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high resolution of the desired stress fields, in combination with a traditional global varia-
tional FEM analysis. The global stiffness matrix is here sparse as the one in conventional
FEM. In addition, with slight modifications, the macro–elements can be incorporated
into standard commercial FEM codes. The coupling between the elements is modelled
by using a generalized compatibility condition in a weak sense with additional elements
on the skeleton. The latter allows us to relax the continuity requirements for the global
displacement field. In particular, the mesh points of the macro–elements can be chosen
independently of the nodes of the FEM structure. This approach permits the combination
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1 Introduction

For the engineer it is necessary to have reliable and detailed information on stress peaks
and gradients in order to make decisions on the design of machine parts for their guaranteed
lifetime. Therefore one needs methods which are able to combine global characterization
of the stress field with locally high resolution in some chosen subdomains. As will be seen,
the proposed hybrid method in this paper will be one of those desired methods.

In recent years, combined methods of boundary and finite elements have received in-
creasing attention in computational mechanics. Now there is a growing body of literature
on these topics. However, in spite of many different formulations of the coupling pro-
cedures, conceptually there are only two fundamental approaches. In the first one, the
domain under consideration is divided into a finite number of subdomains in which either
the boundary element method (BEM) or the finite element method (FEM) will be em-
ployed to construct approximate solutions depending on their suitability (see e. g. [64],
[65], [7], [18], [42], [62], [10]). The second one is merely a variant of the hybrid–element
approach in the FEM analysis [41]. In this approach, by using Trefftz elements, the
governing equations of equilibrium are satisfied a–priori within the subdomain elements,
where the Trefftz elements are modelled with boundary potentials supported by the indi-
vidual element boundaries, the so–called macro–elements. These macro–elements allow us
to handle, in particular, situations involving singular features such as cracks, inclusions,
corners and notches and provide a locally high resolution of the desired stress fields, in
combination with a global FEM analysis. The corresponding global stiffness matrix is
rather sparse and the number of degrees of freedom is smaller than that in conventional
hybrid FEM. In addition, with some slight modifications, the macro–elements can be in-
corporated into standard commercial FEM codes. This is particularly desirable from the
computational point of view, since the macro–elements can be treated efficiently on parallel
multi–processor computers by taking advantage of modern computer architectures.

Incorporating Trefftz elements into FEM where its stiffness contributions are expressed
in terms of local boundary integrals defining a Reissner functional dates back to contri-
butions by Tong, Pian and Lasry [57], Schnack [45] and later by Atluri and Grannell [2],
to name a few. (The approach in [52] is different.) In the present paper, following [61],
we present some error and stability analysis for a macro–element approach. The macro–
elements employed here are based on the hybrid–stress method with boundary elements
developed by Schnack [46] for treating problems in solid mechanics with regions of high
stress concentration. The precise formulation of our hybrid stress method is based on
the variational approach of the coupling procedures in [18] and [62]. This method has
been numerically implemented successfully for two– and three–dimensional problems by
Schnack and his research group (see [12], [32], [47], [48], [49], [50], [51], [58]). The essential
feature of this coupling procedure is the use of a generalized compatibility condition [47]
which allows to relax the continuity requirements for the displacement field. In particular,
the mesh points of the macro–elements can be chosen independently of the nodes of the
finite element structure so that various independent meshes can easily be connected via
mortar–like elements on the skeleton. Moreover, this method can also serve as a basic
algorithm for coupled preconditioned iterative solution schemes in domain decompositions
such as, e. g. the Glowinski–Wheeler algorithm via BEM in [25], [26], [19] or more general
preconditioned iteration schemes (see e.g. [11], [53], [54]).

The paper is organized as follows: In Sections 3–5, we present the functional analytic
formulation of the coupling procedure and consider two particular choices of the so–called
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geometric skeleton associated with the macro–elements. Various discrete forms of the
method are presented in Section 8. In particular, for the macro–elements, we consider
BEM–Galerkin, BEM–collocation, and following Türke [58], the Neumann series approxi-
mation of the Poincaré–Steklov operator, i. e. , the Neumann–Dirichlet map. It is worth
mentioning that in the latter case the exact stiffness matrix corresponding to the Poincaré–
Steklov operator is symmetric which can be controlled numerically in the discrete case (see
[58]). Section 7 is devoted to error estimates, stability and convergence results. Finally,
in Section 8, various numerical results in mechanics are presented which can be served as
an illustration for the efficiency of the method.

2 The hybrid method for the Laplacian

To illustrate the main ideas we begin with the simple model problem for the Laplacian as
a special scalar case.

Let us consider the boundary value problem

∆u = 0 in Ω ⊂ IRn (n = 2 or 3) , (2.1)

Tu :=
∂u

∂n
= ψ on ΓN , (2.2)

u = ϕ on ΓD (2.3)

where Ω is a bounded domain with a piece–wise smooth boundary ∂Ω = ΓN ∪ ΓD. The
functions ψ and ϕ are given on the closed Neumann and the Dirichlet parts ΓN and ΓD,

respectively, of the boundary (see Figure 1) where
o
ΓN = ∂Ω \ ΓD.
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Figure 1: Finite and macro elements

To describe the procedure, we first decompose Ω into two subregions ΩF and ΩB with
ΩF ∪ ΩB ∪ Γ0 = Ω where Γ0 = ∂ΩF ∩ ∂ΩB is the corresponding coupling boundary.

We further decompose ΩB into two disjoint subdomains ω1 and ω2 as in Figure 1.
The main idea here is to approximate the solution in ΩF by finite elements, in ωj by
corresponding Trefftz elements modelled via boundary potentials, and an additional ap-
proximation for the trace of the solution on the so–called skeleton Υ which will be defined
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later on. For the motivation of the corresponding variational scheme we begin with the
generalized total potential functional

Π(uF , ũ;u1, u2;λj , λ2) :=

1
2

∫
ΩF

|∇uF |2dx+
1
2

2∑
j=1

∫
∂ωj

uj
∂uj
∂n

ds−
2∑
j=1

∫
ΓN∩∂ωj

ψũds−
∫

ΓN∩∂ΩF

ψuFds

+
2∑
j=1

∫
∂ωj

λj(ũ− uj)ds . (2.4)

In this functional, as in elasticity, the first four terms resemble the standard total potential
energy where in ωj the characterization of Trefftz elements in the form∫

ωj

|∇uj |2dx =
∫
∂ωj

uj
∂uj
∂n

ds for ∆uj = 0 in ωj (2.5)

has been used. The λj in the last sum in (2.4) play the rôle of Lagrangian multipliers
enforcing continuity for the solution at ∂ωj in a weak form.

The additional variable ũ is defined by the trace of the solution only on the skeleton
Υ which is presently chosen as Υ := ∂ω1 ∪ ∂ω2. In addition, we enforce the pointwise
continuity by the requirement ũ = uF on Γ0, The introduction of ũ corresponds to the
so–called mortar elements in the work by Bernardi and Maday et al. [4], [5] (see also [6]).

As usual, we consider the first variation of Π in an admissible space Uad and the
corresponding test functions (vF , ṽ; v1, v2;χ1, χ2) ∈ V with vF = ṽ on Γ0. The spaces Uad
and V need to be specified precisely later on in order to obtain a saddle–point formulation.

∂Π
∂uF

= 0 :
∫

ΩF

∇uF · ∇vFds+
2∑
j=1

∫
∂ωj∩Γ0

λjvFds =
∫

∂ΩF∩ΓN

ψvFds , (2.6)

where we have tacitly used the relation ũ|Γ0
= uF |Γ0

in (2.4);

∂Π
∂ũ

= 0 :
2∑
j=1

∫
∂ωj

λj ṽds =
∫

ΓN∩(∂ω1∪∂ω2)

ψṽds where ṽ|Γ0
= 0 since ũ|Γ0

= uF |Γ0
; (2.7)

∂Π
∂uj

= 0 :
1
2

∫
∂ωj

(
∂uj
∂n

vj +
∂vj
∂n

uj

)
ds−

∫
∂ωj

λjvjds = 0 .

Since for the Trefftz elements ∆uj = 0 and ∆vj = 0 in ωj ,
these equations take the form∫

∂ωj

{
∂uj
∂n

− λj

}
vjds = 0 ; (2.8)

∂Π
∂λj

= 0 :
∫
∂ωj

χj(ũ− uj)ds = 0 . (2.9)

The equations (2.6)–(2.9) are to be satisfied for all test functions (vF , ṽ; v1, v2;χ1, χ2) ∈ V.
They are the weak form of the Euler equations of the functional Π and define the mixed
variational formulation for the transmission problem associated with the boundary value
problem (2.1)–(2.3).



6

Before we present the rigorous justification and the details of our method, we first
enforce the following simplification: To eliminate equation (2.8) we require

λj =
∂uj
∂n

on ∂ωj (2.10)

which reduces the variational formulation to:
Find (uF , ũ;λ1, λ2) with ũ = uF on Γ0 and∫

∂ωj

λjds = 0 (2.11)

satisfying

∫
ΩF

∇uF · ∇vFdx+
2∑
j=1

∫
∂ωj

λj ṽds =
∫

∂ΩF∩ΓN

ψvFds+
2∑
j=1

∫
ΓN∩∂ωj

ψṽds (2.12)

for all vF and ṽ with ṽ = vF on Γ0,∫
∂ωj

χj(ũ− uj)ds = 0 for all χj . (2.13)

In the last equations, uj is related to λj by the solution of the local Neumann problem

∆uj = 0 in ωj and
∂uj
∂n

= λj on ∂ωj , (2.14)

which requires the necessary compatibility conditions (2.11) as normalization conditions
for the desired solution (uF , ũ;λ1, λ2) of (2.12)–(2.13).

The realization of (2.14) with (2.11) can be achieved by introducing the Poincaré–
Steklov operator, i. e. the Neumann–Dirichlet map

Uj : λj 7→ uj |∂ωj
= Ujλj with respect to ∆uj = 0 in ωj ; j = 1, 2 . (2.15)

The Poincaré–Steklov operator Uj will be expressed explicitly by the use of boundary
integral operators.

In terms of this operator Uj , the variational formulation reads:

Find (uF , ũ;λj) ∈ Uad satisfying uF |ΓD
= ϕ , ũ|Γ0

= uF |Γ0
such that the equations

(2.12)–(2.13) are fulfilled with uj = Ujλj in (2.13) for all test functions (vF , ṽ;χj) ∈ V.

For the discretization we use two levels characterized by two meshsize parameters H
and h. The parameter H is used for the global grids, i. e. for the finite element grid in
ΩF and for the grid on the skeleton Υ. The latter, h, is used for the local macro–element
boundary discretizations on ∂ω1 and on ∂ω2, respectively. It is understood, that the
boundary grids on ∂ω1 and on ∂ω2 may be chosen independently. Note that, geometrically,
on ∂ω1 ∩ ∂ω2 we then may find three different grids since ∂ω1 ∩ ∂ω2 ⊂ Υ (see Figure 2).
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Figure 2: Finite, skeleton and macro element grids

We denote the finite–dimensional space of admissible functions by (HH ,H1h,H2h).
Here HH = {vH = (vHF , ṽ

H) | vHF = ṽH on Γ0} is a chosen finite element space on ΩF

extended to the skeleton Υ according to the chosen grid. The finite–dimensional spaces
Hjh = {χhj |

∫
∂ωj

χhj ds = 0} are chosen on ∂ωj as boundary element spaces for the unknowns

λhj according to the boundary element grids. Now the Galerkin equations to (2.12), (2.13)
read:

Find (uH ;λh1 , λ
h
2) ∈ HH ×H1h ×H2h such that

aΩF
(uH , vH) +

2∑
j=1

∫
∂ωj

λhj v
Hds =

∫
∂ΩF∩ΓN

ψvHds+
2∑
j=1

∫
∂ωF∩ΓN

ψvHds (2.16)

for all vH ∈ HH ,∫
∂ωj

χhjU
h
j λ

h
j ds =

∫
∂ωj

χhj u
Hds for all χhj ∈ Hjh . (2.17)

Here aΩF
(uH , vH) :=

∫
ΩF

∇uH ·∇vHdx and Uhj is a suitable approximation of the Poincaré–

Steklov operator which will be specified in terms of boundary integral operators and
Neumann series on ∂ωj below. To describe the algorithm, let us introduce bases of the
approximating spaces: HH = span{ϕk}Nk=1 and Hjh = span{νjκ}

Lj

κ=1 , j = 1, 2. Then we
seek the solution in the form

uH =
N∑
k=1

αkϕk and λhj =
Lj∑
κ=1

βjκνjκ .

To solve (2.16), (2.17), we use two levels and solve first the second equation, i. e. (2.17)
for ~βj = (βjκ)

Lj

κ=1 in terms of ~α = (αk)Nk=1. In matrix notation this amounts to solving the
linear systems

Uj ~βj = Bj~α for ~βj where (2.18)

Uj := ((
∫
∂ωj

νj%U
h
j νjκds))

Lj

%,κ=1 and Bj := ((
∫
∂ωj

νj%ϕkds))%=1,...,Lj ;k=1,...,N . (2.19)
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Substituting the solution λhj =
∑Lj

κ=1 βjκνjκ with βjκ known into (2.16) we obtain with
the choice vH = ϕm the algebraic system

A~α+
2∑
j=1

B>j U−1
j Bj~α = f (2.20)

where A = ((
∫

ΩF

∇ϕk ·∇ϕmdx))k,m=1,...,NF
denotes the stiffness matrix of the finite elements

in ΩF and f the vector of right–hand sides given by (2.16). The matrix Uj is the so–called
flexibility matrix and B>j U−1

j Bj describes the stiffness matrix corresponding to the macro–
element ωj which is symmetric and positive semidefinit provided Uhj is symmetric. These
properties are controlled in our computational procedure as will be explained in detail
lateron. The resulting algebraic system (2.20) can be solved by using a conventional finite
element procedure.

Note that for resembling the matrix (B>j U−1
j Bj) one does not need to compute the

inverse matrix U−1
j : instead one computes (U−1

j Bj). This amounts to solve equations
(2.18) only for the few right–hand sides ~α = (δk,m)Nm=1 for those k ∈ {1, . . . , N} for which
◦

supp ϕk ∩ ∂ωj 6= ∅ (◦ stands for the interior and δk,m for the Kronecker symbol).

To conclude this section, we remark that for our model problem one may also choose the
skeleton Υ by incorporating the given boundary conditions into the local macro–elements.
In particular, one may require here λhj = ψ on ΓN ∩∂ωj and choose Υ := (∂ω1∪∂ω2)\ΓN
(see Figure 3). We will pursue this idea in following chapters.
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Figure 3: Skeleton without the exterior boundary Γ

3 The saddle point formulation for second order elliptic sys-
tems

Let Ω ⊂ IRn(n = 3 or 3) be a strong Lipschitz domain with strong Lipschitz boundary
(see [38]). We consider the second order p× p system of strongly elliptic equations

Pu :=
n∑

`,k=1

∂

∂x`

(
a`k

∂u
∂xk

)
+

n∑
`=1

b`
∂u
∂x`

+ cu = 0 in Ω . (3.1)
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The coefficients a`k, b` and c are constant, real p × p matrices. Although the general
scheme of our coupled method is applicable to systems with variable coefficients, we restrict
ourselves to the self–adjoint constant coefficient case where b` = 0 and a`k = a>`k =
ak`, c

> = c. In addition to (3.1) we require the mixed boundary conditions

Tu|ΓN
:=

n∑
`,k=1

n`a`k
∂u
∂xk

= ψ on ΓN and u|ΓD
= ϕ on ΓD . (3.2)

Here, n = (n`)n`=1 is the exterior unit normal vector on Γ = ∂Ω and the vector fields ψ
and ϕ are the given Neumann and Dirichlet boundary data on the corresponding closed

boundary parts ΓN and ΓD where ΓN = ∂Ω \
o
ΓD.

For the system (3.1) we will impose the following basic assumptions:

(A1) Strong ellipticity: There is γ0 > 0 such that

n∑
`,k=1

ζ>a`kξ`ξkζ ≥ γ0|ξ|2 |ζ|2 for all ξ ∈ IRn and ζ ∈ Cp . (3.3)

(A2) G̊arding’s inequality:

∫
Ω


n∑

`,k=1

∂v
∂x`

>
a`k

∂v
∂xk

− v>cv

 dx ≥ γ0‖v‖2
H1(Ω) − γ1‖v‖2

L2(Ω) for all v ∈ H1(Ω) . (3.4)

(A3) Definiteness:

∫
Ω


n∑

`,k=1

∂v
∂xj

>
a`k

∂v
∂xk

− v>cv

 dx ≥ 0 for all v ∈ H1(Ω) . (3.5)

In what follows, we shall still write H1(Ω) instead of (H1(Ω))p etc. .

Note that strong ellipticity (3.3) implies G̊arding’s inequality only on the subspace
H1
∂Ω(Ω) := {v ∈ H1 |v|∂Ω

= 0}
•
⊂H1(Ω) [38, Theorem 7.3], whereas G̊arding’s inequality

(3.4) on the whole space H1(Ω) can only be guaranteed under additional assumptions such
as formally positive ellipticity [38, Theorem 7.6].

Note that for any u ∈ H1(Ω) with Pu ∈ L2(Ω), the conormal derivative Tu|∂Ω
∈

H− 1
2 (∂Ω) is well defined in the weak sense via the first Green’s formula

〈Tu,v〉∂Ω :=
∫
Ω


n∑

`,k=1

∂u>

∂x`
a`k

∂v
∂xk

− u>cv + (Pu)>v

 dx (3.6)

for all v ∈ H1(Ω) and v|∂Ω
∈ H

1
2 (∂Ω) due to the trace theorem.

We further assume negative semidefiniteness for the matrix coefficient c ≤ 0; then the
definiteness (3.5) is an obvious consequence of (3.3).

As in the introductory example, we decompose the given domain Ω into the subsets
ΩF and ΩB with Ω = ΩF ∪ ΩB ∪ Γ0 where Γ0 = ∂ΩF ∩ ∂ΩB is the global coupling
boundary. The subset ΩF will describe the finite element geometry while ΩB will denote
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the macro–element part. In ΩF , we are given some triangulation {τ`}N`=1 with ΩF =
N⋃
`=1

τ`

where τ` denotes the individual finite element subdomains (which may be of rather general
shape). The solution restricted to the finite element part will be denoted by uF := u|ΩF

.
The macro–element part ΩB consists of M individual macro–element domains ωj with

ΩB =
M⋃
j=1

ωj and piecewise smooth, strong Lipschitz boundaries ∂ωj . Correspondingly, we

denote the restriction of the solution to the macro–elements by uj := u|ωj
.

Similar to the fundamental concept of FEM– and BEM–analysis, the coupling proce-
dure is based on the weak formulation of a corresponding transmission problem in weak
formulation. For this purpose we shall use the Sobolev space H1(Ω) and introduce further
appropriate function spaces. The energy test space corresponding to ΩF will be denoted
by

H1
D(ΩF ) := {vF ∈ H1(ΩF ) |vF |∂ΩF∩ΓD

= 0} . (3.7)

Throughout the paper we assume the property ∂ΩF∩
◦
ΓD 6= ∅. Then, under assumptions

(A1)–(A3), the bilinear form

aF (u,v) :=
∫
Ω


n∑

`,k=1

∂u>

∂x`
a`k

∂v>

∂xk
− u>cv

 dx (3.8)

is H1
D(ΩF )–elliptic; i. e. there exists a constant α0 > 0 such that

aF (v,v) ≥ α0‖v‖2
H1(ΩF ) for all v ∈ H1

D(ΩF ) . (3.9)

The trace spaces of the macro–element spaces H1(ωj) are denoted by H
1
2 (∂ωj) and

their dual spaces by H− 1
2 (∂ωj). The corresponding duality pairing will be written as

〈χ,v〉j :=
∫
∂ωj

χ · vds for j = 1, . . . ,M , (3.10)

where χ · v is the IRn–scalar product. We will also need the subspaces

H
− 1

2
0 (∂ωj) := {χ ∈ H− 1

2 (∂ωj) | 〈χ, rj〉j = 0 for all rj ∈ <j}

where
<j := {rj ∈ H1(ωj) | Prj = 0 ∧ Tjrj = 0 on ∂ωj} (3.11)

denotes the solution space of the homogeneous local Neumann problem in ωj and Tj
denotes the conormal derivative on ∂ωj .

