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ABSTRACT

The American railroad industry has been a primary stakeholder in the economic

development of the nation for close to two centuries. The railroads account for over

two-fifths of freight revenue ton-miles and transports about a third of all national

exports. To ensure good operable conditions of rail infrastructure particularly the

track, the railroads have spent more than 40% of their revenue on capital expenditure

and maintenance since industry deregulation. Due to budgetary and high logistical

constraints, there has been a gradual shift to predictive maintenance strategies with

railroads planning track geometry maintenance activities in advance. To employ such

strategies, there is the need to know beforehand the effectiveness of maintenance ac-

tivities which can be evaluated by the amount of improvement or recovery in track

geometry condition.

Well executed maintenance invariably improves operational efficiency and safety

which are primary objectives of the railroads. The huge investment in maintenance

led to all-time lows in train derailment rate, accident rate, and collision rate recorded

in recent years. Despite their relatively low frequency, derailments remain a major

concern for the railroads due to their high consequences which include loss of life and

property, disruption of services, injury, and destruction to the natural environment.

It is therefore important to carefully examine train derailment severity in order to

minimize these ramifications.

In many railroad applications of data analysis; non-normality of data occurs in

several forms. For example, exploratory data analysis of both derailment data and track

geometry data showed that the marginal and joint distributions of the variables were

not normal. Conventional correlation analysis is generally not suitable for analyzing

the dependencies between variables with non-normality, tail dependence, asymmetric

xxv



dependence, skewness and other nonlinearities. Furthermore, conventional correlation

analysis also fails to consider the underlying dependence between multiple response

variables which may be skewed or discrete in nature. This dissertation focuses on the

formulation of copula-based methodologies to analyze railroad maintenance and safety

applications considering the underlying dependence between the variables of interest.

Copulas allow for the separate modeling of arbitrary marginal distributions and the

dependence structure. Copulas are suitable for modeling various forms of dependence

and can be employed in the generation of large volumes of data.

Three railroad engineering case studies are undertaken in this dissertation. In

the first case study, a bivariate copula-based approach is developed to evaluate the

tamping recovery of track geometry parameters such as surface, alignment, cross level,

gage, and warp considering the underlying dependence between the variables of in-

terest. In the second case study, a mixed copula-based regression model is developed

which simultaneously models the monetary damage and number of derailed cars con-

ditional on a set of covariates that might affect both derailment severity outcomes.

Marginal generalized linear regression models are combined with a bivariate copula

which characterizes the dependence between the two responses. In the third and final

case study, vine copula models, a cascade of bivariate copulas as building blocks, are

used to model high-dimensional dependencies within the derailment severity data.

Results from this dissertation provide greater insight and comprehension of the

train derailment severity and track geometry recovery phenomena considering various

forms of dependence between the variables of interest. These results will aid deci-

sion making which would help reduce the consequences of train derailments as well as

improve track maintenance strategies.
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Chapter 1

INTRODUCTION

1.1 Background and Motivation

Rail transportation has been a primary stakeholder in the economic develop-

ment of the United States for more than 185 years by connecting various businesses

domestically and internationally. The United States has the largest railroad network

in the world with Class I railroads (freight railroads with 2016 operating revenues of

$447.6 million or more) accounting for about 140,000 miles of track which is about

69% of U.S. freight rail mileage (AAR, 2017). This essential mode of transportation

accounted for about 42.7% of freight revenue ton-miles which makes up the biggest

proportion of inter-city freight (Peng, 2011; He et al., 2015).

Operation efficiency (travel comfort, reliability) and safety are primary objec-

tives of the railroads. Thus, the railroad infrastructure (particularly the track) is

regularly maintained in order to achieve these objectives. Since industry deregula-

tion in 1980, American freight railroads have spent more than $635 billion on capital

expenditure and maintenance expenses which amounts to more than 40% of their rev-

enue (AAR, 2017). In 2015 alone, Class I railroads spent $9.7 billion on maintenance

and an additional $17.4 billion on expansion and modernization which are 15% and

27% respectively of their annual expenditure respectively (AAR, 2016). As a result of

budgetary and high logistical constraints, railroads plan track geometry maintenance

activities in advance (Quiroga and Schnieder, 2012; Caetano and Teixeira, 2016). This

has resulted in a gradual shift towards prognostic maintenance strategies which re-

quire the need to know beforehand the effectiveness of maintenance activities (such as

tamping) which can be estimated by the amount of improvement or recovery in the

condition of track geometry (Famurewa et al., 2013).
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The aforementioned investments by the railroads have translated into great

strides being made in area of safety. Train accident rate in 2016 was at an all-time

low with a 42% reduction from 2000. In the same time frame, employee injury rate

and grade crossing collision rate have decreased by 46% and 38% respectively. Train

derailment rate, accident rate and collision rate caused by track defects were also

at an all-time low in 2016 making it arguably the safest year in American rail history

(AAR, 2017). Despite the relatively low derailment rate, the high ramifications of their

occurrence which include disruption of services, injury, loss of life and property and

damage to the natural environment remain a primary concern of the railroads. Thus,

there is the need to carefully examine train derailment severity in order to minimize

the consequences.

1.2 Statement of the Problem

In many infrastructure applications including railroad applications such as track

geometry recovery and derailment severity, non-normality of data transpires in various

forms. These include non-normality of the marginal distribution of some variables and

in some instances multivariate non-normality of the joint distribution of a group of

variables despite normal marginal distributions of all the individual variables (Yan,

2006; Attoh-Okine, 2013). Conventional correlation analysis is generally not suitable

for analyzing the dependencies between variables with non-normality, tail dependence,

asymmetric dependence, skewness and other nonlinearities. Furthermore, conventional

correlation analysis also fails to take into account the underlying dependence between

multiple response variables which may be skewed or discrete in nature.

This dissertation seeks to address the limitations of conventional correlation

analysis using the copula approach to model the underlying dependences between the

variables of interest in railroad engineering applications by taking into consideration

various forms of dependence. Copulas are used to describe the dependence between

random variables and can be defined as functions that combine arbitrary marginal

distributions to form a joint distribution. Copulas can be employed as standalone
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models (such as bivariate and vine copula models) or combined with other models

(such as copula regression models, copula bayesian networks and copula autoregressive

models). Copula modeling is an emerging statistical method which has been widely

used in the financial industry and is gaining traction in engineering. However, its

application in the railroad industry is very limited.

1.3 Objective of the Study

The main objectives of this research are to apply copula methodology to train

derailment severity data and track geometry maintenance data, determine the under-

lying dependences between the variables of interest and develop probabilistic models

as decision tools in railroad maintenance and safety analysis. The main objectives of

this research will be achieved through the following sub-objectives:

• To study the derailment severity and track geometry recovery phenomena to

identify the factors that influence or affect them.

• To develop copula models for determining the underlying dependence between

different variables that contribute to the derailment severity and track geometry

recovery phenomena.

• To combine the copula approach with existing models such as generalized linear

models.

• To evaluate alternative copula-based models.

• To compare the copula-based models with widely used statistical models such as

linear regression and independent multivariate regression models

1.4 Research Approach

The first stage of research involved a comprehensive (state-of-the-art) back-

ground review to establish the potential areas in railroad engineering research where

copula-based methodologies can be applied as standalone models or in tandem with

other alternate models. Data was subsequently obtained for some of the identified

areas. Track geometry inspection data was obtained from a Class I U.S. railroad
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which contains information on various track geometry parameters such as surface,

alignment, cross level, gage and warp. Accident/derailment data was obtained from

the Rail Equipment Accident/Incident (REA) database which is maintained by the

Federal Railroad Administration (FRA) of U.S. Department of Transportation (U.S.

DOT). The database contains detailed track accident information such as accident

cause, number of derailed cars, total monetary damage, track type, track class, train

length and derailment speed.

Exploratory data analysis was conducted on both datasets that revealed non-

normality of the marginal distributions of the variables of interest as well as their joint

distributions. In addition, asymmetric and tail dependences between some of these

variables were also observed. Copula dependence modeling is suitable for analyzing

non-normal variables as well as non-linear, asymmetric and tail dependences.

The implementation of the copula-based methodologies to various railroad safety

and track geometry maintenance applications were subsequently conducted. One ap-

proach, bivariate copula modeling, was applied to track geometry maintenance data

(tamping recovery) whereas two other approaches, copula-based regression modeling

and vine copula modeling, were applied to derailment severity data. Bivariate copula

modeling was employed to analyze the tamping recovery of track geometry parameters

taking into consideration the underlying dependence between the variables of interest.

It was subsequently used to generate a set of data points with similar characteris-

tics to the observed data points. Multivariate copula modeling based on vine copulas

was used to analyze and model high-dimensional complex dependences within derail-

ment severity data. Results show that some pairwise dependencies were found to show

asymmetric and tail dependences violating the multivariate normal assumption. Vine

copula modeling was subsequently employed in the generation of multivariate derail-

ment severity data. Other potential applications of copula-based methodologies in the

railroad industry were suggested. Figure 1.1 shows the main research approach of the

dissertation.
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Figure 1.1: Research Approach.

1.5 Dissertation Structure

This dissertation is divided into seven (7) main chapters. The dissertation has

been organized in such a way that it first provides knowledge on the various railroad

maintenance and safety concepts as well as the data before proceeding to the statistical

concepts relating to the various copula-based models. At the end of each chapter related

to a specific copula-based model is a railroad engineering case study. Below are the

summaries of the various chapters:

1.5.1 Chapter 1: Introduction

This introductory chapter which outlines the need to analyzing railroads con-

cepts such as track geometry maintenance recovery and derailment severity. It also

outlines the growing importance of copula-based models in civil infrastructure appli-

cations particularly railroad engineering applications. It also presents the motivation

of this research, as well as the structure and the contributions of this dissertation.
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1.5.2 Chapter 2: Railroad Background

In chapter 2, a literature review on various railroad safety and maintenance

concepts is provided. An overview of the various components of a railroad track is

presented. The importance of track geometry is outlined and the various track ge-

ometry parameters are discussed. The various types of track geometry maintenance

activities are subsequently reviewed. The importance of analyzing derailment severity

and tamping recovery of track geometry is discussed. Finally, a literature review of

existing tamping recovery and derailment severity models is provided. The gaps in the

literature are also discussed in this chapter.

1.5.3 Chapter 3: Exploratory Data Analysis

In chapter 3, the various track geometry and derailment severity data sets uti-

lized in the dissertation are described. This chapter also discusses the findings of the

exploratory data analysis of the data sets.

1.5.4 Chapter 4: Copula Models

In chapter 4, a detailed overview of copula models is provided. The basic con-

cepts of copula function theory are introduced. The various classes of copulas, depen-

dence concepts and measures, statistical inference (parameter estimation) of copulas

and copula selection techniques are subsequently discussed. Finally, case study is pre-

sented in which the tamping recovery of various track geometry parameters are modeled

using a copula-based approach.

1.5.5 Chapter 5: Copula-based Regression Models

This chapter provides an overview of copula-based regression models which com-

bine several marginal regression models with a bivariate parametric copula which char-

acterizes the underlying dependence between the response variables. Various types of

marginal regression models are reviewed. Past applications of copula-based regression

models in several transportation fields including modeling automobile crash severity
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are discussed. The model formulation of the mixed-copula based regression model

including estimation and inference are also provided. Finally, the chapter concludes

with a case study on the application of copula-based regression models in predicting

bivariate train derailment severity outcomes namely the number of derailed cars and

total monetary damage incurred.

1.5.6 Chapter 6: Vine Copula Models

In chapter 6, a detailed overview of vine copula models is provided. The various

types of multivariate dependence modeling based on copulas are reviewed. The theory

of pair-copula construction upon which vine copulas are developed is explained and the

graphical representation of vine copulas known as regular vines is also discussed. The

various vine structure selection methods, parameter estimation techniques and pair-

copula families selection procedures of vine copulas are also reviewed. This chapter

concludes with a case study in which high-dimension dependence of derailment severity

data is modeled using vine copulas.

1.5.7 Chapter 7: Concluding Remarks

This is the concluding chapter of the dissertation. In this chapter, results of

the research conducted are summarized. Recommendations and future work are also

discussed in this chapter.

1.6 Contributions of the Dissertation

Contributions of this dissertation can be found in the following journal publica-

tions, conference proceedings and conference presentations.

1.6.1 Journal Publications

1. E. N. Martey and N. O. Attoh-Okine, “Modeling Tamping Recovery of Track

Geometry using the copula-based Approach,” Journal of Rail and Rapid Transit

0(0), 2018. DOI: 10.1177/0954409718757556.
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2. E. N. Martey and N. O. Attoh-Okine, “Bivariate Severity Analysis of Train De-

railments using Copula-based Regression Models,” ASCE-ASME J. Risk Uncer-

tain. Eng. Syst. Part A Civ. Eng, 2018 (Accepted).

3. E. N. Martey and N. O. Attoh-Okine, “Modelling Dependence of Train Derail-

ment Severity using Vine Copula Models,” Submitted to Transportation Research

Part C: Emerging Technologies, 2018.

The railroad background and literature review of all three papers can be found in

chapter 2. The methodology and case study of the first paper can be found in chapter

4. The methodology and case study of the second paper can be found in chapter 5.

The methodology and case study of the third paper can be found in chapter 6. The

derailment dataset was used in both the second and third case studies (papers) leading

to the description of the dataset appearing more than once in the dissertation.

1.6.2 Conference Papers

1. E. N. Martey, A.O. Lasisi and N. O. Attoh-Okine, “Track Geometry Big Data

Analysis: A Machine Learning Approach” 2017 IEEE International Conference

on Big Data, Boston, MA, USA, Pages: 3800-3809 DOI: 10.1109/BigData.2017.8258381.

The railroad background and literature review of this paper can be found in chapter 2.

1.6.3 Conference Presentations

1. E. N. Martey and N. O. Attoh-Okine, “Bivariate Severity Analysis of Train De-

railments using Copula-based Regression Models,” 14th Annual Inter-University

Symposium on Infrastructure Management, Newark, DE, June 16, 2018.

2. E. N. Martey and N. O. Attoh-Okine, “Bivariate Severity Analysis of Train

Derailments using Copula-based Regression Models,” 8th Annual Graduate Re-

search Forum, University of Delaware, April 20, 2018.

3. E. N. Martey and N. O. Attoh-Okine, “Modeling Tamping Recovery using Copula-

based approach,,” 8th Annual Graduate Research Forum, University of Delaware,

April 20, 2018.

8



4. E. N. Martey, A.O. Lasisi and N. O. Attoh-Okine, “Track Geometry Big Data

Analysis: A Machine Learning Approach” 2017 IEEE International Conference

on Big Data, Boston, MA, USA, December 11, 2017.

5. E. N. Martey and N. O. Attoh-Okine, “Modeling Tamping Recovery using Copula-

based approach,” 13th Annual Inter-University Symposium on Infrastructure

Management, West Lafayette, IN, June 23, 2017.

6. E. N. Martey and N. O. Attoh-Okine, “Severity Analysis of Train Derailments

Using Vine Copula Models,” 7th Annual Graduate Research Forum, University

of Delaware, April 13, 2017.

7. E. N. Martey and N. O. Attoh-Okine,“Severity Analysis of Train Derailments Us-

ing Copula Models,” Informs 2016 Annual Conference, Nashville, TN, November

13, 2016.

8. E. N. Martey and N. O. Attoh-Okine, “Severity Analysis of Train Derailments

Using Vine Copula Models,” 12th Annual Inter-University Symposium on Infras-

tructure Management, Stillwater, OK, June 11, 2016.
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Chapter 2

RAILROAD BACKGROUND

2.1 Introduction

Railroad transportation allows for the movement of passengers and freight from

one location to another on wheeled vehicles on rails, also referred to as tracks. This

chapter provides background on the various railroad engineering concepts discussed

in the dissertation. An overview of the various track superstructure and substructure

components is presented. The importance of track geometry and the various track

geometry maintenance activities undertaken to preserve and enhance track geometry

quality are discussed. In addition, the importance of analyzing track geometry main-

tenance recovery and derailment severity are also highlighted. A review of the current

state-of-the-art of both tamping recovery models and derailment severity models is

presented and the gaps in the literature are subsequently highlighted and addressed.

2.2 Track Characterization

Track is the most fundamental element of the railroad infrastructure. Track pro-

vides support to rolling stock through the distribution of wheel loads from the track

superstructure to the track substructure. There has been a great evolution of the rail-

road track structure since its creation more than a century and a half ago resulting

in a far stronger and durable track structure (Li et al., 2015). However, there has

not been considerable change regarding the principle of the (ballasted) track struc-

ture. The enhancements after the Second World include the development of concrete

ties, continuous welded rail, advanced measuring equipment, maintenance management

systems, mechanized maintenance, heavier rail-profiles and innovative elastic fasten-

ings. Ballasted track also known as “classical or conventional track” comprises of a
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Figure 2.1: Ballasted track structure (Attoh-Okine, 2017)

flat framework consisting of rails and ties which is supported on ballast (Esveld, 2001).

The various components of the ballasted track are illustrated in figure 2.1.

2.2.1 Track Superstructure

The track superstructure comprises of the primary load-supporting components

of the track that react and distribution train loads to the track substructure. It consists

of the rail, fastening system and ties which function in tandem with support rolling

stock through the reduction of high stresses at the wheel-level interface to bearable

magnitudes for the track substructure layers (Li et al., 2015). The superstructure is

separated from the substructure by the tie-ballast interface (Selig and Waters, 1994).

2.2.1.1 Rail

Rail is the most important track structure element (Esveld, 2001). Rails are the

longitudinal steel members which offer uniform and constant guidance to the wheels

of rolling stock. The rails must be stiff enough to act as beam for the transfer of

concentrated wheel loads to the spaced tie supports without huge deflection between

the supports (Selig and Waters, 1994). The functions of the rail are as follows (Esveld,

2001):

• Provides support for wheel loads and transfer these loads to the ties
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• Offers a smooth-running surface and disseminates acceleration and braking forces

via adhesion

• Provides lateral guidance to the wheels

• Serves as an electrical conductor (in the case of electrified lines)

• Serves as a conductor of signal currents

2.2.1.2 Ties (Cross-ties, Sleepers)

Ties or sleepers transfer the wheel loads from the rails to the ballast and trans-

versely secure the rail to maintain the right width of the gage (gauge) (Parvez and

Foster, 2017). The ties along with the rail comprise the built-up section of the super-

structure. In ballasted track, the rail rests on the ties (Esveld, 2001). Wooden and

concrete ties are the most popular with composite/plastic and steel ties less widely

used (Li et al., 2015).

Wood ties are the most popular in the States not only because of its lower cost

but also for its high resiliency making it better suited for dynamic track interaction.

However, they are more sensitive to drainage issues due to their vulnerability to rot and

decay (Li et al., 2015). Concrete ties have a much more secure fastening system than

wood ties. Concrete ties are heavier and more durable than wooden ties. However,

concrete ties are tougher to handle and require pads to provide sufficient resiliency

(Selig and Waters, 1994). Concrete ties are less susceptible to climatic conditions but

more prone to impact loads. To guarantee stability, it is advisable to support the tie

only in areas underneath the rails. The functions of the ties are as follows (Esveld,

2001):

• Accommodate loads from the rail and transfer them over the underlying ballast

at tolerable pressure levels for the ballast.

• Offer support and fixing possibilities for the rail foot and fastening.

• Restrain the relative movement of the rail vertically, horizontally and laterally

by anchoring the substructure in the ballast.

• Preserve proper rail inclinations and track gage
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• Offer sufficient electrical insulation between the rails.

2.2.1.3 Fastenings

Fastening systems (fastenings, fasteners) restrain the relative movement of the

rail and tie vertically, horizontally and laterally thereby maintaining the position of the

rail (Selig and Waters, 1994; Li et al., 2015). Fastenings include all the components

which together form the structural connection between rail and tie. The selection of

fasteners is highly dependent on the structure and characteristic of the tie (Esveld,

2001).

The plate and cut spike fasteners are still the most popular fastening system

for wood ties with elastic fasteners increasingly being used. On the other hand, elastic

fasteners are the only fastenings employed with concrete ties. Plate and cute spike

fasteners must be employed with suitable rail anchorage in order to restrain the longi-

tudinal movement of the rail.

Elastic fasteners on the other hand offers resilient restraint of the rail not only

longitudinally but also laterally and vertically. This resilience develops with defor-

mation similar to spring stiffness, although not all fasteners provide a linear stiffness

variation with deflection (Li et al., 2015).

The functions of the fastening system is as follows (Esveld, 2001):

• Absorb the rail forces elastically and distribute them to the ties

• Offer electrical insulation between the rails and ties, particularly in the case of

concrete and steel ties.

• Retain the track gage and rail inclination within certain limits

• Dampen vibrations and impacts due to traffic as much as possible

2.2.1.4 Special Track Work

Special trackwork is also a component of the superstructure which comprises

of locations of unique track constructions which demand additional care and attention

since they usually experience faster deterioration. It may be described as “all rail,
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track structures and fittings, apart from plain unguarded track, that is not curved

or fabricated prior to laying”. This includes turnouts (switches), crossing diamonds,

insulated joints and along with grade-crossings. These components can produce high

dynamic loads that are transmitted to the substructure. Thus, support of special

trackwork is essential in track design since dynamic loads from rail discontinuities can

be more than twice as great as that of open track (Li et al., 2015).

2.2.2 Track Substructure

The track substructure has the greatest effect on track performance. The sub-

structure comprises of ballast, subballast, subgrade, and drainage arrangements. Other

terms used to describe the track substructure include trackbed, roadbed, track founda-

tion, and formation. Track substructure comprises of the foundation layers that offer

support to the track superstructure and the drainage structures (arrangements). The

foundation layer comprises of the subgrade, subballast and subgrade in the case of

ballast track and subbase and subgrade in the case of slab track (Li et al., 2015).

2.2.2.1 Ballast

Ballast is the top layer of the substructure which is made up of loose, large,

angular, coarse-grained and uniformly graded crushed rock aggregate (such as granite

and basalt) and has direct contact with the ties (Silvast et al., 2010; Li et al., 2015).

The ballast bed can withstand high compressive stresses due to the internal

friction between the grain. However, it cannot withstand high tensile stresses. The

ballast has bearing strength which is substantial in the vertical direction but much

lower in the lateral direction (Esveld, 2001).

The ballast has the following functions (Silvast et al., 2010; Li et al., 2015):

• Transfers wheel/rail forces from tie to levels tolerable for lower structural layers.

• Facilitate surfacing and lining activities.

• Offers efficient drainage of precipitation from the track.
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• Support the rail-fastener-tie track panel by offering sufficient vertical, lateral and

longitudinal resistance in order to maintain vertical and horizontal geometry of

the track

• Provides appropriate resiliency together with other track components as well as

damping of dynamic wheel/rail forces.

The ballast can be classified into four areas namely (Selig and Waters, 1994):

1. Crib - the granular material between the ties

2. Shoulder - material beyond the end of the tie down to the bottom of the ballast

3. Top ballast - the upper section of the supporting ballast bed which is disturbed

by tamping

4. Bottom ballast - the lower section of the supporting ballast bed which is disturbed

by tamping

2.2.2.2 Subballast (Blanket)

Subballast is the granular intermediate layer placed between the ballast and

subgrade in order to promote good filtering action. The subballast separates the coarse-

grained ballast from the fine-grained subgrade (Esveld, 2001). This intermediate layer

complements the ballast by improving load distribution thereby decreasing the applied

stresses on the subgrade. The subballast also offers protection against frost action

(Esveld, 2001; Li et al., 2015). The subballast has the following functions not fulfilled

by ballast (Li et al., 2015):

• Prevents penetration and mixture of subgrade and ballast through separation

• Prevents subgrade attrition by ballast, when the upper subgrade is made of clay

stone or shale that may be abraded by large ballast particles.

The subballast usually comprises of broadly-graded naturally occurring or pro-

cessed sand-gravel mixtures or broadly graded crushed natural aggregates or slags. The

subballast particles must be durable and fulfil the filter/separation requirements for

ballast and subgrade (Selig and Waters, 1994).
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2.2.2.3 Subgrade

The subgrade is the platform/foundation upon which the track structure (from

the subballast upwards) is constructed and comprises of either soil or rock (Selig and

Waters, 1994; Li et al., 2015). The subgrade can be either part of an embankment

that is constructed with fill materials or can be natural ground in cut sections of track

where subgrade may comprise of the natural soil or placed soil layer(s). The main

function of the subgrade is to act as the track foundation by offering uniform and

adequate support for the track structure. The subgrade must offer a suitable working

base for the construction of the overlying substructure layers and accommodate wheel

loads without failure or excessive deformation (Li et al., 2015). The subgrade must also

provide sufficient bearing strength and stability, show reasonable settlement behavior,

and provide good drainage of precipitation (rain and melted snow) from the ballast

(Esveld, 2001).

2.2.2.4 Geosynthetics

Geosynthetics are a family of products manufactured from synthetic polymers

employed in a vast array of civil engineering applications (including railroad track

applications). Geosynthetics include geotextiles, geocells, geomembranes, geogrids,

geosynthetic liners and geo-composites. Track geometry maintenance activities such

as tamping and stoneblowing are ineffective if they do not tackle the main cause of

track deformation such as subgrade failure. Deformed soft subgrades (as a result of

overstressing from imposed loading) can be stabilized by stiffening of the subballast

layer through the installation of geocell or geogrids.

Geocell and geogrids are geosynthetics which offer soil stabilization and strength

through structural reinforcement. The tensile strength of geogrid aids in the reduction

of stresses transferred to the subgrade. On the other hand, the composite action of

the subballast being restricted by the geocell offers greater stiffness of the layer in

comparison to the subballast only. The stiffening of the overlying layer decreases the

vertical stresses acting on the surface of the subgrade.
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Geotextiles are permeable (woven or non-woven) geosynthetic which are usu-

ally employed to offer filtration and separation between different graded substructure

layers. They permit the departure of water from the fine-grained layer without per-

mitting small soil particles to pass through into the voids of the coarse-grained layer.

Geotextiles offer separation of the ballast from lower substructure layers containing

fine material that may contaminate the ballast. However, this may not be effective

due to the abrasion and puncturing of the geotextile fabric by the ballast thereby los-

ing protection against separation and confinement. Additionally, geotextiles typically

do not prevent upward migration of fine grained soil subgrade (such as silt and clay

particles) into ballast. The openings in the fabric of these geotextiles are too big thus

defeating the purpose of preventing infiltration. Furthermore, problems can occur with

geotextile becoming caked with fine particles impeding drainage. Lastly, geotextile re-

moval during maintenance or rehabilitation can be complicated since it binds up on

the undercutter chain, teeth, and sprockets (Li et al., 2015). To prevent or minimize

damage, it is essential to place a fine-grain protection layer beneath and above the

geotextile fabric (Esveld, 2001).

Geomembranes or geosynthethic liners are employed if the aim is to establish

an impermeable layer. Geomembranes are impermeable, flexible, geosynthetic sheets

typically made from synthetic polymers such as neoprene, polyvinyl chloride (PVC),

chlorinated polyethylene, or bitumen. Geomembranes are applied in track substruc-

ture to prevent the passage of water from one side of it to another thus forming an

impermeable layer (Li et al., 2015).

2.3 Track Geometry

2.3.1 General

Track Geometry may be defined as the three-dimensional geometry of track

layouts and related measurements used in design, construction and maintenance of
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railroad tracks. To identify defects prior to their development beyond acceptable stan-

dards, track geometry condition are regularly evaluated during track inspection (Cae-

tano and Teixeira, 2015, 2016). Track Geometry is influenced by climatic conditions,

traffic conditions such as loads and speed, construction materials and techniques as

well as maintenance history (Audley and Andrews, 2013). Track geometry analysis

and maintenance are imperative from cost reduction and track availability enhance-

ment perspectives (Famurewa et al., 2016).

2.3.2 Track Geometry Quality

Track geometry quality can be defined as the “assessment of deviations (excur-

sions) from the mean or designed geometrical characteristics of specified parameters

in the vertical and lateral planes which give rise to safety concerns or have a correla-

tion with ride quality”. Track geometry condition can be assessed by indicators such

as the standard deviation (SD) over a specified length, mean value of the section or

extreme (peak) values of isolated defects of the track geometry parameters. The main

geometric parameters used to evaluate the quality and irregularity of track geometry

include surface (longitudinal level, profile or vertical alignment), alignment (horizon-

tal alignment), gage (gauge), cross level (cant) and warp (twist) (Vale et al., 2012;

Famurewa et al., 2013; Khouy, 2013). The primary track geometry components are

illustrated in figure 2.2. Surface, cross level and warp are vertical geometric parameters

whereas alignment and gage are horizontal geometric parameters (Soleimanmeigouni

et al., 2016b).

Surface and alignment can be defined as the track geometry of railroad track

center-line projected onto longitudinal vertical and horizontal planes respectively. Sur-

face (also known as longitudinal level) can be termed as the elevation along the lon-

gitudinal axis of the rail. Gage is the distance between two rail heads at right angles

to the rails in a plane 5/8” below the top of the rail head. Gage variation along with

alignment have been found to play important roles in the operational quality of the
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railroad track substructure. Cross level on the other hand is the difference in eleva-

tion between the adjacent running rails computed from the angle between the running

surface and a horizontal reference plane (Khouy, 2013). Warp (twist) is a measure of

the crosslevel variation (Audley and Andrews, 2013). Warp can also be defined as the

algebraic difference between two cross levels (in inches) taken at any two points within

a specified chord length.

Gage

Surface

31-foot, 62-foot, or 
124-foot chord

31-foot, 62-foot, or 
124-foot chord

Alignment

Crosslevel

Figure 2.2: Track Geometry Components (Galvan-Nunez, 2017)

Track geometry deterioration is often evaluated by the irregularities or defects of

these parameters: surface defects, horizontal alignment defects, cross level defects, gage

deviations and warp (track twist) deviations. Infrastructure managers often combine

these parameters (defects) into an artificial track quality index (TQI) as a representa-

tive measure of the different track geometry parameters and is employed as a decisive

metric for maintenance planning. TQI can be quantified as a function of the stan-

dard deviations (SD) of each irregularity and allowable train speed. TQI can either be

a track geometry index (TGI) or track structure index (TSI) (Andrade and Teixeira,
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2012; Caetano and Teixeira, 2015; Soleimanmeigouni et al., 2016b). However, the stan-

dard deviation of short wavelength of the surface parameter (defect) is still regarded

as the most decisive criterion for maintenance decisions (Andrade and Teixeira, 2012;

Caetano and Teixeira, 2015).

According to the International Union of Railways (UIC) and previous research,

the standard deviation of the short wavelength surface and alignment are the key pa-

rameters used to trigger preventive maintenance procedures. They have been found

to be good predictors of the maintenance needs for the rest of the track geometry

parameters (Andrade and Teixeira, 2013; Caetano and Teixeira, 2015, 2016). Track

geometry irregularities can be categorized into short wavelength irregularities and long

wavelength irregularities. Long wavelength track irregularities have an adverse influ-

ence on ride comfort. However, short wavelength irregularities generate more vibration

on axles and wheels (Soleimanmeigouni et al., 2016b). Thus, short wavelengths have

a much greater effect on ride quality (Audley and Andrews, 2013).

The surface parameter is considered to be the most representative of the track

quality (Audley and Andrews, 2013). It is the main factor for determining track main-

tenance expenses and often triggers the need for maintenance intervention (Khouy,

2013). The large proportion of research in the fields of track geometry deterioration

and maintenance modeling employ the short wavelength surface parameter as the de-

cisive factor. Reasons for the utilization of the surface parameter include the fact

that vertical defects develop more quickly than horizontal defects as well as the auto-

matic recuperation of the horizontal and cross-level defects during track maintenance

(Soleimanmeigouni et al., 2016b).

Surface defects can be defined as the vertical geometric deviation measured in

inches from the rail top on the running surface to the ideal mean line of the longitu-

dinal profile. Shortwave surface defects have been found to recover very well during

tamping. Experimental studies have verified a linear dependence between standard

deviation of surface irregularities and accumulated tonnage. Despite surface being the

most prominent parameter, disregarding the other parameters during the evaluation
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of track geometry condition may result in erroneous assessment leading to ineffective

maintenance planning. For instance, warp is a crucial factor that is considered during

derailment risk assessment and thus must not be ignored during track geometry eval-

uation (Andrade and Teixeira, 2012; Caetano and Teixeira, 2016; Soleimanmeigouni

et al., 2016b).

A track section is said to have a track geometry defect when the amplitude of

track geometry parameter exceeds a given safety threshold. Track geometry defects are

therefore severe ill-conditioned geometry parameters. Geometry cars usually classify

defects into two severity levels namely “red tags” and “yellow tags”. Red tags are

defects whose amplitudes violate Federal Railroad Administration (FRA) track safety

standards and need to be rectified as soon as possible to avoid fines. Yellow tags on

the other hand, are defects that are below FRA thresholds and may or may not exceed

the railroad’s own safety limits for remediation. Railroads rectify red tags within a due

date upon detection however decisions are made on remedying yellow tags are based

on field experience considering factors such as track geometry condition, defect history,

rail tonnage, track curvature and consequential derailment cost (He et al., 2015).

There is the need for regular inspection or monitoring of track geometry condi-

tion or quality using track geometry inspection cars. Track geometry inspection cars

assess track irregularities using both an inertia measurement system and an optical sys-

tem. The vertical and lateral deviation of the track is computed for consecutive 1-foot

measurements by means of recorded vehicle accelerations measured by an accelerome-

ter. Limits for track quality are defined based on travelling comfort and safety criteria.

The measurement and enhancement of track quality are essential in the establishment

of both the restoration period and maintenance cost (Vale and Ribeiro, 2014; Khouy

et al., 2012; Vale et al., 2012).
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2.4 Track Geometry Maintenance

2.4.1 General

Track geometry deteriorates under traffic loading and undergoes condition-based

maintenance (Caetano and Teixeira, 2016). Assessing and maintaining track geometry

within acceptable limits are key components of railroad infrastructure maintenance op-

erations (Quiroga and Schnieder, 2012). Maintenance is pivotal in guaranteeing safety,

punctuality and effective utilization of capacity. Appropriate maintenance planning

is necessary to keep acceptable conditions of infrastructure that economic and social

activities largely depend on. However, such an exercise is intricate and challenging to

undertake due to various factors such as terrestrial factors, topographical factors, track

alignment, atmospheric conditions, rolling stocks, monetary or budget constraints and

track availability (Wen et al., 2016).

Maintenance may be defined as a group of activities focused on the enhance-

ment of the overall reliability and availability of a system that are usually classified into

preventive and corrective maintenance activities. Preventive maintenance actions com-

prise of scheduled maintenance actions conducted to guarantee safety and avoid abrupt

system failures. Corrective maintenance actions are however conducted following sys-

tem failure or breakdown to return the system to operable conditions (Gustavsson,

2015). Aside comfort and safety, economic or budget constraints is another reason

for preventive maintenance since track maintenance makes up a large proportion of

railroad management expenditure (Vale et al., 2012).

Track Geometry rectification is one of the leading track maintenance costs for

track maintenance planning (by infrastructure managers) and is thus considered as a

cost-driving factor of overall maintenance cost for most passenger operations (Gustavs-

son, 2015). Track maintenance costs make up about 55% of overall maintenance costs

of high-speed lines (Andrade and Teixeira, 2012). Track maintenance encompasses

all procedures aimed at the preservation and restoration of the nominal state (Vale

et al., 2012). Intervention measures can be classified into track maintenance and track

renewal activities (Famurewa et al., 2013).
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Intervention thresholds have been established as adjustable parameters for main-

tenance strategies calibration. Dynamic Intervention thresholds related to the track

geometry deviation have been found to be more cost-effective than constant thresholds

(Quiroga et al., 2012). Dynamic thresholds are dependent on parameters such as the

age of the track and the number of interventions are ideal from a lifecycle viewpoint

(Famurewa et al., 2013). However, such calibration requires the availability of mod-

els which characterize the actual track geometry degradation and restoration process

(Quiroga et al., 2012).

2.4.2 Track Maintenance Activities

Common track maintenance activities include (Vale et al., 2012):

• Tamping which corrects the surface profile, cross level and alignment of the track.

• Ballast injection or stoneblowing to restore the surface profile.

• Rail grinding to rectify rail corrugations, fatigue and restore the profile of the

rail.

• Rail replacement

• Track stabilization to return the lateral resistance to the initial level through

track vibration.

Tamping can be classified into conventional tamping and design over-lift tamping.

Design over-lift tamping, improved tamper control systems and stoneblowing can all

be considered as enhanced track geometry maintenance methods in comparison to

conventional tamping. Other track maintenance activities include ballast shoulder

cleaning, ditching, ballast undercutting/cleaning and track vacuum (Li et al., 2015).

2.4.2.1 Conventional Tamping

Tamping is a maintenance activity employed to rectify track geometry deviations

such as incorrect surface profile (vertical deviation) and incorrect alignment (lateral

deviation) by rearranging and compacting the ballast (Khouy et al., 2012; Audley

and Andrews, 2013). Tamping is the main maintenance activity employed to restore
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track geometry condition and is one of the most essential yet costly track maintenance

activities (Caetano and Teixeira, 2016; Wen et al., 2016). Tamping is the most common

procedure employed to rectify the surface profile which is the geometric parameter

which significantly affects rolling stock and the track dynamics in the vertical direction

(Vale et al., 2012). Tamping results in a significant decrease in the track geometry

irregularity measurements and alters the track deterioration (Soleimanmeigouni et al.,

2016a).

Tamping has a significant influence on the effective capacity of a railway net-

work as a result of its distinct needs such as track possession duration, track quality

demand, scheduling constraints and heavy equipment utilization. Thus, it is important

for optimize the scheduling of this maintenance task (Famurewa et al., 2013; Gustavs-

son, 2015). However, the execution of tamping more often is not optimally planned.

Tamping are at times performed at very low (standard deviation) levels and thus are

not influenced by travel comfort (Khouy et al., 2012). Hasty tamping may result

in shorter life cycle and track design capacity may not be attained given ineffective

tamping procedures (Quiroga et al., 2012; Famurewa et al., 2013).

Tamping maintenance involves heavy machinery and substantial labor resources

(Caetano and Teixeira, 2016). Tamping can be executed either mechanically or man-

ually (Audley and Andrews, 2013). Tamping operations can be performed as either

preventive or corrective maintenance (Khouy et al., 2012). Corrective tamping is per-

formed to rectify isolated defects whereas preventive tamping can be performed at

stations, turnouts (switches) and crossings, and open lines. These two kinds of tamp-

ing procedures are planned in different ways (Wen et al., 2016).

