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ABSTRACT

In this thesis, we consider the scattering of point sources inside a cavity sur-
rounded by an inhomogeneous medium and its inverse problem of determining the
boundary of the cavity from measurements of the scattered field inside the cavity. We
apply the linear sampling method and factorization method to numerically reconstruct
the boundary of the cavity. We prove that the linear sampling method works when
the wave number is not an exterior transmission eigenvalue. We prove that the exte-
rior transmission eigenvalues form a discrete set. We then consider both the exterior
transmission eigenvalue problem and the interior transmission eigenvalue problem for
a spherically stratified media and study the inverse spectral problem for the exterior
transmission eigenvalue problem. Finally we consider the interior transmission eigen-
value problem for Maxwell’s equations corresponding to non-magnetic inhomogeneities
with contrast in electric permittivity that changes sign inside its support. We prove
that the set of transmission eigenvalues is nonempty discrete, infinite and without finite

accumulation points.



Chapter 1

INTRODUCTION

The field of inverse scattering theory plays an important role in non-destructive
testing, medical imaging, geophysical exploration and numerous problems associated
with target identification. Inverse scattering problems are complicated by the fact that
such problems are both nonlinear and improperly posed in the sense that the solution
does not depend continuously on the data. The literature on inverse scattering is huge
and the discussion here is hence limited. Qualitative methods are reconstructive meth-
ods to retrieve information about the scattering media which require little or no a priori
information. The linear sampling method as introduced by Colton and Kirsch [23], and
Colton et at. [30] (see also the monograph [9]) and factorization method as introduced
by Kirsch [53] (see also the monograph [55]) belong to the class of qualitative meth-
ods. Qualitative methods are concerned with locating and analyzing scatterers from
measurements of the scattered field due to a known interrogating wave. Qualitative
methods have been further developed by many others and have played an important
role in non-destructive testing and imaging [9,55]. For a more detailed introduction to

qualitative methods we refer to the book [9].

There are several types of inverse scattering problems, for example inverse scat-
tering for obstacles, inverse scattering for inhomogeneous media and inverse scattering
for cracks, etc. We consider an inverse scattering problem due to sources placed on a
surface C' inside a cavity D surrounded by a penetrable, inhomogeneous medium D,
with the aim of determining the shape of the cavity (see Figure 1.1 for an example of
the geometry). Such problems arise in the use of nondestructive methods for determin-
ing the integrity of the interior boundary of a container that is inaccessible to direct

observation (c.f. [44,45,65,72-74,84]).



The direct scattering problem we are considering is for frequencies in the res-
onance region and in a time harmonic setting. A point source located at y is defined

by

(ke —yl) R
P(z,y) = oy
K| T—Y

S R
dmla —y|

For any point source ®(-,y) located at y € D, there is a corresponding scattered field
in D, denoted by u*(-,y), which satisfies

Aw(y) + K (y) =0 in D

where k is the wave number.

In the exterior of D the total field, defined by w(-,y) := ®(-, y)+u’(-,y), satisfies
V- AVw(-,y) + k*nw(-,y) = 0 in R‘\D

and the radiation condition

i Ow(y)
1 7 (—1H
e Ty

—ikw(-,y)) =0

where d = 2,3 denotes the dimension of D, and the matrix valued function A and
scalar function n are functions that are determined by the material properties of the

medium surrounding the cavity.

The fields inside and outside of the cavity D are connected by the boundary

conditions
w(a!/) - us(.’y) = q)(,y) on 0D
AVw(,y)-v—=Vu'(,y)-v = VO(,y)-v on 0D
where v is the unit outward normal vector on dD. The direct scattering problem is

well-posed according to Hadamard, i.e. the solution exists, is unique, and depends

continuously on the initial data. We now formulate the corresponding inverse problem:



For any point source aty € C, we measure the scattered field u®(x,y) at x € C.
We call u*(x,y) (for all x and y on C) the (full aperture) near field data. From this

information we want to determine the unknown boundary 0D of the cavity.

Contrary to the direct scattering problem, the inverse scattering problem is ill-
posed. The linear sampling method for solving the above inverse problem is based on

finding a regularized solution of the ill-posed integral equation

/C (2, y)g:(v)ds(y) = B(x, ) (L1)

where g, € L?(C') and (-, 2) is a point source at z. The boundary 9D of the cavity is
then determined by using regularization methods to solve (1.1) for g,. In particular,
0D is determined by examing the norm of g, which, roughly speaking, is large outside
D and relatively small inside D (a closely related method for doing this is the above
mentioned factorization method). However this approach is only valid for values of k
that are not exterior transmission eigenvalues, i.e. values of k such that there exists a

non trivial solution (w,v) satisfying

V- AVw+ En(z)w =0 and Av+ kv =0 in  RAD (1.2)

ow  Ov
w=v and . " oy on 0D (1.3)
lim r%(a—w —ikw) =0 and lim r%;l(@ —ikv) =0 (1.4)
=00 or - =00 or N ’
v —
[ RN\D;

D

Figure 1.1: An example of the geometry



where the above partial differential equations are satisfied in the sense of distributions.
The nonhomogeneous exterior transmission eigenvalue problem is, given f € H %(8D),
h € H2(dD), ¢, € L*(Bg \ D) and (, € L*(Bg \ D), find w € H}: (R*\ D), v €
H} (R?\ D) such that

V- AVw + k*nw = in R*\D (1.5)
Av + kv = {y in R*\D (1.6)
w—v=f on 0D (1.7)
ow v
lim r%(a—w —ikw) =0 and lim r%(@ —ikv) =0 (1.9)
r—o0 or o r—00 or - ’

where ¢; and {5 vanish in R¢ \B_R and R is the radius of the ball B outside of which
A =1 and n = 1. In particular the well-posedness of the nonhomogeneous exterior
transmission eigenvalue problem (1.5)-(1.9) allows us to prove that a knowledge of the

exact scattering data on C' uniquely determine the support of the cavity (see Chapter

3).

The exterior transmission eigenvalue problem (1.2)-(1.4) that appears in the
above inverse scattering problem for a cavity is just one of a number of transmission
eigenvalue problems that have appeared in inverse scattering. Here, in addition to (1.2)-
(1.4), we have also considered several different transmission eigenvalue problem that
have appreared in the literature and have examined the questions of the discreteness

and existence of the transmission eigenvalues.

In particular, we have considered electromagnetic wave propagation in a non-
absorbing isotropic non-magnetic medium. In particular, the transmission eigenvalues

are values of k for which there exist non-trivial (w, v) such that

curlcurlw — k*n(z)w =0 and curleurlv —k*v=0 in D (1.10)

vxw=vxv and vxcurlw=vxcurlv. on 9D (1.11)



where the above partial differential equations are satisfied in the sense of distributions.
For both (1.2)-(1.4) and (1.10)-(1.11) we have shown that transmission eigenvalues
exist and form a discrete set (see Chapter 6 and Chapter 7). Note that the exterior
transmission eigenvalue problem is defined in an exterior domain while the interior

transmission eigenvalue problem is defined in an interior domain.

In the case of stratified media where the eigenfunctions are spherically stratified,
the exterior transmission eigenvalue problem (1.2)-(1.4) is reduced to finding y(r) and

yo(r) such that

' +En(r)y=0 and y,+ky =0 in [a,00), (1.12)
apy(a) = boyo(a) and  agy'(a) = boyy(a). (1.13)

y and gy are normalized such that

Then k is a transmission eigenvalue if and only if

ika
D) = det| 4@ R

i.e. the transmission eigenvalues are the zeros of the entire function D(k). Using the
theory of entire function of a complex variable we have shown that there exist both

real and complex transmission eigenvalues to (1.12)-(1.13) (see Chapter 5).

The scalar interior transmission eigenvalues are values of k such that there exists

a non trivial solution (w,v) satisfying

Aw+k*n(r)w=0 and Av+k*»=0 in D (1.14)
ow Ov
w=v and =, oD (1.15)



where the above partial differential equations are satisfied in the sense of distribu-
tions. In the case of a spherically stratified scattering media the interior transmission

eigenvalue problem (1.14)-(1.15) is reduced to finding y(r) and yo(r) such that

y' +En(r)y=0 and yy=sinkr in [0,d], (1.16)

y(0)=0 and  ¥(0)=1. (1.17)

In Chapter 5 we consider the existence and distribution of eigenvalues to (1.16)-(1.17).
The thesis is organized as following.

In Chapter 2, we begin by considering the scattering of time harmonic acoustic
and electromagnetic waves by a point source ®(-,y) inside a cavity. We show that the
direct scattering problem is well-posed and consider the inverse problem to determine
the boundary dD from a knowledge of internal measurements inside the cavity. Rele-
vant paper is [12] F. Cakoni, D. Colton, S. Meng, The inverse scattering problem for a
penetrable cavity with internal measurements, AMS Contemporary Mathematics, 615,

71-88(2014).

In Chapter 3, we prove that the exterior transmission eigenvalues (corresponding
to the inverse scattering problem in Chapter 2 form a discrete set. We use variational
methods for anisotropic media [12] and integral equation methods [28] for isotropic
media. Relevant papers are [12] F. Cakoni, D. Colton, S. Meng, The inverse scatter-
ing problem for a penetrable cavity with internal measurements, AMS Contemporary
Mathematics, 615, 71-88(2014) and [28] D. Colton and S. Meng, Spectral properties

of the exterior transmission eigenvalue problem, Inverse Problems 30, no. 10, 105010
(2014).

In Chapter 4, we apply the linear sampling method [12] and factorization method
[68] to the inverse scattering problem in Chapter 2. We use the results from Chapter 3
to show that the data on a surface inside the cavity uniquely determines the boundary

of the cavity. We then prove that the linear sampling method works when the wave



number is not a transmission eigenvalue [12| and provide preliminary numerical exam-
ples. We adapt the factorization method developed in [61] and prove that we can avoid
the transmission eigenvalues provided the sampling region is well chosen [68]. Relevant
papers are [12] F. Cakoni, D. Colton, S. Meng, The inverse scattering problem for a
penetrable cavity with internal measurements, AMS Contemporary Mathematics, 615,
71-88(2014) and [68] S. Meng, H. Haddar, F. Cakoni, The factorization method for a

cavity in an inhomogeneous medium, Inverse Problems, 30, 045008 (2014).

In Chapter 5, we first consider the exterior transmission eigenvalue problem
(1.12)-(1.13) for a spherically stratified media. We determine conditions on the index
of refraction which guarantee the existence of infinitely many complex eigenvalues or in-
finitely many real eigenvalues. We then show that if two sets of spectral data are known,
then under appropriate conditions, the index of refraction is uniquely determined [26].
Moreover we show that the refractive index can be uniquely determined from the
knowledge of all the transmission eigenvalues [28]. We then consider the distribution
of transmission eigenvalues for the transmission eigenvalue problem (1.16)-(1.17). In
particular, we show that under smoothness condition on the index of refraction that
there exist an infinite number of complex eigenvalues and situations when there are no
real eigenvalues. We also consider the case when absorption is present and show that
under appropriate conditions the eigenvalues accumulate near the real axis [27]. Rele-
vant papers are [26] D. Colton, Y.J. Leung and S. Meng, The inverse spectral problem
for exterior transmission eigenvalues, Inverse Problems, 30, 055010 (2014) and [27] D.
Colton, Y.J. Leung and S. Meng, Distribution of complex transmission eigenvalues for

spherically stratified media, Inverse Problems, 31, 035006 (2015).

In Chapter 6, we consider the transmission eigenvalue problem for Maxwell’s
equations corresponding to non-magnetic inhomogeneities with contrast in electric per-
mittivity that possibly changes sign inside its support. We formulate the transmission
eigenvalue problem as an equivalent homogeneous system of boundary integral equa-

tion and prove that if the contrast is constant near the boundary of the support of



the inhomogeneity, then the set of transmission eigenvalues is discrete without finite
accumulation points [19]. Relevant paper is [19] F. Cakoni, H. Haddar and S. Meng,
Boundary Integral Equations for the Transmission Figenvalue Problem for Mazwell

Equations, J. Integral Equations and Applications, 27, No.3, 375-406, 2015.

In Chapter 7, we continue our study of the problem considered in Chapter
6. We study this problem in the framework of semiclassical analysis and relate the
transmission eigenvalues to the spectrum of a Hilbert-Schmidt operator. Under the
additional assumption that the contrast is constant in a neighborhood of the boundary,
we prove that the set of transmission eigenvalues is nonempty, discrete, infinite and
without finite accumulation points. A notion of generalized eigenfunctions is introduced
and a denseness result is obtained in an appropriate solution space [38]. Relevant paper
is [38] H. Haddar and S. Meng, Spectral analysis of the transmission eigenvalue problem

for Maxwell’s equations, submitted.



Chapter 2

THE DIRECT AND INVERSE SCATTERING PROBLEM

2.1 Formulation of the Direct Problem

We begin by considering the propagation of sound wave in three dimensions
viewed as a problem in fluid dynamics. Let v(z,t) be the velocity vector of a fluid
particle in an inviscid fluid and p(x,t), p(x,t), S(x,t) denote the pressure, density,
specific entropy, respectively, of the fluid. If no external forces are acting on the fluid,

then we have the equations

1

% +(v-V)o+-Vp= 0 (Euler’s equation) (2.1)
)

% + V- (pv) = 0 (equation of continuity) (2.2)

p= f(p,S) (equation of state) (2.3)

% +0-VS = 0 (adiabatic hypothesis) (2.4)

where f is a function depending on the fluid. Assuming v(z,t), p(z,t), p(z,t), S(x,t)
are small, we perturb these quantities around the static state v = 0, p = py =constant,

p = po(x), S = So(x) with py = f(po, So) and write their asymptotic expansion

vz, t) = evi(z,t) 4 (2.5)
p(x,t) = po+epi(z,t)+ - (2.6)
plx,t) = po(x,t)+epr(z,t) +--- (2.7)
S(z,t) = So(z,t) 4+ eSi(x,t) +--- (2.8)



where 0 < € < 1 and the dots refer to higher order terms in e. We now substitute
(2.1)-(2.4) into (2.5)-(2.8), retaining only the terms of order e. Doing this gives us the

linearized equations

8’01 1
E + %Vpl = 0
0
% +V. (p(ﬂ)l) =0
dp1 Op
CZ(JI) (E + (N Vpg) = E

where the sound speed c is defined by

(1) =§p (p0(), So(a)).

From this we deduce that p; satisfies
9’y
ot?

1
p0<x>vp1)-

= A (@)po()V - (

If we now assume that p; is time harmonic,

pi(z,t) = R{w(z)e ™'},

then w satisfies

1 w?

The above equation governs the propagation of time harmonic acoustic waves of small

amplitude in a slowly varying inhomogeneous medium. Considering the wave motion

etklz—y|

is caused by a point source ®(-,y) = located at y € IR? inside a cavity being

Amlz—y|
scattered by an inhomogeneous medium, and assuming the inhomogeneous medium
is contained inside D;\D, i.e., c(z) = ¢y = constant, po(x) = pgy = constant outside
D\ D(see figure 1.1), we see the scattering problem under consideration is now modeled

by

V- A(z)Vw + E*n(x)w = —6(x — y) (2.10)
w=d(,y) + u* (2.11)
Jim r(%f —iku®) =0 (2.12)

10



2
= W — & _ 1 : -
where k= 255, n(z) = Zghm Al@) = 55 In particular, continuity of w and

v+ AVw is assumed across 9D and dD;. Wring in terms of w € H} (IR*\D) and
u® € HY(D) yields

V- AVw + k*nw = 0 in R‘\D (2.13)
Au® + kK =0 in D (2.14)
w—u®=P(,y) on 0D (2.15)
ow  ou®  09(-,y)
as o - v on 0D (2.16)
: ow .
rlggo T(E —tkw) =0 (2.17)

Next we consider the wave propagation of electromagnetic wave in three dimensions
with electric permittivity € = €(x), magnetic permittivity x = p(x), and electric con-
ductivity o = o(z). As well known the electromagnetic wave is described by the electric
field £ and the magnetic field H satisfying the Maxwell equations

OH o€
curlé + ME =0 and curlH — EE =o€.

For time harmonic electromagnetic waves of the form
E(z,t) = E(x)e™™! and H(x,t) = H(zx)e ™
with frequency w > 0, we deduce that the complex valued space dependent parts E (x)
and H(z) satisfy
curlE — iwp(z)H =0 and  curlH + (iwe(z) — o(z))E = 0.

Now let us suppose that the inhomogeneity occupies an infinitely long conducting
cylindrical shell. Let D;\D be the cross section of this cylindrical shell with v being
the unit outward normal to the boundary. We assume that the axis of the cylinder
coincides with the z-axis. We further assume that the conductor is filled with a noncon-

ducting homogeneous background, i.e., the electric permittivity ¢y > 0, the magnetic

permittivity po > 0, and the conductivity oy = 0 inside D. Next we define

int,ext __ rint,ext int,ext __ rrint,ext 2 2
E =eFE , H = /1oH , k7= eopow”,

11



Aw) = (e +i72), M) = Lu)

€0 w 7 1o
where E™ H™ and B, H°"' denote the electric and magnetic fields inside and out-

side the homogeneous background D, respectively. For an orthotropic medium we have

the matrices A and N are independent of the z-coordinate and are of the form

a1 a2 O nyp niz 0
A= ay an 0 and N =1 ny ng 0

0O 0 a 0O 0 n

In particular, the field £t and H™™ inside D satisfy
curl E™ —ikH™ =0 and curlH™ +ikE™ =0 (2.18)
and the field £ and H* outside D satisfy
curl Bt —ikNH*" =0 and curlH*" + ik AE** = 0. (2.19)

Across the boundary 9D we have the continuity of the tangential component of both

the electric and magnetic fields. Assuming that A is invertible, from (2.18) (2.19)
curleurl H™ — K H™ = ( (2.20)
and
curl (A~ 'curl H') — BN H' = 0. (2.21)
The electromagnetic wave is caused by incident fields E?, H' satisfying (2.18), i.e.
E®'=E°*+FE' and H“'=H°+ H'

where F° and H® denote the scattered field and satisfy the Silver-Muller radiating
condition

lim (H® x x —rE®) = 0.

r—00

Now assume that the incident wave propagates perpendicular to the axis of the cylinder

and is polarized perpendicular to the axis of the cylinder such that

Hi(z) = (0,0,u"), H%(z)=(0,0,u®), H™(x)=(0,0,w).
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By elementary vector analysis, one can conclude (2.21) is equivalent to

V- A(x)Vw + k*n(r)w =0 in R*\D (2.22)
where
1 air a9
A=
det(4) Q12 a22

Analogously, (2.20) is equivalent to
Au® +k*u®=0 in D. (2.23)
The transmission conditions
vx (H'+ H)=vx H™, vxcwl(H*+ H")=vxA 'curlH"™
on the boundary of the conductor becomes
w—u'=u, v-AVw—v-Vu'=v-Vu' on ID.

The IR? analog of the Silver-Muller radiating condition is the Sommerfeld radiating

condition

ou®
lim +/r —tku®) = 0.
r—00 \/_( or )
If we consider the scattering of TM magnetic dipole located at y € IR?, ie., u' =
O(-,y) = %, the scattering problem under consideration is modeled by

V- AVw + k*nw = 0 in R*\D (2.24)
Au® 4+ E*u® =0 in D (2.25)
w—u®=P(,y) on 0D (2.26)

ow  ou®  09(-,y)
. o - ov on 0D (2.27)
lim \/F(a—w —ikw) =0 (2.28)

13



In conclusion the scattering of acoustic wave in three dimension (2.13)-(2.17) and
electromagnetic wave in two dimension (2.24)-(2.28) by the point source ®(-,y) inside

a cavity are modeled by

V- AVw + k*nw = 0 in R\ D (2.29)
Au® + Eu® =0 in D (2.30)
w—u®=f on 0D (2.31)

ow  ou’
— — =h D 2.32
3. oo on 0 (2.32)

e Ow

Tll)rgor 2 (E —ikw) =0 (2.33)

where f = ®(-,y), h = M)a(l'/’y), d = 2,3 denotes the dimension and the point source

located at y € IR? is given by

SHSY (k| — y)) in R2
P(z,y) = . (2.34)
1klx—y
e in R3.
Ar|z — y|

For later use, we make more precise mathematical setting of our time harmonic
scattering problem. Let D, D; C R? d = 2,3, be simply connected bounded regions
of R? with Lipchitz boundary dD,dD; and denote by v the outward unit normal to
the boundary. We assume the medium inside D and outside D; is homogeneous with
refractive index scaled to one and denote by k the corresponding wave number. The
medium inside D;\D is assumed to be inhomogeneous and possibly anisotropic. More
specifically, the physical properties of the medium in D;\D are described by the d x d
symmetric matrix valued function with C2?(D;\D) entries(in fact, we can relax the
assumption to piecewise Lipschitz continuous entries having only finitely many jumps)
and the bounded function n € L>(D;\D) such that & - R(A)¢ > al/]?, € S(A)E <0,
for all ¢ € C and R(n) > ng > 0 in R?\ D. Furthermore, we assume that A = I and
n=1in R\ D; and D where supp(A — I) = supp(n — 1) = D;\D and Bp is a large
ball containing D;. Note that all the assumptions we make on the anisotropic medium

hold thanks to the physical constitutions.
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2.2 Wellposedness of the Forward Problem

In this section, we will study the uniqueness, solvability and stability of the
forward problem (2.29)-(2.33). In particular, we use the variational methods for elliptic
partial differential equations (c.f. [9]). Since the problem is formulated in an unbounded
domain, we introduce the Dirichlet to Neumann map. Let Bp is a sufficiently large
ball that contains Dy, then the (exterior) Dirichlet to Neumann map Ty, : H2 (0Bg) —
H~2(0Bg) is defined by

9 1
Tp:g— a_zbf’“ for g€ H%(0Bg) (2.35)

where u is the radiating solution to the Helmholtz equation Au + k?u = 0 outside Bg
with boundary data u = g on dBg, and v is the outward unit normal to 0Bgr. Now we

state the following theorem (see e.g. [9]).

Theorem 2.2.1 The Dirichlet to Neumann map Ty, defined by (2.35) is a bounded lin-
ear operator from H2(0Bg) to H™2(8Bg). Furthermore, there exist a bounded operator
Ty : H2(0Bg) — H~2(9Bg) satisfying
—/ Toww > Cllw||? . (2.36)
DB H? (9Br)

for some constant C > 0 such that T — Ty : H2(dBg) — H~2(8Bg) is compact.

From the Dirichlet to Neumann map, equations (2.29)-(2.33) can be written as

V- AVw + kE*nw = 0 in R\ D (2.37)
Au® + Eu® =0 in D (2.38)
w—u’=f on 0D (2.39)
ow  ou’
ow
5 = Tkw on 8BR (241)

The Dirichlet to Neumann map guarantees that one can extend w € H'(Bg) in (2.37)-

(2.41) tow € H} (R?\ D) in (2.29)-(2.33), therefore we have the following (see e.g. [9]).

15



Lemma 2.2.1 The boundary value problems (2.29)-(2.53) and (2.37)-(2.41) are equiv-

alent.

From the classical Dirichlet boundary value problem, there exists a unique radiating

solution u, € H} (R?\ D) to

Auy + k‘zw =0 in Rd\ﬁ

ug = f on 0D

for any f € Hz(9D) and |[ul| ;1 (55 < ClA I3 o)
Now we will derive an equivalent variational formulation of the problem (2.37)-
(2.41). Define
u:=u’|p + (W — u)|By\p- (2.42)

Multiplying (2.37) and (2.38) by @ and integrating by parts yields

/ Trwods — / a—w¢d3 — / AVw - Vodr + kg/ nwpdr =0 (2.43)
9Bg op OVa Bp\D Br\D

and
8’([9_ s — 2 S—
pds — | Vu®-Vopdr +k u'pdr = 0. (2.44)
op OV D D

Then equations (2.43)-(2.44) and the definition of u yield

/ Tyupds — / AVu - Vpds + k* / nupdz
8BR BR BR

= / hpds + / AVuy - Vodr — k2/ nugpdr — / Truspds. (2.45)
oD Br\D Br\D OBRr

Lemma 2.2.2 Let u € H'(Bg) be defined by (2.42). If u* € HY(D) and w €
HY(Bg\D) satisfies (2.37)-(2.41), then u satisfies (2.45). Conversely if u satisfies
(2.45), then v* = u|p and w = (u + u¢)|py\p satisfies (2.37)-(2.41).

Proof. The above argument implies the first part. Conversely suppose u € H'(Bg)
satisfies (2.45). Let ¢ be a test function compactly supported in Bg\D and D re-
spectively, then a direct integration by parts yields (2.37) and (2.38). Choosing test
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function ¢ € H. (Bg) and matching the boundary conditions yields (2.39), (2.40) and
(2.41). This proves the Lemma. O

Now let

a(u,p) = / AVu - Vpdr + VuVedx —/ Toupds
Br

Br OBr
afug) = = [ (T=Togds— [ (0t 1)ugds
R R
Fly) = / Tk“@ds_/ ]”@ds—/ AVue-V@dx—HcQ/ nugpda.
O0BRr 0D BR\E Bp\D

Then (2.45) is equivalent to
ai(u, ) + as(u, ) = F(p), Vo € H'(Bp).

By Riesz theorem, one can define unique bounded linear operators &/ and % from

Hl(BR> to HI(BR) by
a(u, ) = (Fu, ) and  a(u,p) = (Bu, p). (2.46)
Let f € H'(Bg) be the unique solution to F(¢) = (f, ). Then (2.45) is equivalent to

(o + B)u = f. (2.47)

Lemma 2.2.3 The operators &/ and A defined by (2.46) satisfy the following: </ is

invertible with bounded inverse and % is compact.

Proof. Since R(A) is strictly positive definite, and —Tj is non-negative from Theorem
2.2.1, then ay(-,-) is strictly coercive, by Lax-Milgram theorem one can conclude 7
is invertible with bounded inverse. Since T — Tj is compact from Theorem 2.2.1 and
f Br (k*n+1)updz defines a compact perturbation due to compact embedding of H'(Bp)

into L?(Bg), one can conclude % is compact. 0J

Now we will show that there exists a solution to (2.45). In particular Fredholm

alternative implies that it is sufficient to show the uniqueness of solution to (2.45).
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Lemma 2.2.4 There exists at most one pair of solution u® € H(D) and w € H} (R?\
D) to (2.87)-(2.41).

Proof. Let u € H'(Bg) be defined by (2.42). Choosing ¢ = u in (2.45) and taking
the imaginary part yields
ou_ _ 9 _
(| =—u)= SAVu - Vudr — k S(n)uudz.
op OV Br Br

Since J(A) < 0,F(n) > 0, one can conclude

Combining this with Rellich’s Lemma yields v = 0 outside D;(c.f. [9]). Since A €
(C?(D\D))**® and n € C?(D;\D), one can extend A,n to A, 7 in By with continu-
ously differentiable entries. From u = 0 outside D, we have that

u=0 and @:O on O0D;.
8I/A

Then one can extend u to @ := u|p,\5+0| g\ 5, continuously, this gives u € H'(B =\D)
and satisfies

V-AVi+ ki =0 in Bg\D.
From the classical regularity result ( [36]), we have that u € H?(Bg\D) and is contin-
uous across dD;. Then one can conclude @ = 0 in Bg\D, in particular u = 0 in D;\D.

From the transmission boundary condition, we have that

u=0 and ﬂ:0 on dOD.
8I/A

Since u satisfies Helmholtz equation inside D, then v = 0 inside D. Hence u = 0 in

Bpg. This proves the Lemma. 0

Theorem 2.2.2 There exists a unique pair of solution u® € H'(D) and w € H} (R*\
D) to (2.29)-(2.33) for f € H2(OD) and h € H~2(dD) such that

el + 1llingazy < CU L3 ) + 1Ly 3 o)

where C' > 0 s some constant independent of f and h.
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Proof. From Lemma 2.2.4, there exists a unique solution u € H'(Bg) to (2.37)-(2.41).

From (2.47), Lemma 2.2.3 and Riesz’s lemma,

lull i (sr) < CIIF]|

< Cllluellzr spmy + Al -3 o)

where we have used [|u¢|| ;1 (p,\p) < CIIfl,, Then the definition of u yields

(D)’
[ o) + [l smy < CUF 3 op) T 10 -3 o)

where C' > 0 is some constant independent of f and h. O

2.3 The Inverse Problem and Near Field Operator

The inverse problem we consider is to determine the boundary 0D from a knowl-
edge of internal measurements inside the cavity. The motivation for studying such a
problem is to determine the shape of an underground reservoir by lowering receivers
and transmitters into the reservoir through a bore hole drilled from the surface of the
earth. Another application in non-destructive testing is to test the integrity of e.g.
nuclear sectors. Mathematically, we assume that C' is an open region in D such that
C C D. We place the point source ®(-,y) at every y € dC and measure the corre-
sponding scattered field u®(x,y) for z € dC. The inverse problem we consider is for
fixed (but not necessarily known) A and n satisfying certain assumptions, determine
the boundary of the cavity 9D from a knowledge of u*(x,y) for all z,y € 0C.

It is known that there is one-to-one correspondence between the radiating so-
lution to Helmholtz equation and its far field pattern. The near field has similar
properties. If the near field vanishes, then the corresponding solution to the Helmholtz

equation also vanishes. To make this rigorous, we begin with the following lemma.

Lemma 2.3.1 Assume the open region C is such that k? is not a Dirichlet eigenvalue

for =A in C. If u*(-,y) = 0 on OC, then u*(-,y) =0 in D.
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Proof. Since k? is not a Dirichlet eigenvalue for —A in C' and u®(-,y) satisfies
Aus(,y) + k(L y) =0 in C,

then we have u*(-,y) = 0 in C. Since u®(+,y) satisfies
Aus(-,y) + E*u(-,y) =0 in D,

then by unique continuation we have that v*(-,y) = 0 in D. O

In our analysis of the inverse scattering problem, we shall always need the above
assumption. Since the wave number k is known, one can choose C to satisfy the

assumption and we assume this holds throughout the thesis.

Assumption 2.3.1 The open region C' is such that k* is not a Dirichlet eigenvalue

for —A in C.

Our analysis of the inverse scattering is based on an indicator function obtained by
solving a linear integral equation of the first kind whose kernel is computed from

internal measurements. Now let us introduce the near field operator.

Definition 2.3.1 The near field operator N: L*(0C) — L*(0C) is defined by
(Ng)(z) = /ac u®(x,y)g(y)ds(y) where g€ L*(0C) and z € C. (2.48)

For later use, we establish a reciprocity relation of the scattered field u*(x,y).

Proposition 2.3.1 The scattered field u®(x,y) respect to the point source ®(x,y) sat-

1sfies the reciprocity relation
u’(z,y) = u’(y,z) where x,y € IC. (2.49)

Proof. From Green’s formula we have that

u'(z,y) = / {Mcb(x, ) — us(.,y)aq)(x’ ) } ds, xeC  (2.50)

% v
oD
u(y,x) = / {au;—;x)q)(y, ) — us(-,x)aq);i’ ) } ds, yeC  (2.51)
oD
0 = al{wu%,@—u%,wW}ds. (2.52)
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Since ®(-, -) satisfies the radiation condition, then we have again from Green’s formula

(applied in IR%\ D) that
0= / {5@(;,;, Dy, ) — o, ) 220 } ds. (2.53)

ov

oD
Since ®(-,-) is symmetric, subtracting (2.51) from (2.50) and adding to the result the
sum of (2.52) and (2.53) we obtain

wla) (o) = [ {25000 — a5 L

where u is the total field. Now using the transmission conditions (2.39) (2.40), the fact

that A is symmetric, the assumptions that A — I and n — 1 are zero in IR¢ \ By and
the equation (2.37) we have that

winn) o) = [{2 a0 - w2 s

8VA

Br\D
— / {V-AVw(,y)w(-,z) — VAVw(-, x)w(-,y)} dv
Br\D
+ / {Ww(-’x)—w(-7y)awa(;$)}d820
8Br

because of the following: the first volume integral is zero due to the symmetry of A,
the second volume integral is zero due the fact that w(-,z) and w(-,y) satisfy the
same equation and the last integral is zero due to the fact that w(-, z) and w(-,y) are

radiating solutions to the Helmholtz equation outside Bp. 0]

2.4 Properties of Near Field Operator
In order to solve the near field equation, we first study the injectivity and the

range of the near field operator. To this end, we define the single layer potential v, by

vy(x) = / d(z,y)g(y)ds(y), =€ R\ IC. (2.54)
ac
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Then by superposition Ng is the scattered field evaluated on dC' due to v, as incident
field.

Theorem 2.4.1 The near field operator N : L*(0C) — L?(0C) is injective with dense
range if and only if there does not exist a non-zero h € L?(0C) such that there exists

Hl

L (RAD) and v := vy, solving the homogeneous problem

V- AVw + k*nw = 0 in RT\ D (2.55)
Av+E*v =0 in RI\ D (2.56)
w="v on 0D (2.57)
ow  Ov
— = D 2.5
oy on 0O (2.58)
lim r%(a—w —ikw) =0 and lim r%(@ —ikv) =0  (2.59)
r—00 or r—00 or v)= ’

Proof. The reciprocity relation of u*® implies that N*h = Nh where N* is the L?-
adjoint of N, i.e.,

(N*g)(x) = /ac us(x,y)g(y)ds(y) where g€ L*(0C) and z€9C. (2.60)

Hence N is injective if and only if N* is injective, Since Ker(N*)* = Range(N) to
prove the theorem we must only prove that N is injective.

To this end, let a non-zero h € L*(0C') be such that (Nh)(x) = 0 where z € 9C.
Let vp(x) = [, (2, 2)g(2)ds(z), and consider (w, ) the unique solution of (2.29)-
(2.33) with f := v, and h := aiuh. Since us(- y) is the scattered field corresponding
to ®(-,y), by superposition o(z) = [, u® h(y)ds(y). By assumption (Nh)(z) =0
where z € 0C, then o(z) = 0 where z € dC. From Lemma 2.3.1 © = 0 in D. This
implies that @ and v, satisfy the homogeneous exterior transmission problem.

Conversely, if (w,vy) solves (2.55)-(2.59), then (w,0) solves (2.29)-(2.33) with
fi=wv, and h := avh By superposition and uniqueness of (2.29)-(2.33), there is

| v whds) =0 i D.
aC
In particular Nh = 0 on 9C. This proves the theorem. U

The above theorem implies the following.
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Corollary 2.4.1 Assume there does not exist a non-zero h € L?*(0C) such that there
exists w € H. (R¥\D) and v := v}, solves the homogeneous problem (2.55)-(2.59), then
the operator N : L*(0C) — L*(0C) is injective with dense range.

