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ABSTRACT

Research in hypersonic aerodynamics is important in understanding the prac-

ticality of sustained high-speed flight and the design parameters of such vehicles. Hy-

personic boundary layer transition is dominated by the presence of various disturbance

(Mack) modes present within the boundary layer which undergo modal growth and

eventually transition the flow to turbulence. Understanding the dynamics of these

modes and their interactions within the boundary layer can bridge the knowledge gaps

in the fundamental causes of heat transfer, friction drag, lift and other properties which

become critically important in hypersonic flight

The aim of this research is to perform an analytical study utilizing computa-

tional fluid dynamics (CFD) coupled with boundary layer stability analysis employing

linear stability theory (LST) and parabolized stability equations (PSE) to help un-

derstand the dynamics of Mack modes and their nonlinear interactions. One question

to be studied is the source of energy driving the 1st and 2nd mode instabilities. A

characterization of the energetics of the 1st and 2nd modes was performed at various

flow conditions to further understand physical mechanisms governing the modal growth

pathway to transition, and was shown that the traditional 1st mode definition is in-

complete. A design study into a geometry conducive to 1st and 2nd mode interactions

was performed and investigated. With such a geometry, the dynamics between a 1st

mode dominated boundary layer with an existing 2nd mode was investigated. Finally,

with understanding of the thermoacoustic interpretation of the 2nd mode, a impedance

boundary condition is applied to a canonical conical geometry in an attempt to ana-

lyze its effect on certain unstable waves within the boundary layer. Understanding the

dynamics of these modes and their interactions within the boundary layer can bridge

fundamental knowledge gaps governing various phenomena in hypersonic flight.
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Chapter 1

INTRODUCTION & BACKGROUND

1.1 History & Motivation

Ever since the advent of powered flight, developments have been motivated

by the urge to go faster, further and higher. Over the span of 50 years, within a

typical human lifespan, one would have seen aeronautical advances ranging from the

development of the first motor powered aircraft to commercial airliners, jets, rockets

and early orbital satellites. From the first flight of the 1903 Wright Flyer above a beach

in Kitty Hawk, South Carolina, to the breaking of the sound barrier by Chuck Yeager

in the Bell X-1 over the Mojave 44 years later, humans have sought to expand their

reach through flight.

With technological progress and increasingly higher flight speeds possible, the

thermodynamic state of the flow becomes critically relevant. Engineers sought to cor-

relate the vehicle dynamics to the thermodynamics of the flow medium via the Mach

number. Named after physicist Ernst Mach, this dimensionless number relates flow ve-

locity relative to the local speed of sound, and hence the thermodynamical state of the

flow medium. The relevance of Mach numbers increased dramatically in the decades

near the advent of faster-than-sound flight as flow compressibility effects become more

pertinent. The first manned sustained supersonic fight occurred on October 14, 1947

with the Bell X-1 reaching Mach 1.06 [17], which experienced strong aerodynamic and

thermal loading as well as decreased control authority previously uncommon in the

subsonic regime. These new flight characteristics motivated efforts in understanding

the foundational physics and phenomena associated with these flight conditions in com-

pressible flow. New design features such as swept/delta wings, high thrust propulsion
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systems and new materials able withstand aerothermal heating were developed from

these efforts. The design differences as vehicles achieve greater speeds where these

compressibility effects become more and more important can be seen in examples such

as the North American F-86 Sabre to McDonnell Douglas F-4 Phantom II to The

Concorde.

Figure 1.1: Mach number ranges for a variety of flight regimes

After Mach 5, one enters the realm of hypersonic flight. Here the aforementioned

effects associated with supersonic flight are amplified, such that sustained cruise hy-

personic flight becomes difficult to achieve. This however, has not discouraged efforts

in exploring flight at these daunting speeds and conditions. Hypersonic flight itself has

been experimented with extensively ever since the end of the Second World War. From

the early unmanned testing of the V-2/WAV Corporal rocket of post-war USA to Yuri

Gagarin in Vostok 1 of the USSR, sustained hypersonic flight both crewed and un-

crewed have been explored with. Other well known examples include the development

and flight of the North American X-15 in the late 1950-60s, which was one of the first

manned hypersonic vehicles capable of exceeding Mach 6, launch and reentry of inter-

continental ballistic missiles (ICBMs) developed during the Cold War, the space shuttle

during the 1980s-2010s, the scramjet powered X-43 Hyper-X and most recently, the
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development of various glide vehicles and wave riders. Future applications of sustained

hypersonic flight can allow for substantially reduced travel travel time for commercial

flights and the safe re-entry of vehicles into the atmospheres of extraterrestrial bodies

[18, 3].

Research in hypersonic aerodynamics is important in understanding the prac-

ticality of achieving sustained high-speed flight and the design parameters of such

vehicles. Early on, the differences in heating and drag between the laminar and turbu-

lent regions of the boundary layer over the vehicle body were noted, and the benefits

of extending the laminar regime has been recognized. Thus, the study of transition

methods from these two different flow regimes in the boundary layer can bridge the

knowledge gaps in the fundamental causes of heat transfer, friction drag, lift and other

properties of the system which become critically important in hypersonic flight. Un-

derstanding the various flow phenomenon in these extreme conditions can yield great

advances in aerospace flight technologies, which in-turn can have a monumental impact

on the space & aeronautical industries.

1.2 Hypersonics Background

Hypersonic aerodynamics is commonly considered distinct from traditional sub-

sonic and supersonic aerodynamics. With the extremely high energy flow environment,

one must now consider the importance of high temperature real gas physics, low den-

sity effects, shock and entropy layers and thermochemical interactions. The interaction

between the aerobody and flow medium induces strong aerodynamic forces and con-

sequently aerothermal heating. The thermal loading becomes so great in hypersonic

conditions that design configurations are greatly influenced by this factor. Variations

in vehicle design can have a drastic effect on the types of drag experienced by the

vehicle. In slender geometric bodies for example, the main source of drag is from skin

friction, whereas in blunt bodies, drag is primarily due to high pressures behind the

strong bow shockwave.
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Since the flow characteristics between hypersonic and supersonic flows are re-

markably different, and understanding that the flow largely dictates vehicle design,

the design of hypersonic vehicles are in turn drastically different than those of sub-

supersonic vehicles. The various components of the subsonic-supersonic aircraft are

clearly visually identifiable, such as its fuselage, wings and engines, as these components

are not strongly coupled with each other [18]. However these physical characteristics

become ambiguous for hypersonic vehicles. For instance, hypersonic vehicles experi-

ence strong bow shocks from the compression of air and results in a large change in

pressure, temperature and density in the flow medium. Since lift is primarily provided

by the high pressure bow shock against the under-surface of this geometry, defined

wings are unnecessary. Also, this consequently can be utilized in specialized engines

such as ramjets or scramjets to propel the craft to such high velocities, which are

mounted as such to utilize this unique flow phenomena. In this new class of vehicle

design, the components responsible for the mechanisms of lift, propulsion and control

are thus integrated into the air-frame [18].

Aerodynamic heating and shear stress/skin friction drag are some of the most

important aspects in hypersonic vehicle design. Towards the strong shock region, the

highly compressible inviscid area in the shock layer serves as an important source of

general heating in the system. As the flow passes through this region, a sharp increase

in temperature and density occurs which can then be conducted onto the body. The

extremely high energy flow also enters the boundary layer and is then slowed by the

viscous effects. The high kinetic energy dissipates into internal energy of the gas

that is then transferred onto the body through thermal conduction and radiation [18].

Understanding these mechanisms is important as, in addition to contributing to the

thermal load of the vehicle, they are also strongly correlated to the drag experienced

on the body and can influence the stability profile of the vehicle.
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1.2.1 Entropy Layers

With highly curved shock layers, as commonly seen on blunted bodies, there

exists a region of flow near the blunted section where there is a large entropy gradient.

Flows with constant entropy when comparing between the streamlines are known as

homentropic flows and these are commonly found in the freestream flow in front of

the shock. Flows where there are no changes in entropy along the entire length of the

streamline are known as isentropic flows, and are generally found behind the shock

[3]. Streamlines crossing normal shocks experience greater changes in entropy than

ones crossing oblique shocks [3]. Thus, for blunted nose geometries where there exists

a strong normal shockwave, strong entropy density gradients (hence entropy layers)

appear. That is, a streamline that enters the shock near the stagnation point of the

body (i.e. near the normal shock), experiences a greater entropy than a streamline

entering where the shock is oblique, hence a strong entropy layer occurs.

Figure 1.2: Left: Depiction of the shock and entropy layer along with its interaction
with the boundary layer [2]. Right: Schematic of the streamlines near the nose; notably
depicting the stagnation point (S1), location where a streamline crosses the shock (x1)
and enters the boundary layer (x2) [3]

The formed entropy layer spans a certain distance downstream along the body

before it is “swallowed”, which is generally classified when the entropy layer and bound-

ary layer runs parallel to each other. An important aspect in the study of entropy layers

in hypersonic flow is its swallowing length. The entropy layer at some distance from

the nose, interacts with the formed boundary layer. These regions of strong entropy
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changes can have important influences on the thermodynamic conditions of the flow,

which can have an effect on the boundary layer.

1.2.2 Thin Shock Layers

Flows over common hypersonic geometries exhibit oblique shocks where density

increases over the shock as the Mach number is increased. With an increase in density

behind the shock, reciprocates an decrease in volume, hence the height of the shock

from the body also decreases [18]. This region of flow is commonly referred to as the

shock layer, can be very small at higher Mach numbers and can be estimated utilizing

θ − β −Mach diagrams. This usually also results in a smaller boundary layer height

and can consequently induce in shock-boundary layer interactions (SBLI) which is itself

another vastly complex problem [18].

1.2.3 High Temperature Gas Dynamics

Under certain high energy flow environments, the kinetic energy dissipated by

the viscous boundary layer creates very high temperatures and enthalpies which may

cause molecular dissociation and ionization of gas species. Generally, these types of

flows occur with very high Mach numbers, velocities and shock temperatures, as shown

in figure 1.3.

These types of flow environments can create a chemically reacting boundary

layer along the body where chemical reacting dynamics and molecular vibrational en-

ergies must also be considered. If the change in time, in comparison with the movement

of the flow particles with the chemical/vibrational reactions, is very small, this is con-

sidered a flow in chemical equilibrium, while if the opposite is true, this is considered

a chemical non-equilibrium flow [18].

1.3 Progress on High Speed Boundary Layer Transition Theory

As noted by White [6], a boundary layer flow shifting over space and time from

laminar to turbulence indicates a transition in the stability of the flow. Stability itself

can be defined as the susceptibility of a system to withstand a disturbance and still
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Figure 1.3: Temperatures and velocities of various scenarios and their relations with
gas regimes [4]

return to its original state. If so, it is considered stable, while if not, it is considered

an unstable system. Work on inviscid flows by Lord Rayleigh in the late 1800s, discov-

ered the presence of an inflection point within flow profiles which can be correlated to

disturbances that either grow and lead to instability or dampen out and remain stable

[19, 20]. The introduction of the concept of boundary layers and its respective stabil-

ity, along with its relationship with Reynolds numbers, by Prandtl, Taylor, Tollmein,

Schlichting and others, brought to focus the importance of transition mechanisms.

These works further expanded the theories behind transition of the boundary layer in

various types of flows, in both the viscid and inviscid domains, through analytical and

experimental work, and laid the foundation for more advanced studies [9].

In 1946, Lees & Lin [21], under advisement by Theodore Von Kármán, expanded

on the theory behind the Rayleigh inflection theorem for stability and developed what

is commonly known as the generalized inflection point theory, which is considered a

necessary criterion for instability in high-speed locally parallel flow [9, 20]. Later,

with the increasing relevance of high speed flow stability and transition in the field of
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super/hyper-sonic aeronautics, research work demanded the development of new math-

ematical and computational frameworks to handle more complex problems. Works from

Lee [21], Mack [9], Bertolotti [22], Gaster [23], Malik [24], Schmid [25], Herbert [26]

all investigated methods of analyzing and quantifying high speed inviscid and viscous

flow stability utilizing various schemes in linear stability theory (LST) and parabolized

stability equations (PSE) which can be solved by algorithms and programs on digital

computers. Later, more modern work by Reed [27], Federov [28], Fasel [29], Saric [30],

Tumin [31], Zhong [32], Schneider [33], Juliano [34], Kuehl [35], Balakumar [36], Can-

dler [37], Paredes [38] and others in the latter part of the 20th century and early 21st

century, investigated some of the more common instability mechanisms experienced

during sustained hypersonic flight and verification of experimental studies incorporat-

ing aforementioned analysis methods and more modern computational techniques such

as compressible reacting flow CFD, newer discretization methods, turbulence models

and stability solvers.

1.4 Transition Mechanisms

The physical processes which describes transition phenomena are complex and

has multiple routes as depicted in figure 1.5. The types of instabilities which may

appear depends on the Reynolds/Mach numbers, geometry parameters, surface rough-

ness, etc. and can be modulated by the shock, pressure and temperature gradients,

surface mass transfer and more [39]. Generally, external disturbances relative to the

boundary layer such as freestream sound waves, vorticities, temperature and density

gradients, etc. may enter the boundary layer itself and provide an initial amplitude dis-

turbance. These disturbances vary throughout the boundary layer and are evanescent

as it approaches the freestream flow [9].

The pathways to transition may be predicted depending upon this initial ampli-

tude disturbance as seen in figure 1.5. The transition pathways for extremely minuscule

initial disturbances, such as those typically experienced in sustained cruise flight, can

be described with pathway A. These disturbances experience modal growth until its
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Figure 1.4: Top: Boundary layer transition denoting laminar, transition and turbulence
stages [5], Bottom: Detailed boundary layer transition process on a flat plate [6]

amplitude is able to initialize various nonlinear interactions and secondary mechanisms

which eventually breaks down the flow into turbulence [40, 28]. Transition following

this pathway are commonly referred to as natural transition.

Other pathways, such as B and C are associated with transient (nonmodal)

growth, occur when two non-orthogonal modes interact, which then undergoes algebraic

growth which can then develop into larger secondary instabilities and eventually trip

the flow to turbulence [41]. Paths D and E primarily represents transition commonly

seen in internal flows or cases where there exists an high enough initial amplitude

such that it forces the transition process without encountering any linear regimes [28].

These pathways are are considered forced transition and are common in noisy flight

environments.

For 2D boundary-layers, some of the various instability mechanisms which can

arise and can trigger transition are: first Mack modes (historically understood to be

viscous instabilities akin to Tollmien-Schlichting waves) and second Mack modes (ther-

moacoustic instability). In 3D boundary layers, crossflow waves and Görtler waves
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Figure 1.5: Laminar-turbulent boundary layer transition pathways, redrawn from
Morkovin [7]

(associated with vorticies induced by geometric variations on the body) become tran-

sition mechanisms of concern. For this study, pathway A is studied due to its strong

association with natural transition from unstable first and second modes commonly

encountered in flight experiments.

Figure 1.6: Excerpt from Schmid et al. [8] figure 1.3, depicting temporal (c,d) and
spatial (e,f) evolution of disturbances
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Figure 1.7: Mach number vs. amplification rate of the first four Mack modes [9]

1.4.1 Tollmien- Schlichting waves

Tollmein-Schlichting (TS) instability is considered to be a viscous type instabil-

ity which generally occurs in boundary layer flows where viscosity acts as the source of

energy gain driving the instability rather than as an energy sink. The current general

understanding of TS wave instability is that it arises from a phase shifting between the

Reynolds stress u′v′ within the shear layer near the wall such that these terms are no

longer orthogonal to each other and are the source of energy for the disturbance.

With an energetics analysis, the Reynolds stress can be defined as the average

of u′v′ over one wavelength in the x direction [42, 9, 43]:

τ =

x+ 2π
α∫

x

u′v′dx (1.1)

The disturbance state variables are decomposed to a viscous and inviscid solu-

tion, ϕv and ϕi such that ϕ = ϕv + ϕi satisfies the equations of motion. The boundary

conditions for u are such that on the wall :
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u(0) = ui(0) + uv(0)

u(y) → ui(y) as y → ∞

For invisicid flows, u′ and v′ are 90◦ out of phase and thus τ = 0. However for the

viscous velocity terms, the u and v will be 135◦ out of phase and this yields a non-zero τ

which is shown intensively in works by Mack and Saric [44, 43]. That is, the presence of

viscosity effects, particularly near the wall, motivates the implementation of the no-slip

condition on the wall which can induce a phase shift between the disturbance velocity

components. The phase shifting between the streamwise and wall normal disturbance

velocity components near the wall yields a positive Reynolds stress and acts as an

energy source for the instability.

1.4.2 1st Mack Mode

The 1st Mack Mode oblique instability is traditionally referred to as the super-

sonic analogy to the Tollmien–Schlichting instability. However recent work as described

in chapter 3 indicates that this definition may not be complete. The classical inter-

pretation for the energy source of 1st mode waves is akin to that of TS waves, which

are driven by the non-orthogonality between the streamwise and normal disturbance

velocity components induced by the viscous no-slip condition on the wall. That is, it is

thought that the source of energy driving this instability arises only from the non-zero

advective Reynolds stress from the phase shifted velocity components at the wall.