Tamping can also be classified into complete and partial tamping procedures.

Complete tamping intervention is executed on the entire length of track section whereas

partial tamping is carried out on a fraction of the segment. Complete and partial

tamping have different effects on the track geometry condition. Thus, separate analysis

of these kinds of interventions can result in a drastic decrease in the variation of recovery

values of track quality after tamping (Soleimanmeigouni et al., 2016a,b). Conventional
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tamping is conducted as follows (Selig and Waters, 1994):

A) The tamper is positioned over the tie to be tamped

B) The lifting rollers of the tamper lifts the tie to the desired level thereby creating

a void between the tie base and ballast.

C) The tamping arms (tines) are subsequently inserted into the ballast on either

side of a tie.

D) The tines squeeze the ballast together moving the ballast from the crib region to

the void underneath the tie thereby filling the void and maintaining the elevated

position of the tie

E) The tines are removed from the ballast, the track is lowered and the tamper

proceeds to the subsequent tie.

The tamping process is shown on figure 2.3.

Figure 2.3: Conventional tamping process (Selig and Waters, 1994)

Tamping does not offer durable geometry rectification if it does not tackle the

main cause of track deformation such as subgrade failure. However, tamping provides

a lasting remedy if the rate of subgrade deformation is relatively low. Conventional

tamping has limitations such as its tendency to smoothen the geometry error rather

than restore track to its original track geometry condition (designed shape of profile

and alignment) (Li et al., 2015). Additionally, tamping has a damaging effect on ballast

with the tamping arms crushing the ballast particles (Soleimanmeigouni et al., 2016b;

Audley and Andrews, 2013) over the insertion depth thereby decreasing its bulk density

(Li et al., 2015).
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The resumption of traffic allows the ballast to recover to its original bulk den-

sity prior to maintenance and is responsible for the quick initial settlement. This

phenomenon is known as “ballast memory” since the track is usually returned to its

profile prior to tamping (Esveld, 2001; Khouy, 2013; Li et al., 2015). Improved al-

ternative methods to conventional tamping offer enhanced quality and more durable

geometry rectifications. These methods include design over-lift tamping and stone

blowing (or injection). Other track maintenance activities include ballast cleaning (or

undercutting) and track vacuum (Li et al., 2015).

2.4.2.2 Design Over-lift Tamping

Tampers rectify the vertical track geometry such that an enhanced geometry is

achieved (such as a straight line) without taking into consideration subsequent degra-

dation. However, each passing rolling stock attempts to return the track to its original

position (Esveld, 2001). Tamping causes a disturbance to the micromechanical struc-

ture of the ballast causing significant settlement (Le Pen et al., 2014) and reverts to its

prior rough shape upon resumption of traffic (reloading of the track) (Li et al., 2015).

The ballast is said to have a “memory” of the shape to which it had degraded prior

to each tamping procedure which is a common disadvantage of conventional tamping.

This process can never tend towards the ideal straight line unless it is based on an

overlift which caters for the expected deformations (Esveld, 2001). Thus, it is best

tamping practice to employ design overlift tamping (Le Pen et al., 2014).

Design over-lift tamping offers a track lift greater than that required to return

a dipped track to a level position. The amount of over-lift is intended to cater for the

ensuing quick ballast settlement with resumption of traffic in order to allow settlement

into a design smooth profile. The amount of over-lift applicable to each tie is dependent

on the amount of dip at each location. Design over-lift tamping is better at eliminating

ballast memory resulting in a more durable geometry rectification. Geometry rectifi-

cation durability measurements show that design over-lift tamping often lasts three

times longer than conventional tamping. These results are similar irrespective of level
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of traffic loading (Li et al., 2015). One way of applying overlift is by the addition of a

certain portion of the length between the existing and ideal geometry to the lift height.

This can only be conducted if the real track geometry is known (Esveld, 2001).

2.4.2.3 Stone Blowing/Injection

Stone blowing is the injection of small stones into the gap between the tie

base (lifted to a target level) and the ballast surface (Sol-Sánchez et al., 2017). This

is performed without the disturbance of the ballast maintaining its compaction and

stability (Esveld, 2001). Stoneblowing is derived from the old practice of shovel packing

where voids were created by jacks used to raise the rail and ties and shovels were used

to manually place measured small grade ballast between the raised tie base and the

ballast. Stone blowing employs a similar concept to remedy track profile error, however

instead of a shovel, stone is blown using compressed air from pneumatic injector tubes

(Li et al., 2015).

The stone-blowing process is as follows (Selig and Waters, 1994):

A) The tie rests in the ballast prior to adjustment.

B) The tie is initially raised to create a void underneath it,

C) The tubes of the pneumatic ballast injector are inserted into the ballast along

the side of the lifted tie to a depth that offers the stones with a flow path and

access underneath the tie.

D) A measured amount of stone is injected by compressed air into the void beneath

the tie

E) The tubes are removed from the ballast.

F) The tie is lowered onto the added stone where it is subsequently compacted by

traffic

The stone-blowing process is illustrated on figure 2.4.

The amount of stone blown is dependent on the target track elevation. The

stone must be small enough to disperse well when injected and fill the void without

any obstructions (blockages) within the tube, but must be big enough for interlocking,
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Figure 2.4: The stone-blowing process (Selig and Waters, 1994)

provide support to the tie and not drop into the voids within the existing ballast (Li

et al., 2015). The advantages of stoneblowing include decrease in ballast deterioration

and maintenance frequency due to the avoidance of the need for decompaction resulting

from ballast disturbance (Sol-Sánchez et al., 2017). Settlement after stone blowing is

limited due to the minimal disturbance of the tubes inserted into the ballast. This

is because the stone blown is placed on top of compacted ballast and the stability of

the stone which is usually of high quality in order to withstand the high traffic load

stresses (Li et al., 2015).

The pneumatic ballast injector can be applied to sections of track that are in-

accessible for machine maintenance. Unlike a tamper, the stoneblower operates in a

design mode rather than a smoothing mode (Esveld, 2001). Stone-blowing is more ap-

propriate in areas which demand higher frequency of tamping since it is less destructive

to ballast (Khouy, 2013). Thus, stone blowing is suitable at recurring dips at track

transitions such as bridge approaches (Li et al., 2015). Stone blowing is appropriate

for relatively low lift used in remedying dips less than an inch associated with short

wavelength geometry defects (faults) whereas tamping is suitable for high lift used in

rectifying dips greater than an inch which are normally related to large wavelength

geometry faults (Khouy, 2013; Li et al., 2015).

Despite its advantages, there are concerns related with stoneblowing such as

the stiffening of the granular layer and its limited capacity to damp loads. One way of
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improving stoneblowing effectiveness is the combination of stoneblowing with elastic

elements such as Under Sleeper Pads (USPs) which enhances the durability of the bal-

last layer and also offers reduction in the maintenance frequency. However, this method

introduces increased cost due to the fixing of pads to the tie bottom. Another novel

alternative solution known as stone-rubber blowing involves the partial replacement

of small stones with rubber particles obtained from waste tires which serve as flexi-

ble aggregates which provide enhanced capacity to dampen loads (Sol-Sánchez et al.,

2017).

2.4.2.4 Ballast Shoulder Cleaning

Shoulder ballast is the region between the end of the ties and the bottom of

the ballast layer. Fouling (of the shoulder ballast) impedes drainage of the ballast in

the crib region. Mechanized shoulder cleaning involves the excavation of the shoulder

ballast and subsequent replacement with new, clean ballast. Ballast shoulder cleaning

offers enhanced drainage from the crib region, given that the crib ballast is moderately

(not highly) fouled [fouling index is less than 30 percent]. In this case, shoulder cleaning

offers an escape route for any water being retained in the crib region permitting the

washing away of fouling material. However, shoulder cleaning is ineffective given a

high degree of fouling due to the very low permeability of the crib ballast. In such

a situation, a total removal of the highly fouled ballast across the full breadth of the

track is needed (Li et al., 2015).

2.4.2.5 Ditching

Whereas shoulder cleaning improves internal draining, the ditching enhances

external drainage by offering outlets for quick drainage away from the track. This

involves the lateral departure of water from the track and subsequent longitudinal

removal from the railroad right of way to low-lying regions. Ditches must have sufficient

lateral and longitudinal gradient and an invert elevation of adequate depth beneath the

subgrade under track to prevent the return of water to the track. Ditching machines are
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used to offer ditches the adequate slopes and contours. However, it is hard to establish

and maintain ditches due to the presence of utilities, structures, or other features along

the track. In spite of these challenges, it necessary to have them addressed in order to

prevent long retention of water in the track (Li et al., 2015).

2.4.2.6 Ballast Undercutting/Cleaning

Ballast, similar to all track components, has a finite life and must be eventually

replaced. The end of ballast life usually coincides with the voids being filled with

fouling material, which reduces the permeability to the point that the drainage function

is lost. Ballast undercutting or cleaning involves the excavation of fouled ballast and

its subsequent separation into large ballast aggregate and fine material by means of

shaking and sieving (Li et al., 2015). Maintenance activities such as tamping and stone

blowing are ineffective when the ballast is heavily fouled. Ballast cleaning or ballast

renewal is needed in such a case. However, these activities are expensive and time

consuming leading to disruptions and thus are not frequently conducted. The decision

as to which maintenance activity is suitable should be based on the site condition and

an in-situ investigation of the track layers, including the sub-surface profile (Tennakoon,

2012). Ballast undercutting (renewal) attempts to manage the long-term development

of track roughness which is due to the progressive deterioration of ballast (Scanlan

et al., 2017).

The effect of ballast undercutting is significant due to the replacement of de-

graded or fouled ballast with clean ballast resulting in a return of the ballast’s damping

properties to its ideal state. This leads to a decrease in dynamic loading effects of mov-

ing trains on bridge structures (Mohammadzadeh et al., 2017). The ballast undercutter

(cleaner) excavates the ballast to a minimum depth below the ties using chain with

“excavating teeth” attached which conveys it upwards to a system of vibrating sieves

where fine material is wasted. The clean coarse material is reclaimed and returned to

the track. Instead of the traditional method of dumping wasted ballast to the side of

the track, modern techniques employ waste loaders which run concurrently with ballast
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undercutter (Esveld, 2001). The amount of potentially recoverable ballast to reclaim

or waste should take into consideration the financial implications of either action (Li

et al., 2015). Heavy ballast fouling may require complete replacement with fresh ballast

instead of ballast cleaning (Tennakoon, 2012).

Correction of track geometrical misalignment is also conducted during ballast

cleaning. This results in better track quality and less impact forces between the track

and the wheel (Mohammadzadeh et al., 2017). Ballast undercutting has also been

found to considerably decrease track roughness over mineral subgrades such as sand,

clay, till and silt but has been shown to be ineffective when applied over soft organic

subgrades (Scanlan et al., 2017).

2.4.2.7 Track Vacuum

Fouled ballast around the ties can be eliminated by employing strong track vac-

uum machines. Track vacuum machines excavate fouled ballast from the track via their

large hoses into a holding tank with vacuum offered by large motors. Some vacuums

can crush the fouled dense ballast into smaller particles via a rotating bit at the end of

the hose. This enables easier excavation from beneath the tie and further below into

the ballast. However, the rate of vacuum excavation is low, thus it is mostly employed

along short sections of track such as creating a passage for the undercutter chain or

excavation around a rail joint. Track vacuuming is suitable in third rail electrified track

territory where ballast undercutting procedure is complicated by the power rail and

appurtenances. The switch undercutter is more appropriate for excavation of fouled

ballast along longer sections of track (Li et al., 2015).

2.5 Tamping Recovery

2.5.1 General

The lifespan of track structure and track quality at any given period, can be

characterized in terms of deterioration and recovery events (Famurewa et al., 2013).
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Figure 2.5: Illustration of track geometry degradation and recovery

Thus, track geometry degradation and recovery are key components of any track ge-

ometry maintenance model and are crucial for long-term forecast of track geometry

performance (Soleimanmeigouni et al., 2016a,b). The illustration of track geometry

degradation and recovery is shown in figure 2.5. Much focus has been made on the

analysis of track geometry degradation with various deterministic and stochastic tech-

niques employed. These techniques include linear and exponential regression models,

polynomial models, multi-stage linear models, neural networks, grey models, path anal-

ysis, data mining, models with random coefficient, Markov models, time series models

and stochastic processes. For extensive literature on track deterioration models, refer

to Soleimanmeigouni et al. (2016b). On the other hand, in comparison relatively little

research has been conducted that covers the restoration of track quality due to tamping

(Veit, 2007; Lichtberger, 2005; Andrade and Teixeira, 2012, 2013).

The recovery in track geometry condition may be dependent on several factors

including track quality prior to tamping, frequency of previous tamping operations

33



(maintenance history), subsurface (ballast) conditions, tamping procedure, age of track

components, operational speeds and human factors (Famurewa et al., 2013; Audley and

Andrews, 2013). The dominant factor that influences tamping efficiency or tamping

recovery of track geometry is the track condition just before tamping. The recovery

of the standard deviation of the surface profile depends on the track geometric quality

just prior to maintenance according to Office for Research and Experiments of the

International Union of Railways (UIC). The higher the standard deviation of the surface

profile, the higher the variability of the track recovery (Vale et al., 2012).

Tamping recovery is dependent on previous tamping procedures since tamping

has a damaging effect on the ballast (the tamping machine arms crush the ballast

particles) which is the major factor of track stability. This leads to the resultant

quality in the current tamping being lower than the resultant quality of preceding

tamping (Wen et al., 2016). Tamping recovery also reduces with increasing number of

accumulated tamping interventions due to the ballast deterioration with traffic loads as

well as the ballast damage due to successive tamping procedures (Caetano and Teixeira,

2016). Tamping efficiency decreases with increase in ballast service life leading to a

reduction in the durability of track quality and increased frequency of tamping to

maintain track condition at acceptable standards (Zhao et al., 2006).

2.5.2 Tamping Recovery Models

There are two main of modeling restoration (or recovery) after tamping namely

deterministic or probabilistic (stochastic) approaches. The choice of methodology to

employ should be chosen based on the degree of uncertainty in the recovery values after

tamping.

2.5.2.1 Deterministic Models

In deterministic techniques, tamping recovery is directly evaluated in relation to

influencing factors such as track quality prior to tamping, the operational speeds and

maintenance history. The model parameters are treated as unknown constants with
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uncertainty incorporated using confidence intervals. Majority of studies have evaluated

tamping recovery using deterministic techniques such as linear regression models and

have assumed that tamping effectiveness is mainly dependent on the track geometry

quality prior to tamping. Linear regression models are highly popular due to their

simplicity and have been employed in the development of track geometry maintenance

models and optimization scheduling models (Soleimanmeigouni et al., 2016a,b).

Miwa (2002) and Oyama and Miwa (2006) both applied linear regression restora-

tion models to predict the maintenance effectiveness of tamping with the amount of

recovery dependent on the track condition prior to tamping. Their restoration models

were combined with an exponential smoothing degradation model which were sub-

sequently used in developing an optimization track maintenance scheduling model.

Andrade and Teixeira (2012) employed linear tamping restoration models as well as

a linear track deterioration model which were subsequently used in the development

of a biobjective model to optimize planned maintenance and renewal activities related

to track geometry. Vale et al. (2012) employed linear tamping restoration model as

well as a linear track deterioration model which were subsequently used in the develop-

ment of a mathematical maintenance model (formulated as integer (mixed 0-1 linear)

programming) which optimizes tamping operations in ballasted track as preventive

maintenance.

Meier-Hirmer et al. (2009) developed a maintenance strategy model comprising

of three sub-models namely an intervention efficiency model, a gamma process track

deterioration model and a maintenance cost model. This model was used to establish

the long-term costs of various maintenance strategies and optimize these costs based on

various parameters such as intervention threshold or inspection interval. The authors

observed that the maintenance efficiency or recovery appeared to be normally dis-

tributed and employed linear regression to characterize the intervention benefit which

was assumed to be dependent on the deterioration prior to intervention. Famurewa

et al. (2013) developed an empirical regression model for recovery after tamping inter-

vention based on previous (longitudinal level) data on examined routes. The empirical
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recovery model was combined with an exponential track degradation model to optimize

the tamping intervention schedule through the minimization of the total intervention

cost particularly the track possession cost.

Wen et al. (2016) evaluated the tamping recovery based on both the track con-

dition before tamping and the frequency/number of previously performed tamping pro-

cedures. This restoration model was subsequently employed in a Mixed Integer Linear

Programming (MILP) model formulated for the scheduling optimization of preventive

condition-based tamping through the minimization of net present costs considering

several factors. Caetano and Teixeira (2016) evaluated the effect of the age of track

sections (segments) operations on tamping recovery by comparing renewed sections

(ages of approximately 10 years) and nonrenewed sections (approximately 20 years).

Despite the variation in track geometry deterioration rates due to loss of tamping ef-

fectiveness, the average number of maintenance tamping procedures were found to be

greater in older track sections. This is similar to findings by Audley and Andrews

(2013).

Khouy et al. (2012) evaluated the effectiveness of tamping by examining the

track condition (longitudinal level) before and after tamping which was subsequently

categorized using a tamping intervention graph into bad, good or excellent in relation

to the level of improvement in track condition after maintenance. A large propor-

tion of the sections were found to be either in the good or bad category. Due to

the high variation in recovery observed, factors such as the effect of ballast age on

tamping efficiency were evaluated. However, no clear effect of ballast age was noted

contrary to findings by Caetano and Teixeira (2015) and Audley and Andrews (2013).

Soleimanmeigouni et al. (2017) proposed two-level piecewise linear model to character-

ize the track geometry recovery and deterioration with possible spatial dependencies

within deterioration parameters captured using Autoregressive Moving Average mod-

els. Multivariate linear regression was employed to tie various explanatory variables

with response variables such as recovery values and changes in deterioration rates after

tamping. Tamping recovery was dependent on both track condition before tamping
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and tamping type (partial or complete) with the interaction effect between the two

covariates also considered.

2.5.2.2 Probabilistic Models

Linear regression models are highly popular due to their simplicity. However,

they assume linear dependency and assume normality of the random variables and joint

distribution. Non-normality transpires in various forms: non-normality of marginal

distribution of some variables and in some instances multivariate non-normality of the

joint distribution of a group of variables despite normal marginal distributions of all the

individual variables (Yan, 2006; Attoh-Okine, 2013). Furthermore, in most cases there

exists a high degree of uncertainty in recovery values even in instances where track

quality is identical prior to tamping which cannot be accounted for using deterministic

techniques. This variation is even higher at the end of the life-cycle than at the

beginning. For this reason, probabilistic techniques have increasingly been employed

to cater for this variation by assuming the recovery after tamping is a random variable

with a given probability distribution. A unique distribution for the recovery values

after tamping is selected given a group of influencing variables with the parameters (or

measures) of the distribution assumed to be a function of the inputs (Soleimanmeigouni

et al., 2016b).

Quiroga and Schnieder (2012) developed a simulation approach for modelling

the recovery and degradation of track geometry. The stochastic model statistically

characterizes the phenomena given historical data and employs Monte Carlo method

to attain simulated process realizations. The tamping recovery was assumed to be

dependent on the number of accumulated tamping interventions. The track quality

(longitudinal mean deviation) after tamping was assumed to be lognormally distributed

stochastic variable dependent on the number of accumulated tamping interventions. It

was observed that the variance of the track quality (longitudinal mean deviation) after

tamping increased with greater number of accumulated tamping interventions. It was

also observed that the deterioration rate (quality loss rate) increased considerably after
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each tamping intervention. Quiroga et al. (2012) combined the Monte Carlo Simulation

approach developed by Quiroga and Schnieder (2012) and a heuristic algorithm for

maintenance intervention planning to evaluate the optimization of two maintenance

strategies namely adaptive (dynamic) and constant intervention thresholds.

Audley and Andrews (2013) evaluated the effect of tamping on track geometry

condition degradation taking into consideration two probability distributions which

characterize the track quality for periods between tamping. Firstly, the authors ana-

lyzed the distributions of times for the track geometry to degrade to specified states

or levels of performance following tamping given the line speed and the maintenance

history. The two-parameter Weibull distribution was found to best model the times

to degradation despite the better fit of its three-parameter counterpart since the ex-

tra parameter (location parameter or failure-free parameter) provided a better fit but

no physical reason to justify a non-zero location parameter. Results of the analysis

corroborated the theory that tamping damages the ballast and results in faster deteri-

oration of the track geometry which was evident by the reduction of the characteristic

life parameter with the frequency of tamping interventions. Additionally, it was ob-

served that the more the track geometry degrades, the greater the rate of degradation

which was evident by the increase in the shape parameter with track quality measure-

ment (standard deviation of the vertical alignment). Secondly, the authors analyzed

the track geometry quality after intervention. Despite the three-parameter lognormal

distribution having the best fit, two-parameter lognormal distribution with a slightly

lower fit was selected due to its ease of use to model the recovery values after tamping

(probability of achieving the track quality condition after tamping) given operational

speeds and maintenance history. Tamping efficiency was found to decrease with increas-

ing number of accumulated tamping interventions which provides further proof that

tamping damages ballast. Tamping efficiency was also found to reduce with increase

in operational speed.

Soleimanmeigouni et al. (2016a) evaluated the effect of tamping on several (dif-

ferent) track geometry parameters such as surface (longitudinal) level, alignment and
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crosslevel (cant) analyzing both the tamping recovery as well as the change in degra-

dation rate after tamping. A probabilistic model was used to model tamping recovery

of the geometry parameters which was assumed to be dependent on the track geome-

try condition prior to tamping. The track geometry deterioration was modelled using

linear regression and Wiener process. The recovery values of the crosslevel (cant) and

alignment were assumed to follow a three-parameter lognormal distribution with the

recovery values of the surface profile was assumed to follow a three-parameter Weibull

distribution. Tamping was found to have a negative effect (impact) on the deteriora-

tion rate with the increase in the degradation rate evident by the observed increase in

the regression slope and drift coefficient of the Wiener process. Complete and partial

tamping interventions were also clustered and examined separately since they have

different effects on track geometry condition. Complete tamping interventions were

found to have a considerably greater effect on track geometry condition compared to

partial tamping. Additionally, a linear correlation analysis conducted showed a mod-

erate dependence between the recovery of surface (longitudinal) level and that of the

crosslevel (cant) and a weak dependence between the surface (longitudinal) level and

that of the alignment. However, Pearson’s correlation coefficient assumes linear depen-

dence between the random variables and assumes normality of these random variables

and their joint distribution. Thus, it will be more appropriate to employ concordance

measures which are suitable for measuring both linear and non-linear dependence.

These measures are scale-invariant and measure dependence irrespective of assumed

distributions.

In summary, the vast majority of tamping recovery models do not take into

consideration the underlying dependence between the variables of interest which may

exhibit tail dependency, asymmetric dependence and other non-linear dependencies.

However, copula-based approaches take into account these nonlinearities by allowing

for the separate modeling of the arbitrary univariate marginal distributions and the

dependence structure which are subsequently combined to form a joint distribution

with the underlying dependence.
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2.6 Derailment Severity

2.6.1 General

Despite the relatively low frequency of train derailments, they have been a ma-

jor concern due to their high consequence justifying the need to critically examine the

severity of train derailments in order to minimize and mitigate the resulting damage

(Jeong et al., 2007; Liu et al., 2013). Derailments may result in loss of life and prop-

erty, interruption of services and destruction of the environment (Liu et al., 2013),

and are the most frequent kind of Federal Railroad Administration (FRA)-reportable

mainline train accident in the United States (Barkan et al., 2003; Liu et al., 2012;

Liu, 2015). Derailments made up about three-quarters of freight-train accidents in the

United States from 2001 to 2010. Therefore, analyzing the magnitude and variability

of derailment severity is as important as estimating the likelihood of derailment (Liu

et al., 2013).

Derailment severity may be influenced by factors like car mass, derailment speed,

residual train length (number of cars after the point of derailment), derailment cause,

ground friction, rail friction, derailment cause, proportion of loaded railcars in the train

(loading factor) and train power distribution. Estimation of these variables is often

established through exact estimation or the determination of statistical distributions

and time history of the examined factors (Mohammadzadeh and Ghahremani, 2010).

Metrics that may be used to assess the severity of train derailments include the

number of derailed cars (Nayak et al., 1983; Saccomanno and El-Hage, 1989, 1991;

Toma, 1998; Barkan et al., 2003; Anderson, 2005; Liu et al., 2011, 2012, 2013), mon-

etary damage (Barkan et al., 2003; Liu, 2015) or casualties (Liu, 2015). The number

of derailed cars is the most suitable and most popular metric for evaluating sever-

ity. The term “cars” is generically used and refers to all vehicles including railcars

and locomotives (unless categorically stated otherwise) (Liu et al., 2013). Monetary

damage is prone to considerable variations due to factors such as cost difference be-

tween locomotives and railcars and differences in repair cost between regular track and

special track such as turnouts and crossings (Barkan et al., 2003; Liu et al., 2013).
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Casualties on the other hand are more appropriate when dealing with solely passenger

train derailments. Other derailment outcome measures studied include duration of the

event, peak collision forces, cars involved in peak collision, accident scene dimensions,

maximum closing velocities (i.e., relative velocities between impacting cars), and peak

coupler forces (Yang et al., 1972; Toma, 1998; Jeong et al., 2007).

The severity of a train derailment is influenced by factors such as derailment

speed, derailment cause, residual train length, derailment cause, ground friction, rail

friction, car mass, proportion of loaded railcars in the train (loading factor) and train

power distribution. FRA track classes specify certain characteristics associated with

track quality. Thus, track class is representative of track quality and minimum stan-

dards are specified by regulation for each class with higher classes having more stringent

requirements (Anderson and Barkan, 2004, 2005). Due to the lack of a more appropri-

ate batch of causal parameters for track quality as well as its ubiquitous usage in the

American railroad industry, track class has been employed as proxy variable for statis-

tical estimation of derailment probability (Nayak et al., 1983; Dennis, 2002; Anderson

and Barkan, 2004, 2005) as well as derailment severity (Anderson and Barkan, 2005).

Despite the apparent positive strong correlation between speed and track class, An-

derson and Barkan (2005) found no clear relationship on average between higher track

class and greater number of derailing cars. The authors highlighted the majority of

derailments on higher track class being initiated at less than normal operational speeds

or variations in derailment severity for different accident causes, which are likely corre-

lated with track quality as possible reasons for this. Simulation models and statistical

analysis are the two main methods of modeling train derailment severity.

2.6.2 Derailment Severity Models

2.6.2.1 Simulation Models

Simulation models are commonly built on comprehensive non-linear wheel-rail

interaction models. These mechanistic models visualize the reaction of railroad vehi-

cles to certain operational and environmental conditions (Liu et al., 2013). Yang et al.

41



(1972) developed an analytical simulation model with the point of derailment as the

only initial assumption. This model was used to investigate the influence of various

factors such as train length, derailment speed, ground friction, coupler moment, brak-

ing, car length and car weight on the behavior and severity of train derailments. All

the aforementioned factors were found to influence the number of derailed cars with

the exception of coupler moment characteristics which were found to have negligible

effect.

An improved simulation model published by Anderson (1994) called DERAIL

was originally part of an overall derailment disaster model (Coppens et al., 1988; Birk

et al., 1990a,b) called Derailment Accident Simulation (DERACS) comprising of several

sub-models which simulate the consequences of train derailments. Unlike the previous

model developed by Yang et al. (1972), the train derailment simulation software package

allowed for coupler failure, vehicle uncoupling; vehicle roll, collision of cars, independent

car motion and modeling of curved track. However, this improved model was found

to suffer frequent numerical instabilities. Simulation models presented by Johnson

(1991), Guran et al. (1992), Gracie (1991) and Roorda and Gracie (1992) examined the

fundamental kinematics of the derailment process but did not enhance existing state-

of-the-art models (Toma, 1998). However, Roorda et al. (1993) related the number of

derailed cars to the number of loaded cars in the train, the latter being representative

of both overall train length and weight.

Toma (1998) developed a comprehensive planar model which included a detailed

rail car and coupler model, ground reaction force model, collision model, and allowed

uncoupling and derailment of cars, which were all improvements upon previous models.

The model was based on coupled sets of 5 degrees of freedom sub-system models for

each rail car. The model investigated the effect of train speed, car mass, number

of cars, braking force, ground reaction force, and derailment quotient on outcome

measures such as the number of derailed cars, duration of the event, peak collision

force, cars involved in peak collision, and accident scene dimensions. A composite

measure, called accident severity was formulated based on the number of derailed cars,
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the peak collision force, and the accident scene dimensions. Train speed, car mass and

train length were found to have significant effect on the number of derailed cars and

the peak collision force with braking force and ground reaction force having relatively

little effect and derailment quotient having negligible effect.

Commercially available simulation models such as Dynamic Analysis Design

Simulation (DADS) (Han and Koo, 2003) and Automatic Dynamic Analysis of Me-

chanical Systems (ADAMS) (Paetsch et al., 2006) have also been used to analyze the

severity of train derailments. Jeong et al. (2007) developed a purpose-built simulation

model to investigate the influence of various variables such as train length, car mass,

initial translational and rotational velocities, and coefficients of friction on the derail-

ment outcomes. Outcomes considered include the number of derailed cars, maximum

closing velocities (i.e., relative velocities between impacting cars), and peak coupler

forces. The computational times to run this model was found to be significantly less

than commercial models such as ADAMS model (minutes versus hours).

2.6.2.2 Statistical Analytical Models

Statistical analysis of train derailment severity are conducted using historical de-

railment data. Estimation of these variables is often established through exact estima-

tion or the determination of statistical distributions and time history of the examined

factors.

Nayak et al. (1983) proposed a positive non-linear relationship between derail-

ment severity (in terms of average number of derailed cars) and derailment speed

(expressed in mph). They expressed the mean number of derailed cars as a function of

the square root of the derailment speed.

Mnd = 1.7
√
Speed (2.1)

where Mnd is the mean number of derailed cars. The derailment speed expresses the

volume of kinetic energy produced during the derailment that has to be dispersed prior
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to the re-establishment of the car-track stability (Bagheri et al., 2011). All other things

being equal, the greater the derailment speed the higher the number of cars derailing.

Saccomanno and El-Hage (1989, 1991) proposed an equation for estimating the

mean number of derailed cars based on a truncated geometric distribution which takes

into account the joint effects of accident cause, derailment speed and residual train

length. Subsequent work by Anderson and Barkan (2005) revealed inaccuracies in

the proposed equation for which modifications were made (equation 2) to ensure that

the number of derailed cars lied within the range of one and the residual train length.

Residual train length can be defined as the number of cars after the point of derailment

(POD).

For the same reason, Bagheri (2009) and Bagheri et al. (2011) also made mod-

ifications to the model proposed by Saccomanno and El-Hage (1989, 1991) such that

for any train length L and position j, the truncated geometric distribution for the

probability of k cars derailing is given by

Pr(x cars derailing | POD at position j) =


p(1−p)x−1

1−(1−p)Lr ifx = 1, ..., Lr

0, otherwise
(2.2)

Where Lr = L− j + 1 is the residual length (i.e. the number of cars after POD), and

1− p is the probability of derailment given a position after POD.

Both modifications resulted in similar models for the mean number of cars de-

railing (Mnd) expressed as

D =
1

p
− Lr(1− p)Lr

1− (1− p)Lr
(2.3)

Where D - the mean of the truncated geometric distribution (i.e. the estimated number

of cars derailed), p = logistic function of continuous “success” probability.

The probability, p, is assumed to be related to the factors/ covariates through
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the logit link function

1

1 + e−z
(2.4)

where z is a linear function of speed, residual length and derailment causes.

Liu et al. (2013) investigated the effects of train power distribution and pro-

portion of loaded railcars in the train (or loading factor) on derailment severity. The

study revealed that a higher loading factor corresponds to greater kinetic energy during

a derailment resulting in a greater derailment severity, ceteris paribus. The study also

revealed that a derailed train with a higher loading factor is more likely to have dis-

tributed train power. The authors proposed quantile regression analysis of derailment

severity in which they investigated other distributional statistics such as conditional

quantiles in order to provide further comprehension of the derailment severity dis-

tribution. Prior to this, all previous models had focused on mean derailment severity

analysis. The authors also proposed a zero-truncated negative binomial (ZTNB) model

which is expressed as follows:

Z = exp
[
1.38− 0.03R− 0.26S − 0.57L− 0.06

(
R2
)

+ 0.24R× S + 0.21× L
]

(2.5)

where Z is the estimated number of derailed cars, R is the logarithmic residual train

length, S is the logarithmic derailment speed and L is the loading factor. The ZTNB

model was found to result in a greater likelihood and mean value of the response

variable (number of cars derailing) in comparison to traditional count data models

such as Poisson and negative binomial models.

Majority of the existing literature have failed to consider the multivariate nature

of derailment severity and have instead focused primarily on only one severity outcome

namely the number of derailed cars. However, it is also important to concurrently an-

alyze the monetary damage incurred by railroads during derailments. A multivariate
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derailment severity model can be developed to jointly model multiple severity out-

comes given a set of covariates taking into consideration the underlying dependence

between the responses. To achieve this, a copula-based regression model of number of

derailed cars and monetary damage is proposed for their joint analysis with a set of

covariates that might influence both responses. Copulas used in a multivariate regres-

sion framework have been found to addresses endogeneity due to similar unobserved or

omitted variables that may affect both outcomes. Furthermore, majority of the statis-

tical analytical models do not consider the underlying dependence between the various

variables of interest which may exhibit nonlinear dependence, tail dependence or asym-

metric dependence. These models are also not flexible in evaluating high dimensional

dependence structures. To address these limitations, a vine-copula based approach is

proposed to model the high-dimensional dependence between the derailment severity

variables.

2.7 Key Observations from the Literature

Based on the literature review, the following conclusions can be made:

• The main track geometry parameters used to evaluate track geometry quality

include surface (longitudinal level, profile or vertical alignment), alignment (hor-

izontal alignment), gage (gauge), cross level (cant) and warp (twist).

• Track geometry condition can be assessed by indicators such as the standard

deviation (SD) over a specified length, mean value of the section or extreme

(peak) values of isolated defects of the track geometry parameters.

• Infrastructure managers often combine these parameters (defects) into an ar-

tificial track quality index (TQI) as a representative measure of the different

track geometry parameters and is employed as a decisive metric for maintenance

planning. However, standard deviation of the short wavelength variation of the

surface parameter has been regarded as the most decisive criterion for main-

tenance decisions. Disregarding the other parameters during the evaluation of
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track geometry quality may lead to erroneous assessment resulting in ineffective

maintenance planning.

• Conventional tamping is the most common track geometry maintenance activity.

However, improved track geometry maintenance activities such as design over-lift

tamping, enhanced tamper control systems and stone blowing are recommended.

Design over-lift tamping is considered as best tamping practice.

• Tamping recovery models can be classified into two main categories namely deter-

ministic models and probabilistic models. The choice of methodology is based on

the degree of degree of uncertainty in the recovery values after tamping. Deter-

ministic models are employed given low uncertainty whereas probabilistic models

are utilized given high uncertainty.

• Deterministic models such as linear regression models are widely used because

of their simplicity. However, linear regression models assume linear dependence

and assume normality of the random variables and their joint distribution.

• Furthermore, in most cases there exists a high level of uncertainty in recovery

values even in instances where track condition is identical before tamping. This

variation is even higher at the end of the life-cycle than at the beginning. For

this reason, probabilistic models are increasingly being utilized to cater for this

variation by assuming the recovery after tamping is a random variable with a

given probability distribution.

• The vast majority of tamping recovery models do not take into consideration the

underlying dependence between the variables of interest which may exhibit tail

dependency, asymmetric dependence and other non-linear dependencies.

• Derailment severity models can be classified into two main groups namely simu-

lation (mechanistic) models and statistical analysis models.

• Most statistical models do consider the multivariate nature of derailment severity

and have instead focused mainly on only one severity outcome namely the num-

ber of derailed cars. However, it is also important to concurrently analyze the

monetary damage incurred by railroads during derailments. To simultaneously
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model multiple severity outcomes, a copula-based regression model is proposed

for their joint analysis given a set of covariates taking into account the underlying

dependence between the outcomes.

• Furthermore, most of these statistical models do not take into consideration the

underlying dependence between the variables which may exhibit nonlinear de-

pendence, tail dependence or asymmetric dependence. These models are also not

flexible in evaluating high dimensional dependence structures. To address these

limitations, a vine-copula model is proposed to evaluate the high-dimensional

dependence between the variables of interest.

48



REFERENCES

Anderson, R. J. DERAIL. A Train Derailment Simulation Software Package. Dynam-
ics Laboratory Report No. DL/94/RJA/4. Technical report, Queen’s University,
Kingston, Canada, 1994.

Anderson, Robert. T. and Barkan, Christopher P. L. Railroad Accident Rates for
Use in Transportation Risk Analysis. Transportation Research Record: Journal of
the Transportation Research Board, 1863(-1):88–98, 2004. ISSN 0361-1981. doi:
10.3141/1863-12.

Anderson, Robert Thomas. Quantitative analysis of factors affecting railroad accident
probability and severity. PhD thesis, University of Illinois at Urbana-Champaign,,
2005.

Anderson, RT and Barkan, CPL. Derailment probability analysis and modeling of
mainline freight trains. In Proceedings of the 8th International Heavy Haul Railway
Conference, 2005.

Andrade, A. R. and Teixeira, P. F. Biobjective Optimization Model for Maintenance
and Renewal Decisions Related to Rail Track Geometry. Transportation Research
Record: Journal of the Transportation Research Board, 2261(-1):163–170, 2012. ISSN
0361-1981. doi: 10.3141/2261-19.

Andrade, A. R. and Teixeira, P. F. Hierarchical Bayesian modelling of rail track
geometry degradation. Proceedings of the Institution of Mechanical Engineers, Part
F: Journal of Rail and Rapid Transit, 227(4):364–375, 2013. ISSN 0954-4097. doi:
10.1177/0954409713486619.

Attoh-Okine, Nii O. Pair-copulas in infrastructure multivariate dependence modeling.
Construction and Building Materials, 49:903–911, 2013. ISSN 09500618. doi: 10.
1016/j.conbuildmat.2013.06.055.

Attoh-Okine, Nii O. Big Data and Differential Privacy: Analysis Strategies for Railway
Track Engineering. John Wiley & Sons, Inc., 2017.