The basis assumptions (A1)–(A3) then also imply on every ωj the coerciveness in-
equality

aωj (vj ,vj) ≥ α0j‖vj‖2
H1(ωj)/<j

(3.12)

with the individual constants α0j > 0 where the H1(ωj)/<j–norm denotes the norm in
the quotient space:

‖vj‖H1(ωj)/<j
= inf

rj∈<j

‖vj + rj‖H1(ωj) .

In addition, we define the geometric skeleton Υ of the macro–elements. In the introductory

example, we chose Υ =
M⋃
j=1

∂ωj . In general, one may choose Υ as a connected, closed part
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of
M⋃
j=1

∂ωj satisfying
M⋃
j=1

∂ωj \ ∂Ω ⊆ Υ ⊆
M⋃
j=1

∂ωj . On this skeleton Υ we introduce the

mortar functions

ũ ∈ H
1
2 (Υ) := {w̃ = w|Υ |w ∈ H1(Ω) and ‖w̃‖

H
1
2 (Υ)

:= inf ‖w‖H1(Ω)} (3.13)

and the product space of pairs of restrictions

H := {(wF , w̃) ∈ H1(ΩF )×H
1
2 (Υ) | w̃|Υ = wF |Υ} (3.14)

equipped with the norm

‖(wF , w̃)‖H := inf{‖w‖H1(Ω) |w ∈ H1(Ω) , w|ΩF
= wF and w|Υ = w̃} .

The test function space associated with Υ, will be denoted by

HD := {(vF , ṽ) ∈ H |vF ∈ H1
D(ΩF ) and ṽ|ΓD∩Υ = 0} . (3.15)

In addition to the spaces H
1
2 (∂ωj) and H− 1

2 (∂ωj) we shall also need the subspaces

H̃
1
2 (∂ωjN ) := {v ∈ H

1
2 (∂ωj) | supp(v) ⊂ ∂ωjN}

equipped with the H
1
2 (∂ωj)–norm where ∂ωj = ∂ωjD ∪ ∂ωjN with closed boundary parts

∂ωjD and ∂ωjN = ∂ωj \ ∂
◦
ωjD to be specified when needed, and

H̃− 1
2 (∂ωjD) := {χ ∈ H− 1

2 (∂ωj) | supp(χ) ⊂ ∂ωjD}

equipped with the norm of H− 1
2 (∂ωj). Functions in these subspaces will also be considered

as functions on all of ∂ωj .

The variational saddle point formulation now reads:

Find (uF , ũ;uj ;λj) ∈ Uad such that

aΩF
(uF ,vF ) +

M∑
j=1

∫
∂ωj∩Υ

λj · ṽds =
∫

∂ΩF∩ΓN\Υ

ψ · vFds+
∫

ΓN∩Υ

ψ · ṽds (3.16)

and the weak coupling conditions∫
∂ωj∩Υ

χj · (ũ− uj)ds = 0 , (3.17)

∫
∂ωj∩Υ

(Tjuj − λj) · vjds = 0 (3.18)

are satisfied for all test functions (vF , ṽ;vj ;χj) ∈ V. The admissible functions Uad are
given by

(uF , ũ) ∈ H with uF = ϕ on ∂ΩF ∩ ΓD and ũ = ϕ on Υ ∩ ΓD ; (3.19)

uj ∈ H1(ωj) satisfying Puj = 0 in ωj
with uj = ϕ on ∂ωj ∩ ΓD \Υ and Tjuj = ψ on ∂ωj ∩ ΓN \Υ ;

}
(3.20)

λj ∈ H− 1
2 (∂ωj ∩Υ) with the additional constraint that

λ∗j :=

{
λj on ∂ωj ∩Υ and
ψ on ∂ωj ∩ ΓN \Υ

}
belongs toH− 1

2 (∂ωj \ (ΓD \Υ)) .

 (3.21)
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The test functions (vF , ṽ;vj ;χj) ∈ V are defined by (vF , ṽ) ∈ HD and

vj in H1(ωj) subject to the constraints

Pvj = 0 in ωj , vj = 0 on ∂ωj ∩ ΓD \Υ and Tvj = 0 on ∂ωj ∩ ΓN \Υ ;

}
(3.22)

and χj ∈ Ĥ
− 1

2
0 (∂ωj ∩Υ)

:= {χ ∈ H− 1
2

0 (∂ωj) there exists χ∗ ∈ H̃− 1
2

0

(
∂ωj \ (ΓN \Υ)

)
with χ = χ∗ on ∂ωj ∩Υ}

(3.23)
equipped with the norm

‖χ‖
Ĥ
− 1

2
0

:= inf
χ∗
‖χ∗‖

H
− 1

2
0 (∂ωj)

. (3.24)

In equation (3.14) we have cancelled the common term
∑M
j=1

∫
∂ωj∩Γ\Υ

ψ · ṽ∗ds on both

sides of (3.16), where ṽ∗ ∈ H̃
1
2

(
∂ωj \ (ΓD \Υ)

)
⊂ H

1
2 (∂ωj) is any extension of ṽ.

In the following, in order to take into account the constraints (3.19)–(3.21) for Uad and
to satisfy (3.18) identically, we first identify

λj = Tjuj and χj = Tjvj on ∂ωj ∩Υ . (3.25)

Next, we shall reduce the corresponding local boundary value problems for uj and vj in
ωj to boundary integral equations. This will simplify the variational formulation (3.16)–
(3.18) from the four unknowns (uF , ũ;uj ;λj) to the three unknowns either (uF , ũ;λj)
or to (uF , ũ;uj). For this purpose we need to introduce the local Neumann–Dirichlet
mappings, i. e. the Poincaré–Steklov operators Uj — or the local Dirichlet–Neumann
mappings , i. e. the Steklov–Poincaré operators Sj .

4 The variational formulation based on the local Neumann
data

In this section we first introduce the abstract local Poincaré–Steklov operator

Ûj : H
1
2 (∂ωjD)×H− 1

2 (∂ωjN ) 3 (ϕ,λ∗j ) 7→ uj|∂ωj
∈ H

1
2 (∂ωj)

by solving the local mixed boundary value problem

Puj = 0 in ωj , uj = ϕ on ∂ωjD := ∂ωj ∩ ΓD \
◦
Υ , Tjuj = λ∗j on ∂ωjN := ∂ωj \ ∂

◦
ωjD
(4.1)

in H1(ωj). The configuration of ∂ωj is described in Figure 4 below.
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Figure 4: Macro element with ∂ωD := ∂ω ∩ ΓD \Υ

Then the variational formulation (3.16)–(3.18) reads:

Find

(uF , ũ;λj) ∈ H ×
M∏
j=1

H− 1
2 (Υ ∩ ∂ωj) with uF = ϕ on ΓD ∩ ∂ΩF and ũ = ϕ on ΓD ∩Υ

such that the global equations

aΩF
(uF ,vF ) +

M∑
j=1

∫
∂ωj∩Υ

λj · ṽds =
∫

∂ΩF∩ΓN\Υ

ψ · vFds+
∫

ΓN∩Υ

ψ · ṽds (4.2)

and the weak coupling conditions∫
∂ωj∩Υ

χj ·
(
ũ− Ûj(ϕ,λ∗j )

)
ds = 0 (4.3)

are satisfied for all test functions (vF , ṽ) ∈ HD and χj ∈ Ĥ
− 1

2
0 (∂ωj ∩Υ).

We recall here that λ∗j is defined by λ∗j = ψ on ∂ωj ∩ ΓN \Υ and λ∗j = λj on ∂ωj ∩Υ.
Moreover, the trial functions λj and ũ have to satisfy pointwise continuity requirements
at the end points of the skeleton in a weak sense, namely, λ∗j ∈ H− 1

2 (∂ωj ∩ (ΓN ∪Υ)) and

ũ∗j ∈ H
1
2 (∂ωj) where ũ∗j is defined by ũ∗j = ũ on ∂ωj ∩Υ and ũ∗j = uj on ∂ωj \Υ, where

uj = Ûj(ϕ,λ∗j ).

In the special case ∂ωj ∩ ΓD = ∅ we set Ûj(ϕ,λ∗j ) := Uj(λ∗j ). Since then the solution
of (4.1) is only unique modulo <j , i. e.

uj = Uj(λ∗j ) + r∗j on ∂ωj with some r∗j ∈ <j , (4.4)

we require the compatibility conditions∫
∂ωj∩Υ

rj ·
(
ũ− Uj(λ∗j )− r∗j

)
ds = 0 for all rj ∈ <j (4.5)

determining r∗j uniquely.

We now state the main theorem concerning the ellipticity property of the mixed vari-
ational form (4.2) which will be needed for existence, uniqueness as well as the stability
and convergence analysis of the numerical scheme.
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Theorem 1 The bilinear form defined by (4.2) and (4.3) is continuous and

HD ×
∏M
j=1 Ĥ

− 1
2

0 (∂ωj ∩Υ)–elliptic, i. e. there exists α0 > 0 such that

aΩF
(vF ,vF ) +

M∑
j=1

∫
∂ωj∩Υ

χj · ṽds ≥ α0

‖vF ‖2
H1(ΩF ) +

M∑
j=1

‖χj‖2

Ĥ
− 1

2
0 (∂ωj∩Υ)

 (4.6)

provided ∫
∂ωj∩Υ

χj ·
(
ṽ − Ûj(0,χj)

)
ds = 0 . (4.7)

Since the proof of this theorem depends on the solution of local problems in every
macro–element ωj we will postpone the proof to the end of this section.

4.1 Local problems based on local Neumann data

For ease of reading we suppress the index j when dealing with the local problem in ωj in
this section.

4.1.1 The local Neumann problem

We begin with the local problem (4.1) for the case ∂
◦
ωD = ∅. As is well known, the local

Neumann problem is to find u ∈ H1(ω) as the solution of

Pu = 0 in ω , Tu = ψ on ∂ω (4.8)

where the given datum ψ ∈ H− 1
2

0 (∂ω) satisfies the compatibility conditions (viz. (3.10))

〈ψ, r〉 = 0 for all r ∈ <(∂ω) . (4.9)

For uniqueness we require also the solution to satisfy

〈u, r〉 = 0 for all r ∈ <(∂ω) . (4.10)

Clearly, the solution of the Neumann problem (4.8)–(4.10) is well defined and unique due
to our assumptions (A1)–(A3). Hence, the Poincaré–Steklov mapping

U : H
− 1

2
0 (∂ω) → H

1
2
0 (∂ω) with ψ 7→ Uψ := u|∂ω

(4.11)

is well defined where H
1
2
0 (∂ω) = {u ∈ H

1
2 (∂ω) | 〈u ·r〉∂ω = 0 for all r ∈ <(∂ω)}. Moreover,

assumptions (A1)–(A3) imply the H
− 1

2
0 (∂ω)–ellipticity of U , i. e. there exists α0 > 0

such that
aω(u,u) = 〈ψ, Uψ〉∂ω ≥ α0‖ψ‖2

H− 1
2 (∂ω)

for all ψ ∈ H− 1
2

0 . (4.12)

Our aim here is to employ the boundary integral equation method for computing the
solutions of the local problems. To this end, let E(x, y) be the fundamental solution for
the operator P in IRn which exists due to (A1), (A2) (see e. g. [31], [37]). Then the
solution u admits the representation

u(x) =
∫
∂ω

E(x, y)ψ(y)dsy −
∫
∂ω

(
Ty[E(x, y)]

)>
u(y)dsy for all x ∈ ω . (4.13)
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The boundary integral equation of the second kind

By using in (4.13) the standard jump relations from potential theory for x → ∂ω we
arrive at the boundary integral equation of the second kind

(1
2I +K)u = V ψ on ∂ω . (4.14)

In this equation, V and K are, respectively, the boundary integral operators of single and
double layer potentials on the boundary ∂ω, defined by

V λ(x) :=
∫
∂ω

E(x, y)λ(y)dsy and (4.15)

Kv(x) := p.v.
∫
∂ω

(
TyE(x, y)

)>
v(y)dsy for x ∈ ∂ω (4.16)

where p.v. stands for the Cauchy principal value integral.

Mapping properties of V and K

The following mapping properties can be established for V and K (see [15], [27]):

V : H− 1
2 (∂ω) → H

1
2 (∂ω) is continuous and isH

− 1
2

0 (∂ω)–elliptic, i. e. (4.17)

〈λ, V λ〉 ≥ α0‖λ‖2

H
− 1

2
0 (∂ω)

holds for all λ ∈ H− 1
2

0 (∂ω) . (4.18)

The singular integral operator K : H
1
2 (∂ω) → H

1
2 (∂ω) is continuous (4.19)

(see[13], [14], [15], [27]).

The solvability of (4.14)

The inverse (1
2I + K)−

1
2 exists only on the range (1

2I + K)H
1
2 (∂ω) since < is the

nullspace of (1
2I + K). Moreover, the solution of (4.14) exists for ψ satisfying (4.9) and

V ψ is in the range of (1
2I +K) which is characterized by

range (1
2I +K) =

{
ϕ ∈ H

1
2 (∂ω) | 〈ϕ, r ′〉 = 0 for all r ′ ∈ < ′

}
(4.20)

where < ′ is the finite–dimensional nullspace of (1
2I + K ′) in H− 1

2 (∂ω). The solution of
(4.14) is unique only up to <. Since the range (4.20), in general, does not coincide with

H
1
2
0 (∂ω), and in order to express the Poincaré–Steklov mapping explicitly in terms of the

operator (1
2I +K)−1, we need to modify the equation (4.14) so that (4.11) holds. For this

purpose we need to introduce the projection operator P< : H
1
2 (∂ω) → H

1
2
0 (∂ω) defined

by
〈(P<v), r〉 = 0 for all r ∈ < . (4.21)

Then, instead of (4.14), we solve

u− P<(1
2I −K)u = P<V ψ (4.22)

for u ∈ H
1
2
0 (∂ω) and obtain

u = Uψ = {I − P<(1
2I −K)}−1P<V ψ , (4.23)
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where U is the Poincaré–Steklov operator (4.11).

The numerical solution of (4.14) or (4.22) and the corresponding approximation of U
can be achieved by any appropriate boundary element method.

The Neumann series for (4.22)

From the practical point of view we want to compute the solution u in (4.23) by using
a Neumann series for {I−P<(1

2I−K)}−1. For this purpose we require the following addi-
tional assumption for this particular method for treating the boundary integral equation
(4.14).

(B1) The spectral radius of (1
2I −K) on H

1
2 (∂ω)/< is smaller than 1 . (4.24)

This implies that the spectral radius of P<(1
2I −K) on H

1
2
0 (∂ω) is also smaller than 1.

It is known that Condition (B1) is satisfied in the case of classical potential theory for
the Laplacian as well as in elasticity for smooth ∂ω and for rather large classes of piecewise
smooth boundaries (see [33], [35, pp. 362–364],[36, Chap. II], [39, Chap.1, Section 7], [58],
[60]); for elasticity problems see in particular [34]. Under the condition (B1), the operator
U can be expressed in terms of the series

U =
∞∑
`=0

(
P<(1

2I −K)
)`
P<V (4.25)

which converges in the associated operator norm. In Section 8, the computational results
in elasticity are based on (4.25).

The hypersingular integral equation

Alternatively, from the representation formula (4.13), applying Tx at ∂ω to (4.13),
yields the hypersingular equation

Du = (1
2I −K ′)ψ on ∂ω (4.26)

for u ∈ H
1
2
0 (∂ω) where D and K ′ are, respectively, the hypersingular operator and the

adjoint operator to K, defined by

Dv(x) := −Tx

p.v.
∫
∂ω

(
Ty[E(x, y)]

)>
v(y)dsy

 and (4.27)

K ′ λ(x) := p.v.
∫
∂ω

(
Tx[E(x, y)]

)
λ(y)dsy for x ∈ ∂ω . (4.28)

Mapping properties of D and K ′

Similar to V and K, the mapping properties for D and K ′ are available.

D : H
1
2 (∂ω) → H

− 1
2

0 (∂ω) is continuous and H
1
2
0 (∂ω)–elliptic, i. e. there exists α0 > 0

such that
〈Dv,v〉 ≥ α0‖v‖2

H
1
2 (∂ω)

for all v ∈ H
1
2
0 (∂ω) . (4.29)
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The singular integral operator K ′ : H− 1
2 (∂ω) → H− 1

2 (∂ω) is continuous. Moreover,

〈Kv,λ〉 = 〈v,K ′ λ〉 for all v ∈ H
1
2 (∂ω) and λ ∈ H− 1

2 (∂ω) ,

(see [13], [14], [15], [27]).

Solvability of (4.26)

If ψ satisfies (4.9), i. e. ψ ∈ H− 1
2

0 (∂ω), then equation (4.26) admits a unique solution

u ∈ H
1
2
0 (∂ω) characterized by the variational equation

〈v, Du〉 = 〈v, (1
2I −K ′)ψ〉 for all v ∈ H

1
2
0 (∂ω) . (4.30)

Let P< ′ be the adjoint orthogonal mapping of H− 1
2 (∂ω) onto H

− 1
2

0 (∂ω) with respect to the
duality pairing 〈•, •〉∂ω. Then it is easily to be seen that P< ′ = P< onH

1
2 (∂ω) ⊂ H− 1

2 (∂ω).
Hence, P< ′ is the continuous extension of P< to H− 1

2 (∂ω) and is selfadjoint, in view of
which we shall write P< = P<

′ in what follows.

With D0 := P<DP< then (4.30) implies

U = D−1
0 (1

2I −K ′)P< . (4.31)

The symmetric formulation of U

Based on (4.22) together with (4.31), one may also represent U in the symmetric form

U = P<(1
2I −K)D−1

0 (1
2I −K ′)P< + V0 (4.32)

where V0 := P<V P<.

For the numerical approximation of U , one may apply some appropriate boundary
element method to any of the above representations and corresponding boundary integral
equations such as (4.22), (4.25), (4.30), (4.22) and (4.31).

With u determined on ∂ω one may now use the representation formula (4.13) to find
u(x) in ω.

Next we consider the case ∂
◦
ωD 6= ∅.

4.1.2 The local mixed boundary value problem

In the case ∂
◦
ωD 6= ∅, we have to solve (4.1), i. e.

Pu = 0 in ω with u = ϕ on ∂ωD , Tu = ψ on ∂ωN = ∂ω \ ∂ ◦ωD (4.33)

which defines the operator Û(ϕ,ψ) := u|∂ω
.

Here, ∂ωD = ∂ω ∩ ΓD \
◦
Υ is the Dirichlet part of the boundary with ∂

◦
ωD 6= ∅. In

order to reduce the boundary value problem (4.33) to boundary integral equations we first
extend the given data as follows:

ϕ∗ ∈ H
1
2 (∂ω) is chosen with ϕ∗ = ϕ on ∂ωD and

ψ∗ ∈ H
− 1

2
0 (∂ω) is chosen with ψ∗ = ψ on ∂ωN = ∂ω \ ∂ ◦ωD .

(4.34)
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The missing Cauchy data can be rewritten in the form

Tu = ψ∗ + λ0 with λ0 ∈ H̃
− 1

2
0 (∂ωD) on ∂ωD ,

u = ϕ∗ + u0 with u0 ∈ H̃
1
2 (∂ωN ) on ∂ωN .

(4.35)

Here both λ0 ∈ H̃
− 1

2
0 (∂ωD) and u0 ∈ H̃

1
2 (∂ωN ) still need to be determined.