However a new study by Liang et al. [1], has indicated that this traditional

definition of the 1st mode might not be complete, as it has been shown that, while

TS waves and 1st modes are both driven by the phase shifting between the velocity

based Reynolds stresses, a contribution from what is referred to as the thermoacoustic

Reynolds stress is also seen for 1st modes, which is based on pressure and temperature.

12



These energy source terms appear to dominate in the vicinity of the generalized inflec-

tion point, which can be off the wall, and near the critical layer (area of flow in the

boundary layer where the disturbance phase speed is equal to the mean flow velocity).

In other words, it appears that with an analysis using energy methods on 1st

mode dominated flows, the thermoacoustic and velocity advective Reynolds stresses

both influence the energetics which appear to collate around the area near the gener-

alized inflection point. Thus, the first mode appears to be driven by dynamics around

the “off the wall” generalized inflection point and critical layer.

Figure 1.8: (Left-to-right): Spatial growth rates (αi) with varying spanwise wavenum-
bers β vs frequency (Ω) for M∞ = 2, 3, 4 (from Smith [10] fig. 2). Its obliqueness
angle can be described as ψ = tan−1(β/α)

The first mode instability is most unstable when propagating at an angle relative

to the freestream flow direction. Thus it tends to be referred to as an oblique type

instability. It’s obliqueness can be partially described with its coupling with vortical

components arising near the generalized inflection point in the boundary layer [1]. The

first mode also tends to be stabilized with wall cooling and destabilized with wall

heating.
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1.4.3 2nd Mack Mode

First identified by Mack [9], these modes tend to be dominant when the bound-

ary layer edge velocity becomes large enough such that disturbances travel supersonic

relative to the wall but subsonic to the boundary layer [28]. This forms a sharp density

gradient within the boundary layer which acts as a “acoustic waveguide” for the these

disturbances.

Thus, 2nd mode instabilities are described to be resonating thermoacoustic

waves trapped in an thermoacoustic impedance well dictated by a strong density gradi-

ent within the boundary layer [35]. Also, an energy source which triggers second-mode

growth is identified as the thermoacoustic Reynolds stress. That is, while first mode

instability is driven primarily by traditional velocity based Reynolds stress, the second-

mode is driven (at least partially) by the thermoacoustic Reynolds stress in conjunction

with a well defined acoustic impedance well. The second mode is also highly sensitive

to wall temperature variations such that an increase in wall temperature stabilizes the

instability, while an decrease in wall temperature destabilizes it [45, 9, 28]. This be-

havior is the inverse that of the 1st mode. Second modes are commonly found at Mach

6 flow conditions and above.

1.4.4 Crossflow Mode

In 3D boundary layers as seen on rotating bodies, swept wings or bodies at an

angle of attack, a type of instability that has been shown to be dominant are crossflow

modes. In these types of instabilities, curved 3D streamlines form due to the influences

of the sweep on the edge of the boundary layer. Within the boundary layer, the

pressure gradient is no longer in balance with the centripetal acceleration and which

induces a velocity gradient perpendicular to the streamline. Thus, a secondary flow

emerges within the boundary layer (crossflow) which must vanish at the wall and at

the boundary layer edge, hence the existence of an inflection point in the crossflow [11].

Depending on the freestream noise levels (boundary layer receptivity), cross-

flow instabilities tends to present itself either as stationary or traveling waves, with
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Figure 1.9: Crossflow profile [11]

transition dominated by one or the other, not both. Traveling crossflow instabilities

tend to be dominant in noisy freestream flow environments while stationary crossflow

instabilities tend to present itself in quiet conditions. It is noted that stationary cross-

flow instabilities are generally weak but exhibit nonlinear effects leading to secondary

instabilities [11].

The trajectory of crossflow vorticies within the boundary layer are strongly cor-

related to the inflection point of the perpendicular velocity component to the stream-

line. Hence, vortex trajectories can subsequently be calculated and the crossflow paths

can be traced along the geometry [46]. Crossflow instabilities are commonly found

when the vehicle body experiences an angle of attack or when the flow is no longer

axisymmetric.

1.4.5 Görtler Mode

Similar to crossflow modes, Görtler instabilities arise from vortex type distur-

bance modes within the boundary layer. However, Görtler modes are induced by
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geometric variations over the body (convex/concave surfaces) which then presents a

weakly non-parallel flow [12]. This instability induces the formation of Görtler vorti-

cies which are counter-rotating vorticies propagating parallel to the direction of flow.

These instabilities are considered to be centrifugal type instabilities. Görtler modes

have been found on flared cones. [47, 15]

Figure 1.10: Görtler vorticies on a concave geometry [12]
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Chapter 2

METHODOLOGY

2.1 Grid Generation

To effectively generate a continuous geometry for basic state calculations, a

MATLAB script was developed to parametrically generate discrete coordinates of sim-

ple cone profiles for the meshing process. These discrete points of the geometry profile

can then be imported into a CAD software such as Solidworks and splined through to

generate the basis for the mesh.

Pointwise mesh generation was primarily used to generate the computational

domain. A clustering scheme implemented to allow for higher computational fidelity

towards anticipated areas where complex flow conditions are expected to occur, such as

regions of shocks expansions, compressions, recirculation areas, etc. Special considera-

tions such as fine wall clustering for better resolving of the computational region near

the boundary layer, was allocated to the extrusion parameters when generating the

computational grid, as this can have a large effect on the convergence of the solution.

In order to ensure that the grid is large enough to capture the entire shock region, the

shock height can be estimated utilizing θ− β −Mach diagrams along with the known

length of the cone. The resulting 2D grid contains structured quadrilateral cells and

an extrusion height towards the rear of the cone of approximately 1.3x that of the

estimated shock height. This 2D grid is then rotationally extruded 1 degree around

the central-axis of the cone to resolve a “slice”, which is sufficient as we are considering

cones at 0 angle-of-attack (AoA). To study 3D effects, such as crossflows or yawed

flight profiles, a half or full body mesh is generated instead to resolve non-symmetric

flow phenomena.
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Figure 2.1: A XY plane view of the computational mesh of a flared cone in Pointwise

2.2 Basic States

The steady and laminar basic state solutions are calculated utilizing the US3D

computational fluid dynamics software package developed by The University of Min-

nesota and NASA Ames Research Center and maintained by VirtusAero [37, 48, 49].

The US3D software package is influenced by work on the well-established NASA DPLR

(Data Parallel Line Relaxation) CFD code for high-speed compressible flow calculations

in chemical/thermal nonequilibrium. US3D is thus an implicit data parallel iterative

line-relaxation finite volume solver which allows for the discretization of nonlinear PDEs

utilizing finite volume methodologies (FVM) which divides the computational domain

into finite control volumes with control surfaces, with fluxes across these surfaces being

calculated as it enters and exits volumes.

US3D noted for its ability to integrate high order solving schemes, various vis-

cosity and gas parameters, efficiency on unstructured grids and API integration [37].

A wide range of chemistry models also allows it to model complex reaction effects in

high enthalpy flows which makes it highly desirable for hypersonic research[37]. For

studies into modal growth of disturbances, a laminar steady state solution is generated

(basic state) simulating low noise high-speed flow environments.

2.3 Stability

The JoKHeR (Joseph Kuehl Helen Reed) stability package is utilized for per-

forming a stability analysis and employ methods utilizing Linear Stability Theory
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Figure 2.2: US3D results of a flared cone at a 6◦ angle of attack in M6 flow

(LST) and Linear and Non-linear Parabolized Stability Equations (PSE). The JoKHeR

research code was developed at Texas A&M University as part of the National Center

for Hypersonic Laminar-Turbulent Transition Research [50]. The code employs a 2D

(Quasi-3D), compressible, ideal gas, primitive variable formulation which is capable of

marching disturbances along a predefined path with the assumption of uniformity in

the perpendicular direction.

2.3.1 Governing Equations

The 3D compressible Navier-Stokes equations assuming ideal gas and Stokes

fluid (λ = −2µ
3
) are as follows:
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Figure 2.3: Some relevant stability analysis schemes throughout the transition process
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The state variables are non-dimensionalized with respect to the boundary layer

edge values ∗e due to the highly advective nature of the problem and to simplify the

equations to certain key variables.
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This results in the following parameters:

Pr =
µcp
κ

R = cp − cv γ =
cp
cv
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=
√
Re l

An advective time scaling is chosen with all velocities scaled by Ue, length scaled by

L and pressure by ρeU
2
e . Substituting these parameters into equations 2.1, yields the

final form:
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Re Pr

∂

∂xi

(
k
∂T

∂xi

)
+ (γ − 1)M2

(
∂P

∂t
+ ui

∂P

∂xi

)
+
γ − 1

Re
M2

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)2

+ λ

(
∂uk
∂xk

δij

)2
]

(2.2)

2.4 Linear Stability Theory (LST)

The following assumptions must be considered for Linear Stability Theory (LST)

1. Basic state wall normal flow is zero (v̄ = 0), and other basic state variables are
only functions of y, ū(y), v̄(y), w̄(y), T̄ (y), ρ̄(y). This is the ”locally parallel flow”
assumption.

2. The disturbance magnitudes are small enough such that non-linear interactions
can be neglected (ϕ′ ≪ ϕ̄).

3. Disturbances are bounded in the normal direction within the boundary layer
(ϕ′

y=0 = ϕ′
y=δbl

= 0)

4. Disturbances are assumed to have the form of a wave propagating in the un-
bounded directions (homogeneous domains z, t)
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Figure 2.4: Traveling packet of waves where the phase velocity is the rate at which a
wave period travels (i.e. the propagation rate of the crests in the figure). The wave
group velocity is the velocity of the entire wavepacket. From Juniper et al. [13]

2.4.1 Modal expansions

Modal stability methods study the evolution of infinitesimally small disturbance

within the flow and involves decomposing the flow into its mean ϕ̄ and disturbance ϕ′

components.

ϕ = ϕ̄(x, y) + ϕ′(x, y, z, t) (2.3)

The mean component is commonly referred to a the ”basic state” and refers

to the base laminar flow on which stability analysis is performed. These basic state

solution are obtained via CFD solvers such as US3D.

It is noted that for LST, the governing equations are linear and, along with its

boundary conditions, are independent of x, z and t. That is, the equations are func-

tions of y only, and the two planes perpendicular to y, are doubly infinite. Thus these

equations can be analyzed in terms of normal modes by the assumption of the distur-

bance as a monochromatic wave [43], or via methods involving Fourier and Laplace

transform pairs [43, 51, 52, 53].

2.4.1.1 Fourier-Laplace Transform Pair

The disturbance can be written explicitly via treatment by Fourier-Laplace

transform pairs. In this approach, an initial value problem (IVP) is considered for

the system. For example, if spatial stability is considered (as in JoKHeR), an ini-

tial value problem arises in that domain (i.e. analysis is concerned with evolution of

growth of an instability initiated within the boundary layer). A Laplace transform of

the state variables is taken in the spatial coordinates of interest for this IVP, x. The
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problem can then be Fourier transformed in the z and t as the problem is unbounded

in those domains. The resulting expression is considered a complete representation of

the infinite summation of all possible solutions in the z and t domains [43, 8, 52, 54].

ϕ′(α, y, z, t) = L[ϕ′(x, y, z, t)] = ϕ′
L =

∫ ∞

0

ϕ′(x, y, z, t)e−i(αx) dx

ϕ′(α, y, β, ω) = Fz,t[ϕ
′
L] =

∫ ∞

−∞

∫ ∞

−∞
ϕ′
Le

−i(βz+ωt) dzdt

(2.4)

Where from the definition of the Laplace transform, α is the complex domain param-

eter. The expression can then be substituted into equation 2.6 and subsequently into

equations 2.2, which the stability characteristics can then be analyzed in the transform

domains. The following conditions must be met for this method to be equivalent to

the normal mode solution [43]:

lim
z,t→±∞

ϕ′(x, y, z, t) = 0 lim
z,t→±∞

∂ϕ′

∂x
= 0 Fz,t[ϕ

′(α, y, β, 0)] = 0 (2.5)

2.4.1.2 Normal Modes

With the assumption of parallel flow and that the problem is linear, a solution

can be also be sought via methods by separation of variables using normal modes. This

can be derived by seeking a solution in the form of ϕ′(x, y, z, t) = X(x)Y (y)Z(z)T (t).

The resulting 3D normal mode disturbance is expressed as a monochromatic wave (i.e.

wave of single wavelength) in the form of:

ϕ′ + ϕ′∗ = ϕ̂(y)︸︷︷︸
Shape

ei(αx+βz−ωt)︸ ︷︷ ︸
Phase

+ ϕ̂(y)∗e−i(αx+βz−ωt)︸ ︷︷ ︸
complex conjugate (c.c.)

(2.6)

The disturbance amplitude ϕ̂ is a function of y and the phase component is a

function of x, z and t. Thus it is implied that the disturbance ϕ is a function of α, β, ω

and y, which are components of the stream wise, spanwise wavenumbers, frequency and

wall normal direction receptively. Since the perturbations must be real, it is denoted

along with its complex conjugate. This treatment results in an expression that is

equivalent to methods involving Fourier-Laplace transforms.
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Since the ”locally parallel flow” assumption applies here, one of the limitations

of this analysis is that it is only performed at a specific specified location and does

not track any evolution downstream. The wall-normal velocity component and the

streamwise derivatives of the mean flow are assumed to be negligible.

LST can be presented as a temporal or spatial stability problem. For a spatial

stability problem, an initial value problem is considered in the spatial directions, and a

solution is sought via a Laplace transform in the spatial domain of interest. For 2D LST

for spatial stability as seen in JoKHeR, α is then complex (α = αr+iαi) where αr refers

to the physical wavelength while αi refers to the disturbance growth rate (i.e. growth

rate in the x direction). However, for temporal stability, the initial value problem is

instead considered in the t domain, which will yield a complex frequency ω such that

(ω = ωr + iωi), with the real and imaginary components defining the frequency and

temporal growth rate respectively. Similarly, for stability in the spanwise direction, β

is the complex spanwise wave number where βr is the physical spanwise wavelength

and βi being the growth rate in the z direction.

The disturbance wavenumber k⃗ with magnitude k is defined as

k =
√
α2
r + β2

r (2.7)

and thus the angle of wave propagation ψ relative to the x axis is

ψ = tan−1

(
βr
αr

)
(2.8)

2.4.2 Implementation

In the interest of brevity, only the 2D incompressible continuity and momentum

equations are considered for this example to illustrate the general process of deriving the

LST matrices for implementation in JoKHeR. Substituting in the disturbance equations

2.6 into equation 2.2 while assuming 2D parallel flow (ū(y), w̄(y), p̄(y), v̄ = 0) and

expanded yields:
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∂u′

∂x
+
∂v′

∂x
+
∂w′

∂x
= 0 (2.9)

∂u′

∂t
+ ū

∂u′

∂x
+ v′

∂ū

∂y
+ w̄

∂u′

∂z
= −∂p

′

∂x
+

1

Re
∇2u′ (2.10)

∂v′

∂t
+ ū

∂v′

∂x
+ w̄

∂v′

∂z
= −∂p

′

∂y
+

1

Re
∇2v′ (2.11)

∂w′

∂t
+ ū

∂w′

∂x
+ v′

∂w̄

∂y
+ w̄

∂w′

∂z
= −∂p

′

∂z
+

1

Re
∇2w′ (2.12)

Substituting the disturbance equation 2.6 into eqs. (2.9) to (2.12) yields:

iαû+Dv̂ + iβŵ = 0 (2.13)(
−iω + iαū+ iβw̄ +

α2

Re
+
β2

Re
− 1

Re
D2

)
û+

ū

∂y
v̂ + iαp̂ = 0 (2.14)(

−iω + iαū+ iβw̄ +
α2

Re
+
β2

Re
− 1

Re
D2

)
v̂ +Dp̂ = 0 (2.15)(

−iω + iαū+ iβw̄ +
α2

Re
+
β2

Re
− 1

Re
D2

)
ŵ +

w̄

∂y
v̂ + iβp̂ = 0 (2.16)

Expressed in matrix form is:

(L0 + αL1 + α2L2)ϕ = 0 (2.17)

where:

L0 =


0 D 0 0

−iω+iβw̄+
β2

Re
− 1

Re
D2 ∂ū

∂y
0 0

0 −iω+iβw̄+
β2

Re
− 1

Re
D2 ∂ū

∂y
0 D

0 ∂w̄
∂y

−iω+iβw̄+
β2

Re
− 1

Re
D2 ∂ū

∂y
iβ



L1 =


i 0 0 0

iū 0 0 i

0 iū 0 0

0 0 iū 0

L2 =


0 0 0 0

1
Re

0 0 0

0 1
Re

0 0

0 0 1
Re

0

ϕ =


û

v̂

ŵ

p̂


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To obtain a form of that can be solved via a generalized eigenvalue solver (i.e.