Audley, M. and Andrews, J. The effects of tamping on railway track geome-
try degradation. Proceedings of the Institution of Mechanical Engineers, Part F:
Journal of Rail and Rapid Transit, 227(4):376–391, 2013. ISSN 0954-4097. doi:
10.1177/0954409713480439.

49



Bagheri, Morteza. Risk-Based Model for Effective Marshalling of Dangerous Goods
Railway Cars. PhD thesis, University of Waterloo, Ontario, 2009.

Bagheri, Morteza; Saccomanno, Frank; Chenouri, Shojaeddin, and Fu, Liping. Reduc-
ing the threat of in-transit derailments involving dangerous goods through effective
placement along the train consist. Accident Analysis and Prevention, 43(3):613–620,
2011. ISSN 00014575. doi: 10.1016/j.aap.2010.09.008.

Barkan, Christopher P. L.; Dick, C. Tyler, and Anderson, Robert. T. Railroad De-
railment Factors Affecting Hazardous Materials Transportation Risk. Transporta-
tion Research Record: Journal of the Transportation Research Board, 1825(9):64–74,
2003. ISSN 03611981.

Birk, A. M.; Anderson, R. J., and Coppens, A. J. A computer simulation of a derailment
accident Part I - Model Basis. Journal of Hazardous Materials, 25(1-2):121–147,
1990a. ISSN 03043894. doi: 10.1016/0304-3894(90)85075-E.

Birk, A. M.; Anderson, R. J., and Coppens, A. J. A computer simulation of a derailment
accident Part II - sample simulation. Journal of Hazardous Materials, 25(1-2):149–
165, 1990b.

Caetano, Luis Filipe and Teixeira, Paulo Fonseca. Optimisation model to schedule rail-
way track renewal operations: a life-cycle cost approach. Structure and Infrastructure
Engineering, 11(11):1524–1536, 2015. ISSN 1573-2479. doi: 10.1080/15732479.2014.
982133.

Caetano, Luis Filipe and Teixeira, Paulo Fonseca. Predictive Maintenance Model
for Ballast Tamping. Journal of Transportation Engineering, 142(4):4016006, 2016.
ISSN 0733-947X. doi: 10.1061/(ASCE)TE.1943-5436.0000825.

Coppens, A.J.; Wong, J.D.E; Bibby, A.; Birk A.M., , and Anderson R.J., . Development
of a Derailment Accident Computer Simulation Model. Technical report, Transport
Canada Report No. TP 9254E, 1988.

Dennis, Scott M. Changes in railroad track accident rates. Journal of the Transporta-
tion Research Forum, 56(4), 2002.

Esveld, Coenraad. Modern Railway Track, 2nd Edition. 2001. ISBN 9080032433.

Famurewa, S. M.; Xin, T.; Rantatalo, M., and Kumar, U. Optimisation of mainte-
nance track possession time: A tamping case study. Proceedings of the Institution
of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 229(1):12–22,
2013. ISSN 0954-4097. doi: 10.1177/0954409713495667.

Famurewa, S. M.; Juntti, U.; Nissen, A., and Kumar, U. Augmented utilisation of
possession time: Analysis for track geometry maintenance. Proceedings of the Insti-
tution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230(4):
1118–1130, 2016. ISSN 0954-4097. doi: 10.1177/0954409715583890.

50



Galvan-Nunez, Silvia. Hybrid Bayesian-Wiener Process in Track Geometry Degrada-
tion Analysis. PhD thesis, University of Delaware, 2017.

Gracie, B.J. Train Derailment Mechanics. PhD thesis, University of Waterloo, Canada,
1991.

Guran, A.; Vakakis, A., and Ossia, K. Effect of mass distribution on jack-knifing of a
train of cars. In Proceedings of CSME Forum. ”Transport 1992+”, volume 3, pages
710–713, 1992.

Gustavsson, Emil. Scheduling tamping operations on railway tracks using mixed integer
linear programming. EURO Journal on Transportation and Logistics, 4(1):97–112,
2015. ISSN 2192-4376. doi: 10.1007/s13676-014-0067-z.

Han, Hyung-Suk and Koo, Jeong-Seo. Simulation of Train Crashes in Three Di-
mensions. Vehicle System Dynamics, 40(6):435–450, 2003. ISSN 0042-3114. doi:
10.1076/vesd.40.6.435.17906.

He, Qing; Li, Hongfei; Bhattacharjya, Debarun; Parikh, Dhaivat P, and Hampapur,
Arun. Track geometry defect rectification based on track deterioration modelling
and derailment risk assessment. Journal of the Operational Research Society, 66(3):
392–404, 2015. ISSN 0160-5682. doi: 10.1057/jors.2014.7.

Jeong, D.Y.; Lyons, M.L.; Orringer, O, and Perlman, A.B. Equations of motion for
train derailment dynamics. Proceedings of the 2007 ASME Rail Transportation Di-
vision Fall Technical Conference, September 11-12, 2007 Chicago, IL, RTDF2007-4:
1–7, 2007. ISSN 10788883. doi: 10.1115/RTDF2007-46009.

Johnson, W.A. Simple model for the jack-knifing of a train of coaches and Samuel
Vince (1749-1821). International Journal of Mechanical Engineering Education, 19
(3):159–169, 1991.

Khouy, Iman Arasteh. Cost-Effective Maintenance of Railway Track Geometry. PhD
thesis, Lulea University of Technology, 2013.

Khouy, Iman Arasteh K; Schunnesson, Hak̊an; Nissen, Arne, and Juntti, Ulla J. Eval-
uation of track geometry degradation in swedish heavy haul railroad - A case study.
International Journal of COMADEM, 15(2):11–16, 2012. ISSN 13637681. doi:
10.1177/0954409713482239.

Le Pen, Louis; Watson, Geoff; Powrie, William; Yeo, Graeme; Weston, Paul, and
Roberts, Clive. The behaviour of railway level crossings: Insights through field
monitoring. Transportation Geotechnics, 1(4):201–213, 2014. ISSN 22143912. doi:
10.1016/j.trgeo.2014.05.002.

Li, Dingqing; Hyslip, James P.; Sussmann, Theodore R., and Chrismer, S. M. Railway
geotechnics. CRC Press, New York, 2015. ISBN 9780415695015.

51



Lichtberger, Bernhard. Track compendium : formation, permanent way, maintenance,
economics. Eurailpress, 2005. ISBN 3777103209.

Liu, Xiang. Statistical Temporal Analysis of Freight-Train Derailment Rates in the
United States : 2000 to 2012. 2476(1):119–125, 2015.

Liu, Xiang; Barkan, Christopher, and Saat, M. Analysis of Derailments by Accident
Cause. Transportation Research Record: Journal of the Transportation Research
Board, 2261:178–185, 2011. doi: 10.3141/2261-21.

Liu, Xiang; Saat, M., and Barkan, Christopher. Analysis of Causes of Major Train
Derailment and Their Effect on Accident Rates. Transportation Research Record:
Journal of the Transportation Research Board, 2289(2289):154–163, 2012. ISSN 0361-
1981. doi: 10.3141/2289-20.

Liu, Xiang; Saat, M. Rapik; Qin, Xiao, and Barkan, Christopher P L. Analysis of U.S.
freight-train derailment severity using zero-truncated negative binomial regression
and quantile regression. Accident Analysis and Prevention, 59:87–93, 2013. ISSN
00014575. doi: 10.1016/j.aap.2013.04.039.

Meier-Hirmer, C; Riboulet, G; Sourget, F, and Roussignol, M. Maintenance optimiza-
tion for a system with a gamma deterioration process and intervention delay: appli-
cation to track maintenance. Proceedings of the Institution of Mechanical Engineers,
Part O: Journal of Risk and Reliability, 223(3):189–198, 2009. ISSN 1748-006X. doi:
10.1243/1748006XJRR234.

Miwa, Masashi. Mathematical Programming Model Analysis for the Optimal T rack
Track Maintenance Schedule. Quart Rep RTRI, 43(3), 2002.

Mohammadzadeh, Saeed and Ghahremani, Soodabeh. Estimation of train derailment
probability using rail profile alterations. Structure and Infrastructure Engineering,
2479(August 2013):1–20, 2010. ISSN 1573-2479. doi: 10.1080/15732479.2010.500670.

Mohammadzadeh, Saeed; Miri, Amin, and Nouri, Mehrdad. Assessing ballast clean-
ing as a rehabilitation method for railway masonry arch bridges by dynamic load
tests. Proceedings of the Institution of Mechanical Engineers, Part F: Journal
of Rail and Rapid Transit, 0(0):095440971771004, 2017. ISSN 0954-4097. doi:
10.1177/0954409717710047.

Nayak, P Ranganath; Rosenfield, Donald B; Hagopian, John H; Lillie, Arthur D, and
Park, Acorn. Event Probabilities and Impact Zones for Hazardous Materials Acci-
dents on Railroads. Technical report, Report DOT/FRA/ORD- 83/20. FRA, U.S.
Department of Transportation, 1983.

Oyama, Tatsuo and Miwa, Masashi. Mathematical modeling analyses for obtaining an
optimal railway track maintenance schedule. Japan Journal of Industrial and Applied
Mathematics, 23(2):207–224, 2006. ISSN 0916-7005. doi: 10.1007/BF03167551.

52



Paetsch, C. R.; Perlman, A. B., and Jeong, D. Y. Dynamic Simulation of Train
Derailments. In Rail Transportation, volume 2006, pages 105–114. ASME, 2006.
ISBN 0-7918-4778-0. doi: 10.1115/IMECE2006-14607.

Parvez, Ahsan and Foster, Stephen James. Fatigue of steel-fibre-reinforced concrete
prestressed railway sleepers. Engineering Structures, 141:241–250, 2017. ISSN
18737323. doi: 10.1016/j.engstruct.2017.03.025.

Quiroga, L. M. and Schnieder, E. Monte Carlo simulation of railway track geometry
deterioration and restoration. Proceedings of the Institution of Mechanical Engineers,
Part O: Journal of Risk and Reliability, 226(3):274–282, 2012. ISSN 1748-006X. doi:
10.1177/1748006X11418422.

Quiroga, L. M.; Schnieder, E., and Antoni, M. Holistic long term optimization of
maintenance strategies on ballasted railway track. In 11th International Probabilistic
Safety Assessment and Management Conference and the Annual European Safety and
Reliability Conference 2012, 2012.

Roorda, J. and Gracie, B.J. Train Derailment Mechanics A Simple Model. Proceedings
of Canadian Society for Mechanical Engineering CSME Forum ”Transport 1992+,
3:714–719, 1992.

Roorda, J; Gracie, B; Energy, Atomic; Limited, Canada, and River, Chalk. Derailment
of trains. International Journal of Mechanical Engineering Education, 22(3):165–176,
1993.

Saccomanno, F. F. and El-Hage, S. M. Minimizing derailments of railcars carrying dan-
gerous commodities through effective marshaling strategies. Transportation Research
Record, (1245):34–51, 1989.

Saccomanno, F. F. and El-Hage, S. M. Establishing derailment profiles by position for
corridor shipments of dangerous goods. Canadian Journal of Civil Engineering, 18
(1):67–75, 1991. ISSN 0315-1468. doi: 10.1139/l91-009.

Scanlan, Kirk M; Hendry, Michael T, and Martin, C Derek. Evaluating the impact
of ballast undercutting on the roughness of track geometry over different subgrade
conditions. Proceedings of the Institution of Mechanical Engineers, Part F: Journal
of Rail and Rapid Transit, 0(0):095440971772034, 2017. ISSN 0954-4097. doi: 10.
1177/0954409717720347.

Selig, E. T. (Ernest Theodore) and Waters, John M. Track geotechnology and substruc-
ture management. T. Telford, 1994. ISBN 0727720139.

Silvast, M; Nurmikolu, A; Wiljanen, B, and Levomaki, M. An inspection of railway
ballast quality using ground penetrating radar in Finland. Proceedings of the Insti-
tution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 224(5):
345–351, 2010. ISSN 0954-4097. doi: 10.1243/09544097JRRT367.

53



Sol-Sánchez, Miguel; Moreno-Navarro, Fernando; Mart́ınez-Montes, German, and
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Chapter 3

DATA SOURCES AND EXPLORATORY DATA ANALYSIS

3.1 Introduction

Prior to the implementation of the copula-based methodologies, exploratory

data analysis was conducted on the datasets. Exploratory Data Analysis (EDA) ini-

tially championed by Tukey (1977) offers conceptual and computational instruments

for uncovering patterns to support hypothesis development and refinement and sup-

plements confirmatory data analysis (CDA) which employs significance and hypothesis

testing (Behrens, 1997).

EDA provides further insight into the datasets uncovering patterns, data charac-

teristics, relationships and underlying structure in the data through visualization with-

out making any initial assumptions. Thus, EDA helps corroborate any assumptions

that are made in the formulation of the problem or that are needed when implementing

certain methodologies. In this case, EDA allows one to ascertain the non-normality

of marginal and joint distributions of the various variables in the data as well as the

underlying dependences between the variables making copulas a suitable methodology.

Furthermore, EDA also allows for the identification of essential variables, missing data,

outliers and anomalies.

3.2 Data Set Description

3.2.1 Track Geometry Data Set

Track geometry inspection data was obtained from a Class I U.S. railroad which

contains information on various track geometry parameters. One mile of track was

used for the analysis. Data was measured and collected for every 1 foot of track using

a track geometry car. The track geometry car records several geometry parameters and
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non-geometric attributes. However, the surface, alignment, cross level, gage and warp

(including their wavelength variations) were used for the exploratory data analysis.

62-foot and 124-foot wavelength variations of the surface and alignment parameters

of the left and right rails were considered as well as the 62-foot variation of the warp

parameter. Thus, a total of 11 track geometry variations were initially investigated

during EDA of the raw data. The inspection data used in this case study were from

28 inspection dates spanning the years 2013 to 2016. Figure 3.1 shows the spatial

variation (foot-by-foot measurements) of the track geometry at a given inspection date

along the track for the surface right (62-ft), alignment right (62-ft), cross level and

warp (62-ft) parameters.
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Figure 3.1: Illustration of spatial variation of some track geometry parameters at a
given inspection date

Track geometry maintenance activities such as tamping were conducted to rec-

tify track geometry deviations such as incorrect surface level (vertical deviation) and

incorrect alignment (lateral deviation) by rearranging and compacting the ballast

(Khouy, 2013; Audley and Andrews, 2013). Tamping results in a jump reduction
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in the track geometry irregularity measurements and alters the track deterioration

(Soleimanmeigouni et al., 2016a). However, these activities do not offer durable geom-

etry rectification if the underlying cause of track deformation such as subgrade failure

is not addressed. The subballast layer was strengthened through the placement of a

geocell along 800 feet section of the track during track reconstruction. Track renewal

activities are considered as intervention measures but are not categorized under track

maintenance activities. Figure 3.2 shows an illustration of the surface right (62-ft)

track geometry parameter at multiple inspection dates.

Figure 3.2: Illustration of surface right (62-ft) track geometry parameter at multiple
inspecton dates
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The inspection data characterized in the form of signals was initially cleaned and

preprocessed. No missing data was identified in the dataset. Long wavelength track

irregularities have an adverse influence on ride comfort. However, short wavelength

irregularities generate more vibration on axles and wheels (Soleimanmeigouni et al.,

2016b). Thus, short wavelengths have a much greater effect on ride quality (Audley

and Andrews, 2013). Furthermore, the standard deviation of the short wavelength

surface and alignment are the key parameters used to trigger preventive maintenance

procedures (Caetano and Teixeira, 2015) and have been found to be good predictors

of the maintenance needs for the rest of the track geometry parameters (Andrade and

Teixeira, 2013). Thus, the 62-foot variations of the surface and alignment parameters

were used in favor of their 124-foot counterparts. Subsequently, the surface and align-

ment parameters of the left and right rails were averaged as a representative of the

whole track (Audley and Andrews, 2013) and were termed as “surface” and “align-

ment” respectively to avoid long wordy descriptions. The track quality index (TQI)

represented by the standard deviation (SD) of each of the track geometry parameters

namely surface, alignment, crosslevel, warp and gage was subsequently computed for

track segments with 100 feet of length. The degradation and recovery plot for the

various track geometry parameter for a given track segment is shown on figure 3.3.

The tamping recovery values for each parameter were obtained by computing the dif-

ference between the standard deviation (SD) of the track geometry parameters before

tamping and the corresponding standard deviation after tamping. Recovery values

after tamping cannot be depicted appropriately by measurement data obtained with a

long inspection interval and thus should not be considered (Soleimanmeigouni et al.,

2016a).
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Figure 3.3: Degradation and recovery plot for various track geometry parameters at
a given 100-foot track segment

3.2.2 Derailment Data Set

Data was obtained from the Rail Equipment Accident/Incident (REA) database

managed by the Federal Railroad Administration (FRA) of U.S. Department of Trans-

portation (U.S. DOT). A “rail equipment accident/incident” is a collision, derailment,
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fire, explosion, act of God, or other event involving the operation of railroad on-track

equipment (standing or moving). U.S. railroads are mandated to present detailed re-

ports (Form 6180.54) to the FRA on all accidents or incidents whose damage costs

exceed a specified monetary value. The damage incurred includes damage caused to

the railroad track, signals, on-track equipment, track structures and roadbed as well

as labor costs and the costs for acquiring new equipment and material. The reporting

threshold is periodically altered to account for inflation and other adjustments and

has increased from $5700 in 1990 to $10, 700 in 2017 (FRA, 2016). The relatively low

threshold results in most accidents being reported to the FRA (Barkan et al., 2003).

The database contains detailed track accident information such as accident

cause, number of derailed cars, total monetary damage, track type, track class, train

length and derailment speed. The database contains 4990 accidents and incidents for

the year 2005. The breakdown of these accidents and incidents is shown in figure 3.4.

Derailments made up the largest proportion of REAs (2614, about 52.4%) followed by

“other impacts” (726, 14.5%), side collisions (347, 6.9%) and highway-rail collisions

(295, 5.9%).

The types of train consists involved in these accidents include freight trains, pas-

senger trains, commuter trains, works trains, yard/switching and maintenance/inspections

cars. On the other hand, the types of tracks involved in these accidents include mainline

track, yard, siding and industry. The breakdown of train consist types can be found

in figure 3.5 whereas the breakdown of track types is presented in figure 3.6. Freight

trains was the popular consist type (about 34.3%). On the other hand, about 49%

of accidents/incidents occurred in the yard whereas about 30% occurred on mainline

track.

Similar to previous derailment severity research, 690 freight-train derailments

occurring on Class I mainline track in the year 2005 were initially considered for ex-

ploratory data analysis after cleaning and preprocessing of the data. The variables

considered include monetary damage, the number of derailed cars, derailment speed,

residual train length and proportion of loaded railcars in the train (loading factor).
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Figure 3.4: Breakdown of train accidents and incidents in 2005

The Federal Railroad Administration (FRA) classifies accidents/derailments into five

major accident cause categories namely:

• Track, Roadbed and Structures (T)

• Signal and Communication (S)

• Mechanical and Electrical Failures (E)

• Train Operations - Human Factors (H)

• Miscellaneous causes not otherwise listed (M)

The breakdown of these freight-train derailments based on major accident cause cate-

gory is given in figure 3.7. Track, Roadbed and Structures (T) was the most popular

category (about 47.5%) followed by Mechanical and Electrical Failures (about 25.1%).

The subcategory breakdown of the various major cause categories is presented in ap-

pendix B.

Accident cause has been found to influence the severity of train derailments. To
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Figure 3.5: Types of train consists involved in accidents/incidents

cater for the effect (and variations) due to derailment cause, 124 derailments caused by

broken rail were subsequently considered. Broken rails are the most frequent cause of

freight-train derailment on Class I mainlines in the United States (Barkan et al., 2003;

Liu et al., 2013). Broken rail falls under the “Rail, Joint Bar and Rail Anchoring”

subcategory of the Track, Roadbed and Structures major cause category. Broken rails

have been found to result in a higher derailment severity in comparison with other

causes such as bearing failure with the former causing twice as many derailed cars on

average as that of the latter (Barkan et al., 2003). Due to their high frequency and

severity, broken rails are more likely to present higher risk than other causes.
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Figure 3.6: Types of tracks involved in accidents/incidents

Figure 3.7: Major accident cause category breakdown of Class I mainline freight train
derailments
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3.3 Histogram and Quantile-Quantile Plot

A histogram provides an illustrative representation of the frequency distribution

of a continuous univariate numerical dataset over a continuous interval or given time

frame. Histograms provide an estimate of the underlying distribution while offering

information on the center, spread, skewness, shape and possible outliers in the data.

Quantile-quantile plot (also known as Q-Q plot) is a probability scatterplot used to

compare two probability distributions by plotting their quantiles relative to each other.

Thus, Q-Q plots can be used to assess the similarity of the empirical distribution

of a sample with common theoretical distributions such as normal and exponential

distributions. Normal Q-Q plots can be used to test the assumption that a random

variable is normally distributed. If the empirical distribution of the examined sample

comes from the normal distribution the points roughly form a straight line along a 45-

degree reference line. However, the nonlinearity of the points or increase in deviation

from this line indicates non-normality.

3.3.1 Track Geometry Set

Histograms and Q-Q plots illustrating the data points of several track geometry

parameters across all the inspection dates as well as a single given inspection date were

examined. Figure 3.8 shows the histograms and Q-Q plots for all the data points for

surface right (62-ft), alignment right (62-ft) and cross level across all inspection dates

from 2013 to 2016 whereas figure 3.9 shows that of a given inspection date.

The histograms in these figures generally exhibit atypical Gaussian shapes and

the Q-Q plots showed that points deviated from the reference line. For the histograms

of figures 3.8 and 3.9, the surface (62-ft) and alignment (62-ft) parameters appeared to

be fairly symmetric however they tend to deviate from the Gaussian shape in the tail

regions. They have heavy tails compared to the normal distributions which serves as a

violation of normality. This is confirmed by their respective Q-Q plots with deviations

from the reference line in both tails leading to the formation of an “inverted-S” shape

with the initial sample quantiles being much lower than the initial theoretical quantiles
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with their last quantiles being much higher than the last theoretical quantiles. The

crosslevel parameter however can be said to have a bimodal type distribution with two

distinct peaks with majority of the points located on the left half with a mode of about

0 inches and minority on the right half with a mode of about 0.7 inches. This is as a

result of the shallow curvature observed at some sections of the track.

Subsequently histograms illustrating the TQI (standard deviation) of the various

track geometry parameters as well as the recovery values, TQI before and after tamping

for the surface parameter were analyzed. Figure 3.10 presents the histograms and Q-Q

plots for all the data points for standard deviation (SD) surface, SD alignment and SD

cross level across all inspection dates from 2013 to 2016. On the other hand, figure 3.11

shows the histograms and Q-Q plots for SD surface recovery values, SD surface before

tamping and SD surface after tamping. From figures 3.10 and 3.11, the histograms

of these parameters were found to be right skewed (a violation of normality) with

with majority of the points located on the left half with a heavy right tail of data.

This is confirmed by their respective Q-Q plots with a concave plot created with the

largest values larger than would be expected under normality. This indicates higher

concentration of data beyond the right-hand side of a normal distribution. Figures

related to the histograms of other track geometry parameters are shown in Appendix

A.
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Figure 3.8: Histograms and Q-Q plots for surface right, alignment right and crosslevel
data points from 2013 to 2016
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Figure 3.9: Histograms and Q-Q plots for surface right, alignment right and crosslevel
data points for a given inspection date

69



Figure 3.10: Histograms and Q-Q plots for SD surface, SD alignment and SD
crosslevel data points from 2013 to 2016
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Figure 3.11: Histograms and Q-Q plots for SD surface recovery values, SD surface
before tamping and SD surface after tamping
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3.3.2 Derailment Data Set

Histograms and Q-Q plots illustrating the derailment severity outcomes (such

as monetary damage and number of derailed cars) and covariates (such as derailment

speed, residual train length, loading factor) were examined. Figure 3.12 shows the

histograms and Q-Q plots of the monetary damage, number of derailed cars and de-

railment speeds for all freight-train derailments occurring on Class I mainline track

in the year 2005 whereas figure 3.13 shows that of broken-rail caused freight-train de-

railments. The histograms in these figures generally exhibit non-Gaussian shapes. As

shown in figures 3.12 and 3.13, the histograms of the monetary damage, number of

derailed cars and derailment speed were all found to be right skewed with most data

points located on the left half with a long right tail of data. This is corroborated by the

concave plots shown in their respective Q-Q plots. Figures related to the histograms

of other derailment severity covariates such as residual train length and loading factor

are shown in Appendix B.
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Figure 3.12: Histograms and Q-Q plots for monetary damage, derailed cars and
derailment speed for all freight-train derailments occurring on Class I
mainline track
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Figure 3.13: Histograms and Q-Q plots for monetary damage, derailed cars and de-
railment speed for broken-rail caused freight-train derailments occurring
on Class I mainline track
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3.4 Box and Whisker Plot

The box and whisker diagram (popularly known as box plot) is a standardized

graphical representation of the distribution of numerical data through their quartiles or

a five-number summary. The five-number summary consists of the minimum, first lower

quartile (Q1), median, upper quartile (Q3) and maximum. Some box plots include an

extra character to denote the mean of the variable. It is called a box and whisker plot

since a box is drawn from the lower (first) quartile to the upper quartile (known as

the interquartile range (IQR)) whereas whiskers are drawn from the minimum to the

lower quartile and the maximum to the upper quartile. The whiskers are indicative of

the variability beyond these quartiles. Box plots aid in the comparison of distributions

and provide information on the skewness and spread of the data. Box plots also aid in

the identification of outliers. Data points greater than Q3 + (1.5× IQR) and less than

Q1− (1.5× IQR) are considered as outliers.

3.4.1 Track Geometry Set

The box and whisker diagrams of all the observed data points of the various

parameters during the study time frame were initially considered. Figures 3.14 and 3.15

illustrate the box plot for surface right (62-ft) and crosslevel across all the inspection

dates. The median values of the surface right (62-ft) were found to be relatively

constant throughout the whole duration compared to the crosslevel. High variability

of the surface right (62-ft) was observed for most inspection dates with several potential

outliers. The variability was found to reduce drastically after August, 2015 when track

reconstruction and geocell placement along a 800-foot section were undertaken.

The median of the crosslevel level generally changed from one inspection to

another but was more stable after August, 2015 when track reconstruction and geo-

cell replacement were undertaken. High variability was observed for most inspection

dates. The variability was found to reduce drastically after August, 2015 when track

reconstruction and geocell replacement were undertaken.
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Figure 3.14: Box plot of surface right (62-ft) data points across all the inspection
dates
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Figure 3.15: Box plot of crosslevel data points across all the inspection dates
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The box plots of the track quality index (standard deviation) of the various

parameters were subsequently considered. Figures 3.16 illustrates the box plot of the

TQI before tamping, TQI after tamping and recovery values for standard deviation

(SD) surface with figures 3.17 and 3.18 illustrating that of SD alignment and SD

crosslevel respectively. As shown in all three plots, the TQI (SD of the parameter)

generally reduced after tamping maintenance with an observed reduction in median,

upper and lower quartiles, maximum and minimum. The reduction was found to be

greatest in the surface parameter. Additionally, the variability in the TQI was also

found to considerably reduce in the surface parameter but similar reductions were not

observed in the alignment and crosslevel. These observations seem to corroborate the

fact that the shortwave surface parameter tends to recover relatively better during

tamping than other parameters (Lichtberger, 2005; Soleimanmeigouni et al., 2016b).

Several potential outliers were also identified in the box plots and are represented by

circles. The box plots for SD gage and SD warp can be found in Appendix A.
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Figure 3.16: Box plot of TQI before tamping, TQI after tamping and recovery values
for SD surface
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Figure 3.17: Box plot of TQI before tamping, TQI after tamping and recovery values
for SD alignment

80



Figure 3.18: Box plot of TQI before tamping, TQI after tamping and recovery values
for SD crosslevel
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3.4.2 Derailment Data Set

The box and whisker diagrams of the variables of interest for all freight-train

derailments on Class I mainline track were initially examined based on their major ac-

cident cause category type. Figure 3.19 presents the distribution of monetary damage

incurred across the various major accident cause categories. All categories show asym-

metry with the median splitting the boxes into unequal halves, unequal length of both

whiskers as well as unequal number of outliers on both sides of the whiskers. They are

all said to be right skewed because the mean is greater than the median and the median

is closer to the lower quartile than the upper quartile making the right hand side of the

box greater than the left hand side. On average, the signal and communication cause

category was found to have the highest monetary damage with human factor have the

least monetary damage (mean is denoted by the blue diamond shape). Additionally,

the signal and communication cause was found to have the lowest median and the only

category without any potential outliers. Mechanical and electrical failures was found

to have the highest variability (determined by the entire range of data points) among

the category types.

Figure 3.20 illustrates the distribution of derailed cars across the various major

accident cause categories. Similar to monetary damage plot, all categories were found

to be right skewed with mean values greater than median values. Additionally, signal

and communication category was found to have the highest number of derailed cars

on average with mechanical and electrical failures having the least. The box plot

of the derailment severity covariates across the various categories can be found in

Appendix B. Subsequently, the distribution of the derailment severity outcomes were

examined based on major accident cause sub-category type. Figures 3.22 and 3.21

shows the distribution of monetary damage and derailed cars across Track, Roadbed

and Structures causes sub-category respectively. For both outcomes, “Rail, Joint Bar

and Rail Anchoring” sub-category was found to have the highest mean and median

values (even higher than that of the Signal and communication category) as well as the

highest variability. The variation of derailment severity outcomes (monetary damage
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and number of derailed) across accident cause categories and sub-categories emphasizes

the need to analyze and take into account the actual derailment cause. The distribution

of severity outcomes across other sub-categories can also be found in Appendix B.
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Figure 3.19: Box plot illustrating distribution of monetary damage across all major
accident cause categories
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Figure 3.20: Box plot illustrating distribution of derailed cars across all major acci-
dent cause categories
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Figure 3.21: Box plot illustrating distribution of derailed cars across Track, Roadbed
and Structures causes sub-category
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Figure 3.22: Box plot illustrating distribution of monetary across Track, Roadbed
and Structures causes sub-category
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3.5 Scatter Plots

Scatter plots are plots of the data points of a pair of variables. Scatter plots offer

an illustrative depiction of the correlation or relationship between the pair of variables.

3.5.1 Track Geometry Data Set

Figure 3.23 presents a correlation plot matrix of the pairs of several geometry

parameters for a given inspection date. On the other hand, figure 3.24 shows a correla-

tion plot matrix of the TQI of the parameters at a given inspection date whereas figure

3.25 presents a correlation plot matrix of the recovery values of the parameters. Bivari-

ate scatter plots are shown below the diagonal, histograms of the individual parameters

on the diagonal and Kendall’s correlation coefficient of each pair above the diagonal.

Kendall’s Tau was preferred over Pearson’s correlation coefficient since it measures

dependence independent of the assumed distribution and dependence whereas the lat-

ter assumes normality and linear dependence. Generally, very weak correlations were

found between the pair of variables of interest when examining the “raw” data as shown

in figure 3.23. However, an examination of the TQI (standard deviation) of the same

track geometry parameters reveals some dependence between the variables due to the

aggregated nature of the TQI. As shown in figure 3.24, SD crosslevel and SD warp

were found to have the highest correlation between the various pairs of variables. This

may be attributed to the fact that warp is a measure of the crosslevel variation. Fur-

thermore, SD surface appears to be more correlated with SD crosslevel and SD warp

(vertical parameters) than SD alignment and SD gage (horizontal parameters). SD

alignment (a longitudinal horizontal parameter) was found to be most correlated with

SD gage (a transverse horizontal parameter) followed by SD surface (a longitudinal

vertical parameter). Similar to the TQI, the crosslevel and warp recovery values was

found to have the highest correlation as shown in figure 3.25. Detailed explanation

of the correlation analysis between the recovery values of the various track geometry

parameter using several dependence measures can be found in section 4.6.9.
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Figure 3.23: Correlation plot matrix of selected track geometry parameters at a given
inspection date

89



Figure 3.24: Correlation plot matrix of TQI of selected track geometry parameters
at a given inspection date
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Figure 3.25: Correlation scatter plot matrix of recovery values of selected track ge-
ometry parameters at a given inspection date
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3.5.2 Derailment Data Set

Figure 3.26 presents a correlation plot matrix of the pairs of variables for all

freight train derailments whereas figure 3.27 presents that of only broken-rail caused

derailments. Bivariate scatter plots are presented beneath the diagonal, histograms of

the individual variables on the diagonal and Kendall’s Tau correlation coefficient above

the diagonal. Kendall’s Tau was preferred over Pearson’s correlation coefficient since it

is scale-invariant measure of dependence which remains unaltered under monotonically

increasing transformations. Furthermore, it measures dependence independent of the

assumed distribution and dependence whereas the latter assumes normality and linear

dependence. For both datasets, Monetary damage and number of derailed cars was

found to have the highest correlation with a moderate dependence (0.48) observed for

all freight-train derailments and a relatively strong dependence (0.59) when examining

only broken-rail caused derailments. On the other hand, Residual Train Length and

Loading Factor was found to have the least correlation with no dependence observed

between the pair for both datasets. In general, weak or no correlations were observed

between the pairs of covariates.

Generally, the outcomes (Monetary Damage, Number of Derailed Cars) were

found to be positively correlated with the covariates (Derailment Speed, Residual

Train Length, Loading Factor). For all freight train derailments dataset, both out-

comes exhibit relatively low correlations with the covariates. However, for broken-rail

caused derailments, the outcomes were found to have moderate correlations with both

derailment speed and residual train length but low correlations with loading factor.

Derailment severity has been found to increase exponentially with derailment

speed and residual train length. Thus, logarithm transformation of these variables

have been found to offer a better fit (Saccomanno and El-Hage, 1989, 1991; Liu et al.,

2013). This was confirmed and adopted during the confirmatory (copula) data analysis.

However, unlike Pearson’s coefficient, Kendall’s Tau is a scale-invariant dependence

measure thus the logarithmic transformations of these covariates do not affect the

measure of dependence observed.
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Figure 3.26: Correlation plot matrix of variables for all freight-train derailments
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Figure 3.27: Correlation plot matrix of variables for broken-rail caused freight-train
derailments
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3.6 Concluding Remarks

Based on the exploratory data analysis conducted in this chapter, the following

conclusions can be made:

1. High degree of uncertainty due to high variation in track geometry condition

including recovery values of the parameters was observed as shown by their re-

spective box plots. Due to this variation, a probabilistic (stochastic) approach to

modeling tamping recovery of track geometry appears to be suitable.

2. The variables of interests in both track geometry and derailment severity data

sets were found to be non-normally distributed. Various violations of normality

were exhibited including skewness and fat tails (as shown in their respective his-

tograms, Q-Q plots and box plots). Due to the non-normality of the marginal and

joint distribution of the variables of interest, a copula-based approach to mod-

eling tamping recovery of track geometry recovery and train derailment severity

appears to be suitable.

3. The derailment severity outcomes namely monetary damage and number of de-

railed cars appears to be (highly) correlated (as shown in the scatter/correlation

plot matrix). Therefore, it does not appear appropriate to dismiss the underlying

dependence between the severity outcomes in a multivariate regression frame-

work. Thus, it appears appropriate to jointly analyze their relationship with a

set of covariates that might affect both outcomes using a copula-based regression

model in order to enhance severity prediction.
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Chapter 4

COPULA MODELS

This chapter provides a detailed overview on copulas. The basic concepts of

copula function theory are introduced. The various classes of copulas, dependence con-

cepts and measures, statistical inference (parameter estimation) of copulas and copula

selection techniques are subsequently discussed. Finally, a case study is presented in

which the tamping recovery of various track geometry parameters are modeled using a

copula-based approach.

4.1 General

Copulas are functions that combine or link multivariate distribution functions

to their univariate marginal distribution functions. An n-dimensional copula is a mul-

tivariate distribution function C(u1, ..., un) defined on the unit hypercube [0, 1]n, with

n-random variables as uniformly distributed marginals (Nelsen, 2006; Czado et al.,

2012; Zilko et al., 2016). C is a bivariate copula if C : [0, 1]2 → [0, 1] and meets the

following conditions:

1. C(u, 0) = C(0, v) = 0 for any u, v ∈ [0, 1]

2. C(u, 1) = u and C(1, v) = v for any u, v ∈ [0, 1]

3. C(u2, v2) − C(u1, v2) − C(u2, v1) + C(u1, v1) ≥ 0 ∀ 0 ≤ u1 ≤ u2 ≤ 1 and

0 ≤ v1 ≤ v2 ≤ 1

The copula approach via Sklar’s theorem (Sklar, 1959) permits the separation

of the multivariate distribution into univariate margins, and the dependence structure

which is modelled via the copula function without loss of information (Dalla Valle et al.,

2016). Sklar’s theorem (Sklar, 1959) offers the link between univariate marginals and

copula to the multivariate joint distribution. Sklar’s Theorem states that for any
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n-dimensional distribution function with given marginals F1, ..., Fn, there exists an

n-dimensional copula C : [0, 1]n → [0, 1] such that for all (x1, ..., xn) ∈ Rn

F (x1, ..., xn) = C{F1(x1), ..., Fn(xn)} (4.1)

holds. C is unique if each Fi(x) is continuous; otherwise it is uniquely determined by

the product of their ranges (Range of F1 × ...× Range of Fn).

