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ABSTRACT

Research in hypersonic aerodynamics is important in understanding the prac-
ticality of sustained high-speed flight and the design parameters of such vehicles. Hy-
personic boundary layer transition is dominated by the presence of various disturbance
(Mack) modes present within the boundary layer which undergo modal growth and
eventually transition the flow to turbulence. Understanding the dynamics of these
modes and their interactions within the boundary layer can bridge the knowledge gaps
in the fundamental causes of heat transfer, friction drag, lift and other properties which
become critically important in hypersonic flight

The aim of this research is to perform an analytical study utilizing computa-
tional fluid dynamics (CFD) coupled with boundary layer stability analysis employing
linear stability theory (LST) and parabolized stability equations (PSE) to help un-
derstand the dynamics of Mack modes and their nonlinear interactions. One question
to be studied is the source of energy driving the 1st and 2nd mode instabilities. A
characterization of the energetics of the 1st and 2nd modes was performed at various
flow conditions to further understand physical mechanisms governing the modal growth
pathway to transition, and was shown that the traditional 1st mode definition is in-
complete. A design study into a geometry conducive to 1st and 2nd mode interactions
was performed and investigated. With such a geometry, the dynamics between a 1st
mode dominated boundary layer with an existing 2nd mode was investigated. Finally,
with understanding of the thermoacoustic interpretation of the 2nd mode, a impedance
boundary condition is applied to a canonical conical geometry in an attempt to ana-
lyze its effect on certain unstable waves within the boundary layer. Understanding the
dynamics of these modes and their interactions within the boundary layer can bridge

fundamental knowledge gaps governing various phenomena in hypersonic flight.

XV



Chapter 1

INTRODUCTION & BACKGROUND

1.1 History & Motivation

Ever since the advent of powered flight, developments have been motivated
by the urge to go faster, further and higher. Over the span of 50 years, within a
typical human lifespan, one would have seen aeronautical advances ranging from the
development of the first motor powered aircraft to commercial airliners, jets, rockets
and early orbital satellites. From the first flight of the 1903 Wright Flyer above a beach
in Kitty Hawk, South Carolina, to the breaking of the sound barrier by Chuck Yeager
in the Bell X-1 over the Mojave 44 years later, humans have sought to expand their
reach through flight.

With technological progress and increasingly higher flight speeds possible, the
thermodynamic state of the flow becomes critically relevant. Engineers sought to cor-
relate the vehicle dynamics to the thermodynamics of the flow medium via the Mach
number. Named after physicist Ernst Mach, this dimensionless number relates flow ve-
locity relative to the local speed of sound, and hence the thermodynamical state of the
flow medium. The relevance of Mach numbers increased dramatically in the decades
near the advent of faster-than-sound flight as flow compressibility effects become more
pertinent. The first manned sustained supersonic fight occurred on October 14, 1947
with the Bell X-1 reaching Mach 1.06 [17], which experienced strong aerodynamic and
thermal loading as well as decreased control authority previously uncommon in the
subsonic regime. These new flight characteristics motivated efforts in understanding
the foundational physics and phenomena associated with these flight conditions in com-

pressible flow. New design features such as swept/delta wings, high thrust propulsion



systems and new materials able withstand aerothermal heating were developed from
these efforts. The design differences as vehicles achieve greater speeds where these
compressibility effects become more and more important can be seen in examples such
as the North American F-86 Sabre to McDonnell Douglas F-4 Phantom II to The

Concorde.

Mach 0-0.8 (Propeller aircraft, Commerical airliners) ’

| * Mach0.8-1.1 ‘

Mach 1.1-5 (Military combat aircraft, Concorde, SR-71)

Mach 5-20 (Waveriders, Glide vehicles)

Mach >20 (Reentry vehicles, Space Shuttle, Ballistic missiles)

Figure 1.1: Mach number ranges for a variety of flight regimes

After Mach 5, one enters the realm of hypersonic flight. Here the aforementioned
effects associated with supersonic flight are amplified, such that sustained cruise hy-
personic flight becomes difficult to achieve. This however, has not discouraged efforts
in exploring flight at these daunting speeds and conditions. Hypersonic flight itself has
been experimented with extensively ever since the end of the Second World War. From
the early unmanned testing of the V-2/WAV Corporal rocket of post-war USA to Yuri
Gagarin in Vostok 1 of the USSR, sustained hypersonic flight both crewed and un-
crewed have been explored with. Other well known examples include the development
and flight of the North American X-15 in the late 1950-60s, which was one of the first
manned hypersonic vehicles capable of exceeding Mach 6, launch and reentry of inter-
continental ballistic missiles (ICBMs) developed during the Cold War, the space shuttle
during the 1980s-2010s, the scramjet powered X-43 Hyper-X and most recently, the



development of various glide vehicles and wave riders. Future applications of sustained
hypersonic flight can allow for substantially reduced travel travel time for commercial
flights and the safe re-entry of vehicles into the atmospheres of extraterrestrial bodies
[18, 3].