Remark 2.4.1 The near field operator N is not normal since

(NN*g) / / (2, 2)us(2,y)g(y)ds(y)ds(z) where g€ L*(0C) and z € OC
ac Joc

(N*Ng)(z / / us(z, 2)u®(2,9)g(2)ds(y)ds(z) where g€ L*(dC) and € IC.
ac Joac
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Chapter 3

THE EXTERIOR TRANSMISSION EIGENVALUE PROBLEM

In this chapter we will formulate and study the so-called exterior transmission
problem which will play a fundamental role in our uniqueness proof and the justification
of the qualitative methods. From Section 2.1 of Chapter 2, the homogeneous problem
(2.55)-(2.59) arises from the analysis of the injectivity of the near field operator. The

exterior transmission eigenvalue problem for anisotropic medium A # [ is finding

w € HL (R*\ D) and v € H (R?\ D) such that

V- AVw + k*nw = 0 in R*\D (3.1)
Av+ Kk =0 in R*\ D (3.2)
w=v on 0D (3.3)

ow  Ov
. v D 4
dus  Ov on d (3.4)
tim 7 (22— k) = 0 ¢ tm et =0 @35
ST (W_Z w) = an Lim 7 (g—z v) = 0. (3.5)

Associated exterior transmission problem with the exterior transmission eigenvalue for
anisotropic medium is: given f € Hz(8D), h € H™2(dD), ¢, € L (R \ D) and

loc
ly € L2 (R4 \ D), finding w € H} (R*\ D) and v € H} (R?\ D) such that

V- AVw + k*nw = {, in R\ D (3.6)
Av + kv = ly in R\ D (3.7)
w—v=Ff on 0D (3.8)
ow  Ov
R D .
9. ov h on 0 (3.9)
lim r%(a—w —ikw) =0 and lim T%(@ —ikv) = (3.10)
r—00 or N r—00 or N '
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where ¢; and /¢, vanish in R? \B_R and R is the radius of the ball B outside of which
A=Tandn=1.
The exterior transmission eigenvalue problem for isotropic medium is finding

we L2 (RT\ D) and v € L? (R?\ D) such that w —v € H2_(R?\ D) and

loc loc

Aw + k*nw =0 in RY\D (3.11)
Av+ kv =0 in R\ D (3.12)
w=v on 0D (3.13)
ow Ov
. am Qw . am Qv
Tlggor 2 <§ —ikw) =0 and Tlg(r)lor 2 (E —ikv) =0  (3.15)

Associated exterior transmission problem with the exterior transmission eigenvalue

for isotropic medium is: given f € H_%((?D), h € H_%(ﬁD), ¢, € L (IR \ D)

loc

and ¢, € L2 (IR?\ D), finding w € L2 (R?\ D) and v € L2 _(R%\ D) such that

loc loc loc

w—v € H2 (RY\ D) and

Aw + E*nw = £, in R\ D (3.16)
Av + k*v =l in R\ D (3.17)
w—v=f on 0D (3.18)
ow  Ov
- _ = D 1
3. ov h on 0 (3.19)
. aa Qw . a1 Qv
lim r 2 (8_ —ikw) =0 and lim 7 2 (8_ —ikv) =0,  (3.20)
r—00 r r—00 r

where ¢; and {5 vanish in R¢ \B_R and R is the radius of the ball Br outside of which
A=Tandn=1.

Definition 3.0.1 Values of k € IR for which the homogeneous problem (3.1)-(53.5)(A #
I)or (3.11)-(3.15) (A = 1) has a nontrivial solution are called exterior transmission

ergenvalues.

As a physical motivation of the exterior transmission problem we ask the question if

it is possible to send an outgoing incident field u* from inside the cavity D that does
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not produce any scattered field in D and all the energy is transmitted to the exterior
of D.

In practice, all the wave numbers are real valued. Mathematically, in order to
prove the discreteness of transmission eigenvalues we need to consider complex wave
numbers that lie in a neighborhood of the real axis. This motives us to consider a
careful definition of the Sommerfeld radiation condition or the Dirichlet to Neumann

map (2.35) for complex wave numbers k. To this end we make the following remarks.
Remark 3.0.2 For real valued k, suppose u € H}. (IRY\Bg) and g € H%(ﬁBR) satisfy

Au+k*u=0 in RNBg (3.21)

u=g¢g on OBpg (3.22)

Assume u satisfies the Sommerfeld radiation condition for k € IR

d—1 u
lim 'z (=— — iku) = 0.
Jim e (5, — k)

Then we have the boundary value problem (3.21)-(5.22) has a unique solution and we
define
u = Bg.

In the case that k € C, the boundary value problem (3.21)-(3.22) has a unique
solution provided k is not a scattering pole. A complex number k is a scattering pole
if and only if there is a nonzero v € H} (IR¥\Bg) satisfying (3.21)-(3.22) and of the
form

v=DLpgi +SLrgs in ]Rd\B_R

for some g, € H2(0Bg) and g, € H2(0BR) where

DL = /83 02C-9) yas(y)

ov
SLup = /63 () (y)ds(y).

The operator By has a meromorphic continuation to the complex plane C and all the
scattering poles lie in the lower half complex plane Sk < 0. There exists a neighbor-

hood of the real azxis such that the operator By, is well-defined and analytic [81]. We
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remark that one can prove the same result for the acoustic scattering by inhomogeneous

medium.

Remark 3.0.3 For real valued k, the Dirichlet to Neumann map (2.35) (for instance
in two dimension, i.e. d =2 [9]) is defined by

inf

> kHY (kR
Ti(wlopy) == Zan%
H,”(kR)

—0o0

for

o0

inf
wlop, = E a,e

—00

where w(r, 0) is a radiating solution to the Helmholtz equation outside Br and (r,6)

denotes the polar coordinates in R?, and w(r,0) is defined by

w(r,0) = Zaanll)(kr)eme, r>R and 0<6<2r.

In the case that k is complex, we can still define the Dirichlet to Neumann
operator as above for k € C that are not zeros of Hankel functions Hy(bl)(kR), n =
0,+1,£2,---. Remark that all the zeros of {H,(ll)(kR)} (these zeros are scattering
poles) form a discrete set in C. Therefore for any fized interval on IR, there exists a
neighborhood of the real azis such that {Hr(Ll)(k;R)} has no zeros in this neighborhood.
Then we can define the Dirichlet to Neumann operator Ty, in such a neighborhood and

Ty 1s analytic in this neighborhood.

We will establish the Fredholm properties of the exterior transmission problem and
show all the exterior transmission eigenvalues form a discrete set on the real line.
In particular, we will use variational method for the anisotropic case and integral
equation method for the isotropic case to prove the discreteness of exterior transmission
eigenvalues.

Our results are based on the following lemma on analytic Fredholm theory [9].

Lemma 3.0.1 Let D be a domain inC and let A: D — L(X) be an operator valued

analytic function such that A(z) is compact for each z € D. Suppose I — A(z) is
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invertible at some point zg € D. Then I — A(z) is invertible except at most on a

discrete set in D, and (I — A(2))™" is meromorphic on D.

3.1 Exterior Transmission Eigenvalue Problem: Case A # I

In this section we will derive a variational formulation for the exterior transmis-
sion problem. To this end we first formulate the exterior transmission problem into a
bounded domain problem using the Dirichlet to Neumann map. In fact, the exterior

transmission eigenvalue problem is equivalent to

V- AVw + k*nw = {, in R‘\D (3.23)
Av + kv = £y in R\ D (3.24)
w—v=Ff on 0D (3.25)
ow  0Ov
~— 7 D 2
9. ov h on 0 (3.26)
ow v
— =Thw on 0OBpg and — =Tv on 0Bpg (3.27)
v v

Now we take v; € HL_(R?\ D) to be the unique solution of the exterior Dirichlet

loc
problem
Av, 4+ Ev, =0 in R*\ D
vy =f on 0D
d—1 (%l

lim 72 (— —ikv;) =0
A gy — i)

and set vy = v + v;. Then (w,vy) satisfies (3.23)-(3.27) with (f,h) = (0,h = h — %—Uy).
Therefore it suffices to study (3.23)-(3.27) with f = 0. Next we define an appropriate

Hilbert space to work on. Define the Hilbert space
H = {(w,v) € H(Br\D) x H'(Bg\D),w —v=0 on 0D}.

Taking a test function (w’,v") € H, multiplying both sides of (3.23) by w’ and (3.24)

by v, and integrating by parts yields

_ ow — _ _ _

/ Trww'ds — aTww’ds — / AVw - Vuw'dx + / nk*ww'dr = / lw'dx
A

aBR oD BR\ﬁ BR\E BR\B
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and

/Tkvads—/?ads— / Vo - Vo'dz + / Eov'de = / lov'dz.
v
oD

OBR BR\E BR\E BR\E

Now taking the difference and and using the fact that w' = v" on 9D together with
(3.25) (3.26) we have that

/ AVw - Vuw'dr — / Vo - Vv'dr + / (—nk*ww’ + k*ov')dx — / Trww'ds

BR\B BR\E BR\B OBRr
+ / Tkvgds——/ hw'ds — / (w'dx + / ('dz. (3.28)
oD
OBR BR\ﬁ BR\ﬁ

We define the sesquilinear form ax(-,-) : H x H — C by

ar((w,v), (W', v") = / AVw - Vuw'dr — / Vo - Vuv'dz
BR\5 BR\ﬁ
+ / (—nk*ww’ + k*vv')dx — / Trww'ds + / Tvv'ds
BR\E OBRr OBRr

and the conjugate linear functional F'(-) : H — C by
Fw' ') = —/ hw'ds — / Hw'dr + / (' dx.
- Br\D Br\D
Conversely, assume that (w,v) € H satisfies ax((w,v), (w',v")) = F(w',v') for all
(w',v") € H. Taking v' = 0, w' € C°(Br\D), we have (3.23) and in a similar way we
have (3.24). Taking (w’,v") € H such that w' = v" = 0 on 0Bg, one can get (3.27).

Finally, a choice of (w’,0) € H implies (3.25) and in a similar way we obtain (3.26).

Hence we have proven the following theorem.

Theorem 3.1.1 The exterior transmission problem (3.23)-(3.27) is equivalent to the
following problem: Find (w,v) € H such that for all (w',v") € H

ar((w,v), (W', v") = F(w',v"). (3.29)
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Note that by means of the Riesz representation theorem we can define the operator

A, H— H by
(Ag(w,v), (W', 0") g = ax((w,v), (W', 0")) for all ((w,v), (w',v")) € H x H.

We would like to show that A;. : H — H for k > 0 is invertible. To prove this we use
the T-coercivity approach introduced in [8] and [22]. The idea behind the T-coercivity
method is to consider an equivalent formulation of (3.29) where a; is replaced by a]

defined by
al ((w,v), (W', v") == ap((w,v), T(w',v")), Y((w,v),(w, )€ Hx H (3.30)
with 7 being an ad hoc isomorphism of H. Indeed, (w,v) € H satisfies
ap((w,v), (W, v))=0  forall (v v)eH

if and only if, it satisfies a] ((w,v), (w',v")) = 0 for all (w',v') € H. Assume that T
and k are chosen so that a] is coercive. Then using the Lax-Milgram theorem and the
fact that 7 is an isomorphism of H, one deduces that Ay is an isomorphism on H.

In the following, in addition to the assumptions on A and n stated at the end of
Section 2.1 in Chapter 2, we assume that there exists a neighborhood €2 of 0D where
both $(A4) = 0 and I(n) = 0 in Br\D N Q. Setting N := Bz\D N, we denote by

A, = inf inf £ A(z)¢ >0, A*:= sup sup & A(x)¢ < oo,

n. = inf n(z) > 0, n* = sup n(z) < oo.
zeN zeN

for ¢ € C?. Then we can prove the following result.

Lemma 3.1.1 Assume that either A* <1 andn* <1 or A, > 1 and n, > 1. Then

there exists k > 0 such that A, is invertible.
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Proof. We first consider the case when A* < 1and n* < 1. Take y € C*®(Bz\D) to be
a cut off function equal to 1 in a neighborhood of D with support in N := (Br\D)N
and let T (w,v) = (w — 2xv, —v). We then have that

aj.((w,v),(w,v)) = (AVw,Vw)p, 5+ (Vv, Vo)p, 5 — 2(AVw, V(x0)) 5
+ K ((nw, w)BR\B + (v, U)BR\B — 2(nw, XU)BR\E)
(Tiww, w)opy, — (Tixv,v)on, + 2(Tiw, xv)osy,
where (-, ) x denotes the L-inner product in the generic space X. By Young’s inequal-

ity we have

IN

AV, VW) pppl < 21(0AVW, Vo] + 2/(AVw, V(x)v)y]

IN

a(AVw, Vw)x + a H(AVv, V)
+ B(AVw, Vw)y + 87HAV(xX)v, V(X)v)y
and
2|(nw, xv) g5l < 2|(nw, v) x| < nnw, w)x + 17" (0w, 0)

for some o > 0, 8 > 0, and 1 > 0. Recall that A and n are real in N. Furthermore,

due to the exponential decay of w and v at oo we have that

—(Tiww, w)opy, = / (|Vw]* + £*|w]?) dz
R4\Br
with a similar expression for —(7;,v,v)9p,. In a similar way we can have

(Tiww, xv)op, = 0.

Using all the above estimates we finally obtain that

o], ((w,0), (w,v))] > R (a] ((w,v), (w,v)))
> R(AVw, Vw)ipappna + (Vo, Vo) g 51a
+ K (é)?(nw, W) (papna + (v, U){BR\E}\Q)
+ (1—a—pB)(AVw, Vw)y + (I —a tA)Vo, Vo)
+ K2 (1 =) (nw, w)n + (82 (1 —n~'n) — sup|Vx|*Ay ), v) .
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Taking «, 8, n, k such that A* < a, n* <n, § <1— a, and k large enough yields that

a]. is coercive.
The case when A* > 1 and n* > 1 can be proven the same way using 7 (w,v) =
(w, —v + 2xw). O

Remark 3.1.1 In Lemma 3.1.1 the assumption that A and n are real in a neighbor-
hood N of OD can be relaxed. In particular, the proof of Lemma 3.1.1 goes through if
we only assume that —SJ(A) < R(A) snd I(n) < R(n) in N.

Theorem 3.1.2 Assume that A and n satisfy the assumptions of Lemma 3.1.1. Then
if k is not an exterior transmission eigenvalue, the exterior transmission problem (3.1)-
(3.5) has a unique solution which depends continuously on the data f, h, ¢, and ls,

1.€.

0l p) + 0l (500 B)
= ¢ (HfHH%(@D) Tl -3 op) T Nl ey + ||@2||L2(BR\5>)

where C' > 0 is some constant independent of f, h, {1 and (5.

Proof. From Lemma 3.1.1, we can choose s such that A;, is invertible. Since the
embedding from H to L?(Bg\D) x L*(Br\D) is compact and T} — T}, is a compact
operator from Hz(9Bg) to H~2(0Bg) [9], we can conclude that Ay, — A;,. is a compact,

and hence the result follows from the Fredholm alternative. O

We can now prove the following discreteness result for exterior transmission

eigenvalues.

Theorem 3.1.3 Assume that A and n satisfy the assumptions of Lemma 3.1.1. Then

the set of exterior transmission eigenvalues is discrete on the real line.

Proof. From Remark (3.0.3), we can define the Dirichlet to Neumann map in a
neighborhood of the real axis such that T}, depends analytically on k. Then the operator
Ar — A - k — L(H) is analytic in such a neighborhood where we choose  such that

A,;. is invertible. The theorem follows from Lemma 3.0.1. O
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Corollary 3.1.1 Assume that A and n satisfy the assumptions of Lemma 3.1.1. Then

the set of exterior transmission eigenvalues is discrete on the complex plane.

Proof. From Remark (3.0.3), we can define the Dirichlet to Neumann map in a domain
which avoids the scattering poles, such that 7} depends analytically on k. Then the
operator Ay — A;, : k — L(H) is analytic in such a domain. Then the exterior
transmission eigenvalues form a discrete set in this domain. Since the scattering poles

form a discrete set in the complex plane, this proves the corollary . U

3.2 Exterior Transmission Eigenvalue Problem: Case A =1

The variational formulation does not work in this case due to A = I. In this
section we will formulate the exterior transmission problem using integral equations.
We will first consider the case where n > 0 is some constant, then we will proceed to

the general case. Let us define the double and single layer potential by

(DL)(z) = /BD Wzﬂ(y)dsy where 2 € RY\ D (3.32)
(SLip)(z) = - or(7,y)p(y)ds, where x € R\ 9D. (3.33)

Since the double and single layer potential define pseudo-differential operators of order
—1 and —2 respectively, this implies in particular that DL, : H=2(dD) — L2 _(R%\ D)
and SLy, : H2(dD) — L? (R4 \ D) are continuous. Since DL and SLyp satisfy
Helmholtz equation in the distributional sense in R?\ D, by a denseness argument for
¢ € H2(0D) and ¢ € H~2(OD) one can show DL, : H~2(dD) — L4 (R%\ D) and
SLy, : H"2(dD) — L4 (R%\ D) are continuous where
LART\ D) := {u € L, (R*\ D), Au € L, (R*\ D)}.

We state the following lemmas(c.f. [33]).

Lemma 3.2.1 The double layer potential DLy, : H-2(0D) — LA(R?\ D) and the
single layer potential SLy : H™2(0D) — L% (R?\ D) are continuous and give rise to

bounded linear operator

Sy H 3(0D) — H 3(0D), K, :H 3(9D) — H3(9D)
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K} : H"2(OD) — H~2(dD), T, : H 3(dD) — H 2(dD)

where

(Skp)(x): = 2 [ dulz,y)(y)ds,

oD
Kea)s = 2 [ S ypas,
(Kpe): = 2 [ 20y,
.0 0or(x,y)
Tae): = 2 [ 2D yyas,

for all x € OD. Furthermore the following jump properties hold

(DLyp)* = K £ 3¢, (SLrp)™ = 55k,

(ODLy)* _ 1T, (0SLyp)*

1 1 (3.34)
B o — = 3 Ko F 3

Lemma 3.2.2 The operators DLy, —DL;, : H=2(0D) — H?

loc

(Rd\ﬁ) and SLkl—SLk .
H_%(ﬁD) — H2 (R\ D) are continuous for constants ki # k.

Given Lipchitz boundaries ¥ and €2, let us define

Sﬁz(w(x) 3:/M¢(y)dsy on €

s Ov
and similar for operators K 1?,27 K ,;QE and T,gz. Now we will derive an integral equation
formulation for the exterior transmission problem. Let us first consider the case where
n > 0 is some constant, and let k; = vnk2. Suppose there exists g € H_%((?D),
he H 3(8D) and g, € H2(0Dy), hy € H™%(8D,) such that

ow  Ov
w=v=g and E:$:h on 0D
and
ow
w=¢g; and — =h; on 0D;.
ov

By Green theorem, we have that

we) = [ 6™~ o s,

0o, (z,
- [ 02D o )i,
D, v
= DLpg— SLyh— DLy,gi +SLi,hy in D;\D
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and

w(r) = DLpgy — SLyhy  in RAND;.
Similarly we have that
v(r) = DLyg — SLyh in R4\ D.
From (3.34) we have that

(DLyg)*t = Kpg + Lg,  (SLyh)t = LSph,

8DLyg)* 9SLyh)*
( a,fg) = 3Thg, ( 3 L= s Kih = 5h.

(3.35)

Let x — 0D, from jump relations of single and double layer potentials we have that

wo = ;Kkl apg + ;9 Skl aph — ;Ki?faplgl + %S/?famhl
vo= ;Kkapg‘i‘;g SkaD
(3_@: = ;Tkl op9 — ;K;;?%DH §h ;T oD 91 T %K;?%Dlhl
% - ;Tk Dg— ;K,;‘?aDDh + %h. (3.36)
Let x — 0D; we have that
W= K- gs,?f?;Dh K00t St S 0,
wh = SKDDh o Lo 550,
a(;“—y_ = % o~ ;K,;‘?gbh ;T,?ngDlg + %K,’fglmhl - %hl
@;”—j - %Tf‘,é%lgl — %K;?é’ﬁlhl - §h1. (3.37)
From (3.36) we have that
—SPP,p + 5% oD K/?fap - Kl?,[a)D h
KI;?%D - K k‘?éjD _TI?l,DBD + TI?,BDD g
o oo Koo, S - (3.38)
_Kk?,%Dl Tl?f,)aDl g1
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From (3.37) we have that

~Spap Kioip h
K,;?%b _Tkaf,)alD g
n Spoapy T Skeb,  —Kilip, — Kiob, L 0
~K 50, — Kip,  Toop, + Tioh, 90
Now define
FOD _Sx?fap + Sl?,gD Ki?ll,)ap - K/?,%D
| %0 = K%5p —To5n + Tihp
F]gng — Sl?ll?aDl _Kl?ll?aDl
_K/:??,%Dl +T]~?17D8D1
Flob = _5:1?551) Ky ip
Kdob —Tosp
- 52;?5]31 + 8%, —Kiap, — Kiob,
) aD;

'0D1 0D 0D,
—Ky op, — Bivop, Tk ooy + Lrob,

Then (3.38) and (3.39) yields

h hq
P P
Fk,gD + Fk,ng =0
g g1
h hq
oD oD
Fyop + Fyop, = 0.
g g1

Lemma 3.2.3 The operator F{5% « H2(0Dy) x H~2(0D1) — Hz(0D,) x H

18 1nwvertible.

Proof. Assume on the contrary there is (h,g) # (0,0) in H™2(dD;) x H~

such that

0D _
Fk,6D1 — 0.
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(3.40)

2(0Dy)

3(0Dy)

(3.41)



Define

w=DLyg— SLyh and v = SLyh— DLy g in RNOD,.

From jump properties of single and double layer potential, we have that

) 1 1 op oD
w+ = §Kk,alDlg _I_ §g - §Sk,alDlh’ v k‘l,alDlg +
aw+ ]_ <9D1 ]_ 1 lal)1 avi ]_
A A A L
Then (3.41) yields
owt v~
w” =v~ and 8_15 = 0_2 )
Hence w and v satisfies
Aw + k*w =0 in RND,
Av+kiv=0 in D
w—v=0 on 0D,
ow Ov
— —— =0 oD
ov  Ov on !

lim r%(a—w —ikw) =0

r—00 or

h,

1 1_
oD oD
- __TkhalDlg + ih + §Kk:1761D1h‘

3.42

0
W

3

0
e

(3.42)
(3.43)
(3.44)
(3.45)

(3.46)

the transmission problem has only trivial solution(c.f. [9]), i.e., w = 0 in IR\ D; and

v =0 in D;. This implies that w™ = v~ = 0. Now from the jump properties of single

and double layer potentials we have that

w

Then

ow™
gt ow
=—g=v" and By
Av+kiv =0
Aw + k*w =0
v—w=>0
o0 ow_
o  ov

. a1, 0v
Thjgor (E—zklv)—O
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ovt
ey on 0D;.
in RN\D,
in D1
on 0D,
on 0D,



therefore v = 0 in IR\ D; and w = 0 in Dy, hence g = —w™ =0 and h = —85’;7 = 0.

This contradicts the assumption that (h, g) # (0,0). This proves the theorem. O

From the lemma we can define
9D oD dD1 \—1 0D
F(k) = Fyop — Fk,aDl(Fk,811)1> Fk,ab-

Then (3.40) is equivalent to
F(k) = 0. (3.47)

We now proceed to the following theorem.

Theorem 3.2.1 Suppose k is not an interior transmission eigenvalue in D. Then
there exists a non-trivial solution w € L? (R*\ D) and v € L? (R \ D) to (3.11)-
(3.15) such that w — v € HE (R?\ D) if and only if there exists (h,g) # (0,0) in

H=2(0D) x H™2(dD) such that (3.47) holds.

Proof. The above argument has proved that if there exists non-trivial solution w &
L2 (R4\ D), v € L} (RI\ D), w—wv € H2 (R?\ D) to (3.11)-(3.15), then there exists
(g, h) such that (3.47) holds, since w,v are not trivial, we have by uniqueness that
g=wand h = g—f/” on 0D satisfies that (h,g) # (0,0).
Conversely, assume there exists (h, g) # (0,0) such that (3.47) holds. Let
h h
L) = (FR )T RO on 9D, (3.48)
9 g

DLklg — SLklh — DLklgl + SLkl h1 in Dl\l“

DLygy — SLyhy  in RAD,
v(r) = DLpg— SLih in RAL. (3.49)
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Then w,v satisfies equations (3.11) and (3.12). From equations (3.47) and (3.48),
one can derive equation (3.40). From the jump properties of single and double layer

potentials and equations (3.36) (3.37) (3.40) and (3.48) we have that

owt  ovt
+ _ .+ ow- _ v
wT = and ey ey on 0D
owt  ow~
wt =w” and % on 0D;.

Hence w and v satisfy equations (3.11)-(3.15). By regularity, we have w € L? _(R%\ D),
ve L (RI\ D)and w—v € H2.(R?\ D)(c.f. [33]). It remains to show that (w,v)
is not trivial. In fact, if (w,v) = (0,0) in R?\ D, the jump properties of single and

double layer potentials yield

0 ov~
w- =-—g=wv" and 8—15 :h:a_z on 0D.
Then
Aw + k*nw =0 in D
Av+E*v =0 in D
w="v on 0D
ow  Ov
— == oD
Jdv  Ov on
Since k is not an interior transmission eigenvalue, then w = v = 0 in D. Therefore
g=-v-=0and h=—%% =0. This contradicts the assumption that (g, k) # (0,0).

This proves the theorem.

O

To proceed we state two properties of FP5,(c.f. [33]).

Lemma 3.2.4 The operator FJR,,, « H~2(0D) x H™2(9D) — H3(dD) x H2(9D) is

coercive.

Lemma 3.2.5 The operator F{5y, : H=2(0D) x H~3(0D) — H2(dD) x H(dD) is

Fredholm of index zero and analytic on k € C\R™.

Then we have the following theorem.
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Theorem 3.2.2 Assume the constant n # 1 in D\D, then F(k) : H~2(8D) x
H~2(0D) — H2 (D) x Hz(dD) is Fredholm of index zero and analytic in a neighbor-

hood of the real axis.

Proof. Since F(k) = F(5, — Fgng(F,igbl)_ngan, from Lemma 3.2.4 and Lemma
3.2.5 it suffices to show F,gng(F,ggél)_lF,igf, is compact and analytic. Since 9D and
0D, are disjoint boundaries, by regularity F) l?,@DDl and F ,i g}) are compact, then the
compactness follows immediately. The fact that F25, (F, ,i gll)l)_lF 1?, D1 is analytic in a
neighborhood of the real axis is related to Remark 3.0.2. In fact, (F, ,2 ]831171)_1 is analytic
in {k: Sk > 0} since equations (3.42)-(3.46) are well-posed and we can prove that
F,ig%l is invertible. Now from Remark 3.0.2, we can prove that equations (3.42)-
(3.46) are well-posed in a neighborhood of the real axis. This can prove that F,g gbl

is invertible and (F,?gﬁl)_l is analytic in a neighborhood of the real axis. This proves

the theorem. O

The following lemma shows injectivity of F(i|k|) for general refractive index n.

Lemma 3.2.6 Assume R(n) — 1 does not change sign and $(n) > 0 in D;\D, then
there does not exist purely imaginary exterior transmission eigenvalues ilk|, i.e., F'(i|k|)
18 1njective.

Proof. Suppose ik with k real is an exterior transmission eigenvalue, then

Aw — k*nw =0 in RY\D
Av— kv =0 in R\ D
w="v on 0D
ow Ov
- _ D
ov  Ov on 9
) -1,0
Tli_)rgo r%(a—z: + kw) =0 and Tli_)r(r)lo rdT(a—: + kv) =
Let u := w — v, then
1 1
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and
1

—n

(A—K)u=0 in D;\D.

(A — k*n)
1
Multiplying the equation by u and integrating by parts yields

0. 1

1 Ju

0 = — Au — k*u)]uds — Au — k*u)—d
oD, (9V[1—n< “ u)Jads /aD1 —n( “ U)BV °
1
+ / (Au — k*u)(Au — k*nu)dz,
Dl\ﬁ 1 —n
ie.
0 = —k:Q/ O s + 1&/ w2 s
dD, 81/ 8D 81/
1
+ / (Au — k*u) (AT — k*na)dz.
DI\B 1 — N
By regularity w and v are continuous across dD;. If R(n) —1 > 0 then
+ J—
0 = —kﬂ/ O s + k?/ wt 2
aD, 31/ 8D, 31/
1
+ / (Au — k*u) (AT — k*nu)dx
Dl\ﬁ 1 —n

ow ou
72 _ 2
= k /83R 5 uds + k /8BR w—ayds

1
+ / (Au — k*u) (AT — k*nu)dx
Dl\ﬁ 1 —n

= —k2/ 8—wﬂds + kQ/ w@ds + k2/ @ads
OBgr (9V 9BRr 81/ dD; 8U
1
+ / |Au — k*ul*dx — kzz/ |Vul*dx — k4/ |u|?dzx
Di\D L=n Di\D Di\D
= —kQ/ a—wads + k2/ w@ds + k2/ @ﬂds
dBgr aV 9Bgr aV 9Br aV
— k2/ |Vul*dz — k4/ lu|*dz
Br\D1 Br\D1
1
+ / |Au — k*ul*dx — kz2/ |Vul*dz — k4/ |u|*dx
D1\D L=n Di\D D1\D
ou 0
- —k2/ OW s + kQ/ wlds + /<:2/ Mads
dBgr 87/ 9Bgr 81/ 9BRr 81/

1
+ / |Au — K*ul*dw — k2/ |Vul*dr — k:4/ |u|?dx.
Di\D L=n Br\D Br\D
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Letting R — oo yields

1
/ |Au — k*ul*dx — kz/ |Vul*dz — k’4/ lu|*dz = 0. (3.50)
D)\D l—n R4\D

RND

Since R(n) — 1 > 0, then v = 0 in R¥\D. Hence w = v = 0 in R\ D.

Similarly, if R(n) — 1 < 0 and I(n) = 0, we can derive

1
/ |Au — k*nul*dx — kz/ |Vul*dz — k4/ nlul’dr =0
pnpn—1 RN\D RN\D

from which we can conclude w = 0 and v = 0 in IR¥\D.

If S(n) # 0, taking the imaginary part of (3.50) yields
Au—FKku=0 in D;\D.
Hence w = 0 in D;\D, then we can conclude w = 0 and v = 0 in IR?\ D. This proves
our theorem. O

Now we apply Lemma 3.0.1 on the analytic Fredholm theory to obtain the

following result.

Theorem 3.2.3 Assume the constant n # 1, then the set of exterior transmission

eigenvalues is discrete.

Proof. Since F(k) is Fredholm of index zero and is analytic in a neighborhood of the
real axis, then we can apply the analytic Fredholm theory. From Lemma 3.2.6, there
exists i|k| such that F(i|k|) is injective, then the analytic Fredholm theory yields the

set of zeros of F(k) is discrete. This proves our theorem.

Theorem 3.2.4 Assume the constant n # 1, if k is not an exterior transmission
eigenvalue, then the exterior transmission problem has a unique solution to (3.16)-

(3.20) which depends continuously on the data ¢y, ly, f and h, i.e.

|wllr2505) + 101225\ B)

= ¢ <HfHH‘%<aD) T3 o) + 1]l ) + ||€2||L2(BR\5)>

where C' > 0 s some constant independent of f and h.
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Proof. Let

v=f, and @:hv on 0D.
ov

Then from Green’s theorem we have that

DLk1 (fv + f) — SLk1 (hv + h) — DLk1 fl + SLk1 hl + thDl\E in Dl\b

DLpfi — SLihy + Vigas; 0 RADy
U<I> = -Dka’U - SLkhﬂu + Vk,Rd\ﬁ lIl Rd \ E

w= f; and (9_w:h1 on 0Dy,
ov

Vkl,D1\5($> = _/

Di\D

Py, (7, 9) 0 (y)dy, Vi gapy(T) == — / _ Dp(w,y)l(y)dy
R4\ Dy
and

Vigaip(@) == [ @it 0)tal)iy

Using similar arguments before Lemma 3.2.3 we have that

he SoD, I— KPP h h
F(k) = o o — Foop, Frany b

fo ~I-Kgdop  Tio f f
Vk,le\5|3D - Vkl,Dl\E|6D

0 o 0 _
— 30 Vera\DloD + 5, Vi p\Dr loD
_ 2F8D (F6D1 )—1 Vk,md\ﬁl|aD1_Vk1,D1\ﬁ1’8Dl
k,0D1\* k,0D,
— 2V, raprlon, + 2 Vi, 0\ Drl
ov " k,RA\ D1 10Dy ov Vk1,D1\D1 10D1

Since F'(k) is Fredholm of index zero and k is not an exterior transmission eigenvalue,

then F'(k) is invertible. From the properties of the volume potential we have for any

gl, 62, f and h

< O (IMlly3apy + -3 opy + 12 + 12l
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where C' > 0 is some constant independent of f and h. Note that

wll 20y < € (||fv + f“H-%(aD) + [l + hHH-%(aD) + ||£1||L2(BR\§)>

and
lollzzzmy < Ol oy + 1ol - g + el 225,05
then we can prove the theorem. 0
In general, Theorem 3.2.3 also holds for non constant n(x) under certain assump-
tions. In fact if n(z) is constant only in a neighborhood N' € R?\ D of the boundary

dD, first suppose k1 = Vk?n; in DI\DUN, ky = \/k?ny in N are constants. We
denote the interface between N and D;\D UN by ON. Let

w=g¢g and 8_w:h on 0D,
ov

w =gy and a—w:hg on ON
ov

and

w=¢g; and (9_w:h1 on 0D;.
ov

We can then define w in IR\ Dy, D;\D UN, N respectively using single and double
layer potentials. Matching the boundary conditions on 0D, 9D, and ON we can derive

oD oD oD oD
0 — =Spop tScap  Kiyop — Kiop h
9D 'aD oD oD
Kyoop — Kiop  —Teyop +Tiap g
SaD _KBD h
fa . ON ko ON 9
i 2/81) 82D (3.51)
_Kkz,a/\/ +Tk2,8./\/ 92
oD, oD,
0 — T Rk1L,0N Kkl,aN ha
9D, 8D,
Kkl,BN —T, on 92
oD, oD, oDy oD,
. Stop, tSrep, By op, — Krob, ha (3.52)
8D '8D4 D, D, '
—Ky op, — Kyop, Tk oo, + Lhob, g1
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and

If we define

oD .
F02 oD -

oD .
F28N‘

0Dy .
FlaN'

0D

01,0D; -

Fa./\f

2,0D -

Fa/\[

21,0N *

F13D3

Sk2 op K. ka,0D h
KIQ%D T ke,0D g
Sk2 on T Skl ON Kk2 ON Kk1 ON ha
—K2% = K% T + T 92
Sk1,8D1 Kgf\[,aDl ha (3.53)
Kl;?{gpl - 12%[)1 g1
_ —Splon +SPap  Kion — Kiop
K3 koD — K 1;?6DD _Tlg?ap + TI?ﬂDD
_ Seron PN
12,%/\[ Tk2 N
B —SP0n KD
K ll‘?,%lN ~Thon
[ SEBo. T Sieb, —Kp, — Kioh,
—K,0%0, — Kdon, T, + Tiob,
_ Sk2 aD Kkg,aD
K2 ka,0D Tkz,
_ SPon + S —KPNow — Kn
Do = K% Ton + TNw
S K2,
K2 k1,0D1 Tk1 oD,
Similarly we can show F 8D1>F281/,\gj\f are invertible, and Ff{}gN FIOQ/DFOlla%DllFaD1

which corresponds to the transsmision problem with k15 := k; in D1\ D U DUN and kyp :=
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kQ IHDUN

Aw + k*w =0 in RN\D,
Av + kv =0 in D
w—v=20 on 0D,
ow Ov
%—5—0 on 8D1
. a1 0w
Tlirgor 2 <E_ka)_

is invertible. Now define
1
.__ 0D 0D ON ON 1;—1,0D1 170D ON
F(k) == Foap + Fyon (le,c‘w - Fl,aDFoLaDllFl,aﬁ/) F5op-

Then equations (3.51) (3.52) and (3.53) are equivalent to

We can prove Theorem 3.2.4 and Theorem 3.2.1 hold. Now suppose k; is not constant,

let us replace @y, (-, y) with the fundamental solution G(-,y) € H. (R*\{y}) satisfying
AG(z,y) + k*n(z)G(z,y) = =6(x —y) in R?

and the Sommerfeld radiation condition, where n in D is defined to be equal with
the constant in N. Then G(-,y) — @, (-,y) satisfies the Helmholtz equation in N,
therefore is an analytic function in A. Replacing @, (-, y) by G(+,y), one can conclude
the mapping properteis 3.34, Theorem 3.2.1 holds. The properties (3.2.4) of Z(k) holds
provided n € L*(R?\ D), |R(n) — 1] is bounded away from zero and S(n) > 0.

Theorem 3.2.5 Suppose R(e?)(n —1) > m, for some —5 < 0 < % in some neighbor-
hood N of OD or that n — 1 is real in all of D;\D and satiesfies n —1 < —m, in some
neighborhood N of 0D, then pure imaginary i|k| with large enough modulus cannot be

exterior transmission eigenvalues, i.e., F'(i|k|) is injective for k large enough.