Sklar’s theorem offers a useful means of constructing copulas given the marginals

F1, ..., Fn such that

C(x1, ..., xn) = F
(
F−1

1 (x1), ..., F−1
n (xn)

)
(4.2)

If F is absolutely continuous, then the copula density c is well defined and can be

written as

c(u1, ..., un) =
∂nC(u1, ..., un)

∂u1, ..., ∂un
(4.3)

The density f of the multivariate distribution F given the copula density c can be

expressed as

f(x1, ..., xn) = c{F1(x1), ..., Fn(xn)}
n∏
i=1

fi(xi) (4.4)
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Via recursive conditioning, a four-dimensional density function can be expressed/ de-

composed as follows:

f(x1, x2, x3, x4) = f1(x1) · f(x2|x1) · f(x3|x1, x2) · f(x4|x1, x2, x3) (4.5)

f(x2|x1) =
f(x1, x2)

f1(x1)
=
c12(F1(x1), F2(x2)) · f1(x1)f2(x2)

f1(x1)
(4.6)

f(x2|x1) = c12(F1(x1), F2(x2)) · f2(x2) (4.7)

f(x3|x1, x2) =
f(x2, x3|x1)

f(x2|x1)
=
c23|1(F (x2|x1), F (x3|x1))f(x2|x1)f(x3|x1)

f(x2|x1)
(4.8)

f(x3|x1, x2) = c23|1(F (x2|x1), F (x3|x1))f(x2|x1)f(x3|x1) (4.9)

But

f(x3|x1) =
f(x1, x3)

f1(x1)
=
c13(F1(x1), F3(x3)) · f1(x1)f3(x3)

f1(x1)
(4.10)

f(x3|x1) = = c13(F1(x1), F3(x3) · f3(x3)) (4.11)

Thus

f(x4|x1, x2, x3) =
f(x3, x4|x1, x2)

f(x3|x1, x2)
(4.12)

f(x4|x1, x2, x3) = =
c34|12F (x3|x1, x2)F (x4|x1, x2)f(x3|x1, x2)f(x4|x1, x2)

f(x3|x1, x2)
(4.13)

f(x4|x1, x2, x3) = c34|12(F (x3|x1, x2)F (x4|x1, x2))f(x4|x1, x2) (4.14)

But

f(x4|x1, x2) = c24|1(F (x2|x1), F (x4|x1))f(x2|x1)f(x4|x1) (4.15)
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Thus finally

f(x4|x1, x2, x3) =

c34|12(F (x3|x1, x2)F (x4|x1, x2))c24|1(F (x2|x1), F (x4|x1))c14(F1(x1), F4(x4))f4(x4)

(4.16)

Copula-based modeling is an emerging statistical method which has been widely

used in the financial industry and is gaining traction in civil engineering. Copula-based

methodologies have been applied in hydrology or water resources (Salvadori and De

Michele, 1992; Grimaldi and Serinaldi, 2006; Genest and Favre, 2007), travel behavior

modeling (Bhat and Eluru, 2009) and vehicle axle weight modeling (Srinivas et al.,

2006). Other areas include infrastructure (pavement) dependence modeling (Attoh-

Okine, 2013), pipeline data analysis (Atique and Attoh-Okine, 2016), and automobile

injury severity studies (Eluru et al., 2010; Nashad et al., 2016). However, its applica-

tion in the railroad industry is very limited with Zilko et al. (2016) modeling railroad

disruption lengths using Copula Bayesian Networks.

4.2 Classes of Copulas

There are two popular classes of Copulas namely elliptical copulas and Archimedean

copulas with 3rd less common class called Extreme-value copulas (Yan, 2006).

4.2.1 Elliptical Copulas

Elliptical (or meta-elliptical) copulas are copulas of elliptical distributions. El-

liptical contoured distributions are radially symmetric. Members of this family include

bivariate normal, bivariate Pearson type II and type VII distributions (the latter includ-

ing bivariate t and Cauchy distributions as special cases) (Nelsen, 2006). A multivariate

elliptical distribution of random vector (X1, ..., Xn) centered at zero has density of the

form φ(w) = ψ(w>Σw), where w ∈ Rn and Σ is a n× n dispersion matrix, which can

be parameterized such that Σij = Cov(Xi, Xj) (Yan, 2006). The margins of elliptical

distributions are all of the same type (Embrechts et al., 2003).
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Elliptical copulas are directly obtained by the inversion of Sklar’s Theorem and

thus can be expressed in the form

C(u1, ..., un) = F
(
F−1

1 (u1), ..., F−1
n (un)

)
(4.17)

The two most common elliptical copulas are the Normal or Gaussian copula and the

student t-copula which are related to the multivariate normal and multivariate student-

t distributions respectively. Both of these copulas are radially symmetric and tail-

symmetric. However, student-t copula has tail dependence whereas Gaussian copula

has no tail dependence. The bivariate Gaussian copula can be expressed as

C(u1, u2) = Φρ(Φ
−1(u1),Φ−1(u2)) (4.18)

where Φρ and Φ are the bivariate and univariate standard normal distribution functions

respectively and ρ ∈ (−1, 1) is the dependence parameter. The bivariate Student-t

copula can be expressed as

C(u1, u2) = tρ,ν(t
−1
ν (u1), t−1

ν (u2)) (4.19)

where tρ,ν and tν are the bivariate and univariate Student-t distribution functions

respectively and the degrees of freedom parameter ν > 2.

Similar to elliptical distributions, simulation from elliptical copulas are easy.

However, elliptical copulas do not have closed form expressions and are only radially

symmetrical (Embrechts et al., 2003). Properties of bivariate elliptical copula families

including parameter range, Kendall’s tau and tail dependence is given in Table 4.1.

4.2.2 Archimedean Copulas

Archimedean Copulas are constructed by means of a complete monotonic func-

tion without the need for distribution functions or random variables (Yan, 2006). Un-

like elliptical copulas, Archimedean copulas have closed form expressions and are not
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Table 4.1: Properties of bivariate elliptical copula families (Brechmann and Schep-
smeier, 2013)

Elliptical copula Parameter Range Kendall’s Tau Tail Dependence
Gaussian/ Normal ρ ∈ (−1, 1) 2

π
arcsin(ρ) 0

Student-t ρ ∈ (−1, 1), ν > 2 2
π

arcsin(ρ) 2tν+1

(
−
√
ν + 1

√
1−ρ
1+ρ

)
restricted to only radial symmetry. Archimedean copulas can be expressed as

C(u1, ..., un) = ϕ−1 (ϕ(u1), ..., ϕ(un)) (4.20)

where the generator of the copula, ϕ : [0, 1]→ [0,∞] is a continuous strictly decreasing

convex function such that ϕ(0) =∞ and ϕ(1) = 0 and ϕ−1 is its pseudo-inverse which

is given as

ϕ−1(ν) =

ϕ−1(ν) 0 ≤ ν ≤ ϕ(0)

0 ϕ(0) ≤ ν ≤ ∞
(4.21)

Common one-parameter Archimedean copulas include Gumbel, Clayton, Frank

and Joe Copulas. Gumbel and Joe copulas are suitable for modeling upper tail depen-

dence whereas Clayton performs well with lower tail dependence. The Joe Copula has

an even stronger positive upper tail dependence in comparison to the Gumbel copula

and can be observed by tighter clustering of observations in the upper tail. Frank

copula is suitable for radially symmetric dependence with very weak tail dependen-

cies (even weaker than the Gaussian copula) (Bhat and Eluru, 2009). Common two-

parameter Archimedean copula families include Clayton-Gumbel (BB1), Joe-Gumbel

(BB6), Joe-Clayton (BB7) and Joe-Frank (BB8) which are more flexible. The more

flexible structures of Clayton-Gumbel (BB1) and Joe-Clayton (BB7) permit different

non-zero lower and upper tail dependence coefficients. The properties of various one-

parametric and two-parametric bivariate Archimedean copulas are given in Table 4.2.
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4.3 Dependence Measures

4.3.1 Dependence Concepts

Two random variables (X, Y ) are said to be dependent if they do not satisfy

the condition of probabilistic independence i.e. F (x, y) 6= FX(x)FY (y) (Liu, 2011).

Global correlation coefficients measure the average dependence over the domain of the

variables of interest (Lewandowski, 2008). A global dependence measure summarizes

the dependence structure of two random variables in a single number. Examples in-

clude Pearson’s correlation coefficient, Kendall’s tau and Spearman’s rho. Given that

δ(·, ·) is a scalar measure of dependence, the following are desirable characteristics of

a dependence measure (Embrechts et al., 2002):

1. δ(X, Y ) = δ(Y,X) (symmetry)

2. −1 ≤ δ(X, Y ) ≤ +1 (normalization)

3. δ(X, Y ) = 1⇐⇒ (X, Y ) (comonotonic)

δ(X, Y ) = −1⇐⇒ (X, Y ) (countermonotonic)

4. For T : R→ R strictly monotonic on the range of X:

δ(T (X), Y ) =

 δ(X, Y ) T increasing,

−δ(X, Y ) T decreasing.

Dependence can be evaluated using several concepts such as linear correlation, concor-

dance (or rank correlation) and tail dependence (Liu, 2011). Linear correlation fulfills

only properties 1 and 2. Rank correlation fulfills not only properties 1 and 2 but also

properties 3 and 4 if the variables are continuous.

4.3.2 Linear Correlation

The most popular dependence between two random variables (X, Y ) is the Pear-

son product-moment correlation coefficient (also known as Pearson’s coefficient or lin-

ear correlation coefficient) which is associated with linear dependence and multivariate

normal distribution. Linear correlation is a natural dependence measure for multi-

variate normality and, more generally, elliptically distributed distributions (Embrechts
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et al., 2002). Pearson’s coefficient can be mathematically expressed as:

ρ(X, Y ) =
cov(X, Y )

σXσY
(4.22)

where cov(X, Y ) is the covariance between X and Y, cov(X, Y ) = E(X, Y )−E(X)E(Y )

and σX and σY are the standard deviations of X and Y respectively. If two variables

are independent ρ(X, Y ) = 0 since cov(X, Y ) = 0. Given perfect linear dependence of

the variables i.e. Y = aX+b, ρ(X, Y )±1 whereas −1 < ρ(X, Y ) < +1 given imperfect

linear dependence (Liu, 2011).

Pearson’s coefficient is highly popular for the following reasons (Embrechts et al.,

2002)

1. It is easy to compute since it is easy to find the second moments (variances and

covariances) for most bivariate distributions.

2. It is invariant given linear transformations of the variables.

3. It is a natural dependence measure for multivariate spherical and elliptical dis-

tributions.

Assumption of multivariate normality allows for the use of multivariate methods such

as principal component analysis and factor analysis however this does not apply to all

cases with non-normality occurring in many applications making the aforementioned

techniques unsuitable. Non-normality transpires in various forms: non-normality of

marginal distribution of some variables and in some instances multivariate non-normality

of the joint distribution of a group of variables despite normal marginal distributions of

all the individual variables (Yan, 2006). Linear correlation has the following limitations

(Embrechts et al., 2002; Liu, 2011):

1. Pearson’s coefficient is undefined if the second moments of the variables do not

exist. Thus, they do not always exist and this is common in heavy-tailed distri-

butions.

2. Pearson’s coefficient is invariant given strictly increasing nonlinear transforma-

tions of the variables.
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3. Independence between two random variables indicates zero linear correlation (un-

correlation). However, uncorrelation does not generally imply independence and

only applies to multivariate normality.

4. Pearson’s coefficient is not a robust measure since one observation can have an

arbitrary high influence on the linear correlation.

The shortcomings of linear correlation have led to the consideration of other dependence

concepts such as concordance.

4.3.3 Rank Correlation/Concordance Measure

Rank correlation coefficients measure the correspondence between two rankings

and assesses its significance (Liu, 2011). This form of dependence that evaluates the

consistency or agreement of two or more sets of rankings is also known as concor-

dance. There are several advantages of using rank correlations over ordinary product

moment correlations such as Pearson’s correlation coefficient. These advantages in-

clude(Bedford and Cooke, 2001):

1. they always exist.

2. they are independent of marginal distributions meaning they can take any value

in the [-1, 1] interval

3. they are invariant under monotonic increasing transformations of the marginals .

Since copulas are also invariant under monotone transformations, scale-invariant

measures of dependence such as Kendall’s Tau and Spearman’s Rho are more suitable

for evaluating the degree of dependence. They are both rank correlations and remain

unaltered under strictly increasing transformations (Nelsen, 2006; Yan, 2006; Ayuso

et al., 2016). Both can be defined via a concordance function, Q which is the difference

between concordance and discordance probabilities of two continuous vectors (Xa, Ya)

and (Xb, Yb) with likely differing joint distributions A and B but similar margins (Fa)

and (Fb). The concordance function Q can be expressed as:

Q = PC − PD = Pr((Xa −Xb)(Ya − Yb) > 0)− Pr((Xa −Xb)(Ya − Yb) < 0) (4.23)
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where PC is the concordance probability and PD is the discordance probability.

Given the copulas of the joint distributions A and B, the concordance function Q can

be also expressed as:

Q = Q(CA, CB) = 4

∫ 1

0

∫ 1

0

CA(u, v)dCB(u, v)− 1 (4.24)

Other concordance measures include Gini’s measure of association, Blomqvist’s mea-

sure of association (or medial correlation coefficient) and Moran’s coefficient (see (Nelsen,

2006; Dorey and Joubert, 2005).

4.3.3.1 Kendall’s Tau

Kendall’s tau measure [τ or Q(C,C)] can be defined as the difference between

the concordance and discordance probabilities of two independent and identically dis-

tributed pairs of observations. Thus given a bivariate random vector (Xa, Ya) with

copula C, it can be expressed as (Yan, 2006):

τ = Q(C,C) = 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 1 (4.25)

The sample version of Kendall’s tau can be defined as the difference between the

probabilities of concordance and discordance for a pair of observations that is chosen

randomly from the sample. This can be expressed as (Nelsen, 2006):

τ =
NC −ND

N
(4.26)

Where NC is the number of concordant pairs, ND is the number of discordant pairs

and N is the number of distinct pairs of observations from a random sample which is

equal to
(
n
2

)
where n is the number of observation from a vector of continuous random

variables. The population version of Kendall’s tau can be defined as the difference
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between the concordance and discordance probabilities and can be expressed as:

Q = PC − PD = Pr((Xa −Xb)(Ya − Yb) > 0)− Pr((Xa −Xb)(Ya − Yb) < 0) (4.27)

Non-linear dependence is usually evaluated using Kendall’s tau (Czado et al., 2012).

Kendall’s tau measures dependence independent of the assumed distribution and thus is

suitable when linking various (non-Gaussian) copula families (Dissmann et al., 2013).

For Archimedean copulas, the closed form expression of Kendall’s tau is based on

the copula-specific generator function whereas their computation for Elliptical copulas

are more complicated (Schepsmeier and Czado, 2016). The Kendall’s tau for various

bivariate elliptical copulas and bivariate Archimedean copulas are shown in Tables 4.1

and 4.2 respectively.

4.3.3.2 Spearman’s Rho

Spearman’s Rho [ρ or 3Q(C,Π)] is often referred to as the ‘grade correlation co-

efficient’ where grades are population analogs of ranks (Nelsen, 2006). The population

version of Spearman’s Rho is proportional to the difference between the concordance

and discordance probabilities for the vectors (Xa, Ya) and (Xb, Yc) with similar margins

however one vector has a distribution function A, whereas the elements of the other

are independent. The population version of Spearman’s Rho can be expressed as:

ρX,Y = 3 (Pr[(Xa −Xb)(Ya − Yc) > 0]− Pr[(Xa −Xb)(Ya − Yc) < 0]) (4.28)

where 3 is a normalization factor that scales ρ into the range of [−1, 1] and (Xc, Yb) can

equally be used in place of (Xb, Yc). In terms of copula, Spearman’s rho is proportional

to the difference between concordance and discordance probabilities of two vectors:

both with the same margins however one has copula C and the other product copula

Π obtained under independence. This can be expressed as:

ρ = 3Q(C,Π) = 12

∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 3 (4.29)
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Spearman’s Rho is equivalent to Pearson’s product-moment correlation coefficient for

the probability-integral-transformed variables or the grades of a pair of continuous

random variables.

4.3.4 Tail Dependence

All the aforementioned correlation coefficients measure the average dependence

over the domain of the variables of interest. Tail dependence is the measure that tries

to capture the dependence more locally rather than globally, in the tails (lower and/or

upper) of distribution (Lewandowski, 2008). It can be defined as the measure of the co-

movements in the tails of the distributions of random variables. Tail dependence also

relates to the conditional probability that one variable exceeds some value given that

another exceeds some value. For continuous marginal distributions, tail dependence is

a copula property; hence it is invariant under monotonic transformations (Liu, 2011).

Let Y = (Y1, Y2) be a pair of random variables. The pair is said to be upper tail

dependent if

λU = lim
υ→1

P{Y1 > F−1
1 (υ)|Y2 > F−1

2 (υ)} > 0 (4.30)

if the limit λU exists. This is the probability that Y1 reaches extremely large values,

given that Y2 attains extremely large values. Similarly, the pair is said to be lower tail

dependent if

λL = lim
υ→0

P{Y1 ≤ F−1
1 (υ)|Y2 ≤ F−1

2 (υ)} > 0 (4.31)

if the limit λL exists. The lower and upper tail dependence coefficients of various ellip-

tical and Archimedean copula families can be found in tables 4.1 and 4.2 respectively.

If the lower and upper tail coefficients differ, the dependence can be said to be asym-

metric. Asymmetric dependence is dependence that is not identical on both sides of a

central line or line of symmetry over the domain of the variables of interest. On the

other hand, symmetric dependence is dependence that is identical on both sides of a

central line or line of symmetry.
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4.4 Statistical Inference of Copulas

Estimation approaches of copulas can be categorized into four groups namely

(Patton, 2012):

• Parametric estimation methods

• Semi-parametric estimation methods

• Non-parametric estimation methods

• Other estimation methods

Estimation of copulas has essentially been developed in the context of independent

and identically distributed random variables (i.i.d.) samples (Fermanian and Scaillet,

2003). Since most copula estimation research refers to independent samples of a vector

of random variables, care is needed when applying these techniques to other data such

as time series data (Morettin et al., 2011). Copula estimation methods have also been

modified or developed for time series data (Patton, 2012).

4.4.1 Parametric Estimation Methods

Parametric estimation methods assume both parametric marginal distributions

and parametric copulas. Parametric estimation methods include method of moments

estimation, maximum likelihood techniques such as full (exact) maximum likelihood

estimation and inference of function for margins.

4.4.1.1 Full Maximum Likelihood Estimation

Full maximum likelihood estimation techniques involve the simultaneous max-

imization of joint distribution model parameters (Nicoloutsopoulos, 2005). Full max-

imum likelihood estimation is usually preferred for estimation or inference due to its

widely known optimality characteristics (Kim et al., 2007). In this method, there is

the need to assume parametric marginal distributions. Given the right specification

of marginals, the estimator has the usual optimality characteristics of the maximum

likelihood estimator (Weiß, 2011). Thus, estimation of copulas are performed fully

parametrically by assuming parametric models for both the marginals distributions
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and copula and then conducting maximum likelihood estimation (Chen and Huang,

2007).

Given the parameter of interest is θ = (βT , αT )T where β is the marginals

parameter vector and α is the association or dependence parameter vector for the

copula, the exact log-likelihood of the parameter vector θ expressed from equation 4.4

is given as (Yan, 2006):

l(θ) =
n∑
i=1

log c[F1(Xi1; β), ..., Fp(Xip; β);α] +
n∑
i=1

p∑
j=1

log fi(Xij; β) (4.32)

The full-approach maximum likelihood estimator of θ is given by

θ̂ = arg max
θ∈Θ

(4.33)

where Θ is the parameter space. Under regularity conditions, the maximum likelihood

estimator θ̂ is consistent and asymptotically efficient with limiting distribution

√
N(θ̂ − θ0)→ N [0, I−1(θ0)] (4.34)

where θ0 is the true parameter value and I is the Fisher information matrix. When

all components of the multivariate model are parametric, maximum likelihood is the

most efficient estimation method (Patton, 2012). However, the full or exact approach

of maximum likelihood (ML) estimation can create a computation burden even for

relatively simple bivariate models with large number of parameters to be estimated.

This burden becomes much larger in higher dimensions (Patton, 2012).

4.4.1.2 Inference of Functions for Margins

Separation of margins and copula suggests that one may estimate the marginal

parameters and association parameters in two steps, leading to the possible use of a

stepwise or multistage approach. For this reason as well as the computation burden of

exact maximum likelihood, the Inference of Functions for Margins (IFM) proposed by
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Joe and Xu (1996) is suitable. IFM estimation also known as stepwise or multistage

maximum likelihood estimation is one of the most widely used estimation methods (Oh

and Patton, 2013). The IFM estimation method estimates the marginal parameters β

initially in a first step by (Yan, 2006):

β̂ = arg max
β

n∑
i=1

p∑
j=1

log fi(Xij; β) (4.35)

and subsequently estimates the association (copula) parameters given the marginal

parameters by

α̂ = arg max
θ

n∑
i=1

log c× [F1(Xi1; β̂), ..., Fp(Xip; β̂);α] (4.36)

In the case where each margin has its own parameters βi resulting in β =

(βT1 , ..., β
T
p )T , the initial step comprises of maximum likelihood estimation of each

marginal distribution j = 1, ..., p which is given by

β̂ = arg max
βj

n∑
i=1

log fi(Xij; βj) (4.37)

In this instance, each maximization task has a few number of parameters, thereby dras-

tically decreasing the computational burden. In comparison with the full ML estimator,

the IFM estimator has advantages in numerical computations and is asymptotically ef-

ficient (Yan, 2006). The two estimation methods have been found to be almost equally

efficient in many cases (Kim et al., 2007). IFM is asymptotically less efficient than full

MLE (except in the special case where the variables are independent) (Patton, 2012).

In finite samples, the IFM estimator has been found to be highly efficient relative to

the full ML estimator. The IFM estimate can be employed as an initial value in a full

ML estimation (Yan, 2006). Thus, inference function for margins (IFM) method has

become the preferred fully parametric method since it is close to maximum likelihood
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(ML) in approach and is easier to implement. Since IFM is a fully parametric, mis-

specification of the marginal distributions may have an impact on the performance of

the estimator (Kim et al., 2007).

4.4.2 Semi-parametric Estimation Methods

Semiparametric copula-based models employ a nonparametric model for estima-

tion the marginal distributions parameters and a parametric model for the copula pa-

rameters (Patton, 2012). In pseudo-maximum likelihood estimation (PML), paramet-

ric marginal distributions are replaced by empirical cumulative distribution functions

(CDF) and the copula parameters are subsequently estimated using maximum likeli-

hood estimation (Weiß, 2011). Pseduo-maximum likelihood (also known as canonical

maximum likelihood) employs the empirical CDF of each margin to transform the ob-

servations (Xi1, ..., Xip)
T into pseudo-observations with uniform margins (Ui1, ..., Uip)

T

(Yan, 2006). The estimator θ̂ is given by

θ̂ = arg max
θ

n∑
i=1

log c(Ui1, ..., Uip; θ) (4.38)

The PML estimator is consistent, asymptotically normal, and fully efficient at

independence (Yan, 2006). Pseudo-maximum likelihood estimation (PMLE) has been

found to be not as efficient as the MLE in general and PMLE has been found to be

asymptotically efficient under certain conditions (Kim et al., 2007). Kim et al. (2007)

found that PML estimation was much better suited for parameter estimation than

various parametric estimation techniques.

The PMLE estimation proposed by Genest et al. (1995) can be considered as

the semiparametric equivalent of IFM estimation. Empirical margins are employed

which are scaled using an asymptotically negligible factor n
n+1

to avoid “difficulties

arising from the potential unboundedness of the log(c(x, y|θ)) as some of the x,y tend

to one” (Nicoloutsopoulos, 2005). This general approach by Genest et al. (1995) has

been examined in different contexts with various modifications (Kim et al., 2007). An
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example is the “rank approximate Z-estimator” (RAZ) proposed by Tsukahara (2005)

which considers the pseudo-maximum likelihood estimator by Genest et al. (1995) as

a special case of RAZ-estimator.

4.4.3 Non-parametric Estimation Methods

Non-parametric estimation treats both the copula and the marginals parameter-

free and thus provides the greatest generality. Non-parametric estimation can offer

initial information required for revealing and subsequent formulation of an underlying

parametric copula model (Chen and Huang, 2007). Copula can be estimated using non-

parametric estimation methods based on empirical distributions or copulas proposed

by Deheuvels (1979). These empirical copulas resemble usual multivariate empirical

cumulative distribution functions and are highly discontinuous (constant on some data-

dependent pavements). Thus, they cannot be employed as a graphical tool (Fermanian

and Scaillet, 2003).

Fermanian and Scaillet (2003) proposed a nonparametric estimation for copulas

for time series employing a kernel based approach. This methodology has the advan-

tage of offering smooth (differentiable) reconstitution of the copula function without

assuming a parametric dependence structure and without losing the usual parametric

rate of convergence. Morettin et al. (2011) proposed a non-parametric approach for

estimating copulas for time series using wavelets following a similar approach by Fer-

manian and Scaillet (2003). Densities are initially estimated, followed by distribution

functions and quantiles and finally the copula is estimated.

4.4.4 Other Estimation Methods

Other estimation methods include method of moments estimation, minimum

distance estimation, simulation techniques and Bayesian estimation.

4.4.4.1 Method of moments estimation

Despite pseudo-maximum likelihood estimation being the recognized standard

for rank-based estimation of copula parameters, the method can be be computationally
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intensive and its application is restricted to instances where the copula has a density

with respect to Lebesgue measure. Thus, nonparametric analogues of the method of

moments are usually employed (Genest et al., 2013). Method of moments estimation

takes advantage of known invertible one-to-one mapping between the parameter(s) of

certain copulas and certain measures of dependence such as concordance measures

(Patton, 2012; Oh and Patton, 2013). Method of moments estimation is suitable in

cases where mapping is known in closed form (Oh and Patton, 2013). Also, moment-

based methods are suitable in cases where the copula does not have a density or where

the maximization of the log pseudo-likelihood function is computationally intensive.

Thus, providing a quick estimation of the copula parameter or at least an initial value

for pseudo maximum-likelihood estimation (Genest et al., 2013). However, method of

moments estimation does not seem to perform well when the copula parameter is a

vector with efficiency issues relating to its extension to multiparameter families such

as log-copulas (Nicoloutsopoulos, 2005).

Common methods of moments estimators include inversion of Kendall’s tau

(estimate based on Kendall’s Tau) and inversion of Spearman’s rho (estimate based

on Spearman’s rho). Since they are ranked-based, they can be referred to as a non-

parametric adaptation of the celebrated method of moments (Genest and Favre, 2007).

They are also known to be consistent and asymptotically normal under weak regularity

conditions (Genest et al., 2013).

The most popular method of moment technique is the inversion of Kendall’s Tau

(estimate based on Kendall’s tau) primarily due to its form being often explicit. The

inversion of Kendall’s Tau’s consists of solving the equation τ(Cθ) = τn for θ (Genest

et al., 2013). Given that the copula parameter θ is equal to a smooth function g of

the population version of Kendall’s tau τ then θ̃ = g(τn) provides the Kendall-based

estimate of θ (Genest and Favre, 2007). The asymptotic behavior of the estimate based

of Kendall’s tau can be derived through the characteristics of the concordance measure

using the theory of U-statistics (Genest et al., 2013). An adaptation of Proposition 3.1
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of Genest and Rivest (1993) implies that

√
N
τn − τ

4s
≈ N (0, 1) (4.39)

where

S2 =
1

n

n∑
i=1

(Wi + W̃ − 2W̄ )2 (4.40)

and

W̃i =
1

n

n∑
j=1

Iji =
1

n
#{j : Xi ≤ Xj, Yi ≤ Yj} (4.41)

Delta method, an application of Slutsky’s theorem implies that as n→∞

θ̃ ≈ N [θ,
1

n
{4Sg′(τn)}2] (4.42)

The estimate based on Spearman’s rho can be derived in a similar fashion as

that of Kendall’s tau. Given that the copula parameter θ is equal to a smooth function

h of the population version of Spearman’s rho ρ then θ̆ = g(ρn) provides the Spearman-

based estimate of θ. From standard convergence results about empirical processes it

can be shown that

ρn ≈ N (ρ,
σ2

n
) (4.43)

where the asymptotic variance ρ2 depends on the underlying copula C (Genest and

Favre, 2007).

Genest et al. (2013) examined an even simpler rank-based estimator for the

dependence parameter based on the inversion of the medial correlation coefficient, also

known as Blomqvist’s beta β. The estimator is obtained by computing the equation

β = βn for the copula parameter where βn is the ranked-based estimate of β derived

from a random sample of size n. Despite being less efficient, the computation of

βn involves only O(n) operations, as opposed to O(n2) for the empirical version of

Kendall’s tau and Spearman’s rho. Furthermore, the population version of Blomqvist’s

beta is available in closed form for many common copula families.
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General method of moments estimation is employed for overidentified models

where the number of (implied) dependence measures may be larger than the number

of unknown parameters (Patton, 2012). Simulated method of moment estimation con-

siders overidentified models as well as dependence measures with unknown closed-form

functions of copula parameter by employing simulations in place of mapping (Oh and

Patton, 2013).

4.4.4.2 Minimum Distance Estimation

Copula estimation can be conducted through the minimization of distance met-

rics initially developed for Goodness of Fitness (GoF) testing. Thus, each GoF-test

produces a minimum-distance (MD) estimator for the copula parameters. MD estima-

tors are less used in literature (Weiß, 2011). Some MD estimators have been developed

based on empirical copula process. Biau and Wegkamp (2005) developed a minimum

L1 distance estimator for parametric copula densities based on empirical copula pro-

cess. Tsukahara (2005) examined the performance of two minimum distance estimators

derived from Cramr-von-Mises (CvM) and Kolmogorov-Smirnov (KS) distances. The

empirical asymptotic behavior of these distances between the hypothesized and empir-

ical copula were explored in a simulation study.

In addition to minimum-distance estimators based on the empirical copula

process, Weiß (2011) examined MD estimators based on Rosenblatt’s transform and

Kendall’s dependence function. The MD estimators were subsequently compared to

maximum likelihood (ML) estimators. It was found that ML estimators produce

smaller estimation bias with less computation effort in comparison to MD-estimators.

4.5 Copula Model Selection

Copula model selection can be conducted using the following (Krämer and

Schepsmeier, 2011):

• Akaike and Bayesian Information Criteria

• Formal goodness-of-fit tests

118



• Likelihood ratio tests (Vuong and Clarke tests)

• Graphical diagnostic tools

• Bivariate Asymptotic Independence Test

4.5.1 Akaike and Bayesian Information Criteria

Due to the wide range of copula families available, criteria such as the Akaike in-

formation criterion (AIC), Bayesian information criterion (BIC) and root mean square

error (RMSE) are usually employed to select appropriate families as well as other multi-

dimensional models by estimating their fitting biases (Ma et al., 2013). The Akaike

Information Criterion (AIC) proposed by Akaike (1974) is one of the most widely used

model selection criteria. AIC is not a hypothesis test but a test between competing

models and thus a tool for model selection. AIC corrects the log likelihood of a copula

for the number of parameters. It can also be defined as the negative log-likelihood with

a number of parameters as a punitive term. Generally, AIC can be expressed as

AIC = −2 ln(L) + 2k (4.44)

where L is the likelihood and k is the number of parameters.

In terms of bivariate copulas, given observations ui,j, i = 1, ..., N, j = 1, 2, the

AIC of a bivariate copula family c with parameter(s) θ is defined as

AIC = −2
N∑
i=1

ln[c(ui,1, ui,2|θ)] + 2k (4.45)

where k=1 for one-parametric bivariate copulas and k=2 for two-parametric bivariate

copulas.

Similarly, the Bayesian Information Criterion (BIC) proposed by Schwarz (1978)

is given as

BIC = −2
N∑
i=1

ln[c(ui,1, ui,2|θ)] + ln(N)k (4.46)
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Thus, a greater penalty is applied to two-parametric bivariate copulas when using BIC

in comparison to AIC. Given a data set, several competing copula models are ranked

according to their AIC or BIC, with the one having the lowest value being selected as

the best.

4.5.2 Formal Goodness-of-fit Tests

As previously mentioned, criteria such as the Akaike information criterion (AIC)

and Bayesian information criterion (BIC) are usually employed to select appropriate

copula families by estimating their fitting biases. However, relatively small fitting

biases do not always provide an acceptable depiction of the observations. Thus, the

adequacy or competency of copula or a parametric family of copulas for the description

of the dependence structures in the historical data can be examined using specialized

goodness-of-fit (GoF) tests for copulas. (Ma et al., 2013).

Copula goodness-of-fit (or specification) tests involve the testing of the null

hypothesis (H0 : C ∈ C0) that the dependence structure of a multivariate distribution

is adequately characterized by a specific parametric family C0 of copulas. This differs

from the estimation of the dependence parameter of a copula (C0 : θ ∈ O where

O is an open subset of Rp given integer p ≥ 1 (Genest et al., 2009). There are

no distributional assumptions for the marginals since only the fit of the dependence

structure is of interest (Berg, 2009). Thus, the marginals are considered as (infinite-

dimensional) nuisance parameters (Genest et al., 2009). Rather the testing is conducted

using rank data (Berg, 2009). Since copulas are invariant given monotonic increasing

transformations (of its components), testing of the null hypothesis usually having the

inference being dependent on the maximally invariant statistics in relation to this group

of transformations, i.e., the ranks (Genest et al., 2009).

Based on model assumptions, inference for GoF tests can be classified into

two groups, parametric and semi-parametric (Wei, 2014). Copula goodness-of-fit (or

specification) tests can be categorized into three types (Genest et al., 2009).
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• Tests developed for testing specific dependence structures such as the Gaussian

copula and Clayton copula family (also known as gamma frailty model in survival

analysis).

• Procedures developed for testing any class of copulas (applicable to all copulas)

but whose implementation involves arbitrary categorization of the data or strate-

gic choice of smoothing parameter, weight function, kernel, window or arbitrary

parameter

• Blanket tests - tests which are applicable to all copulas and require no ad hoc

(arbitrary) categorization or strategic choice for their use.

Only a few tests have the desirable properties of blanket tests (Huang and

Prokhorov, 2014). Examples of blanket tests include tests based on empirical copula

(such as ranked-based version of Cramervon Mises and KolmogorovSmirnov statistics),

tests based on Kendall’s and Rosenblatt’s probability integral transformation of the

data as well as test based on a sample equivalent of Spearman’s dependence function

(Genest et al., 2009; Huang and Prokhorov, 2014). Another test proposed by Huang

and Prokhorov (2014) is based on the information matrix equality which equates the

copula Hessian and the outer-product of copula score. This test is considerably less

difficult computationally than the aforementioned blanket tests.

However, most blanket tests have been found to have difficulty making a distinc-

tion between Gaussian and Student’s t copulas, both symmetric copulas with differing

tail properties. Others rely on probability integral transformation which may be hard

to derive analytically in models such as Student’s t copula and vine copulas. To tackle

these limitations, Zhang et al. (2016) proposed a specification test for semi-parametric

copula models. This proposed test is based on a ratio constructed using “in-sample”

and “out-of-sample” pseudo-likelihoods which is computationally simple and numeri-

cally stable.
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4.5.3 Vuong and Clarke tests

The Vuong and Clarke tests proposed by Vuong (1989) and Clarke (2007) re-

spectively are likelihood-ratio tests used to compare non-nested models. These tests

are also based on the Kullback-Leibner information criterion (KLIC). KLIC is the

measure of the distance between two statistical models and can be expressed as follows

(Schepsmeier, 2010):

KLIC := E0[log h0(Yi|xi)]− E0[log f(Yi|xi, β̂)] (4.47)

where h0(·|·) is the unknown true conditional probability function of Yi given xi, E0

is the expected value under the true model and β̂ is the parameter estimator of the

imperfect model f(Yi|xi, β̂). The model with the smallest KLIC is selected as the best

model. Model 1 is better than model 2 if

E0

[
log

f1(Yi|xi, 1, β̂1)

f2(Yi|xi, 2, β̂2

]
> 0 (4.48)

where f1(Yi|xi, 1, β̂1) and f2(Yi|xi, 2, β̂2 are the probability functions of models 1 and 2

respectively.

Given that `(j), `(k) ∈ Rn are the vectors of pointwise loglikelihoods of the models

with copula family j and k respectively, the differences of the pointwise loglikelihood

can be computed as follows:

di = `
(j)
i − `

(k)
i , i = 1, .., n. (4.49)

The expected value of the differences d =: (d1, ..., dn)t is given as

E0[d] = µd0 = (µd1, ..., µ
d
n)t

The null-hypothesis of the Vuong test is

H0 : µd0 = 0 versus H1 : µd0 6= 0,
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where µd0 is known. The Vuong test statistic can be mathematically defined as

TV =

√
n · d̄√∑n

i=1(di − d̄)2

(4.50)

where d̄ is the mean of the differences. The test statistic is asymptotically normally

distributed with zero mean and unit variance. The null hypothesis is rejected at signif-

icance level α if |TV | ≥ z1−α
2
. Thus, the smallest α for which the null hypothesis can be

rejected is equal to 2Φ(−|TV |) where Φ is the standard normal distribution function.

The p-value of the Vuong test is equal to 2Φ(−|TV |).

One disadvantage of the conventional Vuong test is its failure to account for the

number of parameters in models. Thus, the log-likelihood ratio can be corrected with

either the correction term of Akaike’s information criteria (AIC) or Schwarz’s Bayesian

information criteria (BIC). The correction term for AIC is p− q whereas the correction

term for BIC is p
2n

log n − q
2n

log n where p and q are the number of parameters of

models 1 and 2 respectively and n is the number of observations (Schepsmeier, 2010).

The log-likelihood ratio with Schwarz correction can be expressed as follows:

log f1(Yi, xi,1, β̂1)− log f2(Y2, xi,2, β̂2)−
( p

2n
log n− q

2n
log n

)
(4.51)

The Clarke test proposed by Clarke (2007) is a simple distribution-free test

for non-nested model selection. It is similar to the Vuong test but differs in its null

hypothesis and has been found to be asymptotically more efficient than the latter when

the distribution of individual log-likelihood ratios is highly peaked. The null hypothesis

of the Clarke test is given as:

H0 : P

(
log

(
f1(Yi, xi,1, β̂1)

f2(Y2, xi,2, β̂2)

)
> 0

)
= p (4.52)

If p = 0.5 then the models are equivalent. The intuition behind this null hypothe-

sis is that the log-likelihood ratios should be evenly distributed around zero and in

123



expectation a half of the ratios should be greater than zero and other half less than

zero.

The Clarke test statistic is given as

B =
n∑
i=1

I0,+∞(di), (4.53)

where I(·) is the indicator function and B is a binomial distributed random variable

with parameter n and p = 0.5. Thus the two models are equivalent if B = E(np) = n
2
.

Similar to the Vuong test, the Clarke test statistic can be corrected for the number of

parameters with the Akaike or Schwarz corrections, which correspond to the penalty

terms in the AIC and BIC respectively.

