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ABSTRACT

Computational materials science is at the forefront of discovering new materi-

als and predicting novel material properties with much improved efficiency. In this

work we used first principles methods based on density functional theory to explore a

wide range of material properties with an objective to develop and optimize materi-

als properties for a range of applications. We studied the electronic structure, carrier

densities and band alignments in rare-earth monopnictides (RE-V), effects of hydro-

static pressure and epitaxial strain on their band structures, the formation of 2D hole

gas at the interface between LuSb and GaSb, defect-controlled Fermi-level tuning in

half-Heusler topological semimetals (LuPtSb, LuPtBi), and electronic properties of

corundum-structured Ir2O3, Ga2O3 and their alloys for high power electronic devices

and heterojunctions.

The electronic and magnetic properties of rare-earth monopnictide (RE-V) have

long been studied both experimentally and by theory, but there have been notable

contradictions in the experimental characterization of the electronic properties of these

materials. Previous theoretical work was able to clarify only a few specific properties

of some RE-V compounds, yet general agreement with experiments for the complete

series was not satisfactory. Motivated by this, we focused on RE-V compounds, with

RE=La, Gd, Er, and Lu, and V=As, Sb, and Bi, and analyzed the effects of spin-

orbit coupling and treating the RE 4f electrons as valence electrons. Our calculations

predict that all the RE-V compounds are semimetals with electron pocket at X point

and hole pocket at Γ point. The predicted carrier densities are in good agreement with

available experimental data. Based on our understanding of rare-earth monopnictide

(RE-V), we explored the effects of hydrostatic pressure on the electronic properties of

LaAs. We find that in DFT-GGA, under the calculated equilibrium lattice parameter,
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LaAs displays a crossing between the highest As p band and the lowest La d band

near the X point due to the overestimated p-d band overlap. Such crossing does not

occur when the band overlap is corrected in the HSE06 hybrid functional calculation,

in agreement with experiments. However, we find that the p-d crossing can be induced

in LaAs under hydrostatic pressure, showing a topological phase transition at ∼7 GPa.

The rocksalt crystal structure of LaAs is predicted to be stable under applied pressure

up to 20 GPa, in good agreement with experimental observations. We also showed that

non-trivial topological phase can be introduced in LaSb under the effect of epitaxial

strain. We show that under compressive epitaxial strain, the La d band crosses the

Sb p band near the Z point in the Brillouin zone, stabilizing a topologically nontrivial

phase, opening unique opportunities to probe epitaxially strained thin films.

In a joint project with an experimental group at the University of California

Santa Barbara, we explored emergent phenomena in rare-earth monopnictide (RE-V)

thin films via quantum confinement. We show that quantum confinement lifts carrier

compensation and differentially affects the carrier density of the electron and hole-like

carriers resulting in a strong modification in its large, non-saturating magnetoresistance

behavior. We predicted a 2D interfacial hole gas due to the bonding mismatch at

hetero-epitaxial interface of the semi-metal (LuSb) and a semiconductor (GaSb) which

is accompanied by a charge transfer across the interface creating opportunity to tune

magnetoresistance and engineer hetero-epitaxial interface.

Motivated from the recent experimental work on half-Heusler topological semimet-

als, we investigate how point defects impact the Fermi level position in two representa-

tive half-Heusler topological semimetals, PtLuSb and PtLuBi; we explore how intrinsic

defects can be used to tune the Fermi level, and explain recent observations based

on Hall measurements in bulk and thin films. Under typical growth conditions we

show that Pt vacancies are the most abundant intrinsic defects, leading to excess hole

densities that place the Fermi level significantly below the expected position in the

pristine material. Suggestions for tuning the Fermi level by tuning chemical potentials

are discussed.
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Finally, we worked on corundum phase of Ir2O3, Ga2O3 and their alloys. α-

Ga2O3 is ultra-wide band gap semiconductor that can be easily doped n-type, but not

p-type. Finding a lattice matched p-type material is highly desirable for device applica-

tions. In this context, we studied Ir2O3 and its alloys with α-Ga2O3. The stability and

electronic structure of α-(IrxGa1-x)2O3 alloys are studied along with variations of band

edge positions with Ir/Ga concentrations. Our results indicate that Ir2O3 can be made

p-type, and the predicted band alignment at the Ir2O3/Ga2O3 interface is in good

agreement with experimental data, opening up opportunities for p-type Ir2O3-based

heterojunctions for high power electronic devices.
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Chapter 1

INTRODUCTION

1.1 Rare-earth monopnictides

Rare-earth elements and their compounds have been studied for more than 8

decades. The interest in rare-earth compounds increased during 1960s mainly mo-

tivated by the search of ferromagnetic semiconductors. Rare-earth monopnictides

(RE-V) are very attractive for research because of their simple rock-salt crystal struc-

ture and the occupation of their 4f shell ranges from 0 to 14 through the series La

to Lu, which means these compounds can have variety of magnetic and electronic

properties. RE-V compounds display interesting electronic, magnetic, optical and

magneto-optical properties, with applications including thermoelectrics [26], tunnel

junctions [27], photoconductive switches, and terahertz detectors[28]. Their rock salt

crystal structure is compatible with the zinc blende structure of III-V semiconduc-

tors. It has been demonstrated that RE-V compounds can be epitaxially grown on

III-V semiconductors[29, 30, 31, 32], to which RE-V have been explored as the ulti-

mate ohmic contacts with high structural quality due to the small lattice mismatch

[33]. For instance, ErAs and TbAs have lattice parameters very close to those of GaAs

and InGaAs alloys [34, 35, 36], respectively. Some of the RE-V compounds have been

investigated due to their non-trivial topological band structures[37, 38, 39], and have

shown effects of extreme magnetoresistance [40, 41] and superconductivity [42] at low

temperatures.

The electronic and magnetic properties of RE-V have long been studied both

experimentally[42, 10, 2, 31, 32] and by theory [43, 44, 45, 39]. There have been

notable contradictions in the experimental characterization of the electronic properties
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Figure 1.1: Periodic table showing rare-earth lanthanides (yellow) and the pnictides
(blue).

of these materials. Early measurements of electrical resistivity have shown metallic

as well as semiconducting behavior [46], while optical measurements have shown signs

of a semiconducting band gap [47]. Previous theoretical work were limited to semi-

classical treatment of the crystalline field[48], or simplified models that account for

the p-f mixing [49], d-f coulomb interaction [50], and an effective point-charge model

for the crystalline field [51]. These models could clarify only few specific properties

of some RE-V compounds, yet general agreement with experiments for the complete

series was not satisfactory [5]. Using an augmented plane wave method with the Slater

Xα exchange potential [52] and treating the 4f electrons as core electrons, Hasegawa

and Yanase [5] claimed that GdN is a semiconductor with a band gap of 1 eV and all

the other Gd monopnictides are semimetallic.

A remarkable feature of RE-V compounds is the presence of occupied 4f elec-

tronic states near to or resonant in the valence band. As the number of 4f electrons

increases from La (no f electrons) to Lu (fully occupied 4f shell), the RE-V series

displays a variety of magnetic and electronic effects. The coexistence of partially filled

4f shell along with itinerant p and d charge carriers has been quite challenging to an

accurate description of the electronic structure of RE-V compounds. Petukhov et al.

[1] performed first-principles calculations using the linear-muffin-tin-orbital (LMTO)
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method within local spin-density approximation for ErAs and Er1−xScxAs, treating the

Er 4f electrons as core-like electrons. They found cyclotron masses in good agreement

with experimental data [10], however, the Fermi surface dimensions were significantly

overestimated. Subsequently, Petukhov et al. [53] studied the electronic properties of

GdX and ErX (X = N,P,As), performing test calculations for ErAs and GdAs with 4f

electrons in the valence and in the core. They reported that treating the 4f electrons

in the valence leads to strong perturbation of the bands near the Fermi level, and in-

correctly predicts that these compounds are not semi-metals. They also claimed that

GdN is metallic for one spin channel and semiconducting in the other. Later studies

treated 4f as core electrons [5, 54] while some others highlighted the need of including

the f electrons in the valence [55, 56].

More recently, a combination of DFT and dynamical mean-field theory (DMFT)

calculations indicate the importance of including the 4f electrons in the valence to cor-

rectly describe the dimensions of the Fermi surface pockets, carrier concentration, and

Shubnikov-de Haas (SdH) oscillation frequencies [8]. These calculations are rather

computationally expensive, and finding other more computationally affordable meth-

ods that correctly describe the effects 4f electrons on the electronic structure of RE-V

compounds is highly desirable. We studied the electronic structure of RE-V compounds

using the screened hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE06), focus-

ing on the effects of spin-orbit coupling and treating the 4f as valence electrons.

In general, rare-earth monopnictides LnX (where Ln is a rare-earth, and X=As,

Sb, Bi) all display complex magnetic and electrical properties [44, 54], including ex-

treme magnetoresistance (XMR)[15, 16, 18] and superconductivity [42, 57]. They are

all reported to be semimetals and, except for LaX, YX, and LuX, they are also an-

tiferromagnetic at low temperatures [58, 59, 60, 53, 3, 4, 1] because of the rare-earth

partially filled f orbitals. In analogy to topological insulators, with conducting sur-

face states due to non-trivial topology of their bulk band structure[61, 62], some LnX

compounds also display topologically protected surface states. Topological semimetals

have been classified as Weyl, Dirac and nodal-line semimetals [63, 64, 65]. A necessary
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condition for the stability of these topological phases is the presence of certain sym-

metries. For example, a Dirac point of a Dirac semimetal is only stable if the material

preserves time reversal (TRS) and space inversion symmetry [66]. If any one of these

symmetries is broken, the Dirac point splits into two Weyl points with opposite chiral-

ities [66]. There is also a class of topological systems called Z2 topological semimetals

[67]. Even though they do not display a gap in the bulk band structure, as in the case

of LaBi[41, 18], they are still characterized by non-trivial Z2 invariant which requires

TRS to protect their non-trivial topological properties. The existence of a direct gap

at each k point in the bulk Brillouin zone enables the definition of the Z2 invariant for

these materials.

LaBi, LaSb, and LaAs have shown XMR effects, making them promising for

sensors and spintronic devices [68, 69, 70, 71], yet the cause of which remains un-

settled. Currently proposed models are based either on the complete electron-hole

compensation[72] or on the presence of non-trivial topology in their band structures

[73]. There is also a recent report on YSb [74], a semimetal with rock salt crystal

structure and lack of topologically protected surface states, where XMR is observed

and attributed to a combination of near electron-hole compensation and very different

electron and hole mobilities. Electron-hole compensation likely plays an important

role in XMR as seen in recent studies of LaSb and LaBi [40, 41]. In the context of

a topological spectrum, LaBi is on one side with non-trivial topology, whereas LaAs

would be on the other side, possibly displaying trivial topology, and LaSb would be on

the border line of being a topological semimetal[15, 75].

Whether LaSb is a topological semimetal has been somewhat debated in the

literature [41, 75, 37]. Guo et al.[41] performed DFT-GGA and meta-GGA (MBJ)

calculations for the band structure of LaSb, finding different results for the two func-

tionals. While DFT-GGA calculations indicate that LaSb is a topological semimetal,

MBJ calculations, where the overlap of the La d-band and Sb p-band is supposedly

corrected, indicate that LaSb is a trivial semimetal. More recently, Guo et al.[76] per-

formed HSE06 hybrid functional calculations, finding that LaSb is a trivial semimetal.
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Experimental results have also been controversial. Niu et al. [37] reported the obser-

vation of linear-dispersion states near the Fermi level in LaSb using ARPES, yet their

measurements could not identify whether an odd or even number band crossings lie

below the Fermi level due to the proximity to the bulk bands. On the other hand,

ARPES measurements by Nummy et al.[75] indicate that LaSb shows a trivial band

structure, yet it is on the verge of becoming a topological semimetal, in disagreement

with their own DFT-GGA calculations.

In this work we show that LaSb and LaAs are indeed topologically trivial

semimetals, with LaSb being very close to become a topological semimetal, in agree-

ment with angle resolved photoelectron spectroscopy (ARPES) measurements[15, 75]

and recent calculations [76]. We also predict that applying hydrostatic pressure leads

to non-trivial topology in LaAs. We find that LaAs becomes topologically non-trivial

at around 7 GPa, while preserving the electron-hole compensation and crystal struc-

ture undisturbed, making it an interesting testing case for the two competing models

to understand XMR effects in these materials.

In the past few years, many reports appeared on the topological properties of

rare-earth pnictides [67, 37, 38, 77]. Insulators can be categorized into normal or trivial

band insulators and non-trivial topological insulators in the presence of time reversal

symmetry [78, 62], with the latter showing surface states that are spin-momentum

locked and robust against any time reversal invariant local perturbation [78, 62]. Sim-

ilarly, semimetals can be classified in trivial and topological non-trivial, and the latter

are divided into Weyl, Dirac and nodal-line semimetals [63, 64, 65]. These topologi-

cally non-trivial semimetals are directly related to each other in a way that a Dirac

semimetal transforms into a Weyl semimetal by splitting a Dirac point into two Weyl

points provided that the time reversal symmetry or spatial inversion symmetry is lifted

[66]. In analogy to the Dirac-cone surface states in the bulk band gap of topological

insulators, the surface states of Weyl and Dirac semimetals are characterized by the

presence of Fermi arcs [79, 80, 81, 82]. The absence of bulk band gap in the non-trivial

semimetals makes it more difficult to probe the Dirac-like cone surface states due to

5



the overlap with the bulk states. These topological semimetals are characterized by the

non-trivial Z2 invariant using parity analysis provided that space inversion symmetry

and time reversal symmetry are preserved and there exists a bulk band gap at each of

the k point in the Brillouin zone.

Recent experiments on LaX (X=As, Sb and Bi) showed large magnetoresistance

of up to 100,000% with resistivity plateau at low temperatures [16, 15, 18], pointing

to potential applications in sensor and spintronic devices [68, 69, 70, 71]. Experiments

and first-principles calculations indicated the presence of topological surface states in

LaBi, while LaAs was clearly shown to behave as a trivial semimetal [67, 37, 38, 77].

Controversial results were reported for LaSb: first-principles calculations based on the

density functional theory (DFT) within the generalized gradient approximation (GGA)

predicted that LaSb is a topological semimetal with a crossing between the La d and

the Sb p bands near the X point [75], while meta-GGA MBJ [41] and hybrid density

functional calculations [77] showed that such crossing does not occur, in agreement with

ARPES measurements [75]. These results fuelled the debate of whether the observed

magnetoresistance is due to the non-trivial topological properties of the band structure

of LaSb and LaBi, or due to complete compensation of the electron and hole pockets

[72, 73, 74].

In fact, LaX (X=As, Sb and Bi) are compensated semimetals with equal electron

and hole carrier concentrations [18, 40, 15]. LaBi is a non-trivial topological semimetal

with three Dirac cones on the surface [67, 38, 75]. LaAs is a trivial semimetal as shown

in recent experimental studies [15, 75], but it can be made topologically non-trivial

under hydrostatic pressure[77]. Whether LaSb is a trivial or a topological semimetal

and whether its band structure can be changed from trivial to topologically non-trivial

by applying small perturbations are still matter of debate. The HSE hybrid func-

tional gives an accurate description of the electronic structure of rare-earth pnictides,

predicting carrier densities that are in very good agreement with experimental data

[6, 23, 7, 18, 15, 16]. It correctly describes the topologically trivial ground state of LaAs,

and predicts the observed non-trivial topology of LaBi band structure [67, 37, 38, 77].
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Here we use HSE hybrid functional to describe the electronic structure of LaSb,

and show that LaSb is indeed a semimetal with a trivial topological band structure. We

then predict that LaSb can be turned into a topological semimetal under reasonably

small epitaxial strain, reporting the bulk electronic structure of epitaxially strained

LaSb and identifying the Dirac cone and spin texture of the surface states.

1.2 Half-Heusler materials

Fritz Heusler was the first to synthesize Cu2MnAl by mixing Cu, Mn and Al

in 1903; this material later named after him. Interestingly, each of the individual el-

ements were non-magnetic and the compound showed ferromagnetic behavior. After

Fritz Heusler, more than 1000 of these compounds have been made with general formula

XYZ for Half-Heusler and X2YZ for Full Heusler. Half-Heusler (h-H) compounds form

a class of ternary intermetallics with diverse electrical and magnetic properties, that

includes semiconductors [83], semimetals [84], half-metals, and topological semimetals.