Reduction to the Poincaré–Steklov operator

With the help of the Poincaré–Steklov operator U of the pure Neumann problem given
by (4.11), (4.23), (4.31) or (4.32) we have

u = UTu + r∗ on ∂ω with some r∗ ∈ < . (4.36)

By using (4.11) we have the equation for λ0 ∈ H̃
− 1

2
0 (∂ωD),

Uλ0 = −Uψ∗ − r∗ + ϕ∗ + u0 on ∂ω . (4.37)

In weak form, (4.37) with test functions χ ∈ H̃− 1
2

0 (∂ωD) implies that λ0 can be found from
the variational equation

〈χ, Uλ0〉 =
∫

∂ωD

χ · Uλ0ds = 〈χ,ϕ∗ − Uψ∗〉 for all χ ∈ H̃− 1
2

0 (∂ωD) . (4.38)

Since H̃
− 1

2
0 (∂ωD) is defined as to be a closed subspace of H

− 1
2

0 (∂ω) and because of the

H
− 1

2
0 (∂ω)–ellipticity (4.12), there exists a unique solution λ0 ∈ H̃

− 1
2

0 (∂ωD) of (4.38) due
to the Lax–Milgram theorem. Once λ0 is known, r∗ ∈ < can be found from the equations∫

∂ωD

r · r∗ds =
∫

∂ωD

r ·
(
ϕ− U(ψ∗ + λ0)

)
ds for all r ∈ < . (4.39)

This determines completely

u = U(ψ∗ + λ0) + r∗ = ϕ∗ + u0 on ∂ω .

We remark that in practice, for the solution of (4.38), again the Neumann series (4.25)
can be used for utilizing U .

With λ0 and u0 available, the solution u(x) in ω can be determined by Green’s repre-
sentation formula

u(x) =
∫
∂ω

E(x, y)ψ∗(y)dsy −
∫
∂ω

(
Ty[E(x, y)]

)>
ϕ∗(y)dsy (4.40)

+
∫

∂ωD

E(x, y)λ0(y)dsy −
∫

∂ωN

(
Ty[E(x, y)]

)>
u0(y)dsy for all x ∈ ω .

Reduction to an unsymmetric system of boundary integral equations

Alternatively, one may reduce the mixed boundary value problem to a system of bound-

ary integral equations for λ0 ∈ H̃
− 1

2
0 (∂ωD) and u0 ∈ H̃

1
2 (∂ωN ). More precisely, from the
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representation formula (4.40) and the jump relation for the double layer potential, as
x→ ∂ω, we obtain the system

(1
2I +K)u0 − V λ0 = V ψ∗ − (

1
2
I +K)ϕ∗ for x ∈ ∂ωN ,

−Ku0 + V λ0 = (
1
2
I +K)ϕ∗ − V ψ∗ for x ∈ ∂ωD

(4.41)

where we have tacitly taken into account u0 = 0 on ∂ωD and λ0 = 0 on ∂ωN .

Clearly, this system (4.41) has a solution since our assumptions guarantee that the
mixed boundary value problem (4.18) has a unique solution.

If we assume that the corresponding exterior mixed boundary value problem has at
most one solution uc in H1

loc(ω
c) , ωc = IRn \ω, with aωc(uc,uc) <∞ then the uniqueness

of the solution u0,λ0 to the system (4.41) can be established by using the arguments
of classical potential theory. We note that in the special cases of the Laplacian and of
elasticity, (4.41) is uniquely solvable (see e. g. [22], [30], [35]).

Reduction to a ’symmetric’ system of boundary integral equations

Instead of the first equation in (4.41), one may also consider a boundary integral
equation defined with the hypersingular boundary integral operator and solve the system

Du0 +K ′ λ0 = (1
2I −K ′)ψ∗ −Dϕ∗ on ∂ωN ,

−Ku0 + V λ0 = (1
2I +K)ϕ∗ − V ψ∗ on ∂ωD .

(4.42)

This system (4.42) is uniquely solvable due to the Lax–Milgram theorem since both D

and V are H
1
2
0 (∂ω)–elliptic and H

− 1
2

0 (∂ω)–elliptic, respectively, which implies, with some
constant α0 > 0,

〈u0, Du0 +K ′ λ0〉+ 〈λ0,−Ku0 + V λ0〉 ≥ α0

{
‖u0‖2

H
1
2 (∂ω)/<

+ ‖λ0‖2

H̃
− 1

2
0 (∂ωD)

}
(4.43)

for all u0 ∈ H̃
1
2 (∂ωN ) and λ0 ∈ H̃

− 1
2

0 (∂ωD) where H
1
2 (∂ω)/< denotes the quotient space.

(For the Laplacian and the elasticity equations see e. g. [59], [26]. For the second
order systems see [27], [36].)

With the solutions of the local problems available, we now are able to define the
operator Û associated with ∂ω = ∂ωD ∪ ∂ωN which maps (ϕ,ψ) into the trace via

Û(ϕ,ψ) := u|∂ω = ϕ∗ + u0 . (4.44)

In the special case ∂ω = ∂ωN we recover U = Û and for ∂ω = ∂ωD we define Û := I.

4.2 Proof of Theorem 1

It is understood that we apply the solution procedures in ω to each macro–element ωj
individually; and corresponding operators will be appended with the index j when neces-
sary.

In Theorem 1, (4.7), Ûj corresponds to ∂ωjD = ∂ωj ∩ ΓD \Υ and ∂ωjN = ∂ωj \ ∂
◦
ωjD

and the weak coupling condition (4.7) implies∫
∂ωj∩Υ

χj · ṽds =
∫

∂ωj∩Υ

χj · Ûj(0,χj)ds .
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Since the local test function vj = Ûj(0,χj) + r∗j satisfies the boundary conditions

Tjvj = χj ∈ Ĥ
− 1

2
0 (∂ωj ∩Υ) on ∂ωj ∩Υ and therefore Tjvj = 0 on ∂ωN \Υ

whereas
vj = Ûj(0,χj) + r∗j on ∂ωj and Ûj(0,χj) = 0 on ∂ωjD ;

then Green’s theorem implies that

aωj (vj ,vj) =
∫
∂ωj

(Tjvj) · vjds =
∫
∂ωj

(Tjvj) · Ûj(0,χj)ds =
∫
∂ωj

χj · Ûj(0,χj)ds

=
∫

∂ωj∩Υ

χj · Ûj(0,χj)ds =
∫

∂ωj∩Υ

χj · ṽds .

Now, by the continuity properties of Tj it follows that

‖χj‖
Ĥ
− 1

2
0 (∂ωj∩Υ)

= ‖Tj [vj + rj ]‖
Ĥ
− 1

2
0 (∂ωj∩Υ)

≤ ‖Tj [vj + rj ]‖
H
− 1

2
0 (∂ωj)

≤ cj‖vj + rj‖H1(ωj)

for all rj ∈ <j . This implies

‖χj‖2

Ĥ
− 1

2
0 (∂ωj∩Υ)

≤ c2j‖vj‖2
H1(ωj)/<j

≤
c2j
α0j

aωj (vj ,vj) ,

where the last inequality follows from (3.12). Collecting terms, we get the proposed
inequality (4.6),

aΩF
(vF ,vF ) +

M∑
j=1

∫
∂ωj∩Υ

χjṽds = aΩF
(vF ,vF ) +

M∑
j=1

aωj (vj ,vj)

≥ α0

‖vF ‖2
H1(ΩF ) +

M∑
j=1

‖χj‖2

Ĥ
− 1

2
0 (∂ωj∩Υ)


where we made use of vF = 0 on ∂ΩF ∩ ΓD and ũ = 0 on ΓD ∩Υ. ut

5 The variational formulation based on the local Dirichlet
data

In the conventional coupling formulation, the Neumann data λj are eliminated by using
the Steklov–Poincaré operator

Ŝj : H
1
2 (∂ωjD)×H− 1

2 (∂ωjN ) 3 (u∗j ,ψ) 7→ λ = Tju ∈ H− 1
2 (∂ωj) . (5.1)

This amounts to solving the local mixed boundary value problem

Puj = 0 in ωj , Tjuj = ψ on ∂ωjN := ∂ωj ∩ΓN \
◦
Υ and uj = u∗j on ∂ωjD := ∂ωj \∂

◦
ωjN
(5.2)

in H1(ωj). Here u∗j satisfies the constraint u∗j = ϕ on ∂ωjD\Υ. We notice that, in contrast
to (4.1), here the definition of ∂ωjN is inferred in terms of the given Neumann datum on

∂ωj ∩ ΓN \
◦
Υ and ∂ωjD is the complement.
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If ∂ωj = ∂ωjD then Ŝj = Sj defines the standard Dirichlet–Neumann mapping

Sj : uj 7→ Tjuj on ∂ωj (5.3)

and Uj is the right–inverse to Sj :

SjUj = Ij on H
− 1

2
0 (∂ωj) and UjSjϕj = ϕj + rj with rj ∈ <j for all ϕj ∈ H

1
2 (∂ωj) .

(5.4)

q
q
q

�

�
ϕ

�

�
ψ �

�∂ωN�
�∂ω ∩ ΓD\Υ

Υω

Figure 5: Macro element with ∂ωN := ∂ω ∩ ΓN \Υ

In terms of Ŝj , the variational formulation (3.16)–(3.18) can be reduced to the following
problem:

Find (uF , ũ;uj) ∈ H×
M∏
j=1

H
1
2 (∂ωj) satisfying the inhomogeneous boundary conditions

uF = ϕ on ΓD ∩ ∂ΩF and ũ = ϕ on ΓD ∩Υ and uj = ϕ on ∂ωj ∩ (ΓD \Υ)

such that

aΩF
(uF ,vF ) +

M∑
j=1

∫
∂ωj∩Υ

Ŝj(uj ,0) · ṽds

=
∫

ΓN∩∂ΩF \Υ

ψ · vFds+
∫

ΓN∩Υ

ψ · ṽds−
M∑
j=1

∫
∂ωj∩Υ

Ŝj(0,ψ∗j ) · ṽds
(5.5)

for all (vF , ṽ) ∈ HD and, for j = 1, . . . ,M :∫
∂ωj∩Υ

(uj − ũ) · Ŝj(vj ,0)ds = 0 for all vj ∈ Ĥ
1
2 (∂ωj ∩Υ) . (5.6)

Here we define the space

Ĥ
1
2 (∂ωj ∩Υ) := {vj | there exists v∗j ∈ H̃

1
2 (∂ωj \ (ΓD \Υ)) with vj = v∗j on ∂ωj ∩Υ}

(5.7)
equipped with the norm

‖vj‖
Ĥ

1
2 (∂ωj∩Υ)

:=


infv∗j ‖v

∗
j‖H 1

2 (∂ωj)
if ∂

◦
ωj ∩ ΓD \Υ 6= ∅ ,

‖vj‖
H

1
2 (∂ωj)/<j

if ∂
◦
ωj ∩ ΓD \Υ = ∅ .

(5.8)

In the formulation of (5.5), (5.6), the solution of the local macro–element problems is
hidden in the action of the operators Ŝj .
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Similar to Theorem 1 we now have

Theorem 2 The bilinear form defined by (5.5) and (5.6) is continuous and
HD ×

∏M
j=1 Ĥ

1
2 (∂ωj ∩Υ)–elliptic, i. e. there exists a constant α0 > 0 such that

aΩF
(vF ,vF ) +

M∑
j=1

∫
∂ωj∩Υ

Ŝj(vj ,0) · ṽds ≥ α0

‖vF ‖2
H1(ΩF ) +

M∑
j=1

‖vj‖2

Ĥ
1
2 (∂ωj∩Υ)

 (5.9)

provided ∫
∂ωj∩Υ

(vj − ṽ) · Ŝj(vj ,0)ds = 0 . (5.10)

The proof will be presented at the end of this section.

5.1 Local problems based on local Dirichlet data

Again, we first collect the results concerning the local problems in ωj and, for ease of
reading, suppress the subindex j.

5.1.1 The local Dirichlet problem

In this case, under assumptions (A1)–(A3), the Dirichlet problem defined by

Pu = 0 in ω with u = ϕ ∈ H
1
2 (∂ω) on ∂ω (5.11)

admits exactly one solution u ∈ H1(ω) and the Steklov–Poincaré operator S : H
1
2 (∂ω) →

H
− 1

2
0 (∂ω) is given by

Su := Tu on ∂ω

which is H
1
2
0 (∂ω)–elliptic since

aω(u,u) = 〈Su,u〉 ≥ α0‖u‖2

H
1
2 (∂ω)

for all u ∈ H
1
2
0 (∂ω) (5.12)

with some α0 > 0. With this definition it is clear that the Poincaré–Steklov operator U
in (4.12) is the right–inverse of S, i. e. we have (5.4).

To construct S, we may choose one of the following different possibilities:

The boundary integral equation of the second kind

If we use u = ϕ on ∂ω in (4.26) then we obtain the boundary integral equation of the
second kind

(1
2I −K ′)λ = Dϕ on ∂ω (5.13)

for λ ∈ H− 1
2

0 (∂ω) which can also be written in the form

λ− P<(1
2I +K ′)P<λ = Dϕ . (5.14)

The direct solution of (5.12) provides us with the Steklov–Poincaré operator S via

Sϕ = λ = {I − P<(1
2I +K ′)}−1Dϕ . (5.15)
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The Neumann series for (5.18)

Corresponding to (B1), for solving (5.15) with the Neumann series, we require here:

(B2) The spectral radius of (1
2I +K ′) on H

− 1
2

0 (∂ω) is smaller than 1 . (5.16)

In all cases when (B1) is available, one also has (B2) (see [33], [34], [35, pp. 362–
364],[36, Chap. II], [39, Chap.1, Section 7], [58], [60]).

Under the condition (B2), the operator S can be expressed in terms of the Neumann
series

S =
∞∑
`=0

(
P<(1

2I +K ′)
)`
D (5.17)

which converges in the associated operator norm. Note that, in contrast to (4.25), we have
here P<D = D.

The boundary integral equation of the first kind

One may solve the boundary integral equation of the first kind,

V λ = (1
2I +K)ϕ on ∂ω (5.18)

(cf. (4.12)) for λ ∈ H
− 1

2
0 (∂ω) by inverting V on the subspace H

− 1
2

0 (∂ω) since V is

H
− 1

2
0 (∂ω)–elliptic (4.18). In variational form this amounts to determine λ ∈ H

− 1
2

0 (∂ω)
from

〈χ, V λ〉 = 〈χ, (1
2I +K)ϕ〉 for all χ ∈ H− 1

2
0 (∂ω) . (5.19)

In terms of boundary integral operators we may express S explicitly via

S = V −1
0 P<(1

2I +K) (5.20)

where P< is the projection defined by (4.21) and V0 = P<V P<.

The symmetric representation of S

Alternatively, one may define S in terms of the hypersingular operator D (4.27) by
using (4.22) together with (4.26) in a symmetric form, i. e.

S =
(
(1
2I +K ′)P<)V −1

0

(
P<(1

2I +K)
)

+D . (5.21)

All the above constructions can numerically be executed by solving corresponding bound-
ary integral equations, in particular via Galerkin methods.

5.1.2 The local mixed boundary value problem

Since in Section 4.1.2 we already presented the details for mixed boundary value problems,
we here collect only some relevant formulations in the connection with construction of

Ŝ(ϕ,ψ) = Tu on ∂ω = ∂ωD ∪ ∂ωN .

Here, in contrast to (4.1), we have from (5.2) ∂ωN = ∂ω ∩ ΓN \
◦
Υ and ∂ωD = ∂ω \ ∂ ◦ωN

and ∂
◦
ωN 6= ∅. As in (4.34) and (4.35), the missing Cauchy data are written in the form

u = ϕ∗ + u0 and λ = ψ∗ + λ0 with the unknowns u0 ∈ H̃
1
2 (∂ωN ) and λ0 ∈ H̃

− 1
2

0 (∂ωD).
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Reduction to the Steklov–Poincaré operator

Similar to (4.36), we use the Steklov–Poincaré operator S of the pure Dirichlet problem
obtained with any of the constructions in the previous section. We write

Ŝ(ϕ,ψ) = S(ϕ∗ + u0) = ψ∗ + λ0 . (5.22)

Since we seek the solution u0 ∈ H̃
1
2 (∂ωN ) and λ0 = 0 on ∂ωN , we obtain the variational

equation

〈v0, Su0〉 =
∫

∂ωN

v0 · Su0ds = 〈v0,ψ
∗ − Sϕ∗〉 for all v0 ∈ H̃

1
2 (∂ωN ) . (5.23)

The latter is equivalent to finding u⊥0 := P<u0 ∈ P<H̃
1
2 (∂ωN ) ⊂ H

1
2
0 (∂ω) from

〈w0, Su0〉 = 〈w0, Su⊥0 〉 = 〈w0,ψ
∗ − Sϕ∗〉 for all w0 ∈ P<H̃

1
2 (∂ωN ) . (5.24)

The H
1
2
0 (∂ω)–ellipticity of S implies the existence of a unique solution u⊥0 in the subspace

P<H̃
1
2 (∂ωN ) ⊂ H

1
2
0 (∂ωN ). Finally, we obtain in terms of S on ∂ω:

Ŝ(ϕ,ψ) := Su⊥0 + Sϕ∗ on ∂ω . (5.25)

Systems of boundary integral equations

First, we solve either the system of boundary integral equations (4.41) or the system

(4.42) for u0 ∈ H̃
1
2 (∂ωN ) and λ0 ∈ H̃

− 1
2

0 (∂ωD). Then Ŝ can be constructed via

Ŝ(ϕ,ψ) := Tu = ψ∗ + λ0 on ∂ω . (5.26)

5.2 The proof of Theorem 2

The proof resembles all the arguments of the proof to Theorem 1. It suffices to verify
that with ∂ωj = (ΓD ∩ ∂ωj \Υ)∪ (∂ωj ∩Υ)∪ (ΓN ∩ ∂ωj \Υ) we have with Ŝj defined for

∂ωjN = ΓN ∩ ∂ωj \
◦
Υ and ∂ωjD = ∂ωj \ ∂

◦
ωjN :

aωj (vj ,vj) =
∫
∂ωj

vj · Tvjds =
∫

∂ωj∩Υ

ṽ · Ŝj(vj ,0)ds .

Indeed, this relation holds because of (5.10) and vj = 0 on ΓD ∩ (∂ωj \ Υ) and Tvj = 0
on ∂ωjN . Moreover, if γ = ΓD ∩ ∂ωj \Υ 6= ∅ then from aωj (vj ,vj) = 0 one obtains with
vj = 0 on γ and vj ∈ <j that vj = 0 in H1(ωj). Hence, (A2) with (A3) implies the
existence of some constant α0j > 0 such that

aωj (vj ,vj) ≥ α0j‖vj‖2
H1(ωj)

which yields with ‖vj‖
Ĥ

1
2 (∂ωj∩Υ)

≤ ‖vj‖
H

1
2 (∂ωj)

and the trace theorem the desired in-

equality (5.9). ut
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6 The Discretization of the Hybrid Methods

Now we consider the approximation of the variational equations (4.2), (4.3) or (5.5), (5.6)
by using combined FEM–BEM. These approximations are based on two families of meshes
with parameters of meshwidth H and h(= hj) corresponding to the global domain and
skeleton elements and the local boundary elements on ∂ωj , respectively.

We begin with the finite element approximation based on a triangulation {τ`}N`=1 of
ΩF satisfying diam (τ`) ≤ cH for all ` = 1, . . . , N . We always assume that the point set
ΓN∩ΓD∩ΩF belongs to the FEM edges (for n = 3) or nodes (for n = 2) of ∂τ`. On {τ`}N`=1

we choose a conforming finite element space H1
H(ΩF ) ⊂ H1(ΩF ) having the approximation

degree d ≥ 2. Then H1
H defines grid points of the FEM triangulation on Γ0. In addition,

on the remaining part of Υ, we introduce more global grid points such that the distance
between any two neighboring grid points is less than cH. On the skeleton Υ we introduce

there a familiy of finite–dimensional subspaces of continuous functions B
1
2
H(Υ) ⊂ H

1
2 (Υ)

(e. g. for n = 2 one–dimensional splines on the macro–element boundary curves and for
n = 3 finite elements on the macro–element boundary surfaces ∂ωj) and impose here the
continuity requirements:

H1
H(ΩF )|Γ0

= B
1
2
H(Υ)|Γ0

. (6.1)

The elements in B
1
2
H(Υ) will then be used as skeleton mortar elements for the global

coupling. The elements wH ∈ H1
H(ΩF )×B

1
2
H(Υ) defined by the pairs (wH

F , w̃
H) with

wH
F = w̃H on Γ0 (6.2)

now define the finite–dimensional subspace of ”global” approximations HH ⊂ H
= (H1(Ω)|ΩF∪Υ

).

