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ABSTRACT
Slowly rotating magnetic massive stars develop “dynamical magnetospheres” (DM’s), char-
acterized by trapping of stellar wind outflow in closed magnetic loops, shock heating from
collision of the upflow from opposite loop footpoints, and subsequent gravitational infall of
radiatively cooled material. In 2D and 3D magnetohydrodynamic (MHD) simulations the in-
terplay among these three components is spatially complex and temporally variable, making
it difficult to derive observational signatures and discern their overall scaling trends. Within
a simplified, steady-state analysis based on overall conservation principles, we present here
an “analytic dynamical magnetosphere” (ADM) model that provides explicit formulae for
density, temperature and flow speed in each of these three components – wind outflow, hot
post-shock gas, and cooled inflow – as a function of colatitude and radius within the closed
(presumed dipole) field lines of the magnetosphere. We compare these scalings with time-
averaged results from MHD simulations, and provide initial examples of application of this
ADM model for deriving two key observational diagnostics, namely hydrogen H-α emission
line profiles from the cooled infall, and X-ray emission from the hot post-shock gas. We con-
clude with a discussion of key issues and advantages in applying this ADM formalism toward
derivation of a broader set of observational diagnostics and scaling trends for massive stars
with such dynamical magnetospheres.

Key words: MHD — Stars: winds — Stars: magnetic fields — Stars: early-type — Stars:
mass loss — Stars: X-rays

1 INTRODUCTION

Hot luminous, massive stars of spectral type O and B have dense,
high-speed, radiatively driven stellar winds (Castor et al. 1975). In
the subset (∼10%) of massive stars with strong (> 1kG), glob-
ally ordered (often significantly dipolar) magnetic fields (Petit et al.
2013), the trapping of the wind outflow by closed magnetic loops
leads to the formation of a circumstellar magnetosphere. For stars
with moderate to rapid rotation – such that the Keplerian corota-
tion radius RK lies within the Alfvén radius RA that characterizes
the maximum height of closed loops –, the rotational support leads
to formation of a “centrifugal magnetosphere” (CM), wherein the
trapped wind material accumulates into a relatively dense, stable
and long-lived rigidly rotating disk (Townsend & Owocki 2005).

? Email: owocki@udel.edu

In contrast, for magnetic massive stars with slow rotation, and
thus RK > RA, this trapped material falls back to the star on
a dynamical (freefall) timescale, representing then a “dynamical
magnetosphere” (DM) (Sundqvist et al. 2012; Petit et al. 2013).
Because of the rotational spindown associated with angular mo-
mentum loss through the relatively strong, magnetized wind upflow
from open field regions (ud-Doula et al. 2009), magnetic O-type
stars are typically1 slow rotators, and so harbor DM’s. Among the
magnetic B-stars, a significant fraction (about half) are also rotating
slowly enough to have DM’s (Petit et al. 2013).

In such DM’s the trapped wind upflow from opposite foot-
points of closed loops collides near the loop apex, forming shocks

1 The one exception is Plasket’s star, for which the magnetic star likely has
been spun up by mass accumulation from its binary companion (Grunhut
et al. 2013).
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that heat the gas to X-ray emitting temperatures; as this gas radia-
tively cools, it falls back to the star as a gravitational downflow. 2D
and 3D magnetohydrodynamic (MHD) simulations of such DM’s
(ud-Doula & Owocki 2002; ud-Doula et al. 2013) show a complex
and variable interplay among all three components, and this makes
it difficult to derive observational signatures and discern their over-
all scaling trends.

Applications of these MHD models have thus been limited
to a few selected O-stars, using simplified radiative transfer meth-
ods to derive synthetic spectra for Hα emission lines (Sundqvist
et al. 2012; Grunhut et al. 2012; ud-Doula et al. 2013; Wade et al.
2015) and ultra-violet wind resonance lines (Marcolino et al. 2013;
Nazé et al. 2015). These initial studies have provided strong sup-
port of the general DM concept; however, the complexity of the
time-dependent 3D structure, together with computational expense
of the simulations, prohibits more systematic and detailed computa-
tions of synthetic observables across the electromagnetic spectrum,
as well as application to larger samples of magnetic massive stars.

Similar arguments apply to X-ray spectral synthesis. Detailed
MHD simulations have been used to analyze the high spectral reso-
lution X-ray observations available for a few selected OB stars (Pe-
tit et al. 2015; Nazé et al. 2015). But for the analysis of the much
larger number of stars with low-resolution X-ray data, an analytic
model can capture key observable properties and trends. Recently,
ud-Doula et al. (2014, hereafter paper I) carried out an extensive
MHD simulation study of radiative cooling of the hot post-shock
gas in DM’s, with a focus on deriving the resulting X-ray emission
as a function of the density-dependent cooling efficiency. When in-
terpreted in terms of a simplified “X-ray analytic dynamical magne-
tosphere” (XADM) analysis, this led to predicted scaling laws for
variation of X-ray luminosity with the wind mass loss rate. Subse-
quent application by Nazé et al. (2014) toward interpreting obser-
vationally inferred X-ray luminosities in a large sample of magnetic
massive stars showed that, with some fixed factor adjustment to ac-
count for the limited “duty cycle” for X-ray production during the
complex variations seen in MHD simulations, this XADM scaling
matched quite well the observed trends for the subset of magnetic
massive stars with slow enough rotation to have DM’s.

The analysis here builds on this success to develop a more gen-
eral “analytic dynamical magnetosphere” (ADM) formalism that
now provides explicit formulae for the spatial variation of den-
sity and flow speed (as well as temperature for the hot gas) in all
three components of the closed loop magnetosphere: wind upflow,
hot post-shock gas, and cooled downflow (section 2). The overall
ADM analysis here is guided and tested by comparison with time-
averaged results from full MHD simulations of DM’s (section 3),
using the Alfvén radius RA in the MHD simulation to define a
maximum closure radius Rc of a dipole loop in the ADM model.

The inclusion of the cooled downflow now allows for model-
ing of optical emission lines like H-α (section 4). Moreover, the de-
scription of the spatial distribution of both the hot and cool compo-
nents allows an extension of the XADM analysis of paper I (section
5), for example by accounting for possible bound-free absorption of
emitted X-rays by the cool wind and downflow (see section 5.3 and
Petit et al. 2015). We conclude (section 6) with a brief summary
of key issues and advantages in applying this ADM formalism to-
ward deriving a broader range of spectral diagnostics. Appendices
A and B show how the ADM model can be used to derive both the
X-ray differential emission measure (DEM), as well as a shock-
temperature distribution p(Ts). Appendix C gives background on
the ADM scalings for Hα emission.

rs

rs

rm

R*
θ∗

θs

Figure 1. Illustration of three components of material flow along a closed
dipole loop line that intersects the stellar radius R∗ at a colatitude θ∗ =
arccosµ∗, and extends up to a maximum radius rm = R∗/(1 − µ2

∗) at
the equatorial loop apex. Wind upflow (black arrows) from a stellar sur-
face footpoint meets wind material from the opposite footpoint at the loop
apex. This results in a pair of reverse shocks with hot post-shock gas (red)
extending back from the loop apex to shock fronts at co-latitudes π − θs
and θs(≡ arccosµs), and radius rs = rm(1 − µ2

s). Cooled material at
the loop apex (blue wedge) is pulled back by the stellar gravity, forming
channels of cooled downflow (blue dashed arrows) back toward the star.

2 ANALYTIC DYNAMICAL MAGNETOSPHERE

2.1 Basic magnetic scalings for a star-centered dipole

The ADM formalism is based on an idealized, steady-state analysis
of the mass flow along closed magnetic loops that are assumed to
follow the individual lines of a simple dipole2 magnetic field, taken
here to be centered at the central radius r = 0 of the underlying star.

Following figure 1, if we specify the colatitude θ from the
north dipole axis by µ = cos θ, then a given dipole loop line that
intersects the stellar radius R∗ at µ = µ∗ extends over a band
−µ∗ < µ < µ∗ about the equator, with radius variation given by

r(µ, µ∗)

R∗
=

1− µ2

1− µ2
∗

; |µ| < µ∗ , (1)

and with the maximum radius at the loop apex on the magnetic
equator,

rm(µ∗) ≡ r(0, µ∗) =
R∗

1− µ2
∗
. (2)

For any position {r, µ} within the magnetosphere, the magnitude
of the field follows the dipole scaling,

B(r, µ)

B(R∗, µ∗)
=

(
R∗
r

)3 (
1 + 3µ2

1 + 3µ2
∗

)1/2

. (3)

For such a dipole, the direction of the field only depends on µ, given

2 For simplicity, this ignores the modest outward stretching of closed loop
lines by the dynamical pressure of the trapped wind upflow, e.g. as seen in
the MHD simulations shown in figure 5.
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by the unit vector

b̂(µ) ≡ B

B
=

2µr̂ +
√

1− µ2 θ̂√
1 + 3µ2

, (4)

where r̂ and θ̂ are unit vectors in the radial and latitudinal direc-
tions.