Having a structure that can be viewed as zinc-blende with filled tetrahedral interstitial

sites with robust chemical flexibility for occupying the three inequivalent sites gives

h-H compounds a range of interesting and tunable physical properties. Recent re-

ports of h-H semimetals with band structure featuring non-trivial topology, such as in

PtLuSb [85, 86] and PtLuBi, generated great interest in exploring the charge and spin

transport properties of these materials for novel technological applications. Topologi-

cal semimetals, which are generally classified as Dirac, Weyl, or node-line semimetals,

are characterized by the topological stability of surface states with the presence of

band touching points (and Dirac cones), nodes, where two or more bands are exactly

degenerate at particular values of the crystal momentum in the first Brillouin zone, or

line nodes, where bands are degenerate along closed lines in momentum space. Having

these topological features placed at or sufficiently near the Fermi level is key to the ob-

servation and utilization of the exotic properties in devices. More often than not, these

features are either buried deep in the occupied bands or too high in the conduction

band relative to the Fermi level. Therefore, finding ways to tune the Fermi level, by
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Half-Heusler compounds XYZ
Heusler compounds X2YZ

Figure 1.2: Periodic table showing possible elements of Half and full Heusler com-
pounds.

adding impurities (doping) or deliberately introducing intrinsic defects that minimally

perturb the underlying band structure, is crucial for harvesting the full potential of

these interesting class of materials.

In the case of PtLuSb and PtLuBi, the Fermi level in bulk and thin films is lo-

cated well below the expected position in the perfect crystal, with extra charge carriers

in the bulk that mask the observation of the topological surface states. The origin of

the bulk carriers, if intrinsic defects or impurities, is still unknown. Using first prin-

ciples calculations based on the density functional theory we investigate the impact

of intrinsic defects and impurities on the Fermi level position with respect to that ex-

pected in perfect crystalline material, searching for an explanation for the observed

extra holes and Fermi level position in these materials and designing possible ways

to tune the Fermi level by adding specific impurities or changing the atomic chemical

potentials during growth to control the concentration of specific defects that strongly

affect the the Fermi level position. We find that the presence of Pt vacancies in both

PtLuSb and PtLuBi can explain the observed hole carrier densities and discuss how

this effect can be reversed and the Fermi level controlled by adding impurities.
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1.3 Ga2O3-Ir2O3 alloys

In 1952, there was the first report of Al2O3-Ga2O3-H2O system in which different

polymorphs of Ga2O3 were studied. In 1965 optical absorption and photoconductivity

studies were conduced on β-Ga2O3 which showed that it is a large band gap material

with a bandgap of ∼4.7 eV. By 1990s, few methods had been developed to grow bulk

single crystal and epitaxial Ga2O3 thin film, yet its application in devices remained

unexplored. More recently, Ga2O3 has been established as an emerging ultra-wide band

gap semiconductor with a band gap energy of 4.5-5.6 eV (depending on its structure),

which is significantly larger than the band gaps of GaN and SiC (3.4 eV and 3.3 eV

respectively). Ga2O3 is now considered a promising candidate for high power electronic

devices, solar-blind photodetectors[87], thin film high voltage field effect transistors[88,

89], gas sensors[90, 91, 92], deep-UV transparent contacts[93] and Schottky barrier

diodes[94].

The monoclinic, β-phase is the most stable phase among other polymorphs (α,

γ, δ, ε) of Ga2O3[95, 96] and it is now the most studied phase. The Corundum α-Ga2O3

on the other hand has the advantage that it can be epitaxially grown on sapphire (α-

Al2O3) substrate by well established methods such as chemical vapor deposition (CVD)

technique[97, 98, 99, 100]. It also opens up the venue for band gap engineering in

relatively wider range and possible interface engineering with other corundum structure

materials[99, 101].

By now, there are lot of studies on n-type Ga2O3 unipolar devices[101, 102,

103, 104] but achieving p-type conductivity in Ga2O3 has been proven quite difficult,

making p-n homojunction not possible. The search for p-type materials is going on

to make good quality heterojunction with n-type Ga2O3. There have been reports

of fabricating heterojunction diodes using n-type β-Ga2O3 with p-type face-centered

cubic cuprite copper(I) oxide (Cu2O)[105], nickel(II) oxide(NiO)[106] and corundum

α-Cr2O3[107]. There is no known p-type semiconductor having the same structure as

that of β-Ga2O3. For α-Ga2O3 there are several corundum-structured semiconducting

oxides[108] available among which there can be a possible candidate of p-type material
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for p-n heterojunction.

There are some reports on corundum α-Rh2O3[109] and α-Ir2O3[110] showing

p-type conductivity measured using Seeback effect. Although rutile IrO2 is the most

stable oxide of Ir, Kane et al.[111] was able to grow single crystal α-Ir2O3 thin films and

verified their p-type conductivity without any dopant using Hall effect measurements.

They also demonstrated the p-n heterojunction with p-type α-Ir2O3 and n-type α-

Ga2O3. The lattice mismatch between α-Ir2O3 and α-Ga2O3 was found to be much

smaller than the lattice mismatch between α-Ga2O3 and sapphire (α-Al2O3) substrate,

enabling a good quality heterojunction. Hao et al.[112] also recently reported on charge

transport mechanism and interface engineering in α-Ir2O3/α-Ga2O3 p-n heterojunction.

Here we explore the electronic structure and stability of α-Ir2O3 and its alloys with

α-Ga2O3 aiming at developing a fundamental understanding of these material system

for device application.
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Chapter 2

THEORY AND COMPUTATIONAL APPROACH

2.1 Density Functional Theory

Density functional theory (DFT) is one of the most successful quantum mechan-

ical approaches for understanding the structure and electronic structure of materials.

It became really popular among materials physics and quantum chemistry community

in 1990’s. The reason for this popularity was the useful balance between accuracy and

computational cost because of approximate functionals. basically, it is now possible to

study larger systems (typically a few hundred atoms) without losing much accuracy

in the description of structure, chemical, and electronic properties. In 1998 Walter

Kohn received the Nobel prize in Chemistry for his work on the development of DFT.

The number of publications that uses DFT has increased a lot since 1990 showing the

significance of his work. DFT is not limited to solving only the Schrödinger equation

but it also provides an alternate route to solve any interacting problem by mapping it

into much easier non-interacting problem. Apart from its usage in materials physics

and chemistry it is now being used in fields like biology and mineralogy. In this chap-

ter we will first discuss why it is difficult to solve many-body (electrons and nuclei)

interacting systems, then introduce DFT and discuss different approximations that are

used in DFT, i.e., the exchange correlation functionals that are used in DFT and its

applications in practical systems.

2.1.1 Many-body Schrödinger Equation

In quantum mechanics, the time independent Schrödinger equation that explains

the electronic structure of solids with many electrons and nuclei is written as,

ĤtotΨ(r1, r2...rN , R1, R2...RM) = ÊtotΨ(r1, r2...rN , R1, R2...RM), (2.1)
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where Ψ is the wavefunction of many-body system, Êtot is the total energy and Ĥtot is

the Hamiltonian of the system with N electrons and M nuclei. The Hamiltonian Ĥtot,

in atomic units, is written as:

Ĥtot = −1

2

N∑
i=1

∇2
i −

1

2

M∑
I=1

1

MI

∇2
I −

N∑
i=1

M∑
I=1

ZI
riI

+
N∑
i=1

N∑
j>i

1

rij
+

M∑
I=1

M∑
J>I

ZIZJ
RIJ

, (2.2)

where the index i, j and I, J runs from 1 to N and from 1 to M respectively, Z is

the atomic number of the nucleus of the atom and M represents the mass. rij, riI , RIJ

represents the distance between electrons i and j, electron i and nucleus I, nucleus I

and nucleus J respectively. If we can solve equation 2.1 and get its ground state energy,

then we can calculate all the equilibrium properties like formation enthalpies, phase

diagrams, and thermal properties of that specific system, but it is practically impossible

to solve this simple equation. To get an idea, lets take silicon, which is a semiconductor

material, as our model system. The volume of unit cell of silicon is a3/4 where a =

5.43 Å is the lattice constant. To solve the equation above for the electrons and nuclei

in the unit cell of silicon, lets do a discretization of unit cell with ∆x = 0.1 Å. The grid

required to describe the unit cell will have N
P

= (a3/4)/(∆x)3 ∼ 104 points. Silicon

has two atoms in its unit cell with each atom having four valence electrons, i.e., N+M

= 10 particles. To write the wavefunction Ψ for silicon we would need NN+M
P

= 1040

complex numbers. It is impossible to do matrix operation with this many complex

numbers and the complexity increases exponentially with the increase in size of the

system. This is also known as ’exponential wall’ in solving the Schrödinger equation.

This, in order to solve Schrödinger equation for practical systems some approximations

need to be made which will be discussed in the next sections.

2.1.2 Born-Oppenheimer Approximation

Eq. 2.1 is a general equation that can be applied to solids, liquids, and gases.

In these systems, the nuclei can be considered as immobile in the time scale of the

electrons, as they are relatively heavier than electrons, so we can focus on electronic

part of Eq. 2.1. For that a sensible assumption would be to write total wave function
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Ψ in Eq. 2.1 as a product of electronic wavefunction ψR and nuclear wave function χ

as in Eq. 2.3 below.

Ψ(r1, r2...rN , R1, R2...RM) = ψR(r1, r2...rN)χ(R1, R2...RM), (2.3)

where (r1, r2...rN) and (R1, R2...RM) are coordinates for electronic and nuclear wave

functions respectively. The interesting part of this assumption is that we can determine

the electronic wave function for a fixed nuclear coordinates and than we can allow

nuclear wave function to relax accordingly. Hence we can separate the many-body

Schrödinger equation into an electronic and nuclear parts,

[−1

2

N∑
i=1

∇2
i +

N∑
i=1

Vn(ri;R) +
1

2

N∑
i=1

N∑
j>i

1

|ri − rj|
]ψR = ERψR (2.4)

and

[−1

2

M∑
I=1

1

MI

∇2
I +

1

2

M∑
I=1

M∑
J>I

ZIZJ
RIJ

+ E(R1, R2...RM)]χ = Etotχ. (2.5)

In Eq. 2.4, the subscript R in the total electronic energy shows that it is im-

plicitly a function of nuclear coordinates and the second terms Vn(ri;R) gives the in-

teraction between electron and nuclei. Eq. 2.5 represents the many-body Schrödinger

equation for nuclei only, where the effect of electrons are included in E(R1, R2...RM)

term and it behaves like an effective potential for the nuclei. The total potential felt by

the nuclei is the sum of potential due to nucleus-nucleus interaction and total energy of

electrons at fixed nuclear coordinates. This decoupling into electronic and nuclear part

of the Schrödinger equation is known as Born-Oppenheimer approximation (Born and

Oppenheimer, 1927). In this approximation we assume that as the nuclear coordinates

change the electron evolve from its initial ground state to the electronic ground state

associated with the final nuclear coordinates. The electrons adjust themselves with

change in nuclear coordinates such that they remain in electronic ground state as they

are far more mobile than the nucleus making their adiabatic evolution. This electron-

nucleus adiabatic transformation is taken from adiabatic processes in thermodynamics
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(Fermi 1956) and because of that Born-Oppenheimer approximation is also known as

adiabatic approximation.

2.1.3 Hartree-Fock Equation

We can rewrite Eq. 2.4 in much simpler operator form,

Ĥψ = Eψ, (2.6)

where Ĥ is the Hamiltonian operator for the electrons and ψ is the electronic wave

function. The Ĥ operator can be written as a sum of kinetic energy operator T̂, V̂ext

due to the interaction between electrons and nuclei and V̂ee due to electron-electron

interaction, i.e.,

Ĥ = T̂ + V̂ext + V̂ee, (2.7)

where

T̂ = −1

2

N∑
i=1

∇2
i , (2.8)

V̂ext =
N∑
i=1

Vn(ri;R), (2.9)

and

V̂ee =
1

2

N∑
i=1

N∑
j>i

1

|ri − rj|
. (2.10)

Using the independent electron approximation, we can write the electronic wave

function as a product of single-electron wave function:

ψ(r1, r2...rN) = φ(r1)φ(r2)...φ(rN). (2.11)

Electrons are Fermions and they follow Pauli-exclusion principle and Fermi-Dirac

statistics. So the electronic wave function must be anti-symmetric, i.e., if you ex-

change two electrons the total electronic wave function ψ must change sign or, in other
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words, the two electrons can not occupy the same quantum state. To satisfy this condi-

tion we can write the total electronic wave function in the form of Slater determinant,

as follows:

ψHF =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ2(r1) . . . φN(r1)

φ1(r2) φ2(r2) . . . φN(r2)

. . .

. . .

. . .

φ1(rN) φ2(rN) . . . φN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.12)

where φi are single-particle electronic wave functions. The total energy of electrons

can then be written in Dirac notation, i.e.,.

E = 〈ψHF |Ĥ|ψHF 〉 (2.13)

If we minimize the total electronic energy E with respect to the single-particle wave

function φi using variational principle and require that these wave functions are or-

thonormal,
δE

δφ∗i
= 0, (2.14)

∫
φ∗i (r)φj(r) dr = δij, (2.15)

where δij is Kronecker delta and δij = 1 if i=j and δij = 0 if i6=j, we obtain the

Hartree–Fock equation (Fock, 1930b),[
− ∇

2

2
+ Vn(r) + VH(r)

]
φi(r) +

∫
VX(r, r

′
)φi(r

′
) dr

′
= εiφi(r), (2.16)

with

n(r) =
∑
i

|φi(r)|2, (2.17)

and

∇2VH(r) = −4πn(r), (2.18)

where Vn(r) is the external potential between the electron and nuclei, VH(r) is Hartree

potential felt by the nth electron due to the mean field field created by n− 1 electrons
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and VX(r, r
′
) is the Fock exchange potential which is due to anti-symmetric electronic

wave function, and it can be expressed as:

VX(r, r
′
) = −

∑
j

φ∗j(r
′
)φj(r))

|r − r′|
, (2.19)

where the sum j is over all the occupied single particle states. Basically, in the Hartree-

Fock equations we introduced the Pauli exclusion principle for electrons which added

an extra exchange potential in the electronic part of the Schrödinger equation, so we

moved from classical description of electrons to quantum mechanical description. If we

look closely at this Fock-exchange potential VX(r, r
′
), it is non-local in nature and it

includes integration over an additional variable r
′

which causes a lot of complication

in practice for solving the Hartree–Fock equations.

2.1.4 Hohenberg-Kohn Theorem

Before Hohenberg-Kohn theorems, researchers were trying to figure out a way to

utilize the electronic density n(r) in electronic structure calculations using approximate

forms for the exchange and correlation terms, but it was Hohenberg and Kohn that

formalized it in 1964 by putting forward two simple theorems. These theorems provided

a link between electron density n(r), external potential Vext(r), Hamiltonian Ĥ and

wave function Ψ.