Research in hypersonic aerodynamics is important in understanding the prac-
ticality of achieving sustained high-speed flight and the design parameters of such
vehicles. Early on, the differences in heating and drag between the laminar and turbu-
lent regions of the boundary layer over the vehicle body were noted, and the benefits
of extending the laminar regime has been recognized. Thus, the study of transition
methods from these two different flow regimes in the boundary layer can bridge the
knowledge gaps in the fundamental causes of heat transfer, friction drag, lift and other
properties of the system which become critically important in hypersonic flight. Un-
derstanding the various flow phenomenon in these extreme conditions can yield great
advances in aerospace flight technologies, which in-turn can have a monumental impact

on the space & aeronautical industries.

1.2 Hypersonics Background

Hypersonic aerodynamics is commonly considered distinct from traditional sub-
sonic and supersonic aerodynamics. With the extremely high energy flow environment,
one must now consider the importance of high temperature real gas physics, low den-
sity effects, shock and entropy layers and thermochemical interactions. The interaction
between the aerobody and flow medium induces strong aerodynamic forces and con-
sequently aerothermal heating. The thermal loading becomes so great in hypersonic
conditions that design configurations are greatly influenced by this factor. Variations
in vehicle design can have a drastic effect on the types of drag experienced by the
vehicle. In slender geometric bodies for example, the main source of drag is from skin
friction, whereas in blunt bodies, drag is primarily due to high pressures behind the

strong bow shockwave.



Since the flow characteristics between hypersonic and supersonic flows are re-
markably different, and understanding that the flow largely dictates vehicle design,
the design of hypersonic vehicles are in turn drastically different than those of sub-
supersonic vehicles. The various components of the subsonic-supersonic aircraft are
clearly visually identifiable, such as its fuselage, wings and engines, as these components
are not strongly coupled with each other [18]. However these physical characteristics
become ambiguous for hypersonic vehicles. For instance, hypersonic vehicles experi-
ence strong bow shocks from the compression of air and results in a large change in
pressure, temperature and density in the flow medium. Since lift is primarily provided
by the high pressure bow shock against the under-surface of this geometry, defined
wings are unnecessary. Also, this consequently can be utilized in specialized engines
such as ramjets or scramjets to propel the craft to such high velocities, which are
mounted as such to utilize this unique flow phenomena. In this new class of vehicle
design, the components responsible for the mechanisms of lift, propulsion and control
are thus integrated into the air-frame [18].

Aerodynamic heating and shear stress/skin friction drag are some of the most
important aspects in hypersonic vehicle design. Towards the strong shock region, the
highly compressible inviscid area in the shock layer serves as an important source of
general heating in the system. As the flow passes through this region, a sharp increase
in temperature and density occurs which can then be conducted onto the body. The
extremely high energy flow also enters the boundary layer and is then slowed by the
viscous effects. The high kinetic energy dissipates into internal energy of the gas
that is then transferred onto the body through thermal conduction and radiation [18].
Understanding these mechanisms is important as, in addition to contributing to the
thermal load of the vehicle, they are also strongly correlated to the drag experienced

on the body and can influence the stability profile of the vehicle.



1.2.1 Entropy Layers

With highly curved shock layers, as commonly seen on blunted bodies, there
exists a region of flow near the blunted section where there is a large entropy gradient.
Flows with constant entropy when comparing between the streamlines are known as
homentropic flows and these are commonly found in the freestream flow in front of
the shock. Flows where there are no changes in entropy along the entire length of the
streamline are known as isentropic flows, and are generally found behind the shock
[3]. Streamlines crossing normal shocks experience greater changes in entropy than
ones crossing oblique shocks [3]. Thus, for blunted nose geometries where there exists
a strong normal shockwave, strong entropy density gradients (hence entropy layers)
appear. That is, a streamline that enters the shock near the stagnation point of the
body (i.e. near the normal shock), experiences a greater entropy than a streamline

entering where the shock is oblique, hence a strong entropy layer occurs.

Boundary
layer >\/

—
Entrop y%&ﬁé(;;ﬂ;‘@@«@

layer

Figure 1.2: Left: Depiction of the shock and entropy layer along with its interaction
with the boundary layer [2]. Right: Schematic of the streamlines near the nose; notably
depicting the stagnation point (S;), location where a streamline crosses the shock (z1)
and enters the boundary layer (z) [3]

The formed entropy layer spans a certain distance downstream along the body
before it is “swallowed”, which is generally classified when the entropy layer and bound-
ary layer runs parallel to each other. An important aspect in the study of entropy layers
in hypersonic flow is its swallowing length. The entropy layer at some distance from

the nose, interacts with the formed boundary layer. These regions of strong entropy



changes can have important influences on the thermodynamic conditions of the flow,

which can have an effect on the boundary layer.

1.2.2 Thin Shock Layers

Flows over common hypersonic geometries exhibit oblique shocks where density
increases over the shock as the Mach number is increased. With an increase in density
behind the shock, reciprocates an decrease in volume, hence the height of the shock
from the body also decreases [18]. This region of flow is commonly referred to as the
shock layer, can be very small at higher Mach numbers and can be estimated utilizing
0 — 3 — Mach diagrams. This usually also results in a smaller boundary layer height
and can consequently induce in shock-boundary layer interactions (SBLI) which is itself

another vastly complex problem [18].