For asymptotic analysis we shall consider a whole family of finite and skeleton mortar
element spaces with H → 0 and require further the following properties according to [3]:

approximation property:1

For every v ∈ Ht(Ω) with 1 ≤ t ≤ d there exists an element family wH ∈ HH such
that

‖(w −wH)|ΩF
‖H1(ΩF ) + ‖(w − w̃H)|Υ‖

H
1
2 (Υ)

≤ cHt−1‖v‖Ht(Ω) ; (6.3)

inverse assumption:

With some δ ∈ (0, 1
2) and for every wH ∈ HH we have on Υ

‖wH‖
H

1
2+δ(Υ)

≤ cH−δ‖wH‖
H

1
2 (Υ)

. (6.4)

Here, the norms on the skeleton Υ are defined by

‖wH‖
H

1
2+δ(Υ)

= inf{‖v‖
H

1
2+δ(Ω)

|v ∈ H1+δ(Ω) and v|Υ = wH} .

On the individual macro–element boundaries ∂ωj we define local quasi–regular bound-
ary element grids with the mesh–size parameter h characterizing the largest distance be-
tween neighboring grid points on ∂ωj . Also here we assume that the point set ΓN∩ΓD∩∂ωj
will lie in the set of nodal points of the BEM grid for n = 2 or on the BEM nodal lines for

1By c we shall denote a generic constant which may have different values in the analysis at different
occasions but is independent of the mesh–sizes.
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n = 3 which are defined by the BEM boundaries of the triangulation of the macro–element
surface ∂ωj . For n = 2, the macro–element boundaries ∂ωj are curves where on the local
grids we introduce splines Sd′jh ⊂ H

1
2 (∂ωj) and Sd′′jh ′ ⊂ H− 1

2 (∂ωj) of polynomial degrees
d′− 1 ≥ d′′− 1 ≥ 0 and d ′ > 1. For n = 3, the boundary element functions are defined on
(local) triangulations of each of the surfaces ∂ωj as associated finite element spaces Sd′jh
and Sd′′jh ′ , either by lifting via parametric surface representation in the parametric plane or
by appropriate isoparametric elements. Similar to FEM analysis, the boundary elements
are assumed to provide the

approximation property: For both approximations with d̃ = d ′, and d̃ = d′′ where
h = h ′, we require:

For every χ ∈ Hs(∂ωj) and t ≤ s ≤ d̃ and t < d̃− 1/2 for n = 2 or t ≤ d̃− 1 for n = 3,

there exists an element family χh ∈ S d̃jh(∂ωj) such that

‖χ− χh‖Ht(∂ωj) ≤ chs−t‖χ‖Hs(∂ωj) . (6.5)

Moreover, the L2(∂ωj)–projection Pjh onto S d̃jh(∂ωj) has the uniform boundedness prop-
erty

‖Pjhχ‖Ht(∂ωj) ≤ c‖χ‖Ht(∂ωj) . (6.6)

(See [3]). For quasi–uniform BEM grid families, the property (6.6) follows from the inverse
assumption on the fine grids. For more general grids see [16].

inverse assumption (on the fine grids):

With some δ ∈ (0, 1
2) and for every χh ∈ S d̃jh(∂ωj) we have on ∂ωj

‖χh‖
H± 1

2+δ(∂ωj)
≤ ch−δ‖χh‖

H± 1
2 (∂ωj)

(6.7)

with the +sign for d̃ = d ′ and the −sign for d̃ = d′′.

We remark that — without repetition — the mesh with h ′ instead of h should be used
in the formulation of the approximation properties and inverse assumptions on ∂ωj when
the Neumann bases with d̃ = d′′ will be used.

Note that the global meshes on ΩF and Υ are different and independent of the two
local grids h and h ′ on the various macro–element boundaries ∂ωj .

Before discussing the local discretizations on the macro–elements, let us first introduce
the global finite element spaces on ΩF ∪Υ as follows:

HH = span{ϕk | k ∈ N} ,
HHD := HH ∩HD = span{ϕk | k ∈ ND} ,
HFD := HHD ∩H1

D(ΩF ) = span{ϕk | k ∈ NF } ,

where the index sets satisfy NF ⊆ ND ⊆ N . Since the discretizations on ∂ωj will depend
on the choice of the local bases, the corresponding local boundary element spaces will be
presented correspondingly.

6.1 The discretization with local Neumann bases

We begin with the definition of the local discrete spaces on ∂ωj in terms of Neumann
bases. For ease of reading we suppress the index j whenever possible.
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H− 1
2

h := Sd ′′h (∂ω) ∩H− 1
2

0 (∂ω) = span{νι | ι ∈ IN} ,

H̃− 1
2

h (∂ω \ (ΓN \Υ)) := H− 1
2

h ∩ H̃− 1
2 (∂ω \ (ΓN \Υ)) = span{νι | ι ∈ ĨNΥ+} ,

H̃− 1
2

h (∂ωD) := H− 1
2

h ∩ H̃− 1
2 (∂ωD) = span{νι | ι ∈ ĨN} ,

H
1
2
0h := {vh ∈ Sd ′h (∂ω) | 〈vh, r〉 = 0 ∀r ∈ <} = span{

◦
µι | ι ∈ I0D} .

Here, the index sets satisfy ĨN ⊆ IN , ĨNΥ+ ⊆ IN according to the corresponding discrete
function spaces. In addition, we define INΥ := {ι ∈ ĨNΥ+ | supp νι ∩

◦
Υ 6= ∅}. Then

ĨNΥ+ = INΥ ∪ ĨN and {νι for ι ∈ INΥ} form a basis of

Ĥ− 1
2

h (∂ω ∩Υ) := H̃− 1
2

h

(
(∂ω \ (ΓN \Υ)

)
∩ Ĥ− 1

2
0 (∂ω ∩Υ)

on ∂ω ∩Υ .

In connection with the mixed boundary value problems on ωj for ∂ωj ∩ΓD \Υ 6= ∅ we
require the existence of a linear prolongation operator family

℘ν : Ĥ− 1
2

h (∂ω ∩Υ) → H̃− 1
2

h

(
∂ω \ (ΓN \Υ)

)
with the prolongation properties: For every σ ∈ Ĥ− 1

2
h (∂ω ∩Υ):

℘νσ
h|(∂ω∩Υ) = σh on ∂ω ∩Υ and ‖℘νσh‖

H− 1
2 (∂ω)

≤ c‖σh‖
Ĥ− 1

2 (∂ω∩Υ)
. (6.8)

with c independent of h.

In terms of these bases we introduce corresponding matrices as the finite element
’stiffness matrix’

A := ((aΩF
(ϕk,ϕ`))) where k, ` ∈ NF

and the matrices generated by the corresponding boundary integral operators on the
macro–element boundaries:

V := ((〈νκ, V νι〉)) ,
◦
M := ((〈νι,

◦
µα〉)) where κ, ι ∈ IN ;

◦
K := ((〈νκ,K

◦
µα〉)) ,

◦
D := ((〈

◦
µα, D

◦
µς〉)) where α, ς ∈ I0D .

(6.9)

We now consider the discretized version of the variational equations (4.2), (4.3) in

discrete spaces where (uH ,λhj ) ∈ HH×
∏M
j=1H

− 1
2

jh . The trial functions must satisfy uH = ϕ

on (∂ΩF ∪ Υ) ∩ ΓD and λhj = ψ on ∂ωj ∩ ΓN \ Υ. For simplifying the presentation we

again extend ϕ to ϕ∗H ∈ HH onto the whole set ∂ΩF ∪Υ and ψ to ψ∗hj ∈ H− 1
2

jh onto each
of ∂ωj requiring 〈ψ∗hj , rj〉 = 0 for all rj ∈ <j . We now write

uH = ϕ∗H + uH0 and λhj = ψ∗hj + λhj0 . (6.10)

Here

uH0 =
∑
k

αkϕk ∈ HHD , k ∈ ND , and λhj0 =
∑
κ

βjκνjκ ∈ Ĥ
− 1

2
jh (∂ω ∩Υ) , κ ∈ IjNΥ ,

(6.11)
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are the unknown approximations satisfying

uH0 = 0 on (∂ΩF ∪Υ) ∩ ΓD and λhj0 = 0 on ∂ωj ∩ ΓN \Υ , correspondingly. (6.12)

In terms of the bases, Galerkin’s formulation of the variational equations (4.2), (4.3) is
equivalent to finding the coefficients ~α = (αk) with k ∈ ND and ~βj = (βjκ) with κ ∈ IjNΥ

from the global equations

∑
k

aF (ϕk,ϕ`)αk +
M∑
j=1

∑
κ

( ∫
∂ωj∩Υ

νjκ · ϕ` ds
)
βjκ

=
∫

(∂ΩF∪Υ)∩ΓN

ψ · ϕ` ds− aF (ϕ∗H ,ϕ`)−
M∑
j=1

∫
∂ωj∩Υ

ψ∗hj · ϕ` ds (6.13)

where k ∈ NF , κ ∈ IjNΥ and ` ∈ ND, and with aF (ϕk,ϕ`) = 0 for ` ∈ ND \ NF ;

and the local equations∑
k

( ∫
∂ωj∩Υ

νj% · ϕkds
)
αk −

∑
κ

( ∫
∂ωj∩Υ

νj% · Ûhj (0, νjκ)ds
)
βjκ

= −
∫

∂ωj∩Υ

νj% ·
(
ϕ∗H − Ûhj (ϕ,ψ∗hj )

)
ds (6.14)

where k ∈ NjD ; κ, % ∈ IjNΥ and j = 1, . . . ,M .

Here NjD := {k ∈ ND |
◦

supp (ϕk) ∩ ∂ωj 6= ∅} and Ûhj denotes one of the approximations
of the Poincaré–Steklov operators Ûj which will be specified in what follows.

In terms of matrix and vector notation, the equations (6.13), (6.14) are

A~α+
M∑
j=1

B̂>j
~βj = f , (6.15)

B̂j~α− Ûj ~βj = ĝj for j = 1, . . . ,M . (6.16)

Here the vector and matrix elements in (6.15) and (6.16) are defined in an obvious way
from (6.13) and (6.14). In (6.16), the matrix Ûj describes the local macro–element and is
invertible. However, in (6.16), one only needs to solve the equations on ∂ωj with the few
right–hand sides B̂j~e` − ĝj with ~e` = (δ`,k) for `, k ∈ NjD. The determination of

~βj = Û−1
j B̂j~α− Û−1

j ĝj for j = 1, . . . ,M (6.17)

can completely be executed in parallel. This then yields the global system for ~α:

A~α+
M∑
j=1

B̂>j Û−1
j B̂j~α = f +

M∑
j=1

B̂>j Û−1
j ĝj . (6.18)

Here A is the so–called ’stiffness matrix’ for ΩF whereas Ûj is the ’flexibility matrix’ and
B̂>j Û−1

j B̂j is the ’stiffness matrix’ for the individual macro–element ωj .
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6.1.1 The discrete local Neumann problem

In the following, we again suppress the index j.

Since in the case of the local Neumann problem we have ∂ωD = ∂ω ∩ ΓD \ Υ where
∂
◦
ωD = ∅, the operator Ûh = Uh is the associated discrete Poincaré–Steklov operator for

the whole boundary ∂ω and we omit .̂ The Neumann datum in (6.10) has the form

λh = ψ∗h + λh0 (6.19)

where
λh0 =

∑
κ

βκνκ with Uλh0 =
∑
κ

βκU(νκ) and κ ∈ INΥ = ĨNΥ+

is the unkwon datum in (6.19).

The central effort here is to compute the coefficient matrix U and its submatrix Û
and the right–hand side vector ĝ in (6.16) for the individual ω. This reduces to compute
approximations of

U%κ =
∫

∂ω∩Υ

ν% · U(νκ)ds and g =
1
g +

2
g where

1
g:=

∫
∂ω∩Υ

ν% · U(ψ∗h)ds and
2
g:= −

∫
∂ω∩Υ

ν% · ϕ∗Hds for %, κ ∈ INΥ ⊆ IN .
(6.20)

Depending on the local boundary element implementation chosen for the approximation
of the operator U defined in (4.11) we present four different approaches in terms of one of
the boundary integral equations (4.26) or (4.34), respectively:

U(λ)− P<(1
2I −K)P<U(λ) = V0P<λ , (6.21)

D0U(λ) = (1
2I −K ′)P<λ (6.22)

as if λ is given.

Direct inversion of the discrete boundary integral equation of the second kind

For the integral equation (4.22) of the second kind, we define the approximation

P h<v :=
∑
αι

◦
M

+

αι〈νι,v〉
◦
µα where α ∈ I0D , ι ∈ IN (6.23)

of P<v for any v ∈ H
1
2 (∂ω) where

◦
M

+

is the pseudoinverse to
◦
M [56]. Equation (6.21)

with λ = νκ, tested with ν% and substituting (6.23) for P<U(νκ) yields

U%κ = 〈ν%, Uh(νκ)〉 :=
∑
α,ι

◦
M

+

αι〈νι, Uh(νκ)〉〈ν%, (1
2I −K)

◦
µα〉+ V%κ (6.24)

where the summation runs for α ∈ I0D and ι ∈ IN and the indices %, κ ∈ IN are fixed.

In matrix form, the latter implies

{I− (1
2

◦
M−

◦
K)

◦
M

+

}U = V , (6.25)

from which one can obtain U by using either direct or indirect inversion of the IN × IN–

matrix {I− (1
2

◦
M−

◦
K)

◦
M

+

}.
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Similarly, we find for the approximate
1
g in the right–hand side g in (6.20) the linear

equations

{I− (1
2

◦
M−

◦
K)

◦
M

+

}
1
g= p where pι = 〈νι, V0ψ

∗h〉 , ι ∈ IN . (6.26)

With the IN ×IN matrix U available, Û in (6.16)–(6.18) is then the INΥ×INΥ submatrix
of U and ĝ is there the INΥ subvector.

The discrete Neumann series

If the additional assumption (B1) in (4.24) is satisfied, then one can use the Neumann
series also for the discrete equations (6.25), i. e.

U =
∞∑
`=0

(
(1
2

◦
M−

◦
K)

◦
M

+)`
V and

1
g=

∞∑
`=0

(
(1
2

◦
M−

◦
K)

◦
M

+)`
p (6.27)

with p given in (6.26). For iteration, one may define the usual recurrence sequence of
matrices

U(r) :=
(

1
2

◦
M−

◦
K
) ◦
M

+

U(r−1) + V with U(0) := 0 (6.28)

for r = 1, 2, . . .. In practice, one may control the convergence of U(r) numerically.

Remark: A very important special case of (6.25), respectively (6.27), (6.28) arises when
◦
M given in (6.9) is invertible; then

◦
M

+

=
◦
M
−1

. This can be achieved by special
combinations of the bases {νι} and {

◦
µα}. An important special choice ist

◦
µα = V να;

then
◦
M = V is invertible due to (4.14). Another important choice is

◦
µα = να where one

needs 1 < d ′ = d ′′.

The discrete hypersingular integral equation

For equation (6.22), we first approximate U(λ) in H
1
2
0h, test the equation with

◦
µα for

α ∈ I0D and invert
◦
D. Then we use (6.23) and finally obtain

U =
◦
M

◦
D
−1

(1
2

◦
M−

◦
K)> ,

1
g =

◦
M

◦
D
−1

q with qβ = 〈(1
2

◦
µβ −K

◦
µβ),ψ∗h〉 , β ∈ I0D .

(6.29)

We note that, although the operator U is symmetric, its approximations in the form
of U in (6.29), in general, are not.

The discrete symmetric formulation

The discrete and symmetric approximation of the symmetric formulation (4.32) is given
by

U = (1
2

◦
M−

◦
K)

◦
D
−1

(1
2

◦
M−

◦
K)> + V . (6.30)

The use of this matrix representation is equivalent to solving the system of Galerkin
equations for U via Ũh,

〈Uhλh,χh〉 = 〈(1
2I −K)Ũh , χh〉+ 〈V0λ

h,χh〉 ,

〈
◦
µ
h
, DŨh〉 = 〈(1

2I −K ′)λh ,
◦
µ
h
〉

(6.31)
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where λh,χh ∈ H− 1
2

h (∂ω) and
◦
µ
h
∈ H

1
2
0h(∂ω).

The forcing term can be expressed correspondingly as

1
g= (1

2

◦
M−

◦
K)

◦
D
−1

q + p (6.32)

with q given by (6.29) and p given by (6.26).

6.1.2 The discrete local mixed boundary value problem

As in Section 4.1.2, now the boundary ∂ω is decomposed in the form ∂ω = ∂ωD ∩ ∂ωN
where ∂ωD = ∂ω ∩ ΓD \

◦
Υ with ∂

◦
ωD 6= ∅ for equations (4.37). Let

ψ∗h =
∑
ι

ψ∗ι νι ∈ H
− 1

2
h , ι ∈ IN (6.33)

be an approximation of the extension ψ∗. Then we seek the solution in the form

λh = ψ∗h +
∑
κ

ϑκνκ with κ ∈ ĨN (6.34)

and an approximation for u = ϕ∗ + u0 where u0 ∈ H̃
1
2 (∂ωN ). Note that for (6.14) we

need to solve the local mixed boundary value problem also for ϕ∗ = 0 and ψ∗h = ν% where
% ∈ INΥ.

The use of the discrete Poincaré–Steklov operator U

In this approach we solve the mixed boundary value problem (4.33) in two steps. In
the first step we determine the full matrix U as for the pure Neumann problem (4.8) in
ω, by any of the methods in the previous section. With U now avaiblable, in step two
we solve the equation(4.38) approximately where U is approximated by U in order to find
the solution of the mixed boundary value problems needed in (6.14). With (6.34) this
amounts to determine ~ϑ = (ϑκ) by solving the linear system∑

κ

U%κϑκ = 〈ν%,ϕ∗〉 −
∑
ι

U%ιψ
∗
ι where κ ∈ ĨN , ι ∈ IN , for % ∈ ĨN (6.35)

with given ϕ∗ and with ψ∗ι in the right–hand side given via (6.33). We denote by Ũ the
submatrix ((U%κ)) of U for %, κ ∈ ĨN . With ~ϑ known, we find

Ŝh(ϕ,ψh) := λh =
∑
ι

ψ∗ι νι −
∑
ι,κ

(Ũ−1U)κ,ιψ∗ι νκ +
∑
%,κ

(Ũ−1)%,κ〈ν%,ϕ∗〉νκ (6.36)

where ι ∈ IN and %, κ ∈ ĨN .

For the matrix Û and the right–hand side ĝ we obtain∫
∂ω∩Υ

Ûh(0, νκ) · ν%ds = Ûκ% = Uκ% − (UŨ−1U)κ,% with κ, % ∈ INΥ

ĝ% =
∑
ι

(
U%ι − (UŨ−1U)%,ι

)
ψ∗ι +

∑
κ

(UŨ−1)%,κ〈νκ,ϕ∗〉 −
∫

∂ω∩Υ

ϕ∗H · ν%ds
(6.37)

where ι ∈ IN and %, κ ∈ INΥ.
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We remark, for the discrete local boundary value problem, one may also discretize
(4.41) or (4.42). This will involve the Neumann as well as the Dirichlet bases. We shall
pursue this idea after having discussed the case involving only the local Dirichlet bases.

With the computed coefficient matrices and right–hand sides in (6.15) and (6.16) we
can solve the system (6.15), (6.16) for ~βj and ~α which provides uH and λhj for j = 1, . . . ,M .
To compute

◦
u
h

=
∑
α

γα
◦
µα = Ûh(ϕh,ψh) , α ∈ I0D (6.38)

from λh =
∑
ι λινι , ι ∈ IN , one may use (6.23) to recover (6.38) from the weights

〈Û(ϕ,ψh), νι〉 , ι ∈ IN . Then we find

uh =
∑
α,ι

(
◦
M

+

U)α,ιλι
◦
µα + r∗ =

∑
α,ι

(
◦
M

+

U)α,ι(ψ∗ι + ϑι)
◦
µα + r∗ (6.39)

where α ∈ I0D and ι ∈ IN with ϑι = 0 for ι ∈ IN \ ĨN .