The nearly full ionization of circumstellar material around hot,
OB stars implies a high conductivity and thus broad applicability of
the frozen flux theorem of ideal MHD. In the context of the present
model of a rigid, closed dipole field line, this means any material
remains always locked onto its given field line, with flow velocity
v parallel to the local field direction b̂. In terms of the local density
ρ, the mass flux ρv thus has a divergence given by,

∇ · (ρv) = ∇ · (ρvB/B) = B · ∇(ρv/B) = B
∂(ρv/B)

∂b
(5)

where the third equality uses ∇ · B = 0, and the last equality de-
fines a coordinate distance b along the field line, with b̂·∇ ≡ ∂/∂b.
This means that in any steady-state flow, wherein mass conserva-
tion requires ∇ · (ρv) = 0, the local mass flux density scales with
the field strength, so that ρv/B = constant along the flow. For a
given steady input mass flux from the surface, the spatial variation
of density ρ can thus be derived from knowledge of the flow speed
v (or vice versa), in terms of the known spatial variation of field
strength B from (3).

2.2 3-Component model for mass trapped in a closed dipole
loop

In full MHD simulations (see paper I), the actual flow along such
closed loops is spatially structured and time-dependent, with any
given loop alternating between variable intervals and regions of
upflow and downflow. As demonstrated below, however, the overall
conservation principles mean that, when averaged over time, and/or
over many separate loops with complex structure, key characteris-
tics from 2D and 3D MHD simulations can be relatively well char-
acterized by an idealized ADM model that assumes each loop line
can simultaneously support two oppositely directed, steady-state
flows.

Specifically, as illustrated in figure 1, this ADM analysis dis-
tinguishes three distinct components of material flow within the
loop:

(i) Wind upflow
(ii) Hot post-shock gas
(iii) Cooled downflow

Mass is fed into the loop by the wind upflow, driven by the
radiative flux from the underlying star. Relative to the surface mass
flux ṀB=0/4πR

2
∗ for the non-magnetic case, the mass flux ṁb fed

into a loop with footpoint {R∗, µ∗} scales as (Owocki & ud-Doula
2004)

ṁb(µ∗) = µB(µ∗) =
2µ∗√

1 + 3µ2
∗
, (6)

where µB is the radial projection cosine of the local surface field3,
and the second equality applies equation (4) for a standard dipole.

3 The radial mass flux scales with µ2
B , but the flux along the field line

scales linearly with µB .

100 10
1

0.1

0.01

Figure 2. Dipole magnetic field lines (blue curves) along with the retreated
shock locations (red curves), labeled with cooling parameters ranging from
χ∞ = 0.01 (closest to magnetic equator) to χ∞ = 100 (furthest from
equator) in steps of 1 dex

The flow speed v along the loop should in principle be com-
puted from solution of the acceleration from radiative driving, ac-
counting for the curvature, tilt and areal divergence along the loop;
but to maintain analytic tractability, our ADM analysis simply as-
sumes this speed follows a canonical “beta” velocity law,

v(r)

V∞
≡ w(r) = (1−R∗/r)β , (7)

where the maximum speed V∞ = v(r → ∞) is given here by the
expected terminal speed of a corresponding unmagnetized wind,
and we assume the simple case with β = 1.

As the upflow from a loop footpoint approaches the loop apex
at radius rm, where the scaled speed reaches its maximum loop-
specific value wm = 1 − R∗/rm = µ2

∗, the collision with flow
from the opposite footpoint induces a pair of reverse shocks, one
on each side of the loop apex. This converts the wind kinetic en-
ergy into heat, resulting then in the hot post-shock gas that ex-
tends away from the loop apex by a distance set by the post-shock
cooling length `c. For lower luminosity stars with smaller mass
loss rate ṀB=0 and thus a lower-density wind upflow, the cooling
length can become comparable to the loop apex radius, `c . rm.
As discussed in paper I, this forces a “shock retreat” to a lower
shock radius rs < rm, with thus a slower scaled shock speed
ws = w(rs) = 1 − R∗/rs and so a cooler post-shock tempera-
ture Ts ∼ w2

s . Using the dipole shock-retreat analysis in Appendix
B of paper I (recapitulated in section 2.2.2 below), figure 2 illus-
trates the progressive retreat of the shock with increased cooling
length, as characterized by a cooling parameter χ∞, given below
in equation (13).

Starting from this immediate post-shock temperature Ts of or-
der many MK, radiative cooling in the post-shock region r > rs
causes a decrease in temperature along the loop, eventually reach-
ing near the loop apex the same stellar photoionization equilibrium
temperature of the wind upflow, typically on the order of the stellar
effective temperature of a few 10 kK. The subsonic nature of the
post-shock flow means this cooling layer is almost isobaric, with
the nearly constant pressure P ∼ ρT implying a strong increase in
density ρ as the temperature T declines.

Much like a ball balanced at the top of a hill, the convex up-
ward nature of the magnetic loop near its apex means such dense,
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cooled material is gravitationally unstable, and so begins a gravita-
tional free-fall along the loop to form the cooled downflow com-
ponent of the DM. The strong compression, and relatively slow
infall speed, means the density is much higher than in the wind
upflow, and the several 10kK equilibrium temperature means it can
efficiently radiate in hydrogen emission line series, leading then to
prominent optical emission in lines like Hα (Howarth et al. 2007;
Sundqvist et al. 2012) that are much stronger than from the wind.
Moreover it is cool enough that there is a significant X-ray bound-
free opacity from abundant, partially ionized heavy elements like
CNO and Fe, which can thus play a role in attenuating the X-rays
emitted from the hot post-shock gas (Petit et al. 2015).

As noted, in 2D and 3D MHD simulation of DM’s (ud-Doula
et al. 2013, paper I), these three components of wind upflow, hot
post-shock gas, and cooled downflow become mixed together in
complex, highly variable combinations, with 3D models showing
structure down to scales of R∗/100 or less, such that even loop
lines separated by such a small scale can be in markedly different
phases for the cycle of shock-build-up, cooling, and then infall (ud-
Doula et al. 2013).

But as we demonstrate in section 3 below, if one takes a suit-
ably long time average, covering many such infall cycles, then
these stochastic variations become smoothed out, leaving a distinc-
tive and organized large-scale spatial distribution. This can be well
characterized by a superposition of the density, velocity and tem-
perature of the wind upflow, hot post-shock gas, and cooled down-
flow. The next subsections quantify this in terms of relatively sim-
ple ADM scalings based on quasi-steady-state conservation applied
to the material from each component.

2.2.1 Wind upflow

The conditions in the wind upflow are quite straightforward to spec-
ify. As noted, the speed is assumed to follow the β = 1 law given
in equation (7),

vw(r) = V∞w(r) = V∞(1−R∗/r) . (8)

The density then follows from steady-state mass continuity, with
base mass flux (6), and accounting for the dipole area divergence,

ρw(r, µ)

ρw∗
=
ṁb(µ∗)

w(r)

B(r, µ)

B∗(µ∗)
, (9)

where ρw∗ ≡ ṀB=0/4πR
2
∗V∞ is a characteristic density for an

unmagnetized wind with mass loss rate ṀB=0 and terminal speed
V∞.

Using equations (1), (3), (6), and (8), we can rewrite this in
a form that explicitly shows the dependence on radius and co-
latitude,

ρw(r, µ)

ρw∗
=

√
r/R∗ − 1 + µ2

√
1 + 3µ2

(r/R∗ − 1) (4r/R∗ − 3 + 3µ2)

(
R∗
r

)3/2

. (10)

Finally, the temperature of the wind upflow is expected to be
of order the stellar effective temperature, but its actual value is not
relevant to the ADM model, so long as the upflow is sufficiently
supersonic to justify use of the strong-shock scaling in modeling
the post-shock flow, as discussed next.