1.2.3 High Temperature Gas Dynamics

Under certain high energy flow environments, the kinetic energy dissipated by
the viscous boundary layer creates very high temperatures and enthalpies which may
cause molecular dissociation and ionization of gas species. Generally, these types of
flows occur with very high Mach numbers, velocities and shock temperatures, as shown
in figure 1.3.

These types of flow environments can create a chemically reacting boundary
layer along the body where chemical reacting dynamics and molecular vibrational en-
ergies must also be considered. If the change in time, in comparison with the movement
of the flow particles with the chemical/vibrational reactions, is very small, this is con-
sidered a flow in chemical equilibrium, while if the opposite is true, this is considered

a chemical non-equilibrium flow [18].

1.3 Progress on High Speed Boundary Layer Transition Theory
As noted by White [6], a boundary layer flow shifting over space and time from
laminar to turbulence indicates a transition in the stability of the flow. Stability itself

can be defined as the susceptibility of a system to withstand a disturbance and still
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Figure 1.3: Temperatures and velocities of various scenarios and their relations with
gas regimes [4]

return to its original state. If so, it is considered stable, while if not, it is considered
an unstable system. Work on inviscid flows by Lord Rayleigh in the late 1800s, discov-
ered the presence of an inflection point within flow profiles which can be correlated to
disturbances that either grow and lead to instability or dampen out and remain stable
[19, 20]. The introduction of the concept of boundary layers and its respective stabil-
ity, along with its relationship with Reynolds numbers, by Prandtl, Taylor, Tollmein,
Schlichting and others, brought to focus the importance of transition mechanisms.
These works further expanded the theories behind transition of the boundary layer in
various types of flows, in both the viscid and inviscid domains, through analytical and
experimental work, and laid the foundation for more advanced studies [9].

In 1946, Lees & Lin [21], under advisement by Theodore Von Karmén, expanded
on the theory behind the Rayleigh inflection theorem for stability and developed what
is commonly known as the generalized inflection point theory, which is considered a
necessary criterion for instability in high-speed locally parallel flow [9, 20]. Later,

with the increasing relevance of high speed flow stability and transition in the field of



super /hyper-sonic aeronautics, research work demanded the development of new math-
ematical and computational frameworks to handle more complex problems. Works from
Lee [21], Mack [9], Bertolotti [22], Gaster [23], Malik [24], Schmid [25], Herbert [26]
all investigated methods of analyzing and quantifying high speed inviscid and viscous
flow stability utilizing various schemes in linear stability theory (LST) and parabolized
stability equations (PSE) which can be solved by algorithms and programs on digital
computers. Later, more modern work by Reed [27], Federov [28], Fasel [29], Saric [30],
Tumin [31], Zhong [32], Schneider [33], Juliano [34], Kuehl [35], Balakumar [36], Can-
dler [37], Paredes [38] and others in the latter part of the 20th century and early 21st
century, investigated some of the more common instability mechanisms experienced
during sustained hypersonic flight and verification of experimental studies incorporat-
ing aforementioned analysis methods and more modern computational techniques such
as compressible reacting flow CFD, newer discretization methods, turbulence models

and stability solvers.

1.4 Transition Mechanisms

The physical processes which describes transition phenomena are complex and
has multiple routes as depicted in figure 1.5. The types of instabilities which may
appear depends on the Reynolds/Mach numbers, geometry parameters, surface rough-
ness, etc. and can be modulated by the shock, pressure and temperature gradients,
surface mass transfer and more [39]. Generally, external disturbances relative to the
boundary layer such as freestream sound waves, vorticities, temperature and density
gradients, etc. may enter the boundary layer itself and provide an initial amplitude dis-
turbance. These disturbances vary throughout the boundary layer and are evanescent
as it approaches the freestream flow [9].

The pathways to transition may be predicted depending upon this initial ampli-
tude disturbance as seen in figure 1.5. The transition pathways for extremely minuscule
initial disturbances, such as those typically experienced in sustained cruise flight, can

be described with pathway A. These disturbances experience modal growth until its
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Figure 1.4: Top: Boundary layer transition denoting laminar, transition and turbulence
stages [5], Bottom: Detailed boundary layer transition process on a flat plate [6]

amplitude is able to initialize various nonlinear interactions and secondary mechanisms
which eventually breaks down the flow into turbulence [40, 28]. Transition following
this pathway are commonly referred to as natural transition.

Other pathways, such as B and C are associated with transient (nonmodal)
growth, occur when two non-orthogonal modes interact, which then undergoes algebraic
growth which can then develop into larger secondary instabilities and eventually trip
the flow to turbulence [41]. Paths D and E primarily represents transition commonly
seen in internal flows or cases where there exists an high enough initial amplitude
such that it forces the transition process without encountering any linear regimes [28].
These pathways are are considered forced transition and are common in noisy flight
environments.