2.1.4.1 Theorem I

The first theorem states that the total external potential Vext(r) of a system with

interacting particles can be uniquely determined by the ground-state electronic density

n0(r), or the external potential Vext(r) is a unique functional of the density n0(r), where

Vext(r) is the interaction between electrons and nuclei as discussed in section 2.1.3. To

prove the first theorem, lets suppose that there are two external potentials V
(1)
ext (r)

and V
(2)
ext (r) that differ from each other by more than a constant and create same

ground-state density n0(r). According to Eq. 2.7, these two potentials will give rise

to two different Hamiltonians, which we can name as Ĥ(1)(r) and Ĥ(2)(r). These two
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Hamiltonians will have two different ground states ψ(1)(r) and ψ(2)(r) respectively and

which gives same ground-state density n0(r) according to our assumption. The ground

state energy for each of the Hamiltonian is given by the following equations,

E(1) = 〈ψ(1)|Ĥ(1)|ψ(1)〉 , (2.20)

and

E(2) = 〈ψ(2)|Ĥ(2)|ψ(2)〉 . (2.21)

Since Ĥ(1)(r) and Ĥ(2)(r) are two different Hamiltonians, which means ψ(1)(r) is not a

ground-state wave function of Ĥ(2)(r), so we can write,

E(2) < 〈ψ(1)|Ĥ(2)|ψ(1)〉 (2.22)

The right hand side of Eq. 2.22 can be rewritten as,

〈ψ(1)|Ĥ(2)|ψ(1)〉 = 〈ψ(1)|Ĥ(1)|ψ(1)〉+ 〈ψ(1)|Ĥ(2) − Ĥ(1)|ψ(1)〉 , (2.23)

which gives

〈ψ(1)|Ĥ(2)|ψ1〉 = E(1) +

∫
dr[V

(2)
ext (r)− V

(1)
ext (r)]n0(r). (2.24)

Using Eq. 2.22

E(2) < E(1) +

∫
dr[V

(2)
ext (r)− V

(1)
ext (r)]n0(r), (2.25)

if we exchange labels in Eq. 2.25 or start with E(1) instead of E(2), we get

E(1) < E(2) +

∫
dr[V

(1)
ext (r)− V

(2)
ext (r)]n0(r). (2.26)

Adding Eq. 2.25 and Eq. 2.26 gives E(2) +E(1) < E(1) +E(2), which is incorrect

and a contradiction. Hence our assumptions that two different external potentials can

give rise to a unique ground-state density is not possible. The ground-state density

n0(r) is uniquely determined by the external potential Vext(r).
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2.1.4.2 Theorem II

The second Hohenberg-Kohn theorem states that a functional F [n] which gives

the ground-state energy of the system gives the ground-state energy if and only if the

input density in F [n] is the true ground-state density n0(r). From the first theorem we

already proved that the ground-state density n0(r) uniquely determines the external

potential Vext(r) and, hence, all the ground-state properties including the total energy,

E[n] = T [n] + Eee[n] + EeN [n] (2.27)

where the first, second and third term represents kinetic energy of electrons, electron-

electron interaction term and electron-nuclei interaction as a functional of density. So,

we have

E[n] = T [n] + Eee[n] +

∫
drVext(r)n(r), (2.28)

E[n] = F [n] +

∫
drVext(r)n(r), (2.29)

where

F [n] = T [n] + Eee[n]. (2.30)

F [n] is a universal functional and it is independent of external potential Vext(r).

In the ground state, the ground-state density n0(r) determines the ground-state energy,

i.e.,

E0 = E[n0] = 〈ψ(0)|Ĥ|ψ(0)〉 . (2.31)

Using the variational principle, any other density n(r) will give the energy E[n]

greater than the ground-state energy E0,

E0 = E[n0] = 〈ψ(0)|Ĥ|ψ(0)〉 < 〈ψ|Ĥ|ψ〉 = E[n]. (2.32)

Thus, the energy given in Eq. 2.29 for the ground-state density n0(r) will be lower

than for any other density n(r). So if the functional F [n] in Eq. 2.29 is known, then by

minimizing the total energy E[n] with respect to n(r) will gives us ground-state energy

and ground-state density.
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2.1.5 Kohn-Sham Equations

As discussed in section 2.1.4 the Hohenberg–Kohn theorem states that the total

ground-state energy of a system containing many electrons is a functional of electron

density. The information about how to formulate such a functional is missing in Hohen-

berg–Kohn theorems but there are several approximations that have been developed

over the years, even though the exact form of this functional is still unknown. We can

rewrite Eq. 2.28 as:

F [n] = T [n] + Vee[n] +

∫
drVext(r)n(r), (2.33)

where E=F [n]. Ee can also write the kinetic energy T [n] and electron-electron inter-

action term Veein terms of wave function, i.e.,

F [n] = 〈Ψ[n]|T̂ + V̂ee|Ψ[n]〉+

∫
drVext(r)n(r). (2.34)

It can be seen that the last term in Eq. 2.34, which includes the external potential

Vext(r), explicitly depends on the electron density n, whereas the dependence of first

term on electronic density n is only implicit. In 1965 Kohn and Sham came with an

idea to describe the implicit term in Eq. 2.34 with kinetic energy and Coulomb energy

of independent electrons as discussed in section 2.1.3 plus an extra term which contains

the difference:

E = F [n] = −
∑
i

∫
drφ∗i (r)

∇2

2
φi(r)+

1

2

∫ ∫
drdr

′ n(r)n(r
′
)

|r − r′|
+

∫
drVext(r).n(r)+Exc[n]

(2.35)

The first three terms in Eq. 2.35 are kinetic energy, Hartree energy and electron-nuclei

interactions, respectively, for an independent electron system, whereas the last term

accounts for everything that was not included in independent electron approximation

and it is known as exchange and correlation energy Exc[n]. Practically, the many-body

problem in Eq. 2.34 is mapped into an independent electron problem in Eq. 2.35. The

ground-state density n0 minimizes the total energy E = F [n], i.e.,

δF [n]

δn

∣∣∣∣
n0

= 0. (2.36)
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This variational principle is similar to Eq. 2.14 which was used to write the

Hartree-Fock equation (Eq. 2.16). If we put a constraint for independent electron wave

functions φi(r) to be orthonormal, that would lead us to the Kohn-Sham equation:[
− ∇

2

2
+ Vext(r) + VH(r) + Vxc(r)

]
φi(r) = εiφi(r), (2.37)

where the first term is the kinetic energy, Vext(r) is the external potential, VH(r) is the

Hartree potential and Vxc(r) is exchange correlation potential, represented by:

Vxc(r) =
δExc[n]

δn

∣∣∣∣
n(r)

. (2.38)

 DONE
 Converged

 Forces not converged

 Structure 
 relaxa�on

Figure 2.1: Schematic flow chart of solving Kohn-Sham equations self consistently in
First-principles calculations.

The Kohn-Sham equations provide a powerful instrument to calculate materi-

als properties that are derived from the ground-state charge density and energy. It is
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interesting to note that these equations reduce the complexity of the many-body prob-

lem with 3N dimension to a much simpler problem with three dimensional electronic

charge density n(r). The next question is how to solve Kohn-Sham equations in order

to get the total ground state energy of any system. For that purpose we can start with

Eq. 2.37 which is a standard single particle Schrödinger equation with eigenvalues εi

and eigenfunction φi. The Hartree potential VH(r) and exchange correlation potential

Vxc(r) in Eq. 2.37 depend on the density n and the density n depends on the unknown

wave functions φi according to Eq. 2.17, which means we need to solve the Kohn-Sham

equations self-consistently as shown in Fig. 2.1. First we start with nuclear coordi-

nates which gives us Vext(r) and then from a trial electron density we get the initial

estimate for VH(r) and Vxc(r). After that, Eq. 2.37 is solved selfconsistently until the

new charge density matches with the input charge density. After obtaining the ground-

state charge density the outer loop runs over the atomic coordinates until all the atoms

are in their relaxed positions. The atomic relaxations are treated classically and once

both the electrons and the atoms are in their ground state we obtain the equilibrium

ground-state energy of the system as shown in Fig. 2.1.

To apply the Kohn-Sham equations in crystalline solids, we need to use Bloch

theorem (Bloch 1928). This theorem states that the singe-particle electronic wave

function can be written in terms of periodic function in the unit cell uik(r) and plane

waves eik.r as:

φi(r) −→ φik(r) = eik.ruik(r), (2.39)

where i is the imaginary unit and i is the eigenstate index and uik(r) is given by

uik(r + T̂) = uik(r), (2.40)

and

T̂ = n1ã1 + n2ã2 + n3ã3, (2.41)

where n1,n2,n3 are integers, T̂ is the translation operator and ã1, ã2, ã3 are lattice

vectors. Putting the Blöch wave function in Kohn-Sham equation 2.37 gives us:[
− (∇+ ik)2

2
+ Vext(r) + VH(r) + Vxc(r)

]
uik(r) = εikuik(r). (2.42)
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It is interesting to note that Eq. 2.42 does not have the exponential eik.r and it is

expressed only in terms of the periodic part uik(r). The normalization condition of this

periodic part gives one electron per unit cell for each wave function.∫
UC

dr|uik(r)|2 = 1, (2.43)

Similarly the density n(r) in equation 2.17 can be expressed in terms of periodic func-

tion uik(r)

n(r) =
∑
i

∫
BZ

dk

ΩBZ

fik|uik(r)|2 (2.44)

where the occupation number fik is 1 for occupied states and 0 for unoccupied states

and ΩBZ is the volume of first Brillouin zone in reciprocal space. In this work we

used Vienna ab initio simulation package (VASP) [113, 114] for our calculations, which

expands the perodic bloch functions uik(r) in terms of plane waves and it uses projector-

augmented wave potential (PAW) [115] method. In this method the calculations are

only done on valence electrons. The wave functions of these valence electrons near

the ion cores have very rapid oscillations as they need to be orthogonal to core state

requiring a lot of fourier components making it computationally inefficient. The PAW

method replaces these oscillatory wave function with much smoother wave functions in-

creasing the computational efficiency and also provides a way to escribe the all electron

wave function in terms of these smoother wave functions.

2.2 Exchange and Correlation Functionals

After the introduction of Kohn-Sham theory in 1965, a lot of work was done to

construct the exchange and correlation functionals Exc[n], Vxc[n] accurately for solving

the Kohn-Sham equations. There are several different approximations available today.

Here we will discuss some of the approximations that were used to calculate material

properties in subsequent chapters.

2.2.1 Local Density Approximation (LDA)

One of the first and most simplest approximation for exchange and correlation

functional is the local density approximation (LDA) (Ceperley and Alder, 1980; Perdew
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and Zunger, 1981). It is assumed in this approximation that the exchange-correlation

energy functional at each point in space depends upon the density only. This functional

was applied first on a simple system like homogeneous electron gas related closely to

free electron gas, where a gas of N electrons is constrained in a box with volume

V under a fix potential of the nuclei. In homogeneous electron gas an additional

interaction is included in the form of Coulomb repulsion between the electrons, and it

is assumed that the electrons are uniformly distributed in the volume V . It is possible

to calculate the exchange energy exactly for homogeneous electron gas, whereas the

correlation energy can be approximated using numerical techniques. The eigenstates

and eigenenergy for free electron gas can be written as:

φk(r) =
1√
V

eik.r, (2.45)

εk =
|k|2

2
, (2.46)

where k is the wave vector of a stationary wave, the eigenvalue corresponding to highest

occupied state is εF and the related wave vector is known as Fermi wave vector kF ,

where εF=k2
F/2. The interesting thing about this simple model is the dependence of

all the physical properties on electron density n=N/V . The dependence of Fermi wave

vector kF , exchange energy Ex and exchange potential Vx on density n is given by the

equations below:

kF = (3π2n)
1
3 , (2.47)

Ex = −3

4
(
3

π
)
1
3n

4
3V, (2.48)

Vx(r) = −(
3

π
)
1
3n

1
3 (r). (2.49)

It is not possible to get the exact expression for correlation energy Ec as it was the case

for exchange energy as shown in Eq. 2.48. However, the correlation energy Ec can be
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calculated by solving many-body Schrödinger equation using the stochastic numerical

method and the obtained expression is shown below:

Ec = nV

0.0311 ln rs − 0.0480 + 0.002rs ln rs − 0.0116rs, if rs < 1,

−0.1423
1+1.0529

√
rs+0.3334rs

, if rs ≥ 1.

(2.50)

where rs is the Wigner-Seitz radius and it is defined as the radius of the sphere occupied

by one electron on average,
V

N
=

4π

3
r3
s =

1

n
. (2.51)

The total exchange correlation energy Exc for LDA can be obtained by adding exchange

energy Ex and correlation energy Ec,

ELDA
xc [n] = ELDA

x [n] + ELDA
c [n] =

∫
n(r)εhomoxc [n(r)]dr, (2.52)

where εhomoxc is the exchange correlation energy per electron for homogeneous electron

gas.

2.2.2 Generalized Gradient Approximation (GGA)

The second level of approximation is the generalized gradient approximation

which is more involved than the simple local density approximation (LDA). In this

approximation the exchange-correlation energy not only depends on the density n but

also on the gradient of density ∇n, and it can be written as,

EGGA
xc [n] =

∫
f(n(r), |∇n(r)|)dr, (2.53)

EGGA
xc [n] =

∫
n(r)εhomoxc [n(r), |∇n(r)|]dr ≡

∫
n(r)εhomox (n)Fxc(n, |∇n|)dr, (2.54)

where εhomox is the exchange energy per electron for homogeneous electron gas and the

functional Fxc is dimensionless and can be written as Fxc=Fx+Fc, where Fx is given

by,

Fx = 1 +
10

81
s2

1 +
146

2025
s2

2 + ...., (2.55)
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where the reduced density gradient si can be defined as:

si =
|∇in|

(2kF )in
=

|∇in|
2i(3π2)i/3(n)1+i/3

. (2.56)

There are several versions of Fx. Perdew and Wang (PW91) [116], Perdew, Burke and

Ernzerhof (PBE) [117] and Perdew, Burke, Ernzerhof revised for solids (PBEsol) [118]

functionals used different forms of Fx. These functionals are implemented in several

codes which give material properties quite accurately. In this work we used PBE and

PBEsol functionals as discussed in the next chapters. The correlation term Fc is much

smaller than the exchange term and it can be written as,

Fc =
εLDAc (n)

εLDAx (n)
(1− 0.219s2

1 + ...). (2.57)

2.2.3 Hybrid Functionals

The GGA functional discussed in previous section is a semi-local functional.

As the LDA, the GGA systematically underestimates the band gap of semiconductors

and insulators [119, 120, 121]. GGA functional fails to explain materials with highly

localized partially occupied d or f electrons and it also overestimates the size of electron

or hole pockets in case of semimetals, which will be discussed in subsequent chapters.

Hybrid functionals tends to partially overcome these problems by combining a part

of Hartree-Fock (HF) exchange with LDA or GGA exchange-correlation functional

[122, 123, 124]. Hybrid functionals are computationally more expensive as compared

to LDA or GGA because of the non-local nature of Hartree-Fock (HF) exchange. The

exchange-correlation energy for PBE0 hybrid functional can be written as,

EPBE0
xc = 0.25EHF

x + 0.75EPBE
x + EPBE

c . (2.58)

In the PBE0 hybrid functional, the exchange energy is divided into two parts with

25% contribution from Hartree-Fock (HF) exchange and 75% contribution from PBE

or GGA exchange, whereas the correlation energy is the same as in PBE. The exchange

energy in HSE (Heyd–Scuseria–Ernzerhof) is calculated using a error function screened

Coulomb potential increasing the accuracy in the description of metallic systems, as
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compared to PBE0. In HSE the exchange part is divided into short range (SR) and

long range (LR) part as follows:

1

r
=

1− erf(ωr)

r
+
erf(ωr)

r
. (2.59)

The first and second term represent the short range (SR) and long range (LR) part,

respectively, where screening parameter is ω and the error function erf(x) is defined

as,

erf(x) =
2√
π

∫ x

0

e−t
2

dt. (2.60)

The exchange-correlation energy for HSE is thus given by:

EHSE
xc = aEHF,SR

x (ω) + (1− a)EPBE,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c , (2.61)

where a is the mixing parameter used for mixing Hartree-Fock (HF) exchange and PBE

exchange in the short range part. The long range part has only PBE exchange term.

For HSE06 hybrid functional the value of a=1/4 comes from perturbation theory [125]

whereas the value of screening parameter is set to ω=0.2 Å−1 . The upper limit of ω

→ ∞ gives us the PBE functional, whereas the lower limit of ω →0 leads us to PBE0

functional.
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Chapter 3

RARE-EARTH MONOPNICTIDES - BULK AND THIN FILMS

As introduced in section 1.1, rare-earth monopnictides (RE-V) display interest-

ing properties including thermoelectricity[26], extreme magnetoresistance [16, 15, 18]

and non-trivial topological electronic structure properties[15, 75], and are promising

for photoconductive switches[28]. In this chapter we will discuss electronic properties,

RE-V/III-V semiconductor interfaces, and topological properties of RE-V materials.

Most of the work in this section is discussed from theoretical point of view but compar-

ison with experiment is made wherever needed. The experimental results shown in this

section are courtesy from our experimental collaborators from University of California

Santa Barbara.

3.1 Crystal Structure

Kx

Ky

Kz

X
X

Γ

X

L

K

(b)

W

(a)

Figure 3.1: (a) Rock salt crystal structure of rare earth monopnictide (b) First Bril-
louin zone of RE-V.