2.2.2 Hot post-shock gas

Let us next derive conditions in the hot post-shock gas in the re-
gion between the shock radius and loop apex, rs < r < rm. Our

analysis builds on and extends the X-ray analytic dynamical mag-
netosphere (XADM) formalism developed in paper I, deriving now
explicit expressions for the spatial variation of the temperature in
this post-shock cooling layer.

We begin with the equation for advective change of the spe-
cific enthalpy (5/2)kT due to radiative cooling, characterized by
a radiative cooling function Λ, which we write in a mass-weighted
form Λm = Λ/µpµe, with µp and µe respectively the mean mass
per proton and per electron (see section 2 of Kee et al. (2014), and
section 2.5 and Appendix B of paper I),

5k

2
v
dT

db
= −µ̄ρΛm , (11)

where µ̄ is the mean molecular weight, and the temperature deriva-
tive is with respect to the field line coordinate b. The nearly constant
pressure P ∼ ρT of this post-shock layer implies a strong increase
in density ρ as temperaure T declines.

Using steady mass flux conservation ρv ∼ B and this near
constancy of the pressure P ∼ ρT , we can eliminate both the den-
sity ρ and the flow speed v in favor of the temperature T . Following
the analysis in Appendix B of paper I, we can then integrate (11)
to obtain an implicit solution for the temperature decline from the
post-shock value Ts to the much lower (near zero) temperature at
the loop apex,

1−
(
T

Ts

)3

=
3

χ∞

ṁb

w4
s

B2
s

B∗Bm

rm
R∗

∫ b(r)

b(rs)

Bm
B

db

rm
; (12)

here Bm ≡ B(rm), and ṁb accounts for the mass loss weighting
for a given field-line flow tube, defined as a fraction of the spherical
mass loss ṀB=0 used in the definition of the cooling parameter
(taken from equation (25) of paper I),

χ∞ ≡
15π

128

V 4
∞R∗

ṀB=0Λm
≈ 0.034

V 4
8 R12

Ṁ−6

, (13)

with scaled values R12 ≡ R∗/1012 cm, V8 ≡ V∞/108 cm/s, and
Ṁ−6 ≡ ṀB=0/10−6M�/yr.

Following eqns. (B11)-(B14) of paper I, the path integral of
the field strength along the loop can be evaluated as∫ b(r)

b(rs)

Bm
B

db

rm
= g(µs)− g(µ(r)) , (14)

where

g(µ) ≡
∫ |µ|

0

(
1− µ2)3 dµ =

∣∣∣∣µ− µ3 +
3µ5

5
− µ7

7

∣∣∣∣ , (15)

with the absolute value operations ensuring that g(µ) remains pos-
itive even in the lower hemisphere, where µ < 0. Applying the
boundary condition that the temperature nearly vanishes at the loop
apex, and so formally taking T (rm) ≈ 0, we find, since g(0) = 0,
that the spatial variation of temperature in this hot component of
the ADM can be written as

T̃h(r, µ) = Ts

[
g(µ)

g(µs)

]1/3

; rs < r < rm , (16)

where, for the assumed case of a highly supersonic outflow yield-
ing a strong shock, the immediate post-shock temperature Ts =
T∞w

2
s , with

T∞ =
3

16

µ̄V 2
∞

k
≈ 14 MK V 2

8 ≈ 1.2 keV V 2
8 . (17)

In practice, to account for the effects of photoionization heating by
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Figure 3. Mosaic of ADM hot-component properties. The left, center, and right columns are for cooling parameters χ∞ = 0.1, 1, and 10, respectively.
The upper row shows hot post-shock temperature, scaled by maximum wind-shock temperature, Th/T∞. The bottom row shows log of the density in the
post-shock hot gas (ρh), scaled by the characteristic wind density ρw∗ ≡ ṀB=0/4πV∞R

2
∗.

log(ρ/ρc* )

-1.0

-0.5

0

0.5

1.0

Figure 4. Log of the density of cool material from both the cooled downflow, ρc and the wind upflow ρw , scaled in units of ρc∗, and assuming v∞/ve = 3.
The 3 panels show results for apex smoothing lengths δ/R∗ = 0, 0.1, and 0.3 (left, center, right).

the underlying star, we do not allow the temperature to fall below
the stellar effective temperature,

Th(r, µ) = max[T̃h(r, µ), Teff ] , (18)

where here we assume a typical hot-star value Teff =30,000 K.
The shock radius rs = rm(1 − µ2

s) is obtained by solving a
transcendental equation for the dipole shock retreat, as derived in
equation (B16) of paper I,

g(µs) =
χ∞
6µ∗

1 + 3µ2
∗

1 + 3µ2
s

(
wsrs
rm

)4(
rs
R∗

)2

. (19)

Figure 3 of paper I plots the variation of the scaled shock speed ws
vs. cooling parameter χ∞, for various loop apex speeds wm. The
red lines in figure 2 here illustrate the progressive spatial retreat of

the shock away from the loop apex at the magnetic equator as the
radiative cooling parameter is increased from a small (χ∞ = 0.01)
to large (χ∞ = 100) values in steps of 1 dex.

Let us next obtain the spatial variation of the density for this
hot, post-shock region. For a strong shock, the density of the im-
mediate post-shock gas is simply a factor four times the incom-
ing wind density at the shock, ρs = 4ρw(rs). Since the pressure
P ∼ ρT is nearly constant in this subsonic post-shock cooling
layer, we can write the spatial variation of density of the hot gas as

ρh(r, µ) = 4ρw(rs, µs)
Ts

Th(r, µ)
; rs < r < rm , (20)

where Th is obtained from equations (18) and (16).
Using mass continuity, we can also readily derive the spatial
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variation of the post-shock flow speed. For a strong shock, the im-
mediate post-shock speed is just a quarter of the incoming wind
speed, vs = vw(rs)/4, while the spatial variation is given by

vh(r, µ) =
wsV∞

4

Th(r, µ)

Ts

B(r, µ)

Bs
; rs < r < rm , (21)

where the field magnitude B(r, µ) is given by (3).
The top two rows of figure 3 plot results for the spatial vari-

ation of Th (top) and log ρ (middle), for the 3 cooling parameter
values χ∞ =0.1, 1, and 10 (left, middle, and right columns).

2.2.3 Cooled downflow

Once this hot post-shock gas cools, the stellar gravity pulls the
cooled material back to the star, accelerating from near zero speed
at the loop apex at rm, into a cooled downflow along the loop. For
effective4 stellar mass M∗ and radius R∗, and so surface escape
speed ve ≡

√
2GM∗/R∗, conservation of gravitational + kinetic

energy gives for the cold gas downflow speed,

vc(r, µ) = ve

√
R∗
r
− R∗
rm

= ve |µ|
√
R∗
r
. (22)

Using mass conservation, the associated density ρc can be
computed in a completely analogous way as the wind upflow den-
sity ρw in equation (9), but now replacing the wind upflow speed
vw with the cooled downflow speed vc ,

ρc(r, µ)

ρc∗
= ṁb(µ∗)

√
r/R∗

µδ

B(r, µ)

B(R∗, µ∗)
, (23)

where ρc∗ ≡ ṀB=0/4πR
2
∗ve = ρw∗V∞/ve is a characteristic

density for the downflow. To account for the fact that this infall is
typically initiated from some finite length δ away from the exact
loop apex, in the denominator here we have replaced the µ factor
in equation (22) for the speed vc with

µδ ≡
√
µ2 + δ2/r2 , (24)

which has the effect of smoothing the density near the magnetic
equator over the scale δ. Using this and equations (1), (3), and (6),
we can rewrite (23) in a form that explicitly shows the dependence
on radius and co-latitude,

ρc(r, µ)

ρc∗
=

√
r/R∗ − 1 + µ2

√
1 + 3µ2√

µ2 + δ2/r2 (4r/R∗ − 3 + 3µ2)

(
R∗
r

)2

. (25)

The value of this apex smoothing length δ can be set based on re-
sults from MHD simulations, or derived from comparison to obser-
vations (see section 4).

The colorplot in figure 4 shows the spatial variation of this
cooled downflow density, log ρc/ρc∗, for 3 selected values of the
smoothing length, δ/R∗ = 0, 0.1, and 0.3 (left, center, right). The
top row of figure 5 shows the density for both the wind and cooled
downflow for the case δ/R∗ = 0.3 (left panel), along with latitu-
dinal and radial components of the downflow velocity (middle and
right panels). The lower panel shows corresponding time-averages
from full MHD simulations, as discussed further in section 3.1.