4.5.4 Graphical Diagnostic Tools

Chi-plots (χ-plots) were initially developed by Fisher and Switzer (1985) and

expanded upon graphically by Fisher and Switzer (2001). The chi-plot was developed to

tackle the issue of detecting patterns or randomness in scatter plots. Their development

is influenced by control charts and is based on the chi-square statistic for independence

in a two-way table. Chi-plots augment scatterplots of data by offering a graph that

has characteristic patterns depending on whether the variables (i) are independent, (ii)

have some degree of monotonic relationship (i.e., nonzero grade correlation), or (iii)

have more complex dependence structure. Thus, chi-plots can visualize a large range

of dependence forms and is reliant on ranked data.

Given observations uij, i = 1, ..., N, j = 1, 1, the chi-plot is a scatter plot of the

pairs of two quantities namely chi-statistics

χi =
F̂1,2(ui,1, ui,2)− F̂1(ui,1)F̂2(ui,2)√

F1(ui,1)(1− F1(ui,1))F2(ui,2)(1− F2(ui,2))
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and lambda-statistics.

λi = 4sgn
(
F̃1(ui,1), F̃2(ui,2)

)
·max

(
F̃1(ui,1)2, F̃2(ui,2)2

)
where F̂1, F̂2, and F̂1,2, are the empirical distribution functions of the uniform random

variables U1 and U2 and (U1, U2), respectively; F̃1 = F̂1 − 0.5 and F̃2 = F̂2 − 0.5.

Both quantities are reliant on ranked data and are scaled to the unit interval.

χi corresponds to a correlation coefficient between dichotomized values of U1 and U2

whereas λi is a measure of the distance of the data point (xi, yi) from the center of the

bivariate dataset. The pairs of the two quantities (δi, χi) are often situated above zero

for positively dependent margins and vice versa for negatively dependent margins.

Kendall’s plot (K-plot) proposed by Genest and Boies (2003) is another rank-

based graphical tool for visualizing dependence. Kendall’s plot is the bivariate cop-

ula equivalent to quantile-quantile (Q-Q) plots and is based on probability integral

transformation. K-plots are generally easier to interpret than chi-plots and maintain

the latter’s property of invariance with respect to monotone transformations of the

marginal distributions.

Two variables U1 and U2 are considered independent if the points of a K-plot

generally lie on the main diagonal (y = x). Any deviation from the main diagonal

is an indicator of dependence with greater deviation indicating greater dependence.

Points situated above the diagonal line indicate positive dependence and vice-versa for

negative dependence. Illustration of the Kendall’s plot is shown on figure 6.10 (left

panel).

Similar to chi-plot, Kendall’s plot is based on two quantities: H-statistics - the

ordered values of the empirical bivariate distribution function Hi := F̂U1U2(ui,1, ui,2)

and W-statistics Wi:n - the expected values of the order statistics from a random

sample of size N of the random variable W = C(U1, U2) under the null hypothesis of

independence between U1 and U2.
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Wi:n can be computed as follows:

Wi:n =

N − 1

i− 1

∫ 1

0

ωk0(ω)(K0(ω))i−1(1−K0(ω))N−idω

where

K0(ω) = ω − ω log(ω)

Illustration of the chi plot is shown on figure 6.10 (central panel).

The lambda function (λ-function) plot proposed by Genest and Rivest (1993)

is also a graphical tool for visualizing dependence. The lambda function is distinctive

for each bivariate copula family and is defined by Kendall’s cumulative distribution

function K:

λ(v, θ) := v −K(v, θ) (4.54)

where K(v, θ) := P (Cθ(U1, U2) ≤ v), v ∈ [0, 1].

The theoretical λ-function of Archimedean copulas can be expressed in closed

form as a function of its generator function.

λ(v, θ) =
ϕ(v)

ϕ′(v)
(4.55)

where ϕ′(v) is the derivative of ϕ. On the other hand, the closed-form expression of

elliptical copulas does not exist. Instead, the theoretical λ-function of elliptical copu-

las is usually simulated based on samples of size 1000. The theoretical λ-function plot

shows the limits of the -function corresponding to Kendall’s τ = 0 and Kendall’s τ = 1

(Schepsmeier, 2010). The theoretical lambda function closed-form expressions of vari-

ous bivariate Archimedean copula families and their limits can be found in Schepsmeier

(2010). For large data sets, the λ-function can be easily estimated empirically by using

the empirical copula function. Illustration of the lambda function plot is shown on

figure 6.10 (right panel).
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4.5.5 Bivariate Asymptotic Independence Test

The Bivariate Asymptotic Independence Test based on Kendall’s Tau was pro-

posed by Genest and Favre (2007). Prior to selection of the other bivariate copula, the

test can be performed to determine the independence of the pair of variables. The null

hypothesis states that the variables are independent and the alternative hypothesis

states that the variables are not independent.

Under the null hypothesis, the statistic is close to normal with zero mean and

variance 9N(N−1)
2(2N+5)

. Thus, the test exploits the asymptotic normality of the test statistic

T =

√
9N(N − 1)

2(2N + 5)
× |T̂ |, (4.56)

where N is the number of observations and T̂ is the empirical Kendall’s tau of the

two variables. The p-value of the null hypothesis of bivariate independence hence is

asymptotically

p.value = 2× (1− Φ(T ))

where Φ is the standard normal distribution function. The independence copula is

selected for the pair of variables if the p-value of the test is higher than 5% meaning

the null hypothesis is accepted.

4.6 Case Study (Tamping Recovery of Track Geometry)

4.6.1 Introduction

Railroad track deteriorates with age and usage (tonnage) with decreasing perfor-

mance over time which may eventually lead to failure. Railroad infrastructure compo-

nents often have a service life of more than 30 years justifying the need for an optimal

long-term maintenance strategy. Due to budget restrictions and high logistical cost

constraints, railroads plan most track geometry maintenance activities up to a year in

advance (Quiroga and Schnieder, 2012; Soleimanmeigouni et al., 2016a; Caetano and

Teixeira, 2016).
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Track Geometry is a key feature of railroad construction (Esveld, 2001; Khouy,

2013). The condition of track geometry is important for various reasons. Riding com-

fort and safety (risk of derailment) are dependent on the track geometry condition

(Quiroga and Schnieder, 2012). Well-maintained track geometry not only guarantees

ride comfort and safety but also increases the life of the track as well as track availabil-

ity for train operations. Thus, track geometry maintenance is imperative in relation to

cost reduction and availability of track (Famurewa et al., 2016). Furthermore, the dete-

rioration of many other track components is closely linked to track geometry condition

(Jovanovic, 2004; Khouy, 2013).

Track geometry maintenance activities are regularly conducted in order to main-

tain track geometry condition to achieve good riding quality and safety (Miwa, 2002).

These activities such as tamping, stoneblowing and ballast undercutting are conducted

to control track deterioration and recover damaged track sections to operable condi-

tions. They enhance the track geometry quality but fail to return the track geometry

to a good-as-new condition (Soleimanmeigouni et al., 2016b). If prognostic (predictive)

tamping strategies are to be employed, there is the need to know beforehand the effec-

tiveness of tamping which can be evaluated by the amount of improvement or recovery

in track geometry condition (Famurewa et al., 2013).

Majority of studies have evaluated tamping recovery using deterministic tech-

niques such as linear regression models and have assumed that tamping effectiveness is

mainly dependent on the track geometry quality prior to tamping. However, in most

cases there exists a high degree of uncertainty due to high variation in the restoration

values after tamping even for similar track geometry condition. This variation is even

higher at the end of the life-cycle than at the beginning. For this reason, probabilistic

or stochastic techniques have been employed to cater for this variation by assuming the

recovery value after tamping is a random variable with a given probability distribution

(Soleimanmeigouni et al., 2016b).

Furthermore, most tamping recovery models do not take into account the un-

derlying dependence between the tamping recovery values and the influencing factors
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such as track geometry condition before tamping. In this case study, a copula-based

approach is employed which takes into consideration various forms of dependences by

allowing for the separate modeling of the arbitrary marginal distributions and the de-

pendence structure which are subsequently combined to form a joint distribution with

the underlying dependence.

4.6.2 Track Information and Data Collection

One mile of track of a Class 1 U.S. railroad was used for the analysis. Inspection

data was measured and collected for every 1 foot of track using a track geometry car.

The track geometry car records several geometry parameters. However, the surface,

alignment, cross level, gage and warp parameters were used for this case study. The

inspection data used in this case study were from 28 inspection dates spanning the

years 2013 to 2016.

The inspection data was initially cleaned and preprocessed. The standard de-

viation (SD) of each of the track geometry parameters was subsequently computed for

track segments with 100 feet of length. The tamping recovery values for each parameter

were obtained by calculating the difference between the standard deviation (SD) of the

track geometry parameters before tamping and the corresponding standard deviation

after tamping.

4.6.3 Analysis

4.6.3.1 Marginal fitting

In order to select the best-fit for the marginal distributions for the recovery

values after tamping, track quality before tamping and track quality after tamping;

the Kolmogorov-Smirnov, Anderson-Darling and Chi-squared tests were chosen as the

goodness-of-fit criteria. These test statistics evaluates how well the data (stochastic

variable) follow a specific (an a priori) distribution. The smaller the statistic, the

better the distribution fits the given data. In order to select the best distribution,

the statistic should be considerably lower than the others, else additional criteria such
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as probability plots need to be employed. The null hypothesis states that the data

followed a specific distribution with the alternative hypothesis states that the data

does not follow a specific distribution. The null hypothesis is rejected if the p-value is

lower than a significance level of 5%.

The Kolmogorov-Smirnov test (KS test) is a nonparametric statistical test of

the equality of two probability distributions namely the empirical distribution of the

data and a reference probability distribution. The Anderson-Darling tests offers more

weighting to the tails compared to Kolmogorov-Smirnov test.

4.6.3.2 Copula fitting

The underlying dependence between track quality before tamping and recov-

ery values as well as the dependence of the track quality before tamping and track

quality after tamping were characterized using copulas. In order to select the best-fit

of bivariate copula that describes the underlying dependence, the Akaike Information

Criterion (AIC) (Akaike, 1974) and Bayesian Information (BIC) (Schwarz, 1978) were

used. AIC corrects the log-likelihood of a copula for the number of parameters. AIC

is often favored for bivariate copula selection ahead of other alternative criteria such

as Vuong (1989) and Clarke (2007) goodness-of-fit tests and BIC. This is as a result of

its high performance in simulation analysis and its greater reliability (Dissmann et al.,

2013; Dalla Valle et al., 2016).

Prior to selection of the bivariate copula, the Genest and Favre bivariate asymp-

totic independence test based on Kendall’s Tau is performed to determine the inde-

pendence of the pair of variables. The null hypothesis states that the variables are

independent and the alternative hypothesis states that the variables are not indepen-

dent. The independence copula is selected for the pair of variables if the p-value of the

test is higher than 5% meaning the null hypothesis is accepted.

The pair-copula families considered during the analysis were the independence

copula, elliptical bivariate Gaussian (Normal) and Student t-copulas as well as the

single parameter Archimedean copulas such as bivariate Clayton, Gumbel, Frank and
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Joe copulas. Others include the two-parameter Archimedean copulas such as Clayton-

Gumbel (BB1), Joe-Gumbel (BB6), Joe-Clayton (BB7) and Joe-Frank (BB8) copulas.

The Clayton-Gumbel (BB1) and Joe-Clayton (BB7) permit different non-zero lower

and upper tail dependence coefficients.

Rotated versions (900 and 2700) of these Archimedean copulas can be used to

fit negative dependences (with the exception of Frank copula which has no rotated

version). However, no negative dependences were observed during exploratory analysis

so these rotations were not considered during further analysis. This catalogue for the

implementation of copula family choice address a vast range of dependence behavior.

Properties of these copulas are found in Table 4.3.
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4.6.4 Surface (Longitudinal Level)

4.6.4.1 Marginal fitting

The three-parameter lognormal distribution was found to have the best fit of

the recovery values of the standard deviation (SD) surface producing the lowest statis-

tic for all three tests namely the Kolomogorov-Smirnov, Anderson-Darling and Chi-

squared tests as shown in Table 4.4. It also had a p-value far greater than 0.05 for

Kolmogorov-Smirnov and Chi-squared tests meaning the null hypothesis that it follows

the distribution can be accepted. The closed form expression for the p-value of the 3-

parameter lognormal distribution however does not exist for the Anderson-Darling test.

Audley and Andrews (2013) found the three-parameter lognormal distribution to have

the best fit of recovery values of the SD surface profile but employed its two-parameter

counterpart due to its ease of use. The two-parameter lognormal distribution has been

used to model the recovery values of the surface profile (longitudinal level) by several

researchers (Quiroga and Schnieder, 2012; Quiroga et al., 2012; Audley and Andrews,

2013). However, in this case study, the three-parameter lognormal distribution was

used to model the recovery value of the surface profile based on the aforementioned

results.

Similarly, the three-parameter lognormal distribution was also found to have

the best fit for both the standard deviation (SD) surface values before tamping and

SD surface values after tamping as shown in Tables 4.5 and 4.6 respectively.

4.6.4.2 Copula fitting

The Gumbel copula was found to provide the best fit of the underlying depen-

dence between the SD Surface values before tamping and the recovery values. The

Gumbel copula produced both the lowest AIC and BIC values as shown in Table 4.7.

The selection of the Gumbel copula suggests an asymmetric dependence (specif-

ically an upper tail dependence) between the track quality (standard deviation surface)

before tamping and the recovery value. Upper tail dependence means that the pair are
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Table 4.4: Results for the fitted distribution to recovery values for SD Surface.

Distribution
Kolmogorov

Smirnov
Anderson
Darling

Chi
squared

Statistic P-value Statistic P-value Statistic P-value
Lognormal (3P) 0.054 0.992 0.156 * 2.91 0.709
Lognormal 0.057 0.99555 0.153 0.953 2.94 0.714
Weibull (3P) 0.111 0.491 4.66 0.143 N/A N/A
Weibull 0.098 0.656 0.962 0.023 2.91 0.573
Gamma (3P) 0.092 0.730 4.39 * N/A N/A
Gamma 0.150 0.166 1.66 0.038 9.67 0.085
Normal 0.227 0.007 4.86 0.003 10.1 0.017
Logistic 0.229 0.006 2.91 0.030 8.42 0.038
Exponential 0.096 0.678 0.903 0.151 7.01 0.220
Exponential (2P) 0.097 0.668 0.998 0.231 1.92 0.860

highly correlated at high values (upper tail of the distributions) but poorly correlated

at lower values.

Simulated values were generated given the 3-parameter lognormal marginals (for

both track quality before tamping and recovery value) and Gumbel copula. An illus-

trative comparison between the real and simulated values for recovery values against

track condition before tamping for SD surface is shown in figure 4.1.

The Joe-Clayton (popularly known as BB7) copula was found to offer the best

fit of the underlying dependence between the track quality (standard deviation surface)

before tamping and the track quality after tamping. The BB7 copula was found to

produce the lowest AIC and BIC values as shown in Table 4.8.

The Joe-Clayton copula consists of the Joe copula and Clayton copula which are

suitable for modeling upper tail and lower tail dependence respectively. The selection

of the BB7 copula suggests an asymmetric dependence (with different non-zero lower

and upper tail dependence coefficients) between the SD surface values before tamping

and SD surface values after tamping. Similarly, simulated values were generated given

the 3-parameter lognormal marginals (for both track quality before tamping and track

quality after tamping) and Joe-Clayton (BB7) copula. An illustrative comparison
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Table 4.5: Results for the fitted distribution to values before tamping for SD Surface

Distribution
Kolmogorov

Smirnov
Anderson
Darling

Chi
squared

Statistic P-value Statistic P-value Statistic P-value
Lognormal (3P) 0.086 0.797 0.345 * 5.15 0.397
Lognormal 0.148 0.175 1.17 0.282 4.69 0.320
Weibull (3P) 0.104 0.576 4.71 0.035 N/A N/A
Weibull 0.189 0.040 3.30 0.038 10.2 0.037
Gamma (3P) 0.109 0.523 4.71 * N/A N/A
Gamma 0.187 0.042 2.84 0.064 15.0 0.005
Normal 0.255 0.002 5.16 0.002 12.3 0.006
Logistic 0.258 0.001 4.90 0.015 11.8 0.019
Exponential 0.264 9.4E-04 4.62 0.004 21.5 2.6E-04
Exponential (2P) 0.138 0.239 1.35 0.100 8.27 0.141

between the real and simulated values for track condition after tamping against track

condition before tamping for SD surface is shown in figure 4.2.

4.6.5 Alignment

4.6.5.1 Marginal fitting

Similar to the surface profile results, the 3-parameter lognormal distribution was

found to have the best fit for the recovery values of SD alignment after tamping as

shown in Table 4.9. The 3-parameter lognormal distribution has previously been used

to model the recovery values of SD alignment by Soleimanmeigouni et al. (2016a). The

3-parameter lognormal distribution was also found to have the best fit of track quality

(SD alignment) values before tamping and after tamping as shown as in Tables 4.10

and 4.11 respectively.

4.6.5.2 Copula fitting

The Joe copula provided the best fit of the underlying dependence between the

SD alignment values before tamping and the tamping recovery values producing both

the lowest AIC and BIC values as shown in Table 4.12. The selection of the Joe copula

suggests an upper tail dependence between the SD alignment values before tamping
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Table 4.6: Results for the fitted distribution to values after tamping for SD Surface

Distribution
Kolmogorov

Smirnov
Anderson
Darling

Chi
squared

Statistic P-value Statistic P-value Statistic P-value
Lognormal (3P) 0.100 0.628 0.404 * 4.84 0.436
Lognormal 0.154 0.146 1.88 0.109 4.01 0.405
Weibull (3P) 0.114 0.467 4.92 0.007 N/A N/A
Weibull 0.186 0.044 3.81 0.021 10.2 0.037
Gamma (3P) 0.121 0.392 1.40 * 5.04 0.284
Gamma 0.210 0.016 3.03 0.032 11.3 0.024
Normal 0.244 0.003 5.16 0.002 9.73 0.021
Logistic 0.245 0.003 3.82 0.011 11.5 0.009
Exponential 0.323 2.0E-05 5.70 0.001 26.1 3.0E-05
Exponential (2P) 0.129 0.310 1.60 0.044 12.0 0.018

and tamping recovery values. The Joe Copula has an even stronger positive upper

tail dependence in comparison to the Gumbel copula and can be observed by tighter

clustering of observations in the upper tail (Bhat and Eluru, 2009).

Simulated values were generated given the 3-parameter lognormal margins (for

SD alignment values before tamping and recovery values) and Joe Copula. Figure 4.3

shows the comparison between the observed and simulated values for recovery values

against SD alignment before tamping.

The Gaussian (or Normal) copula offered the best fit of the underlying depen-

dence between the SD alignment values before tamping and SD alignment values after

tamping as shown in Table 4.4. The selection of the Gaussian copula suggests that

the underlying dependence between the pair is radially-symmetric with strong central

dependence and very weak tail dependency. Similarly, simulated values were produced

given the 3-parameter lognormal marginals (for both SD alignment before tamping

and SD alignment after tamping) and Gaussian copula. An illustrative comparison

between the real and simulated values for track condition after tamping against track

condition before tamping for SD alignment is shown in figure 4.4.
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Table 4.7: Results for the fitted bivariate copula between values before tamping and
recovery values for SD Surface

Copula
Parameter

1
Parameter

2
AIC BIC

Kendall’s
Tau

Gumbel θ = 3.31 - -79.95 -77.98 0.7
BB7 θ = 4.17 δ = 1.2 -78.95 -75.01 0.68
BB6 θ = 1.59 δ = 2.45 -78.53 -74.59 0.69
BB1 θ = 0 δ = 3.31 -77.95 -74.01 0.7
Joe θ = 4.61 - -77.23 -75.26 0.65
BB8 θ = 4.61 δ = 1 -75.23 -71.29 0.65

Gaussian/Normal ρ = 0.89 - -74.50 -72.53 0.7
Student-t copula ρ = 0.89 ν = 30 -72.42 -68.48 0.7

Frank θ = 9.98 - -65.65 -63.68 0.67
Clayton θ = 2.35 - -47.97 -46.00 0.54

4.6.6 Cross level

4.6.6.1 Marginal fitting

The three-parameter log-logistic distribution was found to best fit the recov-

ery values of SD cross level as shown in Table 4.14. The 3-parameter log-logistic

distribution has an identical shape to the 3-parameter log-normal distribution (which

was found to be the next best distribution) but has heavier tails. The 3-parameter

lognormal distribution was also found to have the best fit of track quality (SD cross

level) values before tamping and after tamping as shown as in Tables 4.15 and 4.16

respectively.

4.6.6.2 Copula fitting

The bivariate asymptotic independence test performed prior to copula fitting

and selection determined that the recovery values of the cross level and the track qual-

ity (SD cross level) before tamping were independent. The p-value of 0.43 was found

higher than the 0.05 significance level. Thus the null hypothesis that the variables are

independent was accepted and the independence copula was selected for the pair of

variables. Ignoring the test would have led to the selection of the Joe Copula of pa-

rameter value of 1.38 and Kendall’s tau of 0.18. Simulated values were generated given
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Figure 4.1: Comparison between real and simulated values for SD Surface given 3-
parameter Lognormal marginals (Before tamping and Recovery values)
and Gumbel copula.

3-parameter lognormal marginal (Before tamping) 3-parameter log-logistic marginal

(Recovery values) and Independence copula. The simulated values are illustrated in

figure 4.5.

On the other hand, the Joe-Clayton (BB7) copula was found to best fit the un-

derlying dependence between track quality (SD cross level) before tamping and track

quality after tamping. The BB7 copula was found to have the lowest AIC and BIC

values as shown in Table 4.17. Simulated values of SD Crosslevel given 3-parameter log-

normal marginals (Before tamping and after tamping) and Joe-Clayton (BB7) copula

are illustrated in figure 4.6.
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Table 4.8: Results for the fitted bivariate copula between values before and after
tamping for SD Surface

Copula
Parameter

1
Parameter

2
AIC BIC

Kendall’s
Tau

BB7 θ = 4.36 δ = 2.3 -89.26 -85.32 0.72
Gumbel θ = 3.56 - -85.24 -83.27 0.72

BB1 θ = 0.18 δ = 3.3 -83.54 -79.60 0.72
BB6 θ = 1.32 δ = 2.97 -83.42 -79.48 0.72

Student-t copula ρ = 0.89 ν = 2 -82.60 -78.67 0.69
Joe θ = 4.84 - -80.77 78.80 0.67
BB8 θ = 4.84 δ = 1 -78.77 -74.83 0.67

Gaussian/Normal ρ = 0.89 - -76.72 -74.75 0.7
Frank θ = 10.56 - -66.71 -64.74 0.68

Clayton θ = 2.89 - -58.85 -56.88 0.59

Table 4.9: Results for the fitted distribution to recovery values for SD Alignment

Distribution
Kolmogorov

Smirnov
Anderson
Darling

Chi
squared

Statistic P-value Statistic P-value Statistic P-value
Lognormal (3P) 0.100 0.625 0.760 * 4.22 0.518

Weibull (3P) 0.13478 0.266 1.75 <0.005 7.84 0.098
Gamma (3P) 0.113 0.475 1.00 * 5.15 0.397

Normal 0.180 0.056 2.95 0.029 10.4 0.034
Logistic 0.161 0.115 0.794 0.485 7.38 0.117

Exponential (2P) 0.258 0.001 6.26 9.1E-4 23.7 2.9E-05

4.6.7 Warp

4.6.7.1 Marginal distribution fitting

Similar to the cross level results, the 3-parameter log-logistic distribution was

found to have the best fit for the tamping recovery values of SD warp as shown in Table

4.18. Furthermore, the 3-parameter lognormal distribution was also found to have the

best fit of track quality (SD warp) values before tamping and after tamping as shown

in Tables 4.19 and 4.20 respectively.
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Table 4.10: Results for the fitted distribution to values before tamping for SD Align-
ment

Distribution
Kolmogorov

Smirnov
Anderson
Darling

Chi
squared

Statistic P-value Statistic P-value Statistic P-value
Lognormal (3P) 0.121 0.388 0.949 * 6.57 0.255
Lognormal 0.143 0.208 1.10 0.294 5.26 0.385
Weibull (3P) 0.146 0.190 1.96 * 13.3 0.010
Weibull 0.168 0.088 3.82 0.011 5.18 0.269
Gamma (3P) 0.140 0.228 1.28 * 6.55 0.256
Gamma 0.165 0.100 1.71 0.133 14.2 0.007
Normal 0.218 0.011 3.69 0.013 23.7 9.2E-05
Logistic 0.215 0.012 1.28 0.238 20.2 4.5E-04
Exponential 0.404 3.2E-08 12.5 1.1E-5 92.8 0
Exponential (2P) 0.263 9.0E-04 5.50 0.002 33.2 1.1E-06

Table 4.11: Results for the fitted distribution to values after tamping for SD Align-
ment

Distribution
Kolmogorov

Smirnov
Anderson
Darling

Chi
squared

Statistic P-value Statistic P-value Statistic P-value
Lognormal (3P) 0.065 0.966 0.250 * 2.42 0.789
Lognormal 0.073 0.924 0.317 0.919 3.69 0.595
Weibull (3P) 0.078 0.876 0.385 0.409 3.68 0.596
Weibull 0.074 0.914 0.654 0.520 1.20 0.945
Gamma (3P) 0.068 0.954 0.268 * 2.39 0.793
Gamma 0.071 0.933 0.277 0.963 2.64 0.756
Normal 0.096 0.676 0.556 0.144 2.01 0.848
Logistic 0.089 0.765 0.293 0.943 3.15 0.677
Exponential 0.404 3.4E-08 12.5 1.1E-5 72.5 1.2E-15
Exponential (2P) 0.251 0.002 5.46 0.002 32.4 1.6E-06
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Table 4.12: Results for the fitted bivariate copula between values before tamping and
recovery values for SD Alignment

Copula
Parameter

1
Parameter

2
AIC BIC

Kendall’s
Tau

Joe θ = 1.93 - -18.41 -16.44 0.34
BB8 θ = 1.93 δ = 1 -16.41 -12.47 0.34
BB6 θ = 1.93 δ = 1 -16.41 -12.47 0.34
BB7 θ = 1.93 δ = 0 -16.40 -12.46 0.34

Gumbel θ = 1.52 - -14.52 -12.55 0.34
BB1 θ = 0 δ = 1.52 -12.51 -8.57 0.34

Student-t copula ρ = 0.45 ν = 2.11 -9.70 -5.76 0.29
Gaussian/Normal 0.44 - -7.33 -5.36 0.29

Frank θ = 2.74 - -6.81 -4.84 0.28
Clayton θ = 0.38 - -0.48 1.49 0.16

Table 4.13: Results for the fitted bivariate copula between values before tamping and
after tamping for SD Alignment

Copula
Parameter

1
Parameter

2
AIC BIC

Kendall’s
Tau

Gaussian/Normal ρ = 0.59 - -17.03 -15.06 0.4
Student-t copula ρ = 0.58 ν = 30 -14.68 -10.74 ρ = 0.39

Frank θ = 3.71 - -14.60 -12.63 0.37
Clayton θ = 0.98 - -14.56 -12.59 0.33

BB1 θ = 0.56 δ = 1.25 -13.93 -9.99 0.38
BB7 θ = 1.35 δ = 0.8 -13.63 -9.69 0.37

Gumbel θ = 1.53 - -13.20 -11.23 0.35
BB8 θ = 6 δ = 0.49 -12.43 -8.49 0.36
BB6 θ = 1 δ = 1.53 -11.19 -7.25 0.35
Joe θ = 1.68 - -9.24 -7.27 0.28
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Table 4.14: Results for the fitted distribution to recovery values for SD Cross level

Distribution
Kolmogorov

Smirnov
Anderson
Darling

Chi
squared

Statistic P-value Statistic P-value Statistic P-value
Log-Logistic (3P) 0.094 0.705 0.502 * 3.11 0.683
Lognormal (3P) 0.134 0.276 1.39 * 13.3 0.021
Weibull (3P) 0.164 0.103 2.69 * 20.2 1.5E-4
Gamma (3P) 0.147 0.220 1.63 * 13.3 0.020
Normal 0.206 0.019 3.16 0.023 16.3 0.003
Logistic 0.194 0.031 0.857 0.441 14.4 0.006
Exponential (2P) 0.338 6.4E-6 8.38 1.0E-4 39.4 2.7E-9

Table 4.15: Results for the fitted distribution to values before tamping for SD Cross
level

Distribution
Kolmogorov

Smirnov
Anderson
Darling

Chi
squared

Statistic P-value Statistic P-value Statistic P-value
Lognormal (3P) 0.125 0.347 0.723 * 4.09 0.536
Lognormal 0.183 0.049 2.06 0.087 17.7 0.003
Weibull (3P) 0.135 0.267 1.27 * 2.59 0.628
Weibull 0.202 0.022 4.00 0.018 7.63 0.106
Gamma (3P) 0.170 0.192 1.22 * 2.08 0.720
Gamma 0.170 0.081 2.60 0.036 17.5 0.002
Normal 0.209 0.017 4.40 0.006 12.2 0.016
Logistic 0.226 0.008 3.39 0.017 10.9 0.028
Exponential 0.389 1.3E-07 8.74 5.8E-5 70.2 2.1E-14
Exponential (2P) 0.158 0.127 1.80 0.171 1.58 0.813
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Table 4.16: Results for the fitted distribution to values after tamping for SD Cross
level

Distribution
Kolmogorov

Smirnov
Anderson
Darling

Chi
squared

Statistic P-value Statistic P-value Statistic P-value
Lognormal (3P) 0.085 0.805 0.348 * 2.53 0.772
Lognormal 0.130 0.309 0.947 0.396 6.60 0.159
Weibull (3P) 0.135 0.267 1.27 * 2.59 0.628
Weibull 0.202 0.022 4.00 0.091 7.63 0.106
Gamma (3P) 0.103 0.589 0.600 * 4.17 0.525
Gamma 0.127 0.330 1.40 0.177 13.3 0.010
Normal 0.197 0.028 3.01 0.027 12.3 0.006
Logistic 0.207 0.018 2.96 0.066 10.1 0.018
Exponential 0.346 3.54-06 7.35 2.4E-4 12.1 0.017
Exponential (2P) 0.153 0.152 1.69 0.186 2.93 0.569

Table 4.17: Results for the fitted bivariate copula between values before tamping and
after tamping for SD Cross level

Copula
Parameter

1
Parameter

2
AIC BIC

Kendall’s
Tau

BB7 2.86 1.51 -55.37 -51.43 0.62
BB1 0.4 2.23 -54.30 -50.36 0.63

Student-t copula 0.82 2.86 -54.23 -50.287 0.61
Gaussian/Normal 0.82 - -52.42 -50.45 0.61

BB8 5.28 0.88 -52.03 -48.09 0.61
Frank 8.06 - -48.73 -46.76 0.6

Gumbel 2.62 - -54.83 -52.86 0.62
BB6 1 2.62 -52.82 -48.88 0.62
Joe 3.29 - -48.08 -46.11 0.55

Clayton 2.1 - -42.58 -40.61 0.51
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Table 4.18: Results for the fitted distribution to recovery values for SD Warp

Distribution
Kolmogorov

Smirnov
Anderson
Darling

Chi
squared

Statistic P-value Statistic P-value Statistic P-value
Log-Logistic (3P) 0.093 0.713 0.552 * 2.83 0.727
Lognormal (3P) 0.132 0.285 1.24 * 5.49 0.359
Weibull (3P) 0.166 0.096 2.19 * 9.72 0.045
Gamma (3P) 0.146 0.191 1.45 * 5.50 0.36
Normal 0.207 0.018 3.032 0.027 18.6 9.6E-4
Logistic 0.187 0.043 0.833 0.457 13.9 0.008
Exponential (2P) 0.303 8.3E-5 6.50 9.7E-4 18.5 3.5E-4

Table 4.19: Results for the fitted distribution to values before tamping for SD Warp

Distribution
Kolmogorov

Smirnov
Anderson
Darling

Chi
squared

Statistic P-value Statistic P-value Statistic P-value
Log-Logistic (3P) 0.071 0.937 0.188 * 1.337 0.931
Log-Logistic 0.080 0.863 0.451 0.800 0.186 0.999
Lognormal (3P) 0.0601 0.985 0.200 * 1.05 0.958
Lognormal 0.092 0.722 0.647 0.602 0.191 0.999
Weibull (3P) 0.088 0.772 0.579 * 1.30 0.934
Weibull 0.125 0.349 2.43 0.062 3.70 0.448
Gamma (3P) 0.077 0.885 0.415 * 0.545 0.990
Gamma 0.141 0.221 1.61 0.248 4.33 0.503
Normal 0.184 0.049 3.11 0.024 7.48 0.113
Logistic 0.182 0.053 1.63 0.149 5.63 0.228
Exponential 0.373 4.6E-07 8.92 4.8E-5 37.1 1.70E-07
Exponential (2P) 0.148 0.180 1.80 0.161 5.60 0.231
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Figure 4.2: Comparison between real and simulated values for SD Surface given 3-
parameter lognormal marginals (Before tamping and after tamping) and
Joe-Clayton (BB7) copula.

4.6.7.2 Copula fitting

The Joe copula provided the best fit of the underlying dependence between the

SD warp values before tamping and the tamping recovery values. The Joe copula pro-

duced both the lowest AIC and BIC values as shown in Table 4.21. Simulated values

were generated given 3-parameter lognormal marginal (Before tamping) 3-parameter

loglogistic marginal (Recovery values) and Joe copula. The simulated values are illus-

trated in figure 4.7.

The Gumbel copula provided the best fit of the underlying dependence between

track quality (SD cross level) before tamping and track quality after tamping. The

Gumbel copula was found to have the lowest AIC and BIC values as shown in Table

4.22. Simulated values were generated given 3-parameter lognormal marginals (track

condition before and after tamping) and Gumbel copula. The simulated values are
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Table 4.20: Results for the fitted distribution to values after tamping for SD Warp

Distribution
Kolmogorov

Smirnov
Anderson
Darling

Chi
squared

Statistic P-value Statistic P-value Statistic P-value
Log-Logistic (3P) 0.084 0.816 0.285 * 5.894 0.317
Log-Logistic 0.085 0.803 0.349 0.934 6.66 0.247
Lognormal (3P) 0.073 0.923 0.263 * 4.22 0.519
Lognormal 0.073 0.918 0.264 0.961 4.00 0.550
Weibull (3P) 0.099 0.641 0.525 * 5.41 0.368
Weibull 0.094 0.705 1.09 0.338 12.0 0.018
Gamma (3P) 0.074 0.912 0.320 * 4.469 0.484
Gamma 0.097 0.663 0.534 4.18 0.523
Normal 0.137 0.248 1.33 0.222 5.218 0.390
Logistic 0.142 0.217 0.871 0.432 2.47 0.781
Exponential 0.351 2.4E-6 8.93 4.8E-5 24.6 1.9E-05
Exponential (2P) 0.259 0.001 4.58 0.006 20.2 4.5E-4

Table 4.21: Results for the fitted bivariate copula between SD values before tamping
and SD recovery values after tamping for Warp

Copula
Parameter

1
Parameter

2
AIC BIC

Kendall’s
Tau

Joe θ = 1.67 - -11.62 -9.65 0.27
Gumbel θ = 1.42 - -10.43 -8.46 0.29

BB7 θ = 1.63 δ = 0.15 -9.96 -6.01 0.3
BB8 θ = 1.67 δ = 1 -9.62 -5.68 0.27
BB6 θ = 1.67 δ = 1 -9.62 -5.68 0.27
BB1 θ = 0 δ = 1.42 -8.43 -4.48 0.29

Student-t copula ρ = 0.33 ν = 2.3 -7.06 -3.12 0.22
Gaussian/Normal ρ = 0.43 - -6.97 -5.00 0.29

Frank θ = 2.24 - -4.08 -2.11 0.24
Clayton θ = 0.47 - -2.65 -0.68 0.19
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Figure 4.3: Comparison between real and simulated values for SD Alignment given
3-parameter Lognormal marginals (Before tamping and Recovery values)
and Joe copula.

illustrated in figure 4.8.

4.6.8 Gage

4.6.8.1 Marginal Distribution fitting

The 3-parameter log-logistic distribution was found to have the best fit for the

tamping recovery values of SD gage. The 3-parameter log-logistic distribution offered

the lowest statistic for all three tests as shown in Table 4.23. It also had a p-value

far greater than 0.05 for Kolmogorov-Smirnov and Chi-squared tests meaning the null

hypothesis that it follows the distribution can be accepted. The closed form expression
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Figure 4.4: Comparison between real and simulated values for SD Alignment given
3-parameter lognormal marginals (Before tamping and after tamping)
and Gaussian (Normal) copula.

for the p-value of the 3-parameter log-logistic distribution however does not exist for the

Anderson-Darling test. The 2-parameter lognormal distribution and the 3-parameter

log-logistic distribution were found to provide the best fit for both SD Gage values

before tamping and SD Gage values after tamping as shown in Tables 4.24 and 4.25

respectively.