RE-V compounds have simple rock salt crystal structure consisting of two type

of atoms, where one of the atom is from rare-earth (Lanthanides) family and the other
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comes from the pnictide (As, Sb, Bi) family as represented by green and red spheres in

Fig. 3.1(a). The space group of rock-salt crystal structure is Fm3̄m where each of the

atom separately forms a face-centered cubic lattice and alternatively it can be viewed

as a face-centered cubic lattice with the secondary atom in its octahedral interstitial

sites. The Brillouin zone of the two-atom primitive cell along with high symmetry

points are shown in Fig. 3.1(b).

3.2 Bulk Electronic Properties

In this section we will discuss the structural parameters and electronic struc-

ture of rare-earth pnictides calculated using density functional theory (DFT) with the

Heyd, Scuseria, and Ernzerhof (HSE06) screened hybrid functional. We focus on RE-V

compounds, with RE=La, Gd, Er, and Lu, and V=As, Sb, and Bi, and analyze the ef-

fects of spin-orbit coupling and treating the RE 4f electrons as valence electrons in the

projector augmented wave approach. The results of HSE06 calculations are compared

with DFT within the generalized gradient approximation (GGA) and other previous

calculations. We find that all these RE-V compounds are semimetals with electron

pockets at the X point and hole pockets at Γ. Whereas in DFT-GGA the carrier

density is significantly overestimated, the computed carrier densities using HSE06 is in

good agreement with the available experimental data.

3.2.1 Lattice parameters of RE-V

The calculated lattice parameters of RE-V compounds using HSE06 along with

the results from GGA calculations and experimental values are listed in Table 3.1. The

results shown were obtained by treating the 4 f electrons as core and valence electrons.

We note that the HSE06 results are systematically closer to the experimental values

than the results from the DFT-GGA, which typically slightly overestimates lattice

parameters.

We note from Table 3.1 that for a given rare earth, the lattice parameter a

increases going from As, Sb, to Bi, i.e., as the atomic size of the pnictide atom increases.
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On the other hand, the lattice parameter decreases by going from La, Gd, Er, to Lu,

due to the lanthanide contraction effect on the atomic size [126].

3.2.2 Electronic band structures of RE-V

The analysis of the electronic structure of the RE-V compounds starts with the

results using HSE06 without spin-orbit coupling and without including the 4f electrons

in the valence, shown in Fig. 3.2. In this approximation, all the RE-V studied are

semi-metallic except for LaAs which shows a very small band gap of 5 meV. All RE-V

compounds have hole pockets at Γ point and electron pockets at the X point. The

hole pocket bands are composed mostly of pnictide p orbitals while the electron pocket

bands are derived mostly from the rare-earth d orbitals. For a given rare-earth we note

that the size of the hole pocket increases going from As to Bi. This trend is explained

by the relative energy of the valence p orbitals of the pnictide atoms, which increases

from As to Bi [127]. The gap at X point opens up as we go from La to Lu largely

due to the dispersion of the pnictide p band that increases as the lattice parameter

decreases due to the lanthanide contraction effect.

3.2.2.1 Effects of spin-orbit coupling on the electronic structure of RE-V

The effects of spin-orbit coupling are expected to be very significant for the

RE-V compounds, which are composed of heavy elements and the bands of interest,

situated near the Fermi level, are derived from pnictide p and lanthanide d orbitals.

Previous first-principles calculations have already pointed out the importance of spin-

orbit coupling in the description of the electronic structure of RE-Vs [128, 129]. The

threefold degenerate pnictide p band at Γ splits into 2+1 bands due to spin-orbit

coupling. Also the splitting increases from As to Bi as the atomic number increases.

The spin-orbit coupling also causes a splitting of the highest occupied pnictide p band

at the X point, and this splitting also increases going from As to Bi. Interestingly, as

shown in Fig. 3.3 for the case of Er-V, we find that in ErBi the Bi 6p band is very close

to Er 5d band at the X point, but it avoids any band crossing making it topologically
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Table 3.1: Calculated equilibrium lattice parameters a for the RE-V compounds using
the HSE06 hybrid functional. The results obtained using DFT-GGA and
the experimental values are also shown for comparison [1, 2, 3, 4, 5, 6,
7]. For the La-V compounds, the 4f shell is empty so the results using
HSE06 with the 4f in the core or valence are the same. For Gd, Er, and
Lu, treating the 4f as core electrons or as valence electrons give slightly
different lattice parameters.

Material DFT-GGA HSE06 HSE06 Exp.

(4f in the core) (4f in the core) (4f in the valence)

a (Å) a (Å) a (Å) a (Å)

LaAs 6.187 6.173 6.173 6.137

LaSb 6.540 6.514 6.514 6.488

LaBi 6.654 6.625 6.625 6.578

GdAs 5.879 5.838 5.882 5.854

GdSb 6.247 6.192 6.245 6.217

GdBi 6.373 6.314 6.368 6.295

ErAs 5.769 5.737 5.766 5.732

ErSb 6.148 6.105 6.160 6.106

ErBi 6.281 6.233 6.269 6.206

LuAs 5.701 5.670 5.697 5.679

LuSb 6.091 6.056 6.081 6.055

LuBi 6.231 6.185 6.220 6.159
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Figure 3.2: Calculated electronic band structure of (a)LaAs, (b) LaSb, (c) LaBi, (d)
GdAs, (e) GdSb, (f) GdBi, (g) ErAs, (h) ErSb, (i) ErBi, (j) LuAs, (k)
LuSb, and (l) LuBi using HSE06 without spin-orbit coupling and treating
the 4f electrons as core electrons. The Fermi level is set to zero.

trivial semi-metal. This results doesn’t change if we include 4f as valence electrons as

shown in Fig. 3.4.
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Figure 3.3: Calculated electronic band structure of (a)LaAs, (b) LaSb, (c) LaBi, (d)
GdAs, (e) GdSb, (f) GdBi, (g) ErAs, (h) ErSb, (i) ErBi, (j) LuAs, (k)
LuSb, and (l) LuBi using HSE06 with spin-orbit coupling and treating
the 4f electrons as core electrons. The Fermi level is set to zero.

3.2.3 Effects of including 4f as valence electrons on the electronic structure

of RE-V

In this section we will show how the electronic structure of RE-V change if

we include 4f as valence electrons. In most of the previous calculations of RE-V

compounds using DFT-LSDA or GGA the 4f electrons were taken as core electrons.

Treating the 4f as valence electrons in these approximations would lead to incorrect
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description of the bands near the Fermi level [53]. To overcome this problem, an extra

Coulomb interaction is often added to the 4f orbitals as in the LDA+U method, with U

typically used as an adjusting parameter. This added electron-electron repulsion term

splits the occupied and unoccupied 4f bands, pushing them out of the Fermi level

region [128, 130, 8]. Here, instead, we show that the HSE06 hybrid functional also

improves the description of the electronic structure of RE-V compounds, compared to

DFT-LSDA or GGA, including the effects of 4f electrons being treated self-consistently

as valence electrons. The results for GdAs, ErAs, and LuAs are shown in Fig. 3.4.
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Figure 3.4: Calculated electronic band structure of (a) GdAs, (b) GdSb, (c) GdBi,
(d) ErAs, (e) ErSb, (f) ErBi, (g) LuAs, (h) LuSb, and (i) LuBi with 4f
as valence electrons using HSE06.

For GdAs, the 4f shell is half filled, resulting in flat bands occupied well below

the Fermi level, whereas the empty 4f bands lie well above the Fermi level. The
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occupied 4f bands are located around 8 eV below the Fermi level and the unoccupied

4f states lie around 4-5 eV above the Fermi level, in qualitative agreement with the

results of Petukhov et al. [53], and in good agreement with experimental data [131]

and quasiparticle GW results [9].

In the case of ErAs, the filled 4f bands lie between -9.0 eV and -5.7 eV, while

the three unoccupied 4f bands lie near 2 eV above the Fermi level, with a spread

of around 0.5 eV. It is worth mentioning that the filling of 4f bands follows Hund’s

rule, as in previous LDA+U results [128, 130, 8]. Note that our results do not capture

the multiplet features shown in the LDA+DMFT results [8] due to the single-particle

nature of the HSE06 functional. It is interesting to note that in the case of Lu-V

(V = As, Sb, Bi) all the 4f bands are occupied so the electronic structure does not

change upon he inclusion of 4f bands as shown in Fig. 3.4. Experimental angle-

resolved photoemission spectroscopy (ARPES) E - k spectral map for LuSb along

both M̄− Γ̄− M̄ and X̄− Γ̄− X̄ directions of the surface Brillouin zone for the hole

pockets and along Γ̄− M̄− Γ̄ for the electron pocket are found to be in excellent

correspondence with our HSE06 calculations shown in Fig. 3.5. The experimental

effective masses are determined from parabolic fittings of the band dispersions at the

Fermi level, which are in agreement with our calculations as shown in Table 3.2. Three

hole-like bands are observed near the Γ̄ point with the third band (γ) completely below

the Fermi level in agreement with our calculations. The use of generalized gradient

approximation (GGA) erroneously predicts that all three hole-like bands in LuSb cross

the Fermi level, in clear disagreement with the ARPES data. The extracted Fermi

wave vector kF and effective mass m∗ at the Fermi level from both experiment and our

calculations are shown in Table 3.2 for comparison.

3.2.3.1 Magnetic moments and band widths

We find the spin, orbital and total moment to be 2.9µB, 6.0µB, and 8.9µB,

respectively, in the case of ErAs, using HSE06 as in LDA+U [8]. The total moment
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Table 3.2: Fermi Surface of LuSb

FS1 kF (Å−1) m∗

SdH ARPES DFT SdH ARPES DFT

α 0.11(a), 0.34(b)2 0.1(a), 0.38(b) 0.11(a), 0.37(b) 0.19 0.09(a), 1.02(b) 0.11(a), 1.16(b)
β 0.15 0.12(1 ), 0.12(1̄ )3 0.15(1 ), 0.15(1̄ ) 0.22 0.26(1), 0.26(1̄ ) 0.23(1), 0.21(1̄ )
δ 0.22 0.21(1 ), 0.19(1̄ ) 0.24(1 ), 0.19(1̄ ) — 0.45(1 ), 0.36(1̄ ) 0.54(1 ), 0.31(1̄ )

1 FS denotes Fermi surface.
2 a and b indicates directions along the semi-minor and semi-major axes of the elliptical α pocket,
respectively.
3 1 and 1̄ indicates [100] and [11̄0] crystallographic directions, respectively.

Table 3.3: Exchange splitting (in meV) of the As 4p hole bands at Γ and the Er
5d electron bands at the X point in the HSE06 calculations compared
to previous LDA+U and LDA+DMFT results from Ref. [8] and quasi-
particle GW results from Ref. [9].

band/k-point LDA+U GW LDA+DMFT HSE06

hh @ Γ 66 40 11 64

lh @ Γ 242 120 80 387

sh @ Γ 112 153 65 369

e− @ X 124 150 65 223

is in good agreement with the experimental values for high magnetic field, but slightly

different from the low applied magnetic field value according to the LDA+DMFT

results [8]. The results for the exchange splitting in the semi-metallic As 4p hole

bands at Γ (hh, lh, and sh) and the Er 5d electron bands at the X point are listed in

Table 3.3. Overall, HSE06 gives larger exchange splittings due to the closer proximity

of the unoocupied 4f bands to the semi-metallic As 4p and Er 5d bands, compared to

LDA+U , GW , and LDA+DMFT [9, 8], except for the hh band that HSE06 gives a

similar value to the LDA+U result[8].

Finally, we note that the width of the As 4p hh band, measured along Γ-X
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Figure 1 | PtLuSb bulk crystallographic and electronic structure. (a) Half-Heusler C1b crystal structure consisting of three interpenetrating

face-centred-cubic sub-lattices. For PtLuSb, the platinum, lutetium and antimony atoms are denoted by the green, blue and orange spheres, respectively.

(b) Half-Heusler bulk Brillouin zone with the (001) surface Brillouin zone projection. The high-symmetry surface Brillouin zone points are defined as
�G(0, 0), �X1 (k0/2, 0), �X2 (0, k0/2) and �M (k0/2, k0/2), where, for PtLuSb (001), the surface unit momentum k0¼ 2p(O2/a0)¼ 1.376Å� 1.

(c) First-principles calculated bulk electronic band structure of PtLuSb with corresponding band character shown. The experimental Fermi level (blue),

Ef-Exp, isB0.35 eV below the calculated Fermi level (red), Ef-Thry. A band inversion can be clearly seen at the bulk G point, where the orbital character of the

G8 and G6 bands are inverted. This is in agreement with prior predictions11 that the TSS should connect these two bands.
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Figure 3.5: ARPES spectra of LuSb thin films(from our collaborators). (a) Bulk
three-dimensional Brillouin zone of LuSb and its surface projection show-
ing high-symmetry points. (b) Two-dimensional Fermi surface map near
the bulk Γ point showing both hole-like(β,δ) and electron-like(α) Fermi
surface sheets. (c) Two-dimensional map near the bulk Γ point at a bind-
ing energy of 0.495eV illustrating anisotropy of the δ pocket. (d) E - k
spectral map along Γ̄-M̄-Γ̄ as indicated by brown arrows in panel (b).
E - k spectral maps along (e) M̄-Γ̄-M̄ and (f) X̄-Γ̄-X̄ indicated by (e)
blue and (f) red arrows in (c). Red dotted lines are calculated dispersions
from DFT.

is ∼1.5 eV, very close to the GW result[9], and much larger than the value of ∼1.1

eV in the LDA+U and LDA+DMFT results[8]. This is attributed to the improved

description of the band dispersion of uncorrelated bands in HSE06 and GW , as in

the case of band gaps and band dispersions in semiconductors. In the LDA+DMFT

calculations, the As 4p bands are not corrected.

3.2.4 Carrier concentration in RE-V

The rare-earth pnictides are compensated semimetals with equal electron and

hole concentrations. The free carrier concentration in these materials is determined by

the overlap in energy of the electron and hole pockets. The volume of the Fermi surface
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Table 3.4: Calculated carrier concentration n for the RE-V compounds using the
HSE06 hybrid functional, including spin-orbit coupling (SOC) and treat-
ing the f electrons as core (DFT-GGA) or valence (HSE06) electrons
Experimental results are also listed for comparison[10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22].

Material DFT-GGA HSE06 Exp.

n(1020 cm−3) n(1020 cm−3) n(1020 cm−3)

LaAs 0.94 0.25 0.46[15]

LaSb 2.28 1.44 1.10[16]

LaBi 4.04 3.72 3.78 [17, 18]

GdAs 5.13 3.00 2.10[19]

GdSb 6.55 4.39 4.20[19]

GdBi 7.18 6.09 -

ErAs 5.59 3.3 1.8[10, 11],4.69[12, 13],3.3[10, 11, 14]

ErSb 6.68 4.53 -

ErBi 8.06 6.88 -

LuAs 5.86 2.63 1.52[20]

LuSb 6.57 4.35 4.35,5.07[21]

LuBi 8.24 6.44 6.61,6.99[22]

for ErAs calculated using LSDA [1] is almost three times larger than the experimental

value [12]. The reason behind this disagreement is the fact that LSDA overestimates

the band overlap between As p and Er d bands, overestimating the dimensions of the

electron and hole pockets and resulting in higher carrier concentrations than in experi-

ment. Here we computed the carrier concentration using different approximations, i.e.,

GGA, HSE06, including SOC, and treating the 4f as core electrons. The carrier con-

centrations are calculated using the wannier90[132] and SuperCell K-space Extremal

Area Finder(SKEAF) codes [133]. The results are shown in Table 3.4. Only the results

including SOC should be compared to the experimental data.
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3.2.5 Band alignments at RE-V/III-V interfaces

Due to the common group-V fcc sublattice and similar lattice parameters of

RE-V and conventional III-V semiconductors, we expect that the later can serve as

substrates for epitaxial growth of RE-V, as demonstrated in the case of (In)GaAs/ErAs

[30, 34, 35] and GaSb/LuSb [31, 32]. In this context, it is important to know the

workfunction of these materials to understand the formation of Schottky barriers and

any possible charge transfer across the III-V/RE-V interfaces. So we calculated the

band alignment at the ErAs/GaAs and LuSb/GaSb, which are two systems of current

interest, and display small lattice mismatches [134, 31]

0.69 eV

(a) (b)GaAs ErAs GaSb LuSb

Figure 3.6: Calculated band alignment at the ErAs/GaAs and LuSb/GaSb inter-
faces.The band alignment between GaAs and GaSb was taken from the
literature [24].