For 2D boundary-layers, some of the various instability mechanisms which can
arise and can trigger transition are: first Mack modes (historically understood to be
viscous instabilities akin to Tollmien-Schlichting waves) and second Mack modes (ther-

moacoustic instability). In 3D boundary layers, crossflow waves and Gortler waves
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Figure 1.5: Laminar-turbulent boundary layer transition pathways, redrawn from
Morkovin [7]

(associated with vorticies induced by geometric variations on the body) become tran-
sition mechanisms of concern. For this study, pathway A is studied due to its strong
association with natural transition from unstable first and second modes commonly

encountered in flight experiments.
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Figure 1.6: Excerpt from Schmid et al. [8] figure 1.3, depicting temporal (c,d) and
spatial (e,f) evolution of disturbances
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Figure 1.7: Mach number vs. amplification rate of the first four Mack modes [9]

1.4.1 Tollmien- Schlichting waves

Tollmein-Schlichting (TS) instability is considered to be a viscous type instabil-
ity which generally occurs in boundary layer flows where viscosity acts as the source of
energy gain driving the instability rather than as an energy sink. The current general
understanding of T'S wave instability is that it arises from a phase shifting between the
Reynolds stress v/v’ within the shear layer near the wall such that these terms are no
longer orthogonal to each other and are the source of energy for the disturbance.

With an energetics analysis, the Reynolds stress can be defined as the average

of u'v over one wavelength in the x direction [42, 9, 43]:

27
LA

T = / u'v'dx (1.1)

x

The disturbance state variables are decomposed to a viscous and inviscid solu-
tion, ¢, and ¢; such that ¢ = ¢, + ¢; satisfies the equations of motion. The boundary

conditions for u are such that on the wall :

11



u(0) = ui(0) + uy(0)

u(y) — ui(y) as y — 00

For invisicid flows, v" and v" are 90° out of phase and thus 7 = 0. However for the
viscous velocity terms, the u and v will be 135° out of phase and this yields a non-zero 7
which is shown intensively in works by Mack and Saric [44, 43]. That is, the presence of
viscosity effects, particularly near the wall, motivates the implementation of the no-slip
condition on the wall which can induce a phase shift between the disturbance velocity
components. The phase shifting between the streamwise and wall normal disturbance
velocity components near the wall yields a positive Reynolds stress and acts as an

energy source for the instability.

1.4.2 1st Mack Mode

The 1st Mack Mode oblique instability is traditionally referred to as the super-
sonic analogy to the Tollmien—Schlichting instability. However recent work as described
in chapter 3 indicates that this definition may not be complete. The classical inter-
pretation for the energy source of 1st mode waves is akin to that of TS waves, which
are driven by the non-orthogonality between the streamwise and normal disturbance
velocity components induced by the viscous no-slip condition on the wall. That is, it is
thought that the source of energy driving this instability arises only from the non-zero
advective Reynolds stress from the phase shifted velocity components at the wall.

However a new study by Liang et al. [1], has indicated that this traditional
definition of the 1st mode might not be complete, as it has been shown that, while
TS waves and 1st modes are both driven by the phase shifting between the velocity
based Reynolds stresses, a contribution from what is referred to as the thermoacoustic

Reynolds stress is also seen for 1st modes, which is based on pressure and temperature.

12



These energy source terms appear to dominate in the vicinity of the generalized inflec-
tion point, which can be off the wall, and near the critical layer (area of flow in the
boundary layer where the disturbance phase speed is equal to the mean flow velocity).

In other words, it appears that with an analysis using energy methods on 1st
mode dominated flows, the thermoacoustic and velocity advective Reynolds stresses
both influence the energetics which appear to collate around the area near the gener-
alized inflection point. Thus, the first mode appears to be driven by dynamics around

the “off the wall” generalized inflection point and critical layer.
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Figure 1.8: (Left-to-right): Spatial growth rates («;) with varying spanwise wavenum-
bers 8 vs frequency () for My, = 2, 3, 4 (from Smith [10] fig. 2). Its obliqueness
angle can be described as ¢ = tan™!(3/a)

The first mode instability is most unstable when propagating at an angle relative
to the freestream flow direction. Thus it tends to be referred to as an oblique type
instability. It’s obliqueness can be partially described with its coupling with vortical
components arising near the generalized inflection point in the boundary layer [1]. The

first mode also tends to be stabilized with wall cooling and destabilized with wall

heating.
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1.4.3 2nd Mack Mode

First identified by Mack [9], these modes tend to be dominant when the bound-
ary layer edge velocity becomes large enough such that disturbances travel supersonic
relative to the wall but subsonic to the boundary layer [28]. This forms a sharp density
gradient within the boundary layer which acts as a “acoustic waveguide” for the these
disturbances.

Thus, 2nd mode instabilities are described to be resonating thermoacoustic
waves trapped in an thermoacoustic impedance well dictated by a strong density gradi-
ent within the boundary layer [35]. Also, an energy source which triggers second-mode
growth is identified as the thermoacoustic Reynolds stress. That is, while first mode
instability is driven primarily by traditional velocity based Reynolds stress, the second-
mode is driven (at least partially) by the thermoacoustic Reynolds stress in conjunction
with a well defined acoustic impedance well. The second mode is also highly sensitive
to wall temperature variations such that an increase in wall temperature stabilizes the
instability, while an decrease in wall temperature destabilizes it [45, 9, 28]. This be-
havior is the inverse that of the 1st mode. Second modes are commonly found at Mach

6 flow conditions and above.