4.6.8.2 Copula fitting

The Joe-Frank (BB8) Copula was found to offer the best fit of the underlying

dependence between the SD gage values before tamping and tamping recovery values
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Table 4.22: Results for the fitted bivariate copula between values before tamping and
after tamping for SD Warp

Copula
Parameter

1
Parameter

2
AIC BIC

Kendall’s
Tau

Gumbel θ = 2.61 - -54.78 -52.81 0.62
BB8 θ = 5.72 δ = 0.85 -53.33 -49.39 0.62
BB6 θ = 1.08 δ = 2.49 -52.79 -48.85 0.62
BB1 θ = 0 δ = 2.61 -52.78 -48.84 0.62
BB7 θ = 3.18 δ = 0.75 -52.40 -48.46 0.6
Joe θ = 3.4 - -52.08 -50.11 0.56

Student-t copula ρ = 0.82 ν = 2.53 -51.54 -47.60 0.61
Frank θ = 8.37 - -49.53 -47.56 0.62

Gaussian/Normal ρ = 0.8 - -48.01 -46.04 0.59
Clayton θ = 1.78 - -32.41 -30.44 0.47

Table 4.23: Results for the fitted distribution to recovery values for SD Gage

Distribution
Kolmogorov

Smirnov
Anderson
Darling

Chi
squared

Statistic P-value Statistic P-value Statistic P-value
Log-Logistic (3P) 0.100 0.617 1.01 * 10.4 0.064
Lognormal (3P) 0.141 0.223 1.75 * 15.327 0.002
Weibull (3P) 0.163 0.106 2.22 * 15.3 0.002
Gamma (3P) 0.143 0.210 1.78 * 15.3 0.002
Normal 0.157 0.131 2.00 0.092 15.7 0.001
Logistic 0.137 0.247 1.15 0.285 10.4 0.034
Exponential (2P) 0.401 4.1E-08 9.93 2.3E-5 38.8 3.8E-9
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Table 4.24: Results for the fitted distribution to values before tamping for SD Gage

Distribution
Kolmogorov

Smirnov
Anderson
Darling

Chi
squared

Statistic P-value Statistic P-value Statistic P-value
Log-Logistic (3P) 0.065 0.969 0.225 * 1.21 0.944
Log-Logistic 0.076 0.900 0.250 0.992 0.996 0.963
Lognormal (3P) 0.061 0.982 0.194 * 0.937 0.967
Lognormal 0.059 0.987 0.173 0.996 0.625 0.987
Weibull (3P) 0.067 0.956 0.285 * 0.835 0.975
Weibull 0.077 0.884 1.04 0.254 0.978 0.964
Gamma (3P) 0.065 0.969 0.213 * 0.571 0.989
Gamma 0.071 0.935 0.431 0.946 2.15 0.828
Normal 0.091 0.740 1.010 0.351 1.80 0.876
Logistic 0.100 0.975 0.464 0.783 3.06 0.690
Exponential 0.404 3.3E-8 11.7 1.1E-5 79.4 2.2E-16
Exponential (2P) 0.193 0.033 3.31 0.024 14.8 0.005

Table 4.25: Results for the fitted distribution to values before tamping for SD Gage

Distribution
Kolmogorov

Smirnov
Anderson
Darling

Chi
squared

Statistic P-value Statistic P-value Statistic P-value
Log-Logistic (3P) 0.067 0.957 0.273 * 1.48 0.916
Log-Logistic 0.092 0.725 0.410 0.964 1.88 0.865
Lognormal (3P) 0.075 0.909 0.403 * 2.94 0.709
Lognormal 0.06878 0.949 0.337 0.901 3.23 0.665
Weibull (3P) 0.090 0.749 0.707 * 4.10 0.398
Weibull 0.065 0.605 0.895 0.210 2.19 0.822
Gamma (3P) 0.079 0.871 0.503 * 4.72 0.451
Gamma 0.094 0.705 0.335 0.909 5.15 0.399
Normal 0.1289 0.3159 0.9029 0.412 3.629 0.6059
Logistic 0.1119 0.499 0.587 0.654 2.29 0.807
Exponential 0.408 2.3E-8 12.4 1.1E-5 70.6 3.2E-15
Exponential (2P) 0.209 0.017 3.4 0.024 16.5 0.002
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Figure 4.5: Comparison between real and simulated values for SD Crosslevel given 3-
parameter Lognormal marginal (Before tamping) 3-parameter loglogistic
marginal (Recovery values) and Independent copula.

producing both the lowest AIC and BIC values as shown in Table 4.26. The BB8

copula consists of the Joe Copula and Frank Copula. The Joe copula is suitable for

strong upper tail dependence whereas Frank copula is suitable for very strong central

dependence with very weak tail dependence. The Frank copula has stronger central

dependence than the Gaussian copula (denoted by significant central clustering) and

even weaker tail dependence than the Gaussian copula(denoted by fanning out at the

tails) (Bhat and Eluru, 2009). Simulated values were generated given 2-parameter log-

normal (values before tamping), 3-parameter log-logistic distribution (recovery values)

and Joe-Frank (BB8) copula. The comparison of the observed and simulated values is
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Figure 4.6: Comparison between real and simulated values for SD Crosslevel given 3-
parameter lognormal marginals (Before tamping and after tamping) and
Joe-Clayton (BB7) copula.

shown in figure 4.9.

The Student-t copula was found to offer the best fit of the underlying depen-

dence between SD gage values before tamping and SD gage values after tamping. The

selection of the t-copula suggests radially symmetric dependence with equal upper and

lower tail dependence. Simulated values were produced given 2-parameter lognormal

marginal (SD gage before tamping), 3-parameter log-logistic marginal (recovery value)

and Student t-copula. This is illustrated in figure 4.10.
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Table 4.26: Results for the fitted bivariate copula between SD values before tamping
and SD recovery values after tamping for Gage

Copula
Parameter

1
Parameter

2
AIC BIC

Kendall’s
Tau

BB8 θ = 5.99 δ = 0.53 -15.19 -11.25 0.39
Gumbel 1.54 - -12.91 -10.94 0.35

Joe θ = 1.8 - -11.34 -9.36 0.31
Student-t copula ρ = 0.54 ν = 30 -11.27 -7.33 0.37

BB6 θ = 1 δ = 1.54 -10.91 -6.97 0.35
BB1 θ = 0 δ = 1.54 -10.91 -6.97 0.35

Frank θ = 3.89 - -10.51 -6.54 0.38
Gaussian/Normal ρ = 0.55 - -9.85 -5.88 0.37

BB7 θ = 1.8 δ = 0 -9.33 -5.39 0.31
Clayton θ = 0.66 - -6.26 -4.29 0.25

Table 4.27: Results for the fitted bivariate copula between values before tamping and
after tamping for SD Gage

Copula
Parameter

1
Parameter

2
AIC BIC

Kendall’s
Tau

Student-t copula ρ = 0.83 ν = 2 -54.82 -50.88 0.63
BB7 θ = 2.77 δ = 1.26 -48.61 -44.67 0.6

Gumbel θ = 2.51 - -48.19 -46.22 0.6
BB1 θ = 0.26 δ = 2.26 -46.84 -42.90 0.61
BB6 θ = 1 δ = 2.5 -46.19 -42.25 0.6
Joe θ = 3.16 - -44.00 -42.03 0.54
BB8 θ = 3.16 δ = 1 -42.00 -38.06 0.54

Gaussian/Normal ρ = 0.76 - -38.44 -36.47 0.55
Frank θ = 7.21 - -38.10 -36.13 0.57

Clayton θ = 1.87 - -33.19 -31.22 0.48
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Figure 4.7: Comparison between real and simulated values for SD Warp given 3-
parameter Lognormal marginal (Before tamping) 3-parameter loglogistic
marginal (Recovery values) and Joe copula.

4.6.9 Correlation Analysis of Recovery Values of Geometry Parameters

Correlation analysis was conducted to measure the dependence between the

tamping recoveries of the various track geometry parameter namely surface profile,

alignment, cross level, warp and gage. The correlation measures employed include

Pearson’s correlation coefficient and concordance (or rank correlation) measures such

as Kendall’s Tau and Spearman’s Rho. Pearson’s correlation coefficient measures the

linear dependence between random variables and assumes that the variables of interest

are normal. Thus, the widely-used Pearson’s coefficient is not suitable for evaluating

non-linear dependence or dependence between non-normal distributions.
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Figure 4.8: Comparison between real and simulated values for SD Warp given 3-
parameter lognormal marginals (Before tamping and after tamping) and
Gumbel copula.

The results of the linear correlation analysis are shown in Table 4.28. The high-

est dependence was found between the recoveries of SD warp and SD cross level. The

fact that warp is a measure of the cross level variation offers some support to the high

dependence observed. On the other hand, the lowest dependence was observed between

the recovery values of SD gage and SD surface. Gage is a transverse horizontal param-

eter whereas surface is a vertical longitudinal parameter. In fact, generally gage was

found to have relatively weak dependences between the other parameters with its high-

est dependence observed with alignment which is a horizontal longitudinal parameter

unlike the others. The surface profile was found to have moderate dependence with
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Figure 4.9: Comparison between real and simulated values for SD Gage given
2-parameter Lognormal marginal (Before tamping), 3-parameter log-
logistic marginal (recovery value) and Joe-Frank (BB8) copula.

both cross level and warp which are also vertical parameters. Alignment were found

to have moderate correlations with vertical parameters such as surface, cross level and

warp parameters. Of these three parameters, surface profile was the parameter with

the highest dependence with alignment which suggests that tamping affects the surface

profile in more similar way to alignment in comparison with the others. Surface and

alignment are both longitudinal parameters.

However, a comparison of the linear correlation results with the concordance

dependence results shows a general reduction in the observed dependence between the

recoveries of the various parameters. These are shown in concordance dependence
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Figure 4.10: Comparison between real and simulated values for SD Gage given
2-parameter Lognormal marginal (Before tamping), 3-parameter log-
logistic marginal (after tamping) and Student-t copula.

results such as the Kendall’s Tau and Spearman’s Rho correlation matrices in Tables

4.29 and 4.30 respectively. For instance, the linear dependence of 0.7919 was found

to reduce to 0.3498 and 0.4721 by employing the Kendall’s Tau and Spearman’s Rho

dependence measures which do not assume linear dependence or assume normality

of the random variables. As a matter of fact the recoveries of warp and crosslevel

and warp were found to assume 3-parameter lognormal distribution and 3-parameter

log-logistic distribution as shown in Tables 4.14 and 4.18 respectively. Furthermore,

the normal distribution was found to not fit the data as shown in the aforementioned

tables. Additionally, an examination of the underlying dependence suggest a Student-t
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Table 4.28: Pearson’s correlation matrix of recovery values of geometry parameters

Parameter Surface Alignment Cross level Gage Warp
Surface 1.00 0.50 0.30 -0.02 0.37

Alignment 0.50 1.00 0.53 0.19 0.61
Cross level 0.30 0.53 1.00 0.07 0.80

Gage -0.02 0.19 0.07 1.00 0.13
Warp 0.37 0.61 0.79 0.13 1.00

Table 4.29: Kendall’s tau correlation matrix of recovery values of geometry parame-
ters

Parameters Surface Alignment Cross level Gage Warp
Surface 1.00 0.17 0.07 0.02 0.15
Alignment 0.13 1.00 0.06 0.24 0.31
Cross level 0.07 0.06 1.0 0.12 0.35
Gage 0.02 0.24 0.12 1.00 0.12
Warp 0.15 0.31 0.35 0.11 1.00

copula. Thus, it may be quite misleading to employ linear correlation coefficient not

only in modelling the tamping recovery of various parameters but also in analyzing the

dependences of the various recoveries of these parameters.

4.6.10 Concluding Remarks

The effect of tamping on various parameters namely surface, alignment, cross

level, warp and gage were evaluated by analyzing the recovery of these geometry param-

eters after tamping. Tamping recovery has been found to be predominantly dependent

Table 4.30: Spearman’s rho correlation matrix of recovery values of geometry param-
eters

Parameters Surface Alignment Cross level Gage Warp
Surface 1.00 0.18 0.08 0.04 0.22
Alignment 0.18 1.00 0.08 0.35 0.46
Cross level 0.08 0.08 1.00 0.16 0.47
Gage 0.04 0.35 0.16 1.00 0.17
Warp 0.21 0.46 0.47 0.17 1.00
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on the track geometry condition before tamping. It has largely been modeled using

deterministic techniques such as linear regression which assumes multivariate normal

distribution and linear relationship between the variables. However, non-normality in

most cases transpires in various forms: non-normality of marginal distribution of some

variables and in some instances multivariate non-normality of the joint distribution of a

group of variables despite normal marginal distributions of all the individual variables.

Furthermore, deterministic techniques are not suitable given high degrees of uncer-

tainty which happens to be observed in the recovery values of track geometry measures

in majority of cases. Thus, probabilistic techniques are increasingly being employed

which take into consideration the high variation in the restoration values after tamp-

ing even for similar track geometry condition. Majority of studies do not take into

consideration the underlying dependence between the variables of interest. Thus, the

authors employ a copula-based approach to model the tamping recovery phenomenon

by combining arbitrary marginal distributions to form a joint distribution with the

underlying dependence.

From marginal fitting results, the recoveries of the various parameters were

found to be non-normal and were found to either fit a 3-parameter lognormal distri-

bution (in the case of surface, alignment and warp) or 3-parameter log-logistic distri-

bution (in the case of cross level and gage). Similarly, non-normal distributions were

observed for the track quality condition (standard deviation of track geometry param-

eters) before and after tamping. Various copulas were fitted in order to find the copula

which best describe the underlying dependence between the variables. The selection

of copulas such as Gumbel, Joe and Joe-Clayton copulas (BB7) suggest the presence

of asymmetric and tail dependence which cannot be appropriately captured using the

widely-used linear regression. Thus, conventional correlation analysis appears not to

be suitable for analyzing the dependences between the recovery values and tamping

condition before tamping.

Correlation analysis of the recovery of various geometry parameters show that

the use of Pearson’s correlation coefficient which assumes normality of the variables
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and linear dependence led to relatively high dependence values observed. However,

the use of concordance measures such as Kendall’s Tau and Spearman’s Rho resulted

in a general reduction in the observed dependences. These concordance measures

are scale-invariant and are suitable for evaluating non-linear dependence and measure

dependence irrespective of assumed distribution. Thus, the widely-used Pearson’s cor-

relation coefficient does not appear to be appropriate for analyzing the correlation

between the recoveries of the various track geometry parameters. From the correla-

tion analysis results, the strongest correlation was observed between warp and cross

level recoveries with the weakest correlation observed between the surface and gage

recoveries with varying levels in-between. This infers and gives credence to previous

research that tamping affects the various track geometry parameters differently thus

it is imperative to examine all the track geometry parameters and not focus on one or

two parameters.

The copula-based approach was employed by considering only the predominant

factor which is the track geometry condition or quality before tamping. However, this

methodology can be extended to incorporate and examine other factors such as oper-

ational speed, tamping procedure, age of track components and number of previous

tamping operations. To analyze the effect of various covariates on track geometry re-

coveries of several parameters, copula-based regression models can be employed taking

into consideration the dependence between the recovery variables. In order to analyze

the dependences between more than two variables, vine copulas are suggested which are

more flexible than regular multivariate copulas. Vine copulas employ arbitrary bivari-

ate copulas as building blocks for the construction of higher-dimensional multivariate

distributions.

The copula-based tamping recovery model can be incorporated into track ge-

ometry maintenance scheduling models with track geometry degradation models and

recovery models being the main components of these models. Degradation models that

can be considered include linear and exponential regression models, polynomial models,

multi-stage linear models, neural networks, grey models, path analysis, data mining,
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models with random coefficient, Markov models, time series models and stochastic pro-

cesses. There is the need to select an appropriate track geometry deterioration model

that takes into consideration both the time and spatial variation of the track geom-

etry degradation process (Soleimanmeigouni et al., 2016b). The combination of such

a model with a copula-based approach that models the tamping recovery phenomena

considering the underlying dependence will lead to better track geometry condition

estimation for maintenance activity planning. The combination of such models will

also result in a greater comprehension of track geometry maintenance modelling. This

proposed methodology will be considered in a future case study. In order to integrate

such degradation models and copula-based recovery models in track scheduling models,

probabilistic optimization models need to be considered.
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Ayuso, Mercedes; Bermúdez, Llúıs, and Santolino, Miguel. Copula-based regression
modeling of bivariate severity of temporary disability and permanent motor injuries.
Accident Analysis and Prevention, 89:142–150, 2016. ISSN 00014575. doi: 10.1016/
j.aap.2016.01.008.

Bedford, Tim and Cooke, Roger M. Probability density decomposition for conditionally
dependent random variables modeled by vines. Annals of Mathematics and Artificial
Intelligence, 32(1-4):245–268, 2001. ISSN 1573-7470. doi: 10.1023/A:1016725902970.

Berg, Daniel. Copula goodness-of-fit testing: An overview and power comparison.
European Journal of Finance, 15(7-8):675–701, 2009. ISSN 1351847X. doi: 10.1080/
13518470802697428.

Bhat, Chandra R. and Eluru, Naveen. A copula-based approach to accommodate
residential self-selection effects in travel behavior modeling. Transportation Research
Part B: Methodological, 43(7):749–765, 2009. ISSN 01912615. doi: 10.1016/j.trb.
2009.02.001.

Biau, Gérard and Wegkamp, Marten. A note on minimum distance estimation of copula
densities. Statistics and Probability Letters, 73(2):105–114, 2005. ISSN 01677152.
doi: 10.1016/j.spl.2005.02.006.

162



Brechmann, E C and Schepsmeier, U. Modeling dependence with C-and D-vine copulas:
The R-package CDVine. Journal of Statistical Software, 52(3):1–27, 2013.

Caetano, Luis Filipe and Teixeira, Paulo Fonseca. Predictive Maintenance Model
for Ballast Tamping. Journal of Transportation Engineering, 142(4):4016006, 2016.
ISSN 0733-947X. doi: 10.1061/(ASCE)TE.1943-5436.0000825.

Chen, Song Xi and Huang, Tzee-ming. Nonparametric estimation of copula functions
for dependence modeling. Canadian Journal of Statistics, 35(2):1–18, 2007. ISSN
03195724. doi: 10.1002/cjs.5550350205.

Clarke, Kevin A. A simple distribution-free test for nonnested model selection. Political
Analysis, 15(3):347–363, 2007. ISSN 10471987. doi: 10.1093/pan/mpm004.

Czado, C.; Schepsmeier, U., and Min, A. Maximum likelihood estimation of mixed C-
vines with application to exchange rates. Statistical Modelling, 12(3):229–255, 2012.
ISSN 1471-082X. doi: 10.1177/1471082X1101200302.

Dalla Valle, Luciana; De Giuli, Maria Elena; Tarantola, Claudia, and Manelli, Claudio.
Default probability estimation via pair copula constructions. European Journal of
Operational Research, 249(1):298–311, 2016. ISSN 03772217. doi: 10.1016/j.ejor.
2015.08.026.
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Chapter 5

COPULA-BASED REGRESSION MODELS

5.1 Introduction

This chapter discusses the basic concepts of copula-based regression models

which combine several marginal regression models with a bivariate parametric copula

which characterizes the underlying dependence between the response variables. The

various types of marginal regression models including general linear models, generalized

linear models, generalized additive models and generalized additive models for location,

scale and shape are discussed. Past applications of copula-based regression models in

several transportation fields including modeling automobile crash severity are reviewed.

The model formulation of the mixed copula-based regression model including marginal

and copula selection and statistical inference (parameter estimation) are also provided.

The chapter concludes with a case study on the application of copula-based regression

models to bivariate severity analysis of train derailments. A joint mixed copula-based

model for derailed cars and monetary damage is presented for the joint analysis of their

relationship with a set of covariates that might influence both outcomes.

5.2 Marginal Regression Models

Regression analysis is a statistical method used in estimating the relationship

among variables. Regression analysis seeks to determine the strength of the relationship

between a dependent variable (also known as outcome or response variables) and a set

of changing independent variables (also known as explanatory variables, predictors or

covariates). Regression models are widely used in prediction and forecasting of response

variables. Regression models are referred to as simple regression models if only one

covariate is used in the prediction of a response variable whereas multiple regression

168



models are regression models where more than one predictor is used in the prediction

of an outcome.

The corresponding regression models of the marginal distributions of the various

responses can be referred to as the marginal regression models. The marginal regression

models of a copula-based regression model can be defined via the following models:

• General Linear Models

• Generalized Linear Models

• General Additive Models

• General Additive Models for Location, Scale and Shape

5.2.1 General Linear Models

The general (or multivariate) linear model is a generalization of multiple linear

regression model to the case of more than one response variable. A multiple linear

regression model can be expressed as:

yi = β0 + β1xi1 + ...+ βpxip + εi (5.1)

where the response variable yi, i = 1, ..., n is modeled as a linear function of the co-

variates xj, j = 1, ..., p and an error term εi, i = 1, ..., n. The errors are assumed to be

independent and identically distributed such that E(εi) = 0 and V ar(εi) = σ2.

Given n observations on q-vector of responses y and p-vector of covariates x,

the multivariate regression model is given as

Y = XB + E (5.2)

where Y = (y1, ..., yn)′ ∈ Rn×q, X = (x1, ..., xn)′ ∈ Rn×p and B ∈ Rp×q represent

the responses, predictors and regression coefficient matrices respectively and E is the

noise matrix comprising iid normal random variables. The model assumes the response

variable and the error terms from the fitted models are normally distributed. However,

they are not appropriate if the range of response variable is restricted such as the
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case of binary or count variables. They are also not suitable if the variance of the

response variable is dependent on the mean. Transformation of response variable may

enhance linearity and homogeneity of variance thus making a general linear model

applicable. However, this approach has limitations including the change of response

variable, need for simultaneous enhancement of linearity and homogeneity of variance

and transformation may not be defined on the boundaries of the sample space.

5.2.2 Generalized Linear Models

The marginal regression models (marginals) of the copula-based regression model

employed in this chapter are defined via generalized linear models (GLMs). General-

ized linear models (GLMs) were proposed by Nelder and Wedderburn (1972) to extend

the range of application of linear statistical models by accommodating response vari-

ables with non-normal conditional distributions. GLMs address the aforementioned

limitations of normal-response models by extending its framework by considering dis-

tributions from the exponential family. The exponential family of distributions can be

expressed as

f(y|θ) = h(y)c(θ) exp

(
k∑
i=1

wi(θ)ti(y)

)
(5.3)

where h(y) ≥ 0 and t1(y), ..., tk(y) are real-valued functions of the observation of the

random variable y (which cannot be dependent on the parameter θ and c(θ) ≥ 0

and w1(θ), ..., wk(θ) are real-valued functions of the possibly vector-valued parameter θ

(which is not dependent on y) (Casella and Berger, 2002). Thus, an exponential family

requires the parameters (θ) and the value of the random variable y. Common distribu-

tions belonging to this family include normal, gamma, beta and Poisson distributions.

Other distributions are members only when certain parameters are fixed or known such

as binomial (given fixed number of trials), multinomial (given fixed number of trials)

and negative binomial (given fixed number of failures).

The distributions of exponential families can be defined by the natural param-

eter, a function of the mean, and the dispersion parameter, a function of the variance
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that is needed to produce standard error of the point estimates. For distributions

such as Poisson, the variance is related to its mean thus the dispersion parameter is

equal to one whereas for others such as Gamma, the dispersion parameter is estimated

separately from the mean (Quinn and Keough, 2002).

Given an independent sample data (xi, yi), i = 1, ..., n where yi is the response,

n is the sample size and xi = (xi1, ..., xip)
T is a vector of p covariates, a generalized

linear model (GLM) comprises three parts namely:

1. A random component f(y;µ) which specifies the conditional distribution of the

response variable given the covariates where µ is the mean of the distribution.

2. A systematic component η = βTx known as the linear predictor which specifies

the variations in the response variable accounted for by the known covariates.

3. An invertible link function g(µ) = βTx that ties the two components. It links

the expected value of the response variable to the covariates by the function

g(µ(xi)) = ηi = βTxi = β0 + β1Xi1 + ...+ βpXip (5.4)

where βi1, ..., βip are the parameters to be estimated. The vector of regression parame-

ters is usually estimated using maximum likelihood estimation using Newton-Raphson

algorithm with the expected Hessian. The maximum likelihood estimates are obtained

by solving the score equations using the Fisher’s Method of Scoring algorithm which

can be fitted by iteratively reweighted least squares (IRLS) algorithm (Yee, 2008).

The IRLS algorithm is a more special case of the Newton-Raphson algorithm.

The algorithm computes iterative updates. In the m-th iteration, the new estimate

β̂(m+1) is obtained from the previous estimate by β̂m

β̂(m+1) = β̂m −H−1u (5.5)

where u is the score vector and H is the Hessian matrix (the first and second derivatives

of the log-likelihood respectively), both of which are evaluated at β̂m. The updates

can be written as

β̂(m+1) = (X>W (m)X)−1X>W (m)z(m) (5.6)
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which is the score equation for a weighted least squares regression of z(m) on X with

weights W (m) = diag(wi) where adjusted (working) responses

z
(m)
i = η

(m)
i +

(
yi + µ

(m)
i

)
g′
(
µ

(m)
i

)
and adjusted (working) weights

w
(m)
i =

ai

V ar
(
µ

(m)
i

)(
g′
(
µ

(m)
i

))2 .

Hence the estimates can be obtained using the IRLS algorithm as follows:

1. Start with initial value β̂(0)

2. For m = 0, 1, 2, ...,

(a) Compute working responses z
(m)
i and working weights w

(m)
i based on β̂(m)

(b) Solve for β̂(m+1)

(c) Check for convergence of β̂ and stop if met

The variables of the marginal regression models can be selected using the hi-

erarchical model selection technique based on the deviance (Agresti, 2007). The de-

viance of a statistical model is is a goodness-of-fit statistic which can be defined as the

likelihood-ratio statistic for comparing the model to the saturated model (S). The sat-

urated model can be defined as the most complex model possible that offers a perfect

fit to the data with a unique parameter for each observation (Agresti, 2007). It is a

model that explains all the variation in the data (Quinn and Keough, 2002).

The maximized log-likelihood of the saturated model (LS) is greater or equal to

the maximized log-likelihood of a simpler model (LG) due to its additional parameters.

Thus, deviance can be defined as the test statistic for the hypothesis that all parameters

in the saturated model but not in the simpler model equal zero. The deviance of a
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generalized linear model G can be mathematically expressed as:

Deviance(G) = −2[LG − LS] (5.7)

For normal-response models, the F-test comparison of the statistical models decom-

poses a sum of squares representing the variability in the data. This analysis of variance

for decomposing variability generalizes to an analysis of deviance for GLMs. Given two

GLMs, A and B, such that A is a special case of B, the likelihood-ratio statistic for test-

ing that the simpler model A holds given the complex model B holds is −2[LA − LB].

Furthermore, the models can be compared by their deviances since

−2[LA − LB] = −2[LA − Ls]− {−2[LB − Ls]} = Deviance(A)−Deviance(B)

A large test statistic indicates a poor fit of A in comparison with B. For large samples,

the statistic has an approximate chi-squared distribution, with degrees of freedom (df)

equal to the difference between the residual df values of the two models. This difference

in df equals the number of additional parameters that are in B but not in A (Agresti,

2007). In order to select the simpler model A over model B, a rule of thumb for

evaluating the statistic requires that the difference in deviance between the models

should not be more than twice the difference in the number of parameters estimated

(Kreft and de. Leeuw, 1998).

5.2.3 Generalized Additive Models

Generative Additive Models (GAM) proposed by Hastie and Tibshirani (1990)

can be defined as a generalized linear model (GLM) in which the linear predictor is

linearly dependent on a sum of smooth functions of the covariates. GAM models

are semi-parametric regression models since the response variable follows a parametric

distribution but modelling of the distribution parameters, as function of covariates,

may include non-parametric smoothing functions. For GAM models, equation 5.4 can
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be rewritten as

g(µ(xi)) = ηi = β0 + f1(xi1) + f2(xi2) + ...+ fp(xip) (5.8)

where fj are the smooth function of the covariates, xk. GAM permits the flexible

specification of the dependence of the response variable on the covariates. This is

specified in relation to (in terms of) smooth function instead of detailed parametric

relationships (Wood, 2006). Thus, GAMs extend the flexibility of GLMs by allowing

a variety of non-parametric smoothing functions other than just linear relationships.

GAMs converge slower than GLMs with increasing n but have less bias. GLMs can be

viewed as a special case of GAMs.

5.2.4 Generalized Additive Models for Location, Scale and Shape

Generalized Additive Models for location, scale and shape (GAMLSS) are semi-

parametric regression type models proposed by Rigby et al. (2005) which extend gen-

eralized additive models (GAM) by not restricting the response variable to only the

exponential family. Thus, the distributions of response variables of GAMLSS models

can incorporate highly skewed and/or kurtotic continuous and discrete distributions.

Also, they are suitable for heterogeneous response variables where the scale and shape

parameters vary with the covariates. Furthermore, all its parameters can be depen-

dent on flexible (linear/non-linear or smooth) functions of covariates. This permits not

only the modeling of the mean (or location) parameter but also other parameters of

the response distribution as linear and/or non-linear, parametric and/or additive non-

parametric functions of covariates and/or random effects (Stasinopoulos and Rigby,

2007).
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5.3 Copula Regression Models

5.3.1 General

The simultaneous modeling of multiple response or outcomes conditional on

several covariates are achievable using copulas. Copulas provide a suitable and compu-

tationally tractable framework to model multivariate responses in a regression context

by taking into consideration the dependences between the response variables. Copulas

also address endogeneity by taking into account similar unobserved or omitted factors

that may affect the response variables.

Although copula-based methodologies have not been employed in derailment

severity, it has been employed in various transportation applications including modeling

automobile crash severity. Bhat and Eluru (2009) employed a copula-based approach

to accommodate residential self-selection effects in travel behavior modeling between

neo-urbanist and conventional neighborhoods. The authors showed that the copula-

based approach showed a considerable level of residential self-selection which could

not be detected using bivariate normal dependence structures. Eluru et al. (2010)

investigated the injury severity of multiple occupants of vehicles by employing a copula-

based multivariate approach which takes into consideration similar unobserved factors

that may simultaneously affect severity levels of the occupants in the same crashed-

involved vehicle. The Frank copula-based model was found to outperform than the

ordered-probit-logit model of independence.

Rana et al. (2010) employed a copula-based approach to address endogeneity in

severity models of traffic crash injuries applicable to two-vehicle crashes. This approach

took into account endogeneity due to similar unobserved factors affects the response

variables namely crash type and injury severity as well as endogeneity between injury

severity of the drivers involved in crash. A copula-based joint ordered logit-ordered

logit (ORL-ORL) model was developed to jointly model the injury severity levels of

the drivers whereas a copula-based joint multinomial logit-ordered logit (MNL-ORL)

model was developed to jointly model the response variables. The copula-based mod-

els were found to outperform the independent models. Yasmin et al. (2014) built on
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the work by Rana et al. (2010) by taking account varying dependences between in-

jury severity and collision type across different categories of collision types. This was

based on the hypothesis that collision type basically changes the injury severity pattern

under consideration. Thus, collision type was incorporated as a vehicle-level variable

instead of a crash-level variable. The methodology was considered the potential het-

erogeneity (across drivers) in the dependency structure. Wang et al. (2015) employed a

copula-based approach to simultaneously model injury severity and vehicle damage by

accommodating their dependences between the two outcomes due to common observed

and unobserved factors. The Gaussian copula-based model was found to be the best

model with lowest BIC value. Ayuso et al. (2016) investigated the the bi-dimensional

nature of personal injuries in order to gather more insight into the interaction between

of temporary disability and permanent motor injuries. The authors proposed a bivari-

ate copula-based regression model for the joint analysis of their relationship with a set

of factors that might influence the two categories of injury.

A mixed copula-based copula regression model was considered in this study

namely copula-based generalized linear models (GLMs). This approach follows the

methodology proposed by Krämer et al. (2013) which employs bivariate copula models

to describe the joint distribution of a pair of continuous and discrete random response

variables. The marginals are defined via generalized linear models for the two marginal

regression models which are combined with various parametric copulas. In this study,

four uni-parametric copulas are considered namely Gaussian, Clayton, Frank and Gum-

bel copulas. These bivariate copulas are fitted to the bivariate joint distribution with

the method of maximum likelihood estimation.

5.3.2 Model Formulation

Despite the lack of uniqueness in the case of discrete or mixed pair of variables,

copulas are still suitable for characterizing the dependence between the variables (Gen-

est and Neslehova, 2007; Krämer et al., 2013). Given a continuous random variable A
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and a discrete random variable B, the joint distribution is given by

FA,B|θ(a, b|θ) = P (A ≤ a,B ≤ b) = C(FA(a), FB(b)|θ) (5.9)

where C(...|θ) is a parametric copula dependent on a parameter θ.

The joint density/probability mass function of the two variables can be expressed

as:

fA,B(a, b) =
∂

∂a
P (A ≤ a,B = b) (5.10)

fA,B(a, b) =
∂

∂a
P (A ≤ a,B ≤ b)− ∂

∂a
P (A ≤ a,B ≤ b− 1) (5.11)

fA,B(a, b) = fa(a) [D1(FA(a), FB(b))−D1(FA(a), FB(b− 1))] (5.12)

where D1(u, v) = ∂
∂u
C(u, v|θ) for u, v ∈ [0, 1].

A joint derailment severity regression model is constructed by linking a marginal

Gamma GLM for the monetary damage and a marginal zero-truncated Poisson (ZTP)

GLM model for the number of derailed cars with a bivariate copula. The monetary

damage A is modeled via a Gamma distribution

fA(a|µ, δ) =
1

aΓ(1
δ
)

(
a

µδ

) 1
δ

exp

(
− a

µδ

)
(5.13)

where a > 0, the mean parameter µ > 0 and the dispersion parameter δ > 0. The

variance can be expressed as µ2δ. The number of derailed cars is a positive count

variable and is modeled as a zero-truncated Poisson (ZTP) distributed variable

fb(b|λ) =
λb

b!(1− exp(−λ))
exp(−λ) (5.14)

where y = 1, 2, ... and parameter λ > 0.

Assuming Ai ∈ R+, i = 1, 2, .., n are independent continuous random variables
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modeled given a covariate vector ri ∈ Rp, the marginal regression model can be ex-

pressed as Ai ∼ Gamma(µi, δ) with ln(µi) = ri
>α. Similarly, assuming Bi ∈ N≥0

are independent discrete random variables modeled given a covariate vector si ∈ Rq,

the marginal regression model can be expressed as Bi ∼ ZTP (λi) with ln(µi) =

ln(ei) + si
>β where ei is the exposure (time).

Given the unknown parameter vector, ν = (α>,β>, θ, δ)> ∈ Rp+q+2, the loglike-

lihood of the copula regression model parameters based on n observation pairs (ai, bi)

can be expressed as

`(ν|a, b) =
n∑
i=1

ln (fA,B(ai, bi|ν)) (5.15)

where a = (a1, ..., an)> ∈ Rn and b = (b1, ..., bn)> ∈ Rn. The maximum likelihood

estimates is obtained by maximizing the loglikelihood

ν̂ = arg max
v
`(ν|a, b) (5.16)

The loglikelihood needs to be maximized numerically since there is no closed-form

solution. This is achieved using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) op-

timization algorithm, an iterative method for solving unconstrained nonlinear opti-

mization problems belonging to the quasi-Newton methods. A transformation of the

copula parameter θ ∈ Θ is required since it is generally restricted in its range. This is

achieved by transforming the parameter θ using a function h : Θ → R such that h(θ)

is unrestricted. The loglikelihood is subsequently optimized in relation to the vector

(α>,β>, h(θ), δ)>. The parameters for the copula-based regression model is shown in

table 5.1.

Asymptotic confidence intervals are used to quantify the uncertainty of the

maximum likelihood estimates (MLE). To construct approximate confidence intervals,

the Fisher information matrix is employed which can be defined as

I(ν) = E

[
∂`(ν|a, b)

∂ν
·
(
∂`(ν|a, b)

∂ν

)>]
∈ R(p+q+2)×(p+q+2) (5.17)
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Table 5.1: Parameters for the copula-based regression model

Monetary
Damage, A

Number of
derailed cars, B

Copula family

Distribution Gamma Zero-truncated Poisson
Gaussian, Frank,
Clayton, Gumbel

Parameters µ > 0, δ > 0 λ > 0 θ ∈ Θ

Mean E(A) = µ E(B) = λ
1−e−λ -

Variance V ar(A) = µ2δ V ar(B) = λ(1−e−λ(λ+1))
(1−e−λ)2

-

Under regularity conditions, the maximum likelihood estimator ν̂ is consistent and

asymptotically efficient with limiting distribution

√
N(ν − ν̂)

D→ Np+q+2[0, I−1(ν)] (5.18)

where Nd is a d-dimensional multivariate normal distribution. The Fisher information

matrix can also be expressed as follows:

I(ν) = −E
[
∂2`(ν|a, b)

∂2ν

]
(5.19)

To estimate the Fisher information, the observed Fisher information matrix is

employed. Up to second-order terms, the observed Fisher information matrix has been

found to be the best estimator of the expected Fisher information which is the variance

of the MLE (Lehmann and Casella, 1998). It can be expressed as the Hessian matrix

of the loglikelihood function as follows:

Î(ν) = −∂
2`(ν|a, b)
∂2ν

(5.20)

To estimate the standard deviations/errors for the regression coefficients, the BFGS

optimization algorithm approximation of the Hessian matrix is employed which is

achieved by means of numerical derivatives (by computing the second partial deriva-

tives explicitly) (Krämer et al., 2013).
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The best copula regression model is selected by comparing pairs of copula fam-

ilies using the likelihood-ratio test for non-nested hypotheses by Vuong (1989). The

Vuong test is a likelihood-ratio based test for comparing non-nested models. The

regression models are non-nested since one copula-based regression model for one can-

not be determined via a restriction of another copula-based regression model and both

models have the same degrees of freedom (number of parameters) (Krämer et al., 2013).

Given that `(j), `(k) ∈ Rn are the vectors of pointwise loglikelihoods of the models

with copula family j and k respectively, the differences of the pointwise loglikelihood

can be computed as follows:

di = `
(j)
i − `

(k)
i , i = 1, .., n. (5.21)

The Vuong test statistic can be mathematically defined as

TV =

√
n · d̄√∑n

i=1(di − d̄)2

(5.22)

where d̄ is the mean of the differences. The test statistic is asymptotically normally

distributed with zero mean and unit variance. Copula family j is preferred to copula

family k at significance level α if TV > Φ−1
(
1− α

2

)
where Φ is the standard normal

distribution function. However, if TV < Φ−1
(
α
2

)
copula family k is preferred. Else, no

decision between the pair of copula families is made.

5.4 Case Study (Bivariate Derailment Severity)

5.4.1 Introduction

Safety is crucial and of paramount importance for every rail system worldwide

(Liu, 2015). Derailments is a convoluted issue which is dependent on various factors

including track and equipment parameters, running and environmental convictions, sig-

nal systems and human error (Mohammadzadeh et al., 2011). Derailments are the most
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frequent kind of Federal Railroad Administration (FRA)-reportable mainline train ac-

cident in the United States (Barkan et al., 2003; Liu et al., 2012; Liu, 2015) and con-

stituted about three-quarters of freight-train accidents from 2001 to 2010 (Liu et al.,

2013). Furthermore, derailments are one of the catastrophic accidents in railway oper-

ations and the consequences of derailments are dire despite their relative low frequency

(Zhao et al., 2006; Jeong et al., 2007; Liu et al., 2013). Some of these ramifications

include injury, loss of life and property, interruption of services and destruction of the

environment. Evaluating the degree and variability of derailment severity is as essential

as estimating the probability of derailment (Liu et al., 2013). Thus, it is imperative

to carefully examine train derailment severity in order to minimize and mitigate these

consequences.