The band alignments between the Fermi level in the semimetal and the band

edges in the semiconductor are calculated as follows [134]. First, we calculated the

Fermi level position in the semimetal and the band edges in the semiconductor with

respect to the respective averaged electrostatic potential through bulk calculations

using their primitive cells. Then we aligned the averaged electrostatic potential in
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the two materials by performing an interface calculation using a superlattice geometry

with two equivalent interfaces, as described previously. The superlattice consisted of 9

monolayers of each material, along the non-polar [110] direction in order to minimize

the effect of charge transfer across the interface. In order to remove the effects of

strain due to the small lattice parameters, we used the in-plane lattice parameter of

the semiconductor and adjusted the out-of-plane lattice parameter of the semimetal

to give its equilibrium volume. In this way, the calculated band alignments should

be regarded as natural band alignments. In any case, effects of small strain on the

absolute position of the Fermi level in the semimetal were shown to be negligible [134].

For the superlattice, we used a 6×6×1 Gamma-centered mesh of special k points

for the integration over the Brillouin zone. We note than for GaAs our calculated band

gap using the HSE06 hybrid functional is 0.11 eV lower than the experimental value of

1.42 eV, while for GaSb our calculated band gap is 0.06 eV larger than the experimental

value of 0.67 eV. The results for the band alignments are shown in Fig. 3.6.

We find that the Fermi level of the semimetal lies within the band gap of the

semiconductor in the cases of ErAs/GaAs and LuSb/GaSb. The band alignment be-

tween GaAs and GaSb was taken from the literature [24]. In the case of ErAs/GaAs

we find that the Fermi level in ErAs is 0.58 eV above the valence band of GaAs, and

in the case of LuSb/GaSb the Fermi level of LuSb is 0.36 eV above the valence band

of GaSb. From the transitivity rule, we obtain the Fermi level of LuSb 0.47 eV higher

than that of ErAs, consistent with the Sb 5p orbitals being higher in energy than the

As 4p orbitals. Note that our results for position of the Fermi level in ErAs with respect

to the valence band edge in GaAs is slightly higher than previous uncorrected DFT

value by 0.3 eV [134], yet only ∼0.1 eV lower than the reported experimental value

[29].

In summary, we performed HSE06 hybrid functional calculations for the elec-

tronic structure of RE-V compounds, where RE= La, Gd, Er, Lu and V = As, Sb,

Bi. The HSE06 gives equilibrium lattice parameters in very close agreement with ex-

perimental data. All the studied compounds are semi-metals with the size of hole
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pocket increasing from As to Bi, whereas the gap at X point increases with increase

in atomic number of the rare-earth element. We show that using HSE06 gives a good

description of the electronic structure of RE-V including the 4f electrons explicitly as

valence electrons. In particular, we find reasonable agreement with LDA+DMFT and

GW calculations for ErAs. We also show that HSE06 gives hole and electron concen-

trations that are closer to the observed values, correcting the overestimation of the

electron and hole pockets overlap in the DFT-GGA calculations. Our results for the

band alignment at the ErAs/GaAs interface is in good agreement with experimental

data, and it is a significant improvement over previously reported DFT calculations

within local spin density approximation.

3.3 Effects of pressure on the electronic structure of La-V

In this section we will study the effects of hydrostatic pressure on the electronic

properties of LaAs using density functional theory (DFT) calculations with the screened

hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE06). We focus on the band

crossing near the X point that can make LaAs a topological semimetal, discussing

results of both DFT within the generalized gradient approximation (GGA) and the

HSE06 hybrid functional. As introduced in secion 1.1 we find that in DFT-GGA, under

the calculated equilibrium lattice parameter, LaAs displays a crossing between the

highest As p band and the lowest La d band near the X point due to the overestimated

p-d band overlap. Such crossing does not occur when the band overlap is corrected in

the HSE06 calculation. However, we find that the p-d crossing can be induced in LaAs

under hydrostatic pressure, showing a topological phase transition at ∼7 GPa. The

rocksalt crystal structure of LaAs is predicted to be stable under applied pressure up

to 20 GPa, in good agreement with experimental observations.

In this study, we used plane-wave basis set with 300 eV kinetic-energy cutoff.

For the Brillouin-zone sampling, we use a 8×8×8 Γ-centered k-point mesh. In the

calculations of the crystal under pressure, we use a variable cell relaxation at different

applied pressures, in the range of 0-28 GPa. The effects of spin-orbit coupling (SOC)
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were included only in the band structure calculations, not in the cell optimization.

Since LaAs in the rock-salt crystal structure has both time-reversal symmetry and

inversion symmetry, the Z2 topological invariant is calculated from the parity of the

occupied bands at the eight time-reversal invariant momentum (TRIM) points [135].

3.3.1 Electronic band structure of LaAs

LaAs is one of the member of RE-V family and it is stable in rock-salt structure

at ambient pressure. The calculated equilibrium lattice parameter using DFT-GGA is

6.187 Å, and 6.173 Å using HSE06, in good agreement with the experimental value of

6.137 Å [7]. The calculated electronic band structure of LaAs using DFT-GGA and

HSE06 are shown Fig. 3.7. We focus on the bands within 2 eV of the Fermi level. The

partially occupied bands at Γ (hole pockets) are derived mainly from As 4p orbitals, and

the partially occupied bands at the X point (electron pockets) are derived mainly from

La 5d orbitals. The band inversion near the X point would be a sign of topologically

non-trivial band structure, as in the case of LaBi, a similar material for which such

band inversion has been established theoretically and experimentally [38].

Previous calculations have reported qualitatively different results for the elec-

tronic structure of LaAs[136, 15], depending on the exchange-correlation functional

employed. In standard DFT-GGA calculations [15], LaAs is a semimetal with the As p

and La d bands crossing near the X point. By applying an external repulsive potential

U=1.63 eV to the La d in the DFT-GGA+U method, the overlap between the As p-La

d is reduced to 0.20 eV, and the crossing disappears [15]. By employing the modified

Becke-Johnson meta-GGA for the exchange potential [137], LaAs is a semiconductor

with an indirect band gap of 0.20 eV [15]. In recent HSE06 hybrid functional calcu-

lations, it was found that LaAs is a semiconductor with a small indirect band gap of

0.12 eV [136]. However, these HSE06 results did not include the effects of spin-orbit

coupling. We performed test calculations using HSE06 without spin-orbit coupling,

and find a gap of 0.01 eV. In our calculations, both DFT-GGA and HSE06 show an

overlap between the La d band and As p bands indicating that LaAs is a semimetal,
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Figure 3.7: Electronic band structure of LaAs in rock-salt structure using (a) DFT-
GGA functional and (b) the HSE06 hybrid functional with spin-orbit
coupling. The Fermi level is set to zero.

in agreement with ARPES measurements[15, 75]. In the DFT-GGA calculations we

find that the La d band touches the As p band near the X point, in agreement with

previous calculations, while in the HSE06 this band inversion does not occur, with a

separation of ∼0.3 eV between the As p band and La d band near the X point.

Therefore, LaAs is predicted to show different behavior, depending on the

functional used in the calculations. In DFT-GGA, it is predicted to be topological

semimetal, while in HSE06, LaAs is predicted to be a normal, topologically trivial

semimetal. We note that ARPES measurements[15, 75] in LaAs bulk shows the absence

of any band crossing in the band structure, in agreement with our HSE06 calculations,

and in contrast to DFT-GGA which overestimates the overlap between the As p and

La d bands.
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3.3.2 Comparison between La monopnictides(La-V)

In Fig. 3.8 we show the band structures of LaAs, LaSb, and LaBi calculated

using HSE06. LaBi, LaSb and LaAs are quite similar materials, in the sense that

they share the same crystal structure and are non-magnetic members of the rare-earth

monopnictide family as discussed in 1.1. Thus, we expect their band structure to be

similar. However, the spin-orbit coupling is much stronger in LaBi than in LaSb and

LaAs, and the Bi p band is much higher in energy at Γ point than the Sb and As p

bands. As consequence, the LaBi is predicted to be a topological semimetal with a

crossing of the La d and Bi p bands near the X point, in agreement with previous

calculations [41, 75] which clearly show the presence of three Dirac cones [67, 38] in

the surface band structure, and also verified by ARPES measurements [67, 37, 75].

The calculated carrier densities in LaAs, LaSb and LaBi are listed in Table 3.5.

The results are in good agreement with experimental values [15, 16, 18, 7, 23, 6]. For

LaSb, which experimentally is found on the verge of being a topological semimetal, we

find a small separation of ∼0.17 eV between the Sb p and the La d bands and it will

be discussed in detail in next section. For LaBi, our calculated band structure is in

quantitative agreement with the reported ARPES results [75].
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Table 3.5: Calculated carrier concentration n for the La-V compounds using the
HSE06 hybrid functional, including spin-orbit coupling (SOC). Experi-
mental results are also listed for comparison. [15, 16, 18, 7, 23, 6].

Material
a(Å) n(cm−3)

HSE06 Expt. HSE06 Expt.

LaAs 6.173 6.137 2.49x1019 4.60x1019

LaSb 6.514 6.488 1.44x1020 1.10x1020

LaBi 6.625 6.570 3.72x1020 3.78x1020

3.3.3 Structural phase transition in LaAs under pressure

In general, applying pressure to a material will change its bond lengths and,

consequently, band width and band gap, without any sort of chemical doping or sto-

ichiometry modification. As discussed earlier in section 3.3.1, at ambient conditions,

LaAs is stable in the rock-salt structure, shown in Fig. 3.9(a), but it goes a structural

phase transition under hydrostatic pressure, transforming to a body-centered tetrago-

nal (bct) structure, shown in Fig. 3.9(b).

We calculate the enthalpy of LaAs in these two crystal structures for a wide

range of pressures. The structure with minimum enthalpy for a given pressure will

be the most stable structure at that pressure. Enthalpy is defined as H = E + PV ,

where E is the total energy, P is pressure and V is volume of unit cell. The enthalpy

of both structures increases with increase in pressure, but the enthalpy of the rock-salt

structure rises faster than that of the bct structure. We find that at around 20 GPa, the

rock-salt structure becomes less stable than the (bct) structure, as shown in Fig. 3.9(c).

This result is in good agreement with experimental observations [7]. The change in

relative volume of LaAs under applied pressure is shown in Fig. 3.9(d) along with the

experimental data [7].
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Figure 3.9: Crystal structures of LaAs: (a) ground-state rock-salt structure and (b)
body-centered tetragonal (bct) structure. (c) Enthalpies of LaAs in rock-
salt and tetragonal structures as a function of pressure showing a tran-
sition from rock-salt to bct at 20 GPa.(d) Relative changes in volume as
a function of pressure in LaAs. The experimental data were extracted
from Ref. [7].

3.3.4 Change in electronic band structure of LaAs under pressure

We also compute the band structure of LaAs under different pressure conditions,

for up to 10 GPa, focusing on the behavior of La d and As p bands near the Fermi
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level. For the band structure calculations we limited our attention to the rock-salt

structure as this is the stable crystal structure up to 20 GPa. We find that for up to 6

GPa, there is no sign of band inversion, and that starting at 7 GPa, the La d and As

p bands cross near the X point. Therefore, we expect a topological phase transition in

LaAs to occur at about 7 GPa. The band structure of LaAs along Γ-X direction for

hydrostatic pressures of 6 GPa and 7 GPa are shown in Fig. 3.10.

To verify the non-trivial topology of the band structure of LaAs under pressure

we also calculate the Z2 invariant. There are four Z2 invariants in the case of three

dimensional materials. For a material with both time-reversal and inversion symmetry,

such as LaAs in the rock-salt structure, the Z2 invariant can be calculated from the

parities of all the occupied bands at the TRIM (time reversal invariant momentum)

points [135], through the relation:

(−1)vo =
8∏

m=1

δm, (3.1)

where the index ν0 defines the topological class of the material and δm is the parity

product of all the occupied bands at the m-th TRIM point. The parity of a band can

be determined by a symmetry analysis of the orbitals that compose it.

For up to 6 GPa, the valence band of LaAs near the X point is derived from

As p orbitals while the conduction band is derived from La d (t2g) orbitals. At the X

point, the parity of the As p band is X−7 (odd), while the parity of the La d band is X+
7

(even). When the two bands cross at 7 GPa, Fig. 3.10(b), the parity is also switched

at the X point.

The parities of all the relevant bands at eight TRIM points just before the

topological phase transition (6 GPa) and just after the phase transition (7 GPa) are

shown in Tables 3.6 and 3.7 respectively. Hence, due to the inversion of the As p and

La d bands at the X point, the Z2 topological invariant vo changes from 0 to 1 making

LaAs a non-trivial topological semimetal at applied pressure of 7 GPa. Since the As

p and La d t2g bands belong to the same irreducible representation of the C4v double

group, the band crossing opens up a gap when spin-orbit coupling is included, as shown
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Figure 3.10: Electronic band structure along Γ-X-Γ direction of LaAs under (a) 6
GPa and (b) 7 GPa hydrostatic pressure.(c) Zoomed in view at 7 GPa
near the crossing of the La d and As p bands. The symmetries and
parities of the two bands that cross near the X point are indicated.
The Fermi level is set to zero.(d) Z2 topological invariant (ν0) plotted
as a function of hydrostatic pressure for LaAs in the rock-salt structure,
calculated using the HSE06 hybrid functional.
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Table 3.6: Parities at time reversal invariant momenta (TRIM) points in the first
Brillouin zone of LaAs in the rock-salt crystal structure for all the occupied
bands just before the topological phase transition (6 GPa).

No. Γ L L L L X X X Total

1 - - - - - - - - +

3 - - - - - - - - +

5 - - - - - - - - +

7 + - - - - + + + +

9 - + + + + - - - +

11 - + + + + - - - +

13 - + + + + - - - +

Total + + + + + + + + +

in Fig. 3.10(c). These results indicate that LaAs is not a Dirac semimetal, but due to

the inversion of the two bands at X with opposite parities it can be classified simply as

a non-trivial topological semimetal. The calculated ν0 as a function of pressure, shown

in Fig. 3.10(d), switches from 0 to 1 at 7 GPa due to the band crossing near the X

point.

In summary, magnetotransport measurements in LaAs bulk samples show XMR

effects [15], although reduced in magnitude compared to LaSb and LaBi [75]. In LaAs,

the XMR is clearly unrelated to non-trivial band topology, as LaAs is not a topological

semimetal at ambient pressure. This is similar to YSb, another rock-salt structure

monopnictide, where XMR has been observed without any sign of non-trivial band

topology [74]. It was argued that XMR in YSb is caused by the difference in electron

and hole mobilities, yet this conclusion relies on the simple semi classical two-band

model [138, 139]. In topological semimetals such as LaBi, the observed XMR could be

induced by the breaking of time reversal symmetry in the presence of magnetic field, yet

48



Table 3.7: Parities at time reversal invariant momenta (TRIM) points in the first
Brillouin zone of LaAs in the rock-salt crystal structure for all the occupied
bands after the topological phase transition (7 GPa).

No. Γ L L L L X X X Total

1 - - - - - - - - +

3 - - - - - - - - +

5 - - - - - - - - +

7 + - - - - + + + +

9 - + + + + - - - +

11 - + + + + - - - +

13 - + + + + + + + -

Total + + + + + - - - -

a direct relationship is still missing since LaBi also shows electron-hole compensation

and possibly large differences in electron and hole mobilities.

Our calculations for the electronic structure of LaAs using DFT-GGA and the

screened hybrid functional HSE06 show that HSE06 calculations corrects the overesti-

mated overlap between valence and conduction bands compared to DFT-GGA. HSE06

correctly predicts no band inversion at the X, which makes LaAs a topologically trivial

semimetal, in agreement with the experiments under ambient pressure. The calculated

charge carrier concentration is also in good agreement with experiments. The elec-

tronic band structure of LaAs can be tuned by applying pressure, and it becomes a

topologically non-trivial semimetal under hydrostatic pressure of ∼7 GPa. This pres-

sure is well below the structural phase transition to a bct crystal structure which is

predicted to occur at ∼20 GPa. Studying the XMR effect as a function of pressure in

LaAs could shed light on the evolution of the XMR with carrier concentration (which
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tends to increase with applied pressure) and the emergence of non-trivial band topol-

ogy at 7 GPa, revealing the role of non-trivial topology in XMR. Therefore, LaAs can

be a test material to find the relationship between electron-hole compensation and

non-trivial topology as competing models to explain the observed XMR in rare-earth

monopnictides.