1.4.4 Crossflow Mode

In 3D boundary layers as seen on rotating bodies, swept wings or bodies at an
angle of attack, a type of instability that has been shown to be dominant are crossflow
modes. In these types of instabilities, curved 3D streamlines form due to the influences
of the sweep on the edge of the boundary layer. Within the boundary layer, the
pressure gradient is no longer in balance with the centripetal acceleration and which
induces a velocity gradient perpendicular to the streamline. Thus, a secondary flow
emerges within the boundary layer (crossflow) which must vanish at the wall and at
the boundary layer edge, hence the existence of an inflection point in the crossflow [11].

Depending on the freestream noise levels (boundary layer receptivity), cross-

flow instabilities tends to present itself either as stationary or traveling waves, with
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transition dominated by one or the other, not both. Traveling crossflow instabilities
tend to be dominant in noisy freestream flow environments while stationary crossflow
instabilities tend to present itself in quiet conditions. It is noted that stationary cross-
flow instabilities are generally weak but exhibit nonlinear effects leading to secondary
instabilities [11].

The trajectory of crossflow vorticies within the boundary layer are strongly cor-
related to the inflection point of the perpendicular velocity component to the stream-
line. Hence, vortex trajectories can subsequently be calculated and the crossflow paths
can be traced along the geometry [46]. Crossflow instabilities are commonly found
when the vehicle body experiences an angle of attack or when the flow is no longer

axisymmetric.

1.4.5 Gortler Mode

Similar to crossflow modes, Gortler instabilities arise from vortex type distur-

bance modes within the boundary layer. However, Gortler modes are induced by
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geometric variations over the body (convex/concave surfaces) which then presents a
weakly non-parallel flow [12]. This instability induces the formation of Gortler vorti-
cies which are counter-rotating vorticies propagating parallel to the direction of flow.
These instabilities are considered to be centrifugal type instabilities. Gortler modes

have been found on flared cones. [47, 15]

-

X

Figure 1.10: Gortler vorticies on a concave geometry [12]
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Chapter 2

METHODOLOGY

2.1 Grid Generation

To effectively generate a continuous geometry for basic state calculations, a
MATLAB script was developed to parametrically generate discrete coordinates of sim-
ple cone profiles for the meshing process. These discrete points of the geometry profile
can then be imported into a CAD software such as Solidworks and splined through to
generate the basis for the mesh.

Pointwise mesh generation was primarily used to generate the computational
domain. A clustering scheme implemented to allow for higher computational fidelity
towards anticipated areas where complex flow conditions are expected to occur, such as
regions of shocks expansions, compressions, recirculation areas, etc. Special considera-
tions such as fine wall clustering for better resolving of the computational region near
the boundary layer, was allocated to the extrusion parameters when generating the
computational grid, as this can have a large effect on the convergence of the solution.
In order to ensure that the grid is large enough to capture the entire shock region, the
shock height can be estimated utilizing 6 — 5 — Mach diagrams along with the known
length of the cone. The resulting 2D grid contains structured quadrilateral cells and
an extrusion height towards the rear of the cone of approximately 1.3x that of the
estimated shock height. This 2D grid is then rotationally extruded 1 degree around
the central-axis of the cone to resolve a “slice”, which is sufficient as we are considering
cones at 0 angle-of-attack (AoA). To study 3D effects, such as crossflows or yawed
flight profiles, a half or full body mesh is generated instead to resolve non-symmetric

flow phenomena.
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Figure 2.1: A XY plane view of the computational mesh of a flared cone in Pointwise

2.2 Basic States

The steady and laminar basic state solutions are calculated utilizing the US3D
computational fluid dynamics software package developed by The University of Min-
nesota and NASA Ames Research Center and maintained by VirtusAero [37, 48, 49].
The US3D software package is influenced by work on the well-established NASA DPLR
(Data Parallel Line Relaxation) CFD code for high-speed compressible flow calculations
in chemical/thermal nonequilibrium. US3D is thus an implicit data parallel iterative
line-relaxation finite volume solver which allows for the discretization of nonlinear PDEs
utilizing finite volume methodologies (FVM) which divides the computational domain
into finite control volumes with control surfaces, with fluxes across these surfaces being
calculated as it enters and exits volumes.

US3D noted for its ability to integrate high order solving schemes, various vis-
cosity and gas parameters, efficiency on unstructured grids and API integration [37].
A wide range of chemistry models also allows it to model complex reaction effects in
high enthalpy flows which makes it highly desirable for hypersonic research[37]. For
studies into modal growth of disturbances, a laminar steady state solution is generated

(basic state) simulating low noise high-speed flow environments.

2.3 Stability
The JoKHeR (Joseph Kuehl Helen Reed) stability package is utilized for per-
forming a stability analysis and employ methods utilizing Linear Stability Theory

18



Figure 2.2: US3D results of a flared cone at a 6° angle of attack in M6 flow

(LST) and Linear and Non-linear Parabolized Stability Equations (PSE). The JoKHeR
research code was developed at Texas A&M University as part of the National Center
for Hypersonic Laminar-Turbulent Transition Research [50]. The code employs a 2D
(Quasi-3D), compressible, ideal gas, primitive variable formulation which is capable of
marching disturbances along a predefined path with the assumption of uniformity in

the perpendicular direction.

