds £; and g9 with
0< MSD <e1 and Apin > €9 > 0.

The control of these parameters for any given positive €1, €2 proved to be very efficient
when using the Neumann series (4.25) as utilized by Tiirke in [58]. He also incorporated
smoothness at the artificial interior cross points in terms of corresponding exact compati-
bility conditions for u? and aé-’ for all macro elements w; at common cross—point corners
in the interior of 2.

In the following numerical experiments for the given model problem in Figure 6, we
determine the stress peak value aym = Omaz/0o. For the same notch problem, but with
an infinitely long plate, the Kolosov—Muskhelishvili representation provides an analytic
solution which yields

Qegact = 4.7632

To compare the numerical and the exact values we use the relative error

_ |anum - aexact‘

EOC
Aegact

We start the numerical investigations with the coarse grid (H) as shown in Figure 6 with
14 finite elements (npg = 14). The fine grid in each macro-element w; and ws is refined in
two steps with npp = 135 and npg = 177 boundary elements. Table 1 shows the results
obtained for the deviation of the stress peak &,, the minimum eigenvalue \,,;;, and the
symmetry defect MSD of the macro-element stiffness matrix H; depending on the fine
grid h and the number of iteration steps iter used in the Neumann series.

iter [ 1 10 20 30 40 50

npg =135  eq [%) 51.7 | 106 | 380 | 1.66 | 0.86 | 0.53
MSD [1073] | 1.903 | 2.144 | 2.269 | 2.317 | 2.336 | 2.344
Amin [1079] || 1.1048 | 1.4325 | 1.4316 | 1.4318 | 1.4319 | 1.4320

npg =177 eq |%) 51.7 | 106 | 380 | 1.66 | 0.86 | 0.55
MSD [1073] | 1.900 | 2.140 | 2.249 | 2.291 | 2.307 | 2.314
Amin [1079] || 1.105 | 1.4330 | 1.4317 | 1.4320 | 1.4321 | 1.4321

Table 1: Results for coarse grid (H) with npp = 14
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In Table 2 below, the results for a refined coarse grid with 46 finite elements are listed.

iter 1 10 ] 20 | 30 40 50 |
npe = 135 &4 [%)] 519 | 103 | 3.36 | 1.15 | 0.34 | 0.025
MSD [1077] || 1.903 | 2.144 | 2.260 | 2.317 | 2.336 | 2.344
Amin [10~°] || 1.1048 | 1.4325 | 1.4316 | 1.4318 | 1.4319 | 1.4320
ngE = 177 &q %) 51.9 | 103 | 3.36 | 1.17 | 0.36 | 0.046
MSD [1073] || 1.900 | 2.140 | 2.249 | 2.291 | 2.307 | 2.314
Xmin [107°] || 1.105 | 1.4330 | 1.4317 | 1.4320 | 1.4321 | 1.4321

Table 2: Results for refined coarse grid (H) with npg = 46

In all runs we observe an increasing accuracy for the stress peak with increasing num-
bers of Neumann iterations. The most accurate value is obtained for the discretization
nrg = 46 and npr = 135 with a deviation from the analytical value by 0.025%. The re-
finement of the coarse grid (H) in r and on T leads to an improvement of the calculated
stress concentration.

In all cases we obtain a relative symmetry defect between 0.0019 and 0.0023 and
positive values for Apyqn. A refinement of the fine grid (h) leads to a more accurate stiffness
matrix H with decreasing M 8D and increasing Apy;,. This motivates the a priori choice of
an upper bound for MSD and a lower bound for Ap;,. Then the algorithm automatically
reduces adaptively the fine grid meshwidth A and the number of iteration steps for the
Neumann series, until the given requirements of symmetry and stability are fulfilled.

Finally Figure 7 gives a visualization of the normal stress distribution in direction of
the loading for the whole plate. In the far field of the notch we have a constant stress field
with oy = 0, = 1N, /mm?, while the high stress gradients in the near field of the notch are
very accurately approximated within each of the macro-elements.

" 5, . ; “
e Y i 5 Ay ~
v ,- o “

Figure 7: Stress isolines of the component cr;' of e" in wy and wy
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8.2 The three—dimensional example

For the numerical realization of the macro-element technique in three-dimensional prob-
lems we are using two non-conforming grids on the surface dw; of the macro-elements.
On the finite-element side we have the coarse grid (H) belonging to the FE-discretized
substructure and on the macro-element side the fine grid (2) for solving the boundary
integral equation on dw.

FEM node boundary element
(here 9 boundary elements
per coupling triangle)

collocation point
coupling triangle (constant shape function)

Figure 8: Discretization of the macro-element surface dw;

The scheme for the numerical realization is shown in Figure 8. For the fine grid trian-
gulation of the macro-element boundary 6w, we are using the BEM with point collocation.
Since here piecewise constant trial functions are chosen on the BEM side, the collocation
points are placed at the centers of gravity of the collocation triangles. In comparison with
the number of collocation points on the fine grid (h) we have only a small number of cou-
pling nodes on the coarse grid (H). The coarse grid belongs to classical finite elements.
Here in this example we use tetrahedral elements and quadratic trial functions with nodes
at the corners and at the midpoints of the element-edges.

We present here the computational results from [51} for a thick plate under tension with
an elliptical cutout as shown in Figure 9. The first three~dimensional numerical results
for that coupling procedure were published in [32]. One macro—element w is defined near
the notch region with the largest curvature of the cutout, where the static field shows high
stress peaks and high stress gradients.

In the numerical computation we study the influence of the parameter ratio /w and
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Figure 9: Plate with an elliptical cutout under tension

compare the stress peaks
h

(02 )maz
Jo

Gnum =

with analytical results presented by Peterson [40] and Isida [28].

| Ratio b/w | anum | € [%] |
0.33 5.60 0.18
04 583 | 0.18
0.5 6.50 0.15
0.7 9.42 0.21
0.8 12.70 | 3.05

Table 3: Numerical calculation of stress peaks on an IBM 3090

As shown in Table 3, the parameters vary from 0.33 to 0.8. We are using about 160
classical tetrahedral elements and have 16 coupling triangles on the interface dw; N Y
which are discretized on the boundary element side in 144 boundary elements. The CPU
time is about 100 seconds on the IBM 3090 computer. It turns out that the numerical
results for the stress peaks are rather close to the analytical values and the relative errors
vary between 0.2 and 3%. For the ratio 0.8 we have a relative error for the stress peak
of about 3 %, and for the corresponding large stress peak oyum = 12.7, plasticity effects
will certainly occur which are not allowd by our linear model.
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