MATLAB, Python NumPy, etc.), the nonlinear dependence is eliminated. This can be

done by introducing the following three additional variables αû, αv̂, αŵ. This reduces

2.17 results to:

(M0 + αM1)ψ = 0 (2.18)

M0 =



0 D 0 0 0 0 0

−iω+iβw̄+
β2

Re
− 1

Re
D2 ∂ū

∂y
∂ū
∂y

0 0 0 0

0 −iω+iβw̄+
β2

Re
− 1

Re
D2 ∂ū

∂y
0 D 0 0

0 ∂w̄
∂y

−iω+iβw̄+
β2

Re
− 1

Re
D2 ∂ū

∂y
iβ 0 0

0 0 0 0 −1 0 0

0 0 0 0 0 −1 0

0 0 0 0 0 0 −1



M1 =



i 0 0 0 0 0 0

iū 0 0 i 1
Re

0 0

0 iū 0 0 0 1
Re

0

0 0 iū 0 0 0 1
Re

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0


ψ =



û

v̂

ŵ

p̂

αû

αv̂

αŵ


The derivatives are then replaced by finite difference schemes as outlined in

appendix A with boundary conditions:

û(0) = v̂(0) = 0

Dp̂(0) =
1

Re
D2v̂(0)

û(∞) = v̂(∞) = p̂(∞) = 0
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Note the pressure boundary condition at the wall is to account for the fluctuating

wall pressure. This can be modified to account for other user specified wall boundary

conditions such as the impedance boundary condition (see chapter 6). The resulting

system can then be solved in MATLAB via the its built in generalized eigenvalue solver

utilizing a QZ algorithm. For full 3D compressible LST, the same steps are applied

with the 3D compressible NS equations and boundary conditions:

û(0) = v̂(0) = ŵ(0) = T̂ (0) = 0

Dp̂(0) =
1

Re
D2v̂(0)

û(∞) = v̂(∞) = p̂(∞) = T̂ (∞) = p̂(∞) = 0

2.5 Linear PSE (LPSE)

PSE or Parabolized Stability Equations are also widely utilized for stability

analysis. Originally identified by Herbert and Bertolotti [26], during a critical review

of Gaster [55] early nonparallel work, the parabolized stability equations have been

developed as an efficient and powerful tool for studying the stability of advection-

dominated laminar flows. Excellent introductions to the PSE method and summary of

its early development were provided by Herbert [56]. During the early stages of both

linear and nonlinear development of this technique, much was established related to

basic marching procedures, curvature, normalization conditions, and numerical stabil-

ity of the method itself (Bertolotti [22]; Chang et al.[57], Joslin et al.[58], Li and Malik

[59], and Haynes and Reed [60])

In a relatively short time, the field rapidly expanded to include complex ge-

ometries, compressible flow, and finite-rate thermodynamics (Stuckert and Reed [61],

Chang et al.[62], Johnson et al.[63], Haynes and Reed [60], Malik [64], Chang [65],

Johnson and Candler [66], Li et al.[67], Theofilis [68], Paredes et al.[69], Kuehl et

al.[14], Kocian et al.[70], and Perez et al.[71])

Only linear interactions are considered for this section, which assumes that

there are no coupling between modes, similar to LST. As such, the type of equations
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used in this analysis are dubbed Linear Parabolized Stability Equations (LPSE). One

difference from LST is that LPSE eliminates the requirement for the ”locally parallel

flow” assumption. That is, while LST is able to determine local stability effects at

a specific spatial (local) location, it does not yield any information on the historical

effects of perturbations. On the other hand, LPSE can reveal stability effects from

local and upstream flow conditions. As such, LST and LPSE are sometimes referred

to as local and non-local stability methods respectively.

An important criterion for the success of LPSE is done by developing methods

of analyzing the flow without solving PDEs of an elliptic nature. This is primarily

done by considering the method of multiple scales (MMS), which takes advantage of

the fact that the wall normal basic state quantities vary more rapidly than compared to

the same basic state quantities in the streamwise direction, as commonly seen in flows

within boundary layers. By applying this method of multiple scales, it is then possible

to derive a parabolic system of PDEs which can be solved via a marching solution that

can reflect upstream influences.[13]

The crux of MMS lies in the assumption that variations in the streamwise di-

rection are much smaller than in the wall normal direction. Thus. slow and fast scales

are introduced and related through the variable x̃ = x
Re
. This x̃ evolves slowly along

the x direction (x over a large number Re). Ultimately, disturbances are assumed to be

a monochromatic wave in the form of an fast varying amplitude shape component and

a slow varying wave component. Recasting equation 2.6 here for a 2D disturbance,

ϕ(x, y, t) = ϕ̄(x, y)︸ ︷︷ ︸
basic state

+ϕ′(x, y, t)︸ ︷︷ ︸
disturbance

(2.19)

The disturbance wave can be assumed to be represented as a sum of a discrete number

of periodic functions with Fourier coefficients. Applying a Fourier transform F to the

disturbance term now assumes the disturbance in the form of the shape and wave

components:

F [ϕ′] = ϕ̂(x̃, y)︸ ︷︷ ︸
shape

Φ(x, t)︸ ︷︷ ︸
wave

+c.c.
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where the wave part satisfies

∂Φ

∂x
= iα(x̃)Φ (2.20)

∂Φ

∂t
= −iωΦ, (2.21)

and where Re = Ueδr
νe

is the Reynolds number based on characteristic values of edge

velocity (Ue), edge kinematic viscosity (νe), and the length scale of the reference bound-

ary layer (δr). Now applying an inverse Fourier transform to F−1 results in the form

of the disturbance which is considered for PSE:

F [ϕ′(x̃, y, t)] = ϕ′(x̃, y, ω) =

∞∫
−∞

ϕ̂(x̃, y, ω)︸ ︷︷ ︸
shape

A(x̃, ω)e−iωt︸ ︷︷ ︸
wave

dω (2.22)

where A(x̃, ω) = ei
∫
α(x̃,ω)dx and the dependence of the shape function (ϕ̂) and ampli-

tude function (A) on ω has been made explicit. The shape and amplitude functions are

essentially the Fourier transform of the disturbance. Upon expansion of the streamwise

derivatives

∂ϕ′

∂x
=

∞∫
−∞

(
1

Re

∂ϕ̂

∂x̃
+ iαϕ̂

)
Ae−iωtdω

∂2ϕ′

∂x2
=

∞∫
−∞

(
1

Re2
∂2ϕ̂

∂x̃2
+

2iα

Re

∂ϕ̂

∂x̃
+
iϕ̂

Re

∂α

∂x̃
− α2ϕ̂

)
Ae−iωtdω,

it is found that the second spatial derivative ∂2ϕ̂
∂x̄2 is of the highest order. By an order

of magnitude analysis, it can be seen that the ∂2ϕ̂
∂x2 has terms that are scaled by 1

Re2

and some components of the NS components are then scaled by 1
Re

coming from the

viscous terms, which reveals that all O
(

1

Re2

)
streamwise x terms can be neglected.

This leaves the disturbance equation nearly parabolized as the elliptic terms associated

with the higher order derivatives are also eliminated (Li and Malik 1996 [59]), and an

efficient marching solution may be sought. Results from an LPSE analysis can be
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processed into N-factors otherwise known as the eN correlation method. N-factors can

be computed by

N = ln

(
A

A0

)
≈ −

∫ x

x0

αidx (2.23)

Where A and A0 is the disturbance amplitude at a local streamwise location and at

the N1 neutral point respectively. N factors can also be approximated by integrating

the unstable growth rate obtained from LST results.

2.6 Normalization condition

To efficiently iterate for a solution, a normalization condition is introduced to

provide closure for this system. Due to the assumption of a slowly growing boundary

layer and the introduction of slow variables, the shape function is in turn also assumed

to be slow varying in the streamwise direction. The introduced normalization condition

applies restrictions for variations on the shape function and transfers the energy to the

wave function.

∞∫
0

n∑
k=1

ϕ∗
k

∂ϕk

∂x
dy = 0 (2.24)

Where n is the total number of state variables and ∗ denotes complex conjugate. It is

noted that when this condition is expanded, the real components restricts growth in

disturbance amplitude, while the imaginary components restricts the phase change.

2.7 Non-linear PSE (NPSE)

From chapter 1, it is commonly assumed that the modal growth interpretation
follows a general series of steps which eventually leads to transition.

1. Small amplitude disturbances are introduced into the boundary layer via freestream
disturbances or boundary imperfections.

2. The initial small amplitude disturbances can grow and is governed by linear
stability dynamics.

3. With larger disturbance amplitudes, linear dynamics may no longer hold and
non-linear interactions become important and dominant.
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4. Non-linear interactions lead to spectral broadening and eventual transition to
turbulence.

Figure 2.5: Schematic of energy flow between the basic state and disturbance modes.
From Kuehl (2017)[14]

As the disturbance amplitude grows in the boundary layer, methods utilizing

LST and LPSE are unable to model multi-mode interactions and are thus only able to

consider dynamics of individual modes. In Nonlinear Parabolized Stability Equations

(NPSE), this limitation can be overcome as all modes can be solved simultaneously

and their interactions modeled and coupled through various nonlinear forcing terms.

With NPSE, a finite amplitude disturbance can be employed instead of an

infinitesimally small amplitude as was considered with LST and LPSE. Within the

boundary layer, the complex energy interactions between various mechanisms can be

depicted with figure 2.5. Energy from the mean flow feeds into the primary (Mack)

mode interactions. Non-linear interactions, also referred to as ”non-linear saturation”,

leads to energy loss from the primary modes to the mean flow distortion and harmon-

ics being comparable by the energy gained by the primary disturbance from the mean

flow. This can cause a gradual decrease in the growth rate of the primary disturbance

and can lead to the cessation of primary mode growth. The energy from the mean flow

distortion can in turn, feedback and detune the primary modes. Schemes involving

NPSE are able to model the stability of highly advective laminar flows while incorpo-

rating nonlinear, nonparallel effects to be with close agreement with DNS results, at
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the fraction of the computational demands.

2.7.0.1 Sum-Difference Interactions (Harmonics)

Derivation of the NPSE disturbance equations is similar to that of LPSE, how-

ever a discrete treatment is taken here. The total 2D disturbance is assumed to be

periodic in time and the spanwise direction, hence a double discrete Fourier transform

is taken in the z and t domain.

ϕ′ =
N∑
−N

K∑
−K

ϕ̂(x̃, y)︸ ︷︷ ︸
shape

A(x̃)e−i(kβ0z−nω0t)︸ ︷︷ ︸
wave

+ c.c.

A(x̃)(n,k) = ei
∫
α(x̃)(n,k)dx

(2.25)

A shape and wave function arises again from this transformation. A(x̃) is the

spectral amplitude function with streamwise wave number α(x̄). β0 and ω0 are the

fundamental spanwise wavenumber and frequency respectively.

In the system, the primary mode is also modeled along with its harmonics (non-

primary modes), which are integer multiples of the properties of itself. As short hand

notation, modes are denoted by (n, k) which identifies the mode having as frequency

and spanwise wavenumber respectively n and k times the frequency and spanwise wave

number of the primary (fundamental) mode. Each mode is the product of the shape

and wave (phase) function and is subject to the normalization condition as defined by

equation 2.24.

The following derivatives presents themselves in the problem statement:
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∂ϕ′

∂t
=

N∑
−N

K∑
−K

−iω0nϕ
′

∂ϕ′

∂z
=

N∑
−N

K∑
−K

−iβ0kϕ′

∂ϕ′

∂x
=

N∑
−N

K∑
−K

(
1

ReL

∂ϕ̂

∂x̃
+ iα(n,k)ϕ̂)A(n,k)e

i(kβ0z−nω0t)

∂2ϕ′

∂x2
=

N∑
−N

K∑
−K

(
1

Re2L

∂2ϕ̂

∂x̃2︸ ︷︷ ︸
elliptic term

+
2iα(n,k)

ReL

∂ϕ̂

∂x̃
+

iϕ̂

ReL

∂α(n,k)

∂x̂
− (α(n,k))

2ϕ̂)A(n,k)e
i(kβ0z−nω0t)

The elliptic term in the second x derivative is on the order of ( 1
Re
)2 ,which is

much less than the other terms in that equation. Thus, this term can be neglected to

again obtain ”parabolized” equations of motions which can be effectively marched in a

computational scheme. However, since disturbance amplitudes are no longer ”infinites-

imally” small, nonlinear terms from equations in appendix B must now be considered

and reincorporated to properly model the governing dynamics. In addition to being

non-negligibly finite, the disturbances must also be real so the solution is also coupled

with its complex conjugates:

α∗
(n,k) = −α(−n,−k) β∗

0(n,k) = β0(−n,−k) A∗
0(n,k) = −A0(−n,−k)

û∗(n,k) = û(−n,−k) v̂∗(n,k) = v̂(−n,−k) ŵ∗
(n,k) = ŵ(−n,−k)

T̂ ∗
(n,k) = T̂(−n,−k) ρ̂∗(n,k) = ρ̂(−n,−k)

A ”harmonic balancing” condition is applied where the linear and nonlinear

coefficients and higher order terms must match. This forces nonlinear interactions

between mode-mode, mode-harmonic, harmonic-harmonic and results in coupling in

order to fulfill this balancing criterion. The resulting system of governing equations

are now coupled and must be solved for every (n, k) combination.
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2.7.0.2 Note on Mean Flow Distortion (MFD)

Intensively expanding these equations with (n, k) combinations, there exists

a mode with no frequency nor complex conjugate and is thus non-oscillatory which

is denoted as (0,0). Physically, this arises from nonlinear interactions between the

disturbances and base flows and appears as an energy buffer and provides feedback

onto the primary mode disturbance by affecting the energy flow from the basic state

into the primary mode, as shown by Liang et. al. [72].

2.7.0.3 Wavepacket representation

Classically, the modeling of nonlinear interactions within the boundary layer is

done by assuming discrete frequency primary modes and its respective harmonics. This

formulation fails to consider disturbance bandwidth effects and thus may misrepresent

the actual frequency content of the disturbances and unable to model the complex

energy flows present in nonlinear dynamics. In experimental studies, the disturbance

frequencies spans a finite bandwidth range rather than at a discrete frequency; an

example is noted in figure 2.6.

The wavepacket formulation seeks to rectify the discrepancy between experimen-

tal results and computational PSE studies by accurately and consistently accounting

for redistribution of energy between finite bandwidth disturbances by representing dis-

turbances as a composition of multiple discrete shape functions that each oscillate at

a frequency and bandwidth [39]. The total disturbance is then modeled as spectrum

of k number of discrete disturbances in a Fourier series:

A(x, ω) = Ak(x;ωk)︸ ︷︷ ︸
Amplitude

Wk(ω;ωk)︸ ︷︷ ︸
Weighting

ϕ′ =
∑
k

ϕ̂kAe
−iωkt =

∑
k

ϕ̂kAkWke
−iωkt

Note that each discrete shape function ϕ̂k oscillates at a frequency and amplitude

function A comprising of an amplitude coefficient Ak and a weighting function Wk
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Figure 2.6: Typical streamwise normalized power spectral density (PSD) of a smooth
wall cone exhibiting second mode instability waves obtained from experimental studies.
Note the primary mode frequency at 25kHz along with its higher frequency harmonics.
From Chynoweth et. al. (2019)[15]

which contains spectral information of the frequency bandwidth. Nonlinear interac-

tions themselves can be modeled by applying the convolution property of the Fourier

transform where the convolution of 2 functions f & g is such that:

(f ∗ g)(s) =
∫ ∞

−∞
f(ω)g(s− ω)dω

Applying this to two sample nonlinear terms is shown intensively by Kuehl[73]

to be as follows.

F−1[F [ϕ′
iϕ

′
j]] = ϕ̂iϕ̂jAiAj

∫ ∞

−∞
(Wi ∗Wj)e

−iωtdω (2.26)
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The disturbance frequency content can be further modeled by considering the form

of the weighting function. For the traditional discrete mode representation (Delta

function weighting), the following is considered:

W0 = δ(ω − ω0)

(Wi ∗Wj) = δ(ω − (ωi + ωj))
(2.27)

Where the subscript ∗0 refers to linear terms while subscripts ∗i and ∗j refers to non-

linear terms. For modeling as a continuous frequency spectrum, this approach is taken

instead:

W0 =
1√
2πσ2

0

e
− (ω−ω0)

2

2σ2
0

(Wi ∗Wj) =
1√

2π(σi − σj)2
e
−

(ω−(ωi−ωj))
2

2(σi−σj)
2

(2.28)

as shown by Kuehl [73]. The dynamics between nonlinear and linear interactions with

the new weighting formulation within the problem statement follows the harmonic

balancing criterion such that:

∫ ∞

−∞
ϕ̂0A0W0e

−iωtdω ⇌ ϕ̂iϕ̂jAiAj

∫ ∞

−∞
(Wi ∗Wj)e

−iωtdω

Where again, all the linear and nonlinear coefficients and higher order quadratic

terms must match. With the wavepacket formulation, the resulting harmonics has

been shown to have a larger frequency bandwidth than the primary mode due to

the properties of the convolution. Thus, during the process of nonlinear interactions

between the harmonics back with its primary mode, the energy that is then projected,

spans a wider range of frequencies. This in turn, leads to the spectral broadening

phenomenon and evidence of low-frequency content generation that has been seen

experimentally [74, 15].

36



2.8 Eigenmode search algorithm

Spurious eigenvalues appear when performing an computational numerical anal-

ysis on complex stability problems, which is particularly common in the field of hydro-

dynamic stability. There are many mathematical reasons for the emergence of spurious

eigenvalues; one common reason may be due to the poor approximation of boundary

values within the problem as is common with discrete derivatives schemes [75, 8].