The rigid motion r∗ can be determined explicitly from∫
∂ωD

r · r∗ds =
∫

∂ωD

r ·
(
ϕh −

∑
α,τ,ι

◦
M

+

ατUτι(ψ
∗
ι + ϑι)

◦
µα

)
ds for all r ∈ < (6.40)

with the indices as in (6.39) and τ ∈ IN .

6.2 The discretization with local Dirichlet bases

For the discretization with local Dirichlet bases, the following function spaces are needed:

H
1
2
h := Sd ′h (∂ω) = span{µι | ι ∈ ID} ,

H̃
1
2
h

(
∂ω \ (ΓD \Υ)

)
= H

1
2
h ∩ H̃

1
2

(
∂ω \ (ΓD \Υ)

)
= span{µι | ι ∈ ĨDΥ} ,

H̃
1
2
h (∂ωN ) := H

1
2
h ∩ H̃

1
2 (∂ωN ) = span{µι | ι ∈ ĨD} .

We use the index sets ĨD ⊆ ID , ĨDΥ ⊆ ID and I0D ⊂ ID according to the correspond-
ing discrete function spaces. Moreover, we define IDΥ := {ι ∈ ĨDΥ+ | suppµι ∩

◦
Υ 6= ∅}.

Then ĨDΥ+ = IDΥ ∪ ĨD and {µα for α ∈ IDΥ} form a basis of the discrete space

Ĥ
1
2
h (∂ω ∩Υ) := H̃

1
2
h (∂ω \ (ΓD \Υ)) ∩ Ĥ

1
2 (∂ω ∩Υ)

on ∂ω ∩Υ.

Again, we require for the mixed boundary value problems on ωj for ∂ωj ∩ ΓN \Υ 6= ∅
in terms of the Dirichlet bases the existence of a linear prolongation operator family

℘µ : Ĥ
1
2
h (∂ω ∩Υ) → H̃

1
2
h

(
∂ω \ (ΓD \Υ)

)
with the prolongation property: For every vh ∈ Ĥ

1
2
h (∂ω ∩Υ):

℘µvh|∂ω∩Υ = vh on ∂ω ∩Υ and ‖℘µvh‖
H

1
2 (∂ω)

≤ c‖vh‖
Ĥ

1
2
h

(∂ω∩Υ)
(6.41)

with c independent of h.
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The discrete version of the variational equations (5.5), (5.6) with Dirichlet bases is

defined by Galerkin’s scheme for (uH ,uhj ) ∈ HH ×
∏M
j=1H

1
2
jh where the trial functions

must satisfy

uH = ϕ on (∂ΩF ∪Υ) ∩ ΓD and uhj = ϕ on ∂ωj ∩ ΓD \Υ .

As before, we extend ϕ to ϕ∗H ∈ HH on ∂ΩF ∪ Υ and to ϕ∗hj ∈ H
1
2
jh onto each of ∂ωj ,

respectively. Now we write

uH = ϕ∗H + uH0 and uhj = ϕ∗hj + uhj0 (6.42)

with the unknown approximations

uH0 =
∑
k

αkϕk ∈ HHD , k ∈ ND and

uhj0 =
∑
β

γjβµjβ ∈ Ĥ
1
2
h (∂ωj ∩Υ) on ∂ωj ∩Υ where β ∈ IDΥ ,

(6.43)

satisfying
uH0 = 0 on (∂ΩF ∪Υ) ∩ ΓD and uhj0 = 0 on ∂ωj ∩ ΓD \Υ , (6.44)

correspondingly.

By using these representations (6.43), the Galerkin approximation of the variational
equations (5.5), (5.6) consists of the global equations

∑
k

aF (ϕk,ϕ`)αk +
M∑
j=1

∑
β

( ∫
∂ωj∩Υ

Ŝhj (µjβ ,0) · ϕ` ds
)
γjβ

=
∫

(∂ΩF∪Υ)∩ΓN

ψ · ϕ`ds− aF (ϕ∗H ,ϕ`)−
M∑
j=1

( ∫
∂ωj∩Υ

Ŝhj (ϕ∗hj ,ψj) · ϕ` ds
)

(6.45)

where k ∈ NF ; β ∈ IDΥ and ` ∈ ND;

and the local equations∑
k

( ∫
∂ωj∩Υ

Ŝhj (µjβ ,0) · ϕkds
)
αk −

(∑
ς

∫
∂ωj∩Υ

Ŝhj (µjβ ,0) · µjςds
)
γjς (6.46)

=
∫

∂ωj∩Υ

(ϕ∗hj − ϕ∗H) · Ŝhj (µjβ ,0)ds where k ∈ ND and ς, β ∈ IDΥ .

Here Ŝj is associated with ∂ωjN = ∂ωj ∩ ΓN \
◦
Υ and ∂ωjD = ∂ωj \ ∂

◦
ωjN , which implies

that (∂ωj ∩Υ) ⊆ ∂ωjD. Note that here the boundary parts ∂ωjN and ∂ωjD are different
from those in Section 6.1.

In terms of matrix and vector notation, the equations (6.45), (6.46) are written as

A~α+
M∑
j=1

Ĉ>j ~γj = b , (6.47)

Ĉj~α− Ŝj~γj = d̂j for j = 1, . . . ,M (6.48)

where the coefficient matrices and right–hand sides are defined in (6.45) and (6.46).
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We note that, in contrast to the matrix B̂j in (6.15), (6.16), here the matrix Ĉj can
only be evaluated via the solution of the local problems. In principle, we can use the
local equations (6.48) to eliminate ~γ in (6.47) to obtain global equations as for the case of
local Neumann bases (cf. (6.16)). However, we observe that the matrix Ŝj is not always
invertible, e. g. if ∂ωjN = ∅, i. e. for the pure Dirichlet problem in Section 5.1.1. On the
other hand, due to the special form of Ĉj~α− d̂j defined in (6.46), one can verify that the
latter always belongs to the range of Ŝj and, hence, each ~γj can still be eliminated, even
if it is nonunique. Hence, this leads to the global system for ~α:

A~α+
M∑
j=1

Ĉ>j Ŝ+
j Ĉj~α = b +

M∑
j=1

Ĉ>j Ŝ+
j d̂j (6.49)

where we denote by Ŝ+
j the pseudoinverse of Ŝj . (See e. g. [56].) We emphasize that the

macroelement stiffness matrix Ĉ>j Ŝ+
j Ĉj is unique. We remark that Ŝ+

j = Ŝ−1
j when the

latter exists which is the case for the mixed boundary value problem with ∂ωjN 6= ∅.
System (6.49) now corresponds completely to the system (6.18).

6.2.1 The local discrete Dirichlet problem

In the following, we suppress the index j.

If we have ∂ω ∩ ΓN \ Υ = ∅ then Ŝh = Sh will be the associated discrete Steklov–
Poincaré operator for the pure Dirichlet problem in ω and IDΥ = ĨDΥ+. Hence, we
suppress here .̂ The Dirichlet datum in (6.42) is now given by uh = ϕ∗h + uh0 where

uh0 =
∑
β

γβµβ and Suh0 =
∑
β

γβS(µβ) with β ∈ IDΥ (6.50)

is the unknown datum in the equations (6.45), (6.46). For the local problem, we need to
evaluate the approximations

Sβς =
∫

∂ω∩Υ

(Shµβ) · µςds , Cβ` =
∫

∂ω∩Υ

(Shµβ) · ϕ` ds (6.51)

dβ =
∫

∂ω∩Υ

(Shµβ) · (ϕ∗h − ϕ∗H)ds for β, ς ∈ IDΥ and ` ∈ ND (6.52)

and b` =
1
b` +

2
b` where

1
b`:= −

∫
∂ω∩Υ

(Shϕ∗h) · ϕ` ds ,
2
b`:=

∫
(∂ωF∪Υ)∩ΓN

ψ · ϕ`ds− aF (ϕ∗H ,ϕ`) . (6.53)

Depending on the implementation of boundary integral operators available, one may
use one of the following three approximation schemes. The above matrices are defined for
all indices β, ς ∈ ID whereas Ŝ, Ĉ and d̂ in (6.45)–(6.49) are given by the IDΥ × IDΥ–
submatrix of S in (6.51) and the submatrix of C and subvector of d, respectively.

The direct inversion of the boundary integral equation of the second kind

The idea here is to represent the action of the local Steklov–Poincaré operator in terms
of the local Dirichlet basis {µα}, α ∈ ID by utilizing the integral equation of the second
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kind (5.14). We need the matrices generated by the corresponding boundary integral
operators on the macro–element boundaries as follows:

K := ((〈νκ,Kµβ〉)) , D := ((〈µβ , Dµς〉)) where κ ∈ IN , β, ς ∈ ID . (6.54)

We will also need the mass matrix

M := ((〈νι,µβ〉)) where ι ∈ IN and β ∈ ID . (6.55)

We now define the approximation

Ph<λ =
∑
α,ι

M+
αι〈µα,λ〉νι where α ∈ ID , ι ∈ IN , (6.56)

of P< on H− 1
2 (∂ω) in terms of the Neumann basis with Dirichlet weights. By inserting

(6.56) for P<λ = P<Sµβ into (5.14) we obtain the approximate equation

Shµβ =
∑
ι,α

M+
αι〈µα, Sµβ〉P<(1

2I +K ′)νι +Dµβ . (6.57)

Testing with µη and replacing the left–hand side yields the discrete system

Sηβ := 〈µη, Shµβ〉 =
∑
α,ι

M+
αιSαβ〈µη, P<(1

2I +K ′)νι〉+ Dηβ . (6.58)

By decomposing µη = P<µη + rη with rη ∈ < we obtain

〈µη, P<(1
2I +K ′)νι〉 = 〈(1

2I +K)P<µη, νι〉
= 〈(1

2I +K)µη, νι〉 − 〈(1
2I +K)rη, νι〉 = 1

2Mιη + Kιη .

Inserting this relation into (6.58) we obtain

Sηβ =
∑
α

(
M+(1

2M + K)
)>
η,α

Sαβ + Dηβ for α, β ∈ ID . (6.59)

In matrix form, the equations read{
I− (M+(1

2M + K))>
}

S = D . (6.60)

If {I− (M+((1
2M + K))>} is invertible, S can be determined, e. g. by direct inversion.

When S is available then Ŝ is the IDΥ×IDΥ submatrix of S. Moreover, we find C and
d in (6.51) and (6.52) from (6.57), correspondingly, i. e.

Cβ` =
∫

∂ω∩Υ

ϕ` · (Shµβ)ds
(6.61)

=
∑
α,ι

SβαM+
αι

∫
∂ω∩Υ

ϕ` · (1
2I +K ′)νιds+

∫
∂ω∩Υ

ϕ` ·Dµβds

and

dβ =
∑
α,ι

SβαM+
αι

∫
∂ω∩Υ

(ϕ∗h − ϕ∗H) · (1
2I +K ′)νιds+

∫
∂ω∩Υ

(ϕ∗h − ϕ∗H) ·Dµβds

where ι ∈ IN ; α, β ∈ ID and ` ∈ ND . (6.62)
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The matrix Ĉ and d̂ are obtained for β ∈ IDΥ in (6.61) and (6.62).

For computing
1
b` we write

ϕ∗h =
∑
α

ϕ∗αµα

and obtain

1
b`= −

∑
α

ϕ∗α

∫
∂ω∩Υ

ϕ` · (Shµα)ds = −
∑
α

Cα`ϕ
∗
α with α ∈ ID . (6.63)

The discrete Neumann series

Under the additional assumption (B2), equation(6.60) can also be inverted by using
the Neumann series. One obtains

S =
∞∑
`=0

(
(M+(1

2M + K))>
)`

D (6.64)

or the recurrence sequence of matrices

S(r) :=
(
M+(1

2M + K)
)>

S(r−1) + D for r = 1, 2, . . . with S(0) := 0 (6.65)

In terms of S(r), corresponding C(r), and
1
b
(r)

may be obtained by inserting S(r) for S into
(6.61), (6.62), and C(r) into (6.63).

The discrete boundary integral equation of the first kind

The Galerkin method applied to (5.18) finally yields with C = Ĉ from (6.45)–(6.48)
and B̂ = B from (6.13)–(6.16) the approximations:

Sας =
(
M>V−1(1

2M + K)
)
α,ζ

, Cα` =
(
B>V−1((1

2M + K)
)
`,α
, α ∈ ID , ζ ∈ IDΥ

and (6.66)

dα =
∑
ι

(
(1
2M> + K>)V−1

)
α,ι

∫
∂ωj∩Υ

νι · (ϕ∗h − ϕ∗H)ds , ι ∈ IN

1
b` = −

∑
α

Cα`ϕ
∗
α for α ∈ ID and ` ∈ ND .

The use of the symmetric discrete representation of S

With the Galerkin approximation applied to equations (4.26) and (4.14) we obtain the
discrete version of (5.21) in the form

Sβς = (1
2M + K)>V−1(1

2M + K)β,ς + Dβς with β, ς ∈ ID (6.67)

and Ŝ is the IDΥ×IDΥ–submatrix. For computing Ĉ and d̂ we introduce the Gram matrix

GD := ((〈µβ,µς〉)) for β, ς ∈ ID
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and its inverse G−1
D . In terms of this matrix, we have

Ĉβ` =
∑
ς

(SG−1
D )β,ς

∫
∂ωj∩Υ

µς · ϕ` ds for β ∈ IDΥ , ς ∈ ID and ` ∈ ND ,

(6.68)

d̂β =
∑
ς

(SG−1
D )β,ς

∫
∂ωj∩Υ

µς · (ϕ∗h − ϕ∗H)ds for β ∈ IDΥ , ς ∈ ID ,

and
1
b` = −

∑
α

Cα`ϕ
∗
α for α ∈ ID , ` ∈ ND .

6.2.2 The discrete local mixed boundary value problem

Now we consider the case ∂ωN = ∂ω ∩ ΓN \
◦
Υ with ∂ωD = ∂ω \ ∂ ◦ωN and ∂

◦
ωN 6= ∅ as in

Section 5.1.2. Let

ϕ∗h =
∑
τ

ϕ∗τµτ ∈ H
1
2
h , τ ∈ ID and ψ∗h =

∑
ι

ψ∗ι νι ∈ H
− 1

2
h , ι ∈ IN

be the appropriate extensions of the given data ϕ and ψ. Then we seek the solution pair
uh and λh in the form uh = ϕ∗h + uh0 and λh = ψ∗h + λh0 . Then here

uh0 =
∑
α

ξαµα ∈ H̃
1
2
h (∂ωN ) with α ∈ ĨD and

λh0 =
∑
%

ϑ%ν% ∈ H̃
− 1

2
h (∂ωD) with % ∈ ĨN .

(6.69)

are to be determined.

The use of the discrete Steklov–Poincaré operator S

If ∂
◦
ωjD = ∅ we have ∂ωjN = ∂ω and Ŝjµjβ ,0) = 0 and Ŝj(ϕ∗j ,ψj) = ψj in the

corresponding terms of (6.45) and (6.46). In this case, the local pure Neumann problem
in ωj is still to be solved but is not necessary for the global equations (6.49).

Hence, let us now confine to the case where both ∂
◦
ωD 6= ∅ and ∂

◦
ωN 6= ∅ and drop j.

Again, we solve the problem in two steps. First compute the matrix S by using one of the
procedures in Section 6.2.1. By using S, the discrete Galerkin equations for (5.23) become∑

α

Sαβξα =
∑
ι

Mιβψ
∗
ι −

∑
τ

Sβτϕ
∗
τ with α, β ∈ ĨD , ι ∈ IN , τ ∈ ID . (6.70)

Now we define S̃ = ((Sβα)) as the corresponding ĨD× ĨD submatrix of the I ×I matrix S.
Note that S̃ is invertible for ∂

◦
ωD 6= ∅. This follows from the fact that any eigensolution in

the kernel of S̃ will also be in the kernel of S, i. e. a rigid motion which, however, cannot
vanish identically on ∂ωD. By solving equations (6.70) for ~ξ, the approximate solution uh

can be written as

uh = ϕ∗h +
∑
β

{∑
ι

(S̃−1M>)β,ιψ∗ι −
∑
τ

(S̃−1S)β,τϕ∗τ

}
µβ (6.71)
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where β ∈ ĨD , τ ∈ ID , ι ∈ IN . Here, it is understood that S̃−1 is extended by zero–
entries for the indices ID \ ĨD. Then

1
b` = −

∫
∂ω∩Υ

Ŝh(ϕ∗h,ψ) · ϕ`ds = −
∫

∂ω∩Υ

(Shuh) · ϕ`ds

= −
∑
τ

(
Cτ` − (C>S̃−1S)`,τ

)
ϕ∗τ −

∑
ι

(SS̃−1M>)`,ιψ∗ι with ` ∈ ND

for the macro–element contribution to the right–hand side in (6.45). Correspondingly,
with ϕ∗h = µβ and ψ∗h = 0 in (6.71) we find

Ûh(µβ ,0) = µβ −
∑
ς

(SS̃−1)β,ςµς where β ∈ IDΥ and ς ∈ ĨD .

This yields for the matrices in (6.45) and (6.46) the approximations

Ĉβ` =
∫

∂ω∩Υ

Ŝ(µβ,0) · ϕ`ds = Cβ,` − (SS̃−1C)β,` ,

Ŝβ,τ =
∫

∂ω∩Υ

Ŝ(µβ,0) · µτds = Sβ,τ − (SS̃−1S)β,τ where β, τ ∈ IDΥ , ` ∈ ND .

(6.72)

The coefficients dβ for the pure Dirichlet problem are defined by (6.52) and they are
computable via (6.62), (6.66). With these coefficients we obtain here

d̂β =
∫

∂ω∩Υ

(ϕ∗h − ϕ∗H) · Ŝ(µβ ,0)ds

= dβ −
∑
ς

(SS̃−1)β,ςdς where β ∈ IDΥ and ς ∈ ĨD .

Similar to the Neumann bases approach, we now are in the position to compute ~γj and
~α from (6.48) and (6.49) providing uH and uhj for j = 1, . . . ,M . To compute
λhj =

∑
ι ϑινι , ι ∈ IN , we write uh in (6.71) in short as

uh =
∑
α

ηαµα , α ∈ ID

and define here the approximation of local λ by

λh =
∑
α

ηαS
h(µα) =

∑
α

ηαP
h
<S

h(να)

and, by using (6.56), obtain

λh =
∑
α

ηα
∑
γ,ι

M+
γι〈µγ , Sµα〉νι =

∑
α,ι

(SM+)α,ιηανι . (6.73)

6.3 A simplified construction of the macro–stiffness matrix

If the Poincaré–Steklov operator Sh in symmetric form–based on the Dirichlet bases is
available (viz (6.67))then the global algebraic equations (6.18) or (6.49) can be simplified
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without explicit inversion of the matrices Ûj and Ŝj , respectively, provided the grids satisfy
additional mesh restrictions:

(R1) P<j
(ûH|∂ωj

) ⊂ H
1
2
0h(∂ωj) ; (R2) rank(

◦
Mj) = dimH

1
2
0h(∂ωj) . (6.74)

As we shall see, these assumptions allow the identification of P<j
uH and P<j

uhj on Υ.
Then the local λhj can be directly associated with Shj u

H .

We begin with the representation (6.43) of uH on the skeleton:

uH = ϕ∗H + uH0 = ϕ∗H +
∑
k

αkϕk , k ∈ ND . (6.75)

The basis function ϕk is only defined on Υ which will be extended to ∂ωj . Let

ϕ̂jk := ϕh∗jk + vh0jk on ∂ωj

where ϕh∗jk is a continuous fixed extension of ϕjk from Ĥ
1
2
h (∂ωj ∩Υ) to H̃

1
2
h

(
∂ωj \ (ΓD \Υ)

)
and vh0jk ∈ H̃

1
2
h (∂ωj ∩ ΓN \Υ).