The severity of train derailments are usually evaluated by metrics such as the

number of derailed cars, monetary damage or casualties. Most research have focused

on analyzing the severity of a single outcome mostly the number of derailed cars.

However, it is important to examine the multivariate nature of derailment severity

by taking into consideration the dependences between multiple consequences. In this

chapter, two of the most common evaluation metrics are examined namely the number

of derailed cars and monetary damage in order to comprehend the interrelationship

between the two outcomes. Monetary damage is the monetary value of destruction

caused to infrastructure and rolling stock during a derailment. A joint mixed copula-

based model is presented for the analysis of the relationship with the set of factors that

might influence both outcomes. A simple flowchart of the process is shown in figure

5.1.

A bivariate copula which characterizes the dependence between the two response

variables is used to link their marginal generalized linear regression models. The copula

also takes into account endogeneity due to similar omitted or unobserved variables that

might affect both outcomes. There is the presence of correlations across error terms

of different marginal regressions models due to common unobserved factors influencing

the response variable (Rana et al., 2010). Covariates may influence multiple response
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Figure 5.1: Mixed copula-based regression model.

variables, for instance rail friction and ground friction may influence the derailment

severity with respect to the number of derailed cars, monetary damage and casualties.

5.4.2 Data

Data was obtained from the Rail Equipment Accident/Incident (REA) database

maintained by the Federal Railroad Administration (FRA) of U.S. Department of

Transportation (U.S. DOT). A ”rail equipment accident/incident” is a collision, de-

railment, fire, explosion, act of God, or other event involving the operation of railroad

on-track equipment (standing or moving). U.S. railroads are mandated to present de-

tailed reports (Form 6180.54) to the FRA on all accidents or incidents whose damage

costs exceed a specified monetary value. The damage incurred includes damage caused

to the railroad track, signals, on-track equipment, track structures and roadbed as well

as labor costs and the costs for acquiring new equipment and material. The reporting

threshold is periodically altered to account for inflation and other adjustments and
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has increased from $5700 in 1990 to $10, 700 in 2017 (FRA, 2016). The relatively low

threshold results in most accidents being reported to the FRA (Barkan et al., 2003).

The database contains detailed track accident information such as accident

cause, number of derailed cars, total monetary damage, track type, track class, train

length and derailment speed. 690 freight-train derailments occurring on Class I main-

line track in the year 2005 were initially considered. The response variables considered

were monetary damage and the number of derailed cars. The explanatory variables

initially considered include derailment speed, residual train length, train power distri-

bution and proportion of loaded railcars in the train (loading factor).

To cater for the effect (and variations) due to derailment cause, 124 derailments

caused by broken rail were considered. Broken rails are the most frequent cause of

freight-train derailments on Class I mainlines in the United States. Broken rails also

result in a higher derailment severity in comparison with other causes such as bearing

failure with the former causing twice as many derailed cars on average as that of the

latter (Barkan et al., 2003). Due to their high frequency and severity, broken rails

are more likely to present higher risk than other causes. All the derailments involving

broken rails during the period were found to be non-distributed-power trains. Thus,

train power distribution was subsequently removed from the analysis.

5.4.3 Analysis and Results

Table 5.2 presents the descriptive statistics of the variables of interest for broken-

rail caused freight-train derailments. The average number of derailed cars involved

was 10.64 with only 3 derailments resulting in only 1 derailed car. The average total

monetary damage incurred during derailments was $370,139.30. On average, a train

derailed due to a broken rail was found to have a speed of 21.9 mph at the time of

derailment, a loading factor of 0.74 and a residual train length of 47.03. The empirical

distribution function for the monetary damage and the number of derailed cars are

shown in figure 5.2. The Spearman’s rho correlation coefficient between the variables

of interest is shown in table 5.3. Speed, residual train length and loading factor were
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found to have positive correlation with both response variables (derailed cars and

total monetary damage). The dependence correlation coefficient of the two severity

variables as well as the bivariate plot (Figure 5.3) confirmed our prior intuition that

the two outcomes may be dependent.

Table 5.2: Descriptive statistics of variables for broken-rail-caused freight-train de-
railments

Variables Mean
Standard
deviation

Minimum Maximum Type

Monetary Damage
(US $)

370139.3 518263.5 7948 2773500 Continuous

Derailed Cars 10.64 7.97 1 43 Count
Residual Train
Length

47.03 30.42 2 134 Count

Derailment Speed
(mph)

21.9 14.77 5 70 Continuous

Loading
factor

0.74 0.32 0 1 Continuous

Table 5.3: Spearman’s rho correlation coefficient between variables for broken-rail-
caused freight-train derailments

Variables
Derailed
Cars (D)

Monetary
Damage (M)

Derailment
Speed (S)

Residual Train
Length (R)

Loading
Factor (L)

Derailed
Cars (D)

1 0.78 0.63 0.45 0.10

Monetary
Damage (M)

0.78 1 0.62 0.44 0.22

Derailment
Speed (S)

0.63 0.62 1 0.20 0.03

Residual Train
Length (R)

0.45 0.44 0.22 1 -0.02

Loading
Factor (L)

0.10 0.22 0.03 -0.02 1

The selection of the copula-based regression model for the bivariate derailment

severity was conducted in two stages. In the first stage, the marginal regression models

of the severity outcomes (monetary damage and number of derailed cars) were chosen.
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Figure 5.2: Empirical density functions of the monetary damage (left) and number
of derailed cars (right).

Under the marginal regression models, the random components, systematic compo-

nents and link functions are selected. In the second stage, the dependence structure

between the response variables characterized by the bivariate copula is considered.

The random components of the GLMs were selected based on the nature of the vari-

ables. Monetary damage is a continuous non-negative random variable and is skewed

in nature. Furthermore, it is a common actuarial assumption that the size of loss or

claim is Gamma distributed. Thus, gamma regression has historically been employed

in the modelling of loss severity regression models (Burnecki et al., 2005; Gschlößl and

Czado, 2007; Krämer et al., 2013). Based on AIC values, the Gamma marginal re-

gression model was found to offer a better fit for monetary damage data compared to

the normal or Gaussian marginal regression model. The Gamma model (1016.2) was
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Figure 5.3: Bivariate plot of the number of derailed cars and overall monetary de-
railment damage.
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found to have a lower AIC than the normal model (1268.3).

On the other hand, the number of derailed cars is a discrete positive random

variable. The Poisson distribution is suitable for modeling count data and Poisson

regression is suitable in predicting a count response variable from a set of covariates.

However, zero-truncated Poisson models are more suitable for modeling count data

without zeros. Since derailments always result in at least one derailed car, the number

of derailed cars is assumed to follow a zero-truncated Poisson distribution. The empir-

ical distribution function for the number of derailed cars is shown in figure 5.2 (right).

The zero-truncated Poisson GLM is a GLM using the Poisson distribution conditional

on the count variable being greater or equal to one (Czado et al., 2012).

Subsequently the systematic component of the marginal regression models were

considered. Derailment severity has been found to increase exponentially with derail-

ment speed and residual train length. Thus, logarithm transformation of these variables

have been found to offer a better fit (Saccomanno and El-Hage, 1989, 1991; Liu et al.,

2013). This was confirmed and adopted during the analysis. Similar to previous stud-

ies, the regression model initially took into consideration the main effect, higher-order

component and interaction terms of the covariates. Liu et al. (2013) introduced in-

teraction terms due to interaction between the covariates (derailment speed, residual

train length, loading factor) which may be attributable to energy accumulation dur-

ing derailments (Liu et al., 2013). However, incorporation of these terms were found

to significantly increase the risk of overfitting and were subsequently eliminated. In

order to achieve parsimonious model and avoid collinearity, variables selection of the

multivariate marginal regression models was implemented using the hierarchical model

selection technique based on the deviance (Agresti, 2007). Model selection was con-

firmed using Akaike’s Information Criteria (AIC). The detailed model selection process

for the multivariate marginal regression model is shown in table 5.4. Some higher-order

components were eliminated during this process. The selected multivariate marginal
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regression models are as follows:

Zi = β0 + β1 × S + β2 ×R + β3 × L+ β4 ×R2 + β5 × L2 (5.23)

where Zi is the response variable (number of derailed cars or monetary damage in

$10,000s), S is the logarithmic derailment speed, R is the logarithmic residual train

length, L is the loading factor and β0, ..., βn are the regression coefficients to be esti-

mated. The estimated parameters of the multivariate marginal regression model can be

found in table 5.6. The link function employed for both the gamma and ZTP regression

models was the log link g(µ) = log(µ) which models the log of the mean.
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Subsequently, the bivariate copula characterizing the dependency between the

two outcomes variables was considered. Prior to selection of the bivariate copula, the

Genest and Favre bivariate asymptotic independence test based on Kendall’s Tau was

performed to determine the independence of the pair of variables (Genest and Favre,

2007). The null hypothesis states that the variables are independent and the alternative

hypothesis states that the variables are not independent. The independence copula is

selected for the pair of variables if the p-value of the test is higher than 5% meaning

the null hypothesis is accepted. Otherwise, the null hypothesis is rejected. The test

resulted in p-value of 0 meaning the variables are dependent. The copulas considered

for selection include Gaussian, Frank, Gumbel and Clayton copulas.

Given the selected marginal regression models, copula-based regression models

were fitted for each bivariate copula. The Vuong test was conducted for each pair of

copula-based regression models. Results of the pairwise Vuong test are shown in table

5.5. For each pair of copula families, a copula family is selected given a significance

level of 5%. Thus, model 1 is chosen if the Vuong test statistic (value) is greater than

2 but model 2 is chosen if the value is less than -2. Otherwise, no decision among

the pair of copula families is made. It was not possible to choose between Frank and

Gaussian copulas thus Akaike Information Criterion (AIC) (Akaike, 1974) was used.

The Gaussian copula model (1714) was found to have a lower AIC than the Frank

copula model (1715) and was thus selected as the best fit. The final copula selection is

a Gaussian copula regression model with gamma and zero-truncated Poisson marginals.

The Gaussian copula indicates that the dependence between the outcomes (given the

covariates) is radially symmetric with weak tail dependencies.

The Gaussian copula-based regression model was subsequently compared with

an independent model which assumed no dependence between the two response vari-

ables. Results including parameter estimates, loglikelihood and AIC of two models

can be found on table 5.6. The Gaussian copula-based regression model was found

to have a lower AIC than the independent multivariate regression model (1735). The

log likelihood ratio statistic (difference in deviance) between the independent and the
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copula-based regression model is 23.18, which is greater than the critical chi-square

value for a degree of freedom of 1 (as a result of the additional copula parameter)

at any level of significance. Thus, this demonstrates the superior statistical fit of the

copula regression model over the independent model and indicates that multivariate

derailment severity analysis should be modeled in a joint manner. The copula param-

eter estimate θ̂ = 0.32 corresponding to a theoretical Kendall’s tau of 0.21. Although

caution is needed during the interpretation of degree of dependence in the presence of

discrete data (Genest and Neslehova, 2007), the log likelihood ratio statistic as well

as the AIC and Kendall’s tau of the copula regression model seems to confirm a pos-

itive dependence between the severities of total monetary derailment damage and the

number of derailed cars.

The positive correlation also indicates that the unobserved factors that increase

the derailment severity in terms of the number of derailed cars are positively correlated

with the factors that contribute to higher overall monetary damage incurred during a

derailment. Such correlations may arise due to the presence of several common un-

observed but influential factors that may both severity outcomes during a derailment.

These factors are usually not recorded during a derailment (such as ground and rail fric-

tion) or are not directly incorporated into the regression equation (such as derailment

cause). Similar results have been observed in driver injury severity analysis during

crashes (Rana et al., 2010). Failure to account for the dependence between the out-

comes may lead to biased or distorted coefficient estimates in multivariate derailment

severity models. This can be observed by comparing the estimates of the independence

and copula-based regression models in table 5.6.

Greater differences were observed when comparing the dispersion estimates of

the two models in comparison with their estimated coefficient values of the regressors.

The incorporation of the dependence structure between the response variables has been

found to have a greater influence on the variance estimates of the severity outcomes

than the point estimates. In the case of Ayuso et al. (2016) who analyzed the bivari-

ate severity of temporary disability and permanent motor injuries, the independence
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assumption was found to result in the underestimation of the variance estimates of

the severity outcomes. In this case, independence assumption led to an overestimation

of the variance estimates of the covariates of the monetary damage severity outcome.

The use of negative binomial distribution which incorporates a dispersion parameter

is expected to have an impact on the variance estimates of the number of derailed

cars. Thus, an assumption of independence introduces the risk of underestimating or

overestimating the variance of the severity outcomes. For the aforementioned reasons

provided, it seems inappropriate to assume independence between the two derailment

severity outcomes.

Table 5.5: Values of Vuong test for each pair of copula-based regression models given
monetary damage (gamma marginal model) and number of derailed cars
(zero-truncated Poisson marginal model)
Model Model 2

Model 1

Copulas Gaussian Frank Clayton Gumbel
Gaussian - 0.0175 2.5625 2.5626

Frank -0.0175 - 2.4120 2.4138
Clayton -2.5625 -2.4120 - 1.2984
Gumbel -2.5626 -2.4138 -1.2984 -

This model can be used to simultaneously predict the expected monetary dam-

age and expected number of derailed cars during a broken-rail caused freight train

derailment. Due to the well-known variation in derailment severity due to accident

cause, this model cannot be applied to other causes. However, the methodology can

be applied to other cases. Sensitivity analysis was conducted to estimate the effect

and relative importance of each covariate on the monetary damage and number of

derailed cars. Changes in the model outcomes given ±10% variation in derailment

speed, residual train length and loading factor were analyzed. Sensitivity analysis of

the effect of these covariates on the expected monetary damage and number of de-

railed cars illustrated in the form of tornado diagrams are shown on figures 5.4 and 5.5

respectively.
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Figure 5.4: Tornado diagram showing the effect of various parameters on monetary
damage.
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Figure 5.5: Tornado diagram showing the effect of various parameters on number of
derailed cars.
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Derailment speed was found to have the greatest effect on both the expected

number of derailed cars and monetary damage. However, it was found to have a greater

effect on the monetary damage outcome than the number of derailed cars. Residual

train length was found to have the second most pronounced effect on both outcomes

followed by loading factor with the least effect. Similar to derailment speed, both

covariates were found to have a greater effect on the monetary damage outcome than

the number of derailed cars. These results enable objective comparison of different

train safety approaches that could be used to inform decision making by government

and industry. For instance, one can argue for the reduction of freight train speeds in

favor of a reduction in the number of cars in a train consist.

5.4.4 Concluding Remarks

The analysis of the severity of train derailments is critical due to their catas-

trophic nature. Most of the existing models have failed to consider the multivariate

nature of derailment severity but have instead focused mainly on only one severity out-

come namely the number of derailed cars. A mixed copula-based regression model of

the number of derailed cars and monetary damage is proposed to jointly analyze their

relationship with a set of explanatory variables which might influence both outcomes

taking into consideration the dependence between the two responses. The joint model

incorporates the discrete nature of the number of derailed cars and continuous nature

of the monetary damage. The copula which describes the dependence between the

response variables also takes into account endogeneity due to common unobserved or

omitted factors. Results show that the Gaussian copula-based regression model is more

appropriate than an independent multivariate regression model. Failure to account for

the dependence between the outcomes may lead to biased coefficient estimates in mul-

tivariate derailment severity models. The log likelihood ratio statistic between the

independent and the copula-based regression model was found to be greater than the

critical chi-square value for a degree of freedom of 1 (as a result of the additional copula

parameter) at any level of significance. This demonstrated the superior statistical fit
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of the copula regression model over the independent model and indicates that multi-

variate derailment severity analysis should be modeled in a joint manner. Derailment

speed was found to have the most pronounced effect on both the monetary damage and

number of derailed cars. However, it was found to have a greater impact on monetary

damage than the number of derailed cars.

The methodology can be extended to cater for bi-parametric copulas such as

student t-copula, Clayton-Gumbel (BB1), Joe-Gumbel (BB6), Joe-Clayton (BB7) and

Joe-Frank (BB8) copulas as well as marginal distributions to consider other distribu-

tions (such as lognormal distribution for monetary damage and zero-truncated negative

binomial for the number of derailed cars).Furthermore, other derailment outcomes or

severities such as casualties can be incorporated into a copula-based regression model.

In order to analyze the dependences between more than two response variables, vine

copulas are suggested which are more flexible than regular multivariate copulas. Vine

copulas employ arbitrary bivariate copulas as building blocks for the construction

of higher-dimensional multivariate distributions. Combining the marginal regression

models of the two derailment severity outcomes with the underlying dependence facili-

tates a better comprehension of the train derailment severity distribution. The multidi-

mensional approach to analyzing derailment severity consequences provides interesting

challenges that are worth investigating and is intended to offer insights regarding the

development and implementation of cost-effective safety improvement strategies.
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Chapter 6

VINE COPULA MODELS

This chapter provides a detailed overview of vine copula models. The rela-

tive inflexibility problem of classical multivariate extensions of bivariate elliptical and

archimedean copulas is considered as the starting point for introducing the concept of

vine copulas. Vine copulas are multivariate copulas constructed hierarchically from bi-

variate copulas as building blocks. The theory of pair-copula construction upon which

vine copulas are developed is explained and the graphical representation of vine copulas

known as regular vines is also discussed. The various vine structure selection methods,

parameter estimation techniques and pair-copula families selection procedures of vine

copulas are also reviewed. This chapter concludes with a case study in which high-

dimension dependence of derailment severity data is modeled using vine copulas. Vine

copula methodology is subsequently applied to simulation modeling of multivariate

derailment severity data.

6.1 Multivariate Elliptical Copulas

Majority of the extant literature concentrates on bivariate copulas. In the mul-

tivariate case, multivariate elliptical copulas such as multivariate normal and multi-

variate t-copulas are popular. Multivariate normal distributions comprises of a normal

(Gaussian) copula with normal margins. Thus, the n-variate Gaussian copula is the

copula of the n-variate normal distribution with linear correlation matrix R can be

mathematically expressed as

C(u1, ..., un) = Φn
R(Φ−1(u1), ...,Φ−1(un)) (6.1)
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where Φn
R is the joint distribution joint distribution function of the n-variate standard

normal distribution function with linear correlation matrix R and Φ−1 is the inverse of

the univariate standard normal distribution function.

On the other hand, a student-t copula with Student-t margins does not nec-

essarily form a multivariate-t distribution since the distribution must have the same

degree of freedom at all the margins. A t-copula with t-margins can have varying

degrees of freedom for different margins thus providing a lot more flexibility in model-

ing multivariate heavy-tailed data (Yan, 2006). The n-variate student-t copula can be

expressed as

C(u1, ..., un) = tnν,R(t−1
ν (u1), ..., t−1

ν (un)) (6.2)

where Rij =
Σij√
ΣiiΣjj

for i, j ∈ 1, ..., n and tnν,R is the distribution function of
√
νY√
S

where

S ∼ χ2
ν and Y ∼ Nn(0, R) are independent. Despite their wide usage, multivariate

elliptical copulas are relatively inflexible in representing the entire dependence structure

of the multivariate data.

6.2 Multivariate Archimedean Copulas

The use of other multidimensional copulas apart from multivariate elliptical

copulas are relatively limited as a result of construction complexities, computational

and theoretical limitations. Multivariate extensions of Archimedean copulas were

subsequently suggested such as partially nested Archimedean copulas, hierarchical

Archimedean copulas and hierarchical Archimedean copulas. However, their flexibil-

ity are restricted due to the additional restraints on the parameters caused by the

extensions (Dalla Valle et al., 2016).

The most popular Archimedean multivariate extension is the exchangeable mul-

tivariate Archimedean copula (EAC). EAC can be mathematically expressed as

C(u1, ..., un) = ϕ−1 (ϕ(u1), ..., ϕ(un)) (6.3)

where ϕ is generator of the copula (continuous strictly decreasing convex function)
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and ϕ−1 is its pseudo-inverse. EACs are however highly restrictive since they permit

the specification of only one distribution parameter, regardless of dimension (all d-

dimensional marginal distributions (d < n) are identical) (Wei, 2014). More flexible

multivariate Archimedean extensions using the nested copula approach were subse-

quently proposed by Joe (1997). Types of nested Archimedean copulas include fully

nested Archimedean construction (FNAC), partially nested Archimedean construction

(PNAC) and hierarchically nested Archimedean construction (HNAC).

The construction of fully nested Archimedean construction (FNAC) copulas are

quite simple but notationally cumbersome. The scheme of FNAC is to add dimensions

stepwise. An n-dimensional FNAC permits the specification of (n−1) bivariate copulas

and corresponding distributional parameters whereas the (d−1)(d−2)
2

copulas and param-

eters are implicitly given through the construction (Berg, 2009). The 4-dimensional

FNAC copula can be expressed as

C(u1, u2, u3, u4) = C31(u4, C21(u3, C11(u1, u2))) (6.4)

= ϕ−1
31 {ϕ31(u4) + ϕ31(ϕ−1

21 {ϕ21(u3) + ϕ21(ϕ−1
11 {ϕ11(u1) + ϕ11(u2)})})} (6.5)

Figure 6.1 illustrates the 4-dimensional FNAC copula. Two pairs (u1, u3) and

(u2, u3) both have copula C21 with dependence parameter θ21 whereas three pairs

(u1, u4), (u2, u4) and (u3, u4) all have copula C31 with dependence parameter θ31. The

FNAC is a construction of partial exchangeability and thus certain conditions need to

be fulfilled in order to achieve a proper n-dimensional copula. These conditions (such

as generators having to be strict with completely monotone inverses) put restrictions

on copula parameters (Berg, 2009).

The partially nested Archimedean construction (PNAC) initially suggested by

Joe (1997) is a hybrid of EAC and FNAC. The 4-dimensional PNAC is expressed as

follows

C(u1, u2, u3, u4) = C21(C11(u1, u2), C12(u3, u4)) (6.6)
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Figure 6.1: Fully nested Archimedean construction.

Figure 6.2 illustrates the 4-dimensional PNAC. Two pairs (u1, u2) and (u3, u4)

are initially coupled with copulas C11 and C12 with generators ϕ11 and ϕ12 respectively.

The two copulas are subsequently coupled with copula C21. The resulting copula is

exchangeable between u1 and u2 as well as between u3 and u4. Thus, PNAC can be

viewed a combination of EAC and FNAC.

The hierarchical nested Archimedean construction (HNAC) was initially pro-

posed by Joe (1997) and elaborated upon by Savu and Trede (2010). A hierarchy of

Archimedean copulas is constructed based on arbitrary nesting. The copula at a given

level in the hierarchy does not have to bivariate. Figure 6.3 illustrates a 10-dimensional

HNAC copula. This copula can be given as

C(u1, ..., u10) = C21(C11(u1, u2, u3), C12(u4, u5, u6, u7), C13(u8, u9, u10)) (6.7)
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Figure 6.2: Partially nested Archimedean construction.

At the first level, there are three copulas. Copula C11 is a 3-dimensional EAC coupling

variables u1, u2 and u3. Copula C12 is a 4-dimensional EAC coupling variables u4, u5,

u6 and u7 whereas copula C13 is a 3-dimensional EAC coupling variables u8, u9 and u10.

In the second level of hierarchy, the three copulas from the previous tier are joined by

copula C21 which is a 3-dimensional EAC. Thus, it is a partially exchangeable copula.

In general, multivariate copulas extended from classical bivariate parametric

copulas lack higher dimensional flexibility and cannot accommodate different tail de-

pendencies for different pairs of variables. For this reason, pair copula construction

addresses this flexibility limitation. structure (Czado et al., 2012; Schepsmeier and

Czado, 2016; Dalla Valle et al., 2016).

6.3 Pair Copula Construction

The decomposition of higher-dimension multivariate copula into bivariate copu-

las is referred to as pair copula construction (PCC). A pair copula construction (PCC)
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Figure 6.3: Hierarchical nested Archimedean construction.

represents complex multivariate dependence structures through the construction of

flexible high-dimensional copulas via a cascade of bivariate copulas as building blocks

which are highly flexible in expressing the underlying dependence and tail dependence

structure (Dalla Valle et al., 2016). Joe (1996) initially employed the use of pair cop-

ula constructions to represent complex multivariate dependence structures which was

based on Sklar’s theorem utilizing cumulative distribution functions. The methodol-

ogy was subsequently examined and organized in a graphical and systematical manner

called regular vines by Bedford and Cooke (2001, 2002) offering expressions for the

joint density. Their methodology was however limited to only Gaussian pair-copulas.

Aas et al. (2009) extended this methodology to consider arbitrary pair-copulas and

developed standard maximum likelihood estimation (MLE) for special cases of vine

copulas, where the arduous task was to offer a good initial point for the needed high

dimensional optimization. This was achieved using sequential estimation.

Pair copula construction can be explained by decomposing a trivariate copula.

Via recursive conditioning, the three-dimensional joint density can be given as follows

f(x1, x2, x3) = f3(x3) · f(x2|x3) · f(x1|x2, x3) (6.8)

207



According to Sklar’s theorem

f(x1, x2, x3) = c123(F1(x1), F2(x2), F3(x3)) · f1(x1) · f2(x2) · f3(x3) (6.9)

where c123 is the trivariate copula density. In the bivariate case,

f(x2, x3) = c23(F2(x2), F3(x3)) · f2(x2) · f3(x3) (6.10)

for a bivariate copula c23. Thus,

f(x2|x3) =
f(x2, x3)

f3(x3)
= c23(F2(x2), F3(x3)) · f2(x2) (6.11)

Similarly, for the trivariate case, it can be expressed as

f(x1|x2, x3) =
f(x1, x3|x2)

f(x3|x2)
= c13|2(F (x1|x2), F (x3|x2)) · f(x1|x2) (6.12)

where c13|2 is the copula density for f(x1|x2, x3) with margins F1|2 and F3|2. Similar to

equation 6.11, f(x1|x2) can be expressed as

f(x1|x2) =
f(x1, x2)

f2(x2)
= c12(F1(x1), F2(x2)) · f1(x1) (6.13)

Hence,

f(x1|x2, x3) = c13|2(F (x1|x2), F (x3|x2)) · c12(F1(x1), F2(x2)) · f1(x1) (6.14)

Finally, the construction of the trivariate copula density via a cascade of bivariate

copulas is given as

c123(F1(x1), F2(x2), F3(x3)) = c12(F1(x1), F2(x2)) · c23(F2(x2), F3(x3))

× c13|2(F (x1|x2), F (x3|x2)) · f1(x1) · f2(x2) · f3(x3) (6.15)
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This decomposition is not unique and the variables can be arranged in 3! = 6 ways (Wei,

2014). In order to make PCC tractable for inference and model selection purposes, the

construction is simplified by assuming that the pair-copula are independent of the

conditional variables (Haff et al., 2010). Thus, the pair-copula c13|2 is independent of

the conditioning variable X2.

The joint density of an n-dimensional random vector X = (X1, ..., Xn) can be

decomposed as

f(x1, ..., xn) = fn(xn)f(xn−1|xn)f(xn−2|xn−1, xn)...f(x1|x2, ..., xn) (6.16)

This can be subsequently decomposed into marginal densities and bivariate copulas

f(x|ν) = cxνj |ν−j(F (x|ν−j), F (νj|ν−j))f(x|ν−j) (6.17)

where ν is a k-dimensional vector, νj is an arbitrary element of ν and ν−j is the (m−1)-

dimensional vector ν excluding νj. The pair-copula can be applied to transformed

variables, which are marginal conditional distribution of F (x|ν) (Wei, 2014). F (x|ν)

can be generally expressed as

f(x|ν) =
∂Cxνj |ν−j(F (x|ν−j), F (νj|ν−j))

∂F (νj|ν−j)
(6.18)

where Cxνj |ν−j is a bivariate copula distribution function. The PCC of n-dimensional

random variables is not unique with the number of decompositions growing consider-

ably with increase in dimension. For instance, there are 240 possible decompositions

for a 5-dimensional distribution/density. Thus, there is the need to represent/describe

and organize the multitude of possible pair-copula compositions graphically through

the use of regular vines.
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6.4 Regular Vines

Vine copulas are the most researched copulas arising from pair-copula construc-

tion (Wei, 2014). Vine copulas have two main advantages over other copula models:

they are computationally efficient for discrete variables (computationally advantageous

expression for the likelihood function) rendering maximum likelihood inference for

higher dimensional datasets and combinations of different asymmetric copula families

result in very flexible higher dimensional distributions (Stöber et al., 2015).

Vine copulas employ a graphical representation known as regular vine (R-vine)

which comprises of a series of trees (undirected acyclic graphs). These trees which

consist of nodes and edges are known as dependence trees since they describe depen-

dence structures in high-dimensional distributions (Schepsmeier, 2010). An R-Vine is

a special case of vine (nested series of connected trees), V = T1, ..., Tn−1 in which two

edges in tree Tj are linked by an edge in Tj+1 only if these edges in Tj share a common

node. Each edge of the R-vine is related to a particular pair-copula in a given PCC

and the edges of a tree Tj form the nodes for tree Tj+1 where j = 1, ..., n− 1.

There are two special cases of regular vine copulas which were proposed by Aas

et al. (2009) namely Canonical vines (C-Vines) and Drawable vines (D-vines). C-vines

have star structures in their tree sequence with a unique node called root node or

node of maximal degree that links all other nodes for each tree. The specification of

a four-dimensional C-Vine in the form of a nested set of trees is illustrated in Figure

6.4. This structure comprises of 3 trees, Tj, j = 1, ..., 3 with each tree Tj consisting of

5 − j nodes and 4 − j edges. Each tree has a root node that is linked to d − j edges.

Each edge label corresponds to the subscript of the pair-copula density. For instance,

the edge 34|12 in Tree 3 corresponds to the copula density c34|12(·).

D-vines on the other hand have path structures where each node has a degree

of not more than 2 (i.e. each node is linked to not more than two other nodes). The

specification of a four-dimensional D-Vine is illustrated in Figure 6.5. D-vines may be

preferred to C-vines when one does not want to assume the existence of a particular

node that dominates the dependencies. D-vine models have been more widely used

210



Figure 6.4: Four dimensional C-Vine Structure.

than C-vine models. These special types of R-vines are convenient to use since the

initial tree (in the case of D-vines) and the order of the root nodes (in the case of

C-vines) determine their structure entirely. However, these special cases of R-vines are

restrictive cases with arbitrary R-vines copulas more flexible in modelling of complex

dependences in higher-order dimensions (Dissmann et al., 2013; Stöber et al., 2015;

Schepsmeier and Czado, 2016).

The d-dimensional density f(x1, ..., xd) corresponding to a C-vine is given as:

d∏
k=1

f(xk)
d−1∏
j=1

d−j∏
i=1

cj,j+1|1,...,j−1 {F (xj|x1, ..., xj−1), F (xj+1|x1, ..., xj−1)} (6.19)

The d-dimensional density corresponding to a D-vine can be expressed as:

d∏
k=1

f(xk)
d−1∏
j=1

d−j∏
i=1

ci,i+j|i+1,...,i+j−1 {F (xi|xi + 1, ..., xi+j−1), F (xi+j|xi+1, ..., xi+j−1)}(6.20)
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Figure 6.5: Four dimensional D-Vine Structure.

where fk, k = 1, .., d denotes the marginal densities, and c(...) denotes bivariate copula

densities with index j identifying the trees, with index i running over the edges for each

tree.

The four-dimensional C-Vine structure can be mathematically expressed as:

f1234 = f1 · f2 · f3 · f4 · c12 · c13 · c14 · c23|1 · c24|1 · c34|12 (6.21)

where f1, f2, f3, f4 are the nodes in Tree 1; c12, c13, c14 are the nodes in Tree 2 and edges

in Tree 1; c23|1, c24|1 are the nodes in Tree 3 and edges in Tree 2; and c34|12 is the edge

in Tree 3.

The four-dimensional D-Vine structure can be expressed as:

f1234 = f1 · f2 · f3 · f4 · c12 · c23 · c34 · c13|2 · c24|3 · c14|23 (6.22)

where f1, f2, f3, f4 are the nodes in Tree 1; c12, c23, c34 are the nodes in Tree 2 and edges

in Tree 1; c13|2, c24|3 are the nodes in Tree 3 and edges in Tree 2; and c14|23 is the edge

in Tree 3.

There are two stages of model estimation of vine copulas: graph theory which
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establishes the dependency structure of the data and statistical inference techniques

(such as sequential estimation, maximum likelihood, Bayesian estimation) which are

employed in order to fit the bivariate copulas. Vine Copula models comprise of three

elements namely the vine tree structure, copula families (for each edge) and copula

parameters.

6.5 Vine Structure Selection Methods

The problems which arise during model selection include the huge number of

possible vine structure during structure selection and d(d−1)
2

number of pair-copulas

during copula selection and parameter estimation. For this reason, structure selection

is performed tree-wise using approaches such as optimal C-vines structure selection

proposed by Czado et al. (2012), Traveling Salesman Problem for D-vines, Maximum

Spanning Tree Algorithm for arbitrary R-vines proposed by Dissmann et al. (2013) and

Bayesian approaches such as Reversible Jump Markov Chain Monte Carlo(MCMC)

(Krämer and Schepsmeier, 2011).

6.5.1 Maximal Spanning Tree Algorithm

Maximum Spanning Tree Algorithm proposed by (Dissmann et al., 2013) is

conducted tree-by-tree using a top-bottom approach beginning with the selection of

the first tree to the last tree. Edge weights are selected appropriately to demonstrate

large dependencies with the assumption that higher weights provide a better fit of

the chosen characteristics. These weights are estimated using a sequential estimation

approach. With the given weights, Prim’s Algorithm can be applied to choose the tree

structure that maximizes the sum of edge weights in each tree. Possible edge weights

include the following (Krämer and Schepsmeier, 2011; Wei, 2014):

1. Concordance measures such as Kendall’s tau and Spearman’s rho

2. Information criteria such as AIC and BIC of the pair copula

3. P-values of formal goodness-of-fit tests and variants

4. Distances
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For concordance measure weights, the aim is to capture the strongest pairwise

dependences in the data. The strongest pairwise dependencies are selected for the

first tree of the R-vine. Kendall’s τ is usually employed because of its suitability for

evaluating non-linear dependence and its invariance under monotone transformations

of the margins. The variables that maximize the sum absolute value of Kendall’s τ

among all pairs make up the tree. Since the true Kendall’s τ is not known, empirical

estimates are employed.

When it is beneficial to determine a good fitting of the R-vine to the data,

the choice of copula family can be conducted in a manner that fits the corresponding

observations well. The most popular goodness-of-fit measure is the Akaike Information

Criterion (AIC). The choice of pair-copula from an array of bivariate copula families

is separated in terms of the parameters for each pair of variables. The corresponding

AIC is computed and the copula family with the smallest value is chosen. However,

AIC has its limitations. It does not permit the evaluation of statistical significance

unlike statistical goodness-of-fit (GoF) tests which can produce results of their p-value.

Thus, the p-values of these formal tests can be used to tackle this problem. Since the

performance of sequential estimation is dependent on the choice of pair-copula for the

corresponding pair of pseudo-data values. Thus, formal GoF tests can be considered

during selection.

6.5.2 Sequential Bayesian Tree Selection

Min and Czado (2010) proposed a Bayesian analysis of pair-copula construc-

tions based on Reversible Jump Markov Chain Monte Carlo(MCMC). Reversible Jump

MCMC initally proposed by Green (1995) is an extension of the standard MCMC that

permits the simulation of the posterior distribution on spaces of varying dimensions

and sampling from discrete-continuous posterior distributions. The approach by Min

and Czado (2010) is to obtain a sequential estimate of the posterior distribution of the

R-vine tree structure, the bivariate copula families and their corresponding parameters.

It allows for easier computation of credible intervals of parameter estimates which are
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difficult to attain using maximum likelihood estimation (MLE). Modeling the prior

density function which favors sparse models can help prevent the selection of models

with runaway complexity. On the other hand, the use of non-informative flat priors

permits tree-by-tree MLE of the R-vine tree structure, pair-copula families and the

corresponding parameters (Wei, 2014).

6.6 Parameter Estimation

Vine copula models can be estimated either sequentially or by joint maximum

likelihood estimation (MLE) (Czado et al., 2012; Brechmann and Schepsmeier, 2013).

Aas et al. (2009) employed a sequential estimation approach since joint MLE of reg-

ular vine copula parameters can be computationally intensive. Joint MLE can be

conducted using two-stage estimation approach. Marginal parameters are initially es-

timated parametrically or non-parametrically and then the copula parameters are sub-

sequently estimated. The parametric approach is known as Inference for Margins and

the semi-parametric appraoch is known as Maximum Pseudo Likelihood estimation.

These have been previously discussed in sections 4.4.1.2 and 4.4.2 respectively.

Sequential estimation is carried out tree-wise starting with the first tree. The pa-

rameters of unconditional copulas are initially estimated which are subsequently used to

estimate parameters of the pair-copulas with single conditioning variable. The resulting

estimates are in turn used to estimate pair-copula parameters with two-conditioning

variables. This is continued sequentially till all parameters are estimated (Czado et al.,

2012). Sequential estimation offers a much quicker way of estimating copula parame-

ters than joint MLE since it only estimates bivariate copulas. Resulting values from

sequential estimation can be subsequently employed as initial values for numerical high

dimensional optimization of the log-likelihood to obtain joint maximum likelihood es-

timates.
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6.7 Copula Families Selection

For a given R-vine structure, there is the need to consider how to select the

appropriate pair-copula from a set of families. Copula selection can be performed using

goodness-of-fit tests such as tests based on Rosenblatt’s probability integral transform,

Genest and Favre bivariate asymptotic independence test, information criteria such

as Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) and

graphical tools such as contour plots, scatter plots, lambda function, Kendall’s plots

(K-plots) and Chi-plots (Krämer and Schepsmeier, 2011; Brechmann and Schepsmeier,

2013). These have been discussed at length in section 4.5. However, the pair-copulas

are usually selected independently using AIC.

For general R-vine copulas, the choice of pair-copula is dependent on the se-

lection of copulas in a preceding tree. Due to impracticability of a joint selection of

copula families, copula families selection is conducted tree-wise as proposed in the

sequential estimation. The copula families of the first tree are selected initially and

subsequently estimated. Given the selected pair-copulas of the previous tree and their

corresponding parameters, the bivariate copula families of the next tree are chosen.