Spurious eigenvalues are nonphysical and are considered byproducts of the numerical

computation process. Efforts in the elimination of spurious eigenvalues were performed

to determine the unstable mode of interest.

There has been great efforts by others to filter out these spurious results and to

reduce the eigenproblem compute time associated with the full eigenvalue problem by

using Chebyshev, Tau or Arnoldi iteration schemes to name a few [75, 76, 77, 78, 79].

The current version of JoKHeR solves the full eigenvalue problem. As it is mentally

and physically draining for the user to manually verify each eigensolution, particularly

if analyzing a problem with a range of frequency and streamwise location permutations,

an automated algorithm was developed in an attempt to eliminate spurious eigensolu-

tions. The primary method utilized is by computationally comparing the the current

solution with historical trends of previous valid solutions.

2.8.1 Eigenvalue spectrum analysis

Each blue point as seen in figure 2.7, is a computed eigensolution from the

full generalized eigenvalue problem. Note that this is a zoomed in view of the full

spectrum plot, which depending on the LST setup parameters, can range up to 1800

values or more. The computed eigensolutions are first pass through a filter where

through an iterative k-means clustering scheme to determine the general area where

the continuous and discrete spectrums are clustered/centered, which results in a plot

centered like figure 2.7.

As eigenvalues associated with 1st and 2nd modes are historically situated near
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Figure 2.7: Typical eigenvalue spectrum (zoomed in) from a solved full eigenvalue
problem in JoKHeR. Note the discrete eigenvalue spectra circled in purple and the
continuous spectrum circled in red.

the right discrete spectrum, an simple iterative curve fitting scheme was then imple-

mented in order to detect the span of the continuous spectrum and to remove values

left of the fitted curve. The iterative nature of this scheme allows the curve to be more

”refined” with each pass as outlier points from the k-means clustering are iteratively

removed as depicted in the left of figure 2.8. The resulting eigensolutions after this

filtering scheme are shown on the right of said figure.

2.8.2 Shape function analysis

Wit the number of eigensolutions for analysis being substantially decreased after

the eigenspectrum analysis, a shape function analysis can be performed. 1st and 2nd

modes have a distinct U ′ profiles which can be compared with existing examples in

order to further filter out spurious results. A typical 2nd mode profile is shown in

figure 2.10, with a large primary peak near the wall and a smaller trailing secondary
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Figure 2.8: Left: Iterative continuous spectrum curve fitting with excluded points at
each iteration. The final fitted curve is highlighted blue. Right: Removed eigensolution
(red plus) and eigensolutions passed on to shape function analysis (blue circle)

peak which decays to the freestream. If these shape functions are assumed analogous

to signals, a simple cross-correlation MATLAB function (xcorr) is then utilized to

correlate the current shape function with a repository of user-validated 2nd modes.

The cross-correlation between two functions is expressed as:

(Sint ∗ Sref ) =
∞∑

m=−∞

S∗
int(m− n)Sref (n) (2.29)

Where ∗ denotes the convolution between the current signal of interest Sint and

reference signal Sref . The superscript
∗ denotes the complex conjugate and n the signal

displacement(lag) [80, 81]. This cross-correlation between signals is normalized with 0

lag utilizing the ’-coeff’ argument and scales the output coefficient values to the range

of -1 to 1, where 1 represents perfect correlation, -1 represents perfect anti-correlation,

and 0 represents no correlation. This allows for a comparison of similarity between

the each signal of interest and reference signals in the repository regardless of their

respective amplitudes.

A statistical analysis is then performed across these correlation coefficients,

where the frequency density of coefficients are plotted in a histogram as depicted in

figure 2.9. A gaussian distribution is then fitted over the frequency densities and the
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coefficient of its peak is recorded. Shape functions with coefficient peaks below a user

defined threshold and their corresponding eigensolutions are filtered out.

Figure 2.9: Left: A relatively “dissimilar” shape function. Right: A relatively “similar”
shape function

Figure 2.10: A typical 2nd mode disturbance U ′ velocity profile (shape function)

The shape functions of the resulting eigensolutions are placed through a final

simple filtering scheme where its freestream decay, shape function “noisiness”, and

other quantified characteristics of the mode of interest are analyzed and is given a
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summed “score”. The highest score of all remaining eigensolution is then determined

to be the valid eigenmode solution, with an example shown in figure 2.11. It is stressed

that this methodology is not guaranteed to filter out and select the valid eigensolu-

tion, however it provides a basis for the user to filter out a vast majority of spuri-

ous eigensolutions and simplify the analysis task. It is also anticipated that as more

user-validated shape functions are appended to the repository and more mode specific

metrics are quantified, the likelihood of valid mode-finding also increases. This method

is considered to be a temporary workaround for efficiently performing LST on a wide

data set until a more permanent method such as Arnoldi or Chebyshev schemes are

implemented.

Figure 2.11: Unstable mode detected by JoKHeR at 650 kHz
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Chapter 3

ON THE INVISCID ENERGETICS OF MACK’S FIRST MODE
INSTABILITY

The following chapter is adapted from [1]

In two-dimensional boundary layers, different instability mechanisms dominate

the modal growth phase depending on the flight speed, particularly as the flight pro-

file encompasses both the incompressible and compressible regimes (increasing Mach

numbers). Planar Tollmien-Schlichting (TS) waves are the most unstable in the incom-

pressible regime and are known to be driven by phase shifting between the streamwise

and wall normal velocity perturbation components, due to the viscous no-slip wall

boundary condition. As the Mach number is increased, the boundary layer transition

mechanism switches from planar TS wave dominated instabilities to oblique Mack’s

first mode wave dominated instabilities. It was shown by linear stability theory (LST),

that the switch from planar TS wave dominated to oblique Mack’s first mode wave

dominated is not continuous and occurs at Mach 1, when a generalized inflection point

forms in the boundary layer profile [82]. As the boundary-layer-edge Mach number

continues to increase, first mode dominated transition persists until the Mach num-

ber becomes larger than approximately 4.5 to 6.5, depending on the wall-to-adiabatic

temperature ratio, at which point the planar acoustic Mack’s second mode becomes

dominant.

Despite the long history of hypersonic boundary layer instability calculations

(in particular the works of Mack [42, 44]), ambiguity remains concerning the funda-

mental physical mechanisms governing super/hypersonic boundary layer instability.

As mentioned, incompressible boundary layer TS waves are well understood and the

thermoacoustic resonance interpretation appears explain Mack’s second mode. Thus,
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the focus of this chapter is an energetics characterization of the instabilities introduced

above, with an emphasize on Mack’s first mode [42, 83], on a flat plate for a range of

Mach numbers. Note, a significant body of literature exists concerning the spectral

properties of high-speed boundary layer instabilities (for example [84, 85, 86] with an

excellent recent summary provided by [87]). In these and other works, many proper-

ties of the spectrum, spectral branching and spectral sensitivity to various parameters

have been established. These properties are particularly important when solving the

receptivity problem, as forcing can excite different parts of the spectrum [88] which

may interact transiently. However, in this chapter, focus is placed on the later stages

of disturbance evolution. That is, the dynamics after initial transients have died out is

considered. In such cases, all stable modes of the spectrum will become evanescently

small, leaving only the unstable modes to dominate the disturbance field. By char-

acterizing the energetics of such disturbances, it is hoped that new insights into the

physical mechanisms governing the modal growth route to transition for high-speed

boundary layers are gained.

3.1 Problem Formulation

3.1.1 Mathematical Model Formulation

Consider the Euler equations (inviscid Navier-Stokes) ([89] chapter 3):

Dρ

Dt
= −ρ∇ · u⃗ (3.1)

ρ
Du⃗

Dt
= −∇P (3.2)

ρ
DT

Dt
− (γ − 1)M2DP

Dt
= 0. (3.3)

Derivation of the total energy equation follows as a series of known steps: u⃗ · (3.2) +

(T (3.1) + (3.3)) yielding

1

2
ρ
Du2

Dt
+M2DP

Dt︸ ︷︷ ︸
energy

+ u⃗ · ∇P + γM2P∇ · u⃗︸ ︷︷ ︸
div. acst. pwr.

= 0, (3.4)
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or

1

2
ρ
Du2

Dt
+
γM2

2ρc2
DP 2

Dt︸ ︷︷ ︸
energy

+ u⃗ · ∇P + γM2P∇ · u⃗︸ ︷︷ ︸
div. acst. pwr.

= 0, (3.5)

where M2 = U2
e

γRTe
, c =

√
γP
ρ
, γ = cp/cv, u

2 = u2 + v2 + w2 (with u and v being

the streamwise and wall normal components of velocity respectively for the 2D case

and w the spanwise velocity component), T is temperature, ρ is density and P is

pressure. This is essentially the same as the thermoacoustic energy equation of Nicoud

and Poinsot [90]. Other than the inviscid approximation, (3.4) is generally valid. The

first two terms represents the Lagrangian derivative of acoustic energy and the second

two terms represent the divergence of acoustic power.

To be consistent with the LST methodology, disturbance energy is calculated as

follows. Flow variables are decomposed into mean and perturbation components, ϕ =

ϕ̄+ϕ′. This decomposition is substituted into equations 3.1 - 3.3, and each equation is

linearized. Then, these linearized equations are used to construct a disturbance energy

equation, 5.1. Sources of disturbance energy are derived from either the divergence

of acoustic power or the nonlinear advective terms, and generically take the form of

traditional Reynolds stresses or thermal Reynolds stresses. We have assumed 3D flow

that is parallel in the X and Z directions. It should be noted that the energy norm

derived here is consistent with the energy norm used in the analysis of compressible

turbulence [91]. It is also very similar to the Chu energy norm [92], if pressure is

expanded into density and temperature perturbation quantities, which is very popular

in optimal growth studies [93]. However, here we chose to use the norm consistent with

our derivation, beginning with the compressible Euler equations (eqns 3.1-3.3). Note

also, based on our past work with Mack’s second mode, it is natural to discuss energy

budgets in terms of acoustic power. Again, these terms could be expanded into density

and temperature disturbance quantities, if desired.
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ρ̄

2

D̄⟨u⃗′2⟩
Dt

+
γM2

2ρ̄c2
D̄⟨P⃗ ′2⟩
Dt︸ ︷︷ ︸

dist. energy

= ⟨−ρ̄u′v′∂Ū
dy

− ρ̄v′w′∂W̄

dy︸ ︷︷ ︸
velocity advective

−
(
u⃗′ · ∇⃗

)
p′ − γM2P ′

(
∇⃗ · u⃗′

)
︸ ︷︷ ︸

div. acst. pwr

⟩.

(3.6)

3.1.2 Blasius Solution

The canonical Blasius boundary layer profile is considered in this work and

a brief derivation is presented for completeness. The flat plate compressible Blasius

boundary layer at zero angle of attack is described by the equation ([94] pg 507),

(Cf ′′)
′
+ ff ′′ = 0 (3.7)

(Cg′)
′
+ Prfg′ = −PrC (γ − 1)M2f ′′2 (3.8)

where C = ρµ
ρeµe

. We now apply Sutherland’s Law

µ = Cµ
T

3
2

T + S
(Dimesional) (3.9)

with Cµ = 1.458 × 10−6 and S = 110.4. Note Cµ =
µref

T
3
2
ref

(Tref + S), where µref =

1.716 × 10−5 and Tref = 273.15. For an ideal gas and constant base state pressure

across the boundary layer, ρ
ρe

= Te

T
. Also remember g = h

he
= T

Te
→ T = Teg. Putting

it all together results in the exactly similar behavior for C:

C =
CµT

1
2
e

µe

g
1
2

g + S
Te

= C0
g

1
2

g + C1

. (3.10)

Substitution into the above Blasius equations leads to the final Sutherland’s Law Bla-

sius boundary layer equation ([95] chapter 6)

f ′′′ =
g′f ′′

g + C1

− g′f ′′

2g
− ff ′′ (g + C1)

C0g
1
2

(3.11)

g′′ =
g′2

g + C1

− g′2

2g
− Pr (γ − 1)M2f ′′2 − Prfg′ (g + C1)

C0g
1
2

(3.12)
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These equations are solved with a fourth order Runge-Kutta method, in combina-

tion with a shooting method scheme in MATLAB. Several different Mach numbers

are considered in this work, but each run assumes that density = 0.0147 kg/m3 and

temperature = 100 K for edge values outside the boundary layer. Also, γ = 1.4 and

adiabatic wall conditions are applied, unless otherwise specified. In addition, all cal-

culations presented in this work are taken for a boundary layer Reynolds number,

Rδ =
√
δρeUe/µe = 1000, where δ =

√
x/(ρeUe/µe).

3.2 Stability Results

3.2.1 Subsonic Case

To make clear and complete distinction between TS waves and first mode in-

stability, analysis is initiated with consideration of a sufficiently sub-sonic boundary

layer (M = 0.5 Blasius boundary layer). The most unstable 2D TS instability is

found to have a frequency of 500Hz (ω = 0.0005) with an unstable eigenvalue of

α2D = 0.1448− 0.0043i.
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Figure 3.1: Profiles of Reynolds stress energy source/sink terms at M = 0.5 with a
frequency of 500Hz, β = 0, and Reδ = 1000. Left) Regular TS mode: αTS = 0.1448−
0.0043i. Right) 2D mode with slip boundary condition: αTS−slip = 0.1501 + 0.0085i.

The fundamental physical process governing TS instability is known to be a

phase shifting between the u′ and v′ velocity disturbances due to the viscous no-slip

boundary condition (see Stoke’s 2nd problem for details of this phase shifting) [96].
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The phase shift results in non-zero advective Reynolds stresses which constitute the

energy source of this instability in the fully incompressible limit. Figure 3.1 (left panel)

shows that the inviscid energy source for this instability is predominantly the velocity

advective terms. Notice that when a slip velocity boundary condition is applied (zero

gradient condition for the u′ and w′ velocity components), the energy source is removed

and the disturbance stabilizes (right panel), α2D−slip = 0.1501 + 0.0085i. That is, by

applying a slip boundary condition, the phase shifting mechanism responsible for TS

instability is removed. This is all consistent with the current understanding of TS

instability physics.

Note, for the following figures, legends have been labeled as follows: UV in-

dicates tradition Reynolds Stress −ρ̄u′v′ ∂Ū
dy
. UDxP, VDyP and WDzP indicate the

components of −
(
u⃗′ · ∇⃗

)
p′. PDxU, PDyV and PDzW indicate the components of

−γM2P ′
(
∇⃗ · u⃗′

)
. The black dot indicates the location of the generalized inflection

point and the red dot indicates the location of the critical layer. All DAP indicates

the profile of all the divergence of acoustic power terms, with Thermal Total being the

integral total, positive indicating an energy source. Advective Total is the integral of

the traditional velocity advective Reynolds Stress terms (UV), positive indicating an

energy source. Total is the sum of Thermal Total and Advective Total.

3.2.2 Transonic Case

Next, we consider a slightly compressible boundary layer (M = 0.9 Blasius

boundary layer, figure 3.2). In general, the same trends as were observed for the M =

0.5 case, hold for the M = 0.9 case, with the significant addition of unstable oblique

modes. At 1300Hz (ω = 0.0013), an unstable 2D mode is found, α2D = 0.1064−0.0041i

and an unstable oblique mode, αobl = 0.1061 − 0.0040i with azimuthal wave number

β = 0.025 (in the following, β is chosen to consider the most unstable mode). Again,

the velocity advective Reynolds stresses are dominant and the slip boundary condition

stabilizes the disturbances, α2D−slip = 0.1105+0.0035i and αobl−slip = 0.1102+0.0036i.

However, the thermal terms have gained in importance, accounting for approximately
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40% and 33% of the energy source of the 2D and 3D disturbances, respectively. Also

note, that the oblique disturbance mode presents a larger velocity advective Reynolds

stress than the 2D disturbance mode.
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Figure 3.2: Profiles of Reynolds stress energy source/sink terms at M = 0.9 with a
frequency of 1300Hz, β = 0.025, and Reδ = 1000. Upper Left) 2D mode: α2D =
0.1064 − 0.0041i. Upper right) 2D mode with slip boundary condition: α2D−slip =
0.1105 + 0.0035i. Lower left) Oblique mode: αObl = 0.1061 − 0.0040i. Lower right)
Oblique mode with slip boundary condition:αObl−slip = 0.1102 + 0.0036i.

As the edge flow conditions becomes supersonic, i.e., the edge Mach number

becomes larger than 1, a generalized inflection point appears in the profile, and the

following trends are observed:

• The oblique disturbance modes become more unstable than the 2D modes.

• The stabilizing effects of the slip boundary condition is reduced.
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• The energy source for the instabilities drifts away from the wall to the vicinity
of the generalized inflection point.

3.2.3 Super/ Hypersonic Cases
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Figure 3.3: Profiles of Reynolds stress energy source/sink terms at M = 1.5 with a
frequency of 2200Hz, β = 0.075, and Reδ = 1000. Upper Left) 2D mode: α2D =
0.0542 − 0.0020i. Upper right) 2D mode with slip boundary condition: α2D−slip =
0.0557 − 0.00005i. Lower left) Oblique mode: αObl = 0.0548 − 0.0035i. Lower right)
Oblique mode with slip boundary condition:αObl−slip = 0.0580− 0.0005i.