46



Proof. We apply the idea of Sylvester’s result on interior transmission eigenvalue
problems. Since the wave number lies on the positive imaginary axis, then the solution
decays exponetially at infinity. This allows us to use Sylvester’s proof by only changing
o(z) € C°(D) to ¢(x) € C(RY\ D) with ¢(z) = 1 in IRY\ D; and a neighborhood N
of 0D in Proposition 2.1 in [79]. O

Then from Theorem 3.2.5 and Lemma 3.0.1 we have the following theorem.

Theorem 3.2.6 Assume n € L®(R?\ D), |R(n) — 1| is bounded away from zero and
I(n) > 0, furthermore assume n is constant in a neighborhood of N' € R\ D of the
boundary 0D , then the set of exterior transmission eigenvalue is discrete on the real

line and the exterior transmission problem (3.16)-(3.20) is well-posed.

Corollary 3.2.1 Assume n € L®(R?\ D), |R(n) — 1| is bounded away from zero and
I(n) > 0, furthermore assume n is constant in a neighborhood of N € R\ D of
the boundary 0D , then the set of exterior transmission eigenvalue is discrete in the

complez plane and the exterior transmission problem (3.16)-(3.20) is well-posed.

Proof. In Theorem 3.2.6 we have used F(k) is analytic in a neighborhood of the real
axis. Now from Remark 3.0.2, we can prove that F'(k) is analytic in a domain which
avoids the scattering poles. Then the exterior transmission eigenvalues form a discrete
set in this domain. Since the scattering poles form a discrete set in the complex plane,

this proves the corollary . O
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Chapter 4

SOLUTION OF THE INVERSE SCATTERING PROBLEM

In this chapter, we use qualitative methods to solve the inverse scattering prob-
lem, in particular linear sampling method and factorization method. The use of sam-
pling methods has played an important role in inverse scattering theory for the past
fifteen years and for a survey of recent results in this area we refer the reader to [9].
These methods are concerned with the inverse scattering problem for an inhomogeneous
medium and seek to determine the support and bounds on the constitutive parameters
of the scattering object by solving a linear integral equation of the first kind called
the far field equation. A central role in this approach is an investigation of a class of
non-selfadjoint eigenvalue problems called interior transmission eigenvalue problems.
On the other hand, in the case of scattering by an impenetrable obstacle with Dirichlet,
Neumann or impedance boundary conditions, there has been a recent interest in the
inverse scattering problem with measured data inside a cavity [44,45,65,72-74,84]. In
this class of problems the object is to determine the shape of the cavity from the use
of sources and measurements along a curve or surface inside the cavity. A possible
motivation for studying such a problem is to determine the shape of an underground
reservoir by lowering receivers and transmitters into the reservoir through a bore hole
drilled from the surface of the earth. In this chapter we will combine the above two
directions of research and consider the inverse scattering problem for a cavity that
is bounded by a penetrable inhomogeneous medium of compact support and seek to
determine the shape of the cavity from internal measurements. Of particular interest

in this investigation is the central role played by an unusual non-selfajoint eigenvalue
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problem called the exterior transmission eigenvalue problem. Before deriving the qual-
itative method, in the next section we first prove the data uniquely determine the

support of the cavity.

4.1 Uniqueness of the Inverse Problem

In this section we prove that the boundary of the cavity is uniquely determined
from a knowledge of the scattered field u®(x,y) for all z,y € OC' where C' is the mea-
surement manifold introduced in Section 2.3 Chapter 2 . It is not necessary to know the
physical properties of the inhomogeneous medium as long as they satisfy appropriate
a priori assumptions. The proof of uniqueness for the inverse problem of penetrable
cavity is more complicated than for the case of scattering by an impenetrable cavity
considered in [73]. The idea of the uniqueness proof for the inverse medium scattering
problem originates from [46,47]. Here we make use of the exterior transmission prob-
lem inspired by the idea in [39]. Since we are using some regularity results, in this
section we assume more regularity of the boundary dD and material properties A and
n than in previous sections.

Let 0C be the smooth d — 1 manifold of measurement satisfying Assumption

2.3.1 and let us define the admissible set of cavities
S:={D cR%: 9D is of class C', C C D}.

Furthermore, we assume that the media outside the cavity has the material properties

(A,n) which belong to

" A,;n € CYQp \ D) N L=(R4\ D), Qyp is a neighborhood of 9D

and A, n satisfy the assumptions in Section 2.1 and in Lemma 3.1.1.

We begin with a simple lemma.

Lemma 4.1.1 Assume that A,n € A. Let {v,, w,} € H'(R?\ D) x HY(R?\ D),
n € N, be a sequence of solutions to the exterior transmission problem (3.6)-(3.10)

with boundary data f, € H2(dD), h, € H 2(0D). If the sequences {f,} and {h,}
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converge in H2(OD) and H~2(8D) respectively, and if the sequences {v,} and {w,} are
bounded in H'(Bg \ D), then there exists a subsequence {(vn, ,w,,)} which converges

in H'(Br \ D).

Proof. Let {v,,w,} be as in the statement of the lemma. Due to the compact
imbedding of H'(Bg \ D) into L?*(Bg \ D) we can select L*-convergent subsequences
{vn, } and {w,, }. Hence, {v,, } and {w,, } satisfy

V- AVw,, — k*nw,, = —(k* + k*)w,, in  Br\D (4.1)
Avy, — K0, = — (K% + k*)v,, in Bg\D (4.2)
W, — Uny = [ on 0D (4.3)
%“;Zk - % = hy, on 9D (4.4)
ag};’“ — Tixwn, = (T — Tix)w, on OBp (4.5)
v,
5 Tiwn, = (Tk — Tix)Vn, on O0Bp (4.6)

for k > 0 chosen as in Lemma 3.1.1. Note that the left hand side of (4.1)-(4.6) in the
variational setting is equivalent to the bounded invertible map A;,. Thus v,, and w,,,
are bounded by the right hand side with respect to the appropriate norm. Now, due
to compactly embedding of H! into L?, there is a subsequence of the right hand sides
of (4.1) and (4.2) that converge in L?. Since T} — T}, is a compact operator there is
a subsequence of the right hand side of (4.5) and (4.6) that converge in H~2(9Bg).

Hence the result follows from the boundeness of A;p. O

Note that Lemma 4.1.1 allows us to prove the uniqueness result without assum-

ing that £ is not an exterior transmission eigenvalue.

Theorem 4.1.1 Assume that Dy, Dy € S are two penetrable cavities having material
properties Ay,n; € A and As,ny € A in the exterior of Dy and D,, respectively, such
that the corresponding scattered fields coincide on OC for all point sources located on

0C" and any fixed wave number k. Then Dy = D.
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Proof. We denote by G the connected component of Dy N Dy which contains C'.
Let uj(+, z) be the solution of (2.29)-(2.33) corresponding to Dj;, Aj,n;, j = 1,2. We
have that uf§(x, z) = ui(x, z) for z,z € OC. Following the argument in [73], the latter
implies that uj(z, z) = uj(x, z) for r, 2 € G. Next, assume that D, is not included in
D,. We can find a point z € D; and € > 0 with the following properties, where Q5(z)
denotes the ball of radius ¢ centered at z:

1. Qg(2) N Dy = 0.

2. The intersection D; Mg (z) is contained in the connected component of D; to which
z belongs.

3. There are points from this connected component of D; to which z belongs which
are not contained in Dy N Qg ().

4. The points z, 1= z + %V(Z) lie in G for all n € N, where v(z) is the innerward unit

normal to 9D; at z.

Due to the singular behavior of ®(-, z,,) at the point z,, it can be shown that
H(I)<7 Zn)“Hl(BR\i) — 00 as n — o0

where Bpg is a large ball of radius R containing D; and Dy. We now define

1
a [®(-, Zn)HHl(BR\DT)

O(z, 2,), reRN\ G

v () :

and let wy ,, ui,, and wy,, u3,, be the solutions of the scattering problem (2.29)-(2.33)
with boundary data f := v, and h := dv,,/Ov corresponding to Dy and Ds, respectively.
Note that for each n, v, is a radiating solution of the Helmholtz equation outside D,
and D,. Our aim is to prove that if D; ¢ Dy then the equality (-, 2) = us(-, 2) for
z € G allows the selection of a subsequence {v,, } from {v,} that converges to zero
with respect to H'(Bg \ D;). This certainly contradicts the definition of {v"} as a
sequence of functions with H'(Bg \ D;)-norm equal to one. Note that as mentioned

above we have uj,, = u3,, in G.
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We begin by noting that, since the functions ®(-, z,,) together with their deriva-

tives are uniformly bounded in every compact subset of IR? \ Qy(z) and

(s 20l g7y — 0

as n — 00. Then [[vy|| 15,57 — 0 as n — oo. Hence, [|u5,, |1 (p,) — 0 as n — oo
from the well-posedness of the forward scattering problem. Since uj, = w3, in G
then [|uin|/mi@ — 0 as n — oo as well. Now, with the help of a cutoff function

X € C5°(Qs(2)) satistying x(x) = 1in Q7(z), we see that ||uy | g1 (g) — 0 implies that

a(XULn)
ov

with respect to the Hz(0D;)-norm and H~2(9D;)-norm, respectively. Indeed, for

(xurn) — 0 and —0 as n— o0 (4.7)

the first convergence we simply apply the trace theorem while for the convergence of
d(xu1,,)/0v, we first deduce the convergence of A(xuy,,) in L?(Dy), which follows from
A(xu1,) = XAuy, + 2V - VU, + u1,Ax, and then apply Theorem 5.5 in [9]. Note
here that we need conditions 2 and 4 on z to ensure Qg.(z) N D] = Qg (2) N G.

We next note that in the exterior of Q. (z) the H*(Qr \ Qac(2))-norms of v,
remain uniformly bounded. Then using the interior elliptic regularity and localization
techniques as in Theorem 8.8 in [36] we can conclude that 3, is uniformly bounded
with respect to the H?((Q5pND;)\Qe(2))-norm, where Qyp is an open neighborhood of
dD. Therefore, using the compact imbedding of H? into H', we can select a H*(Qyp N
D) convergent subsequence {(1—x)u3 ,,, } from {(1—x)uj,}. Hence, {(1—x)uj, } is
a convergent sequence in H %(3D1) and similarly to the above reasoning we also have
that {9((1 — x)ui,, )/0v} converges in H~2(0D;). This, together with (4.7), implies
that the sequences

ous
{u‘ink } and { # }

converge in H2(9D;) and H~2 (9D, ), respectively.
Finally, the functions v,, and w,,, are solutions to the exterior transmission

problem (3.6)-(3.10) for the domain R?\ D; with boundary data f = uj, and h =
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ous ,, /Ov. Since, the H Y(B, \ D;)-norms of v,, and w;,, remain uniformly bounded,
from Lemma 4.1.1 we can select a subsequence of {v,, }, denoted again by {v,, }, which
converges in H*(B, \ D;) to some v. As H!-limit of weak solutions to the Helmholtz
equation, v is a distributional solution to the Helmholtz equation. We also have that
v| Br\(D1UQs.(2)) = 0 because the functions v,, converge uniformly to zero in the exterior
of Qy.(2). Hence, v must be zero in all of Bx \ D; (here we make use of condition 3).
This contradicts the fact that |[vy, ||z s, 57 = 1. Hence the assumption Dy ¢ Dy is
false.

Since we can derive the analogous contradiction for the assumption Dy ¢ D;, we have

proved that D = Ds. O

Remark 4.1.1 The assumptions of Theorem 3.1.2 required for A and n can be re-
placed by any other assumptions that guaranty the well-posedness of the exterior
transmission problem. Also the assumption that 0D is smooth can be relaxed as long
as it guaranties H!'T¢-regularity near the boundary of the solution of the corresponding

transmission problem (e.g. piecewise smooth [34]).

4.2 The Linear Sampling Method
Our analysis of the inverse scattering is based on an indicator function obtained
by solving a linear integral equation of the first kind abtained from internal measure-

ments. To this end, we define the near field equation
(Ng.)(xz) = ®(x,z) where z € dC (4.8)

for the unknown g, € L*(0C) where z € IR? is a sampling point. To derive our linear
sampling method, we need to define various operators and analyze them in appropriate

function spaces. To this end, we define U to be the closure of the set

U= {/C¢(-,z)g(y)ds(y), g€ L2(8C)} with respect to H}. (R D)

and

r—oo or

W = {u c H. (RN\D): Au+k*u=0in R\D, lim r%(@ —ikv) = O} :
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It is clearly seen that &/ C W, in fact we have
Lemma 4.2.1 U/ = W.

Proof. By the well-posedness of the problem

Au+ k*u =0 in RAND (4.9)

u=g on 0D (4.10)

lim rdzl(% — ikv) =0 (4.11)

we have [[ullg: @gap) < CHQHH%(aD) where ¢ is some constant. Then U is dense in W

if we can show that { [, ¢(-, 2)g(2)ds(z)|op, g € L*(C)} is dense in Hz(dD). In fact,
let f € H™2(dD) be such that for any g € L2(9C)

| [ étengwiist fads(a) =o.
oD JC

Then
[ e ns@is@stise) <o
C JoD

Since g is arbitrary, we have that
o(x.y)f(x)ds(z) =0, ¥y € dC.
oD
Then the single layer potential vs(x) = [, ¢(z,y)f(y)ds(y) satisfies vf|sc = 0 and the
Helmholtz equation in C. From assumption 2.3.1 and Lemma 2.3.1 we have vy = 0 in

D. From the jump conditions across D we have that
v = v;{ on 0D

and .
ov; 0

where + and — denote approaching the boundary from outside and inside 9D, respec-
tively. We now have that v? = (0. Since vy is a radiating solution to the Helmholtz

equation, from uniqueness of the exterior Dirichlet problem we have that vy = 0 in
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- v vl
R D. Then we have f = 885 — 88—5 = 0. Thus the set {v,, g € L*(0C)} where v, de-
fined by (2.54), is dense in Hz(dD). Finally, note that since W is closed in H L (R?\ D)

and {v,, g € L*(0C)} is dense in W we have that U = W. O

Having defined U and W, we need to define an appropriate space for the traces

of functions in W. To this end, we define ¢(0D) = {(ulop, 2%|op),u € U}.
Lemma 4.2.2 U(OD) is closed in Hz (D) x H2(0D) and hence is a Hilbert space.

Proof. Let (f,h) € H2(dD) x H-2(dD). If (f,h) € U(OD) then there exists a

sequence {u,}>2; in U such that

ou,,

(Un|8D7E|8D)_>(f>h> as n — 0o.

Clearly, (unlon, 242 |9p) is bounded in H3(0D) x H-3(dD) and u,, satisfies
ov

Au, + k*u, =0 in RN\D

Uy, = Up|op on 0D
. d—1 8un
lim r 2 (
r—00 T

— iku,) = 0.

From the well-posedness of the exterior Dirichlet problem we have that ||u,|| HL (R\D)

(R¢\ D). Then

loc

is bounded by |[[ua|| 3 (D) and therefore {u,} is bounded in H}
there exists ©w € U such that u, converges to u weakly. Since the trace operator

HE (R\D) — H2(dD) and {u € H. (R*\ D) : Au e L2 (R*\ D)} — H2(dD) are

loc

bounded [9], we obtain that

ouy,

U
(un|op, WbD) converges to (u|ap, $|3D) weakly.

This shows that f = usp and h = %%|sp. Then one can conclude that ¢(9D) is closed
in H2(0D) x H™2(dD). O

Definition 4.2.1 We define the operator B : U(OD) — L*(9C) which maps (v|op, 22|op)
where v € U, to us|lc where (u,w,) is the unique solution of (2.29)-(2.33) with

f=vlap and g := %b[)-
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Theorem 4.2.1 Assume that there does not exsit non-trivial w € H) (R \ D) and

v € H} (RY\ D) solves the homogeneous problem
V- AVw + k*nw = 0 in R\ D
Av+ kv =0 in R\ D
w="v on 0D
ow  Ov
a_ D
aVA ov on 0
. a1, 0w . a1, 0v
TILIEOr 2 (E —ikw) =0 and Thjgor 2 <E —ikv) = 0.

Then B :U(OD) — L*(C') is compact, injective and has dense range in L*(C').

Proof. The solution ¢ € H!(D) depends continuously on (v[ap,%bD). Since
usloe € Hz(9C) and the imbedding H2(9C) — L2(AC) is compact, we have B is
compact.

Next if B(v|ap, %bp) = 0, then we have that u}|sc = 0. In addition we have
Aué + k*u? = 0 in C. Then from assumption 2.3.1 and Lemma 2.3.1, we have that

u; =01in D. Then w, and v satisfy

V- AVw, + k*nw, =0 in ]Rd\ﬁ
Av+ kv =0 in RU\D
Wy =V on 0D
ow, Ov
- D
8I/A ov on g
i1 ,0 a1 ,0v
l. a—1 v o ) 1 et/ vv _ .
Jim 7 ( . ikw,)  and Jim 72 (87’ ikv) =0

By assumption, we have v = 0 in R\D and thus (v|sp, 2%|sp) = 0. Hence B is
injective.

Finally, since Range(N) C Range(B), from Corollary 2.4.1 we can conclude that
the range of B is dense in L*(9C). O
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To factorize the near field operator we define the bounded linear operator S :

L2(9C) — U(OD) by

(Sg)(z) = (Ug|8D, %b[)) where v, is defined by (2.54).

We can prove the following denseness result for the operator S.

Theorem 4.2.2 The bounded linear operator S : L*(0C) — U(ID) is injective with

dense range.

Proof. If g is such that Sg = 0 then vy(z) = [, &(x,y)g(y)ds(y) satisfies

Av, + k*v, =0 in R\ D
vy =0 on 0D

lim r 2 (ai — tkv,) = 0.
r

Then v, = 0 in R?\ D. Since Av, + k?v, = 0 in R\AC, by the unique continuation
principle we have that v, = 0 outside C'. In particular the single layer boundary integral
operator
g— o(z,y)9(y)ds(y) where g€ L*(C) and € dC
ac

is invertible as long as k? is not Dirichlet eigenvalue for —A in C' [67]. Hence g = 0.

Now since {v, : g € L*(dC)} is dense in U by definition, we have that S has
dense range in U(0D). O

As the last ingredient to the main theorem is the follow which charactorizes the

boundary.

Theorem 4.2.3 Assume A and n satisfies the assumptions of Theorem 3.1.2 and k is
not an exterior transmission eigenvalue. Then for = € RI\C, ®(-, 2) is in the range of

B if and only if z € R4\ D.

57



Proof. If z € R?\ D and k is not an exterior transmission eigenvalue, then from

Theorem 3.1.2, we have that the exterior transmission problem

V- AVuw, + Enw, =0 in R\ D (4.12)
Av, + kv, =0 in R\ D (4.13)
w, —v, = O+, 2) on 0D (4.14)
ow, Ov,  09(-,2)
9. v ov on 0D (4.15)
lim r%(a—w —ikw) =0 and lim T%(@ —ikv) =0  (4.16)
r—00 or N r—00 or N '

has a unique solution (w,,v.) € H. (R¥\ D) x H} (R?\ D). Then (w., ®(-, 2)) satisfies
(2.29)-(2.33) with (f,h) = (vs, %%)|op. Since v, € U, we have that B(v,, %=) =
(-, 2)|c. Then ®(z,2) for x € OC' is in the range of B.

Now assume that, for z € D, ®(-,z) is in the range of B. Then there exists

v € U such that

ov
B(v|ap, a—|3D) =®(x,2), ze€dC.
%
Let w,, u be the solution to (2.29)-(2.33) with (f,) = (v|op, 2|op). By definition of
B, uf = ®(-,z) in D but this is not possible since ®(-, z) ¢ H'(D). O

Now we are ready to prove the main theorem of this section which provides the

basis for the linear sampling method.

Theorem 4.2.4 Assume that k is not an exterior transmission eigenvalue. Let u® be
the scattered field corresponding to the scattering problem (2.29)-(2.33) and N is the
near field operator. Then the following holds:
1. For z € R*\ D and a given € > 0 there exists a function g5 € L*(0C) such
that
INGE = B, 2) 1200y < €

and as € — 0, the potential vy given by (2.54) with kernel g5 converges to the solution

v, in the H(Bg \ D)-norm where (w.,v,) is the solution of (4.12)-(4.16).
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2. For z € D\ C and a given € > 0, every g¢ € L*(0C) that satisfies
INgs = @(-, 2)l|r2(ac) < €

18 such that

1 {vge | 1 5\ ) = 00

Proof. 1. Let z € R\ D, then from Theorem 4.2.3, ®(-, 2) is in the range of B and

ov,

B(Uz|8D> (91/

lop) = (-, 2)

where (w,,v,) is the solution of (4.12)-(4.16). Now for € > 0, since S has dense range

in U(OD) by Theorem 4.2.2, then there exists g¢ € L*(0C') satisfying

ov €
Sg: — (vz|ap, — 8D> < (4.17)
H v whoyxu-t@py Bl
which yields
. v,
BSg; — B(v:|ap, 6_|8D) <€
v L2(8C)
The latter can be written as
[Ng; — @(-, 2) || 200) < €.
Furthermore we have that
: ] dv,
hmHng— (Uz|BD,8_|8D) ) . =0
=0 v H2(dD)xH™ % (dD)
and hence
P_r)% [|vge — UZHH}OC(BR\E) =0.
For a fixed € > 0, we observe that u® := ®(-,2) and w := w, satisfy the scattering

problem (2.29)-(2.33) with data f := v.|sp and h := %qjj lap. From the well-posedness

of (2.29)-(2.33) and the fact that ||®(-, 2)||z1(py goes to infinity as z — 9D, we obtain
| ov,
Uy ) .
oD 5 lop

29

that

lim
z—0D

1 1 =
H2(dD)xH ™2 (dD)




and hence

hm ||ng||H§ 8D)XH75(6D) = oo

Since |[S¢¢|| 1 (Bp\D)» We can conclude that

H3(0D)xH~ 3 (8D)
: o ) c B
ZEI(QD HUQEHHl(BR\D) =00 and Zgng ngHLQ(é?C) = 00.
2. In order to prove the second statement, for z € D\ C assume to the contrary

that there exists a sequence

{e.} =0

and corresponding functions v,, with kernels g, := g* satisfying

”Ngn - (b(a Z)HLQ(BC) <€y
ie.
Ng, — ®(,2) in L*(0C) as n— oo

such that |vn 1 (p,5) remains bounded. Then without loss of generality we may

assume weak convergence v, to some v € H'(Bg\D). Let us define

v (vlon, 50
TV Ua[ha oD

which is obviously a bounded operator from H(Bg\D) to H2 (D) x H~2(dD). Since

BT is also bounded, we can conclude the weak convergence
(BT)v,, = (Bt)v in L*0C) as n — oc.

But (BT)v,, = Ng, converges strongly to ®(-, z)|ac as n — oo, which means ®(-, z) =

B(7v). This contradicts Theorem 4.2.3. O

This theorem can be used to reconstruct the boundary 0D. Roughly speaking if

g: is the approximate solution of Ng; = ®(-,2), then [|vg|| ;1 (5, p) is large z in D and

small for z outside D for a fixed e. Unfortunately, |lvge p) cannot be used as an

indicator function for D since it depends on D. Instead in practice we use the indicator
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function . Since the near field equation (4.8) is ill-posed, it is necessary to use

1
950 22(a0)
regularization techniques, e.g. Tikhonov regularization.

Now we provide some preliminary numerical results to show the viability of
the linear sampling method to determine the support of a cavity surrounded by an
anisotropic inhomogeneous media. For a given anisotropic medium and point sources
on the given manifold 0C, we can compute the near field data using a finite element
method with perfectly matched layer. Having the simulated data u®(x,y) for z,y € 9C,
i.e. the near field matrix A(3,j) := u®(x;,y;), then we can consider a discretized near
field equation, and then apply the criterion described in Theorem 4.2.4 to reconstruct
the interior of the cavity D. In particular, adding white Gaussian noise Ns to the near

field matrix yields perturbed near field matrix with A°(i, j) := A(i, j)(1+ Ns(i, j)) and

§ = ||A — A°||, we compute the regularized equation
(A)*A° + a.D)gs = (A°)'D(-, 2)
where the regularized parameter o, is determined by the Morozov principle
1492 — @.|* = 8[| 2]

and @, is the discretized representation of ®(-, z). To visualize the cavity we plot the

contour lines of
1

Wiz) = ———
&) = e

for z varying in a region containing D. The cavity is the region where W(z) takes
values close to zero. For more details in the implementation of the linear sampling
method see [13].

Now we present the reconstruction of a circle, an ellipse and a square in the two
dimensional case. The exact geometry and the reconstructions are shown in the figures
below. In all the examples presented here the region D, is the disk of radius 2, C' is
the disk of radius 0.8 (30 incident point sources and 30 corresponding measurements
equally distributed on dC'), the anisotropic medium has the constitutive parameters

A=1[12 0;0 1.5],n = 0.8, and the wave number is k = 5. Reconstructions are
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given for 0.1% white noise added and 1% white noise added. The sampling point z

moves in a grid covering the square [—2, 2]?.

(a) (b) (c)

Figure 4.1: Panels (a), (b) and (c¢) show the reconstruction of a circle with radius 1.2,
of an ellipse with x-axis 3.2 and y-axis 2.4 and of a square with length
2.4, respectively, with 0.1% noise data. The wavelength is 27/5 and 0C
is a circle of radius 0.8. Here A =[1.2 0;0 1.5], n = 0.8 and the true
geometry of the cavity is indicated by the solid line.

4.3 The Factorization Method

As explained in section 4.2, the question whether the regularized solution of
(4.8) captures the approximate solution g provided by Theorem 4.2.4 is not justified
by the linear sampling method. This is a typical theorical gap for this method. To get
a more rigorous mathematical charactorization of the support of the cavity, we derive
the factorization method. To begin with we define various operators, appropriate

functional spaces and prove their properties. To this end, let us define the bounded

linear operator H: L*(0C) — H'(D;\D) by

(Hg)(z) := y O (z,y)g(y)ds(y), xe€ D\D (4.18)
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(a) (b) (c)

Figure 4.2: Panels (a), (b) and (c) show the reconstruction of a circle with radius 1.2,
of an ellipse with x-axis 3.2 and y-axis 2.4 and of a square with length
2.4, respectively, with 1% noise data. The wavelength is 27 /5 and 0C
is a circle of radius 0.8. Here A =[1.2 0;0 1.5], n = 0.8 and the true
geometry of the cavity is indicated by the solid line.

and the bounded linear operator G : H*(D;\D) — L?*(0C) which map wq to the trace

of radiating solution w* on dC, where w* € H} (R?) is the radiating solution

loc
V- AVw* + Enw* = V(I — A)Vw + k*(1 —n)wy in R% (4.19)

Lemma 4.3.1 The adjoint operator H* : HY(D,\D) — L*(9C) is given by

00(z,y)

(H*vo)(z) = /ac 8—%v(y)ds(y) - %v(z) for xe0C (4.20)

where v € HY(BR\C) is uniquely determined by the variational formula

— VU'Vde—l—kZ/ vﬂdm—k/ T de = (v, Y| _ (4.21
/BR\C Bgr\C 0Bp ‘ <0 |Dl\D)Hl(Dl\D) ( )

Vi € H'(Br\C).

Proof. First we remark that based on Lax-Milgram lemma and the properties of

the Dirichlet to Neumann operator T} (see e.g [9]), it is easy to see that (4.21) has a
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unique solution v € HY(Bg\C). Now, let u = [, ®(z,y)g(y)ds(y) in Bg\C. Then
u € H'(Bg\C) satisfies

Au+ k*u =0 in Bp\C
out O(Hg)*

5 = o on 0C
% =Tyu on 0Bpg
ov

and u = Hg in D;\D. From (4.21) and the above equation for u, we obtain that

(H*ang)m(ac*) = (o, Hg)Hl(Dl\ﬁ) = (UOvH)Hl(Dl\E)

= — Vv-Vuda:+k2/ vud:v—i—/ Tirouds
Bgr\C Bgr\C OBRr

= —/ Vv-Vudx+k2/ Uudx—i—/ Truvds
Br\C Br\C OBRr
ou™ 0P (z,y)—— 1—]
= —vds = —_— ds(y) — =g(x)| v(x)ds(z
[ Gvas= [ [ 25 asts) - ate| leisto
0P(zx,-) 1 )
= v(x)ds(x) — =v, g .
(/ac vy ()ds () 2 L2(8C)

Therefore, we have that

(H*vp)(x) = /ac %}fy’y)v(y)ds(y) - %v(m) for x € 0C

which ends the proof. U

Now let us define an operator in H'(D; \ D). To this end, for a given w, €

H'(D;\D), let us consider the second kind integral equation

/ —acpa(f’y)wy)ds(y)—%so(yozw*(x) for @€ 0C (422)
aoC Y

where w* is the radiating solution to (4.19) with this wy. Since k? is not Dirichlet
eigenvalue for —A in C, and C' is smooth, the above second kind integral equation has

a unique solution ¢ € Hz(dC) (see e.g. [58,67]). Then we define v € HY(Bg\C) by
the double layer potential

v(x) = /60 %Zy)go(y)ds(y) —w*(z) for x € Bg\C. (4.23)
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(Note that the jump relation of the double layer potential implies that ¢ := v|s¢c.)
Having defined v € H'(Bg\C) we can now define the unique vy € H'(D;\D) by
means of Riesz representation theorem as

(vo,w)Hl(Dl\ﬁ) = —/ VU-Vde—i-kQ/ v@dac
Di\D

D1\D

ovt — ov™ —
n /6 O s - /6; 2 s (4.24)

D al/ D (31/

7

Hereon the subscripts “+ 7 and “ — 7 indicate that we approach the boundary from
outside and inside the enclosed region, respectively. Also hereon the integrals over d —1

dimensional manifolds are defined in the sense of duality between H'/? and H~1/2.

Definition 4.3.1 The bounded linear operator S : H'(D,\D) — H(D;\D) is defined
by
S Wy — Vo

where vy is given by (4.24) corresponding to v defined by (4.23) with w* satisfying
(4.19) for the given wy.

Before we start to factorize the near field operator, let us derive an explicit formula for

(Swo, uo) g1 (D1\D)- To this end, we recall the double layer potential

Dig)() = / ) “;S)yy)so(y)ds(y) in Br\dC.
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For a given wy, let w*, v and vy be as stated in Definition 4.3.1. Then

o 5 . ovt o~
(o, U(])H1(D1\E) =— Vv - Vugdr + k vl dx + 5, ds — 5, ds
Dl\ﬁ D1\5 8Dl aD
*\+
— / Vuw* - Vg de — k2 / w* g dx — / 8(75} ) Uy ds
v
D\D DI\D oD,
o(w*)~ __ — 2 —
+ 5, o dx — VD(v) - Vugdr + k D(v)ug dx
v
oD Di\D Di\D
OD(v)"__ 0D(v)” __
+/ £y uods—/ % Up ds
0D oD
o(w*)™ o(w*)~
=— / (W) s ds + / V' Vig dr — k / w*u_od:v—I—/ W) s ds
v v
0Dy Di\D D1\D oD
which gives that
O(w*)t__ O(w*)™__
& = — d d
(SwO’UO)Hl(Dl\D) /aD1 o U AT + /aD o Uy AT
+ Vuw* - Vg dx — k? / w*Tg dx. (4.25)
l)l\E Dl\ﬁ

Now we are ready to construct the main factorization of our data operator.

Theorem 4.3.1 The data operator N: L*(0C) — L*(0C') can be factorized as N =
H*SH where H : L*(0C) — H'(D;\D) is defined by (4.18), S : H'(D;\D) —
HY(D;\D) is defined by Definition 4.3.1, and H* : H*(D;\D) — L2?(0C) is given
by Lemma 4.3.1.

Proof. Given g € L*(0C) and let wy = Hg we have that Ng = w*|sc. From (4.23),
we have that v satisfies Helmholtz equation in Bg\D; and D\C and satisfies radiation
condition, whence from (4.24) for any ¢ € H'(Bg\CO)

— — 8v+_ av__
<U0’¢|D1\D>H1(D1\D) = — / Vo - V1/J dx —+ ]{;2 / U@bdiﬁ + / Ew ds — / Ew ds

DI\E Dl\ﬁ 0D4 oD
_ ) — — ovt—
= — Vo -Vyde +k vip dx + Trvp ds — E?/st-
BR\é BR\G O0BRr oC
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out
Next we show aL =0 on OC. From (4.22) and jump properties of double layer
v

potential, we have that

[/ Mv(y)ds(y) ) =w*(x) for z€dC.
ac Oy

Next, since both w* and the double layer potential satisfy Helmholtz equation in C,
the fact that they have the same Dirichlet boundary data on 0C' implies

/ wwy)ds(y) =w*(z) for z€C,
ac Vy

by making use that k% is not Dirichlet eigenvalue for —A in C. (Note that w* is an
H'-solution of the Helmholtz equation in D, and therefore its normal derivative is
continuous across JC'.) Therefore

3} 0d(x,y) - Ow'(x)
a0 [/ac o, v(y)ds(y)| = . for x€0C.

From the expression

v(x) = /80 %ﬁy’y)v(y)ds(y) —w*(z) for z € Br\C

and the fact that the normal derivative of the double layer potential is continuous, we

obtain that

Jr
88% =0 on 0C
which now implies that
Vo, - = VU-V_d:)s+k2/ v_dx—l—/ Tovthds. (4.26
( ’ ¢|D1\D>H1(D1\D) Bp\C v Br\C v 0B v (120

Therefore from the definition of H*, we have that

)= [ 8%(;;y>v<y>ds<y> ~2u() o aC

Finally (4.23) and the jump properties of double layer potential yield

/60 %}fy’y)v(y)ds(y) - %v(x) =w*(x) for xe€0C
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which means tha H*vy = w*|¢. Thus H*SHg = H*vg = w*|c = Ng and this holds for
any g € L*(9C), therefore we can conclude that N = H*SH. U

The above factorization of the data operator will enable us to characterize the
cavity D in terms of the range of an operator know from the (measured) data operator.
To do so we recall Theorem 2.1 in [61] which provides the theoretical basis of the
factorization method that we use for our problem. For sake of reader’s convenience we
state this theorem below and for the proof we refer the reader to [61]. For a generic
bounded linear operator K between two Banach spaces, we define its real and imaginary

parts by R(K) = 225 and S(A) = £S5 where K* is the adjoint of K.

Theorem 4.3.2 Let X C U C X* be a Gelfand triple with Hilbert space U and re-
flexive Banach space X such that the embeddings are dense. Furthermore, let V be a
second Hilbert space and F :V —V H:V — X and T : X — X* be linear bounded
operators with F' = H*TH. Assume

(a) H is compact and injective.

(b) R(T) = Ty + Ty with some positive definite selfadjoint operator Ty and some
compact operator Ty : X — X*.

(c) (3(T¢),p) >0 forall p € X.
Furthermore, assume that one of the following two conditions is satisfied.
(d) T is injective.
(e) (T) is positive on the (finite dimensional) null space of R(T), i.e (3(T¢),p) > 0
for all ¢ # 0 such that R(T'¢) = 0.
Then the operator Fiy = |R(F)|+S(F) is positive definite and the range of H* : X* —
V' and the range of F#z : V=V coincide.

We will apply this theorem to our near field operator N = H*SH and the rest of the
paper is to make sure that the operator H, S and H* fulfill the assumptions of the

above theorem. To this end we make the following assumption on the wave number k.
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Assumption 4.3.1 The wave number k > 0 is such that there does not exist a nonzero
wy € HY(D,\D) satisfying
/ (I = A)Vuwy - Vi de — kQ/ (1= n)wydz =0, V¢ € H'(D,\D).
Di\D Di\D
Theorem 4.3.3 The operators H, S, H* have the following properties.
1. H s compact and injective.
2. The imaginary part I(S) of S is non-negative.