2.3.1 Governing Equations
The 3D compressible Navier-Stokes equations assuming ideal gas and Stokes

fluid (A = —2) are as follows:
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The state variables are non-dimensionalized with respect to the boundary layer

edge values %, due to the highly advective nature of the problem and to simplify the

equations to certain key variables.
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This results in the following parameters:

Ky Cp , U? v
Pr=-— =c,— ¢ == M? = §=,/—
T f=o-a v=7 YRT, U
65 e
Re = —U = Uez =/ Rey
Ve Ve

An advective time scaling is chosen with all velocities scaled by U,, length scaled by
L and pressure by p.U2. Substituting these parameters into equations 2.1, yields the

final form:

D p 8uZ
8@

ot v 8% ox; Re @:EJ 8$] X Oxy
or  oT : 1 9 op  or\ (22)
pey (E * “a—x) =9F Rebron, (’fm) + (- DM (E * “a_>
Y=Ly | (0w, 0w\ dur < \*
* Re M [,u (0xj + ox; A Oa:ké”

2.4 Linear Stability Theory (LST)
The following assumptions must be considered for Linear Stability Theory (LST)

=0

1. Basic state wall normal flow is zero (v = 0), and other basic state variables are
only functions of y, u(y), v(y), w(y), T(y), p(y). This is the "locally parallel flow”
assumption.

2. The disturbance magnitudes are small enough such that non-linear interactions
can be neglected (¢ < ¢).

3. Disturbances are bounded in the normal direction within the boundary layer
( ;:0 = ;:abl = O)

4. Disturbances are assumed to have the form of a wave propagating in the un-
bounded directions (homogeneous domains z, t)
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Figure 2.4: Traveling packet of waves where the phase velocity is the rate at which a
wave period travels (i.e. the propagation rate of the crests in the figure). The wave
group velocity is the velocity of the entire wavepacket. From Juniper et al. [13]

2.4.1 Modal expansions

Modal stability methods study the evolution of infinitesimally small disturbance
within the flow and involves decomposing the flow into its mean ¢ and disturbance ¢’
components.

¢ = o(z,y) + ¢'(z,y, 2,1) (2.3)

The mean component is commonly referred to a the ”"basic state” and refers
to the base laminar flow on which stability analysis is performed. These basic state
solution are obtained via CFD solvers such as US3D.

It is noted that for LST, the governing equations are linear and, along with its
boundary conditions, are independent of x,z and t. That is, the equations are func-
tions of y only, and the two planes perpendicular to y, are doubly infinite. Thus these
equations can be analyzed in terms of normal modes by the assumption of the distur-

bance as a monochromatic wave [43], or via methods involving Fourier and Laplace

transform pairs [43, 51, 52, 53].

2.4.1.1 Fourier-Laplace Transform Pair

The disturbance can be written explicitly via treatment by Fourier-Laplace
transform pairs. In this approach, an initial value problem (IVP) is considered for
the system. For example, if spatial stability is considered (as in JoKHeR), an ini-
tial value problem arises in that domain (i.e. analysis is concerned with evolution of
growth of an instability initiated within the boundary layer). A Laplace transform of

the state variables is taken in the spatial coordinates of interest for this IVP, x. The
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problem can then be Fourier transformed in the z and ¢ as the problem is unbounded
in those domains. The resulting expression is considered a complete representation of

the infinite summation of all possible solutions in the z and ¢ domains [43, 8, 52, 54].
¢'(a,y, 2,t) = L[ (x,y,2,1)] = ¢}, = / ¢ (z,y, 2, t)e ) dy
0

o 20 (2.4)
¢/(o¢7 y,ﬁ,w) = Fz7t[¢2] = /_ /_ ¢/Le—i(ﬁz+wt) dzdt

Where from the definition of the Laplace transform, « is the complex domain param-
eter. The expression can then be substituted into equation 2.6 and subsequently into
equations 2.2, which the stability characteristics can then be analyzed in the transform
domains. The following conditions must be met for this method to be equivalent to

the normal mode solution [43]:

a /
lim ¢ (x,y,2,t) =0 lim 99 _

z,t—3o00 zt—too 0T

O Fz,t[¢/(aﬂy7ﬁ70)] = 0 (25)

2.4.1.2 Normal Modes

With the assumption of parallel flow and that the problem is linear, a solution
can be also be sought via methods by separation of variables using normal modes. This
can be derived by seeking a solution in the form of ¢'(z,y, z,t) = X(2)Y (y)Z(2)T(t).
The resulting 3D normal mode disturbance is expressed as a monochromatic wave (i.e.

wave of single wavelength) in the form of:

¢/+¢/* _ Qg(y) ei(ax+ﬁzfu}t)+@<y)*67i(ax+,@z7wt)l (26)
Shape Phase complex Co;Eugate (c.c.)