Finally, as with the wind upflow, the temperature of the cooled
downflow is expected to be of order the stellar effective tempera-
ture, but its actual value and spatial variation is not set in this ADM

4 “Effective” here means reduced to account for the reduction in effective
gravity from electron scattering. Because the high density means most lines
will be saturated, we ignore the effect of line-opacity in reducing gravity.

formalism, and so can be modeled separately in the context of its
relevance to each specific diagnostic.

2.3 Summary scalings for ADM components

To facilitate application of this ADM model in deriving observa-
tional diagnosts, let us collect here the scaling relations for temper-
ature, speed, and density in each of the three model components.

For the wind upflow (section 2.2.1):
vw is given by equation (8);
ρw is given by equation (10).

For the hot component (section 2.2.2):
Th is given by equations (18) and (16);
vh is given by equation (21);
ρh is given by equation (20),

with all 3 using the auxiliary relations (15), for the field line geom-
etry function g(µ), and (19), for shock location, {rs, µs}.

For the cooled downflow (section 2.2.3):
vc is given by equation (22);
ρc is given by equation (25).

In the plots here, lengths are in stellar radii R∗, velocities are
scaled by the stellar escape speed ve, densities are in ρc∗ ≡
ṀB=0/4πR

2
∗ve, and temperatures are in T∞ = (3/16)µ̄V 2

∞/k.
The global parameters are: the maximum closed loop apexRc,

fixed here to Rc/R∗ = 4; the ratio of wind terminal speed to sur-
face escape speed, fixed here to V∞/ve = 3; the loop apex smooth-
ing length δ, with standard value δ/R∗ = 0.3; and the cooling
parameter χ∞ (defined in equation 13). All components also have
floor temperature set to the stellar effective temperature, taken here
to be Teff = 30, 000 K.

Finally, for all three components, the flow is along the dipole
field line, with thus vectorial direction given by equation (4), with a
radially positive sense for the upflow and post-shock components,
and a negative sense for the cooled downflow.

3 COMPARISON TO MHD SIMULATIONS

To assess the potential for these simplified ADM scalings to pro-
vide a basis for deriving observational diagnostics, let us next com-
pare their predictions to time-averaged results from full MHD sim-
ulations.

For consistency with the sample plots given above, we again
choose as a standard the ADM model with a maximum loop clo-
sure radius Rc = 4R∗. For corresponding MHD simulations, we
use the standard stellar parameters of paper I, but now with a po-
lar magnetic field Bp = 5000 G, which gives an Alfvén radius
RA ≈ Rc. The time averaging begins at t = 500 ks, when the
structure has fully relaxed from the initial condition, and extends
to t = 4400 ks, representing about ten cycles of mass build-up and
dynamical infall. To ensure the north-south symmetry of an arbi-
trarily long time average (or from azimuthal averaging of a full 3D
model; see figure 3 of ud-Doula et al. (2013)), we also carry out a
north-south averaging of all the time-averaged quantities from this
2D MHD simulation.

The remainder of this section focuses on the relatively cool
(T ∼ Teff ∼ 104 K) material in the outflowing wind and the
cooled downflow. This is then used in §4 to derive signatures in
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Figure 5. Top row: For an ADM model with maximum closure radius Rc = 4R∗, the top left panel shows log density (scaled by ρc∗), given by the wind
outflow component for loops with apex radii rm > Rc, and by the cooled downflow component (with δ/R∗ = 0.3) for loops with rm 6 Rc. The middle and
right panels show the cooled downflow speed in the latitudinal (vc,θ) and radial (vc,r directions, scaled by the stellar surface escape speed ve. Bottom row:
Corresponding time averages for MHD simulations, starting in the lower left with the mean density 〈ρ〉. To reflect the scaling of line emission, we show and
the density-squared-weighted velocity (

〈
ρ2v

〉
/
〈
ρ2

〉
) in the latitudinal (middle) and radial (right) directions. The MHD simulations use parameters that give

an Alfvén radius that is approximately equal to the maximum closure radius of the ADM model, RA ≈ 4R∗ = Rc. In the MHD results, the appearance of
the wind speed in open regions is suppressed by truncating values outside the given colorbar ranges to white. To suppress the impact of stochastic, asymmetric
north-south variations in these 2D MHD simulations, the data has been north-south symmetrized to provide a clearer correspondence to the inherent symmetry
of the ADM model. In the middle and right lower panels for the MHD simulations, we have set to white any flow that is beyond the quoted colorbar ranges;
this has the effect of clearly delineating between open and close field regions, thus allowing a clearer comparison with corresponding ADM results that just
show closed-loop infall. The colorbar labels are in CGS units for the MHD simulation; quantitative comparison to the ADM can be done by scaling these with
the associated values ρc∗ ≈ 1.5× 10−13 g cm−3 for characteristic wind density, and ve ≈ 700 km s−1.

recombination-based emission lines like Hα. Section 5 next fo-
cuses on X-ray emission from the hot post-shock gas, and its ab-
sorption from the wind and cooled downflow.

3.1 Cooled downflow

First, for closed loop lines with apex radii rm 6 Rc = 4R∗,
the top row of figure 5 plots ADM scalings for the density (with
apex smoothing length δ = 0.3R∗; left panel), and the latitudi-
nal and radial components of velocity (middle and right panels) in
the cooled downflow component. The lower panels compare cor-
responding time-averaged quantities from the MHD simulations.
For simplicity, the lower left shows the time averaged density 〈ρ〉,
but because emission profiles depend on the velocity of material
weighted by its density-squared emission measure, the middle and
right panels show the time averages of the speeds weighted by the
density squared.

Note that in the MHD model the signatures of trapped mate-
rial in closed magnetic loops is radially more extended than in the
idealized, dipole form of closed loops in the ADM model, due to
the dynamical interaction of the field and radiatively driven wind
outflow. The dynamical variation of infall episodes means the den-

sity is less equatorially concentrated in the MHD vs. ADM models,
but overall the MHD model density, as well as the radial and lat-
itudinal velocities, show a clear boundary change linked to closed
loop geometry, much as in the ADM case.

To make these comparisons semi-quantitive, the assumed stel-
lar parameters of the MHD simulation (which are the same as the
standard model of paper I) imply a surface escape speed ve ≈
700 km s−1, and a characteristic wind-fed loop density ρc∗ ≈
1.5 × 10−13 g cm−3. Using these to scale the quoted CGS values
in the colorbars for the MHD simulation in the lower row of figure
5, we see that the color levels are in quite good agreement with the
ADM case.

However, one key aspect of the cooled downflow not ac-
counted for in the ADM steady-state picture is that in full MHD
simulations, the material infall actually occurs in sporadic intervals
of highly compressed, localized streams. This implies a significant
enhancement in the mean of the density-squared, which for the
two-body collision or recombination processes that underlie line
emission is what sets the overall emission strength. For this MHD
model, figure 6 plots now the time-averaged rms density

〈
ρ2
〉1/2.

While the overall form is very similar to the density plot in fig-
ure 5d, note that, due to the clumped infall, the colorbar scale is
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Figure 6. For the MHD model shown in figure 5, spatial variation of time-
averaged rms density

〈
ρ2

〉1/2. Note that the overall form is very similar
to the time-averaged density plot in figure 5d, but the colorbar scale here
is enhanced by about a factor 7, due to the clumping associated with the
complex infall of compressed material.

now enhanced by about a factor 7. The associated “clumping fac-
tor” fcl ≡

〈
ρ2
〉
/ 〈ρ〉2, which effectively sets the level of emis-

sion enhancement relative to a smooth model with the same aver-
age density, is thus typically increased by several factors of ten. In
applying the ADM scalings to model such optical emission lines,
one should account for this clumping by enhancing the emission by
a clumping factor fcl of this order. The next section provides a first
example for the case of hydrogen H-α line emission.

4 APPLICATION TO OBSERVATIONAL DIAGNOSTICS:
OPTICAL LINE EMISSION

With this background, let us now derive scaling relations and per-
form a first diagnostic application of the ADM model for the hydro-
gen H-α line. A key advantage with Hα is that under typical O-star
wind conditions its atomic level populations remain quite close lo-
cal thermodynamic equilibrium (LTE) with respect to the real pop-
ulation of ionized hydrogen (e.g., Puls et al. 1996; Sundqvist et al.
2011), allowing one to use relatively simple methods to analyze this
line also in magnetic O-stars (Sundqvist et al. 2012).