To approximate Sjϕ̂jk = 0 on ∂ωjN = ∂ωj ∩ΓN \
◦
Υ we require that vh0jk is the solution

of
〈Shj vh0jk,wh

0 〉 = −〈Shj ϕh∗jk ,wh
0 〉 for all wh

0 ∈ H̃
1
2 (∂ωj ∩ ΓN \Υ) .

With vh0jk available, the extended basis functions ϕ̂jk are known on the whole ∂ωj . In
terms of the extended basis functions we will also express an extension of uH in the form

ûHj = ϕ∗Hj + uhjψ +
∑
k

αkϕ̂kj on ∂ωj (6.76)

where ϕ∗Hj ∈ H
1
2
h (∂ωj) is a fixed extension of ϕ∗H onto ∂ωj and uhjψ ∈ H

1
2 (∂ω ∩ ΓN \Υ)

is the local solution of

〈Shj uhjψ,wh
0 〉j = 〈ψ − Shj ϕ

∗H
j ,wh

0 〉 for all wh
0 ∈ H̃

1
2 (∂ω ∩ ΓN \Υ) .

Now we consider the weak coupling

〈uH − uhj ,χ
h ′〉j = 0 for all χh

′ ∈ Ĥ− 1
2 (∂ωj ∩ ΓN \Υ)

which becomes
〈ûH − uhj ,χ

h ′〉j = 0 for all χh
′ ∈ H− 1

2
h ′ (∂ωj) . (6.77)

These equations are the basis of the following lemma.

Lemma 3 Assume the mesh restrictions (R1), (R2) in (6.74). Then

P<j
(ûH|∂ωj

) = P h<j
ûH = P<j

uhj on ∂ωj . (6.78)

Proof: Again, we drop the index j. From the definition of P h< in (6.23) we have for any

wh =
∑
β wβ

◦
µβ ∈ H

1
2
0h(∂ωj)

P h<wh =
∑
α,ι

◦
M

+

αι〈νι,wh〉
◦
µα =

∑
α,β,ι

◦
M

+

αι

◦
Mιβwβ

◦
µα .
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Hence, with the properties of a pseudo–inverse,

〈ν%, P h<wh〉 =
∑
α,β,ι

◦
M

+

αι

◦
Mιβwβ〈ν%,

◦
µα〉 =

∑
α,β,ι

◦
M%α

◦
M

+

αι

◦
Mιβwβ =

∑
β

◦
M%βwβ = 〈ν%,wh〉

or
〈χh ′ , P h<wh〉 = 〈χh ′ ,wh〉 for all χh

′ ∈ H− 1
2

h ′ (∂ω) and wh ∈ H
1
2
0h(∂ω) . (6.79)

The rank condition (R2) implies the inequality

‖wh‖
H

1
2 (∂ω)

≤ γ0(h) sup
‖χh ′‖

H
− 1

2
0

(∂ω)

=1

|〈χh ′ ,wh〉|

with some γ0(h) > 0 which yields with (6.79)

‖wh − P h<wh‖
H

1
2 (∂ωj)

= 0 ;

i. e.
P h<wh = wh for every wh ∈ H

1
2
0h(∂ω)

and (6.78) with wh :=
(
P<ûH

)
|∂ω

∈ H
1
2
0h(∂ω) due to (R1). 2

Now the global equations corresponding to (6.45) take the form

aF (uH ,ϕ`) +
M∑
j=1

∮
∂ωj

λh
′

j · ϕ̂j`ds =
∫

ΓN

ψ · ϕ`ds for all ` ∈ ND .

With
λh

′
j = Shj û

H
j = Shj ϕ

∗H
j + Shj u

h
jψ +

∑
k

αkS
h
j ϕ̂jk (6.80)

we obtain the global equations

∑
k∈NF

αkaF (ϕk,ϕ`) +
M∑
j=1

αk〈Shj ϕ̂jk, ϕ̂j`〉j

=
∫

ΓN

ψ · ϕ`ds− aF (ϕ∗H ,ϕ`)−
M∑
j=1

〈Shj ϕ∗H + Shj u
h
jψ, ϕ̂j`〉j

(6.81)

or, in terms of matrix and vector notation

A~α+
M∑
j=1

Aj~α = z . (6.82)

where Aj = ((〈Shj ϕ̂jk, ϕ̂j`〉j)) is the stiffness matrix contribution from the macro element
ωj and the vector z is defined from the right–hand side of the global equation (6.81). Note
that in this formulation the local Steklov–Poincaré operators Shj are used directly without
inversions as in (6.49).

Finally, from (6.78), the local solutions uhj can be determined up to rigid motions from
(6.76) once ~α is computed from solving (6.82). Correspondingly, λh

′
j is given by (6.80).
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7 Stability and Convergence

The stability and convergence results depend on how the local Poincaré–Steklov or Steklov–
Poincaré operators, respectively, are approximated. In case the approximations preserve
the corresponding strong ellipticity properties of the original mappings, one obtains sta-
bility which implies that the well known Babuška–Brezzi inf–sup conditions for the mixed
formulation are satisfied and we do not need to corrolate the meshes of the finite– and
skeleton elements to the local boundary element meshes. Then Cea’s convergence lemma
follows in the standard manner.

On the other hand, if coercivity is not preserved on the discrete spaces, our proof of the
stability is more involved and requires additional restrictions such as inverse assumptions
and mesh restrictions.

We begin with the error analysis of the discretizations with local Neumann bases.

7.1 Stability and convergence with local Neumann bases

7.1.1 Coercive approximate Poincaré–Steklov mappings

We first show that the construction of Ûh
′

in Section 6.1 with the discrete symmetric

formulation (6.30) provides the discrete Ĥ
− 1

2
0 (∂ω ∩ Υ)–ellipticity without any restric-

tions on the meshes. For ease of reading, the macro–element index j is occasionally
suppressed.

Lemma 4 If U is defined by the discrete symmetric approximation (6.30) and Ûh
′
is the

corresponding approximation in (6.37) then Ûh
′
is Ĥ

− 1
2

0 (∂ω ∩Υ)–elliptic on Ĥ− 1
2

h ′ , i. e.∫
∂ω

Ûh
′
(0,χh

′
) · χh ′ds ≥ γ0‖χh

′‖2

Ĥ− 1
2 (∂ω∩Υ)

for all χh
′ ∈ Ĥ− 1

2
h ′ (∂ω ∩Υ) . (7.1)

Moreover, Uh
′
as well as Ûh

′
are uniformely bounded, i. e.

‖Uh ′χ‖
H

1
2 (∂ω)

≤ c‖χ‖
H− 1

2 (∂ω)
(7.2)

or

‖Ûh ′(ϕ,χ)‖
H

1
2 (∂ω)

≤ c‖χ‖
Ĥ− 1

2 (∂ω∩Υ)
+ c‖ϕ‖

H
1
2 (∂ω∩ΓD\

◦
Υ)

for χ ∈ H− 1
2

0 (∂ω) ,(7.3)

respectively, where the constant c is independent of h ′.

Proof: For any given χh
′ ∈ Ĥ− 1

2
h ′ (∂ω ∩Υ), the definition of λh

′
0 ∈ H̃− 1

2
h ′ (∂ωD) via (6.36),

(6.37) is equivalent to the Galerkin approximation of (4.38), i. e.

〈νh ′ , Uh ′λh ′0 〉 = −〈νh ′ , Uh ′χh ′〉 for all νh
′ ∈ H̃− 1

2
h ′ (∂ωD) ,

which is particularly true for νh
′
= λh

′
0 . From Ûh

′
(0,χh

′
) = Uh

′
(χh

′
+ λh

′
0 ), it follows

that

〈Ûh ′(0,χh ′),χh ′〉 = 〈Uh ′(χh ′ + λh
′

0 ),χh
′〉 = 〈Uh ′(χh ′ + λh

′
0 ),χh

′
+ λh

′
0 〉 .
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Since the symmetric approximation Uh
′

is H
− 1

2
0 (∂ω)–elliptic on H− 1

2
h ′ due to (4.18), this

implies that

〈Ûh ′(0,χh ′),χh ′〉 ≥ γ0‖χh
′
+ λh

′
0 ‖2

H− 1
2 (∂ω)

≥ γ0‖χh
′
+ λh

′
0 ‖2

H− 1
2 (∂ωN )

= γ0‖χh
′‖2

H− 1
2 (∂ωN )

≥ γ0‖χh
′‖2

Ĥ− 1
2 (∂ω∩Υ)

.

2

For the uniform boundedness of Uh
′
we first consider the case ∂

◦
ωD = ∂ω ∩ ΓD \ Υ = ∅.

Let ũh ∈ H
1
2
0h(∂ω) be given by the Galerkin solution of

〈 ◦u
h
, Dũh〉 = 〈 ◦u

h
, (1

2I −K ′)χ〉 for all
◦
µ
h
∈ H

1
2
0h(∂ω)

for any given χ ∈ H− 1
2

0 (ω). Since Uχ satisfies the equations

〈 ◦u
h
, DUχ〉 = 〈 ◦u

h
, (1

2I −K ′)χ〉 for all
◦
µ
h
∈ H

1
2
0h(∂ω) ,

it follows from the H
1
2
0 (∂ω)–ellipticity of D in (4.29) that

‖ũh − Uχ‖
H

1
2 (∂ω)

≤ c‖Uχ‖
H

1
2 (∂ω)

≤ c ′ ‖χ‖
H− 1

2 (∂ω)

where c and c ′ are independent of h. By the definition of Uh
′
χ via (6.30) we have

Uh
′
χ = Ph ′(1

2I −K)ũh + Ph ′V χ .

Hence, with (6.6) and the triangle inequality, we obtain

‖Uh ′χ‖
H

1
2 (∂ω)

≤ c‖ũh‖
H

1
2 (∂ω)

≤ c ′ ‖χ‖
H− 1

2 (∂ω)
≤ c′′‖χ‖

H− 1
2 (∂ω)

,

where the constant c′′ is independent of h and h ′, i. e. (7.2).

For the case ∂
◦
ωD 6= ∅ and for any χ ∈ Ĥ− 1

2 (∂ω ∩Υ) the define the prolongation

χ∗h
′
:= ℘νPh ′χ ∈ H

− 1
2

h ′ (∂ω)

and decompose

χh
′
= χ∗h

′
+ λh

′
0 with λh

′
0 ∈ H̃− 1

2
h (∂ωD) .

The definition of Ûh
′
(ϕ,χ) implies

Ûh
′
(ϕ,χ) = Uh

′
χh

′
= Uh

′
χ∗h

′
+ Uh

′
λh

′
0

where λh
′

0 is the solution of the Galerkin equations

〈Uh ′λh ′0 , ν
h ′〉 = 〈ϕ− Uh

′
χ∗h

′
, νh

′〉 for all νh
′ ∈ H̃− 1

2
h ′ (∂ω) .

The coerciveness of Uh
′
implies the estimate

‖λh ′0 ‖H− 1
2 (∂ω)

≤ c

{
‖ϕ‖

H
1
2 (∂ωD)

+ ‖χ∗h ′‖
H− 1

2 (∂ω)

}
(7.4)
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where c is independent of h ′.

Recalling the definition of Ûh
′
(ϕ,χ), we find

‖Ûh ′(ϕ,χ)‖
H

1
2 (∂ωD)

≤ c

{
‖χ∗h ′‖

H− 1
2 (∂ω)

+ ‖λh ′0 ‖H− 1
2 (∂ω)

}
with the help of (7.2). Inserting (7.4) and using

‖χ∗h ′‖
H− 1

2 (∂ω)
≤ c‖χ‖

Ĥ− 1
2 (∂ω∩Υ)

which is obtained from (6.6) and (6.8), we find the desired uniform boundedness of Ûh
′
.

Clearly, the system (6.13), (6.14) is equivalent to the variational formulation:

Find

(uH0 ,λ
h ′
j0 ) ∈ HN

h ′ := HHD ×
M∏
j=1

Ĥ− 1
2

h ′ (∂ωj ∩Υ)

such that

A(uH0 ,λ
h ′
j0 ;vH ,χh

′
j ) := aF (uH0 ,v

H) +
M∑
j=1

{〈λh ′j0 ,vH〉j − 〈χh ′j ,uH0 〉j + 〈χh ′j , Ûh
′

j (0,λh
′

j0 )〉j}

= L(vH ,χh
′

j ) for all vH ∈ HHD,χ
h ′
j ∈ Ĥ− 1

2 (∂ωj ∩Υ) (7.5)

where

L(vH ,χh
′

j ) :=
∫

(∂ΩF∪Υ)∩ΓN

ψ · vHds− aF (ϕ∗H ,vH)

+
M∑
j=1

{〈χh ′j ,ϕ∗H〉j − 〈ψ∗h ′j ,vH〉j − 〈χh ′j , Ûh
′

j (ϕ,ψ∗h
′

j )〉j} . (7.6)

Based on the property (7.1), it follows easily that A satisfies the BBL–condition. (For
the BBL–condition and its extensions see [8, II.1.2].)

Theorem 5 Under condition (7.1), the bilinear from A in (7.5) satisfies the BBL–condition

sup
(vH ,χh ′

j )∈HN
h ′

|A(uH0 ,λ
h ′
j0 ;vH ,χh

′
j )|

/{
‖vH‖HHD

+
M∑
j=1

‖χh ′j ‖Ĥ− 1
2 (∂ωj∩Υ)

}

≥ γ0

{
‖uH0 ‖HHD

+
M∑
j=1

‖λh ′0j ‖Ĥ− 1
2 (∂ωj∩Υ)

}
,

(7.7)

where γ0 > 0 is a constant independent of H and h ′.

Proof: The result follows immediately by choosing (vH ,χh
′

j ) = (uH0 ,λ
h ′
0j ) with the

help of the coercivity condition (3.9) for aF , assumption (7.1) for Ûh
′

and the uniform
boundedness (7.2) or (7.3) . 2

As a consequence of the stability result (7.4) given in Theorem 5, Céa’s lemma is valid
[8, II.2.4]. This together with the approximation properties (6.3) and (6.5) yields the
asymptotic error estimate:
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Corollary 6 There exist constants c1, c2 which are independent of H and h ′ such that

‖u− uH‖H +
M∑
j=1

‖Tju− λh
′

j ‖Ĥ− 1
2 (∂ωj∩Υ)

≤ c1 inf
vH∈HH

‖u− vH‖H + c2 inf
χh ′∈H

− 1
2

h ′

M∑
j=1

‖Tju− χh
′‖
H− 1

2 (∂ωj)

≤ c1
′Ht−1‖u‖Ht(Ω) + c2

′ h′s+
1
2 ‖u‖Hs+3/2(Ω) (7.8)

where 1 ≤ t ≤ d and −1
2 ≤ s ≤ d′′.

We note that in the estimate (7.8), the error contribution (Tju−λh
′

j ) is only available
on ∂ωj∩Υ. For the estimate of the remaining part and for the estimate of ‖uhj −u‖

H
1
2 (∂ωj)

we present the following results.

Corollary 7 There exist constants c1, c2, c3 which are independent of H,h and h ′, such
that

‖u− uH‖H +
M∑
j=1

(
‖Tju− λh

′
j ‖H− 1

2 (∂ωj)
+ ‖u− uhj ‖H 1

2 (∂ωj)

)

≤ c1 inf
vH∈HH

‖u− vH‖H + c2

M∑
j=1

inf
µh∈H

1
2
h

‖u− µh‖
H

1
2 (∂ωj)

+ c3

M∑
j=1

inf
χh ′∈H

− 1
2

h ′

‖Tju− χh
′‖
H− 1

2 (∂ωj)

≤ c1
′Ht−1‖u‖Ht(Ω)+ + c2

′ h′s
′− 1

2 ‖u‖
Hs ′ +1

2 (Ω)
+ c3

′ hs+
1
2 ‖u‖

Hs+3
2 (Ω)

(7.9)

where 1 ≤ t ≤ d , 1
2 ≤ s ′ ≤ d ′ and −1

2 ≤ s ≤ d′′, which becomes the right–hand side of
(7.8) if we can choose d ′ = d′′ + 1 and s ′ = s+ 1.

Proof: The proposed estimate will be a consequence of the stability of λhj on the whole
∂ωj . For simplicity, in what follows, the subscript j will be suppressed. We recall that
λh is defined by (6.31), (6.35)–(6.37) where Uh is given in matrix form by (6.30). This is
equivalent to the Galerkin equations

〈Uh ′λh ′ ,χh ′0 〉 = 〈ϕ,χh ′0 〉 for all χh0 ∈ H̃
− 1

2
h ′ (∂ωD) .

From λh
′ ∈ Ĥ− 1

2
h ′ (∂ω ∩Υ) we now take the prolongation

℘ν(λh
′ |∂ω∩Υ) ∈ H̃− 1

2
h ′

(
∂ω \ (ΓN \Υ)

)
⊂ H− 1

2
h ′ (∂ω)

and obtain for
λh

′
0 := λh

′ − ℘ν(λh
′ |∂ω∩Υ) ∈ H̃− 1

2
h ′ (∂ωD)

the Galerkin equations

〈Uh ′λh ′0 ,χ
h ′
0 〉 = 〈ϕ− Uh

′
℘ν(λh

′ |∂ω∩Υ),χh
′

0 〉 .
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The definition of Uh
′
via (6.30), (6.31) and based on (4.32), together with the coerciveness

of V in (4.18) yields with χh
′

0 = λh
′

0 the inequality

α0‖λh
′

0 ‖2

H
− 1

2
0 (∂ω)

≤ c

{
‖ϕ‖

H
1
2 (∂ωD)

+ ‖Uh ′℘ν(λh
′ |∂ω∩Υ)‖

H
1
2 (∂ω)

}
‖λh ′0 ‖

H
− 1

2
0 (∂ω)

.

Hence, with the realtion between λh
′

0 and λh
′
and the prolongation assumption (6.8) we

find the stability estimate

‖λh ′‖
H− 1

2 (∂ω)
≤ c

(
‖ϕ‖

H
1
2 (∂ωD)

+ ‖λh ′‖
Ĥ− 1

2 (∂ω∩Υ)

)
. (7.10)

Based on this estimate, we also obtain stability for uh =
◦
u
h

+ r∗ defined by (6.38)–(6.40):

‖ ◦u
h
‖
H

1
2 (∂ω)

= ‖
◦
P hU

h ′λh
′‖
H

1
2 (∂ω)

≤ c‖λh ′‖
H− 1

2 (∂ω)
≤ c

(
‖ϕ‖

H
1
2 (∂ωD)

+ ‖λh ′‖
Ĥ

1
2 (∂ω∩Υ)

)
, (7.11)

‖r∗‖
H

1
2 (∂ω)

≤ c

{
‖ϕ‖

H
1
2 (∂ω)

+ ‖ψ‖
H− 1

2 (∂ω)
+ ‖ ◦u

h
‖
H

1
2 (∂ω)

}

Here
◦
P h denotes the L2–projection onto H

1
2
0h(∂ω) satisfying (6.6). Hence, we finally obtain

from (7.10) and (7.11) the stability estimate

‖uh‖
H

1
2 (∂ω)

≤ c‖u‖H1(Ω) .

Collecting the stability estimates for uH ,λh
′

and uh, we see that the family of linear

Galerkin projectors H1(Ω) 3 u 7→ (uH ,uhj ,λ
h ′
j ) ∈ HH ×

∏M
j=1

(
H

1
2
jh(∂ωj)×H

− 1
2

jh ′(∂ωj)
)

is
uniformly bounded. Then Cea’s lemma follows and the appoximation properties give the
desired asymptotic estimates [7,II.2.4]. 2

Remark 7.1: For the computations we have employed the Neumann series approach
which, in general, does not provide stability and convergence without additional restric-
tions on the relation between the mesh sizes H,h and h ′.

In addition, in our actual computations and also in [58], the convergence of the Neu-
mann series is controlled numerically for fixed H. Then, by using the spectrum of the
matrix ((〈Ŝkj (ϕ`),ϕk〉j)) or of B>j Û−1

j B̂j as an indicator, the mesh size h is adapted in
order to ensure the condition (7.1).