3.4 Effects of epitaxial strain on the electronic structure of rare-earth

monopnictides

In this section we will study the effects of epitaxial strain on the electronic

strucfure of LaSb. The combination of magneto-transport and topological properties

has brought great attention to rare-earth monopnictides semimetals. For some of

them, like LaSb, it is unclear whether they show non-trivial topology or not based on

density functional theory calculations and angular resolved photoemission spectroscopy

measurements. Here, we use hybrid density functional theory to demonstrate that LaSb

is in fact a trivial topological semimetal, in agreement with experiments, but on the

verge of a transition to a topological phase. We show that under compressive epitaxial

strain, the La d band crosses the Sb p band near the X3 point in the Brillouin zone,

stabilizing a topologically non-trivial phase, opening unique opportunities to probe the

inter-relation between magneto-transport properties and the effects of band topology

by examining epitaxially strained and unstrained thin films of the same material.

For the calculations of epitaxial strain we first use an eight atom cubic unit cell

to simulate the epitaxial strain (fixing a=b and relaxing c), from which we extract a

two atom primitive cell for band structure calculations, thus avoiding the effects of

band folding. To sample the Brillouin zone we use 8×8×8 Γ-centered k-point mesh for

the 2-atom cell calculations. Effects of spin-orbit coupling (SOC) are included only in

the band structure calculations, not in the cell optimization. Owned to the inversion

symmetry and time-reversal symmetry at equilibrium and under epitaxial strain, the

Z2 topological invariant can be calculated from the product of parities at the time-

reversal invariant momentum (TRIM) points [135]. The wannier90 code [140] is used

50



to obtain maximally localized Wannier functions (MLWF) and to parameterize a tight

binding (TB) hamiltonian. The WannierTools code [141] is used to obtain surface band

structure and spin texture based on the TB hamiltonian interfaced with wannier90.

3.4.1 Electronic band structure of LaSb

Like the other rare-earth pnictides, LaSb is stable in the rock-salt crystal struc-

ture with space group Fm3̄m. The calculated equilibrium lattice parameter of LaSb

is 6.540 Å using DFT-GGA and 6.514 Å using HSE06, in good agreement with ex-

perimental lattice parameter of 6.488 Å [6]. The calculated electronic band structure

of LaSb using DFT-GGA and HSE06 are shown in Fig. 3.11, focusing on the region

within ±2 eV of the Fermi level. The partially occupied bands near Γ (hole pockets)

are derived mostly from Sb 5p orbitals, whereas the partially occupied bands at the

X point are derived from La 5d orbitals. With the inclusion of spin-orbit coupling the

3-fold degenerate bands at Γ split into a doubly degenerate band and a non degenerate

band, whereas the La d band at X remains unchanged.
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Figure 3.11: Electronic band structure of LaSb using (a) HSE06 hybrid functional
and (b) the DFT-GGA functional with spin-orbit coupling. The zero
in the energy axis corresponds to the Fermi level..

The electronic structure of LaSb is still under debate as the calculations by Guo

et al. [41] predict different results using DFT-GGA and meta-GGA (MBJ). The DFT-

GGA functional predicts LaSb to be a topological semimetal with a band inversion
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at the X point, whereas the meta-GGA predicts a topologically trivial behavior by

decreasing the La d-Sb p band overlap. HSE06 hybrid functional calculations by Guo

et al. [76] also predict a topologically trivial band structure. ARPES measurements

by Nummy et al.[75] showed no sign of band inversion, whereas results by Niu et al.

[37] were not conclusive regarding the non-trivial topological nature of LaSb.

Our DFT-GGA and HSE06 calculations show an overlap in energy between La

d band and Sb p band thus confirming the semimetallic nature of LaSb in agreement

with previous calculations [41, 76] and experiments [40, 75, 16]. However, the HSE06

calculations reveal that the La d band lies higher in energy than the Sb p bands at each

k along the Γ − X direction, while in the DFT-GGA there is a crossing between the

La d and Sb p bands along the Γ−X direction. We note that our HSE06 calculations

correct the overestimated La d-Sb p band overlap in DFT-GGA and also correctly

describes the trivial nature of LaSb band structure in agreement with previous HSE06

calculations [76] and experiments[75, 40]. Note also that the order to the La d band

and the pnictogen p band can be reversed if the spin-orbit coupling is stronger as in

the case of LaBi [77, 67, 38], which is a similar material with a topologically non-trivial

band structure.

3.4.2 Effect of epitaxial strain on electronic band structure of LaSb

In this section we will discuss how the electronic band structure evolve under

applied epitaxial strain. The electronic structure of a material can be changed without

adding any extraneous chemical species or doping. As discussed in section 3.3.4, ap-

plying hydrostatic pressure leads to an inversion of the La d and the pnictogen p bands

at the X point in LaAs[77] and LaSb[76], turning them into topologically non-trivial

materials. Epitaxial strain, such as in coherently strained films grown or deposited on

lattice mismatched substrates, can also be employed to alter the electronic structure of

materials. It reduces the space group symmetry from Fm3̄m to I4/mmm, yet keeping

the inversion symmetry. Here we show that compressive epitaxial strain can be used

as an effective tool to change the topological properties of the LaSb band structure.
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Epitaxial strain has been demonstrated in the growth of rare-earth pnicitides on III-V

semiconductors using molecular beam epitaxy (MBE) [31, 32]. Compressive epitax-

ial strain of up to 3% has already been realized in III-V semiconductors[142], and we

expect that similar strains can be achieved in the rocksalt rare-earth pnictides. Note

that effects of charge transfer at the interface between the substrate and the LaSb

thin film may affect the carrier compensation; the amount of charge will depend on

the band alignment, the interface termination, and the doping type and level in the

semiconductor.
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In Fig. 3.12 we show how the Brillouin zone of LaSb changes under epitaxial

strain. Under equilibrium, the Brillouin zone has the shape of a truncated octahedron,

which is common for face-centered cubic or rocksalt crystal structures, with Γ at the

center and three independent X points at the center of the square faces. The shape

of the Brillouin zone changes when we apply compressive epitaxial strain as the three

independent X points split into two in-plane X points and one out-of-plane Z point.

It is important to note that the spacial inversion symmetry is preserved in LaSb under

epitaxial strain, and it is reflected in the inversion symmetry of the distorted Brillouin

zone shown in Fig. 3.12(b).

The calculated electronic band structure of LaSb under compressive epitaxial

strain is shown in Fig. 3.13, along the Γ−X − Γ and Γ− Z − Γ directions. Using the

HSE06 functional we find that under equilibrium the three independent X points are

equivalent, and the band structure along the in-plane and out-of-plane Γ−X directions

are the same. However, under epitaxial strain the three independent X points are split

into two in-plane X and one out-of-plane Z point. In the case of compressive epitaxial

strain of 1%, the La d band gets closer to the Sb p bands as the overall volume of the

crystal is decreased. However, the La d and Sb p bands along the out-of-plane Γ− Z

direction become even closer compared to those along the in-plane Γ − X direction,

but still there is no crossing between the La d and Sb p bands. At 1.6% compressive

epitaxial strain we observe a band inversion along the out-of-plane Γ − Z direction,

whereas the La d and Sb p bands along the Γ−X still avoid crossing.

Note that the crossing between the La d and Sb p bands only occur in the case

of compressive epitaxial strain, not for tensile strain. For compressive strain, the La d

band and Sb p bands approach each other along both the Γ−Z and Γ−X directions

because the overall volume/cell of the crystal decreases. The out-of-plane c lattice

parameter changes according to the calculated Poisson’s ratio, ν = − εzz
εxx

= 0.26, where

εxx = εyy is the change of the lattice parameters along the in-plane a and b directions,

and εzz is the change of the lattice parameter along the out-of-plane c direction under

epitaxial strain. For tensile epitaxial strain, the La d and Sb d bands are further
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Figure 3.13: Electronic band structures of LaSb with (a) 0% (b) 1% and (c) 1.6% ap-
plied compressive epitaxial strain. The top row shows the bands along
the in-plane direction, the middle row shows the bands along an out-
of-plane direction, whereas the bottom row shows the bands along the
Γ-X-Γ direction for the case of 0% applied compressive epitaxial strain,
and along the Γ-Z-Γ direction for the cases of 1.0% and 1.6% applied
compressive epitaxial strain all calculated using the HSE06 hybrid func-
tional with spin-orbit coupling. The Fermi level is set to zero.

separated from each other due to the overall increase in the volume/cell of the crystal.

3.4.3 Parity analysis and surface band structure of LaSb

To shed light on the bulk band inversion and its relationship with the non-trivial

topology in LaSb under epitaxial strain, we calculated the Z2 invariant, which is given
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Table 3.8: Parities of all the occupied bands at TRIM points in the first Brillouin
zone of LaSb under 0% applied compressive epitaxial strain.

No. Γ L L L L X X X Total
1 - - - - - - - - +

3 - - - - - - - - +

5 - - - - - - - - +

7 + - - - - + + + +

9 - + + + + - - - +

11 - + + + + - - - +

13 - + + + + - - - +

Total + + + + + + + + +

Table 3.9: Parities of all the occupied bands at TRIM points in the first Brillouin
zone of LaSb under 1.6% applied compressive epitaxial strain).

No. Γ L L L L X X Z Total
1 - - - - - - - - +

3 - - - - - - - - +

5 - - - - - - - - +

7 + - - - - + + + +

9 - + + + + - - - +

11 - + + + + - - - +

13 - + + + + - - + -

Total + + + + + + + - -

by the product of parities of all the occupied bands at the TRIM points[135] through

the following relation:

(−1)v0 =
8∏

m=1

δm (3.2)

where ν0 indicates the topological nature of the material and δm is the parity product at

m-th TRIM point for all the occupied bands. For the LaX (X=As,Sb,Bi) compounds,

this Z2 invariant actually depends upon the product of parities of the occupied bands

at the X points, which in the case of epitaxial strain will be X and Z points.

In LaSb at equilibrium, the valence band is mostly composed of Sb p orbitals,
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Figure 3.14: Electronic band structure of (a) LaSb at equilibrium along M -Γ-M and
(c) M -X-M directions and (b) LaSb under 1.6% compressive epitaxial
strain along M -Γ-M and (d) M -X-M directions in the (001) surface
Brillouin zone (SBZ). The bar on the right shows the intensity of surface
states. The Fermi level is set to zero. The Dirac cone and Dirac point
are indicated in (b). The spin textures of the bands crossing at 0.5 eV
below the Fermi level of LaSb under equilibrium and LaSb under 1.6%
compressive epitaxial strain are shown in (e) and (f), respectively.

whereas the conduction band has most of the contributions from La d orbitals. The

parity of La d band is X+
7 which is even, while the parity of Sb p band is X−7 which is odd

at two inequivalent X point and one Z point as shown in Table 3.8. Under compressive

epitaxial strain of ∼1.6%, the parity at the Z point is interchanged, whereas the parity

at the two in-plane X points remains unchanged as shown in Table 3.9. Due to the

change in parity at the Z point under applied compressive epitaxial strain the Z2

invariant switches from 0 to 1 which is a sign of a non-trivial topological semimetal.

To further characterize the topologically non-trivial nature of LaSb under epi-

taxial strain we calculated the (001) surface band structure. From previous work [67],
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we learned that LaBi is a topologically non-trivial material under equilibrium. LaBi

has bulk band inversion at three inequivalent X points, so that the surface states show

three Dirac cones related to the bulk band inversions that are projected onto the sur-

face Brillouin zone. Two in-plane X points are projected onto M points in the surface

Brillouin zone (SBZ), and the third, out-of-plane, X (Z) point is projected onto Γ.

Since the bulk band inversion in LaSb under the effect of compressive epitaxial

strain occurs only at the Z point (i.e., the out-of-plane X point), we expect only one

Dirac cone to appear at the surface, located at the Γ point. In Fig. 3.14(a) and (b)

we show the LaSb(001) surface electronic band structure along M -Γ-M direction. We

see that a Dirac cone is missing at the Γ point when LaSb is at equilibrium, indicating

of the trivial behavior in agreement with previous results [41, 76, 75, 40]. However, a

gapless Dirac cone appears at the Γ point in LaSb under compressive epitaxial strain

of 1.6%, in agreement with parity analysis. In Fig. 3.14(c) and (d) we also show the

surface band structure along theM -X-M direction and, as expected from the discussion

above, there is no sign of surface Dirac cones even under compressive epitaxial strain.

Another feature of non-trivial band structures is the presence of helical spin

texture. To demonstrate that, we determined the spin texture for the surface band

structures of LaSb at equilibrium and under 1.6% compressive epitaxial strain, the

results of which are shown in Fig. 3.14(e) and (f), respectively. The spin textures

are calculated at an energy cut of 0.5 eV below the Fermi level. In Fig. 3.14(e), we

see that the helical spin texture is missing, with all spins aligned in one direction,

whereas in Fig. 3.14(f) we observe a helical spin texture, further corroborating our

analysis above. These calculations clearly demonstrate that under reasonably small

compressive epitaxial strain, of 1.6%, LaSb becomes a topological semimetal. The

ability to coherently grow and characterize thin films of LaSb on lattice matched and

lattice mismatched substrates that offer such relatively small strains could shed light

on the role of carrier compensation and non-trivial topology in the observed extreme

magnetoresistance effects.
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In summary, using first-principles calculations we studied the electronic struc-

ture of LaSb using DFT-GGA and the screened hybrid functional HSE06. We verify

that HSE06 rectifies the overestimated band overlap between conduction and valence

bands in DFT-GGA. Using HSE06 we showed that LaSb is a topologically trivial

semimetal under equilibrium, in agreement with the experiments. We also show that

compressive epitaxial strain can be used to turn LaSb films into topological semimetal,

creating unique opportunity to probe the inter-relationship between the occurrence of

non-trivial topological properties, compensation of electrons and holes, and extreme

magnetoresistance in rare-earth pnictides.

3.5 Tuning magnetoresistance in LuSb

As introduced in section 1.1, semi-metallic rare-earth monopnictide compounds

offer an exciting platform to realize exotic quantum states of matter and novel material

properties[143, 144, 86, 85, 145, 146]. Large, non-saturating magnetoresistance is one

such example that has generated great interest in the recent years[16, 147, 148], where

spin-orbit coupling [147], linearly dispersive states [149], charge compensation [150, 40]

and charge inhomogeneity [151, 152, 153] have been proposed as possible mechanisms

for its origin. Though electronic structure is expected to play a key role, demonstration

of controlling the magnetoresistance via electronic structure modification remains elu-

sive, which might also allow us to distinguish between the different proposed scenarios.

To address this outstanding issue we calculated the electronic band structure of LuSb

with different film thickness. Though LuSb is found to be a compensated semimetal

in the bulk[31, 21], we establish that dimensional confinement differentially alters the

occupation of electron and hole-like bands lifting carrier compensation. Loss of car-

rier compensation along with an overall reduction in carrier mobility in thinner films

dramatically modifies their magnetoresistance behavior establishing the importance of

carrier compensation. However, no evidence is found for the predicted semimetallic

to semiconducting phase transition [154] in dimensionally confined thin films of LuSb,
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which remain semimetallic in the ultrathin limit. Heteroepitaxial interfaces offer an-

other potential route to control electronic properties in few atomic layer geometries and

can lead to emergent ground states not realizable in the bulk[155, 156, 157, 158]. We

show that the local coordination and chemical bonding at the technologically relevant

(001) interface, between rock-salt (LuSb) and zinc-blende (GaSb) crystal structure[159]

provides a novel route to realize a two-dimensional hole gas, which remains tightly

bound to the interface. This is accompanied by a charge transfer across the interface,

which significantly affects the electronic structure and transport properties in LuSb in

the ultra-thin limit. The experimental results discussed in this section are courtesy

from our experimental collaborators from University of California Santa Barbara.