At M = 1.5 (2200Hz, ω = 0.0022, α2D = 0.0542− 0.0020i, α2D−slip = 0.0557−

0.00005i, αObl = 0.0548 − 0.0035i, αObl−slip = 0.0580 − 0.0005i), the contribution of

velocity advective and thermal Reynolds stresses are balanced for the 2D mode ener-

getics, while velocity advection continues to dominate the oblique disturbance (figure

3.3). Also, the slip condition is unable to stabilize either mode.
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Figure 3.4: Profiles of Reynolds stress energy source/sink terms at M = 2 with a
frequency of 4250Hz, β = 0.090, and Reδ = 1000. Upper Left) 2D mode: α2D =
0.0475 − 0.0008i. Upper right) 2D mode with slip boundary condition: α2D−slip =
0.0475 − 0.0003i. Lower left) Oblique mode: αObl = 0.0507 − 0.0024i. Lower right)
Oblique mode with slip boundary condition:αObl−slip = 0.0513− 0.0012i.

M = 2.0 (4250Hz, ω = 0.0043, α2D = 0.0475 − 0.0008i, α2D−slip = 0.0475 −

0.0003i, αObl = 0.0507 − 0.0024i, αObl−slip = 0.0513 − 0.0012i) is similar to M = 1.5

but with an increased important of the thermal terms and a clear dominance of the

oblique instability (figure 3.4).

At M = 3.0 (20kHz, ω = 0.0200, α2D = 0.0747 − 0.0010i, α2D−slip = 0.0748 −

0.0001i, αObl = 0.0762 − 0.0024i, αObl−slip = 0.0763 − 0.0024i), the trend continues

and we see the oblique disturbance unaffected by the slip/no-slip boundary condition

(figure 3.5).

By M = 4.0 (60kHz, ω = 0.0601, α2D = 0.1103 − 0.0013i, α2D−slip = 0.1104 −
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Figure 3.5: Profiles of Reynolds stress energy source/sink terms at M = 3 with a
frequency of 20kHz, β = 0.075, and Reδ = 1000. Upper Left) 2D mode: α2D =
0.0747 − 0.0010i. Upper right) 2D mode with slip boundary condition: α2D−slip =
0.0748 − 0.0001i. Lower left) Oblique mode: αObl = 0.0762 − 0.0024i. Lower right)
Oblique mode with slip boundary condition:αObl−slip = 0.0763− 0.0024i.

0.0012i, αObl = 0.1105−0.0023i, αObl−slip = 0.1106−0.0023i), the slip/no-slip boundary

condition has lost its control over both the oblique and 2D modes, which is consistent

with the observation that the dominant energy source terms are removed from the

boundary and concentrated in the vicinity of the generalized inflection point (figure

3.6).

At M = 5.0 (75kHz, ω = 0.0751, α2D = 0.0855 − 0.0011i, α2D−slip = 0.0856 −

0.0011i, αObl = 0.0855 − 0.0023i, αObl−slip = 0.0856 − 0.0023i), the thermal Reynolds

stresses begin to dominant over the advective velocity Reynolds stresses for the 2D

mode (figure 3.7) and by M = 6.0 (85kHz, ω = 0.0851, α2D = 0.0658 − 0.0007i,
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Figure 3.6: Profiles of Reynolds stress energy source/sink terms at M = 4 with a
frequency of 60kHz, β = 0.110, and Reδ = 1000. Upper Left) 2D mode: α2D =
0.1103 − 0.0013i. Upper right) 2D mode with slip boundary condition: α2D−slip =
0.1104 − 0.0012i. Lower left) Oblique mode: αObl = 0.1105 − 0.0023i. Lower right)
Oblique mode with slip boundary condition:αObl−slip = 0.1106− 0.0023i.

α2D−slip = 0.0659− 0.0007i, αObl = 0.0660− 0.0017i, αObl−slip = 0.0660− 0.0018i), the

thermal Reynolds stresses are dominant for both 2D and oblique disturbances (figure

3.8). Note that, at M = 6.0 (190kHz, ω = 0.1903, α2D−Mack−Mode = 0.1433− 0.0040i),

Mack’s second mode was also calculated. It is observed that the energy source of

second mode instability is dominated by the divergence of acoustic power (figure 3.8).

This is consistent with thermoacoustic interpretation of second mode instability [97],

suggesting that second mode behaves as a thermoacoustic resonance, and is clearly

distinct from the first mode energetics which are concentrated around the generalized

inflection point.
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Figure 3.7: Profiles of Reynolds stress energy source/sink terms at M = 5 with a
frequency of 75kHz, β = 0.100, and Reδ = 1000. Upper Left) 2D mode: α2D =
0.0855 − 0.0011i. Upper right) 2D mode with slip boundary condition: α2D−slip =
0.0856 − 0.0011i. Lower left) Oblique mode: αObl = 0.0855 − 0.0023i. Lower right)
Oblique mode with slip boundary condition:αObl−slip = 0.0856− 0.0023i.

3.3 Discussion

Based on an inviscid energetics investigation, the distinct energetics signatures

of TS, first mode and second mode instability have been identified. As expected,

Tollmien-Schlichting (TS) waves are driven by phase shifting between the streamwise

and wall normal velocity perturbation components. Physically, this phase shifting is

caused by the viscous no-slip condition at the wall. Despite links reported in the

literature between the spectrum of TS waves and first mode waves [84], here it is found

that once initial transients have died out and the disturbance field is dominated by only

unstable modes, that first mode waves have a distinctly different energetics signature
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Figure 3.8: Profiles of Reynolds stress energy source/sink terms at M = 6 with
a frequency of 85kHz, β = 0.0660, and Reδ = 1000. Upper Left) 2D mode:
α2D = 0.0658 − 0.0007i. Upper right) 2D mode with slip boundary condition:
α2D−slip = 0.0659 − 0.0007i. Middle left) Oblique mode:αObl = 0.0660 − 0.0017i.
Middle right) Oblique mode with slip boundary condition:αObl−slip = 0.0660− 0.0018i.
Lower Central) A 190kHz Mack’s second mode α2D−Mack−Mode = 0.1433− 0.0040i

than TS waves. Indeed, it is found that first mode energy is derived from a phase

shifting between streamwise velocity and pressure perturbations in the vicinity of the
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generalized inflection point. Though it is observed that at moderate Mach numbers

the thermal and velocity advective Reynolds stresses interact.

3.3.1 Effect of increasing Mach number on the energy totals

It is seen that in the purely subsonic regime with a no-slip condition applied,

the unstable mode appears to be a 2d mode with advective terms dominating the

Reynolds stress energy source. Summation of all thermal components of the Reynolds

stress yields near net zero value, indicating that the advective component is the sole

dominating source of energy into the instability.

As Mach number is increased from M0.5 to M0.9, the most unstable mode starts

to appear as an oblique mode rather than a 2d mode. While the advective component

is still dominating the energy source, there is now a net non-zero thermal component

which is increasing. The location of the critical layer is slightly above the generalized

inflection point, which is itself very close to the wall.

At M1.5, for the 2d unstable mode, the thermal total balances with the advective

total, with it being slightly above the advective. The most unstable mode for this case

is still the oblique mode with its advective total dominating over the thermal. The

location of the critical layer appears to now be below the generalized inflection point.

The generalized inflection point is increasingly being pushed off the wall. This trend

continues to hold as the Mach number is increased to M2 and M3. The thermal total

dominates over the advective total for the 2d mode while vice versa for the oblique

mode.

At M4, while the previous trends still hold, there is a noticeable increase in the

thermal total for the unstable oblique mode with the increase in Mach number. The

location of the generalized inflection point and the critical layer are increasingly being

pushed off the wall with the generalized inflection point increasing its distance from

above the critical layer.

At M5, the thermal total dominates for the 2d case. For the oblique mode,

while the advective total is still dominant, the thermal total is reaching parity with
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the advective and starting to slightly dominate over the advective. The location of

the generalized inflection point and critical layer continues to follow the previous seen

trends.

Finally at M6, for the 2d mode, the thermal total overly dominates the advective

total. Interestingly noted here is that for the oblique mode, the thermal total now

appears to be greater than that of the advective total and is now dominant. The

location of the generalized inflection point and critical layer continues to follow the

previous seen trends.

3.3.2 Effect of the slip condition

Generally, the viscous mechanisms responsible for the phase shift between the

disturbance velocity components are due to the no-slip wall conditions. For the sub-

sonic M0.5 case, the implementation of the slip condition on the wall (a zero gradient

condition for the u’ and w’ velocity components), appears to suppress the unstable 2d

mode such that it becomes completely stable as the energy terms for both the advective

and thermal components both go negative. This is indication that the classical inter-

pretation of the energy mechanisms of TS waves are correct. However, as Mach number

is increased and the compressible regime is fully realized, the slip condition does not

appear to have any affect on the stabilization of either the 2d or oblique modes. This

implies that the energy mechanisms that has been previously prescribed for TS modes

do not completely apply to the supersonic 1st mode. This is consistent with an inter-

pretation that the energy source terms driving 1st mode instability are displaced from

wall boundary and instead concentrated in the vicinity of the generalized inflection

point.

3.4 Conclusion

It is important to emphasize that the first mode energy source is driven by dy-

namics ‘off the wall’ while the TS wave energy source is driven by dynamics ‘at the

wall.’ This was emphasized by considering the sensitivity to the slip or no-slip wall
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boundary condition. It was found that the first mode was insensitive to the slip bound-

ary conditions for Mach numbers greater than 2. Finally, is was shown that second

mode instability energetics are driven by a phase shifting between wall-normal velocity

and pressure perturbations, consistent with the thermoacoustic resonance interpreta-

tion [97]. Note, as the LST code is viscous and the energetics analysis is inviscid, a

complete energy accounting has not been considered. However, a complete accounting

is not necessary to gain insight into the fundamental physical mechanisms associated

with the instabilities considered, as the neglected effects of viscosity and thermal con-

duction are likely to be solely dissipative.
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Chapter 4

DESIGN OF A FLARED CONE FOR FIRST-SECOND MODE
MECHANISMS INTERACTIONS

The following chapter is adapted from [98]

Over the last couple of decades, research on laminar-turbulent transition physics

have shed considerable insights on the behavior of high speed transition mechanisms.

However, as flight technologies continue to advance, the emergence of unique phenom-

ena and complications common to the more complex flight geometries and parameters

begin to be come more relevant. With the understanding of some of the driving mecha-

nisms for various modal instabilities as described in the previous chapter, one question

that must now be considered is that of multiple interacting instabilities. As most com-

mon research to date has been focused on cases where a single type of instability is

dominant, transition for these new cases are likely to be subject to multiple competing

instability mechanisms and thus, the prediction schemes developed from the primitive

canonical geometries may be ineffective at predicting transition on these more complex

flight geometries and profiles.

Here attention is focused on the interactions between the first and second Mack

modes, with the goal of designing a Mach 5 flared cone which will allow for the ex-

perimental study of these instability types. That is, our goal is to design a geometry

which will allow for study of:

1. The dynamics of a first-mode instability in a second-mode dominated boundary
layer.

2. The dynamics of a second-mode instability in a first-mode dominated boundary
layer.

3. The transitional dynamics of a boundary layer in which the first- and second
mode instability mechanisms interact.
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Note, the intent of 1 and 2 is the study the behavior of the less dominant

mode in the “perturbed basic state” [35] of the dominant mode, while the intent of

3 is to focus not on modes but instead on generating mechanisms. This study is not

just emphasizing understanding of direct interactions between first- and second-mode

waves, but also in the potential interactions between the physical mechanisms which

are responsible for driving growth of first- and second-mode instability.

4.1 Geometry and Basic states

It is known that wall heating/cooling and geometry curvature (Johnson et at.,

Juliano et al., Fedorov et al., Batista et al.) [99, ?, 100, 45] both exhibit a controlling

influence over first- and second-mode instability. Thus, the first step in this analysis was

to calculate a set of basic flow states which span an experimentally feasible parameter

space of cone flare radii and wall temperature. These basic state solutions can be

described as the background or initial state of the system to which stability analysis

is then applied. Here, the basic states are calculated utilizing US3D. To avoid entropy

layer effects (Stetson et al., Batista et al.)[101, 45], a nominally sharp nosed geometry

is chosen for analysis. The initial parameter space considered spanned cone flare radii

from 2.5 to 3.5 meters and 250K to 350K wall temperatures.

Due to the flared nature of the cone, a MATLAB script was created to paramet-

rically generate the cone geometry for import into a CAD software for model creation.

Four user specified input arguments, flare radius, cone tip radius, cone length and

opening angle (1.5 ◦ was used), are used to create the cone profile. To identify a flared

cone as “sharp”, a small but finite (≈ 0.15mm to allow the model to be physically

realized) cone tip radius is specified. The flared cone geometry is generated utilizing

modified parameterized equations for a circle, with the resulting x and y coordinate

data imported into a Solidworks which provides a basis for meshing in Pointwise.

For this study, the flow parameters similar to the nominal operating conditions

of the Mach 5 tunnel at the University of Arizona were utilized. Wall temperatures
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Figure 4.1: A 0.5m length, 300K wall temperature, 3m flare radius cone geometry used
as one of the base cases

ranging from 250K to 350K (and eventually to 700K) were also selected for investi-

gation (figure 1). The ‘base’ case (motivated by works of Chynoweth et al.[102, 15])

is a “sharp” cone with 3m flare radius at 300K wall temperature and flow conditions

corresponding to table 1.

M∞ ρ∞(kg/m3) T∞(K) Twall(K) U∞(m/s)

5 1.362e−1 66.667 300 818.3337

4.2 Stability Analysis

4.2.1 LST

A standard LST analysis of basic states with conditions spanning wall tempera-

tures and curvatures about the base case (0.5m long cone at 300K with 3m flare radius)

is performed. Results for cones with flare radius ranging from 2.5m to 3.5m along with

wall temperatures from 250K to 350K are shown in figure 4.3. As first-mode instability

is oblique (travels at an angle to the mean flow) a range of spanwise wavenumbers, βz ,

are considered. Note, in the figure only the most unstable wave is plotted and isolines

of spanwise wave number are provided.
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Figure 4.2: Basic state Mach contour plots of flared cones. Top row: 250K wall tem-
perature. Middle row: 300K wall temperature. Bottom row: 350K wall temperature.
Left column: 2.5m flare. Middle column: 3.0m flare. Right column: 3.5m flare.

It can readily be seen that with increasing wall temperature, comes a strength-

ening of the first-mode and a lowering of the most unstable second-mode frequency.

Also, with an increasing flare radius, comes a lowering of the most unstable second-

mode frequency and a slight weakening of the first-mode instability. With the goal

being to generate an “overlap region” between the first- and second-mode instability,

the data trends indicate that larger flare radius and hotter temperatures are required.

The set of basic state calculation was thus extended to include: 4m flare with 400K

wall temperature, 5m flare with 500K wall temperature, 6m flare with 600K wall tem-

perature and 7m flare with 700K wall temperature cones. In addition, the cones were

extended in length to 1m.
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Figure 4.3: LST base stability diagrams for 0.5m long cones each basic flow state with
varying wall temperature (250K-350K) and flare radius (2.5m-3.5m) and βz contour
lines. Top row: 250K wall temperature. Middle row: 300K wall temperature. Bottom
row: 350K wall temperature. Left column: 2.5m flare. Middle column: 3.0m flare.
Right column: 3.5m flare.

LST analysis of these new basic states are shown in figure 4.4. It is found that

the first- and second-mode regions just begin to overlap for the 6m flare with 600K wall

temperature case, and more fully so for the 7m flare with 700K wall temperature case.

It is also observed that the azimuthal wave numbers vary slightly with wall temperature

and flare radii and that βz rapidly approaches zero towards the upper frequency portion

of the stability diagram normally associated with first-mode instability, in the cases

where first- and second-mode instability regions are in close proximity.
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4.2.2 LPSE

An LPSE analysis was also performed on frequencies where instability was de-

tected on the 1m long flared cones, to provide an estimate of integrated disturbance

amplitude. Second-mode results are shown in figure 4, while first-mode results are

shown in figure 5. It is noticed that second-mode dominates the transitional dynamics

of the 3m-300K, 4m-400K and 5m-500K cones. The first-mode becomes dominant for

the 6m-600K case. For the 7m-700K case, the first-mode continues to dominate tran-

sition but the distinction between second-mode and the βz = 0 portion of the stability

diagram, often associated with the first-mode, becomes ambiguous. Thus, the 5m-500K

case appears to be a good candidate for goal 1 (first-mode dynamics in a second-mode

dominated boundary layer) and the 6m-600K case appears to be a good candidate for

goal 2 (second-mode evolving in a first-mode dominated boundary layer). The 7m-

700K case provides an example of a case where the first- and second-mode dynamical

mechanisms interact. However, this interaction does not dominate the transitional dy-

namics, as such experimental investigation would not be possible. Thus, this case only

partially satisfies goal 3 and a continued parameter study is being conducted in an

effort to further suppress first-mode instability such that the dynamics of competing

first- and second-mode mechanisms can be studied.

4.2.3 Note on Phase Locking

It is important to clarify goal 3: first-mode – second-mode interactions. Follow-

ing Carpenter et al. [103], there are two criteria for traveling wave interaction: 1) The

first is Phase Locking. This occurs when the relative phase speeds of the waves is zero.