4.1 ADM-modified scaling relation for Hα emission

The principal scaling of Hα emission in OB-star winds comes from
considering the line optical depth τ in the Sobolev approximation.
For Doppler width ∆ν ≡ vthν0/c and directional Sobolev length
L = vth/(dvn/dn), this is

τ = Aρ2L/∆ν, (26)

where we have absorbed atomic constants of the Hα transition and
dependencies on electron temperature and occupation number den-
sities into the parameter A, as given in Appendix C (see also Puls
et al. 1996; Petrenz & Puls 1996). For an observer viewing from
above the magnetic pole, equation (26) can be used to derive an

optically thin emission-measure scaling law for the ADM model
(see Appendix C) for a polar-view observer:

WADM ∼
Ṁ2
B=0 fcl

R3
?v2

e

f(Rc)

δ/R?
, (27)

where the function f(Rc) describes the dependence on the size of
the closed-loop magnetosphere. Equation (27) illustrates explicitly
how the standard scaling for non-magnetic wind emission is mod-
ified here by the two magnetic parameters δ and Rc ≈ RA (es-
sentially setting the ADM disc-thickness and size), and compari-
son to full radiative transfer calculations (Sect. 4.2) indicates that
this simple scaling law captures quite well the principal scaling of
ADM Hα emission under typical OB-star conditions.

4.2 A first diagnostic application

Building on the simple scaling analysis above, let us now make a
first application toward using optical emission lines like Hα to di-
agnose the winds and magnetospheres of slowly rotating magnetic
OB-stars. To compute synthetic spectra from the steady-state ADM
density and velocity structure, we follow Sundqvist et al. (2012)
and solve the formal solution of radiative transfer in a 3D cylindri-
cal system for an observer viewing from angle α with respect to
the magnetic axis. Defining β and i as the angles that the magnetic
axis and the observer line-of-sight make with the rotation axis, the
variation of α with rotational phase Φ is given by

cosα = sinβ cos Φ sin i+ cosβ cos i . (28)

We solve the transfer equation only in the infall compoent, assum-
ing Hα departure coefficients and an electron temperature structure
calibrated by 1D NLTE model atmosphere calculations (e.g., Puls
et al. 1996; Sundqvist et al. 2011), and using an input photospheric
Hα line-profile as lower boundary condition (see Sundqvist et al.
2012, for more details).

The rotational phase variation of the emission can now be used
to derive the magnetic geometry of the oblique rotator, and the ab-
solute level of Hα emission further constrains the rate ṀB=0 by
which the magnetosphere is fed by radiatively driven wind plasma
(see also Wade et al. 2015); this latter diagnostic is directly evident
through the scaling in equation (27), and is analogous to how Hα
emission from non-magnetic O-stars constrain the wind mass-loss
rate. Moreover, since the smoothing length parameter δ affects the
computation of line optical depth quite differently depending on
viewing angle, the level of emission contrast between maximum
and minimum phases (’high’ and ’low’ states) can, in principle,
also be used to constrain this ADM parameter.

As an explicit example of the potential diagnostic power of
our model, Figure 7 shows quite remarkably good fits to the ob-
served Hα light-curve and dynamic spectra (Howarth et al. 2007)
of the slowly rotating magnetic O-star HD191612 (Wade et al.
2011; Sundqvist et al. 2012). We use the stellar parameters derived
for HD191612 by Howarth et al. (2007) (effective escape speed
ve = 600 km/s and stellar radius R? = 14.5R�), and a maxi-
mum loop-closure radius set additionally by the observed dipole
magnetic field strength (Howarth et al. 2007; Wade et al. 2011),
Rc ≈ rA ≈ η

1/4
? R? ≈ 3.5R? for wind confinement-parameter

η? ≡ B2
?R

2
?/(ṀB=0v∞) (ud-Doula & Owocki 2002). Since RC

depends only weakly on mass loss and wind terminal speed (to the
1/4 power) and all other parameters here are known from observa-
tions, we may safely keep the closure radius fixed during the fitting.

Matching the level and variability contrast of the observed
Hα line profiles yields here δ ≈ 0.5R? and ṀB=0

√
fcl ≈ 5 ×
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Figure 7. Left: Fit to observed Hα equivalent width (EW) light-curve (EW in units of Angstrom, with net emission counted positive) of HD191612 (red
squares) as function of rotational phase, using the ADM model (black solid line). Right: Normalized flux dynamic spectra of observations (left panel) and
simulations (right panel).

10−6 M� yr
−1. This is approximately a factor of three higher than

the mass-loss rate used by Sundqvist et al. (2012) to model the
Hα rotational phase variation in HD191612 directly from MHD
simulations, and reflects the fact that the steady-state ADM model
does not account for density-squared enhancements produced by
the highly clumped streams of infalling material (see discussion
above)5. §3.1. suggests clumping factors of several factors of
ten, and adopting here for example fcl ≈ 50 would then imply
ṀB=0 ≈ 0.7 × 10−6M� yr

−1, which is in quite good agree-
ment with predictions from radiatively driven wind theory (Vink
et al. 2000). Using these parameters, the magnetic geometry is then
also derived from the rotational phase variation and shape of the
Hα equivalent-width curve, resulting here in a degenerate couple
(β, i) = (i, β) ≈ 23, 73◦, which agrees well with the magnetic
geometry derived from spectropolarimetry (Wade et al. 2011).

In order to match the observed line widths, we have further
convolved the dynamic synthetic ADM spectra presented in Fig-
ure 7 by a 150 km/s isotropic Gaussian ’macro-turbulence’. While
it is not surprising the steady-state ADM models show too little
velocity dispersion, we note that such extra broadening is actually
required also when modeling Hα directly from MHD simulations
(Sundqvist et al. 2012; ud-Doula et al. 2013).

While the analysis here shows very good fits of the ADM
model to the hydrogen H-α line in HD191612, the key aim of this
first study has been to demonstrate the diagnostic potential of the
model, rather than to obtain perfect estimates of all stellar, wind,
and magnetic parameters. As discussed further in Appendix C, fu-
ture detailed parameter-studies of different regimes will be required
to fully evaluate, e.g., the accuracy of ADM-derived ṀB=0.

5 While the modeling in Sundqvist et al. (2012) naturally includes this ef-
fect, also this analysis neglects the stochastic, small-scale inhomogeneities
caused by the instability inherent to line-driven winds (Owocki, Castor &
Rybicki 1988); simulating also this strong instability requires a non-local
treatment of the radiation line force and has yet to be implemented within
any MHD model.

5 APPLICATION TO OBSERVATIONAL DIAGNOSTICS:
X-RAYS

5.1 Hot post-shock gas and X-ray emission

The results in section 2.2.2 for the temperature and density of the
hot post-shock gas provide a basis for computing the X-ray emis-
sion from such DM’s. Following Appendix B of paper I, for a
given gas temperature T let us write the spectrally integrated (mass-
weighted) emission function above a specified X-ray energy Ex as

Λ̄m(T,Ex) ≈ Λme
−Ex/kT , (29)

where the approximation expresses this in terms of the total (mass-
scaled) cooling function Λm and a simple “Boltzmann” factor
in the ratio Ex/kT . In the context of the present ADM model,
let us characterize the threshold energy Ex in terms of its ratio
εx ≡ Ex/kT∞ to the maximum shock energy kT∞. The associ-
ated spectrally integrated volume emissivity in the hot, post-shock
region is then given by

ηx(r, µ, εx) = Λm (ρh(r, µ))2 e−εxT∞/Th(r,µ) . (30)

For the full MHD simulations of paper I, an analogous simplified
form (30) was found to reproduce quite well the spatial distribution
of X-ray emission computed from a full integration of the atomic
emissivity above the given threshold energyEx. Appendices A and
B here provide a further analysis of how the ADM model can be
used to derive both the differential emission measure (DEM), as
well as a shock-temperature distribution p(Ts).