3. S is injective on HY(D,\D) provided that k > 0 satisfies Assumption 4.3.1.

Proof. (i) Since the embedding of H?(D;\D) to H*(D;\D) is compact, and from
the regularity of single layer potential aways from OC we obviously have that H is
compact. Furthermore if Hg = 0 then since Hg solves the Helmholtz equation up to
OC we have that Hglsc = 0. Now since k? is not a Dirichlet eigenvalue for —A and
by the continuity of single layer potential we have that Hg = 0 in C. Now the jump
relation gives that ¢ = 0 and hence H is injective.

(7i) From (4.25) we have that,

O(w*)™ o(w*)~
(S’LUO,UO)Hl(Dl\ﬁ) = _/ <ay) U_0d5+/ <alj> U_le'

0D oD

+ / Vw* - Vg dx — k? / w* g dx. (4.27)

Di\D Di\D

Multiplying both sides (4.19) by %y and integrating by parts yield

*\— *\+
[ e [ i [ i [ -

vy VA
oDy oD DD DD
owy owd
/ Yo u_ods—/ Yo Uy ds — / ([—A)Vwo-Vu_odx+k2/ (1 — n)wotg dx.
OV(1- 1) V(1-A)
0D1 oD Dl\ﬁ Dl\ﬁ

Now using the boundary conditions in the above

d(we)t  I(w*)™  I(w*)*"
a(uAO_)I = (au) — (auA) on  AD (4.28)
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and

(wo)~ _ O(w")*  Ow’)”
Y 5 + 901 on 0D, (4.29)

we have that

*\+ *\ —
—/Mu_odst/a(w—)u_ods:— / AVw* - Vg dx + k2 / nw*ug dx
ov ov

0Dy oD Di\D Di\D
+ / (I — A)Vw - Vg dr — k? / (1 — n)wotg dx.
Dl\E Dl\ﬁ
Let u* be the solution of (4.19) corresponding to wug in the righthand side. Plugging

the above expression in (4.27) we can now get

(SwOvUO)Hl(DI\B) = —/ _AVw* - Vg dr + k> / nw*ug dr+ (4.30)
Pip Di\D
/ (I — A)Vwy - Vg dx — k:z/ (1 — n)wytip do +/ ~ Vuw* - Vg de — k2/ w*lg da.
Di1\D Di\D Pip Di\D

The latter can be rewritten as

(Swy, UU)Hl(Dl\E) = — / (A—DV(w* +wp) - V(u* + ug) dz
DI\D
+ k? / (n — 1)(w* 4+ wo)(u* + up) dx + / (A—D)V(w* +wp) - Vu" dx
Dl\5 Dl\b
2 / (n— 1)(w" + wo)a" dx. (4.31)
D1\D

Next noting that
—V - (A= DV(0* +wy) — K*(n — 1)(w* +wy) = Aw* + k*w* in  D;\D,

multiplying both sides by u* and integrating by parts we obtain

*\ — * J,-
— Vw*-Vu*da:+k2/ w*mdzjt/ Mmdac—/ o) u* dx
Di\D Di\D op, OV op OV

* — * +
:_/ O(w* + wy) Fds—i—/ O(w* + wy) = 1
dD, 3V(A71) 8D aV(AfI)

+ / (A—=I)V(w" +wy) - Vu" dx — /{:2/ (n —1)(w" + wo)u” du. (4.32)
Dl\ﬁ D1\B
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Next using the boundary conditions (4.28) and (4.29) along with (6.43) in (4.31) yield
(Swo, wo) g1 (p\ By = — / (A=DV(w" +wp) - V(u* +ug) dx
DI\D

i [ e )@ e [ Vet Vi
D1\D DPI\D

*\+ *\ —
+k2/ w*ﬁdx—l—/ o(w’) st—/ o) u* ds.
Di\D op, OV op OV

Since w* satisfies Helmholtz equation in D and outside D;, we can rewrite the above

expression as
(Swo, u0) g1 (p\ 1y = —/D \5(14 — IV (w* 4+ wp) - V(u* + up) dx

—i—kz/D \5(71 — 1) (w* + wo) (u* + ug) doe — /B Vw* - Vu* dzx

r\D1

—/ Vw*-VFdaH—k:Q/ w*Fd:B%—/ Tow*u* dx
DI\D D\D 9Br

+/<:2/ w*mdx—/ Vw*-dex—l—kP/ w*u* dx
Br\D1 D D

which can be finally transformed to
(Swo, uo)Hl(Dl\ﬁ) — _/ 7(14. - I)v<w* + wo) . v<u* _|_ UO) d./E
Di\D
—|—k2/ ~(n = 1)(w* 4+ wo)(u* + ) dx
DiI\D

— Vw*-VFdx+k:2/

Br B

w*u* dx +/ Trw*u* ds. (4.33)
R 0BRr
Now taking the imaginary part of S, we can see that

(S(S)wo, wO)Hl(Dl\E)

= %(/ Tkw*ﬁds—/ (A—D)V(w" +wp) - V(w* + wy) dz
dBr DI\D

+ k:2/ ~(n = 1) (w* 4+ wo)(w* 4 wo) d:t)
DI\D

> k:/ |w;;0|2ds—/ S(A)V (" + wy) - V{wr + wy) da
S2 D1\D
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because F(A) < 0 and J(n) > 0, where the far field pattern w’, of the radiating

solution w* is defined from the asymptotic expansion

i eikr . i .
w'(@) = i@+ 0 (), r=lal, @ =a/lal.

r2

(i4i) To prove the third part we assume that Swy = 0. Then for any ¢ € H'(D;\D)
from (4.25) we have that

/ 8(w*)_ﬂd8 — / 8(w*)+ads + Vw* - Vi dx — k2/ w'dr =0
oD 0Dy

ov ov DiI\D D1\D
which means that w* satisfies

Aw* + kK*w* =0 in D;\D

and the transmission conditions

I(w*) " o(w*)~ I(w*)*  I(w*)”
5 o on 0D, and 5 o on OD.

Therefore from (4.19), we can conclude that w* € H} (R?) is a radiating solution to

the Helmholtz equation in R%, and hence w* = 0. Now multiplying both sides of (4.19)

by 1 and integrating by parts, we obtain that w, satisfies
/ (I — A)Vwy - Vi — k2/ (1—n)wep =0, V € H'Y(D,\D).
Dl\5 Dl\ﬁ
Then we have that wy = 0 providing that k& > 0 satisfies Assumption 4.3.1. This
implies that S is injective. O
Theorem 4.3.4 The operator S satisfies in addition the following property:

1. If R(A) > I then —R(S) is the sum of a compact operator and a self-adjoint
positive definite operator.

2. If I —R(A) — a|S(A)| > 0 and R(A) — 2[S(A4)| > 0 for some a > 0, then R(S)
is the sum of a compact operator and a self-adjoint positive definite operator.

Proof. (i) From (4.33) the real part of the operator S is given by

R I p—— / (RA) — DV (0" +wo) - Vi T 0]

Di1\D

42 /D R = 1) 4 o))

— Vw*-VFdx+k2/

Br B

wru* dr + / R(Ty,)w*u* de.
R 0Bgr
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In the case when R(A) > I we define the operator K : H'(D;\D) — H'(D;\D) by
(KU}07 uo)Hl(Dl\B) = —/ 7(%(14) - ])V(w* + wO) . V(u* + UO) dx
DI\D

—/ wol dr — Vuw* - Vu* dx + R(Ty)w*u* der (4.34)
Di;\D Br O0BRr

which is obviously self-adjoint. Using the known fact that the real part of the Dirichlet
to Neumann operator %(7}) is nonpositive (see e.g. [69] in R?) and applying Young’s
inequality yield

(—=Kwo, wO)Hl(Dl\E) > (1= a) ((R(A) — I)Vw, VwO)m(Dl\ﬁ) + (w0>w0)L2(D1\B)

1 k * * *
# (17 5) () = DV )5+ (T T8 2 ellinl o

where 0 < o < 1 is such that (1 — é)sule\ﬁ(é)?(A) —1)+1> 0, and ¢ is some positive
constant depending on A. Now, the fact that R(S) — K is compact thanks to the
compactly imbedding of H'(D;\D) into L?(D;\D), proves the first claim.

(ii) Next, we consider the case when R(A) < I. To prove the claim we need to derive

a new expression for (Swo, uo) g1 (p,\5)- To this end from the expression (4.30) we have

(Swo, UO)Hl(Dl\E)

= —/ AVw* - Vug dx + k2/ nw* g dx + / (I — A)Vwy - Vg dx
Dl\5 D1\5 Dl\ﬁ

k2/ (1 — n)woly do + Vuw* - Vg — kz/ Wi dx
Di\D

Dl\ﬁ Dl\ﬁ

= / (I — A)Vw* - Vugde — kz/ (1 —n)w ug dx
DI\D

Di\D

+ / (I — A)Vuwy - Vg dz — k2/ (1 — n)wotg dz. (4.35)
Dl\5 Dl\ﬁ

For given ug € H'(D;\D) let u* be the radiating solution of (4.19). Multiplying both

sides of

V- AVU* + kv = V(I — A) - Vg + k(1 —n)uyg in R?
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by w* and integrating by parts, we obtain

*) — *)+
/ —8(u ) w* dr — / —8(u ) w*dr — / AVu* - Vuw* do + kz/ nu*w* dx
op, Ova op Ova Di\D Di\D

ANug)™— A(uo)™
e _— *d — _—
oD aVI,A v v oD aV],A

+ k52/ (1 = n)upw* dz.
DI\D

w* dx — / (I — A)Vug - Vw* dz
DI\D

Therefore, from the transmission conditions (4.28) and (4.29) for u* and ug the above

expression can be written as

/ (I — A)Vug - Vw* dz — /{:2/ (1 — n)ugw* dx
Di\D

Di\D

*\ 4+ *\ —
= —/ Mde/ N)” mder/ AVu*-VFdx—kz/ nutw” da
op, OV op OV Di\D Di\D

= —/ Tou w* ds + Vu* - Vw* ds — k:Q/
0Bp Br B
— /{:2/ (n — 1u*w* dx
Di\D

where Ty, : HY2(0Br) — H~'/?(0Bg) is the exterior Dirichlet to Neumann operator

ww* dr + / (A—1)Vu" - Vw*dx
R Di\D

defined by (2.35). Conjugating the above expression we obtain
/ (I — A)\Vw* - Vg dz — k:2/ (1 —mw*ug dx
[)1\5 Dl\ﬁ

= — / Tou*w* ds + Vw* - Vu* do — kz/ w*u* dx
O0BRr Br

Br

+ / (A—I)Vw* - Vu* dr — /{:2/ (m— Dw*u* dx (4.36)
DI\E D1\B

and substituting (4.36) in (4.35) yields

(Swo, UO)Hl(Dl\B)

— / (I — A)Vwy - Vugdx — kz/ (1 — n)wotug dx — / Tru*w* ds
D\D Di\D 8Br

+ Vw*~VFdx—k2/

Br B

w*mdx—i—/ (A —IVw* - Vu* dx
R D1\D

— kQ/ ~(m = w v dx + / (A= A)Vu* - Vg dz — k2/ (7 — n)w*ug dx.
D:\D D:\D

Di\D
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Hence, taking the real part of S, i.e. computing (S + S*)/2

(R(S)wo, UO)Hl(Dl\B)
= / (I = R(A))Vwg - Vg dr — k‘g/ (1 — R(n))woug dz
Di\D

DI\D
b / (—S(A)Vu* - Vg + S(A)VE - Vay) da
Di\D
— z'kQ/ (=S (n)w ag + I(n)u wy) dx
Di\D
+ R(A)Vw* - Vur dz — k? R(n)w*u* dx — / R(Ty)u*w* ds.
Br Bg 0Bp

Now let us define K by

(Kwo, o) g1 (py\ )

= / (I —R(A))Vuwy - Vg dz + / wolly dz + R(A)Vw* - Vu* dzx
Di\D Di\D Br

+ Z/ (—S(A)Vw* - Vg + S(A)Vu* - V) do — R(Ty)u*w* ds
DiI\D OBg
which obviously is a self-adjoint. Again, using that the real part of the Dirichlet to

Neumann operator R(7}) is nonpositive and applying Young’s inequality yield

(Kw(b wO)Hl(Dl\E) > ((I - §R(A) - 04|S(A)|)Vw0, va)LQ(Dl\ﬁ)

cllwolli p,\p)

+ (wO’ wO)LQ(Dl\ﬁ)

>

where « is such that I — R(A) — a|S(A)| > 0, R(A) — 2[S(A4)| > 0, and c¢ is some
constant depending on A, n only.

Finally the difference £(S) — K is compact due to the compactly imbedding of
H'(D;\D) into L?(D;\D). g

Remark 4.3.1 Injectivity of the operator S : H'(D;\D) — H'(D;\D) holds true if
Assumption 4.3.1 is satisfied. Based on the analytic Fredholm theory it is easy to show

that such k£ > 0 form at most a discrete set with 400 as the only possible accumulation
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point. It is easy to see that if $(A4) < 0and I(n) > 0in D;\ D, or I(A) < 0 and n—1
does not change sign in D; \ D (more generally it suffices that fDl\E(” —1)dx #0),
then Assumption 4.3.1 holds for all real £ > 0. In addition, the latter is also the case
when A and n are real valued and the contrasts (A — I) and n — 1 have the opposite

signs.

Using the factorization in Theorem 4.3.1 along with Theorem 4.3.3 and Theorem 4.3.4,
and applying Theorem 4.3.2 to the data operator N we can conclude the following

range characterization result.

Corollary 4.3.1 Under the assumptions of Theorem 4.3.3 and Theorem 4.3.4, the
range of the operator N#Q : L*(0C) — L*(0C) and the range of the operator H* :
HY(D; \ D) — L*(0C) coincide, where Ny := |R(N)| + S(N).

The last step of our approach is to characterize the range of H* in term of the support of
the cavity D. At this point we introduce the so-called exterior transmission eigenvalue
problem which in the current settings is a slight modification of the problem considered
in [12] due to the fact that the incident field is the complex conjugate of the point
source. This problem reads as: find w € H} (IR)\D), v € H} (IRY\D) such that

V- AVw + k*nw = 0 in RN\D (4.37)
Av+k*v =0 in IRN\D (4.38)
w—v=f on 0D (4.39)

ow  Ov

, a1 (O(w—v) | B
Tginoor <T — ik(w — v)) =0 (4.41)
tim 7 (2% ko) = 0 (4.42)
Jim 7 5, Tk ) = :

for f € HY2(OD) and h € H~Y2(0D). Values of k > 0 for which the homogeneous
exterior transmission problem (i.e (4.37)-(4.42) with f = 0 and h = 0) has non-trivial

solution are called exterior transmission eigenvalues. Using the same technique as in
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[12], it can be proven that the problem (4.37)-(4.42) satisfies the Fredholm alternative
and the exterior transmission eigenvalues form at most a discrete set with +oo as the
only possible accumulation point. Hence one can prove that provided that & > 0 is

not an exterior transmission eigenvalue the problem (4.37)-(4.42) has a unique solution

€ HE (RAD), v € H. (IR?\D) that depends continuously on f and h.

Assumption 4.3.2 The wave number k > 0 is not an exterior transmission eigenvalue

corresponding to (4.37)-(4.42).

We can now prove the following theorem that relates the range of H* with the support

of the cavity D.

Theorem 4.3.5 Suppose that Assumption 4.3.2 holds. Then for z € RIN\C we have
that ®(-, 2) is in the range of H* if and only if = € RN\ D.

Proof. Let z € R\ D and since k is not an exterior transmission eigenvalue we can
construct the unique solution w, € H: (IRN\D), v, € H} (IR¥\ D) of (4.37)-(4.42) with
0P(-, 2)
= P(- dh:= ’
im0 2) and him 2

outgoing radiating solution of

. Setting u, = w, — v,, we have that from (4.41) u, is an

V- AVu, + k*nu, = V(I — A) - Vo, + k*(1 — n)v, in RN\D

ou,  0®(-,z2)
o o Ov
u = u, in R\D and u := ®(-,z) in D. The continuity of the Cauchy data guaranties

satisfying u, = ®(-,2) and on 0D from (4.39) and (4.40). Define

that v € H._(R?) and in addition u is an outgoing radiating solution of
V- AVu+k*nu=V - (I — A)Vuv, + K*(1 — n)v, in R?

which from the definition of operator G : H'(D;\D) — L*(0C) means that ®(-, 2)|sc =
Guv,. Note that v, € H'(D;\D) satisfies the Helmholtz equation and the incoming
radiation condition and therefore it is in the closure of the range of H. Finally since

G = H*S, we now have that ®(-, z) is in the range of H*.
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Next assume that z € D\C and to the contrary that ®(-,z)|sc is in the range
of H*. Let vy € H'(D;\D) be such that H*vy = ®(-,2). Then there is v € H'(R\C)
uniquely determined by (4.21) such that

(H*vo)(x) = /ao %};@;y)v((y)ds(y) - %v(a:) for x€0C.

From the jump property of the double layer potential we have that

[/ac %f“(y)d‘s(y}] - ®(-,z) on 9C

approaching 0C' from inside. From (4.21), we can also see that v satisfies the Helmholtz
+

— 0
equation in D\C' and 8L loac = 0 where + indicates that OC' is approached from outside
v
C. Now define

B O
ac Oy

w(-) =

| S ist) —ot) i DO
\ JoC Y

then w € H*(D), satisfies Helmholtz equation in D, and w™ = ®(-, z) on 9C. Hence
the Assumption (2.3.1) guaranties that w = ®(+, 2) in C since both satisfy the same
Dirichlet boundary value problem for the Helmholtz equation in C'. Now, if z € D, by
analytic continuation we have that w = ®(-, z) in D\ z, but since ®(z, z) has singularity
at x = z whereas w is analytic, we arrive at a contradiction. Furthermore, if z € 9D,
then equality of w and ®(-, z) up to the boundary dD requires that ®(-, z) € H2 (D),
in the sense of the trace, which is not true, whence we again arrive at a contradiction.

Therefore we can conclude that for z € D\C, ®(+, 2) is not in the range of H*. O

Theorem 4.3.5 can be modified to remove Assumption 4.3.2.

Theorem 4.3.6 For z € D;\C we have that ®(-,2) is in the range of H* if and only
ifZ S Dl\E

Proof. We only need to prove the statement for = € D;\D since the complimentary

case holds under no restriction on the wave and is proven in the second part of Theorem

78



4.3.5. To this end, for z € D;\D, we need to show that there exists vy € H'(D;\D)
such that H*vy = ®(-,2). Fix € > 0 small enough and consider w* := ®(-, 2)xe,
where . is a cut-off function such that y. = 0 in B(z,¢€) and x. = 1 outside B(z, 2¢)
where B(z,¢) is a ball centered at z with radius e, and B(z,2¢) C D;\D. Obviously,

€ H! (RY). Let now v € H'(Bz\C) be defined by (4.23) and vy € H'(D;\D) be
defined by (4.24). We need to show that vy, v satisfy (4.21). Indeed, by constructions,
w* satisfies Helmholtz equation in D\C and IR*\ D; and so does v. Therefore

+_ — p— —
/ aiqus:/ Tkwds—/ vu-wd:p+k2/ v da
oD v 9B Br\D1 Br\D1

and

7_ +_ _ o
aiwds:/ %Lwdwr VU~V1pd:c—k’2/ v de.
oC

v D\C D\C
Plugging both the above equations in (4.24), we have that for any ¢ € H'(Bg\C)

_ _ _ Bt
<”0’¢|D1\D>H1<D1\D):_ / VoV dr + K / v@bder/Tkmbdx—/E@bds.

Br\C Br\C 0BR aC

From the definition of v and using jump properties of double layer potential we have

that
@ _
{/ mv(y)ds(y)} =w*(z) for xe€dC
ac  Ovy
where “ — 7 indicates approaching dC from inside C. Then
0 00 (-,y) - ow*
0 {/ac o, v(y)ds(y)] =, oo oC

and another application of the jump properties of double layer potential implies

) oD(-, 1) T ow
a0 {/ac o, U(y)ds(y)] =5, on oC

+
v
whence by construction of v we have that e 0 on 0C, where “+ 7 indicates

v
approaching C' from outside C'. Therefore (4.21) holds for v and vy, hence by definition
of H* (4.20) holds true. From the construction of v and jump properties of the double

layer potential we have that

0P (- y) 1 )
/(‘BC aljy U(y)dS(y) - 51)(.%) = w (g;) for =€ 0C
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and therefore H*vy = w*. Now since w* = ®(+, z) in D we finally obtain H*vy = ®(, 2)

on 0C. O

Now we are ready to state the main theorem of the paper. Let us recall the
compact data operator N : L?(0C) — L*(9C) given by (2.48) and define R(N) =

MNZ S(N) = 555 and Ny == [R(N)| + S(N) which is also compact. In addition

Ny is also selfadjoint. We denote by (¢;, A;);jen an orthonormal eigen-system for N.

Then we have the following result.

Theorem 4.3.7 Suppose that all Assumption 2.5.1, Assumption 4.3.1 and Assump-
tion 4.3.2 are valid for the wave number k > 0, and either R(A) > I, or [ — R(A) —
a|S(A)| > 0 and R(A) — L|S(A)| > 0 for some a > 0. Then for z € R\C

5 < 0., 0;)
RAND d onl > jl( =
z € R\ if and only if j X < 00
where ®, := O(-, 2)|sc, with (-, z) being the fundamental solution of the Helmholtz

equation given by (2.34).

Proof. The result follows from Corollary 4.3.1 and Theorem 4.3.5 along with an
application of the Picard’s theorem [9] and [24]. O

Using now Theorem 4.3.6 instead of Theorem 4.3.5 we can drop Assumption
4.3.2. Note it is more difficult to handle the existence of exterior transmission eigen-

values than checking whether the wave number k£ > 0 satisfies Assumption 4.3.1.

Theorem 4.3.8 Suppose that both Assumption 2.3.1 and Assumption 4.5.1 are valid
for the wave number k > 0, and either R(A) > I, or [ — R(A) — a|S(A)| > 0 and
R(A) — LIS(A)| > 0 for some o > 0. Then for z € D;\C

_ . b2
z € Di\D if and only if Z % < 00
j J

where ®, := O(-, 2)|oc, with ®(-,z) being the fundamental solution of the Helmholtz

equation given by (2.34).
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From practical point of view in order to determine the support of D from interior
sources and measurements it suffices to sample only within the region D;.

Now we provide some preliminary numerical results to show the viability of the
factorization method to determine the support of a cavity surrounded by anisotropic
inhomogeneous media. For a given anisotropic medium and artificial point sources
on the given manifold 0C, we can compute the near field data using a finite element
method combined with PML on the artificial boundary. Having the simulated data
u*(z,y),z,y € OC, we compute a discretized version of the near field operator and
of Ny, and then apply the criterion described in Theorem 4.3.7 to reconstruct the
interior of the cavity D. In particular, we compute the eigensystem (¢;, A;)j=1.a of
the symmetric matrix that approximate Ny and then use the discrete version of the

Picard’s criteria. To visualize the cavity we plot the contour lines of

<@, ;> 2 -
j=1 J

for z varying in a region large enough to contain the D. The cavity is the region

where W (z) takes values close to zero. For more details in the implementation of the
factorization method see [55].

Now we present the reconstruction of a circle, an ellipse and a square in the
two dimensional case. The exact geometry and the reconstructions are shown in the
figures below. In all the examples presented here the region D; is the disk of radius 2.
In the examples presented in Figure 4.3 and Figure 4.4, C'is the disk of radius 0.8 (30
incident point sources and 30 corresponding measurements equally distributed on 9C),
the anisotropic medium has the constitutive parameters A = [1.2 0;0 1.5], n = 0.8,
and the wave number is £ = 5. Reconstructions are given for noise free data and 1%
white noise added. The sampling point z moves in a grid covering the square [—2,2]?.

In order to study the sensitivity of reconstructions on the size of the measure-
ment manifold 0C, we show reconstructions for the configuration of the examples in
Figure 4.3 where now 0C' is the circle of radius 0.4. The results presented in Figure 4.5

confirm that the reconstructions become worse as C' gets smaller although the number
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(a) (b) (c)

Figure 4.3: Panels (a), (b) and (c) show the reconstruction of a circle with radius 1.2,
of an ellipse with x-axis 3.2 and y-axis 2.4 and of a square with length
2.4, respectively, with noise free data. The wavelength is 27/5 and 9C
is a circle of radius 0.8. Here A =[1.2 0;0 1.5], n = 0.8 and the true
geometry of the cavity is indicated by the solid line.

(a) (b) (c)

Figure 4.4: Panels (a), (b) and (c) show the reconstruction of a circle with radius 1.2,
of an ellipse with x-axis 3.2 and y-axis 2.4 and of a square with length 2.4,
respectively, with 1% noise. The wavelength is 27/5 and OC' is a circle
of radius 0.8. Here A =[1.2 0;0 1.5], n = 0.8 and the true geometry
is indicated by the solid line. The sampling points z are in [—2, 2]2.

of sources and receivers remains the same. We also consider the anisotropic media
with matrix A satisfying (loosely speaking) A — I < 0, namely A = [0.6,0;0,0.8] for
the ellipse and square and the reconstructions are presented in Figure 4.6. Finally
as explained in Theorem 4.3.8 it is possible to avoid the (real) exterior transmission
eigenvalues (which in particular cases are proven to exists c.f. [26]) if the sampling
point z remains only inside D, i.e. in the inhomogeneous layer and the cavity. The

examples presented in Figure 4.7 with sampling region D; \ C for the ellipse and the
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(a) (b) (c)

Figure 4.5: Panels (a), (b) and (c) show the reconstruction of a circle with radius 1.2,
of an ellipse with x-axis 3.2 and y-axis 2.4 and of a square with length
2.4, respectively, with noise free data. The wavelength is 27/5 and 9C
is a circle of radius 0.4. Here A = [1.2 0;0 1.5], n = 0.8 and the true
geometry is indicated by the solid line. The sampling points z are in
[—2,2]%

(a) (b)

Figure 4.6: Panels (a) and (b) show the reconstruction of an ellipse with x-axis 3.2
and y-axis 2.4 and of a square with length 2.4, respectively, with noise
free data. The wavelength is 27/5 and OC' is a circle of radius 0.8.
Here A = [0.6,0;0,0.8], n = 0.8 and the true geometry of the cavity is
indicated by the solid line. The sampling points z are in [—2, 2]%.

square confirm that this confinement of sampling region does not affect the quality of

reconstructions.

83



(a) (b)

Figure 4.7: Panels (a) and (b) show the reconstruction of an ellipse with x-axis 3.2
and y-axis 2.4 and of a square with length 2.4, respectively, with noise
free data. The wavelength is 27/5 and 0C' is a circle of radius 0.8. Here
A =1[12 0,0 1.5],n = 0.8 and the true geometry of the cavity is
indicated by the solid line. The sampling points z are in D; \ C.

Remark 4.3.2 (non-physical incident sources) Our justification of the factoriza-
tion method works for incident waves being complex conjugate of point sources, which
are non-physical. However, it is well known that these non-physical sources can be ap-
prozimated arbitrarily close by linear combination of physical point sources (these fact

is also discussed in [51]).

Remark 4.3.3 [t is interesting that for inverse scattering in bounded domain the fac-
torization method can be justified for physical incident waves. Qur analysis can be
carried through for the problem when Dy is contained in a large ball Br with homo-
geneous medium in Bg \ Dy and zero Dirichlet or Neumann conditions on OBg. In
particular if the cavity is embedded in a perfect conductor or sound-soft object, we could

use physical source ®qy(-,y) instead of the artificial source ®(-,y) where

Aq)O('vy)+k2(I>O('ay) - _5(7'ay) (443)
®o(,y) = 0 on OBg
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then we exclude the Dirichlet to Neumann mapping in the analysis, everything esle for

the artificial source works exactly in the same way.
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Chapter 5

THE TRANSMISSION EIGENVALUE PROBLEM FOR SPHERICALLY
STRATIFIED MEDIUM

Of particular interest in the investigation of transmission eigenvalue problem is
the inverse spectral problem for transmission eigenvalues which was originally studied
by McLaughlin and Polyakov [66] and more recently by Aktosun, Gintides and Papan-
icolaou [2], Aktosun and Papanicolaou [3], Colton and Leung [25], Wei and Xu [83]
and many others. This interior transmission eigenvalue problem is characterized by its
formulation as two elliptic equations defined in a bounded domain which have the same
Cauchy data on the boundary. In Section 5.1 we study the inverse spectral problem
for the exterior transmission eigenvalues and in Section 5.2 we study the distribution

of the interior transmission eigenvalues.

5.1 The Exterior Transmission Eigenvalue Problem

More recently a complementary class of transmission eigenvalue problems has
appeared in inverse scattering theory which is characterized by the problem of finding
a nontrivial solution of two elliptic equations in an unbounded domain that have the
same Cauchy data on the boundary and both of which satisfy the Sommerfeld radiation
condition at infinity refered as the exterior transmission eigenvalue problem. More
specifically, we are concerned here with the inverse spectral problem for a special case
of such problem in which the index of refraction is spherically stratified and the resulting
spectral problem can be reduced to a spectral problem for a coupled set of ordinary
differential equations.

As in the case for the interior transmission eigenvalue problem studied in [25],

our approach for the exterior problem is based on the use of transformation operators
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and special results in the theory of entire functions of a complex variable. However
in the case of the exterior problem special difficulties arise due to the fact that the
fundamental determinant of the exterior problem is no longer an even entire function
that is real on the real axis. In addition, it is no long possible to choose special values
of the spectral parameter in order to simplify the fundamental determinant. As a
consequence we now need to use two sets of spectral data in order to uniquely determine
the spherically stratified index of refraction n(r). We first show that for constant n(r)
all eigenvalues are real. (We also later give an example to show that when n(r) is
allowed to be piecewise constant the results are drastically different.) In contrast to this
simple result, for non constant n(r) we show that there exist cases in which there are an
infinite number of complex eigenvalues and at most a finite number of real eigenvalues.
Having examined the existence and distribution of transmission eigenvalues we then
turn our attention to the inverse spectral problem and give conditions under which
two sets of spectral data uniquely determine n(r). This result is based on Hadamard’s
factorization theorem together with a theorem of Rundell and Sacks which show that
a coefficient in a certain class of hyperbolic equations is uniquely determined by an

appropriate set of overdetermined initial data.

5.1.1 Existence of Exterior Transmission Eigenvalues

In this section we are concerned with the existence of exterior transmission
eigenvalue for a special case of such problems in which the index of refraction is spheri-
cally stratified and the resulting spectral problem can be reduced to a spectral problem
for a coupled set of ordinary differential equations.

Here we consider the exterior transmission eigenvalue problem for isotropic

spherically stratified medium with strong solutions in IR?, i.e., finding functions u,v €
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C%(IR*\B) N C?(IR3\ B) such that

Au+ k*n(r)ju =0 in R*\B (5.1)
Av+ kv =0 in R*\B (5.2)
u=uv on OB (5.3)
ou Ov

: ou
Tginoor (5 - @k:u) =0 (5.5)

: ov .
TEIEOOT <§ — zk’v) =0 (5.6)

where r := |z|, * € R*, B := {z : |z| < a},n € Cla,b],n(r) =1 for r > b > a and the
radiation conditions in (5.5) and (5.6) are assumed to hold uniformly with respect to
the angular variable. Values of k such that there exists a nontrivial solution to (5.1)-
(5.6) are called ezterior transmission eigenvalues with corresponding eigenfunctions u
and v. We are interested in the special case when the eigenfunctions are spherically

stratified and set u(r) = ao@, v(r) = boyOT(T). In this case (5.1)-(5.6) become

Y+ En(r)y =0 in [a,o0) (5.7)

Yo + k*yo = 0 in [a,o0) (5.8)
aoy(a) = boyo(a) (5.9)
aoy'(a) = boyy(a) (5.10)

and y and gy, are normalized such that
y(r) =yo(r) = e*", r >0 (5.11)
Then k is a transmission eigenvalue if and only if

Di(k) = det| U 120 (5.12)

y/(a) Z-keika

From now on we make the stronger assumption on n(r) that n(r) € C®[a, b]. In addition

we always assume that n(r) is not identically equal to 1.
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We begin with the simple case when n(r) is a constant, in particular n(r) = n2

for a <r <b. Then
y(r) = c1e® 4 g T a < < b

and requiring y(r) to be continuously differentiable across r = b gives

ng + 1 . _ nog — 1.
6zkb(l ng) Co ezkb(l—l—no)'

)

C1 =

2%0 2n0
We now have that
k ik(a+b) 1 —n2
Dy(k) = ‘ (1= ny sin (kng(b — a))
1o
and hence D;(k) = 0 if and only if
mm
k= 0
no(b — a)

for m an integer. In particular all eigenvalues are real. In addition, ngy is uniquely
determined by the first transmission eigenvalue.

We now turn our attention to the case when n(r) is no longer a constant. In
this case we will make use of transformation operators (c.f. [24,64]) to represent y(r)

in terms of solutions to yj + k*yo = 0. In particular, let

T and e )5
5.—/a n(t)dt d p§): e 16 90

Then wy (€) := n(r)*y(r) is a solution to

wi + [k — p(&)Jwy = 0, 0<E<y (5.13)
wi(0)=1, w)(0)=0 (5.14)

and can be represented in the form
wi (€) = cos(k€) + /0 5 K1 (&, t) cos(kt)dt (5.15)

where

8;? - 8;? —p(§) K, =0, 0<t<&<y (5.16)
Phe0=0  o<e<q 617
Ki(,€) = %/ng(s)ds, 0<E<n. (5.18)
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If wy € C?[0,~] satisfies

wh + [ = p(€)]ws = 0, 0<¢<y (5.19)
wy(0) =0, wh(0) =1 (5.20)

then wy(€) can be represented in the form

ws(€) = smg{;g) n /0 Ko(6,1) Sml(ft)dt (5.21)
where
2 2
86—?22 — 0(;? —p(&)Ky =0, 0<t<é<y (5.22)
K5(€,0) =0, 0<¢<y (5.23)
3
Kole,€) = / p(s)ds,  0<E<n. (5.24)

In particular, the general solution of w” + (k* — p(€))w = 0 can be represented in the
form w(¢) = w(0)w(€) + w'(0)wy(§) with wy and wsy represented in the form (5.15)
and (5.21) respectively.