The LuSb/GaSb(001) interface was simulated using (i) a slab geometry with

LuSb/GaSb/LuSb layers with 7.5 layers of Ga-terminated GaSb sandwiched between

two 6-monolayer thick LuSb with a∼15 Å thick vacuum layer, and (ii) a LuSb/GaSb(001)

superlattice with 17 layers of LuSb and 7.5 layers of GaSb. In both cases there are

two equivalent, yet rotated with respect to each other, LuSb/Ga-terminated inter-

faces. LuSb(001) thin films were simulated using periodic slabs with 7, 13, 21, and 41

monolayers (ML). The odd numbers of layers are chosen to ensure inversion symmetry,

making it easier to analyze the band structures. These calculations were performed

using the DFT-GGA functional with 12×12×1 special k-points; HSE06 calculations

for these slabs are prohibitively expensive given the size of the supercell and the large

number of k-points required to describe metallic systems.

3.5.1 Discrepancy between transport and ARPES data in experiment

Our experimental collaborators were able to grow thin films of LuSb with 6,

12, 20 and 40 monolayer (ML) thickness using MBE. Results of charge transport mea-

surements, in Fig. 3.15, show interesting features. The arrow in Fig. 3.15(a) indicates

the temperature below which the resistance is dominated by LuSb. So for film thick-

ness down to 20 ML, the longitudinal resistance decreases with temperature, but for

ultra thin films it does not change much. Magnetoresistance (MR) in these thin films
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changes in both magnitude and shape with film thickness. MR decreases rather sharply

from 120% for 40ML to around 10% in the thinner layer as shown in Fig. 3.15(b). For

the Hall resistance a multi-carrier Hall behavior was observed in 40 and 32ML films,

which changes to electron like behavior in 20 and 12Ml films as evident from the linear

negative slope, whereas for 8 and 6Ml thin films p-type Hall conductivity was observed

as seen from the positive slope as shown in Fig. 3.15(c). At that time, the origin of

this p-type Hall conductivity was puzzling. The quantum oscillation data also indicate

that dimensional confinement induces change in electronic structure, which differently

affects electron- and hole-like bands. As shown in Fig. 3.15(e), there is a significant

decrease in oscillation of the δ hole band for 32ML film compared to 40 ML, and for

20ML the oscillation for the δ band disappears, whereas the oscillation of electron band

does not change in the same way, which is a sign that electron-hole compensation is

lifted.

The angle resolved photoemission spectroscopy (ARPES) data indicate a de-

crease of the hole pocket as the film thickness decreases, whereas the electron pocket

more or less stays the same. For the 40ML thick film the electron and hole concentra-

tions obtained from the Fermi wave vector kF values in ARPES are almost equal, giving

ratio n
p
≈ 1.01, which shows that electron-hole compensation is still present in 40Ml

film. The same ratio for 6Ml thick film gives n
p
≈ 1.6 which shows higher concentration

of electron carriers than hole carriers, and a deviation from electron-hole compensation

which could also explain the significant decrease in magnetoresistance (MR) for thin

films. So the contradiction here is that from the ARPES data we have more electron-

like carriers in 6ML thin films whereas from the Hall measurements we get p-type

conductivity. This apparent contradiction between the two types of measurements we

reconciled by our first-principles DFT calculations.

3.5.2 Surface electronic structure of LuSb

To explain this discrepancy discussed in section 3.5.1, we started with DFT

calculations for LuSb(001) slabs to see how the electron and hole pockets change with
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(a) (b) (c)

(d) (e)

Figure 3.15: Experimental transport properties of LuSb/GaSb (001) thin films. (a)
Temperature dependence of resistance in thin films of various thick-
nesses. RΞ is the resistance at the sample temperature below which film
resistance is dominated by LuSb layer. Temperatures corresponding to
RΞ are indicated for all film thicknesses. (b) Evolution of magnetoresis-
tance with film thickness. Inset highlights saturating magnetoresistance
behavior at high fields for 8- and 6-ML-thick samples. All data taken at
2 K.(c) Hall resistance measured at 2 K as a function of film thickness.
(d) Crystal structure of LuSb and its Fermi surface, calculated using
hybrid DFT. (e) Fast Fourier transform of the quantum oscillations for
the 40-, 32-, and 20-ML-thick films
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Figure 3.16: Experimental photoemission spectroscopy measurements of
LuSb/GaSb(001) thin films. (A) Three-dimensional and surface
Brillouin zone of LuSb showing the high-symmetry points. Red and
blue lines show the cut directions along which ARPES measurements
are taken for (C-F) and (G-J), respectively. (B) Fermi surface map
showing both the electron and the hole pockets and the ARPES cut
directions. E-k spectral map at the bulk Γ point (top panels) along
M̄ − Γ̄ − M̄(red line in A) of the surface Brillouin zone for thin films
of thickness (C) 40ML (D) 20ML (E) 12ML and (F) 6ML, and at the
bulk X point (bottom panels) along Γ̄ − M̄ − Γ̄(blue line in A) of the
surface Brillouin zone for (G) 40ML (H) 20ML (I) 12ML and (J) 6ML
thick films. All data taken at 70K.

film thickness. In Fig. 3.17 we show the electronic band structure for LuSb slab along

M̄ − Γ̄ − M̄ high symmetry direction. We note that the choice of using odd numbers

of layers in the LuSb slab calculations, for instance 7, 13, 21, and 41 ML shown in

Fig. 3.17 instead of 6, 12, 20, and 40 in the experiments was to ensure inversion

symmetry and facilitate the analysis of band structures, and does not affect our results

and conclusions. For different thickness we see a decrease in size of hole pocket at

Γ̄ point with decrease in film thickness, agreeing very well with the ARPES data,

but the electron pocket at M̄ is strongly affected by quantum confinement, contrary

to the experimental data shown in Fig. 3.16. We attribute this discrepancy to the
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excess charge due to the specific termination at the interface between the GaSb(001)

substrate and the LuSb(001) film and will be discussed in next section. These results

are summarized in terms of Fermi wave vector kF obtained from both ARPES data

and the calculations as shown in Fig. 3.17(d) and Fig. 3.17(c), respectively, where kF

corresponds to the size of the Fermi pocket.

1

�𝑀𝑀�𝑋𝑋
�Γ

�𝑀𝑀
�𝑀𝑀

�𝑀𝑀

[001]

7ML 13ML 21ML 41ML

(a)

(b) (c) (d)

(e) (f) (g) (h)

Figure 3.17: LuSb slab calculations.(a) LuSb slab along (001) direction. (b)Bulk
Brillouin zone and its projection on surface. (c-d) Evolution of Fermi
wave vectors (kF ) with film thickness from calculations and ARPES
respectively. Calculated electronic structure of free-standing LuSb (001)
films as a function of film thickness (number of monolayers or ML) for
(e) 7ML, (f) 13ML, (g) 21ML, and (h) 41ML.

The ARPES and quantum oscillation measurements along with LuSb slab cal-

culations does establish the loss of electron-hole compensation in thinner films, but

dimensional confinement alone is not sufficient to explain the experimental data. To

understand these contradictory behavior we started thinking about the effect of the

GaSb/LuSb interface and what is the impact of this buried interface on the experi-

mental observations.
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3.5.3 Simulating the LuSb/GaSb heterostructure

To investigate the effects of the interface, we created LuSb/GaSb heterostruc-

tures along (001) direction. We used two interfaces in order to avoid any dipole effects

which can create undesired electric field. In Fig. 3.18 we show the structural charac-

terization of the interface. The TEM image shows Ga termination in GaSb zinc blende

lattice at the interface. Our calculations predict a distortion of Lu atoms at the inter-

face due to bonding mismatch and this is also observed in experimental TEM image.

The Lu-Lu interatomic distance in the out of plane direction is smaller at the interface

and is consistent with the atomic layer buckling. This provides further evidence for

the validity of our slab calculations in understanding the experimental results.

Our DFT calculations reveal the existence of a 2D hole gas at the LuSb/GaSb(001)

interface. In Fig. 3.19(a), we show the electronic band structure of the LuSb/GaSb/LuSb(001)

slab. We find two interfacial bands crossing the Fermi level, mostly composed of s or-

bital of the Ga atoms at the interface, corresponding to one band with Ga-s character

per interface. These two bands show different dispersions along Γ − X̄1 − M̄ and

Γ − X̄2 − M̄ because the corresponding Ga-Sb bonds at the two equivalent interfaces

are rotated with respect to each other by 90° due to the symmetry of the zinc blende

structure of GaSb. The Fermi-level crossings of these two bands and the resulting Fermi

surface are shown in Fig. 3.19(d), respectively, indicating a hole-like behavior, which

explains experimental observation. The estimated carrier concentration, based on the

Luttinger volume, is 0.7 hole per 2D unit-cell area per interface. We note that the

estimated Luttinger volume depends marginally on the functional used in the calcula-

tion and should be considered as a lower bound due to the use of generalized gradient

approximation (GGA) in the slab calculations. The calculated projected density of

states, shown in Fig. 3.20, also indicates that these interface bands are associated with

the Ga atoms at the interface. The charge density distribution (Fig. 3.19(b)), corre-

sponding to the square of the single-particle states at the maximum of the hole band

along X̄2 − M̄ (highlighted by blue circles in Fig. 3.19), reveals the 2D character of

these two bands, which are highly localized out of plane yet uniformly distributed in
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(a)

(b) (c)
(d)

Figure 3.18: LuSb/GaSb heterostructure. (a) LuSb/GaSb/LuSb(001) slab.(b)
Average atomic positions along a-b, shown in d, plotted as a function
of the distance from a, calculated by averaging those atomic columns
that terminate with a Lu atom at the interface between a-b and a* -
b*. Inset shows the evolution of the Lu-Lu inter-atomic distance as a
function of the distance from the interface. Lu-Lu inter-atomic pairs are
numbered away from the interface, as shown in b.(c) A closeup of the
HAADF-STEM image in d and a ball-and-stick model of the proposed
interface showing the atomic arrangement at the interface. Distortion
of the Lu atoms at the interface is evident from the change in the bond
angle and from a reduced Lu-Lu inter-atomic distance between the 1st
and the 3rd LuSb monolayer (violet arrow) as opposed to the 3rd and
the 5th monolayer (brown dashed arrow). (d) HAADF-STEM image
along [110] zone-axis.

the plane of the interface.

The charge density of this two-dimensional hole gas and associated charge trans-

fer to the LuSb atomic layers can also be estimated based on a simple electron count-

ing argument. In Fig. 3.19(c), we show the valence charge density profile of the

LuSb/GaSb/LuSb(001) slab system. The excess charge on the LuSb layer on the

top or at the bottom of the GaSb layer is defined as the macroscopically averaged

charge density along the heterostructure direction in the LuSb region (indicated in
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Figure 3.19: Origin of the two-dimensional hole gas at a rock salt/zinc
blende interface. Electronic structure of a LuSb/GaSb/LuSb(001)
slab showing (a) Interface bands that originate from Ga s-orbitals at
the interface. The two-dimensional unit cell and the surface Brillouin
zone is also shown. (b) Charge density distribution of the single-particle
state at the maximum of the hole bands crossing the Fermi level along
the X̄1-M̄ and X̄2-M̄ directions. (c) Valence charge density distribution
of the LuSb/GaSb/LuSb (001) slab along the direction perpendicular
to the interface. (d) Fermi surfaces of the two interface bands associ-
ated with the two equivalent interfaces, yet rotated, corresponding to
the structure used in the simulation, shown in a.
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Figure 3.20: Origin of the two-dimensional hole gas at a rock
salt/zincblende interface. Electronic structure of a
LuSb/GaSb/LuSb (001) slab showing (a) Interface bands that
originates from s orbital of the Ga atom at the interface; (b) 3D view of
the two interface bands associated with the two equivalent interfaces,
yet rotated, the structure used in the simulation. (c) Charge density
distribution of the single-particle state at the maximum of the hole
band crossing the Fermi level along the X̄2-M̄ direction. (d) Valence
charge density distribution of the LuSb/GaSb/LuSb (001) slab along
the direction perpendicular to the interface. (e) Density of states
(DOS) calculation for the GaSb region in the LuSb/GaSb/LuSb (001)
slab. (f) Density of states (DOS) calculation for the GaSb bulk.
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(a) (b)

Figure 3.21: Evolution of Fermi wave vectors (kF ) with film thickness.(a)
Fermi wavevectors for both the elliptical electron-like pocket (α) and
quasi-spherical hole-like pockets (β, δ) as a function of film thickness
obtained from (a) ARPES measurements (b) LuSb slab calculations
after adding a charge transfer of 0.25 electrons/2D unit cell into the
LuSb atomic layers.

Fig. 3.19(c)) and the corresponding charge density of charge neutral LuSb bulk. The

calculated excess charge density on the LuSb film amounts to 0.45 electrons/2D unit

cell area. Assuming that an excess charge of 1.5 electrons is expected at the interface

due to the valence mismatch, i.e. in an ionic picture of GaSb, each Ga layer transfers

3/2 electrons to each of the neighbouring Sb layers, we obtain 1.5 − 0.45 = 1.05 elec-

trons/2D unit cell area would remain at the interface. Discounting the electrons that

are transferred to the bulk of GaSb, which is only 0.045 electrons/2D unit-cell area

per interface according to the results shown in Fig. 3.19(c), this will amount to ∼1

excess electrons per unit-cell area per interface. Assuming that this electron partially

occupies an interface band, we have about 1 hole per unit-cell area in the interface

band. This estimation of 1 hole/2D unit cell can be considered as an upper bound

value as GaSb bonds have strong covalent character.
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The estimated values of 0.7 − 1 hole per 2D unit-cell, based on the DFT cal-

culations, corroborates the experimental value of 0.8 hole/2D unit cell. Furthermore,

following our understanding based on the calculations, observation of 0.8 hole/2D unit

cell at the interface implies 0.25 excess electrons transferred to the LuSb atomic layers.

Calculated kF values for the LuSb slabs after inclusion of the charge transfer across the

interface were found to be in close agreement with those extracted from ARPES, shown

in Fig. 3.21. This underscores the importance of the interfacial effects, in addition to

the quantum confinement effects, in understanding the evolution of the electronic struc-

ture with film thickness in heteroepitaxial semimetallic thin films. Finally, in Fig. 3.20

we show that the existence of a two-dimensional hole gas at the LuSb/GaSb (001)

interface does not depend on the LuSb surface, where we plotted the band structure

of the LuSb/GaSb(001) superlattice with 17 ML of LuSb and 7 ML of GaSb, without

a vacuum layer. The interface bands with Ga-s character in LuSb/GaSb(001) super-

lattice are very similar to those obtained in the LuSb/GaSb/LuSb(001) slab shown in

Fig. 3.19.

We note that an alternate explanation for the 2D hole gas at the LuSb/GaSb(001)

interface could be due to band bending and surface charge accumulation in the GaSb

interfacial layer resulting from the Fermi level at the GaSb surface being pinned in the

valence band. We rule this out for the following reasons. First, the surface Fermi level

pinning position of uncovered GaSb surfaces is known to lie 0.2 eV above the valence

band[160]. Second, both photoemission results from metal/GaSb heterostructures and

electrical measurements of metal/GaSb Schottky barriers indicate a surface Fermi level

position within the GaSb band gap[161, 162, 163, 164, 165]. Finally, the density of such

electrostatically induced 2D hole gases is typically ≤5×1012 holes/cm2[166, 167], which

is two orders of magnitude lower than the hole density observed in this work. There-

fore, the 2D hole gas observed in our studies is of novel origin arising due to bonding

mismatch at the interface, which should be a generic feature of such heterointerfaces.

In summary, using DFT calculations we studied in detail the concept of con-

trolling the electronic properties via band structure engineering in semimetals where,
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utilizing LuSb as a model system, we show that quantum confinement lifts carrier com-

pensation and differently affects the carrier density of the electron and hole-like carriers

resulting in a strong modification in its large, non-saturating magnetoresistance behav-

ior. Bonding mismatch at the heteroepitaxial interface of the semimetal (LuSb) and a

semiconductor (GaSb) leads to the emergence of a novel, two-dimensional, interfacial

hole gas and is accompanied by a charge transfer across the interface that provides

another avenue to modify the electronic structure and magnetotransport properties

in the ultra-thin limit. Our work lays out a general strategy of utilizing confined

thin film geometries and hetero-epitaxial interfaces to engineer electronic structure in

semi-metallic systems, which allows control over their magnetoresistance behavior and,

simultaneously, provides insights into its origin.
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Chapter 4

HALF-HEUSLER TOPOLOGICAL SEMIMETALS

As introduced in section 1.2, half-Heusler compounds display a wide range of

physical properties which also includes non-trivial topology in LuPtSb and LuPtBi.