2) The second is that the relative phase of the waves must be such that interaction

occurs. This will be case and wave dependent. Satisfaction of these two conditions

may lead to wave interactions that can alter the transitional dynamics of the boundary

layer. From the phase speeds calculated with LPSE (figures 4.6 and 4.5), it is evident

that phase locking between the first- and second-modes is unlikely to occur. However,
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it is still possible to study cases where the mechanisms generating first- and second-

mode instability overlap (viscous instability mechanism may couple with the acoustic

mechanism).

4.2.4 Görtler Modes

In addition to first- and second-mode instability, flared cones are also susceptible

to Görtler instability Chynoweth et al. [15]. For the individual analysis of goals 1 and

2, the presence of Görtler instability does not effect the numerical investigation, but

may play a significant role in the actual transitional dynamics of the system and hence

would be present in experimental data. Sivasubramanian et al. [104] and Hader et

al. [105] have extensively study the formation of streaks on flared cones. Figure 4.9

shows the presence of Görtler instability at a section 0.456m from the cone tip for the

3m-250K, 3m-300K and 3m-350K cases. Notice that the most unstable Görtler modes

fall in a wavenumber range of around 0.7-0.8. This is roughly 4 times that observed for

the first-mode instability, which may limit interactions. Also, the Görtler instability

strength dampens with increased radius of curvature, so it is anticipated that the

presence of Görtler instability will not have a significant effect on future first mode –

second mode interactions studies (though this should be checked explicitly). It is also

interesting to note the sensitivity of the Görtler instability to wall temperature. Görtler

instability arises due to concave geometry curvature and is not often associated with

wall temperature effects. Though, here it is observed that increasing wall temperature

appears to dampen the Görtler instability.

4.2.5 Summary

The intent of this work was to design Mach 5 flared cones for future studies

of first mode – second mode interactions with the goal to study three cases: 1) The

dynamics of a first-mode instability in a second- mode dominated boundary layer.

2) The dynamics of a second-mode instability in a first-mode dominated boundary
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layer. 3) The transitional dynamics of a boundary layer in which the first- and second-

mode instability mechanisms interact. Via linear stability analysis (LST, LPSE) it was

determined that a 5m- 500K flared cone design is a good candidate for goal 1; a 6m-

600K flared cone is a good candidate for goal 2; a 7m-700K flared cone design can be

used to partially study goal 3. However, for goal 3, direct interaction between first- and

second-modes via phase locking is unlikely and ultimately the transitional dynamics

will be first-mode dominated. Thus, goal 3 requires further revision. Though, it does

allow for numerical study of interactions between the viscous and acoustic mechanisms

responsible for generating first- and second-mode instability. Finally, it was noted

(perhaps somewhat surprisingly) that increased wall temperature has the effect to

dampen Görtler instability in the cases studied.
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Figure 4.4: LST base stability diagrams of 1m long flared cones for each basic flow
state with varying wall temperature (300K-700K) and flare radius (3m-7m). Top row
left-to-right: 300K wall temperature 3m flare, 400k wall temperature 4m flare, 500K
wall temperature 5m flare. Bottom row left-to-right: 600K wall temperature 6m flare,
700K wall temperature 7m flare.
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Figure 4.5: LPSE on second modes upper left: 3m flare 300k; upper right: 4m flare
400k; middle left: 5m flare 500k; middle right: 6m flare 600k; lower: 7m flare 700k
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Figure 4.6: LPSE on first modes upper left: 3m flare 300k; upper right: 4m flare 400k;
middle left: 5m flare 500k; middle right: 6m flare 600k; lower: 7m flare 700k
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Figure 4.7: Phase speeds of first modes upper left: 3m flare 300k; upper right: 4m flare
400k; middle left: 5m flare 500k; middle right: 6m flare 600k; lower: 7m flare 700k
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Figure 4.8: Phase speeds of second modes upper left: 3m flare 300k; upper right: 4m
flare 400k; middle left: 5m flare 500k; middle right: 6m flare 600k; lower: 7m flare
700k
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Figure 4.9: Görtler instability modes evaluated at 0.456m streamwise location for the
3m radius are cones at 250K, 300K and 350K wall temperatures.
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Chapter 5

ON THE DYNAMICS OF SECOND MODE MODIFIED FIRST MODE
INSTABILITY

The following chapter is adapted from [72]

This chapter is to provide insight into the interactions between Mack’s acoustic

2nd mode and the lower frequency oblique 1st mode instabilities, as per goal 1 in

chapter 4. In particular, the so called ”nonlinear detuning” mechanism (Kuehl et al.

[14]) will be isolated, in which a nonlinearly evolving 2nd mode instability modifying the

mean flow is investigated. How this modification then affects the dynamics of 1st mode

instability, which is simultaneously present in the flows, is also studied. This approach

allows us to isolate the detuning effect from direct mode-mode interactions, such that

the interactions between first and second mode instability can be more thoroughly

understood.

5.1 Basic States

It is known that wall heating/cooling and geometry curvature both exhibit a

controlling influence over first- and second-mode instability. From Liang et al.[98],

a 1.1m long flared cone with 600K wall temperature and 6m flare radius seemed to

indicate a good case to study 2nd mode modified 1st modes. The N-factors for both

the 1st and 2nd Mack modes are significant but with a 1st mode dominance. This case

may provide some valuable insight into how 2nd modes via the mean flow distortion,

can affect 1st mode growth. Here, the steady and laminar basic state solutions are

calculated utilizing US3D. For this study, the flow parameters similar to the nominal

operating conditions of the Mach 5 Ludwig Quiet tunnel at the University of Arizona

were utilized.
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Figure 5.1: LPSE calculations of the 1st (left) and 2nd (right) mode frequencies for a
600K wall temperature 6m flared cone

Figure 5.2: LST calculations of the 600K wall temperature 6m flared cone

A 1.1m long cone with a 6m flare radius and a 7 degree opening angle was used.

To identify a flared cone as “sharp”, a small but finite (≈1mm to allow the model to

be physically realized) cone tip radius of 1mm is specified. With the 3D CAD model

of the cone, Pointwise was utilized to create the computational domain. This 2D grid

is then rotationally extruded 1 degree around the central-axis of the cone to resolve a

“slice”, which is sufficient as we are considering cones at 0 angle-of-attack (AOA).
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M∞ ρ∞(kg/m3) T∞(K) U∞(m/s)
5 1.362∗10−1 66.667 818.3337

Table 5.1: Basic state flow conditions

rflare(m) Cone length (m) Tip radius (m) Opening angle (◦) Twall(K)
6 1.1 0.001 7 600

Table 5.2: Geometry parameters

5.2 Methodology

For boundary layer stability, the modal growth interpretation of transition can

be generalized: First, with an initial small amplitude disturbance initiated by free

stream or boundary imperfections, governed by linear dynamics. Then, as the dis-

turbance amplitude is increased, nonlinear effects become dominant and can lead to

spectral broadening and subsequent flow transition. These nonlinear effects are gen-

erally referred to as the ”nonlinear saturation” mechanisms which involves the loss of

energy from the primary modes into the harmonics and mean flow distortion. This

energy exchange ultimately focuses on the energy loss to harmonics.

Figure 5.3: A schematic of the energy flow and coupling between the primary Mack
modes, harmonics and mean flow distortion. Adapted from Kuehl (2017)[16]

Often in the model growth scenario, the effect of “nonlinear detuning” from
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Kuehl et al. [14] is overlooked. That is, as the primary mode instability grows in

amplitude, it loses energy to harmonics and also distorts or modifies the mean flow,

often accounted for in a nonlinear stability analysis as a mean flow distortion (MFD)

mode. This MFD can feedback onto the primary mode disturbance by affecting the

energy flow from the basic state into the primary mode. This can be either a negative

or positive feedback. For the present study, we consider a basic flow state which is

first mode dominated but also contains second mode instability. NPSE analysis is

conducted with an increasing amplitudes on the 2nd mode frequencies to analyze its

affect on the behavior of the MFD and 1st mode frequencies. In this way, we are

able to lay the foundation for future studies where we can isolate and understand a

particular aspect of the nonlinear interactions that exists between multiple primary

instability modes. This knowledge is then helpful for understanding the full nonlinear

interactions between modes.

5.3 Results

5.3.1 NPSE & MFD

The most amplified Mack second modes are determined to be in the region of

350 kHz. NPSE is calculated with this 350 kHz primary second mode along with a 330

kHz and 370 kHz lower and upper side lobes respectively, which lies within the second

mode dominated region. The primary first mode is located at 100 kHz. It is noted

that for this basic state, there are no direct harmonic interactions between the first and

second mode. The initial amplitude of the first mode is kept at 108. The second mode

amplitudes are varied from 105, 103, 102, 101. The top left plot in figure 4 depicts our

reference case. A first mode dominated boundary layer with small amplitude second

modes. In this case, the 1st mode induced MFD may be self-detuning the 1st mode

and affecting second mode growth. A full “perturbed basic state” analysis is required

to determine the extent to which these effects are present (analysis to be conducted).

However, as the second mode amplitude is increased, the MFD is dominated by second

mode growth, which then appears to significantly modulate the 1st mode growth. Thus,
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this appears to indicate scenario in which energy flows from the second mode to the

MFD, which then modulates the base flow to alter first mode growth.

5.3.2 Energetics Analysis

To better understand these nonlinear interactions, the energetics of the 1st mode

is evaluated with increasing second mode amplitude ∼ 1m downstream from the nose

tip. It was recently emphasized by Liang et al. [1] that 1st mode energetics are

distinct from TS wave energetics, the former being driven by processes at/near the

generalized inflection point while the later is driven by processes at the wall. Details

of the energetics derivation can be found in Liang et al. [1], which results in an energy

accounting of the disturbance modes of

ρ̄

2

D̄⟨u⃗′2⟩
Dt

+
γM2

2ρ̄c2
D̄⟨P⃗ ′2⟩
Dt︸ ︷︷ ︸

dist. energy

= ⟨−ρ̄u′v′∂Ū
dy

− ρ̄v′w′∂W̄

dy︸ ︷︷ ︸
velocity advective

−
(
u⃗′ · ∇⃗

)
p′ − γM2P ′

(
∇⃗ · u⃗′

)
︸ ︷︷ ︸

div. acst. pwr

⟩.

(5.1)

where M2 = U2
e

γRTe
, c =

√
γP
ρ
, γ = cp/cv, u

2 = u2 + v2 + w2 (with u and v being the

streamwise and wall normal components of velocity respectively for the 2D case and

w the spanwise velocity component), T is temperature, ρ is density and P is pressure.

We have assumed 3D flow that is parallel in the X and Z directions. It should be

noted that the energy norm derived here is consistent with the energy norm used in

the analysis of compressible turbulence [?]. It is also very similar to the Chu energy

norm [?], if pressure is expanded into density and temperature perturbation quantities,

which is very popular in optimal growth studies [?].

Note, figure legends have been labeled as follows: UV indicates tradition Reynolds

Stress −ρ̄u′v′ ∂Ū
dy
. UDxP, VDyP and WDzP indicate the components of −

(
u⃗′ · ∇⃗

)
p′.

PDxU, PDyV and PDzW indicate the components of −γM2P ′
(
∇⃗ · u⃗′

)
. All DAP

indicates the profile of all the divergence of acoustic power terms, with Thermal To-

tal being the integral total, positive indicating an energy source. Advective Total is
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the integral of the traditional velocity advective Reynolds Stress terms (UV), positive

indicating an energy source. Total is the sum of Thermal Total and Advective Total.
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Figure 5.4: 1st mode energetics calculations of the NPSE case with increasing 2nd
mode disturbance amplitude. 2nd mode initial amplitudes: Top left: 1e-5; Top right:
1e-3, Bottom left: 1e-2; Bottom right: 1e-1. 1st mode initial amplitude is set to 1e-8
in each case.

As second mode amplitude is increased, the growth of the 1st mode is signifi-

cantly altered. The specific frequency disturbances involved in these cases, necessitate

that this is not due to direct “sum and difference” nonlinear interactions, but instead

due to the 2nd mode generated MFD affect on 1st mode evolution. The energetics

analysis suggests that the 1st mode growth is driven by p′∇⃗ · u⃗′, concentrated in the

vicinity of the generalized inflection point. While further research is required to con-

firm, we hypothesize that the MFD has altered the characteristics of the generalized
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inflection point and hence altered the growth of the 1st mode instability. This scenario

is depicted in figure 5.5.

Figure 5.5: A schematic of the energy flow and coupling in a system indicating sup-
pression of 1st mode growth resulted from the 2nd mode induced MFD. Adapted from
Kuehl (2017)[16]

5.4 Conclusion

This study demonstrated the nonlinear detuning mechanism likely plays a sig-

nificant role in the study of multi-mode interactions. A 1.1m, sharp cone with a flare

radius of 6m and wall temperature of 600K, at Mach 5 was considered. It was found

that the presence of a nonlinear 2nd mode wave can significantly influence the growth

of a 1st mode wave, even when direct (i.e. traditional sum and difference) interactions

are not present. An energetics analysis was conducted and it was hypothesized that

the suppression of 1st mode growth resulted from the 2nd mode induced MFD mod-

ification of the generalized inflection point. However, further research is required to

confirm this.
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Chapter 6

VALIDATION OF POROUS IMPEDANCE BOUNDARY CONDITION
FOR A PSE CODE

The following chapter is adapted from [106]

Study of methodologies which delay this transition may allow for the reduc-

tion for certain thermal management systems, thereby reducing weight and space, and

increasing aerodynamic stability during sustained hypersonic flight. With the under-

standing that Mack’s second mode is a thermoacoustic instability wave trapped within

an acoustic impedance well within the boundary [35], methodologies for suppression

of this second mode can be investigated. Passive control of boundary layer stability

has been investigated both experimentally with porous surfaces of various makes and

computationally with the application of impedance boundary conditions. Applications

of Carbon- Carbon (C/C) based surfaces for the absorption of 2nd mode instability en-

ergy has been employed in previous studies [107, 108, 109, 110, 111, 112, 113]. For this

chapter, a numerical study of axisymmetric flow over a sharp straight cone is performed

with an impedance boundary condition based on the Homogeneous Absorber Theory

(HAT) [114, 110, 113]. Results are compared with existing computational studies of the

impedance boundary conditions applied with HAT and the suppression effectiveness of

porous surfaces on unstable 2nd modes.

6.1 Basic States & Geometries

For this study, a straight conical geometry with 1m length, 2.5mm tip radius,

7◦ opening angle with a 300K isothermal wall is utilized. The geometry parameters

are based on experiments by Wagner [110] in the DLR High Enthalpy Shock Tunnel

Göttingen and computational studies by Sousa [113]; as tabulated in table 6.1. The flow
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Cone length (m) Tip radius (mm) Opening angle (◦) Twall(K)
1 2.5 7 300

Table 6.1: Geometry parameters

M∞ ρ∞(kg/m3) T∞(K) U∞(m/s)
7.4 2.76 ∗ 10−2 268 2422

Table 6.2: Basic state flow conditions

condition being studied is a M7.4 flow with Re = 4.01e6 m−1; freestream parameters

are reported in table 6.2.

6.2 Boundary Conditions

With state equations assuming the decomposition as shown in equation 2.19,

the pressure term can be derived under ideal gas assumptions p = ρRT such that

p = ρ̄T ′ + ρ′T̄ . Applying the impedance boundary condition from Sousa[113] where

p′ = ρ0a0Z∗(ω)v
′(ω), the wall boundary conditions becomes:

R̄(ρ̄T ′ + ρ′T̄ )− ρ0a0Z∗(ω)v
′(ω) = 0 (6.1)

where ρ0 and a0 are the base density and speed of sound respectively. Z∗ is the specific

acoustic impedance of the pores [113]. Upon non-dimensionalization the boundary

conditions becomes

v′ =
1

Z∗γM

(
ρ̄T ′ + ρ′T̄

)
(6.2)

6.3 Material Parameters

The absorption characteristics of porous materials are dependent on several

material parameters [108]. The porosity ϕ, flow resistivity Ξ and structure factor κ are

notably important.
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Figure 6.1: Example diagram of pores

6.3.1 Porosity:

The porosity ϕ is defined as a relationship between the volumes of the pore Vpore

and total volume of the material Vtot. If the pore structure can be approximated as a

long cylindrical tube, Vpore = πr2h. For ordered cylindrical pore patterns, the porosity

can be approximated as follows

ϕ =
Vp
Vtot

≈ π
r2

s2
(6.3)

where r and s denote the radius of the pore and spacing between pores respectively.

The pore aspect ratio can also be defined when given the depth of the pore h as:

Aspect Ratio =
h

2r
(6.4)

6.3.2 Flow Resistivity:

The flow resistivity Ξ (MPa s
m2 ) describes the effectiveness of the air flow through

the material. It can also be denoted as the ratio between the resistivity Rs and thick-

ness of the material (depth of the pore) h [108].

Ξ =
Rs

h
(6.5)

The resistivity Rs can be defined as

Rs =
p1 − p2
U

(6.6)
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with p1 and p2 being the upstream and downstream pressure of the absorber and U

being the velocity at the porous surface. Specific flow resistivity characterizes the ease

of which air can enter the material and the resistance it encounters within the porous

material, which can give an indication of how well the material absorbs and transmits

sound waves.