We now look for a solution of y” + k*n(r)y = 0 such that y(r) is continuously
ikr

differentiable across r = b and y(r) = € for r > b. If we translate to the origin and

use the Liouville transformation

w(€) = )iy —r)e ™ (5.25)

where 7(r) := n(b—r), we can represent y(r) in terms of cos(k¢) and 1 sin(k¢) by using
the above transformation operators where in this case v := £(d) and d := b — a. In

fact, from (5.7)-(5.11) we have that

y"—i—k2ny = 0, a<r<b
y(0) = "

y'(b) = ike*,

90



From above and (5.25),

where

Representing w in terms of wy, wo yields
w(&) = w(0)wy + w'(0)ws.
From (5.25) we have that

w(0) = [n(0)] Fw(0),
w(0) = k(O] + 3 lnO)] ¥ (0),

Evaluating w(&) and w'(§) at & = X yields

w(A) = [7](0)]_31[005(/{)\)4—/0 K (A, t) cos(kt)dt]

b k)] + )]ty )
' / )2 gy (5.26)
similiarly
1 A
W) = O] [—ksin(k) + Ky (A ) cos(kA) + / K e(A, 1) cos(kt) ]
b ikl + S0 (0)]feos(k) + Ea(r, ) TN
" / AKzf(*t)sm(kt)dt]- (5.27)

From (5.25) we have that

y(a) = ()] Tw())

y(a) = —e®[—[n(d)] 1 (d)w() + [n(d)] 17w’ (\)]:
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Pluging into (5.12) yields
Dy(k) = ™ ik[n(d)]

From (5.26) and (5.27)

A
e HIDI(k) = (@] O))eos(kX) + | (1) cos(kt)a]

+ ik[n(d)) " ik [n<o>1i+§[n<o>]in'<o>1-

sm(k)\ sm(kt
Ky(\ 1)
Tk / K

— @) @ (0)])F cos(kA) + / K, (M 1) cos(kt)di]

4
(d)) i/ (d )[

(k) |

k

5

[7(0)]~% + ~[7(0)]~%1/(0)]
1

sin(kt)
k

_ [ 1
n 1
dt

ik
K2 A t)

sin
[—

NG

+ [p(d)]3 [n(0)]3 [—k sin(kX) + K{ (A, A) Cos(k)\)—i-/o K ¢(A,t) cos(kt)dt]

—ik[(0)] " + 1[n<o>] H7(0)] -

INES

+ [n(d)]

[COS(I{‘)\) +l{?2 )\ )\ Sln / KQg )\ t Sln

Integrating by parts yields

A . A
/Kl()\,t)cos(kt)dt - Smng)kl(/\,)\ _1/ Kyo(\ t) sin(kt)dt
0

/AKQ()\,t)sin(k;t)dt - —COS;“)@(AA /th)\t)cos(k:t)d

IS(B)
k
IS

k

A .
/ Kie(M\t) cos(kt)dt = Sml(ft)klg(xﬂo / Kie(\ 1) sin(kt)dt = O(
0

A
/ Koe(\ t)sin(kt)dt = —Coslikt)k%(uyo / Kaer(A, 1) cos(kt)dt = O(
0

From above equations,

e D (k) = ik{[n(d)] "3 [9(0)]F cos(kA) — iln(d)] ¥ [n(0)] " sin(kA)
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From n(r) := n(b — r), we have the following asymptotic expansion for D;(k) :

1S

i (5.28)

Dl(k) _ ikeik(a-{-b){%eilm + C1 ; C2 e_z'k,y 1 O(

where

crt = (n(a))"i(n(b))7 — (n(a))i(n(b) "1 (5.29)
= (n(a) 5 (n(b)) . (5.30)

We define E(k) as
E(k) = —ie"*@t) D, (k).

Then E(k) and D;(k) have the same roots and hence it suffices to only consider the
function E(k). It is easily seen that E(k) is an entire function of & of exponential type

~v. We are now in a position to prove the following theorem.

Theorem 5.1.1 1. Assume that n(a) # 1,n(b) # 1 and that either n(a) = n(b) or
n(a)n(b) = 1. Then there exist infinitely many real transmission eigenvalues.

2. Assume that n(a) # 1,n(b) # 1,n(a) # n(b) and n(a)n(b) # 1. Then there
exist infinitely many complex transmission eigenvalues which all lie in a strip in
the complex plane parallel to the real axis and at most a finite number of real
transmission eigenvalues.

Proof. 1. Ifn(a) =n(b) or n(a)n(b) =1, then either ¢; = 0 or ¢; = 0 (they cannot
be zero at the same time since n(a) and n(b) are not 1). Without loss of generality we

assume that ¢; = 0 and ¢ # 0. Then

E(k) etk — e—iky VIS
k‘ = C2 5 -+ O( ]{7 )
ie.
E(k) eVIS(E)|

= cosin(ky) + O(

. 5.31
This implies that there exists an infinite number of real zeros of E(k), i.e. an infinite

number of real transmission eigenvalues. In particular v can be determined by the

limiting spacing between two consecutive real eigenvalues.
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2. If n(a) # n(b) and n(a)n(b) # 1, then ¢; # 0,¢y # 0 and since n(a) # 1
and n(b) # 1, ¢; +¢o # 0 and ¢; — ¢ # 0. Then from (5.28)-(5.30) it follows that there
exists at most a finite number of real transmission eigenvalues (i.e. real values of k
such that E(k) = 0). By Hadamard’s factorization theorem and (5.28)-(5.30) again, it
follows that there must exist an infinite number of complex eigenvalues. To show that

all the complex eigenvalues lie in a strip in the complex plane parallel to the real axis,

let
c1+C C1—Co _i
T(k) = —5 ¢ 7+—2 e ",
Then
o E(k
eW“f)(—li ) _ T(k)) =0

as |S(k)| — oo. If E(k;) = 0 and |S(k;)| — oo, then e™SEDIT(E;) — 0 and this is a
contradiction since

[

R O e

Hence all the complex transmission eigenvalues must lie in a strip in the complex plane.

O

In the case when n(a) = n(b) = 1 we have that ¢; — ¢y = 0 and ¢; + ¢ = 0.

However in this case direct computation shows that

di+dy o dy—dy AIS ()
LE D iy, BB iy y

Dl(k> _ eik(aer){ 5 5 . )}

where

n'(a) +n'(b)

4 o 4 '

Then using the same arguments as above, we have the following theorem:

Theorem 5.1.2 Assume that n(a) = n(b) = 1. Then if either n'(a) = n'(b) # 0 or
n'(a) = —n'(b) # 0 there exist infinitely many real transmission eigenvalues. On the
other hand, if n'(a) # n'(b) and n'(a) # —n’(b), then there exist an infinite number of
complex transmission eigenvalues which all lie in a strip in the complex plane parallel

to the real axis and at most a finite number of real transmission eigenvalues.
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5.1.2 The Inverse Spectral Exterior Transmission Eigenvalue Problem
We now turn our attention to the inverse spectral problem and give conditions
under which two sets of spectral data uniquely determine n(r). This result is based on
Hadamard’s factorization theorem together with a theorem of Rundell and Sacks which
show that a coefficient in a certain class of hyperbolic equations is uniquely determined
by an appropriate set of overdetermined initial data. We consider the reduced exterior

transmission eigenvalue problem (5.7)-(5.10) where y(r) is continuously differentiable

across r = b and y(r),yo(r) are normalized such that y(r) = e for r > b and
yo(r) = e~ for r > b. In particular

y' 4+ E*n(r)y =0 in |a,00) 5.32

Y+ ko =0 in [a,00) 5.33

aoy(a) = boyo(a)

ot
w
ot

aoy'(a) = boyo(a)

—~ —~ —~ —~ —~
ot S ot S S
w w
=) H~

~— ~— ~— ~— ~—

—ikr

y(ry=¢e"", yo(r)=e in [b, o0]

efzkr

The problem corresponds to the incident field being the "nonphysical” source
which radiates inwards instead of outwards (such sources can be approximated arbi-
trarily closely by a finite number of ”physical” sources c.f. [51]). Our aim in this section
is to show that under appropriate assumptions a knowledge of the spectrum for both
(5.7)-(5.10) and (5.32)-(5.36) is sufficient to determine n(r). An investigation of the
location of the eigenvalues of (5.32)-(5.36) would be of interest but will not be done
here.

We define Dy(k) to be the determinant

Da(k) = det | (5.37)

and note that k is a transmission eigenvalue for (5.32)-(5.36) if and only if Dy(k) =
0. Under the assumption that n(a) = n(b),n(a) # 1 and n'(a) = n'(b) = 0 and
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representing y(r) in terms of transformation operators we have that

1

e D (k) = &k (n_i(a) - n%(a)> sin(k~) (5.38)
+ COSSW) (n_%(a) - n%(a)) /Ovp(s)ds

Y

- z'/7 sin(kt) fi(t)dt + [ cos(kt)g:(t)dt

and

e*e Dy (k) = —2ikcos(ky) —k (n’%(a) — n%(a)) sin(k7) (5.39)
_ lenky) Smém) /OWP(S)ds + —COS(QIW) <n*%(a) - n%(a)> /OVP(S)ds
+ z'/o7 sin(kt) fo(t)dt + /OAY cos(kt)ga(t)dt

where

fi(t) = =Ki(y,t) + ﬁKg(’y,t) (5.40)

g1(t) =172 (a) = Ko (7, 1) + 02 (a) = Ky (7, 1)

We are now in a position to prove the main result of this section.

Theorem 5.1.3 Assume that n(a) is known, n(a) = n(b), n(a) # 1, n’(a) = n'(b) =
0 and n(r) € C3[a,b]. Then n(r) is uniquely determined from a knowledge of the
transmission eigenvalues (including multiplicities) for (5.7)-(5.10) and (5.32)-(5.30).

Proof. From (5.31) we have that 7 is uniquely determined. Since D;(k) is an entire

function of exponential type we have from Hadamard’s factorization theorem that

e D (k) = ck™e I (1 — —)etn (5.41)
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for constants ¢, & and some integer m where {k, }°°, are the transmission eigenvalues

for (5.7)-(5.10). Since the transmission eigenvalues are assumed to be known, we know

Gk) =TI, (1 — —)etn . (5.42)

Hence from (5.31) and (5.41) we can determine « by taking logarithms and letting &
tend to infinity. Setting T} (k) := e~ D, (k) we have from (5.38) that

Ti(k) = ck™e*G (k) (5.43)
= k (n_%(a) - n%(a)> sin (k)

cos(ky) eIS(F)|

5 (n*%(a) - n%(a)> /07 p(s)ds + O( k: )

and hence for ¢ an integer we can compute

40+ 1 40+ 1
T (=) | (40 + 12 P G*(—=m) (5.4
T () GO0+ 5) (¢

as { — oo noting that by (5.43) the denominator in (5.44) is nonzero for ¢ sufficiently
large. From (5.43) we see that the left hand side (5.44) tends to 3 and hence the integer
m can be determined from (5.44). Finally, the constant ¢ in (5.41) can be uniquely
determined from (5.31) and (5.41) if n(a) is known, i.e. in this case D;(k) is uniquely
determined from the set {k,}>°, of the transmission eigenvalues for (5.7)-(5.10). In
exactly the same way we can determine Dy(k) from a knowledge of the transmission
eigenvalues for (5.32)-(5.36).
We can now conclude from (5.38) and (5.39) that

—i /7 sin(kt) f1(t)dt + /7 cos(kt) gy (t)dt (5.45)
i / " sin(kt) fo(1)dt + / " cos(kt)gs (1)t (5.46)

are both uniquely determined (noting that these terms are O(3)). Now note that
f1(t), fa(t), g1(t), go(t) are all real valued. Hence, setting k = %’r in (5.45) and (5.46)

and noting that {sin(%)}g’il and {cos(%)}?io are basis for L%[0,7], we see that
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f1(t), fo(t), g1(t), go(t) are uniquely determined. From ( 5.40) we now have that (%Kl (v, 1)
and a%Kg('y, t) are uniquely determined. Hence, following Rundell and Sacks [75], we
can conclude that p € C'[0,~] is uniquely determined and from this it is easily seen

that n(r) is uniquely determined (c.f [25] or section 9.4 of [9]). O

5.2 Distribution of Interior Transmission Eigenvalues
We consider the case of a spherically stratified medium with (normalized) sup-
port {z : |x| < 1 } and spherically symmetric eigenfunctions, i.e. the eigenvalue

problem

2 2
w” + Zw' + En(r)w = 0, '+ S+ K =0, 0<r<l1
r

where n(r) > 0 and both w(0) and v(0) must be finite. Setting y(r) = rw(r), yo(r) =

rv(r), then
y" + k*n(r)y =0, 0<r<l1 (5.47)
Yy + k*yo = 0, 0<r<l1 (5.48)
y(0) = 40(0) =0, y(1) = yo(1), y'(1) = yo(1). (5.49)

The eigenvalue problem (6.42)-(5.49) is called the interior transmission eigenvalue
problem for a spherically stratified medium and values of k£ for which a nontrivial
solution of (6.42)-(5.49) exist are called interior transmission eigenvalues. As shown
in [29], and subsequently in many papers and books (c.f. [9,24,66]), the eigenvalues

are the zeros of the entire function
d(k) := y(1) cos(k) — v/ (1) sin(k) /k. (5.50)

The function d(k) is entire as a function of k and goes to zero in the order of O(1/k)
as k goes to infinity along the real line [9].
Let § := fol /n(t)dt. It was shown in [9] (see also [24]) that an infinite number

of real transmission eigenvalues exist under the assumptions that n(1) # 1 and § # 1.
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There was the question whether complex eigenvalues could exist. It was shown that

the function d(k) has the asymptotic expansion
1
d(k) = E(B sin(kd) cos(k) — C cos(kd) sin(k)) + O(1/k?)

for k going to infinity along the real axis where

= —1 = w 1/4 an = 1 n
B o O <n(0)> d 5_/0 Jad.  (5.51)

Using this expansion plus the assumptions that both § # 1 and n(1) # 1, it was shown
in [25] that infinitely many complex transmission eigenvalues in fact exist and they
lie in a strip parallel to the real axis. Lastly, a recent article [80] of Sylvester has a
detailed study on the distribution of transmission eigenvalues when n(r) is a constant.

Our main goal here is to investigate the cases when one of the parameters ¢ or
n(1) is 1 with the extra assumption that the refractive index n € C?[0,1]. In the case
when ¢ = 1 we show that it is possible to have all the eigenvalues being real. If n(1) =1,
then in general an infinite number of complex eigenvalues are present. However, in
contrast to the case when n(1) # 1, these eigenvalues no longer lie in a strip parallel
to the real axis. We will also provide an example with all the transmission eigenvalues
being complex when both parameters § and n(1) are 1. Finally we will consider the
case when the medium is absorbing and show that under appropriate assumption there
are an infinite number of eigenvalues that accumulate near the real axis.

We will always assume that n(r) is not identically equal to one.

5.2.1 Non-absorbing Medium

We first recall a classical result due to Levinson .

Definition 5.2.1 The entire function f(z) is of order p if

——— loglog M(r)
lim —————=
r—00 logr

Here M (r) denotes the mazimum modulus of f(z) on |z| = 7.

99



Definition 5.2.2 The entire function f(z) of positive order p is of type T if

Tm MO _
r—00 rP

One of the important theorems involving entire functions of exponential type is

the Paley-Wiener Theorem [57].

Theorem 5.2.1 The entire function f(z) is of exponential type < T and belongs to L*

on the real axis if and only if

£(2) = /_ "ot e di (5.52)

for some ¢(t) € L*(—7,7).
f(2) is of type T if ¢(t) does not vanish almost everywhere in a neighborhood of
T (or of —7) .

We say that an entire function belongs to the Paley Wiener class if it has the repre-

sentation given in (5.52).

Corollary 5.2.1 Suppose f(z) and g(z) are in the Paley Wiener class of types T and
o respectively. If o < T, then the sum f(z) + g(z) is of type T.

To employ the theorem in the next section, we note that a sine transform [ 4 (t) sin(zt)dt
can be expressed as [7_¢(t)e’dt for some complex valued ¢(t) on [—7, 7] if ¥(t) is ex-
tended onto the interval [—7, 0] appropriately.

Let n(r) denote the number of zeros of an entire function f(z) in the right half
plane with |z| < r. One can also define a corresponding function n_(r) for the zeros in
the left half plane. Our tool of counting the density of the complex zeros of the entire

function d(k) is the following extension of a theorem due to Cartwright [57].

Theorem 5.2.2 Let the entire function f(z) of exponential type be such that

(a) /OO de < oo (5.53)

o0
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and suppose that

log | f(iy)l _ _
(b) T o (5.54)

Then
iy ) T

r—00 r 7r'
This limit 7/7 will be called the density of all the zeros of f(z) on the right half
plane. To apply these two theorems to count the number of complex zeros of a given

entire function, we first establish the following results.

Corollary 5.2.2 Let 7 > 0 be fized. Suppose a real valued entire function f(z) has
the form
f(z) :=sin(rz+ a) + P(t)e dt

—T

with a being a real constant and ¢(t) a possibly complex valued function continuous on

[—7,7]. Then the zeros of f(z) have density T/7 on the right half plane.

Proof. The function |f(x)| is bounded on the real axis for z real. Condition (a) in

the previous theorem holds trivially. Along the positive imaginary y axis, i.e. z = iy

fliy) =e™ (6 € 2Ty_6 “ / o(t) ey —T—t) dt>

Qe QTy_e (2]

g |7(is)] = 7y +log (= + [ s d).

with y > 0,

Inside the logarithm on the right, the limit is (ie™*)/2 as y goes up to infinity, so we

get
i o8 lf @)l _
Y—00 y

The proof of the limit along the negative y axis runs similarly. Thus we have verified

condition (b) in Theorem 2.5. O

Corollary 5.2.3 Let f(z) be a real entire function in the Paley Wiener class of type
at most . Suppose 2% f(x) = sin(rz) + O(1/x) as x goes to infinity on the real azis.
Then f(z) is of type T.
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Proof. The density of the positive zeros of f(z) is 7/m. So the type of f(z) must be

at least 7, so it is equal to 7. O

In the next result, we are setting up conditions to prove the finiteness of the
number of complex roots. The assumptions are not the best possible. The number 7
below is assumed to be a positive number. The following theorem is a consequence of

the Phragmén-Lindel6f maximum principle( [7], Theorem 6.2.6).
Theorem 5.2.3 Let g(z) be a real entire function of exponential type. Suppose
1. |g(z)| <M Vz € (—o0,00), and

2.
1 )
i 08 l9(iy)| <7
y—+oo ’y|
Then |g(z + iy)| < M cosh(ry).
For later use, we note that functions of the form sin(z fo )sin(zt)dt and
cos(z fo )sin(zt)dt satisfy the assumptions in the theorem with 7 = 1 4+ ¢ when

¢(t) is continuous on [0, J].

Corollary 5.2.4 Let h(z) be a real entire function in the Paley Wiener class of type
at most T and h(z) = O(1/z) when x is large. Then f(z) :=sin(rz) + h(z) is of type

7 and has at most a finite number of complex zeros.

Proof. To prove the first part of the corollary, we note that f(z) is of type at most
7 based on the property of h(z). On the real axis, h(z) goes to 0 as = goes to infinity.
Hence the density of the real zeros on the positive real axis is 7/m. So the density of
all the zeros on the right half plane is at least 7/7. Using Levinson’s Theorem, we see
that the type of f(z) is 7.

Let 7 = 1. The general case follows from dilation. From the theorem above,

there exists a real number M such that

cosh(y) |

e+ )| < M
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We set up a symmetric rectangle R with vertices at £(n+ 1/2)7 +14Y, with n being an
integer and Y a large positive real number. Our aim is to show that |f(z) — sin(2)| =
|h(2)| < |sin(z)| for z on the boundary of R. An application of Rouché’s theorem
shows that f(z) and sin(z) have the same number of zeros inside R.

For z = x + iy, |sin(z)|> = sin?(z) + sinh?(y) whose value is 1 + sinh?(y) on a

vertical side of R. Since
M cosh(y) < |z[y/1+ sinh?(y)

when Re(z) is large, |h(z)| < |sin(z)| there. On a horizontal segment of R |sin(z)| >

| sinh(y)|. So
cosh(y)

||

when Im(z) =Y is large enough. Altogether, |f(z) — sin(z)| < |sin(z)| on the four

h(z +iy)| < M < |sinh(y)| < [sin(2)|

edges of the rectangle.
When Re(z) = x is large, |h(x)| is small. So all the zeros of f(z) are real and

are close to that of sin(z). O

As noted earlier, when both parameters § # 1 and n(1) # 1, the entire function
d(k) has infinitely many real and complex zeros. The main theme of this paper is to
show that this situation is drastically different when one of these parameters is 1. If
both are 1, then it is possible to have all zeros complex.

Our method to locate the zeros of the function d(k) as a function of the pa-
rameters n(1) and § := fol mdt hinges on the Levitan-Gelfand formulation of the
Sturm-Liouville problem. We assume that n € C?[0,1]. Using the Liouville transfor-

mation

¢ /0 /nld) dt (5.55)

and setting

2(&) =n(r)y(r), r = r©), (5.56)
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we can rewrite

as

2 (k= p(€)z =0 (5.57)

where

n'(r) 5 ((r)?
an2(r) 16 n3(r)

p(&) = (5.58)

From [9], we can represent z(&) in the form

sin ¢ sin
6) = n(01)1/4[ ](ffH /0 K(£,1) ékt) dt] (5.59)

Then

sin(k€) sin(kt)

¢
Z'(€) = W [cos(k:g) + RO — +/O Ke(&,t)—— dt} . (5.60)

Here K (,t) is the unique solution of

Kﬁé — Ky —p(f)K =0

K(f,O) = 0
3
K6 = 3 [ pas

This partial differential equation for K(,t) is defined on the triangular region A, :=
0<t<¢<§=¢(1). It is shown in [9] that K(£,t) can be constructed in a straight
forward manner by the method of successive approximations. It is a C? function on
the closure of A, if p(&) is assumed to be continuous on [0, d]. Set a := n(0)*/*. From
(5.59) and (5.60), we have

(0) = %[sin(ké)—l— /0 6K(5,t)sin(kt)dt}

2(6) = 1k‘ [kcos(ké) + K(6,0) sin(kd) —l—/(5 K¢(0,t)sin(kt) dt| .

«
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We note that each of these two entire functions is of type 0 as a function of k. Since

2(€) = n(r)Y*y(r) we have that

(1) = n()Y*(a) — 4:(,82/4y(1).

The entire function d(k) = y(1) cos(k) — v/ (1) sin(k)/k first defined in (5.50) is of type

at most & + 1 and can be rewritten as

d(k) = {;‘()f)(ﬁ + 4:<S§ - Smk(k)} 2(6) - n<1)1/4—smljk)z'(a). (5.61)

Before expanding d(k) out, let us perform one integration by parts on z(d) to transform

it into
1 0
20) = L Jsin(or) — K(0,)20K) | / K, (6.0 (5.62)
ak k 0 k
In terms of the kernel function K (¢, ), we have
B cos(k) n'(1)  sin(k)
dk) = (akn(1)1/4 * 4dan(1)%/4 k2

X (sin(ké) — K(6,4) Cosliké) + / ’ K,(5,1) Coslikt) dt)

B n(l)l/ojksm(k’) [k;cos(kfs) + K(6,0) sin(kd) + /06 K¢(0,t) sin(kt) dt} .

We multiply both sides above by an(1)"/*k to arrive at

an(1)*kd(k) = (COS%)*%)

(sin(ka) _ K (5,0)S5 ) /0 " (5,0 S R) dt)

X

k k

- mn# [kcos(kd)—irK((S, 5) sin(ks) + /0  Ke(5.1) sin(kt)dt}.

Let D(k) := an(1)"*kd(k). After expanding the right hand side and collecting terms
of similar order of decay as k goes to infinity along the real line, we have the following

formulation

D(k) :== an(1)Y* kd(k) = cos(k) sin(kd) — \/n(1) sin(k) cos(kd) + H(k)  (5.63)
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Hty = (2 i) SO g 5 st o)

4n(1) k k
- %K(M)sm(k);os(ké) +COS / K.(6,1) cos(kt)d
oyt / Ke(6, 1) sin(kt)dt + f((ll (6,¢) cos(kt)dt.

The function kH (k) is bounded on the real line and is of exponential type < ¢ + 1.
The first two terms on the right hand side of (5.63) can be written as

T(k) := % /n(l) sin((0 + 1)k) + HTn(l) sin((6 — 1)k) (5.64)

while all the other terms are O(1/k) for k large. When both n(1) # 1 and § # 1, we see
that density of the zeros of d(k) is (6+1)/m. In general, there are many situations that
infinitely many of them are complex. Interesting patterns of the location of the zeros
can be generated by picking an n(r) with § = fol mdt close to 1 as the example
below shows. However the exact conditions to determine the existence of complex
eigenvalues are still lacking.

Since the refractive index n(r) is defined to be one for r > 1, a natural assump-
tion is to let n(1) = 1 and n/(1) = 0. We intend to show that an infinite number of

complex eigenvalues are present under the additional assumptions n”(1) # 0 and § # 1.

Theorem 5.2.4 Suppose the refractive index n € C?[0,1] with n(1) = 1, n’(1) = 0
and § # 1. Then under the extra assumption that n”(1) # 0 the entire function d(k)

has infinitely many complex zeros and infinitely many real zeros.

Proof. With the given parameters n(1) = 1 and n’(1) = 0, we have that

cos((6 — 1)k)
k

Sln

D(k) = sin((5 — 1)k) — K(5,0)

cos(k / K(5,1) cos(kt) dt — / Ke(,t) sin(kt) dt.
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If we perform an integration by parts on the last two integrals, we see that

cos((6 — 1)k) cos(k) sin(ko) N sin(k) cos(kd)
k k2 k2

+$M%UMC%l/@é%ﬂ%ﬁfmt/&ﬂﬂmww.

D(k) = —K(5,0) + K,(6,6) Ke(5,6)

Note that we simplified one of the integrated terms using the fact that K¢(5,0) = 0
since K (&,0) = 0.
Using a trigonometric identity, the terms of order O(1/k?) can be written as

Ky(6,0)
2k2 (

sin((6 + 1)k) +sin((6 — 1)k)) + Kz(lff) (sin((6 + 1)k) — sin((6 — 1)k)).

According to Corollary 5.2.3, the sum of this expression with the remainder term which
is of order O(1/k?) is an entire function of type (64 1) if the coefficient of sin((d + 1)k)
(which equals to (K;(9, ) + K¢(6,0))/2) is nonzero. Since

£
K6 =5 [ alo)is

for 0 < ¢ < 0, the term Ky(0,6) + K¢(9,0) is equal to ’@. From (3.4), we see that
p(6) =n"(1)/4 since n(1) =1 and n'(1) =0 .
In summary, under the given assumptions, the asymptotic expansion of D(k)

has the form

K(4,0)
k

sin((0 — 1)k) +

D(k) = sin((0 —1)k) —

K, — K, K, + K¢
2%? 2%?

with K(4,9) fo s)ds)/2 and (K; + K¢)/2 = n"(1)/8.
If § # 1, we see from Corollaries 5.2.1 and 5.2.3 that D(k) is of type § + 1.

cos((d — 1)k)

+ sin((0 + 1)k) + O(1/K?)

Since the leading term sin((0 — 1)k) generates an infinite set of positive real zeros with
density equal to |1 — §|/7 while the density of all the zeros on right half plane equal to

(0 + 1)/7 we have both infinitely many real and complex zeros. O

It was proved in [25] that the zeros of D(k) lie in a strip parallel to the real axis
if n(1) # 1. We now show that if n(1) = 1, the imaginary parts of the zeros cannot

stay bounded as their real parts move to the right.
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Iy

Iy

Figure 5.1: An example of the strip

Theorem 5.2.5 Suppose the refractive index n € C?[0,1] with n(1) = 1 and 6 # 1.
If either n/(1) or n”(1) is non-zero, the zeros of D(k) do not lie inside a fived strip

parallel to the real axis.

Proof. Recalling from (5.63)-(5.64) with n(1) =1, D(k) := akd(k) = sin((d —1)k) +
H(k), where H(k) can be written as

(1 )0038(15:5—1— Dk) (K(5,8) — n'(1)/2) M + O(1/k?).

The real entire function H (k) is in the Paley Wiener class. We express H (k) = h(k)/k
with h(k) being an entire function bounded on the real axis. According to Theorem
5.2.3, there is a constant M such that |h(k)| < M cosh(ry) for k = = + iy.

Assume on the contrary that the zeros of D(k) lie in a fixed strip parallel to

the real axis. Now consider a rectangular region lying in the strip as in Figure 5.1

(2m+1D)x
2[6—1]

with I's and I'y intersecting the real axis at for an integer m. On the two
vertical boundaries, |sin((§ — 1)k)|?> = sinh®((6 — 1)y) + 1. This value is at least 1. So
|D(k)—sin((6 —1)k)| = |h(k)/k| < M cosh(ty)/|k| < |sin((6d —1)k)| for y bounded and
|k| large. The inequality also holds on two fixed horizontal boundaries for |k| large.
Thus we have proved that |D(k) — sin((0 — 1)k)| < |sin((0 — 1)k)| on all four sides
of the rectangle when Re(k) is large. By Rouché theorem D(k) has the same density

of zeros as sin((6 — 1)k) inside a rectangle with fixed height. When I'y moves out to

infinity, the density of zeros inside this infinite strip is |0 — 1|/7. However the density
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of all the complex zeros is (§ + 1)/m. This shows that the zeros of D(k) cannot lie

inside a fixed horizontal strip. O

Remark 5.2.1 We did not consider the case n(1) = 1 and n'(1) # 0 in the theorem

above. However in this case it is quite easy to deduce from (5.63) that

D(k) = sin((§ — 1)k) + % (”/S) sin(k) sin(6k) — K (8, 5) cos((6 — 1)k:)) +O(1/K).

When n'(1) # 0, the density of all the zeros on the right half plane is still (§ + 1)/m

and the density of the real zeros is |0 — 1|/m.

An investigation of eigenvalues in the case § = 1 gives a number of surprising
results. In particular we will show that in this case it is possible to have all real

eigenvalues or all complex eigenvalues.

Theorem 5.2.6 Let the refractive index n € C?[0,1]. Suppose § = 1 and n(1) # 1.
Then there are at most finitely many complex transmission eigenvalues. However if

both § =1 and n(1) = 1, then it is possible to have only finitely many real eigenvalues.

Proof. The theoretical aspect is pretty straight forward. If § = 1, then from (5.63)-
(5.64) we have that D(k) has the form

D(k) = Loyl V2”(1) sin(2k) + G(k) (5.65)

where
Gk) = (Zn((ll)) _ /r(DK(, 1)) Smk(k’) _K(1, 1)C°Sk(k) +0(1/k)
_ (Zn((?) ~ /K1) + K1, 1)) Smk(k) _ K(i’ Y oa/m)

The term sin(2k) dominates the sum for D(k) when k is large along the real axis and
we see that the density of the real zeros is 2/7. The function D(k) vanishes at the
origin, so the term G(k) has a zero at the origin.

If we multiply the entire equation by k, we see that kG(k) is an entire function

of type two and there are at most finitely many complex roots as shown by Corollary
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5.2.3 and Corollary 5.2.3 (We will show examples below with one where all the roots
are real and another with a few complex roots at the beginning and then all real roots
afterwards).

If both § =1 and n(1) = 1, the expression in (5.65) gives

n'(1) sin?(k)

D(k) = (5

k(1 1))% +O(1/12).

So if [n/(1)] < 4|K(1,1)], then D(k) will be either strictly positive or strictly negative
for large k. Hence there are at most finitely many real zeros.
Finally if in addition n/(1) = 0 then

K(1,1)
k

D(k) = G(k) = — +O(1/k2).

Again, there will be only a finite number of real zeros if K(1,1) # 0. Surprisingly, a
simple constraint like n/(0) < 0 will show that K(1,1) > 0 since

okt = [ pete = [ (- 20 o)

2
16 n(x)
1 " / 2
_ / n'(z) 5 n(z s
0 16
3n

An(z)3/2 n(z)?/?
B n’(0) n'(z)? 5 n/(z)?
= Ty /0 Sn@p?  W6u()?
/(l‘)2

__ n(0)
- _®w®W2+16/‘ (ﬁﬂ

5.2.2 Absorbing Medium

In this last section of this chapter we turn our attention to the case when the
medium is absorbing, i.e. the index of refraction is complex valued. In this case, we
cannot in general expect that real transmission eigenvalues exist (Theorem 8.12 of [24]).
However we will show that under appropriate assumption there exist an infinite number

of transmission eigenvalues that lie arbitrary close to the real axis.
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For the case of absorbing media, the interior transmission eigenvalue problem

becomes (c.f. [11])

W'+ 2w+ k2 ey (r) + i D)w =0, 0<r<1 (5.66)
V420 + ke + i) v =0, 0<r<]1 (5.67)
w(l) =v(1), w'(1)=v'(1); (5.68)

where ¢€;(r) and 7, (r) are continuous for 0 < r < 1, €;(1) = ¢ and ¢ and v, are

positive constants. We look for a solution of (5.66) - (5.68) in the form

v(r) = crjo(knor) (5.69)

w(r) = 2 (5.70)

where n, = /€9 + Z%O (where the branch cut is chosen such that n, has a positive real

part), jo is a spherical Bessel function of order zero, y(r) is a solution of

'+ R+ 0y <o 57)

for 0 < r < 1 and ¢; and ¢y are constants. Then there exist constants ¢; and ¢y not

both zero, such that (5.69) will be a nontrivial solution of (5.66) - (5.68) provided that

1 _sin(kno)
ak) = pet | ¥V k — 0.

y'(1) —n,cos(kn,)

Theorem 5.2.7 If ]—% = fol \}%dp and /ey # fol Vei(p)dp. Then there ezist an

infinite number of transmission eigenvalues that are arbitrarily near the real axis.

Proof. Assume the contrary. Then we can choose a semi-infinite strip parallel to the
real axis such that there are no (complex) eigenvalues in the srip. (see Figure 5.1).

Since
[ mp)

- dp7
Veéo 0 e1(p)

111



it is seen from [11] that

= ! sinh |4 Ve( — ' ()
yir) = ik[e1(0)ey ()] b k/ p)ip \/61_ +O< )

holds uniformly for k£ in the strip. Then

1

i) = ———sin (v~ [ Valik) <06 6)

ik[e1(0)eg)t

Let 7 := /ey — fol Ve(p)dp and S(k) := —L——sin(rk). Consider the finite strip

ikle1(0)eo] 4

shown in Figure 5.1 where I's and I'y intersect with the real axis at @mt1)m

5 for an
—

integer m.
We will show that |d(k) — S(k)| < |S(k)| for large enough |k| on the boundary
of the rectangular strip. Indeed, let k = a4+ i3. Then

B
[kl[e1(0)eo]

Then on the boundaries I's and I'y we have

1S (k)| = e 77\ (1 - €27)2 4 427 sin?(ar).

S <>|zm>|d<> S(k)

and on the boundaries I'y and I'y

[S(k)| > [d(k) = S(F)]

for the real part of k£ sufficiently large. Now we can apply Rouché’s theorem to see
that d(k) and S(k) have the same number of zeros in the strip shown in Figure 5.1. By
letting the right hand side of the strip move to infinity, we see that d(k) and S(k) have
the same number of zeros in this semi-infinite strip. Note that since =% are the zeros of
S(k), then S(k) has infinitely many zeros in the strip. Hence d(k) has 1nﬁnitely many

zeros in the strip which is a contradiction to our assumption. O
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Chapter 6

BOUNDARY INTEGRAL EQUATIONS FOR THE INTERIOR
TRANSMISSION PROBLEM FOR MAXWELL’S EQUATIONS

The transmission eigenvalue problem is genuinely related to the scattering prob-
lem for an inhomogeneous media. In this chapter the underlying scattering problem
is the scattering of electromagnetic waves by a (possibly anisotropic) non-magnetic
material of bounded support D situated in homogenous background, which in terms

of the electric field reads:

curl curl E* — k2E* = ( in R*\ D (6.1)
curlcurl E — k2NE = 0 in D (6.2)
vXE=vxE+vxE on 0D (6.3)
vxculE=v x curlE* + v x curlE*  on 9D (6.4)
lim (curl E® x x —ikrE®) =0 (6.5)

T—00

where E’ is the incident electric field, E* is the scattered electric field and N(z) =

responding to the background and the frequency w and the Silver-Miiller radiation

is the matrix index of refraction, k = w,/€yuo is the wave number cor-

condition is satisfied uniformly with respect to & = x/r, r = |z|. The difference N — 1,
in the following, is refereed to as the contrast in the media. In scattering theory, trans-
mission eigenvalues can be seen as the extension of the notion of resonant frequencies

for impenetrable objects to the case of penetrable media. The transmission eigenvalue
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problem is related to non-scattering incident fields. Indeed, if E? is such that E* = 0

then E|p and Eq = E’|p satisfy the following homogenous problem

curlcurl E — k?NE = 0 in D (6.6)
curl curl Eg — k?Ey = 0 in D (6.7)

vxE=vxE on 0D (6.8)
vxcurlE=vxcurlEg on 9D (6.9)

which is referred to as the transmission eigenvalue problem. Conversely, if (6.6)-(6.9)
has a nontrivial solution E and Ey and Eq can be extended outside D as a solution to
curl curl Eg — k2E, = 0, then if this extended Eq is considered as the incident field the
corresponding scattered field is E* = 0.