5.2 X-ray emission in ADM vs. MHD simulations

Let us next make a direct comparison of the spatial distribution of
the X-ray emission in ADM model vs. that found in MHD sim-
ulations. For the same 3 cooling parameter values (χ∞ = 0.1,
1, and 10) used for the hot-gas temperature and density plots in
figure 3, the top row of figure 8 plots the associated variation of
the X-ray emissivity ηx, scaled here by Λmρ

2
w∗χ∞. The bottom

row compares results for the MHD simulations, showing now the
time-averaged Boltzmann corrected emission (divided by Λm, to
give results in units of a density squared) for gas above a thresh-
old temperature of Tx = 1.5 MK, corresponding to an X-ray
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threshold energy Ex = kTx ≈ 0.13 keV. For the terminal speed
v∞ = 2500 km/s of the associated non-magnetic wind, the termi-
nal shock energy kT∞ = 7.5 keV then implies a threshold-energy
ratio εx ≡ Ex/kT∞ = 0.017, which is thus the value used in the
corresponding ADM models. As in figure 5, the MHD simulation
output here has been north-south symmetrized to provide clearer
comparison with the symmetric ADM model.

Paper I showed that the volume integrated X-emission from
MHD simulations can6 be well modeled with an “XADM” anal-
ysis that is grounded in the same basic ADM scalings used here
(see eqns. A2-A5 of Appendix A). However, figure 8 shows that,
while the idealized ADM model predicts a marked concentration
of the X-ray emission in the equatorial region around the loop tops,
the time-averaged X-ray emission in the MHD simulations is much
more spatially extended about the magnetic equator.

Indeed one can identify two distinct X-ray emitting regions,
with distinct physical origins. The X-rays from inner loops arise
from sporadic intervals of “siphon” flow between loop footpoints.
This effect is still poorly understood (Bard & Townsend 2015), but
it makes only a minor overall contribution to the total X-ray emis-
sion, and is not included in the ADM model.

The second, outer-loop component arises more directly from
the collisional shock and retreat that is characterized by the hot
post-shock gas in the ADM analysis. The time-variable ‘sloshing’
of hot post-shock gas in the MHD simulations makes its associated
time-averaged X-ray emission much more extended, but its radial
onset in the MHD simulations corresponds quite well with the inner
edge of the shock retreat in the ADM model.

The upshot is that, while the ADM model exaggerates the
equatorial concentration of the latitudinal distribution of X-ray
emission, it provides a good general description of both its over-
all spatially integrated value (paper I), and it radial distribution and
extension away from the stellar surface.

5.3 X-ray absorption

While the shock-heated X-ray emitting plasma is expected to be
mostly optically thin to its own radiation, the cool components of
the wind and magnetosphere may very well be optically thick. The
continuum opacity in this modestly ionized plasma is due primarily
to inner-shell photoionization (bound-free opacity) of metals, and
is wavelength-dependent, with generally higher opacities at longer
wavelengths. The associated attenuation of the X-rays may lead to
potentially observable effects that should have diagnostic power,
especially in phase-dependent spectra.

In single O stars with embedded wind shock X-rays, signa-
tures of wind absorption are seen in stars with higher mass-loss
rates (Ṁ & few×10−7M�yr−1) via the distortion of X-ray emis-
sion line shapes (Cohen et al. 2014). Broadband signatures of X-ray
absorption, hardening the emergent spectrum, are also seen in both
high-resolution grating spectra and lower resolution CCD spectra
of single O stars (Leutenegger et al. 2010; Cohen et al. 2011). Sim-
ilar X-ray absorption by the fast wind in the open field regions of
magnetic O stars should be expected, while the contribution from
the magnetosphere, with its steady-state upflow, shock, and down-
flow cycle, should be comparable to that from a spherical unmag-
netized wind. In fact, because of the slower velocity and higher
density of the confined wind in the magnetosphere, the degree of

6 with a factor 0.2 reduction associated with the duty cycle of X-ray emis-
sion intervals between infall events; see paper I.

X-ray attenuation in the cooled downflow component of the ADM
is potentially large.

The bound-free X-ray opacity in the wind and cool magneto-
spheric plasma is expected to more or less monotonically increase
with wavelength through most of the X-ray bandpass, as shown in,
e.g., figure 2 of Cohen et al. (2014). This is because for each ion
that contributes to the bound-free opacity, the opacity is strongest
closest to the threshold set by the ionization potential and decreases
strongly toward higher energies. The opacity at any wavelength is
the sum of the contributions from all abundant ions. The biggest
uncertainty and potential cause of star-to-star variation in the X-
ray opacity is likely due to helium, which may be singly ionized in
some cases – and would thus contribute significant opacity at longer
wavelengths – and may be fully ionized – and thus contribute no
bound-free opacity – in other cases. The size of this helium ion-
ization effect can be seen in figure 3 of Cohen et al. (2014). Note
that the wind opacity at a fiducial photon energy of 1 keV (12 Å)
corresponds to a cross section per hydrogen atom of roughly 10−22

cm2.

We can characterize the overall optical depth of a given ADM
model by scaling the column density to the quantity τ∗,λ =
κλṀB=0/4πR∗V∞. Thus a given mass-loss rate and a given opac-
ity at a particular wavelength corresponds to a particular τ∗,λ value,
and the optical depth is degenerate in these two parameters, being
proportional to their product. In figure 9 we show optical depth
maps for three different τ∗ values, each computed for two differ-
ent viewing geometries: one in the magnetic equator and one over
the magnetic pole. For the largest characteristic optical depth value
shown, τ∗,λ=1, which is expected for longer observed wavelengths
in a star with a theoretical, non-magnetic mass-loss rate of less than
10−6M�yr−1, there is significant magnetospheric absorption of X-
rays in even the front hemisphere in both the edge-on and pole-on
views. This is in addition to occultation by the star itself, which will
only be relevant for the edge-on view if the X-ray emitting plasma
is in the magnetic equator. The figure shows our standard model
with Rc = 4R∗. A larger closed magnetosphere should produce
even more attenuation. Although there will be some variation de-
pending on the assumed location of the X-ray emitting plasma. As
discussed in the previous section, the ADM models show a concen-
tration of the weighted X-ray emissivity in the magnetic equatorial
plane and near 2R∗, with very little dependence on χ, while the
MHD simulations show a somewhat more complex situation (Fig-
ure 8).

From an observational point of view, no significant X-ray ab-
sorption is seen in the phase-resolved Chandra grating observations
of the prototype magnetic O star, θ1Ori C, which has RA ∼ 2R∗
(Gagné et al. 2005). Numerical MHD simulations show magneto-
spheric column densities of order 1021 cm−2, consistent with negli-
gible attenuation (ud-Doula et al. 2013; Petit et al. 2015, figure 10).
On the other hand, significant X-ray absorption is detected in the
low-resolution Chandra spectra of NGC 1624-2 (Petit et al. 2015),
which is the O star with the strongest magnetic field and the largest
magnetosphere (RA ≈ 11 vs.≈ 2R∗ for θ1Ori C). More X-ray ab-
sorption is seen in NGC 1624-2 when it is observed edge-on than
when it is observed at a nearly pole-on phase, a viewing angle mod-
ulation that the ADM model is well suited to model. Such a large
magnetosphere, with its very strong surface field, is prohibitively
expensive to model using numerical MHD.
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Figure 8. Top: For X-rays above a scaled energy εx = Ex/kT∞ = 0.017, log of ADM emissivity ηx (scaled by Λmρ2
w∗ χ∞) for χ∞ = 0.1, 1, and 10 (left,

middle, right). Bottom: For MHD simulations with the parameters of the standard model in paper I, log of the time-averaged X-ray emissivity above threshold
energy Ex = 0.13 keV, for cooling efficiencies tuned to give χ∞ = 0.1, 1, and 10; the middle (χ∞ = 1) case is the same simulation used for figure 5. For
the terminal speed v∞ = 2500 km/s of the associated non-magnetic wind, the terminal shock energy kT∞ = 7.5 keV implies the same threshold energy
fraction εx ≡ Ex/kT∞ = 0.017 used in the corresponding ADM models. As in figure 5, the MHD simulation data here has been north-south symmetrized
to provide clearer comparison with the symmetric ADM model.
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Figure 9. Spatial variation of optical depth for bound-free absorption of X-ray emission by both the cool downflow and wind outflow components of the ADM
model, as well as by occultation of the opaque star. The top row shows results for a distant observer to the right, with an equator-on view, while the bottom
row is for an observer at the top, with a pole-on view. The model assumes an apex smoothing length δ = 0.1R∗, and a terminal speed V∞ = 3ve for a
corresponding unmagnetized wind. The left, middle and right columns show cases with a corresponding wind optical depth τ∗ ≡ κṀ/(4πR∗V∞) = 0.1,
0.3 and 1.
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6 SUMMARY AND FUTURE OUTLOOK

The ADM analysis here provides readily computable formulae for
the basic hydrodynamic quantities – density, temperature, and ve-
locity – for each of the three components of a wind-fed dynami-
cal magnetosphere – wind upflow, hot post-shock gas, and cooled
downflow. Comparison with time-averaged values derived from de-
tailed MHD simulations show, with some caveats, quite good gen-
eral agreement. As such, this ADM formalism can provide a con-
ceptually and computationally much simpler basis for synthesizing
observational diagnostics, and for deriving broad scaling relations
for how these depend on stellar, wind, and magnetic parameters.