7.1.2 Neumann bases on restricted grids

In what follows, we give a rigorous proof of asymptotic stability and convergence in case of
utilizing the boundary integral equation of the second kind (6.21) by (6.25) or the Neumann
series approach (6.27) if the grids satisfy appropriate additional assumptions. In this
case, our analysis is based on the coerciveness condition (7.1).

More precisely, as we shall see, our several additional mesh restrictions are the

(CF) coarse–fine grid relation

h ≤ h ′ ≤ c0H , (7.12)
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(with a constant c0 to be chosen small enough) the inverse assumption (6.4), the restric-
tions (R1) and (R2) (6.74) and the condition (B1) (4.24) for the Neumann series.

In this case, as in [61], the asymptotic error analysis is based on an auxiliary problem
associated with the coarse grid approximation uH given on ΩF ∪Υ with uH = ϕ on ΓD∩Υ.
We define an auxiliary function ûH in the following way:

ûH := uH on ΩF

whereas on each of the macroelements ωj we determine ûH by solving the mixed boundary
value problem

PûHj = 0 in ωj ;
ûHj = uH on ∂ωj ∩Υ and ûHj = ϕ on ∂ωjD ;

T ûHj = ψ on ∂ωjN \Υ ;
(7.13)

i. e. ûHj is the P–harmonic extension into ωj .

Then ûH ∈ H1(Ω) ∩ C0(Ω) and the familiy of auxiliary functions form a family of
generalized conforming finite elements associated with the coarse grid approximation. We
denote this function space by ĤH . The corresponding test function space is then defined
by

ĤHD :=
{
ŵH

0 ∈ H1(Ω) ∩ C0(Ω)
∣∣∣ŵH

0 = 0 on ΓD ∩Υ , ŵH
0|ΩF

= wH
0 ∈ H1

H(ΩF ) ,

PŵH
0 = 0 in ωj , ŵH

0 |∂ωj
= wH

0 |∂ωj
, ŵH

0 |∂ωjD
= 0 , TjŵH

0 = 0 on ∂ωjN \Υ .
}

(7.14)
By using ûH and the true solution u we now may rewrite equations (6.13) and (6.14) as
modified standard Galerkin FE equations:

aΩ(ûH , v̂H0 ) = aF (ûH , v̂H0 ) +
M∑
j=1

aωj (û
H , v̂H0 )

= aF (uH ,vH0 ) +
M∑
j=1

∮
∂ωj

v̂H0 · TjûHds

= aF (uH ,vH0 ) +
M∑
j=1

∮
∂ωj

v̂H0 · λh ′j ds+
M∑
j=1

∮
∂ωj

v̂H0 · (TjûH − λh ′j )ds

= aF (u,vH0 ) +
M∑
j=1

∮
∂ωj

v̂H0 · Tjuds+
M∑
j=1

∮
∂ωj

v̂H0 · (TjûH − λh ′j )ds ,

i. e.

aΩ(ûH , v̂H0 ) = aΩ(u, v̂H0 ) +
M∑
j=1

∮
∂ωj

v̂H0 · (TjûH − λh ′j )ds for all v̂H0 ∈ ĤHD . (7.15)

With ûH = ϕ̂∗H + ûH0 where ûH0 ∈ ĤHD, the H1
D(Ω)–ellipticity of aΩ yields for v̂H0 = ûH0

the inequality

α0‖ûH0 ‖2
H1(Ω) ≤ c1(‖ϕ̂∗H‖H1(Ω) + ‖u‖H1(Ω))‖ûH0 ‖H1(Ω)

+
M∑
j=1

c2j‖TjûH − λh ′j ‖H− 1
2 (∂ωj)

‖ûH0 ‖H 1
2 (∂ωj)

.
(7.16)

Next, we need to estimate the last terms on the right–hand side.
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Lemma 8 Let uH and λh
′

j be the solution of (6.13), (6.14) with Ûj realized via (6.25) and
(6.37). Let δ be chosen with 0 < δ < 1

2 . Then

‖TjûH −λh
′

j ‖H− 1
2 (∂ωj)

≤ cj‖P<j
ûH −P h<j

ûH‖
H

1
2 (∂ωj)

+ cj
′ h′δ‖TjûH‖

H− 1
2+δ(∂ωj)

. (7.17)

Proof: Since the proof concerns only ωj , we suppress the index j. We begin with the
case ∂

◦
ωD = ∅. Similar to (7.15) replacing (6.13), the equations of weak coupling (6.14)

are equivalent to

〈χh ′ , ûH − uh〉 = 0 for all χh
′ ∈ H− 1

2
h ′ (∂ω)

with uh ∈ span{
◦
µα} , α ∈ I0D. Hence, with (6.23),

uh = P h<ûH .

Since ûH in ω is the P–harmonic extension, the boundary integral equation

P<(1
2I +K)P<ûH = P<V (T ûH) on ∂ω

is satisfied, whereas uh satisfies the Galerkin equations

〈χh ′ ,uh − P<(1
2I −K)uh〉 = 〈χh ′ , V λh ′〉

corresponding to (6.21) and (6.25). Hence,

〈χh ′ , {(uh − P<ûH)− (1
2I −K)(uh − P<ûH)}〉 = 〈χh ′ , V (λh

′ − T ûH)〉 , (7.18)

which is equivalent to

〈χh ′ , V λh ′〉 = 〈χh ′ , V {T ûH − V −1{(uh − P<ûH)− (1
2I −K)(uh − P<ûH)}}〉 . (7.19)

Then the asymptotic error estimates for Galerkin’s method with V on H− 1
2

h ′ yield the
estimate (7.17).

If ∂
◦
ωD 6= ∅ then (uh−P h<ûH)|∂ωD

= 0 and uh,λh
′
are related by the Galerkin solution

of the mixed boundary value problem. Therefore, the equations (7.18) are still satisfied,
not only on ∂ωN but also on ∂ωD. Then (7.17) follows in the same manner. 2

Corollary 9 If under condition (B1) the Neumann series (6.27) with (6.28) is used for
utilizing Û then there exists h0 > 0 and to every ε > 0 there exists r0(ε) ∈ IN such that

‖(Uh
′(r)

j − Uh
′

j )λh
′

j ‖H 1
2 (∂ωj)

≤ ε‖λh ′j ‖H− 1
2 (∂ωj)

(7.20)

for all r ≥ r0 and all 0 < h ′ ≤ h0. Moreover, then, with δ(0, 1
2) from Lemma 8,

‖TjûH − λh ′j ‖
H
− 1

2
0 (∂ωj)

(7.21)

≤ cj‖P<j
ûH − P h<j

ûH‖
H

1
2 (∂ωj)

+ cjh
′δ‖TjûH‖

H− 1
2+δ(∂ωj)

+ cj
′ ε‖P h<j

ûH‖
H

1
2 (∂ωj)

where cj and cj ′ are independent of h, h ′,H, ε (but may depend on ωj).
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Proof: Again, we omit j. First we consider the case ∂
◦
ωD = ∅. Let % < 1 be the spectral

radius of (1
2I − K). We first show, that the Galerkin equations (6.24), (6.25) define a

so–called a–proper approximation family Uh
′
to U .

Definition: The family of operators Ah : X → Y approximating A : X → Y is
called a–proper (approximation–proper) if every bounded sequence {Λh} ⊂ X with
limh→0A

hΛh = v ∈ Y contains a convergent subsequence Λh̃ → Λ and the limit Λ satisfies
AΛ = v.

If Uh
′
λh

′
= wh ∈ H

1
2
h we choose to w = limh ′→0 wh in H

1
2
0 (∂ω) the element λ := Sw.

Then, by definition of Uh
′
, we have the Galerkin equations

〈vι,wh − (1
2I −K)wh〉 = 〈vι, V λh

′〉 for all ι ∈ IN
and

w − (1
2I −K)w = V λ .

Hence, from the Galerkin approximation with V we obtain

‖λh ′ − λ‖
H− 1

2 (∂ω)
≤ c1‖(I − (Ph ′V Ph ′)−1Ph ′V )λ‖

H− 1
2 (∂ω)

+ c2‖w −wh‖
H

1
2 (∂ω)

and λh
′ → λ for h ′ → 0. Then, the family Uh

′
is here a–proper for U . In this case

it is known that for h ′ → 0 the spectral sets converge [29]. Hence, there exists h0 > 0

and 0 < %0 < 1, such that for all 0 < h ′ ≤ h0 the spectral radii of {(1
2

◦
M −

◦
K)

◦
M

+

} can
uniformly be bounded by %0 [29]. As a consequence,

‖Uh ′(r) − Uh
′‖
H− 1

2 (∂ωj)→H
1
2 (∂ωj)

≤ c%r0 (7.22)

where c is independent of r and h ′ and h. Since U is invertible on H− 1
2 (∂ω)/<, so is U (r)

for r ≥ r0 and (7.22) implies a uniform bound

‖(Uh ′(r))−1‖
H

1
2 (∂ωj)→H− 1

2 (∂ωj)
≤M .

Since Uh
′(r) is used instead of Uh

′
, here the weak coupling equation (6.14) reads

Uh
′(r)λh

′
= P h<ûH ; and Uh

′
λh

′
= P h<ûH + (Uh

′ − Uh
′(r))λh

′

implies

〈χh ′ , V (λh
′ − P h<Tjû

H)〉 = 〈χh ′ , (1
2I +K)(P h< − P<)ûH + (Uh

′ − Uh
′(r))λh

′〉

for all λh
′ ∈ H− 1

2
h ′ (∂ω). These Galerkin equations, together with continuity yield the

estimate

‖T ûH − λh‖
H− 1

2 (∂ω)

≤ c‖P<ûH − P h<ûH‖
H

1
2 (∂ω)

+ ch′δ‖T ûH‖
H− 1

2+δ(∂ω)
+ c ′ %r0‖λh

′‖
H− 1

2 (∂ω)
.

Choose r0 such that %r00 ·M < ε and use ‖λh ′‖
H− 1

2 (∂ω)
≤M‖P h<û‖

H
1
2 (∂ω)

to obtain (7.21).

For ∂
◦
ωD 6= ∅, the proposition follows in the same manner as in Lemma 8. 2

In the Lemma 8 and the Corollary 9 we see that the term P<j
ûH −P h<j

ûH appears in
all the estimates. But as we have seen in Lemma 3 this term vanishes under the rather
mild mesh restrictions (R1), (R2) in (6.74).
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Theorem 10 Assume that the assumptions of Lemma 8 (and Corollary 9 for the Neu-
mann series approach) and, in addition, the mesh restrictions (R1), (R2) are satisfied.
Then we have the asymptotic stability estimate

‖uH‖H +
M∑
j=1

(
‖λh ′j ‖H− 1

2 (∂ωj)
+ ‖uhj ‖H 1

2 (∂ωj)

)
≤ c‖u‖H1(Ω) (7.23)

for all 0 < h ′ ≤ h0 with a constant c independent of h ′,H provided the constant c0 > 0
in the coarse–fine grid relation (CF) in (7.12) is sufficiently small.

Under the above conditions, the asymptotic error estimates in the Corollaries 6 and 7
are valid again.

Proof: We begin with the estimate (7.16) for the P–harmonic extension ûH0 = ûH− ϕ̂∗H
and make use of (7.17) (or (7.21) in the case of the Neumann series–approach). This yields

α0‖ûH0 ‖2
H1(Ω) ≤ c1

(
‖ϕ̂∗H‖H1(Ω) + ‖u‖H1(Ω)

)
‖ûH0 ‖H1(Ω)

+
M∑
j=1

cj(h′δ‖TjûH‖
H− 1

2+δ(∂ωj)
+ ε‖P<ûH‖

H
1
2 (∂ωj)

)‖ûH0 |∂ωj
‖
H

1
2 (∂ωj)

.

(7.24)
By using the inverse assumption (6.4) on ∂ωj together with the coarse–fine grid relation
(CF) in (7.12), we obtain the estimate

h′δ‖TjûH‖
H− 1

2+δ(∂ωj)
≤ cjc

δ
0‖ûH‖H1(∂ωj) . (7.25)

From (7.25) and (7.24) we now conclude

α0‖ûH0 ‖2
H1(Ω) ≤ c1

(
‖ϕ̂∗H‖H1(Ω) + ‖u‖H1(Ω)

)
‖ûH0 ‖H1(Ω)

+ (cδ0 + ε)c1 ′
M∑
j=1

‖ûH0 ‖2
H1(∂ωj)

+ c2(cδ0 + ε)‖ϕ̂∗H‖H1(Ω)‖ûH0 ‖H1(Ω) .

We now require c0 and ε sufficiently small so that c0 + ε ≤ 1
2α0. Then we obtain the

desired stability result for ‖ûH0 ‖H1(Ω) and, hence, for ‖ûH‖H1(Ω). Since ûH is the harmonic
extension of uH , we obtain from (7.13) the stability estimate (7.23) for ‖uH‖H,i. e.

‖uH‖H ≤ c‖u‖H1(Ω) .

For the local λh
′

j we use (7.19) where uhj = P<j
ûH due to (R1). This implies

‖λh ′j ‖H− 1
2 (∂ωj)

≤ cj‖TjûH‖
H− 1

2 (∂ωj)
≤ cj

′ ‖ûH‖H1(ωj)

and

‖uhj ‖H 1
2 (∂ωj)

≤ cj‖ûH‖H1(ωj) .

Collecting these inequalities yields the final estimate (7.23). 2
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7.2 Stability and convergence with local Dirichlet bases

7.2.1 Coercive approximate Steklov–Poincaré mappings

In contrast to Section 7.1.1 we show now that the construction of Ŝh in (6.67) and (6.72)
provides discrete H

1
2 (∂ωj)/< or Ĥ

1
2 (∂ωj ∩ Υ)–ellipticity. Again, we do not need any

additional restriction on the grids — as in Section 7.1.1.

Lemma 11 If S is defined by the discrete symmetric approximation (6.67) then Sh is
H

1
2 (∂ω)/<–elliptic,i. e.∫

∂ω

Sh(wh) ·whds ≥ γ0‖wh‖2

H
1
2 (∂ω)/<

for all wh ∈ H
1
2
h (∂ω) . (7.26)

If, in addition, ∂
◦
ωjN 6= ∅ and Ŝh is defined via (6.72) then Ŝh is Ĥ

1
2 (∂ω ∩Υ)–elliptic, i.

e. ∫
∂ω

Ŝh(wh,0) ·whds ≥ γ0‖wh‖2

Ĥ
1
2 (∂ω∩Υ)

. (7.27)

Moreover, Sh as well as Ŝh are uniformely bounded, i. e.

‖Shw‖
H− 1

2 (∂ω)
≤ c‖w‖

H
1
2 (∂ω)

(7.28)

or

‖Ŝh(w,ψ)‖
H− 1

2 (∂ω)
≤ c

{
‖w‖

H
1
2 (∂ω∩Υ)

+ ‖ψ‖
H− 1

2 (∂ω∩ΓN\Υ)

}
(7.29)

respectively, where the constant c is independent of h.

Proof: In the case ∂
◦
ωN 6= ∅, for (7.26), it follows from (6.67) that∫

∂ω

Sh(wh) ·whds ≥
∫
∂ω

wh ·Dwhds ≥ γ0‖wh‖2

H
1
2 (∂ω)/<

,

because of (4.29).

Let λh
′
be given by the solution of

〈χh ′ , V λh ′〉 = 〈χh ′ , (1
2I +K)w〉 .

Since Sw satisfies

〈χh ′ , V Sw〉 = 〈χh ′ , (1
2I +K)w〉 ,

and the Galerkin method for the operator V is stable (cf. (4.18)) we find

‖λh ′ − Sw‖
H− 1

2 (∂ω)
≤ c‖Sw‖

H− 1
2 (∂ω)

≤ c ′ ‖w‖
H

1
2 (∂ω)

where c ′ is independent of h ′. The definition of Sh via (6.67) means

Shw = Ph(I +K ′)λh
′
+ PhDw .

Hence, with (6.6) and the triangle inequality, we obtain

‖Shw‖
H− 1

2 (∂ω)
≤ c‖λh ′‖

H− 1
2 (∂ω)

+ c ′ ‖w‖
H

1
2 (∂ω)

≤ c′′‖Shw‖
H− 1

2 (∂ω)
+ c ′ ‖w‖

H
1
2 (∂ω)

≤ c′′′‖w‖
H

1
2 (∂ω)

.
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In the case ∂
◦
ωN 6= ∅ let us first recall the construction of Ŝh(w,0) from (6.70)–(6.72).

Let λ̂h
′

:= Ŝh(w,ψ) ∈ H− 1
2

h ′ (∂ω \ ∂ωN ) and w∗h := ℘µPhw be the prolongation of
Phw. The construction of Ŝh is now equivalent to finding

wh = w∗h + wh
0 ∈ H̃

1
2
h (∂ω \ (∂ωD \Υ))

satisfying the Galerkin equations∫
∂ω

(Shwh) · vh0ds =
∫
∂ω

ψ · vh0ds

or ∫
∂ω

(Shwh
0 ) · vh0ds =

∫
∂ω

(ψ − Shw∗h) · vh0ds for all vh0 ∈ H̃
1
2
h (∂ωN ) . (7.30)

Here wh
0 ∈ H̃

1
2
h (∂ωN ) is to be determined such that Ŝh(wh,ψ) = Sh(wh). We therefore

define
Ŝh(w,ψ) = Shw∗h + Shwh

0 .

Note that (7.30) has a unique solution wh
0 if ∂ωN 6= ∂ω and is unique up to a rigid

motion if ∂
◦
ωj ∩ΓD \Υ = ∅, i. e. ∂ωN = ∂ω. With wh determined, we have in the special

case ψ = 0, from (7.26)∫
∂ω

Ŝh(wh,0) ·whds =
∫
∂ω

Sh(wh) ·whds ≥ γ0‖wh‖2

H
1
2 (∂ω)/<

.

For the remaining case in (7.27) with ∂ωD \Υ 6= ∅ we proceed as follows:

We note that ‖v‖
H

1
2 (∂ω)/<

is equivalent to aω(v,v) where v is the P–harmonic exten-

sion of v ∈ H
1
2 (∂ω) to v ∈ H1(ω). As in the proof of Theorem 2,

aω(v,v) ≥ α‖v‖2

Ĥ
1
2 (∂ω∩Υ)

as in the case ∂ωD \Υ 6= ∅.
With the previous uniform boundedness (7.28) of Sh and (7.26), (7.30) it follows that

‖w0‖
H

1
2 (∂ω)

≤ c‖Shw∗h‖
H− 1

2 (∂ω)
+ c‖ψ‖

H− 1
2 (∂ω∩ΓN\

◦
Υ)

≤ c ′ ‖℘µPhw‖
H

1
2 (∂ω)

+ c‖ψ‖
H− 1

2 (∂ω∩ΓN\
◦
Υ)

≤ c‖w‖
Ĥ

1
2 (∂ω∩Υ)

+ c‖ψ‖
H− 1

2 (∂ω∩ΓN\
◦
Υ)

and, correspondingly,

‖Ŝh(w,ψ)‖
H− 1

2 (∂ω)
≤ c

{
‖w∗h‖

H
1
2 (∂ω)

+ ‖v0‖
H

1
2 (∂ω)

) + c‖ψ‖
H− 1

2 (∂ω∩ΓN\
◦
Υ)

}
≤ c‖w‖

Ĥ
1
2 (∂ω∩Υ)

+ c‖ψ‖
H− 1

2 (∂ω∩ΓN\
◦
Υ)
.