The transmission eigenvalue problem is a nonlinear and non-selfadjoint eigen-
value problem that is not covered by the standard theory of eigenvalue problems for
elliptic equations. For a long time research on the transmission eigenvalue problem
mainly focussed on showing that transmission eigenvalues form at most a discrete set
and we refer the reader to the survey paper [18] for the state of the art on this question
up to 2010. From a practical point of view the question of discreteness was important
to answer, since sampling methods for reconstructing the support of an inhomogeneous
medium [9,24] fail if the interrogating frequency corresponds to a transmission eigen-
value. On the other hand, due to the non-selfadjointness of the transmission eigenvalue
problem, the existence of transmission eigenvalues for non-spherically stratified media
remained open for more than 20 years until Sylvester and Paivérinta [70] showed the
existence of at least one transmission eigenvalue provided that the contrast in the
medium is large enough for the scalar. A full answer on the existence of transmis-
sion eigenvalues was given by Cakoni, Gintides and Haddar [15] where the existence
of an infinite set of transmission eigenvalue was proven only under the assumption
that the contrast in the medium does not change sign and is bounded away from zero
(see also [14,20,32,52] for Maxwell’s equation). Since the appearance of these papers

there has been an explosion of interest in the transmission eigenvalue problem and the
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papers in the Special Issue of Inverse Problems on Transmission Eigenvalues, Volume
29, Number 10, October 2013, are representative of the myriad directions that this
research has taken.

The discreteness and existence of transmission eigenvalues is very well under-
stood under the assumption that the contrast does not change sign in all of D. Recently,
for the scalar Helmholtz type equation, several papers have appeared addressing both
the question of discreteness and existence of transmission eigenvalue assuming that
the contrast is of one sign only in a neighborhood of the inhomogeneity’s boundary
0D, [8,28,33,59,60,76,79]. The picture is not the same for the transmission eigenvalue
problem for the Maxwell’s equation. The only result in this direction is the proof of dis-
creteness of transmission eigenvalues in [22] for magnetic materials, i.e. when there is
contrast in both the electric prematurity and magnetic permeability. The T-coercivity
approach used in [22] does not apply to our problem (6.6)-(6.9), which mathematically
has a different structure form the case of magnetic materials and this paper is dedicated
to study the discreteness of transmission eigenvalues for the considered problem under
weaker assumption of N — I. Before specifying our assumptions and approach let us

rigorously formulate our transmission eigenvalue problem.

Formulation of the Problem: Let D € R? be a bounded open and connected region
with C%-smooth boundary D := T (we call it T for notational convenience as will be
seen later) and let v denote the outward unit normal vector on I". In general we consider
a 3 x 3 matrix-valued function N with L>(D) entries such that -Re(N)¢ > o > 0 and
E-Im(N)¢ > 0in D for every £ € C3, |¢| = 1. The transmission eigenvalue problem
can be formulated as finding E, Ey € L?(D), E — Eq € Hy(curl®, D) that satisfy

curlcurl E — k?NE = 0 in D (6.10)
curlcurl Eg — k?Eq =0  in D (6.11)

vx E=vxEg on I (6.12)
vxcuwlE=vxculE, on T (6.13)

115



where

L’(D):={u:u; € L*(D),j = 1,2,3},
H(curl?, D) := {u:u € L*(D), curlu € L*(D) and curlcurlu € L*(D)},

Ho(curl?, D) := {u:u € H(curl?, D),vu =0 and y,curlu=0on T} .

Definition 6.0.3 Values of k € C for which the (6.10)-(6.13) has a nontrivial solution

E,E, € L2(D), E — E; € Hy(curl®, D) are called transmission eigenvalues.

It is well-known [20,37] that, if ®(/N —I) has one sign in D the transmission eigenvalues
form at most a discrete set with +oo as the only possible accumulation point, and if
in addition J(N) = 0, there exists an infinite set of real transmission eigenvalues. Our
main concern is to understand the structure of the transmission eigenvalue problem
in the case when (N — I) changes sign inside D. More specifically in this case we
show that the transmission eigenvalues form at most a discrete set using an equivalent
integral equation formulation of the transmission eigenvalue problem following the
boundary integral equations approach developed in [33]. The assumption on the real
part of the contract N — I that we need in our analysis will become more precise later
in the paper, but roughly speaking in our approach we allow for ®(N — I) to change
sign in a compact subset of D. To this end, in the next section we consider the simplest
case when the electric permittivity is constant, i.e. N = nl with positive n # 1, for
which we develop and analyze an equivalent system of integral equations formulation of
the corresponding transmission eigenvalue problem. This system of integral equations
will then be a building block to study the more general case of the electric permittivity
N. We note that the extension to Maxwell’s equations of the approach in [33] is
not a trivial task due to the more peculiar mapping properties of the electromagnetic

boundary integral operators.
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6.1 Boundary Integral Equations for Constant Electric Permittivity

Let n > 0 be a constant such that n # 1 and consider the problem of finding
E,E; € L2(D), E — Ey € Hy(curl?, D) that satisfy

curlcwrl E— k*nE=0 in D (6.14)
curlcurlEg — k*Eq =0 in D (6.15)
vxE=vxE, on T (6.16)

vX (curlE) =v x (curlEy) on T (6.17)

In the following we denote by k; := ky/n. Before formulating the transmission eigen-
value problem as an equivalent system of boundary integral equations, we recall several
integral operators and study their mapping properties. To this end, let us define the
Hilbert spaces of tangential fields defined on I':

H*2(div, I) := {u € H}*(T"), divru € H*(T')},

H**2(curl, T') := {u € H;*(T'), curlru € H*(T')}

endowed with the respective natural norms, where curlr and divp are the surface
curl and divergence operator, respectively, and for later use Vr denotes the tangential
gradient operator. (Note that the boldface indicate vector spaces of vector fields,
whereas non-bold face indicate vector spaces of scalar fields.) If yru = v X (u x v)
denotes the tangential trace of a vector field u on the boundary I', we define the

boundary integral operators:

Ty (u) = %% (k:2 /F By, y)uly) ds, + Vi /F By (-, y)div ru(y) dsy) (6.18)

and
Ky(u) :==r (curl /FCIDk(',y)u(y) dsy) (6.19)
where .
Pp(z,y) = %T; j_;:
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is the fundament solution of the Helmholtz equation Au + k?u = 0. Referring to [33]
and [67] for the mapping properties of the single layer potential

Su(i) = / (- y)ely)ds, (6.20)

with scalar densities ¢, we have that the boundary integral operator

Su(w) = [ (. y)uly)ds (6.21)

acting on vector fields u, is bounded from H=2+5(T") to Hzt*(I") for —1 < s < 1, hence

3
2

T, : H > 2(div,I') — H 272 (curl, T)
K, : H 2 3(div,T") — H 22 (curl, )
are bounded linear operators. Now from Stratton-Chu formula [24] we have that

Eo(x) = curl /F(Eg x v)(y)Pr(x,y)ds, +/F(curl Eo x v)(y)Pk(x,y)ds,

1 .
+ EV/FleF(CUﬂEO x v)(y)Pr(x,y)ds, for xe D
with similar expression for E where k is replaced by ki := ky/n, then we have the
integral expression for E — Ey. Note by taking the difference E — E; we have the

corresponding kernel @y, (x,y) — Px(x, y) is a smooth function of z, y, then approaching

the boundary I' and noting E x v = Ey X v and curl E x v = curl Ey x v we have

1
wE-E) = (Ki—Kg)(Exv)+ E(Tk — Ty, (curl Ey x v)

yreurl (E — Ey) = (K — Ky,)(curl Eg x v) + E(Ty — Tk, ) (Eo X v).

From the boundary conditions (6.16) and (6.17) we have yr(E—Eq) = 0 and yrcurl (E—
Eo) = O, ie.

1 1
Ki(Ey x v) + ETk(curl Eyxv) — Ky (Exv)+ k—Tkl (curl E x v) = 0(6.22)
1

Ki(curlEg x v) + kTi(Eg x v) — K, (curlE x v) + k' Ty, (E x v) = 0.(6.23)
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Introducing M = E x v = Eg x v and J = curl E X v = curl Ey X v, we arrive at the

following homogeneous system of boundary integral equations

ki Ty, — kT, Ki, — K M _ 0 (6.24)
Ky, — Ky %T,~€1 - %Tk J 0
for the unknowns M and J. Let us define by
k1 Ty, — kT Ky, — K kv/nTy m — kT K. n»—K
L(k) 1Ty k k k _ VT k kv k 6.25)
Kkl — Kk k_llTkl — %Tk Kk\/ﬁ — Kk ﬁﬁTk\/ﬁ — %Tk

Note that while the operator Kj, — K} is smoothing pseudo-differential operator of
order -2 (see e.g. [33] and [42]), the operators in the main diagonal have a mixed

structure. Indeed, from the expressions

k1 Ty, — KTy = (kiSk, — k*Sk) + Vr o (Sg, — Sk) o divy (6.26)
1 1 1 1 ,
k_lTkl — ETk = (Sk1 - Sk) -+ VF o) (k—%Skl — ﬁ8k> e} leF

where S and S are defined by (6.20) and (6.21) respectively, we can see that these
operators have different behavior component-wise. Hence a more delicate analysis is
called for to find the correct functional spaces for M, J and their dual spaces in order

to analyze the mapping properties of the operator L(k).

Lemma 6.1.1 The dual space of H2~2(div,T) is H™ 22 (curl, ). Foru' € H 22 (curl, )
and u € H 272 (div,T), (u’,u) is a understood by duality with respect to LX) as a
prvot space.

Proof. For any tangential fields u € H 22(div,T") and u € H 22 (curl, '), we
consider the corresponding Helmholtz orthogonal decomposition

u = curl rqg+ Vpp, u'= curl rq' + Vrp'.

Since divru = divrVrp = Arp € H’%(F) we have by eigensystem expansion (e.g. [69])
that Vpp € H2(I). Similarly, from the fact that curlpu’ € H2 (') we obtain that
mpqt € H2(I'). Now
(u',u) = <Cmrqt + Vrp', Cﬁrq + Vrp>
= <c‘ur7pqt, mrq> + (Vrp, Vrp').
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Hence the right hand side is well defined in the sense of duality of H2 (I')-H~2(I') and
H:(T')-H 2(T), hence H 22 (curl, ') is in the dual space of H™22(div,T).
Furthermore, if u* = mpqt + Vrp' is in the dual space of H™2~2 (div, '), then

(u',-) is continuous and linear on H=2~2(div,T"). Then for u = aﬁpq
<ut, 11> = <(ﬁpqt, Cmpq> .

Notice curl rq is only in H_%(F), therefore by eigensystem analysis curl rq' € H%(F)
and curlpcﬁpqt € H%(F), ie. curlpu! € H%(F). Now for u = Vrp where Vrp €
H:(T)

<ut7 u> = <Vl—‘pt7 VFP> .
Then Vip! € H™2(T'). Therefore u! € H™2'2 (curl, I'). Now we have proved the lemma.
0

In the following the spaces H™32(div,T') and H 22 (curl,T) are considered
dual to each other in the duality defined in Lemma 6.1.1. In the next lemma we

establish some mapping properties of the operator L(k) given by (6.25).

Lemma 6.1.2 For a fixed k, the linear operator

(I) x H 5 3 (div, ') — H2(I) x H 53 (curl, T)

is bounded. Moreover, the family of operators L(k) depends analytically on k € C\IR_.

Proof. Let E,E, € L?(D), E — Ey € Hy(curl?, D) be a solution to the transmission

eigenvalue problem (6.14)-(6.17). Hence
1 3
M=ExveH, (), J=culExveH,?).

Noting that divp(curlE x v) = curlpcurl E = curl ’E - v|r, we have that divpJ €
H, 2(I') and therefore (M, J) € H, 2(I') x H™2~2(div, ). It is known from [33] that
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Sk, Sk, — Sk, Ki, — Kj are smoothing operators of order —1, —3 and —2 respectively.

Then using (6.26) we have that the following operators are bounded

T, kT H D) S HD)
_3 1
Ky, — K H, *(T") —» HZ(T)
L 1
L, — 1T, H> 2 (div, ) — H, *(T).
Moreover
1 1
curl p ((Kk1 —Ky)M + (k_Tkl - ETk:)J)
1
1
= curlp(Ky, — Kp)M + curlp(Sy, — Sp)J € HZ (),
and hence

(lekl — ka)M+ (I(k1 — Kk)J e H?(T

~—

)

ol
[NIE ~

1 1 1
(K, — Kp)M + <—Tk1 - —Tk) J € H 22(curl, ),

Ky k
Hence L(k) is bounded. Note every component of L(k) is analytic on C\IR_, then L(k)
is analytic on C\IR_ (recall that k; = ky/n). O

We need the following lemma to show the equivalence between the transmission

eigenvalue problem and the system of integral equations (6.24).

Lemma 6.1.3 Let Q be any bounded open region in IR and denote V(curl®, Q) :=
{u:ueL¥Q), curl?u € L2(Q)}. For p € H, 2(I'), » € H 22 (div,T), we define

M, (¢)(x) := curl/FCI)k(x, y)e(y)ds,, x¢€R\T,

and

M () (y) = / Di(x,y)0(y)ds, © € RAT.

~ _1 ~
Then M, is continuous from H, >(I') to V(curl®, D*) and My is continuous from

H-22(div,T") to V(curl®, D¥) where D~ = D and D* = Bp\D with a sufficient
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large ball Br containing the closure of D. Furthermore the following jump relations

hold

WML ()] = ¢ in H;(T), (6.27)
eewrML (9)] = 0 in H, (), (6.28)
eewrlNL ()] = ¢ i H, *(I), (6.29)

[divpycurlMy ()] = divpyy in - H™2(T). (6.30)

1 1 1 1
Proof. Let us denote by < -,- > the HZ(I')-H, *(I") or Hz(I')-H 2(I') duality

_1
product. Since p € H, ?(T"), then from the classical results for single layer potentials

M (9)|lL2(ps) < ¢ <cllell 1

H, *(T)

/F Dr(x,y)0(y)ds,

H!(D*)

and since curl 2M; (@) — k*M;(¢) = 0 in D*, then

Jeurl M@)oy = KM (@) fuacos) < el g,
t

where ¢ is some constant depending on k. For ¢» € H=2~2(div, "), we have from [33]

IMa()|2p=) < el

H, (1)

Notice that
CUI'IQMQ(I/J)(X) = k:Q/CI)k(X, y)Y(y)ds, +V/div1~¢(y)<bk(-,y)dsy
r r
and divry € H=2(I), hence we have from [33]

feurt N0 ooy < (1l 3+ ol 5 ) -

H,

This proves the continuity property of M, and M,. To prove the jump relations, we

will use a density argument. Let

ui:curl/cbk(x,y)gp(y)dsy in D*.
r
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1
We define the tangential component y,u® by duality. For a € HZ (T), ||a]|H by = 1,
there exists w* € H2(D*) and w' compactly supported in By such that 7téur1w =

a, 7w = 0 and |w||g2p+) < cHaHH%(F) (see [37]). Moreover,
t

< a,pput >= :I:/ (u® - curl*w® — w - curl *u®)dx.
D+

Then

‘ < Oé,"}/tui > ‘ S (HuHLQ(Di) + chrIQUHLQ(Di))HW”HQ(Di)

AN

cr(|lallLzps) + ||CUI'1211||L2(Di))

< alel, 5,
t

where ¢; and ¢, are independent from u, therefore ||y, u®|| _

< . Choos-
by S 2Pl - Choos

ing ¢, € H 22 (div,I') such that ¢, — ¢ in H, 2(I") yields

+ +
_ < _ )
[eu™ — ey, IIH;%(F) <clle sonIIHt_%(F) — 0

Since [yu,] = ¢n for ¢, € H 272 (div, I)(see [69]), letting n — oo yields [yu] = ¢ in
H;%(F), hence (6.27) holds. In a similar argument we can prove (6.28) (6.29). From
(6.29) we have
frew ML (6)] = ¢ in H (D).
Then
[divpyeurl My (1)) = divpe)

- - .
in the distributional sense. Notice divry and <dinfytcurl M2(¢)> are in H2(I),
then (6.30) holds. O

Now we are ready to prove the equivalence between the transmission eigenvalue
problem and the system of integral equations (6.24). Our proof follow the lines of the
proof of Theorem 2.2 in [33].

Theorem 6.1.1 The following statements are equivalent:

(1) There exists non trivial B, Eg € L?(D), E — Eq € H(curl®, D) such that (6.14)-
(6.17) holds.
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(2) There exists non trivial (M, J) € H;%(F) x H™2~2(div, ') such that (6.24) holds
and either E*(M,J) =0 or E*(M,J) = 0 where
1 -
E*(M,J)(z) = zx (Zcurl/M(y)elkx'ydsy (6.31)
™ r

1 . .
+ 47rk2V/FdinJ(y)e_’k”ydsy+AJ(y)6_lkx’ydsy> X I

with the same expression for E*(M,J) where k is replaced by k;.

Proof. Assume (1) holds, then from the argument above (6.24) we have that M and
J satisfy (6.24) and hence it suffices to show E(M,J) = 0 and E*(M,J) = 0. To

this end, recall that Eq has the following representation

Bola) = cul | MG)®ule.ds, + [ J0)0.0)ds,
+ %V/FdiVFJ(y)@k(-,y)dsy (6.32)

where Eg x v = E xv = M and curlEqg X v = curlE x v = J. Then, from the
jump relations (6.27)-(6.30) of the vector potentials applied to (6.32) and (6.24) (see
also [33]), we obtain that (Eg x v)* =0, (curl Eg x v)* = 0 (+ denotes the traces from
outside of D) and hence the far field pattern EJ°(M,J) varnishes. The asymptotic
expression of the fundamental solution ®(-,-) in [24] yields (6.31). Similarly we can
prove that E>*(M, J) = 0.

Next assume that (2) holds and define

Eo(z) = curl/FM(y)(I)k(:v,y)dsy+/FJ(y)®k(-,y)dsy
+ %V/FdinJ(y)qu(-,y)dsy r€R*\T

with same expression for E where k is replaced by k;. Again from the jump relations

of vector potentials and (6.24) we have

curlcurl E — k?>nE =0, curlcurl Eg — k2Ey =0 in D

Exv=Eyxv, curlExv=culEyxv on I
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(note that E and Ej are in L?(D). Hence it suffices to show Ey and E are non trivial.
Assume to the contrary that Eq = E = 0, and without loss of generality E>* (M, J) = 0,
then by Rellich’s Lemma (see e.g. [24]) E = 0 in IR*\D. Hence jump relations imply
M = 0 and J = 0 which is a contradiction to the assumptions in (2). This proves the

theorem. O

The above discussion allows us to conclude that in order to prove the discreteness
of transmission eigenvalues we need to show that the kernel of the operator L(k) is
non-trivial for at most discrete set of wave numbers k. In the following, we will show
the operator L(k) is Fredholm of index zero and use the analytic Fredholm theory to
obtain our main theorem. To this end we first show that for purely complex wave

number k := ik, k > 0, L(k) restricted to

H,

Njw

3
2

N[
N|=

(div,I') := {fu e H 2" 2(div,I'), divru =0}

satisfies the coercive property. In the following lemma we use the shorthand no-
_1 31 1
tation Hyo(I') := H, *(I") x Hy,?" ?(div,I") and its dual space H*(I") := HZ (") x
31 ! 3 _1 ! 3 _1
<H0 27 2(div, F)> where the dual <H0 27 2(div, F)) of the subspace H, *’

?2(div,T") C
H_%’_%(div, I') is understood in the sense of the duality defined by Lemma 6.1.1.

Lemma 6.1.4 Let k > 0. The operator L(ir) : Ho(I') — H*(I") is strictly coercive,

M M
<L(m) J g > >c (HMHHt%(F) + HJ”}[%%(div,F)) ’

where ¢ 1s a constant depending only on k.

1.€.

1 1
Proof. We consider the following problem: for given (M, J) € H, 2(I')xH,, ** ?(div,T")
find U € L2(IR?), curl U € L*(IR?), curl *U € L?(IR?) such that

(NI

(curl? + nk?)(curl*> + kU =0 in IR\ (6.33)
[vxcurl*U] = (nk? — x> )M on T (6.34)
[vxcurl®Ul = (ns®> —k)HI  on T (6.35)
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where [] denotes the jump across I'. Multiplying (6.33) by a test function W and
integrating by parts yield

/ (curl? + nk?)U - (curl® + x*)Wdz
R3\

= (nK? — K?) </ Areurl W - Mds +/'7FW : st) . (6.36)
r r

First we show that the right hand side is well defined. Note that div (curl W) = 0,
hence from [69] curl W € H'(IR?) and and thus yrcurl W € Ht%(l"), which implies
Jpyreurl W - Mds is defined in Ht% (1), H;%(F) duality. Since v W € H;%(F) and
curl fW = ~pcurl W € H%(F) then from Lemma 6.1.1 fr W - Jds is well defined.
Now let

V :={U € L*(IR?), curl U € L*(IR?), curl °U € L*(IR?)}

equipped with the norm
10|13 = / (|curl *U|? + |curl U|? + |U|?)dz.
]:RB

Next taking W = U in the continuous sesquilinear form in the left-hand side of (6.36),
and after integrating by parts (note that U and curl U are continuous across I', we

obtain
/ (curl* + nk?)U - (curl* + k*)Udx
R3\I
= / (|curl *U)? + (nk? 4 &%) |curl U|? + nk?x?|U[*)dx > c||U||lv
R3

where c is a constant depending on x. The Lax-Milgram lemma guaranties the existence
of a unique solution to (6.36). Up to here we did not need that divrJ = 0. Next we
define

U = curl/FM(y)(‘I’m(wy)—<I>m(~,y))d8+/FJ(y)((Pm(wy)—<I>n(-,y))d8

1 . 1 .
+ WV/FleFJ(y)CD\/M(-,y)dS— WV/FdWFJ(y)@H(-,y)ds.

Then U € L%(IR?), curl U € L%(IR?), curl U € L?(IR?) and U satisfies (6.33)-(6.35),

hence U defined above is the unique solution to (6.36). Now for a given yrcurl W €
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Hz (D), let us construct a lifting function W € H2(IR?) [37] such that yrcurl W =

yrcurl W, ArW = 0 and ||V~V||H2(ms) < c||7pcurl\7V||H%(F) for some constant c. Then

~yrcurl W - Mds
r

Areurl W - Mds
r

1
Ink? — K2?|

IUlIvIWllv

/ (curl® + nk?)U - (curl® 4+ £2)Wdz
R3\T

IN

< c||U||V||7pcuer||H;(F)

Hence ||MH ~y < c|Ully. Similarly for given W € H:(T') we construct the

3 N ) B
lifting W, € HZ(]R?’) [37] such that v Wy = W, qpcurl Wy = 0 and |Wo||gz(rs) <

cllyrWo [ for some constant c¢. We recall that divpJ = 0 hence from the Helmoltz
decomp081t10n J = curl rq € H2(T'). Thus we have
/WW -Jds| = /WWQ - Jds
r r
1 ~
= — / (curl? + nk?)U - (curl ® + k%) Wodz
|nk? — K2| RS\T
< dUllv[Walv
< dUIVINT Wl g3 -

Since J = (ﬁpq € H3(T"), then by duality |J| s < ¢||U||v. Finally

H, j”%(div,r) -
M M
L(ir) ,
J J

yreurl W - Mds + /VFW - Jds
r r

> c|[Ullv 2 ¢ (“M“Hﬁ(r) + ||J||H%,%(div,r)) ’
where ¢ is a constant depending on k. This proves our lemma. O
Next we proceed with the following lemma.

Lemma 6.1.5 Let (k) = it and ki = ky/n for k € C\R_. Then L(k) +

v(k)L(i|k|) : Ho(I') — H*(T') is compact.
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Proof. From [33], Theorem 3.8 the operator
(Sk, = Sp) + 1K) (Sies) = Sip) - H3(T) — HE(T)
is compact. Then from (6.26) we have

VF (¢] (Skl — Sk) (@) diVF + ’}/(k)VF e} (Sz|k1\ — Sz|k|) (¢] diVF : Hié(F) — H%(F)

1

(Kr, — Ki) + (k) (Kijg, | — Kij) 3(I) — Hz (D)

cH™
cH™

SIS
G
Il
=
=

(K, — Ki) + (k) (Kijp, | — Kipey)

1 1 1 1 3
—Ki, — K k)| —Ki,| — —K; -H 2(I H:2(I'
(K0 = 350 ) 90 (Kot = Ko )+ BE ) = B

are compact. It remains to show that

[N
G
d
&
G

(k1Sky — K*Sk) + v (k) ((ilk1])*Sipgy — (il K])*Sipyy) : H
is compact. Since

(k1*Sk, — K*Si) + (k) ((ilk1])*Sijny — (ilk])*Sipe)
= (k1*(Sk, — So) = K*(Sk — S0)) + (k) ((ilk1])*(Sirs| — So) — (ilk1)*(Sirs — So))

and S, — Sy is compact, then the compactness follows. Hence the proof of the lemma

is completed. 0

In order to handle the non divergence free part of J, we will split J := Q + P
31 1
where Q € Hy ?' 2(div,I"), P = Vrp € H?(I") and rewrite the equation (6.24) for the
unknowns (M, Q, P). To this end let us define

H,(I) := {P € H? (), curl ;P = 0}

and introduce the operator

k1T, — kT Ky, — Kg Ky, — K
L(k) = Ky, — Ky Sk, — Sk Sk, — Sk
Ki, —Ki  Sg, — Sk (Sg, —Sig) + Vro (éSkl — %Sk) odivyp
(6.37)
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From from Lemma 6.1.1 and Lemma 6.1.2 L(k) : Ho(I') x Hy(I') — H*(I') x H™2(I")
is bounded and furthermore the family of operators f;(k‘) depends analytically on k €
C\R_, where recall Hy(T) := H, *(T') x Hy > 2 (div, ') with its dual H*(T'). We first
notice that (6.24) is equivalent to the following:

L(k) A - =
J J

~ 1 11
for any (M,J) € H?(I') x H™ 22 (curl, I') which equivalently can be written as

Vi
<m> Q || a >—0
P

W _1
for any (M, Q,P) € H* x H, ?(I"). Now we are ready to prove the following lemma.

Lemma 6.1.6 The operator L(k) : Ho(T') x Hy (') — H*(I') x H™2(T") is a Fredholm
with index zero, i.e. it can be written as a sum of an invertible operator and a compact

operator.

Proof. We rewrite the operator L(k) as follows

Y(E) (i k1 Tipy — k| Tary) (k) (K| — Kijr) 0
L(k) = — (k) (K, — Kijr)) V(E) Sk — Sigw) 0
0 0 Vro(—z +5z)Soodivr
Y(k) (ilka Tajpyy — itk Targ) (k) (Kipe) — Kijwy) 0
+ v(k) (Ko — Kag) (&) (S, — Sigu) 0
0 0 Vro (= + 2)So o divy
Ty, — kTy K, — K, K, — K,
+| Ky -K, S-Sk Sk, — S
Ki, —Ki Sk =Sk (Sk —Sk) + Vo (S, — Sk odive
—=: Ly (k) + La(k) (6.38)
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where Li(k) is the first operator and Ly(k) is the sum of the last two operators.
Then from Lemma 6.1.5 and Sy, — S, K, — Ky are smoothing operators of order
3,2 respectively, we have ]:g(k) are compact. From Lemma 6.1.4 and Sg is invertible,

whence we have Ly (k) is invertible. This proves our lemma. O

6.2 The Case When N — [ Changes Sign

In this section we will discuss the Fredholm properties of L(k) when N is not
a constant any longer. Our approach to handle the more general case follows exactly
the lines of the discussion in Section 4 of [33], and here for sake of reader’s convenience
we sketch the main steps of the analysis. To begin with, we assume that D = D; U D,
such that Dy C D and Dy := D\ D; and consider the simple case when N = ny/
in Dy and N = nql in D; where ny > 0, no, > 0 are two positive constants such
that (ny — 1)(ng — 1) < 0. Let T' = 9D, ¥ = 9D; which are assumed to be C?
smooth surfaces and v denotes the unit normal vector to either I' or ¥ outward to
D and D, respectively (see Figure 6.1). Let us recall the notations k1 = ky/n; and
ky = ky/ny. For convenience, we denote Kf’r and Tf’r be the potential K; and T}

v

Figure 6.1: Configuration of the geometry for two constants

given by (6.18) and (6.19) for densities defined on ¥ and evaluated on I'. The solution

130



of the transmission eigenvalue problem (6.10)-(6.13) by means of the Stratton-Chu

formula can be represented as

Eo(z) = curl /F(EO X v)(y)Px(z,y)ds, + A(CurlEo x v)(y)Px(-,y)ds,

1
+ EV/diVT(curlEo x v)(y)®x(-,y)ds, in D (6.39)
r

E(z) = curl /E(E X V)(y)@kl(x,y)dsy+/2(curlE x v)(y)Pk, (-, y)ds,

1
+ ﬁV/diVT(CurlExy)(y)CIDkl(-,y)dsy in Dy (6.40)
1 Js

E(x) = curl /F(E X V)(y)Pr, (x, y)ds, + /F(curlE X V)(y)Pr, (-, ¥)ds,
+ %%V/FdivT(curlE X V)(y) P, (-, ¥)ds,
— curl /2<E X V)(y) P, (x, y)ds, — /Z(curlE X V)(y)Pr, (-, ¥)ds,
- %%V/EdivT(curlEx V)(y) Pk, (-, y)ds, in Dy (6.41)

Let Exv =Eyxv =M, curlExv =curlEg xv =JonI and E x v = M/,
curlE x v = J' on X. From the jump relations of the boundary integral operators

across [' and X, we have that

ko Th —kTL KL — K} M\ [ kT K" M’
K[ —K[ LTD — 177 )\ KZTOLTr J
(6.42)
ko TE + Ty Kp +Kr M\ [ Ty K M
KE +KE LTS+ LTE y )\ kLT J
(6.43)

Let us denote by Lgg(k), L™ (k), Loy (k), L*(k) the matrix-valued operators in the
above two equations in the order from the left to the right from the top to the bottom,
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respectively. By the regularity of the solution of the Maxwell’s equations inside Dy

(see e.g. [54]), we have (M, J') € H;%(E,div) X H;%(E,div). Then the equation

M g
Lgl(k’) -
J h

1 1
where (g, h) € H, 2(3,div) x H, 2(3,div) corresponds to the transmission problem
which is to find (Ey, E;) € Hyee(curl,IR*\D;) x H(curl, D;) and E, such that

curlcurl Ey — k2Ey = 0 in R\ D,
curl curl E; — kal =0 in Dy
vXEy,—vxE =g on by

v X (curlEg) —v x (curlE;) =h  on X

and E, satisfies the Silver-Mueller radiation condition. By well-posedeness of the trans-
mission problem we have Lo (k) is invertible (for real valued k). Hence pugging in (6.42)

M’ and J’ from (6.43) we obtain the following equation for M and J

Ly [ M) =" (6.44)
J 0

where L(k) := Log(k) — L¥T (k)Lyy (k) 'L">(k). Then in a similar way to Theorem
6.1.1, we can prove the following theorem.

Theorem 6.2.1 The following statements are equivalent:

(1) There exist non trivial E € L*(D) and By € L*(D) such that E—E, € H(curl?, D)
and (6.14)-(6.17) holds.

(2) There exists non trivial (M, J) € H, *(T) x H5 = (div, T) such that (6.44) holds
and E§°(M,J) = 0 where
1 -
ESO(M,JM.@) = X (—Cuﬂ/M(y>ezk1-dey
47 r

1 : ik —iké- .
+ 47rk:2v/Fd1VFJ(y>e k ydsy+/FJ(y)e k ydsy> X I
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Now we note 3 and I' are two disjoint curves, we have L™!'(k), L'*(k) are
compact. By writing L(k) as a 3 x 3 matrix operator L(k) similar to (6.38), we can

prove the following lemma.

Lemma 6.2.1 The operator L(k) : Ho(I') x Hy (') — H*(I') x H™2(T") is a Fredholm
with index zero, i.e. it can be written as a sum of an invertible operator and a compact
operator. Furthermore the family of the operators i(k) depends analytically on k in a

netghborhood of the real axis.

Proof. From Lemma 6.1.6, it is sufficient to show L(k) is analytic in a neighborhood

of the real axis. Since
L(k) = Lgg(k) — LT (k)Lyy (k) 'LV (k),

it is sufficient to show Loy (k) is invertible in a neighborhood of the real axis. Note that
Lo (k) is invertible in the closed upper half complex plane Sk > 0, then we have that
Lo (k) is analytic in a neighborhood of the closed upper half complex plane &k > 0.
Now there exists a neighborhood of the real axis that i(k) is analytic. This proves the

Lemma. ]

This approach can be readily generalized to the case when the medium consists
of finitely many homogeneous layers.
In a more general case where N = n(x)I in D;, where n € L*>(D;) such that
n(x) > a > 0 but still constant in Dy, we can prove the same result as in Lemma 6.2.1
by replacing the fundamental solution @y, (-, y) with the free space fundamental G(-, y)
of
AG(-,y) + E°n(2)G(-,y) = =4, in R

in the distributional sense together with the Sommerfeld radiation condition, where
n(z) is extended by its constant value in Dy to the whole space R?. Because ®y, (-, y) —
G(-,y) solves the Helmholtz equation with wave number k5 in the neighborhood of I'
the mapping properties of the integral operators do not change. We refer the reader

to Section 4.2 of [33] for more details.
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In fact the above idea can be applied even in a more general case, provided
that N is positive constant not equal to one in a neighborhood of I'. More precisely,
consider a neighborhood O of " in D (above denoted by Dy) with C? smooth boundary
(e.g. one can take O the region in D bounded by I' and ¥ := {z — ev(x), = € I'} for
some € > 0 where v is the outward unit normal vector to I'). Assume that N = n/ in
O, where n # 1 is a positive constant, whereas in D\ O N satisfies the assumptions at
the beginning of the paper, i.e. N is a 3 x 3 matrix-valued function with L*>°(D) entries
such that - Re(N)§ > a > 0 and £-Im(N)¢ > 0 for every £ € C*. Then, similar result
as in Theorem 6.2.1 and Lemma 6.2.1 holds true in this case. Indeed, without going
into details, we can express Ey by (6.39) and E by (6.41) in O and in D \ O we can
leave it in the form of partial differential equation with Cauchy data connected to E
in O@. Hence it is possible to obtain an equation of the form (6.44) where the operator
L(k) is written as

L(k) = L, (k) — L*" (k) A~ (k)L > (k) (6.45)

where L, (k) is the boundary integral operator corresponding to the transmission eigen-
value problem with contrast n — 1, the compact operators L*%(k) and L"*(k) are
defined right below (6.42) and (6.43) and A(k) is the invertible solution operator cor-

responding to the well-posed transmission problem

Figure 6.2: Example of the geometry of the problem
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curl curl Ey — k*nyEy = 0 in IR3\{D—\5} (6.46)
curlcurlE; — k*NE;, =0 in  D\O (6.47)
vXEy,—vxE =g on Py (6.48)

vX (curlEg) —v x (curlE;) =h  on ¥ (6.49)

and E, satisfies the Silver-Muiller radiation condition. Hence the above analysis can
apply to prove Theorem 6.2.1 and Lemma 6.2.1.
For later use in the following we formally state the assumptions on N (here O

is a neighborhood of I' as explained above).

Assumption 6.2.1 N is a 3x3 symmetric matriz-valued function with L>(D) entries
such that & Re(N)¢ > o > 0 and &- Im(N)E > 0 for every £ € C3, (] =1 and N = nl

in O where n # 1 is a positive constant.

6.3 The Existence of Non Transmission Eigenvalue Wave Numbers
In this section we assume that N satisfies Assumption 6.2.1 and consider pure
imaginary wave numbers k and, for convenience, let A\ := —k? be a real positive number

and start by proving a priori estimate following the idea of [79] for the scalar case.