The disturbance amplitude (% is a function of y and the phase component is a
function of x, z and t. Thus it is implied that the disturbance ¢ is a function of «, 5, w
and y, which are components of the stream wise, spanwise wavenumbers, frequency and
wall normal direction receptively. Since the perturbations must be real, it is denoted
along with its complex conjugate. This treatment results in an expression that is

equivalent to methods involving Fourier-Laplace transforms.
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Since the ”locally parallel low” assumption applies here, one of the limitations
of this analysis is that it is only performed at a specific specified location and does
not track any evolution downstream. The wall-normal velocity component and the
streamwise derivatives of the mean flow are assumed to be negligible.

LST can be presented as a temporal or spatial stability problem. For a spatial
stability problem, an initial value problem is considered in the spatial directions, and a
solution is sought via a Laplace transform in the spatial domain of interest. For 2D LST
for spatial stability as seen in JoKHeR, « is then complex (a = «,.+ic;) where «,. refers
to the physical wavelength while a; refers to the disturbance growth rate (i.e. growth
rate in the x direction). However, for temporal stability, the initial value problem is
instead considered in the t domain, which will yield a complex frequency w such that
(W = w, + iw;), with the real and imaginary components defining the frequency and
temporal growth rate respectively. Similarly, for stability in the spanwise direction, /3
is the complex spanwise wave number where 3, is the physical spanwise wavelength
and [3; being the growth rate in the z direction.

The disturbance wavenumber k with magnitude k is defined as

b= TP (2.7)

and thus the angle of wave propagation ¢ relative to the z axis is

Y =tan™! (5—) (2.8)

T

2.4.2 Implementation

In the interest of brevity, only the 2D incompressible continuity and momentum
equations are considered for this example to illustrate the general process of deriving the
LST matrices for implementation in JoKHeR. Substituting in the disturbance equations
2.6 into equation 2.2 while assuming 2D parallel flow (u(y),w(y),p(y),v = 0) and
expanded yields:
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aa—l;/ + “% + v’g—z + wg—i = —Z—Z + évzu’ (2.10)
%—1;/4-@?—2/—}-@66—2/ = —g—ZJr%v%’ (2.11)
a;;/ + a%l;, + v’g—j + w%il = —g—g + éVZw’ (2.12)

Substituting the disturbance equation 2.6 into eqs. (2.9) to (2.12) yields:

tat + Do+ ifw =0 (2.13)
2 2 1 =
Ciwtiau+ifo+ v T D2 it Lo tiap=0 (2.14)
Re Re Re dy
wian+ipn+ o+~ Lpe) oy ppo (2.15)
—iw + 1ot + ifw + — + — — — v = )
Re Re Re b
2 2 1 -
(-m+mu+¢5w+%+%—ED2>w+aﬂy@+wﬁ:o (2.16)
Expressed in matrix form is:
(Lo + L + &®Ly) =0 (2.17)
where:
0 D 0 0
Ly — —z‘w+ww+%2€—ﬁ132 g—Z 0 0
0 7m+i5m+%2efﬁD2 g—z 0 D
i 0 %—Z —iw+iﬁw+%26—%D2 g—z Zﬁ_
0 0 0 0 0 0 0 (]
i 0 0 i 2= 0 0 0 b
0 uw 0 O 0 ﬁ 0 0 w
0 0 2 O 0 0 é 0 D
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To obtain a form of that can be solved via a generalized eigenvalue solver (i.e.
MATLAB, Python NumPy, etc.), the nonlinear dependence is eliminated. This can be
done by introducing the following three additional variables o, a0, aw. This reduces

2.17 results to:

(Mo + aM, )y = (2.18)
0 D 0 0 0 0 0]
—iwripot fe - kD2 o o 0 0 0 0
0 —iwtipat B — D2 5 0O D 0 0
My = 0 & —iwrisosfe-gep? G2 i 0 0
0 0 0 0 -1 0 0
0 0 0 0 0 -1 0
I 0 0 0 0 0 0 -1
(i 00000 0 o] [a
iw 0 0 i z 0 0 b
0 iw 0 0 0 & O w
Mi=10 0 iw 0 0 0 |v=]|p
1 0 00 0 0 O il
01 00 0 0 0 av
000 1.0 0 0 0] ||

The derivatives are then replaced by finite difference schemes as outlined in

appendix A with boundary conditions:
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Note the pressure boundary condition at the wall is to account for the fluctuating
wall pressure. This can be modified to account for other user specified wall boundary
conditions such as the impedance boundary condition (see chapter 6). The resulting
system can then be solved in MATLAB via the its built in generalized eigenvalue solver
utilizing a QZ algorithm. For full 3D compressible LST, the same steps are applied

with the 3D compressible NS equations and boundary conditions:

2.5 Linear PSE (LPSE)

PSE or Parabolized Stability Equations are also widely utilized for stability
analysis. Originally identified by Herbert and Bertolotti [26], during a critical review
of Gaster [55] early nonparallel work, the parabolized stability equations have been
developed as an efficient and powerful tool for studying the stability of advection-
dominated laminar flows. Excellent introductions to the PSE method and summary of
its early development were provided by Herbert [56]. During the early stages of both
linear and nonlinear development of this technique, much was established related to
basic marching procedures, curvature, normalization conditions, and numerical stabil-
ity of the method itself (Bertolotti [22]; Chang et al.[57], Joslin et al.[58], Li and Malik
[59], and Haynes and Reed [60])