2

Similar to Section 7.1.1, the discrete system (6.45), (6.46) is equivalent to the varia-
tional formulation:
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Find

(uH ,uhj0) ∈ HD
h := HHD ×

M∏
j=1

Ĥ
1
2
h (∂ωj ∩Υ)

such that

B(uH0 ,u
h
j0;v

H ,wh
j ) := aF (uH0 ,v

H)

+
M∑
j=1

(
〈Ŝhj (uhj0,0);vH〉j − 〈Ŝhj (wh

j ,0),uH0 〉j + 〈Ŝhj (wh
j ,0),uhj0〉j

)
= M(vH ,wh

j ) for all (vH ,wh
j ) ∈ HD

h (7.31)

where

M(vH ,wh
j ) =

∫
ΓN∩∂ΩF∪Υ

ψ · vHds−
M∑
j=1

∫
∂ωj∩Υ

Ŝhj (ϕ∗j ,ψ
∗
j ) · vHds

+
M∑
j=1

∫
∂ωj∩Υ

(ϕ∗Hj − ϕ∗hj ) · Ŝhj (wh
j ,0)ds

(7.32)

is the given linear functional defined by (6.45) and (6.46).

Based on Lemma 11, Theorem 5 and Corollary 6 now are replaced by:

Theorem 12 If (7.26) and (7.27) are satisfied then the bilinear form B in (7.31) satisfies
the BBL–condition

sup
(vH ,wh

j )∈HD
h

|B(uH0 ,u
h
j0;v

H ,wh
j )|
/
{‖vH‖HHD

+
M∑
j=1

‖wh
j ‖Ĥ 1

2 (∂ωj∩Υ)
}

≥ γ0

{
‖uH0 ‖HHD

+
M∑
j=1

‖uhj0‖Ĥ 1
2 (∂ωj∩Υ)

} (7.33)

where γ0 > 0 is a constant independent of H and h.

Proof: Take (vH ,wh
j ) = (uH0 ,u

h
j0) in (7.31), then (7.26) and/or (7.27) together with the

uniform boundedness (7.28), (7.29) guarantee the proposed inequality (7.33). 2

Again, (7.33) together with the approximation properties (6.3) and (6.5) implies the
asymptotic convergence in the form of Céa’s lemma:

Corollary 13 There exist constants c1 and c2 which are independent of H and h such
that

‖u− uH‖H +
M∑
j=1

‖u− uhj ‖Ĥ 1
2 (∂ωj∩Υ)

≤ c1 inf
vH∈HH

‖u− vH‖H + c2 inf
wh

j ∈H
1
2
h

M∑
j=1

‖u−wh
j ‖H 1

2 (∂ωj)

≤ c1
′Ht−1‖u‖Ht(Ω) + c2

′ hs−
1
2 ‖u‖

Hs+1
2 (Ω)

(7.34)

where 1 ≤ t ≤ d , 1
2 ≤ s ≤ d ′.
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In a similar manner as in Section 7.1.1 with the Neumann bases, we now present the
complete asymptotic error estimate in the case of the Dirichlet bases.

Corollary 14 There exist constants c1, c2, c3 which are independent of H, and h ′ such
that

‖u− uH‖H +
M∑
j=1

(
‖u− uhj ‖H 1

2 (∂ωj)/<j
+ ‖Tju− λh

′
j ‖H− 1

2 (∂ωj)

)

≤ c1 inf
vH∈HH

‖v − vH‖H + c2

M∑
j=1

inf
wh

j ∈H
1
2
h

‖u−wh
j ‖H 1

2 (∂ωj)

+ c3

M∑
j=1

inf
χh∈H

− 1
2

h ′

‖Tju− λh
′

j ‖H− 1
2 (∂ωj)

≤ c1
′Ht−1‖u‖Ht(Ω) + c2

′(hs−
1
2 + h′s−

1
2 )‖u‖

Hs+1
2 (Ω)

(7.35)

where 0 ≤ s ≤ min{d ′, d′′ + 1}.

Remark 7.2: For ∂ωj ∩Υ 6= ∂ωj , the term ‖u− uhj ‖H 1
2 (∂ωj)/<j

on the left–hand side in

(7.35) can be replaced by ‖u− uhj ‖H 1
2 (∂ωj)

.

Proof: We note that the equation (6.72) together with (6.70) corresponds to the discrete
version of (5.23), namely

〈Shuh,vh0 〉 = 〈ψ,vh0 〉 for all vh0 ∈ H̃
1
2
h (∂ωN ) .

(Here, the subscript j is again suppressed.) Now we write

uh = ℘µ(uh|∂ω∩Υ) + uh0 (7.36)

in terms of the prolongation operator defined in (6.8) with uh0 ∈ H̃
1
2
h (∂ωN ). Then, with

vh0 = uh0 , the definition (6.67) of Sh and the coerciveness (4.29) of D, we find

α0‖uh0‖2

H̃
1
2 (∂ωN )

≤ 〈Shuh0 ,uh0〉 = 〈ψ − Sh
(
℘µ(uh|∂ω∩Υ)

)
uh0〉

≤ c

{
‖ψ‖

H− 1
2 (∂ωN )

+ ‖Sh
(
℘µ(uh|∂ω∩Υ)

)
‖
H− 1

2 (∂ω)

}
‖uh0‖H̃ 1

2 (∂ωN )

≤ c ′
{
‖ϕ‖

H− 1
2 (∂ωN )

+ ‖uh‖
Ĥ

1
2 (∂ω∩Υ)

}
‖uh0‖H̃ 1

2 (∂ωN )

where c ′ is independent of H and h. This, together with (7.36) and (7.34) yields the
stability estimate

‖uh‖
H

1
2 (∂ω)

≤ c‖u‖H1(Ω) . (7.37)

With the stability of uh on the whole ∂ω in (7.37) available, we find from the definition
(6.73) of λh

′
on ∂ω and the uniform boundedness of Sh (7.28) the stability estimate

‖λh ′‖
H− 1

2 (∂ω)
= ‖Ph ′Shuh‖

H− 1
2 (∂ω)

≤ c‖uh‖
H

1
2 (∂ω)

≤ c ′ ‖uh‖H1(Ω) .

Here Ph ′ denotes the L2–projection onto H− 1
2

h ′ (∂ω) satisfying (6.6). With stability of
uH ,uh and λh

′
available, uniform boundedness of the corresponding family of Galerkin

projections implies Cea’s lemma and the proposed asymptotic error estimates. 2
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7.2.2 Dirichlet bases on restricted grids

In an similar manner as in the case of Neumann bases we consider the asymptotic sta-
bility and convergence without using the coerciveness property (7.26), when the Steklov–
Poincaré operator is constructed based on (5.20) under additional restrictions on the
grids.

Specifically, we need the additional mesh restrictions (R1) in (6.74) and the mesh
restriction
(R3) h ′ ≤ c02h (7.38)

with a constant c02 > 0 to be chosen small enough, and the inverse assumption (6.7). We
note that because of (R1), h ≤ H is still satisfied.

Again, let ûH denote the P–harmonic extension defined in (7.13). Then, from (6.45)
we obtain the variational equation

aΩ(ûH , v̂H0 ) = aF (uH ,vH0 ) +
M∑
j=1

∮
∂ωj

v̂H0 · TjûHds

= aF (uH ,vH0 ) +
M∑
j=1

∮
∂ωj

v̂H0 · Shj uhj ds+
M∑
j=1

∮
∂ωj

v̂H0 · (Shj ûH − Shj u
h
j )ds ,

aΩ(ûH , v̂H0 ) = aF (u,vH0 ) +
M∑
j=1

∮
∂ωj

v̂H0 · Tjuds+
M∑
j=1

∮
∂ωj

v̂H0 · (SHj ûH − Shj u
h
j )ds

for all test functions vH0 ∈ ĤHD . (7.39)

With ûH = ϕ̂∗H + ûH0 where ûH0 ∈ ĤHD, the H1
D(Ω)–ellipticity of aΩ yields for

vH0 = ûH0 the inequality

α0‖ûH0 ‖2
H1(Ω) ≤ c1(‖ϕ̂∗H‖H1(Ω) + ‖u‖H1(Ω))‖ûH0 ‖H1(Ω) +

M∑
j=1

|
∮
∂ωj

ûH0 · (SjûH − Shj u
h
j )ds|

(7.40)

To analyze the last term we have to rewrite these integrals in such a way that we
can make use of the consistency (Sj − Shj ). For this purpose we need the weak coupling
conditions (6.46) which we write in the form

〈ûH − uhj , S
h
j v

h
j 〉j = 0 for all vhj ∈ H

1
2
h (∂ωj) . (7.41)

Due to assumption the mesh restriction (R1) in (6.74) we may choose in (7.41) vhj =
ûH − uhj to obtain

〈ûH − uhj , Sj(û
H − uhj )〉j = 〈ûH − uhj , (Sj − Shj )(ûH − uhj )〉j

or

〈P<(ûH − uhj ), SjP<(ûH − uhj )〉j = 〈P<(ûH − uhj ), (Sj − Shj )(ûH − uhj )〉j .

With the coerciveness of Sj on H
1
2
0 (∂ωj) this yields

α0‖P<(ûH −uhj )‖2

H
1
2 (∂ω)

≤ c‖P<(ûH −uhj )‖H 1
2 (∂ω)

‖(Sj−Shj )(ûH −uhj )‖H− 1
2 (∂ωj)

. (7.42)
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Lemma 15 Under the mesh restrictions (R1), the inverse assumption for H
1
2
h and (R3)

where c02 > 0 is independent of h and is to be chosen sufficiently small we have the
consistency estimate

‖(Sj − Shj )wh‖
H− 1

2 (∂ω)
≤ cδc

δ
02‖wh‖

H
1
2 (∂ω)

for every wh ∈ H
1
2
h (∂ω) . (7.43)

The constant cδ is independent of h.

Proof: Here, we suppress the subscript j. Let σ := Swh and σh
′
:= Shwh. Then with

(5.20) we have

〈χh ′ , V σh ′〉 = 〈χh ′ , (1
2I +K)wh〉 = 〈χh ′ , V σ〉 for all χh

′ ∈ H− 1
2

h ′ (∂ω) .

Hence, σh
′
is the V –Galerkin projection of σ providing the standard asymptotic estimate

‖σh ′ − σ‖
H− 1

2 (∂ω)
≤ ch′δ‖V −1wh‖

H− 1
2+δ(∂ω)

≤ c ′ h′δ‖wh‖
H

1
2+δ(∂ω)

.

By the inverse assumption (6.7) for Sd ′h (∂ω) we finally obtain

‖Swh − Shwh‖
H− 1

2 (∂ω)
≤ c

(
h ′

h

)δ
‖wh‖

H
1
2 (∂ω)

≤ c · (c02)δ‖wh‖
H

1
2 (∂ω)

.

2

With the consistency (7.43) available, we now return to (7.42) and obtain

‖P<(ûH − uh)‖
H

1
2 (∂ω)

≤ ‖(S − Sh)(ûH − uh)‖
H− 1

2 (∂ω)

≤ c(c02)δ‖ûH − uh‖
H

1
2 (∂ω)

≤ c(c02)δ
{
‖ûH‖

H
1
2 (∂ω)

+ ‖ûh‖
H

1
2 (∂ω)

}
. (7.44)

Equation (7.41) with vh = uh implies

α0‖uh‖2

H
1
2 (∂ω)

≤ 〈uh, Suh〉 = 〈ûH , Shuh〉+ 〈uh, (S − Sh)uh〉

≤ c

{
‖ûH‖

H
1
2 (∂ω)

‖Shuh‖
H− 1

2 (∂ω)
+ (c02)δ‖uh‖2

H
1
2 (∂ω)

}
.

(7.45)

From (5.19) we have

〈χh ′ , V Shuh〉 = 〈χh ′ , (1
2I +K)uh〉 for all χh

′ ∈ H− 1
2

h (∂ω)

from which the coerciveness of V implies that

‖Shuh‖
H− 1

2 (∂ω)
≤ c‖uh‖

H
1
2 (∂ω)

(7.46)

where c is independent of h ′. Insert this inequality into (7.45) to obtain

(α0 − ccδ02)‖uh‖H 1
2 (∂ω)

≤ c‖ûH‖
H

1
2 (∂ω)

. (7.47)

Then, by choosing c02 sufficiently small, we obtain from (7.44) the estimate

‖P<(ûH − uh)‖
H

1
2 (∂ω)

≤ c ′(c02)δ‖ûH)‖
H

1
2 (∂ω)

. (7.48)

Now we are in the position to estimate the last terms in (7.40).
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Lemma 16 Under the assumptions of Lemma 15 with c02 chosen sufficiently small, the
following estimate holds:

|
∮
∂ωj

ûH0 · (SjûH − Shj u
h
j )ds| ≤ ccδ02‖ûH0 ‖H 1

2 (∂ωj)
‖ûH‖

H
1
2 (∂ωj)

. (7.49)

Proof: By the triangle inequality we have

|
∮
∂ω

ûH0 · (SjûH − Shj u
h
j )ds| ≤ |

∮
∂ωj

ûH0 · (Sj − Shj )ûHds|+ |
∮
∂ωj

ûH0 · Shj (ûH − uhj )ds| .

The first term can be estimated by the consistency (7.43) with wh = ûH due to (R1);
this gives

|
∮
∂ωj

ûH0 · (Sj − Shj )ûHds| ≤ c · cδ02‖ûH0 ‖H 1
2 (∂ωj)

‖ûH‖
H

1
2 (∂ωj)

.

For the second term we use (7.48) and the uniform boundedness of Shj which can be seen
in the same manner as in (7.46), to obtain

|
∮
∂ωj

ûH0 ·Sj(ûH−uhj )ds| = |
∮
∂ωj

ûH0 ·SjP<(ûH−uhj )ds| ≤ c·cδ02‖ûH0 ‖H 1
2 (∂ωj)

‖ûH‖
H

1
2 (∂ωj)

.

These two estimates give (7.49). 2

Now it is clear that for c02 sufficiently small, (7.40) will provide the asymptotic stability
of ‖ûH‖H1(Ω).

Collecting the inequalities (7.40), (7.46) and (7.47), these results can be summarized
in the following theorem.

Theorem 17 Assume that the assumptions of Lemma 15, i. e. the mesh restrictions
(R1) and (R3) are satisfied. Then we have the asymptotic stability estimate

‖uH‖H +
M∑
j=1

(
‖λh ′j ‖H− 1

2 (∂ωj)
+ ‖uhj ‖H 1

2 (∂ωj)

)
≤ c‖u‖H1(Ω) . (7.50)

for all 0 < h ≤ h0 with a constant c independent of h ′, h and H, provided the constant c02
in (R3) is chosen sufficiently small.

As a consequence of the stability (7.50) and the approximation properties, the asymp-
totic error estimates in Corollary 14 remain valid.

7.3 Stability and convergence for the simplified macro–stiffness matrix.

If the mesh restrictions (R1) and (R2) hold and the local Steklov–Poincaré operators Sj
are approximated by the symmetric form (6.67) then the global equations in (6.81) take
the form (6.81) which is already stable without further restrictions on the grids.

We begin with the stability of the approximate solution of ûH of the global equations
(6.79) which are equivalent to

aF (uH0 ,v
H
0 ) +

M∑
j=1

∮
∂ωj

(Shj û
H
0j) · vH0 ds

=
∫

ΓN

ψ · vH0 ds− aF (ϕ∗H ,vH0 )−
M∑
j=1

〈Shj ϕ∗hj + Shj u
h
jψ, v̂

H
0 〉j , (7.51)
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(see also (7.37)). Now choose v̂H0 = ûH0 and in view of the ellipticity (3.9) and (7.51) one
obtains the following stability result.

Lemma 18 Under the mesh restrictions (R1) and (R2), the solutions of (7.51) are uni-
formly bouded:

‖ûH0 ‖H1(ΩF ) +
M∑
j=1

‖ûH0j‖H 1
2 (∂ωj)/<j

≤ c

{
‖ϕ‖

H
1
2 (ΓD)

+ ‖ψ‖
H− 1

2 (ΓN )

}
(7.52)

where the constant c is independent of h, h ′ and H.

Remark 7.3: It follows from (7.52), the definition (6.75) of uH0 and ûH0 and from (7.51)
that uH and uHj are also uniformly bounded, i. e.

‖uH‖H1(ΩF ) +
M∑
j=1

‖ûHj ‖H 1
2 (∂ωj)/<j

≤ c‖u‖H1(Ω)

where the constant c is independent of h, h ′ and H.

By using Lemma 3 with P<j
ûHj = P<j

uhj and the definition of λh
′

j in (6.78), we obtain
from Lemma 18 the stability result:

Lemma 19 Under the assumptions of Lemma 18 there holds the following stability esti-
mate:

‖uH‖H1(Ω) +
M∑
j=1

(
‖λh ′j ‖H− 1

2 (∂ωj)
+ ‖uhj ‖H 1

2 (∂ωj)/<j

)
≤ c‖u‖H1(Ω)

where the constant c is independent of h, h ′ and H.

As a consequence, Céa’s Lemma is valid:

Corollary 20 Under the assumptions of Lemma 18, i. e. the mesh restriction (R1),
(R2), Corollary 14 remains valid.

8 Numerical Results

In this section we present numerical results for the notch problems in two and three
dimensions, where the macro–elements are in the near field of the notch. The examples are
based on the local Neumann bases approach given in Section 6. The governing equations
(3.1) are now the Lamé equations in linear elasticity:

Pu = ∆∗u := µ∆u+ (λ+ µ)grad (divu) = 0 in Ω ⊂ IRn , n = 2, 3 . (8.1)

with the Lamé constants satisfying λ > 2
nµ and µ > 0. The mixed boundary conditions

(3.2) now consist of the tractions

T [u]|ΓN
= λ(divu)n+ 2µ

∂u

∂n
+ µn× curlu|ΓN

= ψ on ΓN (8.2)

and the displacement field
u|ΓD

= ϕ on ΓD. (8.3)

The given stress and displacement fields ψ and ϕ will be specified explicitly according to
the examples.
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error indicators for the discrete operators. These error indicators control the main prop-
erties of the macro–element stiffness matrix Hj = B̂>j Û−1

j B̂j approximated by the partial
sums (6.28) of the Neumann series as symmetry and positive definiteness. The exact
macro–element stiffness matrix is symmetric and positive definite. Hence, its minimum
eigenvalue λmin has to be bounded away from zero. We define an averaged symmetry
defect for the quadratic Mj ×Mj matrix Hj with the elements Hk` =

∑
ι,ρ

B̂ιk
(
Û−1

)
ι,ρ

B̂ρ`

by

MSD =

Mj∑
k=1

k−1∑
`=1

|H`k − Hk`|

Mj∑
k=1

k−1∑
`=1

|H`k − Hk`|

and introduce error bounds ε1 and ε2 with

0 < MSD < ε1 and λmin > ε2 > 0.

The control of these parameters for any given positive ε1, ε2 proved to be very efficient
when using the Neumann series (4.25) as utilized by Türke in [58]. He also incorporated
smoothness at the artificial interior cross points in terms of corresponding exact compati-
bility conditions for uhj and σhj for all macro elements ωj at common cross–point corners
in the interior of Ω.

In the following numerical experiments for the given model problem in Figure 6, we
determine the stress peak value αnum = σmax/σo. For the same notch problem, but with
an infinitely long plate, the Kolosov–Muskhelishvili representation provides an analytic
solution which yields

αexact = 4.7632 .

To compare the numerical and the exact values we use the relative error

εα =
|αnum − αexact|

αexact
.

We start the numerical investigations with the coarse grid (H) as shown in Figure 6 with
14 finite elements (nFE = 14). The fine grid in each macro-element ω1 and ω2 is refined in
two steps with nBE = 135 and nBE = 177 boundary elements. Table 1 shows the results
obtained for the deviation of the stress peak εα, the minimum eigenvalue λmin and the
symmetry defect MSD of the macro–element stiffness matrix Hj depending on the fine
grid h and the number of iteration steps iter used in the Neumann series.

iter 1 10 20 30 40 50
nBE = 135 εα [%] 51.7 10.6 3.80 1.66 0.86 0.53

MSD [10−3] 1.903 2.144 2.269 2.317 2.336 2.344
λmin [10−6] 1.1048 1.4325 1.4316 1.4318 1.4319 1.4320

nBE = 177 εα [%] 51.7 10.6 3.80 1.66 0.86 0.55
MSD [10−3] 1.900 2.140 2.249 2.291 2.307 2.314
λmin [10−6] 1.105 1.4330 1.4317 1.4320 1.4321 1.4321

Table 1: Results for coarse grid (H) with nFE = 14
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