6.3.3 Structure Factor:

The structure factor κ of a porous material also plays an important role as it

describes an approximation of the pore pathway inside the material. This parameter is

not measured for randomly structured porous elements but is instead estimated from

the acoustic performance of the absorber and gives an indication of how much of the

pore’s volume is involved in the absorption process [108]. κ = 1 indicates that the

entire volume of the pore is utilized for absorption. However in reality, the structure

factor is generally greater than 1 due to inherent material properties and the random

microstructure effects. Thus κ and can be defined as the ratio between the accessible

pore volume Vaccess = ϕVtot and the pore volume which can be accelerated by acoustic

pressure Vaccel [108].

κ =
Vaccess
Vaccel

(6.7)

6.3.4 Breaking Frequency:

The breaking frequency ωk is generally used as an preliminary identifier of the

efficiency of the absorber material and is defined as

ωk =
Ξϕ

ρ0κ
(6.8)

where Ξ is the flow resistivity, ϕ is the porosity and ρ0 is the base density at the wall.

Frequencies above the breaking frequency is expected to have ”good” absorption char-

acteristics while likewise, frequencies below would be expected to have poor absorption

effectiveness [108]. Experimental characterization of these parameters have shown that

commonly, porous surface materials must generally have thickness h at least 1
10

of a
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wavelength to absorb incident sound. h thickness must also be 1
4
of a wavelength to

completely absorb all sound [115] [116].

It is noted that for sufficiently small pore radius with interactions between

neighboring pores being weak, the disturbances caused by longitudinal and transverse

waves in the porous layer can be neglected [100]. Generally, pore radius and spacing

(and consequently, porosity) are much smaller than the disturbance wavelengths in the

boundary layer, which in-turn, is closely related to the boundary layer thickness. It

may be possible that larger porosity parameters will start to affect the boundary layer

and induce instability mechanisms in the boundary layer associated with high surface

roughness and becomes an receptivity problem [100]. It is also noted that the highest

absorption occurs furthest from the rear section of the porous surface. Absorption of

the lower frequencies are more effective as thickness is increased [115] [116].

6.4 Homogeneous Absorber Theory

From Muller [114], Sousa et al. [113], Wagner et al. [108, 109] the Homogeneous

Absorber Theory (HAT) can be utilized to estimate the specific acoustic impedance

both experimentally and computationally. The specific acoustic impedance of a finite

thickness wall can be estimated utilizing HAT can be defined as a complex function

scaled by the theoretical specific acoustic impedance of that of an infinite thickness

porous wall Z∞. It is formulated by Sousa et al.[113] as:

ZHAT =

[
ρ0a0

√
κ

ϕ

√
1− i

ωk

ω

]
︸ ︷︷ ︸

Z∞

1 + e−2ikah

1− e−2ikah
cos θi (6.9)

where Z∞ is the homogeneous porous absorber of infinite wall thickness, κ is the struc-

ture factor and ρ0 and a0 being the basic state density and speed of sound respectively,

ωk and ω = 2πf being the breaking frequency and angular frequency respectively. The

complex absorber wave number ka is defined as

ka = k
√
κ

√
1− i

ωk

ω
(6.10)
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Aspect Ratio Pore Height(mm) Porosity(ϕ) Ξ(MPa∗s/m2) Structure fac.(κ) Incidence Angle(θi)
25 5 0.15 25.7 8 30◦

Table 6.3: Some selected porous wall material properties

The wave number k is defined as the ratio between the angular frequency and phase

speed of the wave: k = ω
c
. The wave angle effects are taken to account as a correction

factor to the specific acoustic impedance. The wave incidence angle θi is zero when

the direction of the sound wave propagation is normal relative to the absorber surface

[113, 114]. For this study, the material parameters including pore aspect ratio, porosity,

flow resistivity, structure factor and the incidence angle of sound waves, tabulated in

figure 6.3, were selected based on values utilized computationally and experimentally

by Sousa et al. [113] and Wagner et al.[109] such that a comparison of data and results

between cases can be easily performed.

6.5 LST

To estimate the effects that the impedance has on the stability calculations, the general

LST v′ boundary condition can be replaced by the boundary condition in equation 6.2.

A zero impedance BC is run first to determine the wavenumber k and frequency ω of

the unstable mode. These parameters can then be used as inputs into equations 6.9

and 6.10 to estimate Z∗. This is then fed back into the LST process, utilizing the newly

calculated Z∗, such that the impedance is now nonzero and a function of k and ω of the

unstable mode. This yields an adaptive Z∗ that is tuned to the unstable mode at each

x-location and frequency. The resulting complex Z∗ can then be plotted as a function

of streamwise location and frequency as depicted in figure 6.3. Hence these Z∗ values

from the LST analysis are ”locally optimized” for the frequency and unstable mode at

each streamwise location.

The impedance boundary condition is applied approximately from 0.182m to

0.950m from the tip of the cone. Impedance results were analysed in comparison to

the modeling of the acoustic response of carbon/carbon (C/C) data as seen in figure
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11 of Sousa et al.[113]. The calculated Z∗ values for the most unstable mode at each

frequency is then extracted and plotted in figure 6.4 and compared with the Z∗ of C/C

as extracted from Sousa et al. There are slight differences in the Re(Z∗), however the

specific impedance values from the HAT implementation in JoKHeR appears in better

overall Z∗ agreement with the reference C/C data than with the reference HAT model

employed by Sousa.

The most unstable growth rate of the zero Z impedance case is αi = −0.0117

and the nonzero Z impedance case is αi = −0.0095 at approximately 400khz and 0.8m

-0.9m downstream from the nose tip. This reduction in αi is indicative of an overall

suppression of the 2nd mode growth rate of the nonzero Z case in comparison with the

zero Z impedance case as depicted in figure 6.2.

Figure 6.2: Stability diagrams of the base zero Z impedance case (left) and nonzero Z
impedance case (right)

6.6 LPSE

An LPSE analysis was also performed on a 400 kHz unstable 2nd mode with its N-

factor diagram shown in figure 6.5. The results are then compared to a solid wall case

and C/C data extracted from Sousa et al. For the current case, the complex impedance

of the most unstable mode at 400khz were determined to be 19.6 − i10.84 while the

reference impedance for C/C is 26 − i9.5. These impedance values were then applied

across the entire length of the cone and marched.
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Figure 6.3: Values of Re(Z∗) (left) and Im(Z∗) (right) for a 400kHz unstable 2nd mode

Figure 6.4: Comparison of JoKHeR Z∗ and Classical C/C Z∗ data from Sousa et al.

Between the solid wall and the current case, there is a noticeable decrease in

N-factor with disturbance amplitude being reduced by a factor of around 5.9. This

factor of reduction in unstable mode growth appears to be similar to the factor of

reduction in the amplitudes of pressure modes at the wall, ∥p̂∥, seen in figure 13 of

Sousa et. al[113]. Their DNS computations with the impedance boundary conditions

applied shows an amplitude reduction factor of about 7.5. This is roughly a ±25%

error in comparison our factor of reduction in unstable growth rate. Discrepancies may

be due to the slight differences in the initial setup of the basic states and stability

calculations, however this percent error is considered acceptable for this preliminary

benchmark study. It is also noted that the slight deviations between our estimated Z∗

values which consequently yields a 25% error in predicted factor of reductions, can be
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alluding to the highly sensitive nature of variations in specific impedance values on the

dynamics of the unstable modes.

A simple sensitivity study was conducted by calculating 0.75 and 1.25 times that

of the current Z∗ at 400khz. Also included for comparison is a case using C/C data

from Sousa et al. (figure 6.5). Scaling down the impedance appears to significantly

decrease the unstable mode growth rate more compared to scaling up. With the solid

wall reference case, there is a factor of 4.3, 5.9 and 9.7 decrease in max N-factor

amplitude for 1.25x, 1x and 0.75x the current Z∗ case respectively. That is, a 25%

decrease in impedance appears to yield a greater change in unstable mode growth

rate in comparison with the unmodified current Z∗ case than with a 25% increase in

impedance. This indicates the highly sensitive nature of most unstable 2nd modes to

deviations from the current locally optimized Z∗.

6.7 Conclusion

This study demonstrated the ability of PSE codes, particularly JoKHeR, to simulate

the application of porous surfaces across conical geometries in an attempt to modify

2nd mode instabilities utilizing impedance boundary conditions formulated by the Ho-

mogeneous Absorber Theory. A M=7.4 freestream flow with Re = 4.01e6 m−1 run

conditions was applied over a 1m long straight cone with a 2.5mm tip radius at a

7◦ opening angle. A high sensitivity to the impedance values on unstable 2nd mode

growth rate was shown with an LPSE analysis by varying the scaling of the Z∗ across

the length of the geometry while analyzing its resulting unstable mode growth rate.

It is also noted that the JoKHeR implementation of HAT appears to yield impedance

values that have a closer agreement with C/C Z∗ values than the HAT Z∗ calculations

from Sousa et al.[113]. Further work will be performed to determine the reasoning

behind this discrepancy in results. It is surmised that the energy characteristics of the

2nd mode over porous surfaces will be modified with the new applied wall boundary

condition, which can be investigated with an energetics analysis as explored in Kuehl
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Figure 6.5: LPSE calculations of the solid wall base case (circle), porous wall with
current calculated Z∗ (square), C/C Z∗ values extracted from Sousa et al. (diamond),
porous wall with 1.25x current Z∗ values (up triangle) and porous wall with 0.75x
current Z∗ values (down triangle).

(2017)[35] and Liang et al. (2023) [?]. Further work is also needed to examine the

effects Z∗ on non-primary unstable mode frequencies.
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Chapter 7

SUMMARY AND FUTURE WORK

The work performed in this manuscript explored some of the physical mecha-

nisms responsible for hypersonic boundary layer transition. High-speed boundary layer

transition is dominated by the modal, exponential amplification of various Mack modes

present within the boundary layer. An inviscid energetics analysis was performed and

disturbances were classified based on their energetics signature on a Blasius boundary

layer for a range of Mach numbers. This approach builds insight into the fundamental

mechanisms governing various types of instability. It is shown that first mode insta-

bility is distinct from Tollmien–Schlichting instability, being driven by a phase shifting

between streamwise velocity and pressure perturbations in the vicinity of the gener-

alized inflection point and insensitive to the viscous no-slip condition. Further, it is

suggested that the obliqueness of the first mode is associated with an inviscid flow

invariant.
In order to study the first-mode – second-mode interactions in hypersonic bound-

ary layers, a design investigation of Mach 5 flared cones was done with the goal to study
three cases, restated here from chapter 4 as:

1. The dynamics of a first-mode instability in a second-mode dominated boundary
layer.

2. The dynamics of a second-mode instability in a first-mode dominated boundary
layer.

3. The transitional dynamics of a boundary layer in which the first- and second-
mode instability mechanisms interact.

Via linear stability analysis (LST, LPSE) it was determined that a 5m-500K

flared cone design is a good candidate for goal 1; a 6m-600K flared cone is a good

candidate for goal 2; a 7m-700K flared cone design can be used to partially study
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goal 3. However, for goal 3, direct interaction between first- and second-modes via

phase locking is unlikely and ultimately the transitional dynamics will be first-mode

dominated. Thus, goal 3 requires further revision. Though, it does allow for numerical

study of interactions between the viscous and acoustic mechanisms responsible for

generating first- and second-mode instability. Finally, it was noted that increased wall

temperature has the effect to dampen Gor̈tler instability in the cases studied.

With the understanding of the geometric requirements for 1st – 2nd mode inter-

actions, a 1.1m long, 600K wall temperature flared cone (6m flare radius) at Arizona

M5 conditions was then considered for the next phase of analysis. The focus of this

study is to investigate the nonlinear interactions within hypersonic boundary layers

with the coexistence of Mack’s 1st and 2nd modes, with emphasis on goal 1. Specif-

ically, emphasis is placed on the interactions and energetics of the 1st mode, MFD

and the 2nd mode. It is found that as 2nd mode amplitudes are increased, the MFD

significantly alters the 1st mode growth, indicating that the increased MFD from the

2nd mode disrupts energy flow from the mean flow to the 1st mode.

A study was performed where an impedance boundary condition IBC with for-

mulation utilizing the HAT)was applied on to a PSE code and compared it to similar

numerical computations. Specifically, a benchmark study is performed to validate the

implementation of the impedance BC on the JoKHeR stability package and its abil-

ity to investigate the sensitivity of unstable modes to a scaled wall impedance. It is

found that the JoKHeR implementation of the IBC predicts a factor of reduction in

maximum unstable growth rate with 25 percent error compared to the implementation

of the IBC and DNS analysis by Sousa et al. The high sensitivity of unstable mode

growth rate to changes in the specific impedance is also found, as a 25 percent decrease

in impedance appears to yield a greater change in modal growth in comparison with a

25 percent increase in impedance.
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7.1 Works Completed to Date

The following works [98, 1, 72, 106] have been completed to date in an attempt

to partially answer the aforementioned research questions respectively. Other open

problems in hypersonics such as entropy layer effects on crossflow instabilities, nose

blunteness effects on crossflow instabilities and the energy redistribution for NPSE

methods were investigated in [46, 117, 118].

7.2 Future work

Further work is required to investigate goals 1 and 3. More validation of the sup-

pression of mode growth via multi-mode induced MFD modification as seen in chapter

5 is also required. Studies into other mode interactions with the 1st and 2nd modes

can be performed such as with crossflow and Goörtler modes to further understand

the interaction and dynamics of competing instability modes in hypersonic boundary

layers. Application of the IBC onto other relevant geometries is also of interest, such

as onto the walls of a hypersonic wind tunnel nozzles to investigate the mitigation of

2nd mode instabilities in regions of transition to reduce flow contamination.
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Appendix A

DISCRETIZATION SCHEMES

A.1 Backward Finite Difference Scheme

∂ϕ′
i,j

∂y
=
ϕ′
i,j−2 − 8ϕ′

i,j−1 + 8ϕ′
i,j+1 − ϕ′

i,j+2

12∆y

∂2ϕ′
i,j

∂y2
=

−ϕ′
i,j−2 + 16ϕ′

i,j−1 − 30ϕ′
i,j−1 + 16ϕ′

i,j+1 − ϕ′
i,j+2

12(∆y)2

A.2 Central Finite Difference Scheme

∂ϕi+1,j

∂x
=

3ϕi+1,j − 4ϕi,j + ϕi−1,j

2∆x
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Appendix B

DISTURBANCE NAVIER STOKES EQUATIONS

B.1 Conservation of mass

∂ρ̄
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B.2 Conservation of momentum

B.2.1 X-momentum
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∂ū

∂x
+ ρ̄ũ
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∂x
(ρ̄T̃ ) +

∂

∂x
(ρ′T̄ ) +

∂

∂x
(ρ′T̃ )

)

+
1

Re

∂

∂x

[
2

(
µ̄
∂ū

∂x
+ µ̄

∂ũ

∂x
+ µ′∂ū

∂x
+ µ′∂ũ

∂x

)

+

(
λ̄
∂ū

∂x
+λ̄

∂ũ

∂x
+λ̄

∂v̄

∂y
+λ̄

∂ṽ

∂y
+λ̄

∂w̄

∂z
+λ̄

∂w′

∂z
+λ′

∂ū

∂x
+λ′

∂ũ

∂x
+λ′

∂v̄

∂y
+λ′

∂ṽ

∂y
+λ′

∂w̄

∂z
+λ′

∂w′

∂z

)]

+
1

Re

∂

∂y

(
µ̄
∂ū

∂y
+ µ̄

∂ũ

∂y
+ µ′∂ū

∂y
+ µ′∂ũ

∂y
+ µ̄

∂v̄

∂x
+ µ̄

∂ṽ

∂x
+ µ′ ∂v̄

∂x
+ µ′ ∂ṽ

∂x

)

+
1

Re

∂

∂z

(
µ̄
∂ū

∂z
+ µ̄

∂ũ

∂z
+ µ′∂ū

∂z
+ µ′∂ũ

∂z
+ µ̄

∂w̄

∂x
+ µ̄

∂w′

∂x
+ µ′∂w̄

∂x
+ µ′∂w

′

∂x

)
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B.2.2 Y-momentum

ρ̄
∂v̄

∂t
+ ρ̄

∂ṽ

∂t
+ ρ′

∂v̄

∂t
+ ρ′

∂ṽ

∂t

+ ρ̄ū
∂v̄

∂x
+ ρ̄ū

∂v̄

∂x
+ ρ̄ũ

∂v̄

∂x
+ ρ̄ũ

∂v̄

∂x
+ ρ′ū

∂v̄

∂x
+ ρ′ū

∂ṽ

∂x
+ ρ′ũ

∂v̄

∂x
+ ρ′ũ

∂ṽ

∂x

+ ρ̄v̄
∂v̄

∂y
+ ρ̄v̄

∂v̄

∂y
+ ρ̄ṽ

∂v̄

∂y
+ ρ̄ṽ

∂v̄

∂y
+ ρ′v̄

∂v̄

∂y
+ ρ′v̄

∂ṽ

∂y
+ ρ′ṽ

∂v̄

∂y
+ ρ′ṽ

∂ṽ

∂y

+ ρ̄w̄
∂v̄

∂z
+ ρ̄w̄

∂v̄

∂z
+ ρ̄w′∂v̄

∂z
+ ρ̄w′∂v̄

∂z
+ ρ′w̄

∂v̄

∂z
+ ρ′w̄

∂ṽ

∂z
+ ρ′w′∂v̄

∂z
+ ρ′w′∂ṽ

∂z

= −
(
∂

∂y
(ρ̄T̄ ) +

∂

∂y
(ρ̄T̃ ) +

∂

∂y
(ρ′T̄ ) +

∂

∂y
(ρ′T̃ )