The copula selection approach normally coincides with most vine tree selection proce-

dures. However, the sequential copula selection approach accumulates in the selection

(Wei, 2014). Thus, there is the need to check and compare the resulting model with

alternate models. This can be achieved using comparison tests for non-nested models

such as the likelihood ratio tests based on Vuong (1989) and Clarke (2007) tests which

have been previously discussed in section 4.5.3.

6.8 Limitations of Vine Copulas

The vine copula methodology has some shortcomings. In order to make PCC

tractable for inference and model selection purposes, the construction is simplified

by assuming that the pair-copula are independent of the conditional variables, except

through the conditional distributions (Haff et al., 2010). Thus, the copulas correspond-

ing to conditional distribution are constant irrespective of the values of variables that
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they are conditioned (Stöber et al., 2013). In other words, the conditional pair copulas

are assumed to depend on the conditional variables only indirectly through the condi-

tional margins (Acar et al., 2012). Haff et al. (2010) demonstrated that a simplified

PCC is a good approximation even when the simplifying assumption is far from being

fulfilled by the actual model. However, Acar et al. (2012) suggested that this view

is too optimistic and subsequently showed that an uncritical use of the simplifying

assumption may be misleading. Additionally, the flexibility of vine copulas can be

disadvantageous due to the plethora of different vine structures to select from and it

is a priori not clear which structure to employ. Thus, PCCs do not have a unique

solution (Geidosch and Fischer, 2016; Monstvilaite, 2016). The manner of the manner

of finding the best-fitting model can be done heuristically (at hand) or by employing

highly time-consuming Markov chain Monte Carlo methods Schepsmeier and Czado

(2016).

Furthermore, vine copula methodology for continuous data is employed in this

dissertation despite the mixed nature of the variables of interest. This is due to the

computation complexity of handing discrete variables. There are two common tech-

niques for copula modelling of discrete variables (Stöber et al., 2015):

1. For copulas functions available in closed form, calculation of the probability mass

function by taking finite differences of the copula function for the discrete mar-

gins. This results in the exponential growth in the number of evaluations of the

copula function with the number of discrete variables. The limitation of this

approach is the significant increase in computational complexity with dimension

and sample size.

2. Introduction of latent continuous variables (as an alternative to direct application

of a copula to discrete data). In this method, the dependence structure of the

latent variables is modelled instead. The ability to apply popular dependence

models and the avoidance of the technicalities when dealing with discrete copulas
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adds to the appeal of this method. However, the latent variables make inference

computationally hard.

To tackle these issues, Stöber et al. (2015) developed a vine copula approach which

considers applications of pair copula constructions for mixed data. The implementation

of this methodology may change the results of this paper.

6.9 Case Study (Modeling High-Dimensional Dependence of Derailment

Severity)

6.9.1 Introduction

Despite the relatively low frequency of train derailments, they have been a ma-

jor concern due to their high consequence justifying the need to critically examine the

severity of train derailments in order to minimize and mitigate the resulting damage

(Jeong et al., 2007; Liu et al., 2013). Derailments may result in loss of life and prop-

erty, interruption of services and destruction of the environment (Liu et al., 2013),

and are the most frequent kind of Federal Railroad Administration (FRA)-reportable

mainline train accident in the United States (Barkan et al., 2003; Liu et al., 2012;

Liu, 2015). Derailments made up about three-quarters of freight-train accidents in the

United States from 2001 to 2010. Therefore, analyzing the magnitude and variability

of derailment severity is as important as estimating the likelihood of derailment (Liu

et al., 2013).

Derailment severity may be influenced by factors like car mass, derailment speed,

residual train length (number of cars after the point of derailment), derailment cause,

ground friction, rail friction, derailment cause, proportion of loaded railcars in the train

(loading factor) and train power distribution. Estimation of these variables is often

established through exact estimation or the determination of statistical distributions

and time history of the examined factors (Mohammadzadeh and Ghahremani, 2010).

It is important to know the interrelationships or dependencies between these

variables in order to better understand how to reduce the severity and consequences

of train derailments. The most widely used statistical dependence model is that of
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the multivariate Gaussian distribution (Dissmann et al., 2013). Multivariate normal

distributions are usually used for multivariate data which assumes linear dependence

structure and no asymmetric or tail dependence (Schepsmeier and Czado, 2016). How-

ever, non-normality transpires in various forms: nonnormality of marginal distribution

of some variables and in some instances multivariate non-normality of the joint distri-

bution of a group of variables despite normal marginal distributions of all the individual

variables (Yan, 2006; Attoh-Okine, 2013). Thus, conventional correlation analysis is

not suitable for analyzing data with non-normality, tail dependency and skewness. The

objective of this case study is to model the underlying high-dimensional dependences

between the variables by taking into account these nonlinearities.

6.9.2 Data

Data was obtained from the Rail Equipment Accident/Incident (REA) database

maintained by the Federal Railroad Administration (FRA) of U.S. Department of

Transportation (U.S. DOT). A ”rail equipment accident/incident” is a collision, de-

railment, fire, explosion, act of God, or other event involving the operation of railroad

on-track equipment (standing or moving). U.S. railroads are required to present de-

tailed reports (Form 6180.54) to the FRA on all accidents or incidents whose damage

costs exceed a specified monetary value. The damage incurred includes damage caused

to the railroad track, signals, on-track equipment, track structures and roadbed as well

as labor costs and the costs for acquiring new equipment and material. The reporting

threshold is periodically changed to account for inflation and other adjustments and

has increased from $5700 in 1990 to $10, 700 in 2017 (FRA, 2016). The relatively low

threshold results in most accidents being reported to the FRA (Barkan et al., 2003).

The database contains detailed track accident information such as accident

cause, number of derailed cars, total monetary damage, track type, track class, train

length and derailment speed. 690 freight-train derailments occurring on Class I main-

line track in the year 2005 were initially considered. The variables considered include
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the number of derailed cars, monetary damage, derailment speed, residual train length

and proportion of loaded railcars in the train (loading factor).

To cater for the effect (and variations) due to derailment cause, 124 derailments

caused by broken rail were considered. Broken rails are the most frequent cause of

freight-train derailment on Class I mainlines in the United States. Broken rails also

result in a higher derailment severity in comparison with other causes such as bearing

failure with the former causing twice as many derailed cars on average as that of

the latter (Barkan et al., 2003). Due to their high frequency and severity, broken

rails are more likely to present higher risk than other causes. Initial exploratory data

analysis indicated non-normality of the marginal distributions of the variables under

examination as shown in Figures 6.6, 6.7 and 6.8. Copula analysis was employed since

copula models address the limitations of conventional correlation analysis by taking

into account non-normality, tail dependence, skewness and other nonlinearities.

Pseudo-observations (or copula data) were computed by transforming the dataset

into marginally uniform data using empirical probability integral transformation (em-

pirical distribution functions) and an asymptotically negligible scaling factor n
n+1

where

n is the number of observations. This factor is employed to compel the variates to fall

within the open unit hypercube (0, 1)4 in order to avoid issues with density evalua-

tion at the boundaries of closed unit hypercube [0, 1]4 (Schepsmeier and Czado, 2016).

Transformation can also be achieved by means of parametric probability integral trans-

formation. Figure 6.9 shows pairs plots of the transformed derailment data set with

scatter plots above the diagonal and contour plots with standard normal margins below

the diagonal.

Detailed exploratory data analysis was conducted on the pair of variables De-

railment Speed and Derailed Cars. Illustrative tools such as Kendall’s plot (K-plot),

Chi-plot and lambda function can be employed for detecting dependence of the pair

of variables (see (Fisher and Switzer, 1985, 2001; Genest and Rivest, 1993; Genest

and Boies, 2003; Genest and Favre, 2007). Figure 6.10 shows the K-plot, chi-plot and

empirical lambda function (black line), theoretical lambda function for Gumbel copula
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Figure 6.6: Scatter histogram of Derailed Cars against Derailment Speed.

distribution as well as independence and comonotocity limits (dashed line). The con-

tour plot in row 2 column 1 of figure 6.9 as well as the curve located above the main

diagonal (or line y = x) in the Kendall’s plot and majority (in this case all) of the

pair of observations in the Chi-plot being positive values of χ in Figure 6.10 show that

variables are positively dependent.

6.9.3 Vine Copula Analysis and Results

Four-dimensional C-vine and D-vine copula models were applied to the trans-

formed derailment severity data. The analysis includes the selection of C-vine and
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Figure 6.7: Scatter histogram of Derailed Cars against Residual Train Length.

D-Vine structures, set of pair-copula families and their corresponding parameters and

evaluation of the alternative models. The selection of the tree structures of the C-

and D-vines was obtained given the data. The structures can also be obtained via

manual selection or through expert knowledge. The order of the root nodes and the

first tree completely determine the structures of the C-vine and D-vine copula models

respectively. The root node of each tree of the C-vine was determined by establishing

the node with the strongest dependencies with other nodes. This is achieved by finding

the node with the maximum row sum of the absolute values in the empirical Kendall’s

tau matrix. As shown in Table 6.1, Derailed Cars was identified as the first root node.
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Figure 6.8: Scatter histogram of Derailed Cars against Loading Factor.

Subsequently, given the initial root node and the sequential C-vine identification pro-

cedure outlined in Czado et al. (2012), the next root node was identified to be Speed

(as shown in Table 6.2) followed by Residual Train Length and finally Loading Factor.

The structure of the D-vine is determined by establishing the order of the first

tree. This can be determined by finding the path which maximizes the pairwise depen-

dences (Kendall’s τ) of the variables of interest (Dalla Valle et al., 2016). This can be

transformed into a traveling salesman problem where the shortest Hamiltonian path is

determined in terms of weights 1− |τ | (Dissmann et al., 2013; Dalla Valle et al., 2016;

Schepsmeier and Czado, 2016). The order of the D-vine obtained was Speed, Derailed

Cars, Residual Length and Loading Factor.
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Table 6.1: Empirical Kendall’s τ matrix and the sum over the absolute entries of each
row for the Derailment data set

Derailed
Speed

Residual Loading Sum of
Cars Length Factor Absolute τ

Derailed Cars 1 0.482 0.330 0.061 1.873
Speed 0.482 1 0.140 0.027 1.649

Residual Length 0.330 0.140 1 -0.011 1.481
Loading Factor 0.061 0.027 -0.011 1 1.089

Table 6.2: Empirical Kendall’s tau matrix and the sum over the absolute entries of
each row for the Derailment data set given derailed cars (D) as first root

D, S D, R D, L Sum of Absolute τ
D,S 1 -0.11 -0.15 1.18
D,R -0.11 1 -0.05 1.16
D,L -0.07 -0.05 1 1.12

The family set of pair-copulas to choose from must include at least one bivariate

copula family that permits positive dependence and at least another one that permits

negative dependence. The pair-copula families considered during the analysis were the

independent copula, elliptical bivariate Gaussian (Normal) and Student t-copulas, the

single parameter Archimedean copulas such as bivariate Clayton, Gumbel, Frank, Joe

as well as two-parameter Archimedean copulas such as Clayton-Gumbel (BB1) and

Joe-Clayton (BB7) which permit different non-zero lower and upper tail dependence

coefficients. Rotated versions (900 and 2700) of these Archimedean copulas were con-

sidered to fit negative dependences (with the exception of Frank copula which has no

rotated versions). This catalogue for the implementation of copula family choice ad-

dress a vast range of dependence behavior. Properties of these copulas are found in

Table 4.3. The best fitting pair copula for each pair of variables was selected using

the Akaike Information Criterion (Akaike, 1973) which corrects the log likelihood of a

copula for the number of parameters. AIC was chosen for bivariate copula selection

ahead of other alternative criteria such as Vuong (1989) and Clarke (2007) goodness-

of-fit tests and Bayesian Information Criteria (Schwarz, 1978) as a result of its high
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performance in simulation analysis and its greater reliability (Dissmann et al., 2013;

Dalla Valle et al., 2016).

Independence copula was included in the selection by computing the indepen-

dence of each pair of variables of the R-vines prior to bivariate copula selection. This

achieved by conducting the Genest and Favre bivariate asymptotic independence test

based on Kendall’s Tau. The observance of conditional independence between variables

leads to a reduction in the number of levels of the pair copula decomposition leading

to the simplification of the construction. The independence copula for this pair-copula

term was selected if the p-value of the test was higher than 0.05. The pair-copula

parameter estimation was conducted based on the sequential estimation approach pro-

posed by Aas et al. (2009). The resulting values from sequential estimation were

subsequently employed as initial values for joint maximum likelihood estimation. Se-

quential and maximum likelihood estimates and Kendall’s tau values for C-vine and

D-vine copula models can be found in Tables 6.3 and 6.4 respectively.

Figures 6.11 and 6.12 show the C- and D-vine copula models with family and

Kendall’s tau values in each tree. It shows 3 trees for 4 variables where G - Gumbel

Copula, t - Student’s t copula, C90 - rotated Clayton (900) copula and I - Independence

Copula. In tree 1 of the C-Vine (Figure 6.11), moderate positive correlation was

observed between the number of derailed cars and derailment speed with relatively

weak positive correlations observed between derailed cars and residual train length. On

the other hand, no (very weak) dependence between derailed cars and loading factor.

The selection of the Gumbel copula suggests the underlying dependence between the

number of derailed cars and derailment speed is asymmetric and exhibits positive

upper tail dependence. The number of derailed cars during a derailment was found to

be highly correlated positively at high values of derailment speed but poorly (positive)

correlated at low derailment speeds. The selection of the student-t copula suggest the

underlying dependence between the number of derailed cars and residual train length

is symmetric and exhibits both upper and lower tail dependence.

In tree 2 of the C-Vine, the conditional dependence between derailment speed
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and residual train length given the number of derailed cars was found to be negative

and relatively weak and can be characterized by a 900 rotated Clayton copula which

also indicates the presence of tail dependence. On the other hand, it was observed that

derailment speed and loading factor are conditionally independent given derailed cars.

In tree 1 of the D-Vine (Figure 6.12) moderate positive correlation was observed

between the number of derailed cars and derailment speed with relatively weak positive

correlations observed between derailed cars and residual train length. This is similar

to the C-Vine with the same copulas and dependencies identified. However, no (very

weak) correlation was found between derailment speed and loading factor. In tree 2

of the D-Vine, the derailment speed and loading factor were found to be condition-

ally independent given the number of derailed cars. Similar to the C-Vine, negative

conditional dependence between derailment speed and residual train length given the

number of derailed cars was observed.

The Akaike Information Criterion (AIC), Bayesian Information Criterion and

log-likelihood were used to measure which R-vine structure models the data better.

The log-likelihood is a popular measure of goodness of fit. AIC and BIC on the other

hand are classical model comparison measures, taking the model complexity into ac-

count (Schepsmeier and Czado, 2016). The C- and D-Vine models were found to have

similar AIC, BIC and log-likelihood values as shown in table 6.5. The C- and D-Vine

copulas were subsequently compared with the multivariate Gaussian copula approach.

The most widely used statistical dependence model is the multivariate Gaussian dis-

tribution (Dissmann et al., 2013). The multivariate Gaussian copula is obtained from

the multivariate normal or Gaussian distribution and is the dependence structure for

linear correlation (Dorey and Joubert, 2005). Multivariate normal distributions (or

multivariate Gaussian copulas) are usually used for multivariate data which assumes

linear dependence structure and no tail dependence. The multivariate Gaussian cop-

ula can be expressed as an R-vine with Gaussian pair copulas where the parameters

are established by the associated partial correlations (Schepsmeier and Czado, 2016).

The Vine Copulas were found to have greater log-likelihood and lower AIC and BICs.
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This demonstrates that the use of the more popular multivariate Gaussian copula

which assumes normality of the marginal and joint distributions is not appropriate.

This demonstrates the importance of characterizing tail dependence, skewness, and

non-normality within the data. The Log-likelihoods, number of parameters, AIC and

BIC for the vine copulas and multivariate Gaussian copula using maximum likelihood

estimation and/or sequential estimation can be found in Table 6.5.

Table 6.5: Log-likelihood, number of parameters, AIC and BIC for Vine copulas
and Multivariate Gaussian copula using maximum likelihood estimation
(MLE) or sequential estimation (SE)

D-vine
copula model

C-vine
copula model

Multivariate
Gaussian copula

Log-likelihood (SE) 53.7602 53.7602 *
Log-likelihood (MLE) 53.7636 53.7639 43.8882
Number of parameters 3 3 6
AIC (SE) -99.5204 -99.5204 *
AIC (MLE) -99.5279 -99.5279 -75.7763
BIC (SE) -88.2393 -88.2393 *
BIC (MLE) -88.2468 -88.2468 -58.8546

Similarly, 4-dimensional C- and D-Vine models involving monetary damage in-

stead of derailed cars were analyzed. The 4-dimensional monetary damage severity C-

and D-Vine models are shown in figures 6.13 and 6.14. Similar to derailed cars, the

dependence between monetary damage and derailment speed was found to be moderate

with upper tail dependence observed between the pair (characterized by the Gumbel

copula). However, unlike derailed cars which appeared to be independent of load-

ing factor, monetary damage was found to be dependent on loading factor with the

Gaussian copula indicating radial symmetric dependence between the pair with no tail

dependence. Thus, loading factor may be appropriate in predicting the total monetary

damage incurred during derailments however caution is needed when being used to

predict the number of derailed cars.

For the monetary damage models, the D-Vine was found to have a lower AIC

value. This was confirmed using the log-likelihood and Bayesian Information Criterion
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(BIC) with the D-Vine having a greater log-likelihood and a lower BIC value as shown in

table 6.6. The likelihood ratio tests based on Vuong (1989) and Clarke (2007) suitable

for non-nested model comparison were also performed with Schwarz correction. The

Vuong test (log-likelihood ratio for non-nested models) which is based on the difference

in the log-likelihoods was used to examine whether differences in the log-likelihood and

the AIC of the two vine-copula models were statistically significant (Ayuso et al.,

2016). The results of both tests concluded that these differences were not statistically

significant and failed to reject the null hypothesis of statistical indistinguishability of

the two vine copula models as shown in Table 6.7).

Table 6.6: Log-likelihood, number of parameters, AIC and BIC for “monetary damage
severity” Vine copulas and Multivariate Gaussian copula using maximum
likelihood estimation (MLE) or sequential estimation (SE)

D-vine
copula model

C-vine
copula model

Multivariate
Gaussian copula

Log-likelihood (SE) 54.97051 51.66251 *
Log-likelihood (MLE) 54.97459 51.66251 48.07538
Number of parameters 4 3 6
AIC (SE) -101.941 -97.32502 *
AIC (MLE) -101.9492 -97.32502 -84.15077
BIC (SE) -90.6599 -88.86418 *
BIC (MLE) -90.66805 -88.86418 -67.22908

Table 6.7: Pairwise non-nested model comparison using Vuong and Clarke tests with
Schwarz correction

Null
Method

Alternative
Hypothesis C-vine copula model

D-vine Copula Model

Vuong

Statistics 0.3101814
p-value 0.756423
Decision D-Vine = C-Vine

Clarke

Statistics 68
p-value 0.3232476
Decision D-Vine = C-Vine
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Vine copula method can be applied to simulation modeling of multivariate de-

railment severity data and has already been applied in areas such as pipeline infras-

tructure (Atique and Attoh-Okine, 2016) and pavement infrastructure (Attoh-Okine,

2013). 150 pseudo-observations were generated given the bivariate copulas and param-

eters of the C-Vine copula model in table 6.3. Figure 6.15 shows the scatter plot of

the simulated data which reproduces the general pattern in the original data.

6.9.4 Concluding Remarks

Exploratory data analysis showed that the marginal distributions of the vari-

ables (such as derailment speed, residual length, loading factor, derailed cars) were not

normal as well as the joint distribution of these variables. Conventional correlation

analysis which assumes multivariate normality is generally not suitable for analyzing

the dependencies between variables with non-normality, tail dependence, skewness and

other nonlinearities. Copula models however address the limitations of conventional

correlation analysis were deemed to be more appropriate for analyzing the dependences

within the derailment data. Special cases of vine copulas: Canonical vines (C-Vines)

and Drawable vines (D-Vines) were used to model the dependences within the derail-

ment data. Some of the pairwise dependences were found to show asymmetric and

tail dependence violating the multivariate normality assumption. These vine copulas

models were found to be better at modeling the derailment data in comparison with

multivariate Gaussian copulas which assume multivariate normality. It was found that

loading factor may be appropriate in predicting the total monetary damage incurred

during derailments however caution is required when being used to predict the num-

ber of derailed cars. Vine copula methodology was applied to simulation modeling of

multivariate derailment severity data. Insights gained from dependence modeling will

improve railroad safety decision making by facilitating deeper comprehension of train

derailment severity distribution which will guide future safety research in the railroad

industry. In conclusion, this approach is applicable in railroad industry based on its

satisfactory results.
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Figure 6.9: Pairs plot of transformed derailment data set with scatter plots above
and contour plots with standard normal margins below the diagonal.
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Figure 6.10: Left panel: K-plot. Middle panel: chi-plot. Right panel: empirical
lambda-function (black line), theoretical lambda-function of Gumbel
copula (grey line) as well as independence and comonotonicity limits
(dashed lines).
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Figure 6.11: Four dimensional C-vine, where G - Gumbel Copula, t - Student’s t
copula, C90 - rotated Clayton (900) copula, I - Independence Copula
with corresponding tau values shown on the links with the copula family.
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Figure 6.12: Four dimensional D-vine, where G - Gumbel Copula, t - Student’s t
copula, C90 - rotated Clayton (900) copula, I - Independence Copula
with corresponding tau values shown on the links with the copula family.

Figure 6.13: Four dimensional C-vine, where G - Gumbel Copula, F - Frank cop-
ula, N - Normal/Gaussian copula and I - Independence Copula with
corresponding tau values shown on the links with the copula family.
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Figure 6.14: Four dimensional D-vine, where F - Frank Copula G - Gumbel Copula,
C90 - rotated Clayton (900) copula, G90 - rotated Gumbel (900) copula,
I - Independence Copula with corresponding tau values shown on the
links with the copula family.
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Figure 6.15: Simulated derailment severity data using C-Vine copula model
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Chapter 7

CONCLUDING REMARKS

7.1 Introduction

In many infrastructure applications of data analysis including railroad applica-

tions such as track geometry recovery and derailment severity; non-normality of data

transpires in various forms. These include non-normality of the marginal distribution

of some variables and in some instances multivariate non-normality of the joint distri-

bution of a group of variables despite normal marginal distributions of all the individual

variables (Yan, 2006; Attoh-Okine, 2013). Copulas describe the dependence structure

between variables are generally suitable for analyzing the dependence between variables

with non-normality. Copulas allow for the separate modeling of arbitrary marginal

distributions and the dependence structure. Copulas are suitable for modeling various

forms of dependence including tail dependence and asymmetric dependence. Copulas

(copula-based methodologies) can be applied as standalone models or in tandem with

other alternate models.

This dissertation provides detailed copula analysis of various railroad mainte-

nance and safety applications such as track geometry recovery and derailment severity.

State-of-the-art literature review of existing track geometry (tamping) recovery mod-

els and derailment severity models is presented with a discussion of the gaps in the

literature also provided. This dissertation has introduced copula-based approaches as

a technique that can be used in describing and analyzing the underlying dependence

between the variables of interest in various railroad engineering applications. Three

copula-based methodologies namely bivariate copula models, copula-based regression

models and vine copula models were applied to railroad (maintenance and safety) ap-

plications. A (bivariate) copula-based approach was developed to evaluate (estimate)
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the tamping recovery of track geometry parameters such as surface (longitudinal level),

alignment, cross level, gage, and warp. A joint mixed copula-based regression model

for derailed cars and monetary damage is developed for the combined analysis of their

relationship with a set of covariates that might affect both severity outcomes. Vine

copulas, a cascade of bivariate copulas as building blocks, was used to model the high-

dimension dependencies within the derailment severity data taking into account the

non-linearities in the data.

7.2 Conclusions

The following conclusions were drawn from this dissertation and can divided

into three main parts namely:

• Tamping Recovery of Track Geometry

• Bivariate Derailment Severity using Copula-based Regression Models

• Dependence Modeling of Derailment Severity using Vine Copulas

7.2.1 Tamping Recovery of Track Geometry

• Based on exploratory data analysis as well as confirmatory data analysis, the

marginal and joint distributions of the variables of interest were found to be not

normal.

• From the marginal fitting results, the recoveries of the various parameters were

found to be non-normal and were found to either fit a three-parameter log-normal

distribution (in the case of surface, alignment, and warp) or three-parameter log-

logistic distribution (in the case of cross level and gage). Similarly, non-normal

distributions were observed for the track quality condition (SD of track geometric

parameters) before and after tamping.

• Tail and asymmetric dependences between the variables of interest were identified

by the selected copulas. For instance, the track geometry recovery of the surface

parameter was found to be poorly correlated at low values but highly correlated

at high values.
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• Correlation analysis of the recovery of various geometry parameters show that the

use of Pearson’s correlation coefficient which assumes normality of the variables

and linear dependence led to relatively high dependence values observed. How-

ever, the use of concordance measures such as Kendall’s Tau and Spearman’s Rho

resulted in a general reduction in the observed dependences. These concordance

measures are scale-invariant and are suitable for evaluating non-linear depen-

dence and measure dependence irrespective of assumed distribution. Thus, the

widely-used Pearson’s correlation coefficient does not appear to be appropriate

for analyzing the correlation between the recoveries of the various track geometry

parameters.

• From the correlation analysis results, the strongest correlation was observed be-

tween warp and cross level recoveries with the weakest correlation observed be-

tween the surface and gage recoveries with varying levels in-between. This infers

and gives credence to previous research that tamping affects the various track

geometry parameters differently thus it is imperative to examine all the track

geometry parameters and not focus on one or two parameters.

• Copula modeling can be used in generating large volumes of data with similar

dependence patterns as the original track geometry data set.

• In general, conventional correlation analysis does not appear to be suitable for

analyzing the dependences between the variables of interest.

• Copulas appropriately model tamping recovery phenomenon taking into consid-

eration the underlying dependence between the variables.

7.2.2 Bivariate Derailment Severity using Copula-based regression models

• Failure to consider for the dependence between the severity outcomes may lead

to biased or distorted coefficient estimates in derailment severity models.

• The incorporation of copulas in derailment severity models have a greater influ-

ence on the dispersion/variance estimates than the point estimates.

• Derailment speed was found to have most pronounced effect on both monetary
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damage and number of derailed cars. This was followed by residual train length

and loading factor.

• In general, the covariates were found to have a greater effect on the monetary

damage outcome than the number of derailed cars.

• Results enable objective comparison of different train safety approaches that

could be used to inform decision making. An argument can be made for the

reduction of freight train speeds in favor of a reduction in the number of cars in

a train consist.

• Combining the marginal regression models of the two derailment severity out-

comes with the underlying dependence facilitates a better comprehension of the

train derailment severity distribution.

7.2.3 Dependence Modeling of Derailment Severity using Vine Copulas

• Some of the pairwise dependencies were found to show asymmetric and tail de-

pendence violating the multivariate normality assumption.

• Both number of derailed cars and monetary damage were found to be poorly

correlated with low values of derailment speed but highly correlated with much

higher values.

• It was found that loading factor may be appropriate in predicting the total mone-

tary damage incurred during derailments however caution is required when being

used to predict the number of derailed cars.

• These vine copulas models were found to be better at modeling the derailment

data in comparison with multivariate Gaussian copulas which assume multivari-

ate normality.

• Vine copula methodology was used to generate large volumes of multivariate

derailment severity data.

Copulas in general describe the dependence structure between the variables and

thus are suitable for modeling various forms of dependence including linear dependence,
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tail dependence, symmetric and asymmetric dependence. Furthermore, copula model-

ing is an emerging methodology which is suitable for analyzing the dependence between

arbitrary marginal distributions. Thus, it is useful for analyzing the dependence be-

tween variables irrespective of the nature of the variables which might be non-normal,

discrete, skewed, heavy-tailed or thin-tailed. This is particularly useful in the railroad

industry since data take several forms (as shown in the exploratory data analysis in

Chapter 3).

This dissertation offers major contributions for improving data analysis in rail-

road maintenance and safety by accounting for the underlying dependence between the

variables of interest irrespective of the observed marginal distribution. The copula-

based methodology allows the railroads to appropriately analyze the effectiveness of

maintenance activities such as tamping at different track geometry quality or condition

levels prior to maintenance. This is conducted without assuming constant (average)

linear dependence between track geometry recovery and track quality before mainte-

nance. For instance, upper tail dependence was observed between the track geometry

recovery of parameters (such as surface and alignment) and the track condition before

tamping. This suggests that hasty tamping or tamping at low standard deviation levels

is not as effective as tamping at high standard deviation levels. This provides railroad

maintenance managers further evidence for the need to optimally execute tamping

by employing condition-based maintenance instead of time-based maintenance. Early

tamping has been found to lead to shorter track lifecycle and the failure to attain track

design capacity (Quiroga et al., 2012; Famurewa et al., 2013).

High dimensional copulas such as vine copulas provide analysts further insight

into the complex interactions between various variables including the relationship be-

tween covariates which are often not considered critically. Bivariate or vine copula

modeling is also useful for the generation of large volumes of data when it is not easy

to obtain large data sets for analysis. This is particularly useful for railroad data

analysts and researchers who can use the large data sets generated to analyze track

geometry degradation, track geometry restoration and train derailment severity.
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Copula models are also useful since they can be combined with other models. For

instance, bivariate (or vine) copulas can be combined with generalized linear models

to form copula-based regression models or with Bayesian Networks to form Copula

Bayesian Networks. Copula-based regression models allow railroad safety regulators to

simultaneously model and predict several derailment severity outcomes conditional on

a set of covariates or factors while taking into consideration the underlying dependence

between the outcomes which may be skewed or discrete in nature. This allows safety

analysts to evaluate the effect of the individual covariates on the joint distribution of

the derailment severity outcomes. For instance, derailment speed was found to have the

greatest effect on both derailment severity outcomes followed by residual train length

and finally loading factor. This permits the objective comparison of different train

safety approaches from a severity standpoint that could be used to inform decision

making made by railroad safety regulators from government and industry.

7.3 Future Research

Despite the major contributions of this dissertation, there are vast opportunities

for future implementation of copula-based methodologies in railroad engineering par-

ticularly railroad maintenance and safety applications. Recommendations and future

work can divided into two main sections namely

• Recovery and Degradation Modeling of Track Geometry

• Derailment Severity Modeling

7.3.1 Recovery and Degradation Modeling of Track Geometry

• Incorporate the copula-based tamping recovery model into track geometry main-

tenance scheduling model with the track geometry degradation models and re-

covery models being the main components of the model.

• Extend the copula-based methodology to incorporate others factors such as op-

erational speed, tamping procedure, age of track components, and number of

previous tamping operations. To analyze the effect of various covariates on track
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geometry recoveries of several parameters, copula-based regression models can be

employed taking into consideration the dependence between the response vari-

ables. In order to analyze the dependence between more than two variables,

vine copulas are recommended which are more flexible than regular multivariate

copulas.

• There is the need to select an appropriate track geometry deterioration model

that takes into consideration both the time and spatial variation of the track

geometry degradation process.

• Develop copula autoregressive models as an appropriate track geometry degrada-

tion model that takes into account both of the time and spatial variation of the

track geometry degradation process. To employ copula autoregressive models,

there is the need for substantial data points between tamping interventions in

order to effectively model the degradation of track geometry.

• In order to integrate such degradation models and copula-based recovery models

in track maintenance scheduling models, probabilistic optimization models need

to be considered.

7.3.2 Derailment Severity Modeling

• Extend derailment severity copula-based regression methodology to consider bi-

parametric copulas such as Student t-copula, Clayton-Gumbel (BB1), Joe-Gumbel

(BB6), Joe-Clayton (BB7) and Joe-Frank (BB8) copulas.

• Extend derailment severity copula-based regression methodology to consider other

marginal distributions (such as lognormal distribution for monetary damage and

zero-truncated negative binomial and Poisson-inverse Gaussian for the number

of derailed cars).

• Extend the methodology to consider other derailment severities such as casualties

by developing vine-copula based regression models in order to simultaneously

model more than two response variables given a set of covariates.

• Extend the methodology to investigate the effect of other covariates on train
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derailment severity such as train power distribution, rail friction, ground friction

and car mass.

• Develop copula additive models in order to consider various types of covariate

effects other than linear relationships by allowing a variety of non-parametric

smoothing functions. The other covariate effects that can be considered include

non-linear, random and spatial effects. The (dependence and marginal) model

parameters of copula are permitted to be dependent on additive predictors which

incorporate these covariate effects (Marra and Radice, 2017).

In summary, results from this dissertation provide greater insight and com-

prehension of the train derailment severity and track geometry recovery phenomena

considering various forms of dependence between the variables of interest. These results

will aid decision making which would help reduce the consequences of train derailments

as well as improve track maintenance strategies.
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Appendix A

TRACK GEOMETRY EXPLORATORY DATA ANALYSIS

A.1 Foot-by-foot measurements

Figure A.1: Illustration of spatial variation of various track geometry parameters at
a given inspection date
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Figure A.2: Illustration of spatial variation of gage at a given inspection date
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Figure A.3: Illustration of surface left (62-ft) track geometry parameter at multiple
inspecton dates
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Figure A.4: Illustration of surface right (124-ft) track geometry parameter at multiple
inspecton dates
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Figure A.5: Illustration of surface left (124-ft) track geometry parameter at multiple
inspecton dates

255



Figure A.6: Illustration of alignment right (62-ft) track geometry parameter at mul-
tiple inspecton dates

256



Figure A.7: Illustration of alignment left (62-ft) track geometry parameter at multi-
ple inspecton dates

257



Figure A.8: Illustration of alignment right (124-ft) track geometry parameter at mul-
tiple inspecton dates
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Figure A.9: Illustration of alignment left (124-ft) track geometry parameter at mul-
tiple inspecton dates
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Figure A.10: Illustration of crosslevel track geometry parameter at multiple inspec-
ton dates
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Figure A.11: Illustration of warp (62-ft) track geometry parameter at multiple in-
specton dates
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Figure A.12: Illustration of gage track geometry parameter at multiple inspecton
dates

262



A.2 Histogram and Quantile-Quantile Plot

Figure A.13: Histograms and Q-Q plots for warp, gage and surface left (62-ft) data
points from 2013 to 2016

263



Figure A.14: Histograms and Q-Q plots for surface right (124-ft) and surface left
(124-ft) data points from 2013 to 2016
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Figure A.15: Histograms and Q-Q plots for alignment left (62-ft), alignment right
(124-ft) and alignment left (124-ft) data points from 2013 to 2016
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Figure A.16: Histograms and Q-Q plots for warp, gage and surface left (62-ft) data
points for a given inspection date
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Figure A.17: Histograms and Q-Q plots for surface right (124-ft) and surface left
(124-ft) data points for a given inspection date
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Figure A.18: Histograms and Q-Q plots for alignment left (62-ft), alignment right
(124-ft) and alignment left (124-ft) data points for a given inspection
date
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Figure A.19: Histograms and Q-Q plots for SD warp and SD gage data points from
2013 to 2016
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Figure A.20: Histograms and Q-Q plots for SD alignment recovery values, SD align-
ment before tamping and SD alignment after tamping
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Figure A.21: Histograms and Q-Q plots for SD crosslevel recovery values, SD
crosslevel before tamping and SD crosslevel after tamping
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Figure A.22: Histograms and Q-Q plots for SD warp recovery values, SD warp before
tamping and SD warp after tamping
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Figure A.23: Histograms and Q-Q plots for SD gage recovery values, SD gage before
tamping and SD gage after tamping
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A.3 Box and whisker Diagrams

Figure A.24: Box plot of alignment right (62-ft) data points across all the inspection
dates
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Figure A.25: Box plot of surface left (62-ft) data points across all the inspection
dates
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Figure A.26: Box plot of alignment left (62-ft) data points across all the inspection
dates
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Figure A.27: Box plot of surface right (124-ft) data points across all the inspection
dates

277



Figure A.28: Box plot of alignment right (124-ft) data points across all the inspection
dates
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Figure A.29: Box plot of surface left (124-ft) data points across all the inspection
dates
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Figure A.30: Box plot of alignment left (124-ft) data points across all the inspection
dates
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Figure A.31: Box plot of warp (62-ft) data points across all the inspection dates
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Figure A.32: Box plot of gage data points across all the inspection dates
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Figure A.33: Box plot of TQI before tamping, TQI after tamping and recovery values
for SD warp
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Figure A.34: Box plot of TQI before tamping, TQI after tamping and recovery values
for SD gage
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Appendix B

DERAILMENT SEVERITY EXPLORATORY DATA ANALYSIS

B.1 Dataset Description

Figure B.1: Subcategory breakdown of “Track, Roadbed and Structures” cause type
derailments
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Figure B.2: Subcategory breakdown of “Human factors” cause type derailments
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Figure B.3: Subcategory breakdown of “Mechanical and Electrical Failures” cause
type derailments
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Figure B.4: Subcategory breakdown of “Miscellaneous Causes” type derailments
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B.2 Histogram and Quantile-Quantile Plot

Figure B.5: Histograms and Q-Q plots for residual train length and loading factor
for all freight-train derailments occurring on Class I mainline track

289



Figure B.6: Histograms and Q-Q plots for monetary damage, derailed cars and de-
railment speed for broken-rail caused freight-train derailments occurring
on Class I mainline track
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B.3 Box and whisker diagram

Figure B.7: Box plot illustrating distribution of derailment speed across all major
accident cause category
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Figure B.8: Box plot illustrating distribution of residual train length across all major
accident cause categories
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Figure B.9: Box plot illustrating distribution of loading factor across all major acci-
dent cause categories
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Figure B.10: Box plot illustrating distribution of derailed cars across Mechanical and
Electrical failures causes sub-category
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Figure B.11: Box plot illustrating distribution of derailed cars across Human Factors
causes sub-category
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Figure B.12: Box plot illustrating distribution of derailed cars across Miscellaneous
causes sub-category
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Figure B.13: Box plot illustrating distribution of monetary damage across Mechan-
ical and Electrical failures causes sub-category
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Figure B.14: Box plot illustrating distribution of monetary damage across Human
Factors causes sub-category
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Figure B.15: Box plot illustrating distribution of monetary damage across Miscella-
neous causes sub-category
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Appendix C

PERMISSIONS

Figure C.1: Permission to use Figure 2.1
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Figure C.2: Permission to use Figure 2.2
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Figure C.3: Permission to use Figures 2.3 and 2.4
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