For X-ray spectral bands, §5.2 compares directly the X-ray
emission in ADM vs. MHD models, while §5.3 discusses how ob-
served X-ray spectra could be affected by absorption from the cool
components. Appendices A and B present a general scaling analy-
sis of how the ADM model can be used to derive both the differen-
tial emission measure, as well as a shock-temperature distribution
p(Ts). This augments the XADM analysis of paper I, and so builds
on the promising agreement of the derived scaling laws with obser-
vations (ud-Doula et al. 2014; Nazé et al. 2014).

To illustrate ADM spectral synthesis in optical emission lines,
we exploit the relative simplicity of the Hα line formation pro-
cess in O-type stars. § 4 explicitly demonstrates the potential di-
agnostic power of the ADM model by a first successful application
to observations of the rotational phase variation of Hα emission
from the O-star HD191612. The remarkably good agreement pro-
vides constraints on key physical parameters like magnetic geome-
try and overall mass loss rate ṀB=0, thus illustrating the utility of
the ADM formalism even for modeling individual stars with DM’s.
The analysis in Appendix C provides also general scaling relations
with stellar, wind, and magnetospheric parameters.

But the simple, steady-state nature of the ADM model paves
the way for future applications that require more elaborate NLTE
radiative transfer. For example, in magnetic O-stars optical helium
lines like HeII 4686Å show clear signatures of being formed in a
DM (Grunhut et al. 2012; Wade et al. 2015), and recent observa-
tions of magnetic massive stars in the infra-red (e.g., Oksala et al.
2015) suggest a strong influence of the magnetosphere also for key
diagnostics in that waveband. Moreover, the physical explanation
of the so-called Of?p morphological phenomena (Walborn 1972)
of magnetic O-stars is very likely related to a complex formation
scenario of nitrogen and carbon spectral lines in a DM.

In summary, much as complex computer codes like CMFGEN

(Hillier & Miller 1998) or FASTWIND (Puls et al. 2005) nowadays
are routinely applied for spectroscopic analyses of non-magnetic
hot stars with winds, we envision that the ADM model presented
here lays the groundwork for development of NLTE radiative trans-
fer tools for detailed spectroscopic analysis of magnetic massive
stars.
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APPENDIX A: COOLING OF POST-SHOCK MATERIAL
ALONG FIXED LOOP LINE.

For plasma of density ρ at temperature T , we can approximate the
local volume emissivity of X-rays above a given energy Ex as,

η(Ex) = ρ2 Λ̄(T,Ex)

µeµp
≈ ρ2Λm(T )e−Ex/kT . (A1)

Here Λ̄(T,Ex) is the integrated plasma emission function above
energy Ex, plotted in figure A2 of paper I; as illustratred by the
corresponding dashed curves in that figure, the latter approximation
expresses this in terms of the total plasma emission, Λm(T ) ≡
Λ̄(0, T )/µeµp, times a Boltzmann factor.

Let us next integrate this over a volume trace along a fixed,
closed magnetic loop line with surface footpoint at a colatitude set
by µ∗, and with a surface field-line-projection µB . In terms of the
associated local area A ∼ 1/|B| of the magnetic flux tube along
the field line coordinate b, the contribution to X-ray luminosity per

colatitude interval dµ∗ is

dLx
dµ∗

(µ∗, Ex) ≈ µB

∫ bm

bs

Λmρ
2 e−Ex/kTAdb (A2)

= − 5k

2µ̄
µB

∫ bm

bs

ρvA
dT

db
e−Ex/kT db (A3)

=
5kTs
2µ̄

µ2
BṀB=0

∫ Ts

0

e−Ex/kT dT

Ts
(A4)

=
15

16
µ2
B
ṀB=0V

2
∞

2
w2
sfx(Ts, Ex) . (A5)

The second and third forms use the energy equation (11) and the
field line mass flux equation (6), while the last equality uses the
fraction fx(Ts, Ex) of shock energy emitted above the threshold
Ex, as given by eqns. (35)-(37) of paper I. This result recovers the
basic XADM scaling derived in section 5 of paper I; integration
over colatitude gives equation (39) there7.

The full ADM model here now specifies the spatial distribu-
tion of the X-ray volume emissivity, through the hot component
scaling given in equation (30).

APPENDIX B: DIFFERENTIAL EMISSION MEASURE

Let us next consider the X-ray differential emission measure
(DEM) resulting from the hot component of this ADM model. In
terms of an emission measure in electron and proton number den-
sity nenpdV within a volume element dV , the DEM contribution
from a given field line b can be written for a differential segment db
along the field line flux tube with area A,[

dEM

d lnT

]
b

≡ nenp T
dV

dT
=
Tρ2A

µeµp

db

dT
. (B1)

Using the energy equation (11), this can be cast in the form,[
dEM

d lnT

]
b

=
ρvA

Λ

5kT

2µ̄
; T 6 Ts . (B2)

The qualifier emphasizes that this only applies to temperatures up
to the shock temperature Ts for this field line; for T > Ts, the
DEM is zero. Conversely, note that for a given temperature T , any
field line with Ts > T contributes to the global DEM at that tem-
perature. This proves very useful for deriving the global DEM in
the analysis below.

To proceed, note that, in the ADM model, both Ts and the con-
stant flow tube mass flux ρvA depend on the footpoint co-latitude
of the field line, as set by µ∗. For a differential latitude interval
dµ∗, the projection of surface radial mass flux along the field im-
plies ρvA = dµ∗(dṁ/dµ∗), which scales with the surface dipole
field radial projection µB as (Owocki & ud-Doula 2004),

dṁ

dµ∗
=

1

2
µ2
BṀB=0 =

2µ2
∗

3µ2
∗ + 1

ṀB=0 , (B3)

where ṀB=0 is the standard (CAK) mass loss rate for a corre-
sponding non-magnetic star, and the factor half accounts for the
equal split of the mass loss in the two hemispheres. Let us then

7 The factor 15/16 stems from the isobaric approximation used in the en-
ergy equation (11) to model the post-shock cooling, since this ignores the
post-shock kinetic energy component, which is (1/4)2 = 1/16 of the total
energy. This is regained through work against a small pressure gradient as
the flow cools toward the full stop in speed at the loop top; see Antokhin
et al. (2004) and Kee et al. (2014).
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define the cumulative mass loss in a band ±µ∗ about the equator
(µ∗ = 0),

ṁ(µ∗) ≡
∫ µ∗

−µ∗

dṁ

dµ∗
dµ∗

= ṀB=0

∫ µ∗

0

4µ2
∗

3µ2
∗ + 1

dµ∗

= ṀB=0
4

3

[
µ∗ −

arctan(
√

3µ∗)√
3

]
. (B4)

Note in particular that for a star with a dipole field that is strong
enough to retain its dipole form at the surface for all latitudes,
the total surface mass flux is a factor ṁ(1)/ṀB=0 = (4/3)(1 −
π/9
√

3) ≈ 0.53 less than a corresponding non-magnetic, spherical
wind.

For a given cooling parameter χ∞ in the ADM model, the
shock temperature is a monotonically increasing function of µ∗,
i.e. Ts(µ∗, χ∞), from which we can derive a corresponding inverse
function µ∗(Ts, χ∞). But for an ADM with a maximum closure
radius Rc set by the magnetic confinement parameter η∗, there is
a corresponding closure latitude set by µc =

√
1−R∗/Rc, with

corresponding maximum scaled pre-shock wind speed wc = µ2
c .

This also sets a maximum post-shock temperature Tc/T∞ = w2
c =

µ4
c , written here in terms of the terminal speed shock temperature
T∞.