In a relatively short time, the field rapidly expanded to include complex ge-
ometries, compressible flow, and finite-rate thermodynamics (Stuckert and Reed [61],
Chang et al.[62], Johnson et al.[63], Haynes and Reed [60], Malik [64], Chang [65],
Johnson and Candler [66], Li et al.[67], Theofilis [68], Paredes et al.[69], Kuehl et
al.[14], Kocian et al.[70], and Perez et al.[71])

Only linear interactions are considered for this section, which assumes that

there are no coupling between modes, similar to LST. As such, the type of equations
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used in this analysis are dubbed Linear Parabolized Stability Equations (LPSE). One
difference from LST is that LPSE eliminates the requirement for the ”locally parallel
flow” assumption. That is, while LST is able to determine local stability effects at
a specific spatial (local) location, it does not yield any information on the historical
effects of perturbations. On the other hand, LPSE can reveal stability effects from
local and upstream flow conditions. As such, LST and LPSE are sometimes referred
to as local and non-local stability methods respectively.

An important criterion for the success of LPSE is done by developing methods
of analyzing the flow without solving PDEs of an elliptic nature. This is primarily
done by considering the method of multiple scales (MMS), which takes advantage of
the fact that the wall normal basic state quantities vary more rapidly than compared to
the same basic state quantities in the streamwise direction, as commonly seen in flows
within boundary layers. By applying this method of multiple scales, it is then possible
to derive a parabolic system of PDEs which can be solved via a marching solution that
can reflect upstream influences.|[13]

The crux of MMS lies in the assumption that variations in the streamwise di-
rection are much smaller than in the wall normal direction. Thus. slow and fast scales
are introduced and related through the variable ¥ = 4. This Z evolves slowly along
the x direction (x over a large number Re). Ultimately, disturbances are assumed to be
a monochromatic wave in the form of an fast varying amplitude shape component and

a slow varying wave component. Recasting equation 2.6 here for a 2D disturbance,

¢z, y,t) = ow,y) +¢(z,y,1) (2.19)

basic state disturbance

The disturbance wave can be assumed to be represented as a sum of a discrete number
of periodic functions with Fourier coefficients. Applying a Fourier transform F' to the
disturbance term now assumes the disturbance in the form of the shape and wave

components:
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where the wave part satisfies

od .
= io(z)P (2.20)
od :

and where Re = is the Reynolds number based on characteristic values of edge

Ued,
velocity (U.), edge kinematic viscosity (v.), and the length scale of the reference bound-
ary layer (4,). Now applying an inverse Fourier transform to F~! results in the form

of the disturbance which is considered for PSE:

FI (&,9.1)] = ¢/(.y.0 / 3y, w) Al w)e ™ do (222
shape wave

where A(Z,w) = '/ @@z and the dependence of the shape function (é) and ampli-
tude function (A) on w has been made explicit. The shape and amplitude functions are
essentially the Fourier transform of the disturbance. Upon expansion of the streamwise

derivatives

o0

o9 1 99
9 / (Reax+za¢> Ae " dw

—00
o0

82¢ /( 1 a2gz3+2ma¢+@a_a

- Yy ¥ 27 Ae~t g
Ox? Re?0%2  Re 0%  Re 0% “ ¢> ¢ W

it is found that the second spatial derivative 2 5= 92 is of the highest order. By an order
of magnitude analysis, it can be seen that the has terms that are scaled by R =

and some components of the NS components are then scaled by é coming from the

viscous terms, which reveals that all O ( 1 ) streamwise x terms can be neglected.

Re’
This leaves the disturbance equation nearly parabolized as the elliptic terms associated
with the higher order derivatives are also eliminated (Li and Malik 1996 [59]), and an

efficient marching solution may be sought. Results from an LPSE analysis can be
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processed into N-factors otherwise known as the eV correlation method. N-factors can

A x
N =lIn (—) 2 —/ a;dx (2.23)
Ay 0

Where A and Ag is the disturbance amplitude at a local streamwise location and at

be computed by

the N; neutral point respectively. N factors can also be approximated by integrating

the unstable growth rate obtained from LST results.

2.6 Normalization condition

To efficiently iterate for a solution, a normalization condition is introduced to
provide closure for this system. Due to the assumption of a slowly growing boundary
layer and the introduction of slow variables, the shape function is in turn also assumed
to be slow varying in the streamwise direction. The introduced normalization condition
applies restrictions for variations on the shape function and transfers the energy to the

wave function.

(o] n a
/Z cb}Z%dy = (2.24)

Where n is the total number of state variables and * denotes complex conjugate. It is
noted that when this condition is expanded, the real components restricts growth in

disturbance amplitude, while the imaginary components restricts the phase change.

2.7 Non-linear PSE (NPSE)
From chapter 1, it is commonly assumed t