)

+
1

Re

∂

∂x

(
µ̄
∂v̄

∂x
+ µ̄

∂ṽ

∂x
+ µ′ ∂v̄

∂x
+ µ′ ∂ṽ

∂x
+ µ̄

∂ū

∂y
+ µ̄

∂ũ

∂y
+ µ′∂ū

∂y
+ µ′∂ũ

∂y

)

+
1

Re

∂

∂y

[
2

(
µ̄
∂v̄

∂y
+ µ̄

∂ṽ

∂y
+ µ′∂v̄

∂y
+ µ′∂ṽ

∂y

)

+

(
λ̄
∂ū

∂x
+λ̄

∂ũ

∂x
+λ̄

∂v̄

∂y
+λ̄

∂ṽ

∂y
+λ̄

∂w̄

∂z
+λ̄

∂w′

∂z
+λ′

∂ū

∂x
+λ′

∂ũ

∂x
+λ′

∂v̄

∂y
+λ′

∂ṽ

∂y
+λ′

∂w̄

∂z
+λ′

∂w′

∂z

)]

+
1

Re

∂

∂z

(
µ̄
∂v̄

∂z
+ µ̄

∂ṽ

∂z
+ µ′∂v̄

∂z
+ µ′∂ṽ

∂z
+ µ̄

∂w̄

∂y
+ µ̄

∂w′

∂y
+ µ′∂w̄

∂y
+ µ′∂w

′

∂y

)
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B.2.3 Z-momentum

ρ̄
∂w̄

∂t
+ ρ̄

∂w̃

∂t
+ ρ′

∂w̄

∂t
+ ρ′

∂w̃

∂t

+ ρ̄ū
∂w̄

∂x
+ ρ̄ū

∂w̄

∂x
+ ρ̄ũ

∂w̄

∂x
+ ρ̄ũ

∂w̄

∂x
+ ρ′ū

∂w̄

∂x
+ ρ′ū

∂w′

∂x
+ ρ′ũ

∂w̄

∂x
+ ρ′ũ

∂w′

∂x

+ ρ̄v̄
∂w̄

∂y
+ ρ̄v̄

∂w̄

∂y
+ ρ̄ṽ

∂w̄

∂y
+ ρ̄ṽ

∂w̄

∂y
+ ρ′v̄

∂w̄

∂y
+ ρ′v̄

∂w′

∂y
+ ρ′ṽ

∂w̄

∂y
+ ρ′ṽ

∂w′

∂y

+ ρ̄w̄
∂w̄

∂z
+ ρ̄w̄

∂w̄

∂z
+ ρ̄w′∂w̄

∂z
+ ρ̄w′∂w̄

∂z
+ ρ′w̄

∂w̄

∂z
+ ρ′w̄

∂w′

∂z
+ ρ′w′∂w̄

∂z
+ ρ′w′

= −
(
∂

∂z
(ρ̄T̄ ) +

∂

∂z
(ρ̄T̃ ) +

∂

∂z
(ρ′T̄ ) +

∂

∂z
(ρ′T̃ )

)

+
1

Re

∂

∂x

(
µ̄
∂w̄

∂x
+ µ̄+ µ′∂w̄

∂x
+ µ′ + µ̄

∂ū

∂z
+ µ̄

∂ũ

∂z
+ µ′∂ū

∂z
+ µ′∂ũ

∂z

)

+
1

Re

∂

∂y

(
µ̄
∂w̄

∂y
+ µ̄+ µ′∂w̄

∂y
+ µ′ + µ̄

∂v̄

∂z
+ µ̄

∂ṽ

∂z
+ µ′∂v̄

∂z
+ µ′∂ṽ

∂z

)

+
1

Re

∂

∂z

[
2

(
µ̄
∂w̄

∂z
+ µ̄

∂w′

∂z
+ µ′∂w̄

∂z
+ µ′∂w

′

∂z

)

+

(
λ̄
∂ū

∂x
+λ̄

∂ũ

∂x
+λ̄

∂v̄

∂y
+λ̄

∂ṽ

∂y
+λ̄

∂w̄

∂z
+λ̄

∂w′

∂z
+λ′

∂ū

∂x
+λ′

∂ũ

∂x
+λ′

∂v̄

∂y
+λ′

∂ṽ

∂y
+λ′

∂w̄

∂z
+λ′

∂w′

∂z

)]
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B.3 Conservation of Energy

ρ̄c̄p
∂T̄

∂t
+ ρ̄c̄p

∂T̃

∂t
+ ρ̄c′p

∂T̄

∂t
+ ρ̄c′p

∂T̃

∂t
+ ρ′c̄p

∂T̄

∂t
+ ρ′c̄p

∂T̃

∂t
+ ρ′c′p

∂T̄

∂t
+ ρ′c′p

∂T̃

∂t

+

(
ρ̄c̄pū

∂T̄

∂x
+ ρ̄c̄pū

∂T̄

∂x
+ ρ̄c̄pũ

∂T̄

∂x
+ ρ̄c̄pũ

∂T̄

∂x
+ρ′c̄pū

∂T̄

∂x
+ρ′c̄pū

∂T̃

∂x
+ρ′c̄pũ

∂T̄

∂x
+ρ′c̄pũ

∂T̃

∂x

+ ρ̄c̄pv̄
∂T̄

∂y
+ ρ̄c̄pv̄

∂T̄

∂y
+ ρ̄c̄pṽ

∂T̄

∂y
+ ρ̄c̄pṽ

∂T̄

∂y
+ ρ′c̄pv̄

∂T̄

∂y
+ ρ′c̄pv̄

∂T̃

∂y
+ ρ′c̄pṽ

∂T̄

∂y
+ ρ′c̄pṽ

∂T̃

∂y

+ρ̄c̄pw̄
∂T̄

∂z
+ρ̄c̄pw̄

∂T̄

∂z
+ρ̄c̄pw

′∂T̄

∂z
+ρ̄c̄pw

′∂T̄

∂z
+ρ′c̄pw̄

∂T̄

∂z
+ρ′c̄pw̄

∂T̃

∂z
+ρ′c̄pw

′∂T̄

∂z
+ρ′c̄pw

′∂T̃

∂z

)

+

(
ρ̄c′pū

∂T̄

∂x
+ ρ̄c′pū

∂T̄

∂x
+ ρ̄c′pũ

∂T̄

∂x
+ ρ̄c′pũ

∂T̄

∂x
+ρ′c′pū

∂T̄

∂x
+ρ′c′pū

∂T̃

∂x
+ρ′c′pũ

∂T̄

∂x
+ρ′c′pũ

∂T̃

∂x

+ ρ̄c′pv̄
∂T̄

∂y
+ ρ̄c′pv̄

∂T̄

∂y
+ ρ̄c′pṽ

∂T̄

∂y
+ ρ̄c′pṽ

∂T̄

∂y
+ ρ′c′pv̄

∂T̄

∂y
+ ρ′c′pv̄

∂T̃

∂y
+ ρ′c′pṽ

∂T̄

∂y
+ ρ′c′pṽ

∂T̃

∂y

+ρ̄c′pw̄
∂T̄

∂z
+ρ̄c′pw̄

∂T̄

∂z
+ρ̄c′pw

′∂T̄

∂z
+ρ̄c′pw

′∂T̄

∂z
+ρ′c′pw̄

∂T̄

∂z
+ρ′c′pw̄

∂T̃

∂z
+ρ′c′pw

′∂T̄

∂z
+ρ′c′pw

′∂T̃

∂z

)
=

1

PrRe

[
∂

∂x

(
κ̄
∂T̄

∂x
+ κ̄

∂T̃

∂x
+ κ′

∂T̄

∂x
+ κ′

∂T̃

∂x

)
+

∂

∂y

(
κ̄
∂T̄

∂y
+ κ̄

∂T̃

∂y
+ κ′

∂T̄

∂y
+ κ′

∂T̃

∂y

)

+
∂

∂z

(
κ̄
∂T̄

∂z
+ κ̄

∂T̃

∂z
+ κ′

∂T̄

∂z
+ κ′

∂T̃

∂z

)]
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+ (γ − 1)M2

[
∂

∂t
(ρ̄T̄ + ρ̄T̃ + ρ′T̄ + ρ′T̃ )

+ū
∂

∂x
(ρ̄T̄ )+ū

∂

∂x
(ρ̄T̃ )+ū

∂

∂x
(ρ′T̄ )+ū

∂

∂x
(ρ′T̃ )+ũ

∂

∂x
(ρ̄T̄ )+ũ

∂

∂x
(ρ̄T̃ )+ũ

∂

∂x
(ρ′T̄ )+ũ

∂

∂x
(ρ′T̃ )

+v̄
∂

∂y
(ρ̄T̄ )+v̄

∂

∂y
(ρ̄T̃ )+v̄

∂

∂y
(ρ′T̄ )+v̄

∂

∂y
(ρ′T̃ )+ṽ

∂

∂y
(ρ̄T̄ )+ṽ

∂

∂y
(ρ̄T̃ )+ṽ

∂

∂y
(ρ′T̄ )+ṽ

∂

∂y
(ρ′T̃ )

+w̄
∂

∂z
(ρ̄T̄ )+w̄

∂

∂z
(ρ̄T̃ )+w̄

∂

∂z
(ρ′T̄ )+w̄

∂

∂z
(ρ′T̃ )+w′ ∂

∂z
(ρ̄T̄ )+w′ ∂

∂z
(ρ̄T̃ )+w′ ∂

∂z
(ρ′T̄ )+w′ ∂

∂z
(ρ′T̃ )

]
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+
γ − 1

Re
M2

[
2

(
µ̄

(
∂ū

∂x

)2

+µ̄
∂ū

∂x

∂ũ

∂x
+µ̄

∂ũ

∂x

∂ū

∂x
+µ̄

(
∂ũ

∂x

)2

+µ′
(
∂ū

∂x

)2

+µ′∂ū

∂x

∂ũ

∂x
+µ′∂ũ

∂x

∂ū

∂x
+µ′

(
∂ũ

∂x

)2)

+2

(
µ̄

(
∂v̄

∂y

)2

+µ̄
∂v̄

∂y

∂ṽ

∂y
+µ̄

∂ṽ

∂y

∂v̄

∂y
+µ̄

(
∂ṽ

∂y

)2

+µ′
(
∂v̄

∂y

)2

+µ′∂v̄

∂y

∂ṽ

∂y
+µ′∂ṽ

∂y

∂v̄

∂y
+µ′

(
∂ṽ

∂y

)2)
+2

(
µ̄

(
∂w̄

∂z

)2

+µ̄
∂w̄

∂z

∂w′

∂z
+µ̄

∂w′

∂z

∂w̄

∂z
+µ̄

(
∂w′

∂z

)2

+µ′
(
∂w̄

∂z

)2

+µ′∂w̄

∂z

∂w′

∂z
+µ′∂w

′

∂z

∂w̄

∂z
+µ′

(
∂w′

∂z

)2)

+

[
µ̄

(
∂v̄

∂x

)2

+ µ̄
∂v̄

∂x

∂ṽ

∂x
+ µ̄

∂v̄

∂x

∂ū

∂y
+ µ̄

∂v̄

∂x

∂ũ

∂y
+ µ̄

∂ṽ

∂x

∂v̄

∂x
+ µ̄

(
∂ṽ

∂x

)2

+ µ̄
∂ṽ

∂x

∂ū

∂x
+ µ̄

∂ṽ

∂x

∂ũ

∂x

+ µ̄
∂ū

∂y

∂v̄

∂x
+ µ̄

∂ū

∂y

∂ṽ

∂x
+ µ̄

(
∂ū

∂x

)2

+ µ̄
∂ū

∂y

∂ũ

∂y
+ µ̄

∂ũ

∂y

∂v̄

∂x
+ µ̄

∂ũ

∂y

∂ṽ

∂x
+ µ̄

∂ũ

∂y

∂ū

∂y
+ µ̄

(
∂ũ

∂x

)2

+µ′
(
∂v̄

∂x

)2

+µ′ ∂v̄

∂x

∂ṽ

∂x
+µ′ ∂v̄

∂x

∂ū

∂y
+µ′ ∂v̄

∂x

∂ũ

∂y
+µ′ ∂ṽ

∂x

∂v̄

∂x
+µ′

(
∂ṽ

∂x

)2

+µ′ ∂ṽ

∂x

∂ū

∂x
+µ′ ∂ṽ

∂x

∂ũ

∂x

+µ′∂ū

∂y

∂v̄

∂x
+µ′∂ū

∂y

∂ṽ

∂x
+µ′

(
∂ū

∂x

)2

+µ′∂ū

∂y

∂ũ

∂y
+µ′∂ũ

∂y

∂v̄

∂x
+µ′∂ũ

∂y

∂ṽ

∂x
+µ′∂ũ

∂y

∂ū

∂y
+µ′

(
∂ũ

∂x

)2]

+

[
µ̄

(
∂w̄

∂x

)2

+ µ̄
∂w̄

∂x
+ µ̄

∂w̄

∂x

∂ū

∂z
+ µ̄

∂w̄

∂x

∂ũ

∂z
+ µ̄

∂w′

∂x

∂w̄

∂x
+ µ̄

(
∂w′

∂x

)2

+ µ̄
∂w′

∂x

∂ū

∂z
+ µ̄

∂w′

∂x

∂ũ

∂z

+ µ̄
∂ū

∂z

∂w̄

∂x
+ µ̄

∂ū

∂z

∂w′

∂x
+ µ̄

(
∂ū

∂x

)2

+ µ̄
∂ū

∂z

∂ũ

∂z
+ µ̄

∂ũ

∂z

∂w̄

∂x
+ µ̄

∂ũ

∂z

∂w′

∂x
+ µ̄

∂ũ

∂z

∂ū

∂z
+ µ̄

(
∂ũ

∂x

)2

+µ′
(
∂w̄

∂x

)2

+µ′∂w̄

∂x

∂w′

∂x
+µ′∂w̄

∂x

∂ū

∂z
+µ′∂w̄

∂x

∂ũ

∂z
+µ′∂w

′

∂x

∂w̄

∂x
+µ′

(
∂w′

∂x

)2

+µ′∂w
′

∂x

∂ū

∂z
+µ′∂w

′

∂x

∂ũ

∂z

+ µ′∂ū

∂z

∂w̄

∂x
+ µ′∂ū

∂z
+ µ′

(
∂ū

∂z

)2

+ µ′∂ū

∂z

∂ũ

∂z
+ µ′∂ũ

∂z

∂w̄

∂x
+ µ′∂ũ

∂z
+ µ′∂ũ

∂z

∂ū

∂z
+ µ′

(
∂ũ

∂z

)2]
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+

[
µ̄

(
∂w̄

∂y

)2

+ µ̄
∂w̄

∂y
+ µ̄

∂w̄

∂y

∂v̄

∂z
+ µ̄

∂w̄

∂y

∂ṽ

∂z
+ µ̄

∂w′

∂y

∂w̄

∂y
+ µ̄

(
∂w′

∂y

)2

+ µ̄
∂w′

∂y

∂v̄

∂z
+ µ̄

∂w′

∂y

∂ṽ

∂z

+ µ̄
∂v̄

∂z

∂w̄

∂y
+ µ̄

∂v̄

∂z

∂w′

∂y
+ µ̄

(
∂v̄

∂z

)2

+ µ̄
∂v̄

∂z

∂ṽ

∂z
+ µ̄

∂ṽ

∂z

∂w̄

∂y
+ µ̄

∂ṽ

∂z

∂w′

∂y
+ µ̄

∂ṽ

∂z

∂v̄

∂z
+ µ̄

(
∂ṽ

∂x

)2

+µ′
(
∂w̄

∂y

)2

+µ′∂w̄

∂y
+µ′∂w̄

∂y

∂v̄

∂z
+µ′∂w̄

∂y

∂ṽ

∂z
+µ′∂w

′

∂y

∂w̄

∂y
+µ′

(
∂w′

∂y

)2

+µ′∂w
′

∂y

∂v̄

∂z
+µ′∂w

′

∂y

∂ṽ

∂z

+µ′∂v̄

∂z

∂w̄

∂y
+µ′∂v̄

∂z

∂w′

∂y
+µ′

(
∂v̄

∂z

)2

+µ′∂v̄

∂z

∂ṽ

∂z
+µ′∂ṽ

∂z

∂w̄

∂y
+µ′∂ṽ

∂z

∂w′

∂y
+µ′∂ṽ

∂z

∂v̄

∂z
+µ′

(
∂ṽ

∂x
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∂ū

∂x

∂w′

∂z

+ λ̄
∂ũ
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∂ṽ

∂y

∂ũ
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∂ū

∂x
+ λ′

(
∂ũ
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∂ṽ

∂y
+ λ′

∂ũ
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∂ũ

∂x
+ λ′

(
∂v̄

∂y

)2

+ λ′
∂v̄

∂y

∂ṽ
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∂ū

∂x
+ λ′

∂w′

∂z

∂ũ
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