Lemma 6.3.1 Assume that N satisfies 0.2.1 and x(z) € Cy°(D) is real valued cutoff
function with 0 < x <1 and x =1 in D\O. If v € L3(D) and

(curlcurl 4+ A\)v=0 in D

then there exists a constant K(x) such that for sufficiently large

11— vl

<K
vl < K

(6.50)

Here || - || donotes the L? norm.
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Proof. Since x € C;°(D) we have

(curlcurl + \)v - (x*¥)dw = /

curl curl v - (\*¥)dx + /\/ v - (X*V)dx
D

D

curl v - curl (x*¥)dz + )\/ v - (\*V)dzx
D

curl v - (xcurl (x¥))dz + /

curlv - (Vx x (xVv))dx + )x/ v (x*V)dx
D

D

curl (xv) - curl (xv)dz — / curl (x¥) - (Vx x v)dx
D

curlv - (Vx x (x¥))dx + )\/ v (X°V)dx
D

|curl (xv)|*dz — / (xeurlv+ Vx x V) - (Vx x v)dz
D

curlv - (Vx x (xv))dz + )\/ v - (X*V)dzx
D

|curl (xv)[*dx —/ (VX x v)|*dx + )\/ Ixv|*dx
D D

+ ((xcurlv) - (Vx x ¥) — (xcurlv) - (Vx X v)) dx.

+
T~ 5

Taking the real part yields
/ |curl (XV)|2dx+)\/ |xv|*dx :/ (Vx x v)|*dz
D D D
and then
Axv? < KOOIV < Ko (IIxvI? + 11 = x)v]?)

which yields (6.50) for sufficiently large A.

Now we are ready to prove the following theorem.

Theorem 6.3.1 Under the assumption 6.2.1, there exists a sufficiently large real A > 0
where A = —k? such that (6.10)-(6.13) has only trivial solutions.
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Proof. Assume first n—1 < 0in O, let u = E—Eq € Hy(curl?, D), v = A\E, € L3(D),

then
curlcurlu + ANu = —(N — I)v in D (6.51)
curlcurl v + Av =0 in D (6.52)
vxu=vx(curluy=0 on T (6.53)

For any ¢ € C{°(D), interpreting (6.52) in the distributional sense yields

/ v(curl curl p + Ap) = 0.
D

Then the denseness of C¥(D) in Hy(curl?, D) (see [37]) yields

/V-cur12u+A/V-u:0 (6.54)
D D
Multiplying (6.51) by Vv yields
/V-curlzudx+)\/ Nu-Vd:B—l—/(N—I)V-Vd:B:O.
D D D
Combining above with (6.54) yields
)\/(N—I)ﬁ-vdx—i—/(N—I)v-de—O. (6.55)
D D
Multiplying (6.51) by @ and integrating by parts yields
/ |curlu|*dx + )\/ Nu -udz + / (N —I)v-udz = 0.
D D D

Note N is symmetric, then (N — I)u-v = (N — I)v -1 and hence

/ |cur1u|2dx+)\/ Nu-ﬁdx+/(N—])ﬁ-vdx:0. (6.56)
D D D
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By regularity [69] v is sufficiently smooth in D away from the boundary, then by unique
continuation we can see [, (n—1)(1—x?)|v|*dz # 0. Then combining (6.55) with (6.56)

yields

1
/|Curlu|2dx—|—)\/ Nu-ﬁdmzx/(N—I)v-de (6.57)
D D D

— ;(/D(N—I)XQV-Vda:Jr/D(N—I)(l—XQ)V-Vda:)

_ %/D(N_I)u—xz)vﬁdx( foD _if;):fjidx>

—ln— 2V IR de Jo(N = D)x*v - vdx
- X 1)/@(1 AV d (1+ —1fol— )’VM). (6.58)

From Lemma 6.3.1 we have for sufficiently large A

|fD XV de| - K(Npaw + 1)
(1 —-n) fol_ 2)|v|?dx A

<1

where N,,q. is supreme in D of 2-norm of N, which implies

fD I)x*v - vdx
1 > 0.
" (1 52 o0 — I

Then, since n — 1 < 0, the real part of (6.58) is non positive for sufficiently large A but
the real part of (6.57) is non negative hence the only possibility is u = 0,v = 0, i.e.
E=E;=0.

Let us next consider n — 1 > 0in O, and let u = E — Ey, v = AE, then

curlcurlu+Au=—-(N—-I)v. in D (6.59)
curlcurlv + ANv=0 in D (6.60)
vxu=vx(curluy=0 on T (6.61)

Using same argument as for (6.54)
/ curl *u - vdz + )\/ Nv -udz = 0. (6.62)
D D

Multiplying (6.59) by Vv yields

/V-Curlgudx—i—)\/V-udx—f—/(N—])v-de:O.
D D D
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Combining the conjugate of above with (6.62) yields

)\/(N—I)ﬁ-vd:v:/ N —Iv - vdzx. (6.63)
D D

Multiplying (6.59) by @ and integrating by parts yields

/|cur1u|2dx+/\/ |u|2da:+/(N—I)V-ﬁdx:O.

Note that N is symmetric, then (N — [)u-v = (N — I)v - u and hence
/ |curlu|?dx + )\/ lul*dx +/ —I)u-vdr = 0. (6.64)
Then combining (6.63) with (6.64) yields
/ |curlu|? dz + )\/ lul*dr = —l/ N—Iv-vdx (6.65)
D D AJp

1
= —= (/ XQN—IV-Vd;U—l—/(l—Xz)N—IV-vda:)
A \Up D

— _l n— 2 v[2de fDXZN—IV~Vdm
_ A/o( D1 = x7)|v[*d <1+(n—1)f0(1—x2)|v|2dx>' (6.66)

From Lemma 6.3.1 we have for sufficiently large A

|fD YN —Iv- vdx\ _ K(Npaz + 1)
(n—1) [,(1—x?)|v|*dx A

o X’N — IV -vdx
" (1 DA - ) 7

< 1.

Then

Therefore, since n — 1 > 0, the real part of (6.66) is non positive for sufficiently large
A but the real part of (6.65) is non negative hence the only possibility is u = 0,v = 0,
ie. E=Ey)=0. OJ

6.4 Discreteness of Transmission Eigenvalues
Recall that in Section 6.2, we have proved that i(/{) is a Fredholm operator,
hence to show discreteness we will use the analytic Fredholm theory [24]. To this end

we must to show that there exists k such that L(k) is injective.
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Lemma 6.4.1 Assume that N satisfies 6.2.1. There exists a purely imaginary k with
sufficiently large |k| > 0 such that L(k) is injective.

Proof. Let us extend N to IR®\ D by N = nl where n is the constant N|p. Assume

M M
there exists such that L(k) = 0, then we show that if k£ is purely
J J
M
imaginary with large modulus, then = 0. Recalling (6.45), we define
J
M’ M
= AN (K)LY (k)
J’ J
and

Bale) = cwl | M@)@uo)ds, + [ I)0ily)ds,

1
+ ﬁv/divTJ(y)cbk(-,y)dsy in IR3\T.
I

!/

From the definition of there exists E € L(D;), Dy := D\ O, such that
J/

curlcurl E — k2NE = 0 in D,
Exv]f =M on X

cwlE xv]"=J on X%
Also we define
E(z) — curl / M(y)®y, (2, y)ds, + / I(y) i, (- y)ds,
r r
1
+ —QV/leTJ(y)CDkQ(aYMSy
ks r
— curl/M'(y)CI)k2(x,y)d8y—/J/(}’)(I’kz(‘>3’)d5y
b 5

1 _
- ﬁV/divTJ'(y)(I)kQ(-,y)dsy in IR*\(D,UTl)
2 Jw
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Jump relations across I" applied to E, Ey along with the equation (6.44) yield

curlcurlE — k*’NE =0 in  R*\I (6.67)
curlcurlEg — k*Eq =0 in R\l (6.68)
vxEF=wxE)* on T (6.69)

(vx curlE)* = (v x curl Eg)* on T (6.70)

From Theorem 6.3.1 if k is purely imaginary with large enough modulus then (6.67)-
(6.70) in D only has trivial solutions. Since N = nI where n is a constant in IR*\ D,
then the variational formulation of (6.67)-(6.70) in IR*\ D is (6.36) where the right hand
is 0 and IR*\I" is replaced by IR*\ D, then U = 0 and hence E = 0, E; = 0 in IR3\T".
The jump relations (6.27)-(6.30) yield M = 0 and J = 0 and this proves the lemma.
O

Now we have the main theorem.

Theorem 6.4.1 Assume that N satisfies Assumption 6.2.1, then the transmission

eigenvalues form a discrete set in a neighborhood of the real axis.

Proof. Combining Lemma 6.2.1 and Lemma 6.4.1, we can prove that the set of the

transmission eigenvalues is discrete in a neighborhood of the real axis. 0
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Chapter 7

THE SPECTRAL ANALYSIS OF THE INTERIOR TRANSMISSION
PROBLEM FOR MAXWELL’S EQUATIONS

In this Chapter we study the spectral analysis of the interior transmission prob-
lem (6.6)-(6.9) for Maxwell’s equations. The existence of transmission eigenvalues for
Maxwell’s equations for which the electric permittivity changes sign is an open prob-
lem. It is our concern to study the existence of transmission eigenvalues in the complex
plane under the assumption that the electric permittivity is constant near the bound-
ary. Although the index of refraction may be a complex valued function, our analysis
does not cover the case with absorption where the imaginary part of n is proportional
to 1/k. For the case with absorption, some non-linear eigenvalue techniques would be
more relevant [21,40, 78]. We also remark that, similar to the scalar case in [76], our
analysis does not yield information on the existence of real transmission eigenvalues.

In Section 7.1 we give an appropriate formulation of the transmission eigenvalue
problem and relate transmission eigenvalues to the eigenvalues of an unbounded linear
operator B,.

This motivates us to derive desired regularity results in Section 7.2 that are
needed to show the invertibility of B, and prove the main theorem. The derivation
of these results mainly uses the semi-classical pseudo-differential calculus introduced
in [76] for the scalar case with appropriate adaptations to Maxwell’s system. The
assumption that the electric permittivity is constant near the boundary considerably
eases the technicality of this section and allows us to use results from the scalar prob-
lem that are summarized in Section 7.5. The main technical difficulty related to non

constant electric permittivity is that the divergence free condition is different for E
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and Ey near the boundary. One therefore cannot impose a “simple” control of the
divergence of the difference which is needed to establish regularity results.

Using the regularity results obtained in Section 7.2, we show that B, has a
bounded inverse for certain A in Section 7.3.

Section 7.4 is dedicated to proving the main results on transmission eigenvalues
following the approach in [76] which is based on Agmon’s theory for the spectrum of
non self-adjoint PDE [1]. We prove for instance that the inverse By' composed with
a projection operator is a Hilbert-Schmidt operator with desired growth properties
for its resolvent. This allows us to prove that the set of transmission eigenvalues is
discrete, infinite and without finite accumulation points. Moreover, a notion of gener-
alized eigenfunctions is introduced and a denseness result is obtained in an appropriate

solution space. Throughout this chapter we denote m := N — 1 and shall make the

r

Figure 7.1: Example of the geometry of the problem

following assumption on the index of refraction N.

Assumption 7.0.1 We assume that the complex valued function N € C*(D) and
that R(N) > 0 in D. Moreover we assume the existence of a neighborhood O of T such
that N is constant in O and that this constant is different from 1 (which means that

m is constant and different from zero in O).

7.1 Formulation of the Transmission Eigenvalue Problem
In the following D C R?® denotes a bounded open and connected region with

C*°-smooth boundary 0D := I' and v denotes the inward unit normal vector on I'
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(see Figure 7.1 for an example of the geometry). We set L?(D) := L?(D)?, H™(D) :=
H™(D)3 and define

H(cwrl?, D) := {u € L*(D); curlu € L*(D) and curlcurlu € L*(D)}
L(curl®, D) := {u € L*(D); curlcurlu € L*(D)}
endowed with the graph norm and define
Hy(curl’, D) := {u € H(cwl*, D); 3u = 0 and ycurlu =0 on I'}
where vu := v X ur.

Definition 7.1.1 Values of k € C for which (6.6)-(6.9) has a nontrivial solution

E,Eq € L(curl, D) and E — Eq € Hy(curl, D) are called transmission eigenvalues.

Following the approach in [76,79] for the scalar case, we rewrite the transmission

eigenvalue problem in an equivalent form in terms of u := E — Ey € Hy(curl?, D) and

v := k*’E, € L(curl?, D)

curlcurlu — k*(1+m)u—mv=0 in D (7.1)

curl curl v — k*v = 0 in D (7.2)

Definition 7.1.2 Normalized non-trivial solutions u € Hy(curl?, D) and v € L(curl?, D)

to equations (7.1)-(7.2) are called transmission eigenvectors corresponding to k.

To study the PDEs (7.1)-(7.2) and formulate the transmission eigenvalue prob-
lem, we first investigate the function spaces that transmission eigenvectors u and v

belong to. This is the motivation of the next lemma.

Lemma 7.1.1 Assume that assumption 7.0.1 holds and u € Hy(curl?, D) and v €

L(curl, D) are transmission eigenvectors corresponding to k. Then diva € H'(D)

and divv € H(D).
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Proof. Taking the divergence of (7.2) implies divv = 0 and therefore divv € H*(D).
Taking the divergence of equation (7.1) yields

(1+m)diva+ Vm-u=—k*(Vm-v+mdivv). (7.3)

Since Vm has compact support in D and v satisfies a vectorial Helmholtz equation
in D, then standard regularity results give Vm -v € H'(D). Since divv € H'(D)
and u € L?(D), we deduce from (7.3) that divu € L*(D). Since curlu € L*(D) and
yu =0, u € H(D) (c.f. [5]). Hence, using again (7.3), divu € H'(D) and we have

proved the lemma. O
We now define the following spaces:
U(D) := {u € Hy(cwrl*, D); divu € H'(D)}
and
V(D) :={v e L*(D);curlcurl v € L*(D) and divv € H'(D)} .

Having studied the function spaces that transmission eigenvectors belong to, we
are ready to introduce an operator which plays an important role in our analysis. We

introduce the operator By defined on U(D) x V(D) by

B/\(ua V) = (fa g)
where

curlcurlu = A(1+m)ju—mv=_1+m)f in D (7.4)

curlcurlv — Av =g in D (7.5)

and A € C is a fixed parameter (we will choose A later). We can now relate the
transmission eigenvalue with the eigenvalues of B). In fact, one observes that k is a

transmission eigenvalue if and only if k2 — X is an eigenvalue of B, (this also explains

the motivation to define the operator B,).

To study the invertibility of the operator B,, we first investigate the range of
B,.
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Lemma 7.1.2 Assume By(u,v) = (f,g) and (u,v) € U(D) x V(D). Then f €
L?(D), div ((1+m)f) € H(D), g € L*(D) and divg € H'(D).

Proof. Noting that v € V and curl®> = Vdiv — A, we have that
Av = Vdivv — curl*v € L*(D).

Since Vm has compact support in D, standard elliptic regularity results yield Vm-v €
H?*(D). Since

div (mv) = Vm - v + mdiv v,

we have that

div (mv) € H'(D).
Since u € U, u € H*(D)(c.f. [5]). Therefore
div ((1 +m)f) = =Adiv ((1 +m)u) — div (mv) € H'(D).
divg € H'(D) follows directly from divv € H'(D). This proves our lemma. O
We now define the following spaces:
F(D) := {f € L¥(D);div (1 +m)f) € H'(D)}

and

G(D) :={g e L*(D);divg € H'(D)}.

7.2 Regularity Results for Transmission Eigenvectors

As is seen from Section 7.1, the analysis of transmission eigenvalues will be
obtained from the analysis of the spectrum of the operator B, or more precisely of its
inverse R). To show the existence of R, for well chosen A\, we need certain regularity
results and this is the purpose of this section. Moreover, the regularity results in
this section (in particular Theorem 7.2.2) is important to apply the spectral theory of

Hilbert-Schmidt operator in section 7.4. The reader may proceed to read section 7.3
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and section 7.4 by assuming Theorem 7.2.1 and 7.2.2 and come back to the technical

details in this section after that.

In this section we will derive a detailed study of equations (7.4)-(7.5). Roughly
speaking we will show that, for appropriate A the solutions u and v are bounded by f
and g in appropriate norms. The idea is based on applying the semiclassical pseudo-
differential calculus used in [76] for the scalar problem. The analysis for Maxwell’s
equations requires non trivial adaptations since the normal component of the trace
of u does not necessarily vanish, the curlcurl operator is not strongly elliptic and
the compact embedding for Maxwell’s equations are more complicated. Restricting
ourselves to the case m is constant near the boundary simplifies the analysis since one
can first derive a semiclassical estimate for the normal component of the trace of v.
This allows us to then derive estimates for u and v. In order to write the equation for
the normal trace of v and apply the analysis in [76] we first need to rewrite (7.4)-(7.5)
as a problem in IR?.

To begin with, we introduce a tubular neighborhood D, of I', where
D.={z:z=y+sv(y),yel, 0<s<e}.
We define
Iy={z:z=y+sv(y),yeTl}.
The boundary I' corresponds to I'y with s = 0.

To deal with the boundary conditions on I',; we follow the idea in [76] and extend

the transmission eigenvectors by 0 outside D. To begin with, let us introduce

u(x) in D
0 in R*\D.

g:

Lemma 7.2.1 Assume (f,g) = Ba(u, V) as defined by equations (7.4) and (7.5). Then

u and v satisfy the following

—Au—A1+m)u—myv=(1+m)f—Vdivu — Vr(uy - v) ® 50 — uny ® D05-47.6)
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0
—~Av —Av =g+ N 'Vdivg — (2Hvy + % — vdivpvr) ® 850 — vV @ Dgds—o (7.7)

where yu := ulr, up := yru :=v X (u X v)|r and uy := yyu = v(u-v)|p. Here ds—

18 the delta distribution on I' and D, is the normal derivative.

Proof. From A in geodesic coordinates (c.f. [76] and [69]), we have that
our Juy
Ag = @4— (2HUT + E +2Huy + W) ®5S:0 —+ (llT + uN) ® DS(SSZO

where H is a smooth function on T' (see Appendix). From curl®> = Vdiv — A we are

able to rewrite the equations (7.4)-(7.5) as follows

—Au—-A1+mu—myv = (1+m)f—Vdivu— (ur + uy) ® Dsds—g

3} 0
— (2Hur + % +2Huy + %) ® Os—0 (7.8)

and

aVT aVN
oy TN ) @ 0o

— (VT + VN) (%9 Dstsszo. (79)

—~Av—Av = g-—Vdivv — (2Hvr +

We now use the fact that (c.f. [69])

Vdivu = Vdivu+ (vdivu) ® ds—¢

0
vdivua = VdinuT—i-ZHu]\M—ﬂ on I

ov

with the same equations hold for v. Using above two equations to simplify equations

(7.8)-(7.9) we get

—Au—-A1+mu—myv = (1+m)f—Vdivu— (ur + uy) ® Dsds—g

0
— (QHUT —+ % — VdiVFllT) X 55:0

and

0
_AX - )\X = g — Vdivv — (QHVT + % — VdiVFVT) X 53:0

— (vr+vy) ® Dgdspo.
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We now use (c.f. [69])

vxcurlu=Vp(uy -v) +v x (Ruxv)) —2Hur — ? on T.
v

Then ur = 0 and (curlu)y = 0 yields

3uT

v

=Vr(uy-v) on T
and therefore we get (7.6). From equation (7.5)
—Adivv =divg.

This yields equation (7.7). O

The following lemma is important in our analysis as it allows us in subsection

7.2.1 to derive an estimate only involving v .

Lemma 7.2.2 Assume (f,g) = By(u, V) as defined by equations (7.4) and (7.5). Then

m

—fy.
(1—|—m)VN N

)\LIN:—

In particular for X = h™2u where h > 0 and p # 0 €C, we have

s m 1

uy = —nN" ————VN — h2—fN. (710)
p(1+m) [
Proof. Equation (7.4) yields
M1+ m)uy = —mvy — (1 +m)fy + curlcurlu - v.
Since curlu x v = 0, then curlcurlu - v = —divp(curlu x v) = 0. Then we can prove
the lemma. O

7.2.1 A First Regularity Result

We prove in this subsection a first explicit continuity result for (u,v) € U(D) x
V(D) satisfying
B/\(uu V) = <f7 g)
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for certain large values of A\. We refer to Section 7.5 for notations related to pseudo-
differential calculus and some key results from [76]. Readers may need to read Section

7.5 first to be able to understand the proof.

1
T
[AI2

Throughout this section, we let h := and 1 := h?\. Multiplying equations

(7.6) and (7.7) by h? yields

h
—h*Au — pu(1 +m)u—k*myv = R*(1+m)f + ;Vhdivu
h h
+ ;V?(UN . V) X 5520 -+ ;LIN X D?(SSZO (711)
and

3
—hPAV — v = hQE — mvhdivg

+ Q(QE.HVT 4 e
7 ov

i
(see Appendix for notations of DQJ_, Vi, %). We define J(v7) by

— vdivitvy) @ Geg + %V ® D'6s—q (7.12)

J(vr) :=2=Hvr+

Based on these two equations, we will derive the desired regularity results.

Before digging into the technical estimates, we first explain the ideas and what
we are doing in each Lemma and Theorem. The general idea is to get first an estimate
for vy and uy. This will allow us to derive estimates for v and J(vr) and consequently

estimates for v and u.

More specifically, it will be seen in Theorem 7.2.1 that the estimates of u and
v stems from the estimates of vy in H;%(F) and of J(vr) in H;%(F) evidenced from
(7.27) and (7.28). To get an estimate for vy in HS_C% (I') we will need to get an estimate
for g5 in HS%C(I‘) as is seen from (7.25). The estimate for g5 is obtained by establishing
an equation for uy that allows us to control the HS%C(F) norm of this boundary term.
This is the first main additional technical difference between the scalar problem treated
in [76] and the present one. For the scalar case this step in not needed since the solution

has vanishing traces on the boundary.
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Therefore, Lemma 7.2.3, Lemma 7.2.4, Lemma 7.2.5 and Lemma 7.2.6 serve to
derive the desired estimate for uy in H§C(F). In Lemma 7.2.6, we derive an estimate
for uy that only involves v, f and g. This will serve to obtain an estimate for v in
Theorem 7.2.1. The estimate of uy in HS%C(F) stems from estimate of vy in HS_C%(T).
This is the motivation of Lemma 7.2.5: an a priori estimate on vy independent of u.
To fullfill this, we derive an a priori estimate for v (involving u) in Lemma 7.2.4 and
an a priori estimate on u involving vy in Lemma 7.2.3 (such that we can eliminate u

in Lemma 7.2.5).

Now we begin with the following lemma.

Lemma 7.2.3 Assume that assumption 7.0.1 holds. Assume in addition that ||*—u #
0, [€]2 — (1 +m)u # 0 for any € and x € D. Then for sufficiently small h

lallzy S P2V + B2 NIEllez o) + RNl glliz o) + B || divg]|r2(p)

2 . 5
+  h7||divf|| r2py +h2’VN’Hj(F)' (7.13)

Proof. From Section 7.5, @ is a parametrix of —h2A — u(1 +m), then applying Q to
equation (7.11)

w = BE et QY + QU1+ mf) + TQ(Vidivu)
h

- Q(?V{i(uN V) ® be—p) + Q(%uN ® D"64—) (7.14)

where K_); denotes a semiclassical pseudo-differential operator of order —M with M

positive and sufficiently large. From equation (7.14), estimate (7.62) and Lemma 7.5.1

. 1
[ullLepy S h2HVHL2(D)+h2|’f\|L2(D)+thWuHL2(D)+h2\uN|H—%(F)

+ h2|Vi(uy - ) (7.15)

Then a direct calculation (see the Calculation subsection 7.2.2) yields the lemma. O
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Lemma 7.2.4 Assume that assumption 7.0.1 holds. Assume in addition that ||*—u #
0,7 = (1 4+m)u#0 for any € and v € D and Ry(x, &) — éi—:z,u £ 0 for any & and
x € I'. Then for sufficiently small h

3 5 . _1 _1 .
!VN!H;%(F) S helglleoy + h2||divgllizpy + b2 |fl|L2 ) + B2 divf]| 12 ()
1 _3 _3 .
+  h2||v|lLzpy + A 2[[ullLzpy + b 2[[divul|2(p)
h|J h . 1
+ h (VT)lH;Cg(F)Jr IWIH;}(F) (7.16)

Proof. The idea is to derive an equation for vy, which we will do in Steps 1, 2, and

3. In Step 4, we then derive an a priori estimate for vy.
Step 1: Relating vy to divivp.
From Section 7.5, Q is a parametrix of —h2A — (14 m). Then applying Q to

equation (7.12) we have that

~ ~ 1
v = hK_yv+h*Qg—h’Q(—V,divg)
) i hEve

+ Q[%J (V1) ® 0so] + Q[%v ® D64y (7.17)

Taking the traces on the boundary I' and a direct calculation (see the Calculation

subsection 7.2.2) yields

) ~ 5 ~ 1 .
—vdivive +op(pa)vy = op(ri) (hnyKMg + h27NQg — hdnyQ(thdlv g))

+

hop(r_1)J(vr) + hop(rg)v

+

hop(r_l)(—udiv?vT) + hop(rg)vy

g1 (7.18)

where we denote the right hand side as g;.

Step 2. Relating uy to vy.
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Using a similar argument as in Step 1 (see the Calculation subsection 7.2.2)

yields
ux = BB+ QMK ) + W Qmg — 1N QmQ( - Vidive)
£+ ) + S Q(Vidiva)
o (e e )
£ Mop (()\1 - Az)(:j(fzgj)(_/)f)l—)\l)\)2)(ﬁ'1 - P2)) Vit Op()w il )\2>uN

+  RhPop(r_4)J(vy) + h*op(r_3)v -+ hop(r_1)uy + hop(r_2) Vi (uy - v)
m(pa — p1+ A2 — M)

= hop ((Al = A2) (A1 = p2)(p1 = Ao) (1 — pz);

(—vdivivy)

At

A1 — Ao

m(p2Ae — p1A1)
+ A’ (
P\ 200 — p2) (o — M) (o1 — o)
Step 3. Derive an equation for vy.

Juy +(&:19)

: — 2_m
From equation (7.10) uy = —h yEET)
equations (7.18) and (7.19) yields
s m 1

—h——— vy —R~f
p(rm) N N

VN — hQifN. Then, combining this with

A

,  m 1
A1 — )\2)(_ w(l+m)

m(pede — p1A1) vy — h*=fy)
1

(A1 = A2) (A1 = p2)(p1 — A2)(p1 — p2
m<P2 —p1+ A — /\1) o v
(A1 = A2) (A1 — p2)(p1 — A2)(p1 — pz))( p(p2)v +81) + &2

= h%op(

))VN + op(

+ h2op(

Hence

h20p (_ m B m(Pz)\z - Pl)q) — mp2(;02 —p1+ Ao — /\1) n m A ) .
(1 +m) (A1 = A2)(A1 = p2)(p1 = A2)(p1 — p2) (1 +m) Ar — Ao
= h%op(ro)fy + g2 + h*op(r_3)g: := gs.

Step 4. Getting an a priori estimate for vy.

From equations (7.59) and (7.60) we have \; = =Xy, p1 = —p2, =\ = R —

(1 4+m) and —p3 = R — p. Then a direct calculation yields

m m(pera — p1A1) — mpa(pas — p1 + A2 — A1) m A
- - +
(1 +m) (A1 = A2) (M1 — p2)(p1 — A2)(p1 — p2) p(1+m) A — Ay
2(L+m)p Ao '
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Then
op(A3 — (L+m)*p)viv = h20p(2(1 + m)pAo(Aa + (1 + m)p2))gs + hop(r1) v,

which implies that

op (m((m +2)R — (1 +m)u)) v = h~?op(r2)gs + hop(r1)vy
Let Ro(x,&’) be the principle symbol of R(z,¢’). Then

op (m((m +2)Ro — (1 +m)u)) vy = h™%0p(ra2)gs + hop(ri)vy
Note that

(m+2)Ry— (1+m)u#0 (7.20)

for any ¢ and = € T'. Then there exists a parametrix of (m + 2)Ry — (1 + m)u and

consequently
v N|HZF )
< —2
S G I
< If —2
< N'Hgﬁm Il gy B gy TN
A direct calculation (see the Calculation subsection 7.2.2) yields the lemma. O

Now Lemma 7.2.3 and Lemma 7.2.4 now yield the following.

Lemma 7.2.5 Assume that assumption 7.0.1 holds. Assume in addition that ||*—u #
0, £ — (1 +m)p #0 for any € and x € D, and Ry(z,&') — éiz,u # 0 for any & and
x € I'. Then for sufficiently small h

’VN’ _1

3 Ty -3
wte S Pl +hEldivellieo) + Bl

+ he 2| vll2py + R~ 2||dwf||Lz +h|J(VT)|H,%(F)+h|7V|H,%(1§)7.21)

sc sc

and
[allLepy S h2||V||L2(D) + h2||f||L2(D) + h4||g||L2 D)+ h5||dwg||L2(D)

2
+ b7 divf||2(py +h2|J(VT)|H;%( )—I—h |7V|H5_C%(F) (7.22)
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Proof. The assumptions in Lemma 7.2.3 and Lemma 7.2.4 are satisfied. Therefore

we substitue estimates (7.13) and (7.32) into estimate (7.16) to get

3 5 . _1 1
|VN|H;%(F) S h2gllezpy + k2 ||divellrep) + R |E|lLepy + A2 VL)

+ b2 divE]|2py + Alval g+ h[I(ve)] gy IV

_1
Hscg (F) Hsci ( Hscg (F)

1
Since vy € Hy?2(I'), for h small enough we get estimate (7.21). Inequality (7.13) then
yields estimate (7.22). This proves the lemma. O

Lemma 7.2.6 Assume that assumption 7.0.1 holds. Assume in addition that |£|*—pu #

0, 62— A +m)u#0 for any € and v € D, and Ry(x, &) — ;J;—Zu% 0 for any & and

x € I'. Then for sufficiently small h

7 9 . 3 5
vl g o S PElglleew) + 2l divelig ) + A2 [flleo) + A2 [Vlleeo)

3 . 3 ) 3
+ h2||div ((1 4+ m)f) Hﬁic(D) +h |J(VT)\H,%(F) +h |’yv]Hj(F)(7.23)

Proof. From equation (7.19) we have

A2
A2 — A\

m(ps — p1+ A2 — A1)
(A1 = A2) (A1 — p2)(p1 — A2)(p1 — p2)
m(pa2a — p1A1)
(A1 = A2) (A1 — p2) (1 — A2)(p1 — p2)

Applying Ay — Ay to both sides and combining this with equation (7.18) yields

op( Juy = h%op( ) (—vdivivy)

+  h*op( JVN + 82

op(A2)uy = h’op(r_s)(—op(p2)vy + g1)

+ h*op(r_1)vy +op(r1)ge + hop(re)uy.
Since Ay # 0, for small enough h we have that

< h? h?
Ol ey S PN T e
Then a direct calculation (see the Calculation subsection 7.2.2) yields the lemma. O

Now we are ready to prove the main theorem.
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Theorem 7.2.1 Assume that assumption 7.0.1 holds. Assume in addition that |¢|* —
pw#0, |2 = (1+m)u#0 for any € and x € D and Ry(z, &) — éi—;’i,u £ 0 for any &

and x € I'. Then for sufficiently small h

Vllaco) S B lglcecy + B ldivglgs py + IEloy + div (14 m)f) g
Il oy S Wy + W gl + B divglig, oy + Wi (1 +m)0) g o
Proof. From (7.35) we have that
2, A 375 L :
v = hyK_yv+hQg—"h Q(mvhdwg)

)I(vr) + op(—*

+ op(
P1— P2 P1— P2

)V + hop(r_2)J(vr) 4+ hop(r_1)v.

Then

- -1 _
J(vr) +op(p2)v = op(r)(hywnK_yv + hZ’VNQg — h3'yNQ(thd1v g))

+  hop(r_1)J(vr) 4+ hop(ro)v := g4. (7.24)

From (7.36) we have that

. 1 .
uy = hyK_pyu+ PyQ(mK_yv) + hivQmQg — h57QmQ(mvhd1V g)

£ QUL+ m)E) + 21Q(Vdivu)

m(ps — p1+ A2 — A1)
(A1 = A2) (A1 = p2)(p1 — A2)(p1 — p2)
5 m(pads — p1A1)
Y7 W W Ty W T v T D
1 Al
)\1 — )\Q)V{E(UN ‘ V> + Op(>\1 - )\2

+ hPop(r_4)J(vr) + h’op(r_s)v + hop(r_) Vi(uy - v) + hop(r_; )uy.

+  h*op( )J(vr)

+ op( Juy

156



Combining the above with equation (7.24) yields
mpa(p2 — p1+ A2 — A1) m(paa — p1A1)

op(~ (A1 = A2) (A1 = p2)(p1 — A2)(p1 — p2) " (A1 = A2) (A1 = p2) (1 — A2)(p1 — p2)

. -1
= —h~? (th _vu 4 Py Q(mK_yv) + hvQmQg — h"’vaQ(avhdiv g))

= 7 (I9QU -+ m) + T Qv

+ h_20p(7“_1)v}13(u1v -v) + h™%op(ro)uy + op(r_3)gs + hop(r_4)J (vr) + hop(r_s)v

= gs.

As in [76], the symbol

B mpa(pa — p1+ Ao — A1) 4 m(pada — p1A1)
(A1 = A2) (A1 = p2)(pr — A2)(p1 — p2) (A1 — A2) (M1 — p2)(p1 — A2)(p1 — p2)

is not zero and we can apply its parametrix to the above equation. Then

vl g S el (7.25)

H..2 (1) (T

Estimates (7.24) and (7.43) yields

[ J(vr)|

A

2 () Vit 18t

< b2 lL2(p) + h|

H,.

5 .
gl o) + b2 [ldivelg

+ IVl g IV (7.26)

— _1 .
Hscg( Hscg (F)

A direct calculation (see the Calculation subsection 7.2.2) yields for small enough h

M o ‘J<VT)|H;%<F>
< W2 |Vllee) + h2 gl o) + A2 divelg b

+ B7E|f||La(py + BF|div (14 m)f) (7.27)

ezt (o)
Notice that v satisfies equation (7.17). Then applying estimates (7.62) and (7.27) gives

IVlieay S P2 lglleacoy + PP lldivellg: ) + [Elleem) + 1div ((1+m)f) [ p). (7.28)
From equation (7.14) we have that

. 1
S B2V Ia) + 2 uao) + hlldivullg g, + hEfuy]

Il o Loy

157

A%



From estimates (7.40) (7.23) (7.27) and (7.28) we have
ol oy < A2 Eleco + ey + B v gl o) + R21Idiv (14 m)f)

”ﬁic(D)'

This completes the proof. 0

7.2.2 Calculation
In this subsection, we will show the necessary calculations for subsection 7.2.1.

1. Calculation for Lemma 7.2.3

Taking the divergence of equation (7.4) and noticing that A\ = ph=? yields
—u((1+m)diva+ Vm -u) — h2(Vm - v + mdivv) = h%div (1 +m)f). (7.29)
Since Vm has compact support in D and [£|> — p # 0, estimate (7.63) yields
IVm - vlz2py S BlIVIL2 o) + h2llgllee oy + 7P [l div gl 2 (o).
Therefore

Idivullzipy S lullezpy + B2 |viiew) + R2(div Ve o) + b llgllezw) + 2°(ldiv gl z2n)
+  B?||div (1 + m)f]|r2(p). (7.30)

Since div (—=Adivv) = divg, we have that
pudivv = —h3divg
and therefore

[v]

H.(D) S 1| gl H:.(D): (7.31)
Substituting (7.31) (with s=0) into (7.30) yields

Idivullzpy S alleep) + PP (IVIILz o) + h2[ldiv vz + kgl ) + | divgllzm)
+  B*||div (1 + m)f]| 12(p).- (7.32)
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Notice that since |fy| S [Iflle2(py + [|div £l 2(py, then

H 3(I) ~

_1 .
3]3S 0 (IElla) + v El2) (7.33)

From equation (7.10) and estimate (7.33) we have that

|uN| _1 < h2|VN| _1 ‘|‘h2|fN| _1

H302 (F) ~ HSC2 (F) H502 (F)
3 .
5 h2|VN|H_%(F) + h2 (||f||L2(D) + Hlef||L2(D)) . (734)

Plugging estimates (7.32) and (7.34) into (7.15) yields for h small enough

(ullLepy S h2||V||L2(D) + h2||f||L2(D) + h5||g||L2<D) + h5||dng||L2(D)

2 : :
+  h?||div f||L2(D) +h2 ’VN|H;%(F).