In these terms, we can now write the cumulative fraction of
total mass flux that has a shock with temperature above a given
threshold Ts as

p(Ts, µc, χ∞) ≡ ṁ(µc)− ṁ(µ∗(Ts, χ∞))

ṁ(1)
. (B5)

Now, according to (B2) each field line b contributing to this mass
fraction contributes a corresponding amount to the total DEM for
any temperature below the shock temperature, i.e., for T 6 Ts.
This implies that the total DEM from the entire ADM is given in
terms of (B2) by just multiplying by p(T ),[

dEM

d lnT

]
tot

(T, µc, χ∞) =
ṁ(1)ṀB=0

Λ

5kT

2µ̄
p(T, µc, χ∞) .

(B6)
Apart from some minor differences in notation and overall scaling,
this is essentially equivalent to the result given in equation (8) of
Gayley (2014), relating DEM to the shock fraction for the general
case of radiatively cooled shocks. Moreover, for embedded wind
shocks arising from the line deshadowing instability of radiative
driving, Cohen et al. (2014) has recently presented an analysis of
X-ray line emission that infers a power-law form for the cumulative
distribution p(Ts) for the mass fraction undergoing a shock with
temperature > Ts.

The top panel of figure B1 shows a log-log plot of
p(Ts, µc, χ∞) vs. Ts/T∞ for cooling parameters χ∞ = 0.1, 1,
and 10 (dotted, full, dashed curves), and closure radii characterized
by the maximum scaled wind speed wc = 1 − R∗/Rc, ranging in
steps of -0.2 from 1 (representing the limit η∗ → ∞ of arbitrar-
ily strong magnetic confinment) to 0.2 (with a near-surface Rc/R∗
= 1.25, representing only weak magnetic confinement, with η∗ of
order unity.)

Note that, for decreasing closure speed wc, the upper temper-
ature cutoff decreases as Tmax ∼ w2

c . Moreover, for a given, fixed
closure speed wc, the temperature cutoff decreases with increasing
χ∞, reflecting the stronger shock retreat from less efficient cool-
ing, giving then slower pre-shock flow speeds,ws, and thus a lower
maximum shock temperature, Tmax ∼ w2

s .
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Figure B1. Top: Cumulative mass flux fraction p(Ts) yielding a shock tem-
perature above Ts, plotted vs. Ts/T∞ on a log-log scale for scaled clo-
sure radius wind speeds wc = 1 − R/Rc from 1 (uppermost curves)
to 0.2 (lowermost curves) in steps of 0.2. The dotted, full, and dashed
lines correspond respectively to cooling parameters χ∞ = 0.1, 1, and
10. Bottom: Associated scaled differential emission measure, defined by
DEM≡ (T/T∞)p(T ), now plotted as linear DEM vs. log(T/T∞), for
each of the same parameters cited for the top panel.

The bottom panel of figure B1 shows the corresponding linear-
log plots of the scaled differential emission measure. For the simple
ADM model here that approximates Λ as constant fixed at a value
typical of post-shock temperatures, this is defined by

DEM(T, µc, χ∞) ≡ T

T∞
p(T, µc, χ∞)

=
Λ

ṁ(1)ṀB=0

2µ̄

5kT∞

[
dEM

d lnT

]
tot

. (B7)

This assumed constancy of Λ was made to allow analytic solution
of the shock retreat from post-shock cooling, and is justified by
the fact that most of the total cooling length occurs from the ini-
tial cooling from the post-shock temperature, for which the cooling
function varies only weakly with temperature. But in developing
scaling predictions for an observed DEM, one could also readily
apply the ADM derived p(T ) to a more realistic cooling that in-
cludes its full temperature dependence, Λ(T ), via equation (B6).

APPENDIX C: Hα SCALING RELATION

From the Saha-Boltzmann relations and the atomic constants of the
hydrogen 3 → 2 transition, the parameter A in equation (26) of
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Figure C1. Hα emission equivalent width (counted positive) in Angstrom
vs. ṀB=0. The red triangles show results from full radiative transfer calcu-
lations using different values of ṀB=0 (see text). The dotted line displays
the EW scaling according to eqn. C4, scaled to match the result at the
lowest mass loss rate.

the main paper can be written as (Puls et al. 1996; Petrenz & Puls
1996)

A = Const.×T−3/2
e

1 + YHeIHe

(1 + 4YHe)2

(
b2e3.95/Te − b3e1.753/Te

)
.

(C1)
In this equation Te is the wind electron temperature, YHe ≡
nh/nHe the helium number fraction with respect to hydrogen, and
IHe the number of free electrons per helium ion. bi ≡ ni/n

∗
i fur-

ther denotes the kinetic equilibrium (‘NLTE’) departure coefficient
of atomic level i, for population number density ni and LTE den-
sity n∗i with respect to the real population of the ground state of the
next higher ion (see Mihalas 1978).

To derive a characteristic scaling relation for the strength of
Hα emission, let us for now neglect the influence of the photo-
spheric absorption profile and assume an LTE source function set
by the radiation temperature of the star, so that the absorption and
emission in front of the stellar disc cancel. Using further the fact
that the Hα transition is optically thin in most parts of the wind for
O-stars (Puls et al. 1996), we can write down a ‘Sobolev emission
measure’ scaling for a clumping-corrected ADM model in terms
of integrals over impact parameter p and normalized frequency
x = (ν/ν0 − 1)c/ve,

WADM ∝
∫ ∞

0

p dp

∫ 1

0

dx
[
ρ2fclve/(dvn/dn)

]
x=vn/ve

, (C2)

wherein the density ρ and the projected velocity gradient
dvn/dn along line of sight direction n̂ are to be evaluated at
the resonance location x = vn/ve for each frequency x.

For an observer viewing from a direction n̂ = ẑ along the
magnetic pole, the resonance condition x = vz/ve will then be
close to the magnetic equator, with p = r and dvz/dz ≈ ve/δ.
From (25), the cooled downflow density in this region is

ρc(r, µ = 0) =
ṀB=0

4πR2
∗ve

√
r/R∗ − 1

δ/r (4r/R∗ − 3)

(
R∗
r

)2

. (C3)

Applying this and the velocity gradient scaling in equation (C2)

gives for the principal scaling of emission measure,

WADM ∝
Ṁ2
B=0

R3
∗v2

e

f(Rc)

δ/R∗
. (C4)

where the last part describes the dependence on the size of the mag-
netosphere in terms of the function

f(Rc) =

∫ R
′
c

1

r′ − 1

r′(4r′ − 3)2
dr′, (C5)

where r′ ≡ r/R∗ and R′c ≡ Rc/R?. Equation C4 thus suggests
the standard Hα emission scaling for non-magnetic OB-stars (e.g.,
Puls et al. 2008) is modified in the ADM model by the smoothing
length δ and a function f(Rc) describing the size of the ADM;
these parameters then account for the influence of the magnetic
field on the wind structure and emission measure.

While the formation process of Hα and other optical emis-
sion lines in magnetic OB-star winds will in reality be much more
complex than discussed here, comparison to full radiative transfer
computations using the ADM flow structure and 3D formal solver
described in §4.2 nonetheless captures quite well the principal scal-
ings of the emission. Fig. C1 illustrates this, comparing Hα emis-
sion equivalent widths from such full computations with the simple
scaling relation eqn. C4. All models here have been calculated for
a polar observer using the same basic set-up as in §4.2; to allow
for a simple comparison with the predicted scaling relation, how-
ever, we now neglect the photospheric absorption profile, assume
an LTE source function, and only vary ṀB=0 while keeping all
other input parameters fixed (at same values as in §4.2, including
RC = 3.5R?).

The figure shows the polar-vew optically thin scaling is fol-
lowed perfectly for typical OB-star mass-loss rates, but breaks
down in the optically thick region of higher ˙MB=0. In this regime
the emission instead simply scales with the projected surface area
of the ADM. The ṀB=0 derived for HD191612 in §4.2 is close
to where the scaling in Fig. C1 begins to fall, so further stud-
ies are needed to determine more precisely under which conditions
and phases such scaling might apply. Also, recall here that eqn. C4
is derived for an observer viewing from above the magnetic pole,
and so only provides scaling-information regarding the level of Hα
line-emission during near-polar phases; the scaling is analogous to
how line-emission is used to derive empirical mass-loss rates in
non-magnetic stars, and does not provide any predictions for the
rotational phase variation of the emission (which rather is set pri-
marily by the magnetic geometry; see also discussion in main text).
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