2. Calculation for Lemma 7.2.4
Calculation for Step 1

Taking the traces on the boundary I" and using equations (7.64)-(7.65) we have

W= hyEK_yv+h*yQg - hv@( Vhdlvg)

+ op( )J(vr) + op(

v + hop(r_g)J(vr) + hop(r_1)v (7.35
P1 — P2 ,01—[)2) p( 2) ( T) p( 1) ( )

where v is the trace operator on I'. Taking the normal component yields

vy = fWNK—MV-i‘hVNQg h'YNQ( Vhdlvg)

1
)(—Vdiv}IEVT) + op( pl

P1— P2 P1— P2

1
J(vr) + ,0
P1 —02)] (ve) + b p(Pl — P2

+ op(

JVN

+ [, op( )V + hop(r—2)J (vr) + hop(r—1)v.

)] and [yn,op(=2-)] are pseudo-differential operators in hop,,S—2

Since [y, op( Py

p1—p2

and hop, S™! respectively, then

vy = hVNK—MV-i‘hVNQg h'YNQ( Vhleg)

1
)(—VdiV?VT) + op(

+ op(
P1— P2 P1— P2

)V + hop(r—2)J(vr) + hop(r_1)v.
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Applying op(pa — p1) to both sides yields equation (7.18).
Calculation for Step 2
Substituting equation (7.17) into equation (7.14) yields
u = hK_yu+hQ(mK_yv)+ h4Qng h5QmQ( Vhle divg)
£ QU+ m)E) + 1 Q(Vydivu)
+ hQQmQ[—,J(VT) ® dg—0 + QV ® D}ds—o]

+ Q(hvh(uN V) @ 6, 0)+Q( uy © D"3o_).

Taking the traces on I' and using equations (7.66) (7.67) yields

up = hyK_yu+ B Q(mK_yv) + h'yQmQg — I’ ’YQmQ( Vhleg)

+ WPy Q((1+m)f )+ VQ(VhdIVU)
— P1 + )\2 A ) v
’ ( ST s K2
Pz)\z pP1A1) v
- ( — p2)(p1 — A2)(p1 — /)2))

A
h 1
op(5— A2>v <uN )+ op(5 5y

4+ h3op(r_y)I(vy) + hPop(r_s)v + hop(r_2) Vi(uy - v) + hop(r_; )un(7.36)

Taking the normal component and noticing that v - V&(uy - v) = 0 yields equation

(7.19).
Calculation for Step 4

Applying estimates (7.61) and (7.68) gives

1 5 7 91 g 3
82l y3 S P2 IUlee) + A2 Viea) + h2 gl + 72 ldiv el ) + 22 |l

1. 3 3
+ helldivalli) + RS (vl g RV g Ry
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From equation (7.10) uy = —hzﬁv]v — hQifN, and therefore

1 5 7 9 . 3
|2 S h2||ulleepy + 2|V o) + R2 |||l + 2 [|div gl oy + A2 [f]lL2 )

2 ()
L. 3 3
+  h2||divu|gzpy + b |J(VT)’H;%(F) +h |V|H§c%(F)
3 3
f . .
A N N (737

Applying estimates (7.61) and (7.68) yield

1 3 5 .
g1] S h2|vlle2p) + h2gllLepy + R2||divg|Lep)

1
I_Isc2 (F)

+ h|I(vr)

- h
o + h’V’H;cl(F) + h‘VN‘H;%(I‘) + hlvdivive|

| .
Hsc2 ( 2 Hs. (F)

Since vy and —vdiv ]IEVT are the normal components of v and J(v7) respectively, then

1 3 5 .
gl 1 S hE|Vezp) + h2llglliep) + R ||divglliep)

HSC (F)

ORIl g A (7.38)

sc

Then estimates (7.33) (7.37) and (7.38) yield for small enough that

3 5 . _1 _1 .
’VN’H*%(r) S heglle) + R2([divgllLepy + 72| EllLzp) + A2 (|div | 2(p)

1 _3 _3 .

+  hz||vlepy + b7z |[ullepy + 72 ||divul|p2p)
h|J h

+ A (VT)|H;C%(F)+ |W|H;;5’(r)

3. Calculation for Lemma 7.2.6

From inequalities (7.61) and (7.68) one get

1 5 7 9 . 3
[=1 S hE|lullezpy + 2|Vl + Rl ) + R2(|divgllLep) + R || f]lLzp)

HZ(T)

. 3 3
n h|||7NQVhM|H§C(F) +h |J(VT)|H;C%(F) +h |V|H;ﬁ(r) + h|11N|HS%£’(7F-)39)

c

This motivates us to derive an estimate for |yyQV div u|H 3 o Since Vm has compact

support in D, then estimate (7.63) yields

IV -vlg ) S blIVieo) + 12 |gllezo) + 1P| div gllzz(n)
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and
va . uHﬁic(D) 5 hHuHLQ(D) + hZHVHLQ(D) + h2HfHL2(D) + thlquLQ(D)
From equation (7.29) and estimate (7.31) (with s=1) we have that for small h

Jdivalig, o, S 19l o, + A2V Vg )+ VYl o,

+ R div (1 m)E) g
< WVle) + Flgllieeo) + b ldivelg o + bl

+  A?||div (1 +m)f) py + R [IElle2().- (7.40)

I,
From Lemma 7.5.1 and estimate (7.68) we have

: _1 :
hNQVhMIHS%C(F) < h 2||QVhd1vu||ﬁ§c(D)

1.
< h 2||dlvu”ﬁic(D

)
Combined with (7.40), this inequality gives

. 3 7 T . 1
h/NQVhdlLl”HS%C(F) 5 h2 ||V||L2(D) + h2 ||g||L2(D) —+ h2 ||d1V gHﬁic(D) + h2 ||u||L2(D)
3 . 3
T+ div (14 m)E) g ) + B3 I lecoy. (7.41)

Substituting estimates (7.22) and (7.41) into (7.39) yields

&2l ) S h2|alleai) + h2(IV ey + b2 llgllam) + b2 Idivelig: o) + b2 [fllueo,
£ B (L4 m)) g oy + IO g+ BV Bl
S hilglue) + B divgle g + b2 IElla) + A3l ((L+m)f) g
+ Vi) + R g RV Rl (7.42)

Combining estimates (7.38) (7.21) and (7.42) implies that

N

lun| 3

2 2
HZ2.(T) h ‘VN‘HQl th ‘glyH;%(r) * \ng

& ()
7 9., ..
S helglluzp) + h2||divg|

3
HZ(T)

3 5
oy T 12 lEllez) + Rz (Viieem)

+ B2 div ((1+m)f) py T 1213 (vr)| . + B3 |yv]

I H,.2(I) HL.2 (1)
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4. Calculation for Theorem 7.2.1

Applying estimates (7.61) and (7.68) gives

_3 1 3 5 . _1
|g5|Hg(F) S b Elullezpy + A2 Vi) + Il oy + R2(|divgllLz oy + 2 ||f]lLzp)

1 . _92
+ h ||7QVhd1quH§C(F)+h luy| 2

+ h|J(VT) H

sc

by TV T 1By

Applying estimates (7.61) and (7.68) gives

1 3 5 .
gdl —3 < hE|V|Le) + h2(|glle ) + A2 (|divgllLep)

H.2 ()
- h|J(VT>|H;c%(F)+h‘V’HS_C%(F). (7.43)
Combining estimates (7.22) (7.23) (7.41) and (7.43) yields
|V|H;§(F) S |g5|H§c(F) (7.44)
S B2 Vlle) + B2 glla) + 2 divglg ) + b2l
+ h2lldiv (L m)f) g ) + PRIV g )+ RV - (745)

Combining estimates (7.26) and (7.45) yields

bR (U m)E) gy + I RV

Then for small enough h we have estimate (7.27).

7.2.3 A Second Regularity Result

In this section we study the regularity under the restriction that div ((1 +m)f) =
0 and divg = 0. The reason to consider this case is to obtain a regularizing effect of the
operator R,. In particular, from equation (7.29), we see that divu has the same reg-
ularity as div ((1 +m)f) (with a similar situation for v) and therefore the regularizing

effect does not hold in general. On the other hand, if the right hand side of equation
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(7.29) vanishes, then the regularity of divu is controlled by u and Vm - v. This allows

us to obtain the desired regularity of u.

Theorem 7.2.2 Assume that the hypothesis of Theorem 7.2.1 hold. If f € ﬁic(D),
div (1 +m)f) =0 and divg = 0, then for sufficiently small h := ﬁl—
2
IVl oy < A2llEleco) + IEllg o)
HuHﬁic(D) 5 h4||g||L2(D) + hQHf“ﬁiC(D)'

Moreover if f € ﬁ;lc(D) and g € ﬁiC(D), then for sufficiently small h := $
¥l o) S B2l ) + 1Elges
lullgs ) < hMllglg2 ) + R I1Elge 5
Proof. We use similar arguments as in Section 7.2.1 and we shall only highlight
here the differences. We first prove that v € ﬁic(D) and u € ﬁiC(D) if v.e L*(D)
and u € ﬁic(D) for g € L*(D) and f € ﬁic(D), then we can prove v € ﬁiC(D) and
u e H. (D).

1. (Similarly to Lemma 7.2.3) An a priori estimate for u.

Since div ((14+m)f) =0 and divg = 0, Theorem 7.2.1 yields
[l ) S P2 Elaco) + B gllueco- (7.46)

2. (Similarly to Lemma 7.2.4 and Lemma 7.2.5). An a priori estimate for vy.

The argument can also be divided into four steps. Steps 1, 2 and 3 follow exactly

the same way as in Section 7.2.1. We shall only indicate the changes in step 4.

Step 4. From Step 4 of Lemma 7.2.4 we have that
op (m((m +2)R — (1 +m)p)) vy = h™%op(r2)gs + hop(r1)vy.
Then

S h?gsl s

v |H§c(r) HZ.(I) H,.2 ()
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and for A small enough

Sh7%lgsl g

[Vl ~ HZ.(T)

1
HZ(I)
Following the arguments in the proof of Lemma 7.2.4, the only difference is to replace

estimate (7.33) by

ity S el o,

H2(r)
Notice from (7.27) and Theorem 7.2.1 that

3 _1
|V|H-%(F) S h2lglleeoy + 22 ([l L2y

This gives the following estimate (corresponding to estimate (7.16) in Section 7.2.1)

3 _1 1 _3
Vls o S Pellglem) + b E g o) + R IViieam) + A2 ullg g

Then Theorem 7.2.1 yields

3 _1
vl g Sl + A Il ) (7.47)

1
%)

3. (Similarly to Lemma 7.2.6) A priori estimate for uy.

From Lemma 7.2.6 of Section 7.2.1

op(A2)uy = h*op(r_s)(op(p2)v + g1)

+ h20p(r,1)VN + op(r1)gs + hop(ro)ux.
Then for small enough A

S h2|VN|H%

2
HE(D) by THIB -y ) el

[u 2 HZ(T)

As in estimate (7.39), we need to estimate |yyQVydiv u|Hg ) The argument here is

sc

different, since ||divul|zz can only be bounded by |[v| from equation (7.29). But

v is only in L?(D). However, from Lemma 7.5.2,

. 1.,
v QVadivyl g S [divulz ).

5
2
sc
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Using estimate (7.47) and Theorem 7.2.1, direct calculations yield

T 3 5
unlys o S PRl + 2l ) + A2 IVIIeeo).

From Theorem 7.2.1 and estimate (7.46) we now have that

7 3
|uN’H%(F) S h2lgllezm) +h2iEllg p)- (7.48)

sc

4. New a priori estimates for v and u.

As in Section 7.2.1, we have the following equation for v:

mpa(p2 — p1+ A2 — Ay) n m(pada — p1A1)
A= A2) (A1 = p2)(pr — A2)(pr — p2) (M1 — A2) (A1 — p2)(p1 — A2)(p1 — p2)

—h7? <h’VKMu + 1P Q(mK_pv) + h'QmQg + h*7Q((1 +m)f) + %’VQ(VhdiLu)>

h~%op(r_1)Vr(ux - v) + h~%op(ro)uy + op(r_s)gs + hop(r_4)3(vr) + hop(r_s)v

Op(—( A%

5.

Then, using estimate (7.48), we obtain

+ |J(VT)| _

HE(T) H..2 (D)

3 _1 1
S helgllezo) + b2 Ellg ) + P2 VI o).

(D)

Therefore

Then

Vg o) S P2lgliem) + Ifllg: ) (7.49)
se(D) se(D)

. 1
[l oy < P20Vl oy + 208l ) + Blldiv e )+ B s

5
2
sc

Since Vm has compact support in D and div ((1 + m)f) = 0, then from equation (7.29)

we have that

ldivullze o < allge o) + 21V ) + A lgleo)-

Combining this inequality with (7.48) and (7.49) yields for small enough h that

lallge o) < P2IElg () + R 8llLam)-
se(D) se(D)
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We finally arrive at the following estimates

IVl oy S Pl + Il )

lallgs ) S A8l + 2lElge o,

5. We use a bootstrap argument to prove the results of the theorem by repeating the

above arguments line by line. ([l

7.3 The Inverse of B,

In this section we will show that B, has a bounded inverse for some z with
sufficiently large |z|. We begin with the following. For a complex number z = |z|e®,
0 € [0, 27| we define arg z := #. Now we define

C(m) := {arg %m(:c); z € D}.

Before we prove the main results in this section, we first make a connection between

the set C(m) and the assumptions made in Theorem 7.2.1.

N(z)
p = € satisfies the assumptions in Theorem 7.2.1, i.e. |£|*—u# 0, [£]> — N(z)pu # 0

for any & and x € D and Ro(x,g’)— w0 for any & and x € T.

Lemma 7.3.1 If there exists 0 such that 0 ¢ C(m)U{0}U{arg < x)H) ; x €T}, then

1+N a:)

Proof. Assume on the contrary that there exists ¢ € IR? such that

1 _
WKF—M:O or |§|2—,u:0 for some x € D

N(z)

H——]V(x)u:() for some x €T

RO(x> 6/) -

This implies 0 = argp € C(m) U {0} U {arg ( x()J)rl) ; © € I'}. This contradicts the

assumption. Hence we have proved the lemma. O

Now we are ready to prove the following.
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Theorem 7.3.1 Assume that assumption 7.0.1 holds and that C'(m)U{0}U{arg (N]gfx?q) ;T €

(z)
I'} # [0,2w]. Then there exists z with sufficiently large |z| > 0 such that B, has a

bounded inverse R, : F(D) x G(D) — U(D) x V(D).

Proof. Since C'(m)U{0}U {arg (N]E,’“Egl) ;v €'} # (0,27, then from Lemma 7.3.1

there exists j = € satisfying the assumption of Theorem 7.2.1. Let h > 0 and define
z:=ph™2 Let B,(u,v) = (f,g) where (u,v) € U(D) x V(D). From Theorem 7.2.1,

for a sufficiently small A, we have that

_ _3 . .
IVlleemy S 121 gl + el Flldivelig o) + (€l + Idiv (1 +m)f) g £7.50)
and
_1 -1
lullwzo) + L2l # ey + 12 lulseo)
_ . _ _5 .
S 127 (I lueoy + ldiv (L4 mf) llgg ) + 1212 lgllieco) + 121 ldiv g 47 5))
From (7.31) (with s=1), we have that
|div v || g1y S |z|_1||dingH1(D). (7.52)

Therefore B, is injective and has closed range in F(D) x G(D) (the latter follows from

a Cauchy sequence argument).

Now we prove that B, has dense range. The argument will be divided into three

steps.

Step 1: First we show that for any (p?, q%) € F(D)xG(D) with div ((1+m) p?) =
0 and divq? = 0, there exists (u;, vi¢) € U(D) x V(D) such that

B.(uai,vie) = (Pd7qd) in F(D)x G(D).

Indeed assume that (p?, q%) € F(D) x G(D) with div ((1 +m)p?) =0 and divg? =0
and that
(B.(u,v),(p%,q%)) =0, V(u,v) e U(D)x V(D)
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where (-, ) denotes the natural F(D) x G(D) inner product. It is sufficient to show
that p? = 0 and q? = 0 to conclude the proof in this step. As (p?,q?) satisfies
div ((1 +m) pd) = 0 and divq? = 0, then the inner product reduces to the L? inner
product. Letting (u,v) € C3°(D) x C3°(D), one gets, with p := p?/(1 +m),

curlcurl g¢ — zq? — mp = 0 in D
curlcwrlp —2(1+m)p=0 in D

in the distributional sense. We observe that curlcurlq? € L?(D) and therefore the

tangential traces v x curlq? and v x q¢ are well defined in H=%?(T") and H-/?(T")

respectively. Since u x v =0 and curlu x ¥ = 0 on I, then for all v € C*(D) we have

that
/(y x curlq?) - vds — /(V x curlv) - q?ds = 0
r

r
where the integrals are understood as duality products. Hence

vxql=0 and vxcurlg?=0 on T
(see for instance [41, Lemma 3.1]). Now Let p; = zq? — p. Then one gets
curlcurlq? — z(1 + m)q? 4+ mp, =0 in D (7.53)
curlcurlp; — zp; =0 in D. (7.54)

Now we want to apply Theorem 7.2.1 (one can check that we can relax the condition
curlq? € L2(D) from the proof of Theorem 7.2.1) to (q?,p;). Since z = ph~2 and
1 satisfies the assumption in Theorem 7.2.1, we obtain q? = 0, p; = 0 which implies

p? =0, q¢ = 0. This proves the first part.

Step 2: We show that for any given (p¢, q°) € F(D) x G(D) with curl p¢ = 0,

p¢ x v|r = 0 and curlq® = 0, q° x v|r = 0, there exists (ugy, va,) such that
B.(u2s,vae) = (p%,q°) in F(D) x G(D).

Assume

(B.(u,v), (p, ) = 0, V(u,v) € U(D) x V(D).
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It is sufficient to show p® = 0 and q° = 0 to conclude the proof in this step. Indeed
from curlp® = 0, div ((1 +m)p¢) € H*(D) and p¢ X v|r = 0, one gets p¢ € H?(D)
(see [5]), then curl p¢ = 0 implies p¢ € U(D). We obviously have q° € V(D). Then,
letting u = p® and v = 0, one gets

Ip°|lr(p) = 0.

This implies p¢ = 0. Second, let v = q¢ which implies

lala(p) =0
and therefore q° = 0.

Step 3: Now we are ready to prove that B, has dense range in F(D) x G(D).
Indeed let (p,q) € F(D) x G(D). By the Helmholtz decomposition (see for instance
[54]), there exist unique p? € L*(D), p¢ € L?(D) and q* € L?(D), q° € L*(D) such
that

p=p'+p° a=q'+d (7.55)

where

div ((1 + m) pd) =0, curlp®=0, p°xv|p=0.

divqg® =0, curlg°=0, q°xv|p=0.

The existence of (p?, p©) is guaranteed by the strict positiveness of (1 +m). As shown
above, there exists (u; ¢, viy) € U(D) x V(D) and (ugy, vay) € U(D) x V(D) such
that

B.(uis,vig) = (p%,q%) in F(D)x G(D)

and

B.(u2s,vae) = (p%q°) in F(D) x G(D).

Now let u; = u; ¢ + ug and vy = vy + vay. Then

B.(w,v,) — (p*+p%q*+q°) = (p,q)
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in F(D) x G(D). Now we have proved that B, has dense range in F(D) x G(D). Since
~1is well-defined.

B. is injective and has closed dense range in F(D) x G(D), R, := B
U

7.4 Main Results on Transmission Eigenvalues

We shall state and prove here the main results of our paper on the existence of
transmission eigenvalues and the completeness of associated eigenvectors. The results
of this section rely heavily on the regularity results obtained in section 7.2.

Let us first introduce the Helmholtz decomposition. The motivation for intro-
ducing the Helmholtz decomposition is to get the desired compact imbedding (which
will be proved to be a Hilbert-Schmidt operator) for Maxwell’s equations. For any

u € L?(D) there exists a unique u? € L?(D) and u® € L%(D) such that
u=u’+u’ (7.56)
and
div (1+m)u?) =0, cwlu®=0, u®xvlp=0.

This is guaranteed by the strict positiveness of R(1 + m) (see for instance [54]). We
now define P? as the projection operator in L2(D) x L2(D) defined by

Pi(u,v) = (u,v)
where u? is defined by (7.56).

For z chosen as in Theorem 7.3.1, we now consider the operator
S.:=PR,: H(D) — H(D)
with
H(D) := {u € U(D);div ((1 +m)u) = 0} x {v € L*(D);divv = 0}.

Since H(D) is a subspace of H?(D) x G, we also get from Theorem 7.2.2 that
S? continuously map H(D) into H(D) x H*(D). Observing that the H?(D) x L2(D)
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norm is an equivalent norm in H(D), we have from [76, Lemma 4.1] (see also [1]) that

S?: H(D) — H(D) is a Hilbert-Schmidt operator.

z

We shall now apply Agmon’s theory on the spectrum of Hilbert-Schmidt oper-
ators in [1] to get the desired main results. More specifically we shall apply the result
of the following lemma that is a direct consequence of Proposition 4.2 and the proof of

Theorem 5 in [76].

Lemma 7.4.1 Let H be a Hilbert space and S be a bounded linear operator from H to
H. If 7! is in the resolvent of S, define

(S))\ = S([ - )\S)_l.

Assume SP . H — H is a Hilbert-Schmidt operator for some p > 2. For the operator
S, assume there exists N rays with bounded growth where the angle between any two
adjacent rays is less that %: more precisely assume there exist 0 < 07 < Oy < -+ <
On < 27 such that 0, — 0,1 < % fork=2,--- N and 2m — Oy + 01 < % satisfying
the condition that there ezists 1o > 0, ¢ > 0 such that sup,>,,||(S),e0.| < ¢ for
k=1,---,N. Then the space spanned by the nonzero generalized eigenfunctions of S

is dense in the closure of the range of SP.

We shall first apply this lemma to the operator S,, then deduce the spectral decom-
position of the operator B, and the main result on transmission eigenvalues. In order
to prove the existence of rays with bounded growth we need the following two lemmas

on (R.) which will be used in the proof of Theorem 7.4.1.

Lemma 7.4.2 Let z € C such R, = B! is well defined as in Theorem 7.3.1. Then

one has the following identities:
P'R.P'B. =1, and P'B.PR.=1

where 1 is the identity operator on H(D).

172



Proof. On one hand, for any (f¢,g) € H(D), let (u,v) = R,(f? g), then

curlcurlu — 2(1+m)u —mv = (1+m)f¢ in D

curlcurlv —zv=g in D
Let (u,v) = P?(u,v), then

curlcurlu? — 2(1 + m)u? —mv = (1 + m)f¢ + 2(1 + m)u® in D

curlcurlv —zv =g in D
This implies that
P‘B.P/R.(f?,g) = P'B.P%(u,v) = P'B.(u’,v) = P4(f! 4 zu, g) = (f!, g).
On the other hand, for any (u?,v) € H(D), let (f,g) = B.(u,v), then

curlcurlu — z(1+m)u¢ —mv=(1+m)f in D

curlcurlv —zv =g in D
This implies that

curlcurl (u? + 1£°) — 2(1 + m)(u? + 1) —mv =14+ m)f* in D

curlcurlv —zv =g in D
Therefore
P'R.P'B.(u’,v) = P/R.(f!,g) = P (u’ + éf‘:, v) = (u’,v).
Hence we have proved the lemma. O

We now have the following expression for (S,),.

Lemma 7.4.3 Let A\ € C and assume that R\ = B, is well defined. Then (S.)\ =
PR, ,.
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Proof. By definition, (S.), = PIR,(I — AP‘R,)~!. From Lemma 7.4.2 and the fact
that P9I = I where I is the identity operator on H(D), we have that

(S:)» = PR.(I-AP'R.)™"
= PR.(P‘B.PR, — \P’R,)™*
= P'R.((P'B, - MI)P'R,)"!
= PIR.(PYB, - \M)P'R,)™!
- PR,(P‘B,.,P'R,)™!

= PR,
where for the last equality we used that PR, \PB. , = L. O

We are now in position to prove the following result on the spectral decompo-

sition of S,.

Theorem 7.4.1 Assume that Assumption 1 holds and assume that C(m) is contained

™

in an interval of length < 7. Then there are infinitely many eigenvalues of S. and

the associated generalized eigenfunctions are dense in {u € U(D);div ((1+m)u) =

0} x {v e V(D); divv = 0}.
Proof. We prove the theorem in two steps.

Step 1. We shall apply Lemma 7.4.1 with S =S,, H = H(D) and p = 2.

T

Since C(m) is contained in an interval of length < %, then we can choose

0 <60 <6 <- -+ <Oy < 27 such that (recall that since n is a constant on T,
then {arg (%) ; x € I'} is a fixed angle)

T
Ok _(gkz—l < Z

for k=2,---, N and 27 — Oy + 0, < 7 satisfying

M)

N (D) ;v el}

6; ¢ C(m)U {0} U{arg (

From Lemma 7.3.1 and Theorem 7.3.1, R, i, is well-defined as the bounded inverse

of B,ie,. Moreover R, is, is uniformly bounded with respect to r because of the
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estimates (7.50), (7.51) and (7.52). Now for sufficiently large » > 0, the angle of

z+re* is sufficiently close to re'*. Therefore R, i, is also uniformly bounded with

z+re

respect to r. Hence there exist ry such that
b1yl | R | <
From Lemma 7.4.3 we have that
Sreitr = (82)peion = PdRz+7~ei9k-
Therefore
SUPrzrg || Syeion || < e

Now we have found directions 6; as required in Lemma 7.4.1 for which the
bounded growth conditions are satisfied.

Step 2. Tt only remains to prove that the closure of the range of S? is dense in
{ueU:div ((1+m)u) =0} x {veV:divy =0}. By a denseness argument, it is
sufficient to show that the closure of the range of S, is {u € U(D) : div ((1 +m)u) =
0} x {v € V(D) : divv = 0}. Indeed for (u,v) € {u € U(D) : div (1 +m)u) =
0} x {ve V(D) :divv =0}, we define p € Hy(D) such that

—zdiv[(14+m)Vp] =Vm - v

Since curl Vp = 0, div Vp € L*(D) and v x Vp = 0 then Vp € H'(D) (see for instance
[7]), the same argument yields again Vp € H?*(D) since div[(1 + m)Vp] € H'(D)
(this come from the fact that Vm has compact support in D and v is regular on that

support by elliptic regularity).

Let u* = u+ Vp. Then we have (u*,v) € U(D)x V(D) and P¢(u*,v) = (u, v).

Moreover by a direct calculation we have that
div (—z(1 + m)u* —mv) = 0.
Now define (f,g) = B.(u*,v). Then

(f,g) e {f e F(D);div (1 +m)f) =0} x {g € G(D);divg = 0}.
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Let (f, g,) € F(D) x G(D) be a Cauchy sequence such that

(fr, g) = (f, 8)
in the space F(D) x G(D). Since R, is bounded, we have that
Rz(fﬁa gﬂ) - Rz(f7 g) = (u*,v) in U(D) X V(D)

Therefore

Sz(féa gf) - PdRZ(ffa g@) - Pd(u*v V) = (u7 V)

in {u € U(D);div ((1 +m)u) =0} x{v € V(D);divv = 0}. This proves the theorem.
U

Now we relate the transmission eigenvalues to the operator B,.

Theorem 7.4.2 The number k and (u,v) € U(D) x {v € V(D) : divv = 0} are
a transmission eigenvalue and a non trivial solution of (7.1)-(7.2) respectively if and

only if p=t = k? — z and P%(u,v) are respectively an eigenvalue and an eigenvector of

S..

Proof. First we show that for each eigenvalue p~! of S, we can find a transmission
eigenvalue k and and non trivial solution of (7.1)-(7.2). Indeed, suppose (u?,v) € H(D)
is such that

P'B ' (u?,v) = p ' (u?,v). (7.57)
Since B! is well-defined, (01, v) := uB_!(u?,v) satisfies

curlcurla — z(1 +m)a —mv = p(l +m)u?  in D

curlcurl v — 2v = pv in D.
Define u? such that (0, v) = P?(a,v). Then, equation (7.57) yields

u? = u?, vV=v.
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Now set

u=ut+

i =ul+ ——i,
otz otz

where 1° = 1 — 1%. Then a direct calculation yields

curlcurlu — (z 4+ p)(1+m)u—mv=0 in D

curlcurlv — (z + p)v =0 in D.

The definition of u and (7.56) ensures that 1,u = 0 and ;curlu = 0 on I and that (u, v)
are non trivial solutions of (7.1)-(7.2) with k£ := \/z + p (with appropriate branch).
The converse is easily seen by reversing the above arguments and defining

(u?,v) = P4(u, v). This completes the proof. O

Note that since S? is a Hilbert-Schmidt operator then the reciprocal of the
eigenvalues form a discrete set without finite accumulation points. We therefore can

summarize the results on transmission eigenvalues in the following main theorem.

Theorem 7.4.3 Assume that the assumptions of Theorem 7.4.1 hold. Then there exist
infinitely many transmission eitgenvalues in the complex plane and they form a discrete
set T without finite accumulation points. Moreover, if z is such in Theorem 7.4.1,
then the set {u = (k* — 2)7', k € T} form the set of eigenvalues of the operator S,
and the associated eigenvectors are dense in {u € U(D); div ((1+m)u) =0} x {v €
V(D); divv = 0}.

7.5 A Semiclassical Pseudo-differential Calculus

In this section, we will state some results from semiclassical pseudo-differential
calculus that will be used in the thesis. We introduce a small parameter h. We
define Dj;j = %%. Similar notations hold for V, %. For an open bounded manifold

D in IR? we introduce the semiclassical Sobolev spaces H. (D) equipped with the

norm | - [l (p), where [[u

ch(m3)>ﬁ|D = u} and |u

H.(D) ~ inf{||a| %igc(IPﬁ) =

Jrs (LHR?[€]%)*[0(§) [?d€. For a two dimensional manifold I', we denote the semiclassical
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norm as | - H:, (). We denote the commutator of two semiclassical pseudo-differential
operators as |-, -]. We refer to [4] and [85] for details. By a < b we mean that a < Cb

for some independent constant C.

Definition 7.5.1 Let a(z, &) be in C*(IR??), we say a is a symbol of order m, denoted
asa € S™, if
020¢a(x,€)| < Caple)"

for all o and B where (€) == (1 + [€]2)2. For a € S™ we define the semiclassical

operator Opy(a) by
1
(2m)

and we define the class of such operators as Op,S™.

Opp(a)u = / ¢ a(z, he)a(€)de

In particular we need the following results from [76]. Let = = (2/,z,) and
¢ = (¢,¢&,) where (x,&) is the local coordinate in the cotangent bundle T*(I" x (0, €))

and (2, ¢’) is the local coordinate in the cotangent bundle 77T".

For the case that —h?A — p is elliptic with the symbol [£|> — u # 0 for any &

and x € D, we have in the tubular neighborhood of I' the semiclassical symbol of
—h*A —

is
&+ 2hH (2) 16, + R, ) —

where H(x) is a smooth function depending on x. We denote by
Ro(z,¢') (7.58)
the principle semiclassical symbol of R(x,&’). Moreover we can have

&+ R(w,&) —p= (& — p(2,8)(& — p2(2,)) (7.59)

where p; and ps are symbols of order 1 with &(p;) > 0 and (py) < 0.
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For the case that —h%*A — p(1+m) is elliptic with the symbol |£]> — u(1+m) # 0

for any € and « € D we have similarly

&+ R(,¢) = (1 +m) = (& — Mi(@,8) (& — Xa(.€)) (7.60)
where A\; and Ap are symbols of order 1 with (A1) > 0 and I(\2) < 0.

Also we will use frequently that if the symbol [£|> — u(1 +m) # 0 for all £ and
r € D, then the parametrix @ of —h?A — u(1 +m) exists where

Q(=RA—p(l+m))=1I
modulo a smoothing operator. The following holds

Q)|

T (D) < || H..(D) (7.61)

for any f € H. (D) with s > 0. The same holds true for the parametrix Q of —h>A — .

Also we have

1( QW ® (DMY*5,=0)) [pll vy S h72|0)

H,. (D)

Wheres—k—i-% > 0.
Moreover if —h?Av — puv = h%g in D and |£|> — p # 0 then

[v] " (o\w) S h”V“ﬁzc(D) + h2||g||ﬁzaﬂc{s—170}(D) (7.63)

for s > 0 when the right hand side makes sense.

Next we introduce op(rys) as the semiclassical pseudo-differential operator of

order M on I'. We have that

O @ D16,) = op(—L1— ) + hop(r_1)0 (7.64)
7 P1— P2

Q[%@/} ® ds—0] = op( ) + hop(r_s)Y (7.65)

P1— P2

m(ps — p1+ A2 — A1)
(A1 = A2) (A1 = p2)(pr — A2)(p1 — p2)

Qmé[%lﬂ ® G5=0] = op ( ) Y + hop(r_4)1(7.66)
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( m(pada — p1A1)
(A1 = A2) (A1 — p2)(p1 — A2)(p1 — p2)

where 1) is a distribution on the boundary.

Qmé[%@b ® D0bs—g] = op ) Y + hop(r_3){7.67)

In the framework of semiclassical norms, the trace formula reads

_1
o Sh g o (7.68)

HS j(F) ~

for s > %
Moreover we need the following two lemmas.

Lemma 7.5.1 Assume u € H*(D). Then for s > 0

1QV hul

H (D) ~
Proof. If s =0, then this is a consequence of the mapping properties of semiclassical

pseudo-differential operators on L?(IRY). Now assume s > 1. From classical jump

relations (c.f. [69])
h
Viwiu = Viyu-+ (V;u) ® d5—0-
Then

1QV hul

T +||Q( v ® Oy 0)|

iy S 1QVaull

o (D)

From the estimates (7.62) and (7.68) we have that

+7S

Q18 6ol i < Il oy

Noting that s > 1, we can proceed to have

|QV pu|

7 (D) 5 ||th| "7.N(D) 5 Hu||ﬁzc(D)

This completes our proof. O

Lemma 7.5.2 Assume f € HY(D) and f = 0 in the neighborhood N of the boundary
I'. Then for f € FZC(D) and small enough h

‘/Ythf|Hs+% (F) ~

(7.69)
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Proof. Note that if f = 0in NV, then f € H:,(IR?) and f € H'(IR?). Let u € H3 (IR?)
satisfy

—h*Au — p(1 +m)u = V,f.

Then u = QV,, f +hK_yu for sufficiently large M > 0. Let x € C§°(IR?) be supported
in Ne={z:x=y+sv(y), y eI, —e <s < e} with sufficiently small € > 0 such that
XVif=0,and y =1 on I'. Then we have

IXQVrf]

HI2(RY) S [xul Hi2(R?) T hllul Hi 1 (R3) (7.70)
Since xV; f = 0 then
—h*A(xu) — p(1 +m)xu = xV,f — hKju = —hKu

where K is a differential operator of order 1. Therefore

[[xul H: 2(IR3) S hful H (R3)

Then estimate (7.70) yields

IXQV 1 f]

HiF?(IR3) S hfu] Hi (R3)

Recall that u = QV; f + hK_jpu. Then for i small enough

Ml ey < 1 Fllzz2, ()

and therefore

IXQVif]

HiH?(IR3) S Rl f] H..(D):

From the inequality (7.68) we have that

YQV i f

HS+%(F) = |7(Xthf)

1
HS+%(F) S h2 ||f| ﬁjc(D)

This completes the proof. O
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