Three-dimensional topological semimetals host a interesting quantum phenomena re-

lated to band crossing and band touching that give rise to Dirac or Weyl fermions,

and could be engineered into novel technological applications. Harvesting the full po-

tential of these materials in applications will depend on our ability to position the

Fermi level near the symmetry-protected band crossings or touchings so that exotic

spin and charge transport properties are manifest. Using first-principles calculations

based on density functional theory, we investigate how point defects impact the Fermi

level position in two representative half-Heusler topological semimetals, PtLuSb and

PtLuBi; we explore how intrinsic defects can be used to tune the Fermi level, and

explain recent observations based on Hall measurements in bulk and thin films. Under

typical growth conditions we show that Pt vacancies are the most abundant intrinsic

defects, leading to excess hole densities that place the Fermi level significantly below

the expected position in the pristine material. Suggestions for tuning the Fermi level

by tuning chemical potentials are discussed.

We used three atom primitive cell to calculate the equilibrium lattice parameters

and band structures, with a 16×16×16 Γ-centered mesh of k points for integrations over

the Brillouin zone. For the defect calculations, we used a cubic supercell containing

96 atoms which corresponds to a 2×2×2 repetition of the conventional 12-atom cubic

unit cell of LuPtSb(Bi), with 4×4×4 mesh of special k points for integrations over the

Brillouin zone. All calculations were performed using a kinetic-energy cutoff of 400

eV for the plane-wave basis set. The completely filled 4f shell of Lu was treated in
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the core. Previous calculations for band structures of LuSb and LuBi show that the

occupied 4f bands are well below the Fermi level (more than 8 eV) and do not affect

their structural and electronic properties [168]. Tests with supercells containing 324

and 768 atoms show that formation energies change by less than 0.02 eV. The effects

of spin-orbit are included in all calculations.

4.1 Crystal Structure of LuPtSb and LuPtBi

The structure of half-Heusler compounds ABC (A= Lu; B= Pt; C= Sb or

Bi) can be visualized as three interpenetrating fcc lattices with the atomic positions

(0.5,0.5,0.5)a, (0.25,0.25,0.25)a and (0,0,0) for A, B and C respectively, where a is the

lattice parameter; Lu and Sb(Bi) form a rock salt structure while Pt and Sb form a zinc

blende structure, as shown in Fig. 4.1. The calculated lattice parameters for LuPtSb

and LuPtBi are 6.443 Å and 6.572 Å, in good agreement with the experimental values

of 6.457 Å and 6.578 Å [169, 85, 170].

Kx

Ky

K

X
X

Γ

X

L

W

W

K

Sb(Bi)

Lu
Pt

Figure 4.1: (a) Crystal structure C1b of half-Heusler comprising of three interpene-
trating face centered cubic sub lattices, where the green, blue and brown
spheres denoting Pt, Lu and Sb(Bi) atoms respectively.(b) Bulk Brillouin
zone of half-Heusler compound.

73



4.2 Electronic band structure of LuPtSb and LuPtBi

The electronic structure of half-Heusler compounds is closely related to the num-

ber of valence electrons. These compounds exhibit semiconducting properties similar

to that of conventional semiconductor GaAs when the total number of valence electrons

per formula unit is equal to 8 or 18 (closed shell) also known as 8 or 18 electron rule.

To understand the topological properties in semimetallic members of this family such

as LuPtSb and LuPtBi the band structure of HgTe can serve as a starting point. HgTe

is a well known topological semimetal with a band inversion between Hg-s state (Γ6)

and Te-p state (Γ8) at the Γ point. The Fermi level in the intrinsic material is located

at the point where conduction band touches the valence band at Γ. Similar band in-

version occurs in LuPtSb and LuPtBi, as shown in the orbital-resolved electronic band

structure shown in Fig. 4.2(a-e). For LuPtSb the occupied bands near the Fermi level

originate mostly from the Sb atom, with the inversion between Γ8 (p-character) and

Γ6 (s-character) making it topological non-trivial as shown in Fig. 4.2(c), in agreement

with previous studies[171, 85, 172]. The Lu-d orbitals mostly contribute to the bands

2-4 eV above the Fermi level, whereas Pt-d occupied bands are around 4 eV below

the Fermi level. The calculated band inversion strength (BIS) for LuPtSb is 0.23 eV

in agreement with previous studies[171, 85, 172]. The band structure of LuPtBi is

qualitatively similar, with the Γ8 band well above the Γ6 band, as shown in Fig. 4.2(d-

f), in agreement with the previous studies[171, 172]. The calculated band inversion

strength (BIS) for LuPtBi is 1.55 eV, being significantly larger than in LuPtSb due to

the stronger spin-orbit coupling.

4.3 Defects and Stability Phase Diagram

Defects are modelled by removing, adding, or replacing an atom in a supercell

using periodic boundary conditions. The results of defect calculations reported here

are obtained using a supercell with 96 host atoms, and convergence tests for the lowest

energy defects using supercells of 324 and 768 atoms, show that formation energies
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Figure 4.2: Electronic band structures of (a-c) LuPtSb and (d-f) LuPtBi where the
first row represents projection on (a) Lu (b) Pt and (c) Sb, the second
row shows projection on (d) Lu (e) Pt and (f) Bi respectively starting
from left to right. The Fermi level is set to zero.

change by less than 0.05 eV, and do not change our conclusions. The formation energy

for a defect X is given by:

Ef [X] = Etot[X]− Etot[host] + ni
∑
i

(Etot[Xi] + µi), (4.1)

where Etot[X] is the total energy of the supercell containing the defect X, Etot[host]

is the total energy of the perfect crystalline host material using the same supercell, ni

is the number of atoms that are removed/added to the supercell to form the defect

X, and µi is the atomic chemical potential, i.e., the energy of the atomic reservoir for

the species added/removed, referenced to the total energy of the respective elemental

phases Etot[Xi], and can be related to the experimental growth or processing conditions.

The chemical potentials µi are not free parameters, but are bound to the stability

condition of the host material (LuPtSb or LuPtBi, in this case) and the need to avoid

the formation of possible secondary phases, such as LuSb, LuPt, PtSb2, and LuPt3, in
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the case of LuPtSb, through the following relations:

µLu + µPt + µSb = ∆Hf [LuPtSb], (4.2)

µLu + µSb < ∆Hf [LuSb], (4.3)

µLu + µPt < ∆Hf [LuPt], (4.4)

µPt + 2µSb < ∆Hf [PtSb2], (4.5)

µLu + 3µPt < ∆Hf [LuPt3], (4.6)

with µLu ≤ 0, µPt ≤ 0, and µSb ≤ 0 representing the upper limits set by the respective

elemental phases. Similar equations are considered for LuPtBi. The range of chemical

potentials in the plane µLu vs µPt for LuPtSb and LuPtBi are shown in Fig. 4.3, where

the relevant regions for the discussion are indicated. The calculated formation energies

of all the native point defects, i.e., vacancies, interstitials, and antisites, on the three

sublattices in LuPtSb and LuPtBi are listed in Table 4.1 and Table 4.2 for points A,

B, C, and D indicated in the diagrams of Fig. 4.3.

The accessible atomic chemical potential region for LuPtSb is relatively larger

than for LuPtBi. In the phase stability diagram of LuPtSb, we see that VPt is the lowest

formation energy defect along the line bordering the formation of LuSb (segment 4) in

Fig. 4.3(a), from Sb-rich to Lu-rich (point B), whereas LuPt has the highest formation

energy equal to 6.451 eV. The formation energy of LuSb at point A, also corresponding

to Sb-rich limit, is slightly higher (0.635 eV). The formation energies for all the point

defects are found to be greater than 1 eV at point C and D. Overall, we predict that

VPt is the most likely defect to form in LuPtSb, corresponding to µLu = −2.0 eV,

µPt = −1.5 eV, and µSb = 0 eV (Sb-rich limit) near the point A.

In case of LuPtBi, the stability region [Fig. 4.3(b)] is relatively smaller yet the

results are qualitative similar to those of LuPtSb. In the region close to point C, all

the point defects have formation energies greater than 1 eV. At the point D, all the

defects have Ef > 1 eV except BiLu. At points A and B along the LuBi line VPt is the

lowest energy defect with formation energy equal Ef=0.592 eV, as listed in Table 4.2.

Moving along the Bi-rich line toward the Lu poor region, we find BiLu to be another
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Table 4.1: Calculated formation energies Ef [X] of native point defects in LuPtSb at
the boundaries of the phase stability diagram in Fig. 4.3(a).

Defect
Formation energy (eV)

A(Sb-rich) B C D

SbLu 1.096 3.281 2.607 1.097

SbPt 4.452 5.438 6.112 5.810

PtLu 4.090 5.289 3.942 2.733

PtSb 3.500 2.514 1.841 2.143

LuSb 4.075 1.890 2.564 4.074

LuPt 6.451 5.252 6.600 7.809

Sbi 4.501 5.558 5.558 4.953

Pti 2.975 3.046 2.372 2.070

Lui 5.048 3.920 4.594 5.500

VLu 1.914 3.042 2.368 1.462

VPt 0.635 0.564 1.238 1.540

VSb 4.148 3.091 3.091 3.696
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Table 4.2: Calculated formation energies Ef [X] of native point defects in LuPtBi at
the boundaries of the phase stability diagram in Fig. 4.3(b).

Defect
Formation energy (eV)

A(Bi-rich) B C D(Bi-rich)

BiLu 1.325 2.188 1.530 0.568

BiPt 3.867 4.298 4.916 4.718

PtLu 4.226 4.658 3.386 2.619

PtBi 2.966 2.534 1.917 2.115

LuBi 2.446 1.583 2.240 3.202

LuPt 5.515 5.083 6.358 7.122

Bii 4.047 4.479 4.465 4.079

Pti 2.720 2.720 2.089 1.900

Lui 3.627 3.195 3.840 4.415

VLu 1.883 2.314 1.669 1.094

VPt 0.592 0.592 1.219 1.411

VBi 3.726 3.295 3.308 3.695
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point defect with the low formation energy of Ef=0.568 eV. So, for chemical potentials

near the Bi-rich and Pt-poor lines (near the LuBi phase), the lowest energy defect is

by far the Pt vacancy, as in LuPtSb. Experimentally, thin-film growth of LuPtSb by

molecular beam epitaxy (MBE) [85, 169] or bulk growth of LuPtBi [173, 174] were

carried out in Sb/Bi-rich environments, and were most likely to happen near point A

in the stability diagrams of Fig. 4.3.

Given the prevalence of the Pt vacancy as the defect of low formation energy in
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large part of the stability phase diagram of LuPtSb and LuPtBi, and, in particular, near

the region where growth were carried out, we expect it to play major role in determining

the electronic characteristics of the reported bulk and thin films. Considering that Pt

and Sb compose a zinc blende sublattice within LuPtSb, removing a Pt atom leads

to Sb dangling bonds, and according to the electronic band structures in Fig. 4.2, we

expect Sb dangling bonds to introduce partially occupied bands near the Sb-related 5p

bands just below the Fermi level, and lead to excess hole carriers, i.e., a predominant

p-type behavior, compared to the compensated pristine perfect material where electron

and hole concentrations are the same. Similarly, Pt vacancies in LuPtBi would also

lead excess holes. This is consistent with the behavior of Pt vacancies in half-Heusler

semiconductors, which were predicted to act as acceptors [175]. Thus, our results are

also consistent with the experimental observations in LuPtSb[85, 169], and LuPtBi[173,

174], where excess holes have been observed in thin films and bulk single crystals grown

or deposited under Sb- and Bi-rich conditions.

Each Pt vacancy in LuPtSb and LuPtBi is then expected to result in three

holes, taking the oxidation state Sb3− in the pristine materials. Assuming that the

measured hole concentrations in LuPtSb and LuPtBi, of 2-3x1020 cm−3, [169, 85]

and 2-4x1019 cm−3[173, 174], determined from Hall measurements, originate from Pt

vacancies incorporated during growth at temperatures in the range T=450◦C (thin

films) to T=800◦C, we can invert the equation for the concentration of Pt vacancies

(c = Nsites exp(−Ef/kBT ), where Nsites is the number of sites per cubic centimeter

that the vacancy can be incorporated on) to obtain vacancy formation energies of

0.375 eV for LuPtSb (taking from thin-film growth at T=450◦C[169, 85]) and 0.562

eV for LuPtBi (bulk growth at T=650◦C[173, 174]). These values are close to the

calculated formation energies near the A points in the phase diagrams of Fig.4.3(a)

and (b) respectively, close to the Sb- or Bi-rich limit. Better agreement is found for

the Pt vacancy in LuPtBi, which is bulk growth at higher temperature, i.e., closer to

thermodynamic equilibrium.

Such hole concentrations in LuPtSb thin films and LuPtBi bulk single crystals
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place the Fermi level at significantly lower positions compared to the expected value in

the compensated pristine materials, as shown in Fig.4.4 for the case of LuPtSb. For the

measured hole concentrations of 2-3x1020 cm−3 [169, 85], The Fermi level is positioned

at 305-360 meV below the Fermi level in the ideal material. In order to shift the

Fermi level upward by 200 meV, for example, the hole density would have to decrease

to 2.8x10−19 cm−3. Assuming that these holes come from Pt vacancies and each Pt

vacancy contributes with 3 holes, we would have to increase the defect formation energy

by 132 meV by increasing µPt by the same amount (∆µPt = 132 meV). In an attempt

to translate this number to the experimental control during growth (Lu/Pt/Sb fluxes

in the MBE chamber), we can estimate the change in partial pressure of Pt, assuming

an ideal gas. We note that this is a simplification of the experimental situation, where

the fluxes in MBE are controlled by the temperature of the Knudsen cells, and relative

changes are important. Yet, one can imagine that during growth the Pt atoms at the

surface are in equilibrium (or close enough to equilibrium) with a flux of Pt atoms that

is idealized here as an ideal gas. Keeping these approximations in mind, we estimate

that a change of Fermi level by 200 meV would correspond to ∆µPt = 132 meV,

and that corresponds in a reduction of a factor of ∼8 in the Pt partial pressure, or

abundance of Pt during growth.

These results also provide an strategy for tuning the Fermi level in these mate-

rials. Since Pt vacancy is by far the lowest energy defect in most part of the allowed

chemical potential region, increasing the chemical potential µPt is a ”straightforward”

way of increasing the Pt vacancy formation energy, and therefore, decrease the hole

density towards the pristine materials. Another way, is to use aliovalent species contain-

ing an additional electron and that replaces Pt, filling the Pt vacancies and resulting

in extra electrons. This will also raise the Fermi level, eventually beyond the position

in the pristine material, leading to n-type conductivity, as has been recently reported

in Au-doped LuPtSb[169].

In summary, we studied the impact of native point defects on the electronic
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properties of the topological semimetals LuPtSb and LuPtBi using first-principles cal-

culations. We find that Pt vacancy is by far the lowest energy defect in most of allowed

chemical potential region in which these compounds are stable, and therefore, the most

likely point defect to form during growth of thin films or bulk single crystals. The Pt

vacancy leads to Sb dangling bond states that lie below the Fermi level, resulting in

acceptor-like states and, thus, excess holes in these otherwise compensated semimetals.

The calculated formation energies of the Pt vacancy are consistent with the observed

hole concentrations in both LuPtSb and LuPtBi in undoped materials. Finally our re-

sults provides a guide to the experiments to refine and pinpoint individual point defects

that can affect the transport and magnetoresistance properties in these topologically

non-trivial half-Heusler compounds.
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Chapter 5

Ir2O3, Ga2O3, AND THEIR ALLOYS IN THE CORUNDUM
STRUCTURE

In this last chapter we discuss the electronic properties of Ir2O3 and Ga2O3Ga2O3

in the α phase, i.e., the same as that of Al2O3. Ga2O3 is a well known ultra-wide band

gap semiconductor promising for high power electronic devices. Corundum α-Ga2O3

has a band gap of ∼5.14 eV and exhibits hexagonal structure. Relatively high band

gap, small electron effective mass, higher Baliga’s figure of merit and higher break-

down field makes it an ideal candidate for p-n heterojunctions. Ga2O3 is easy to dope

n type, but impossible to dope p type, impeding the realization of some electronic

device designs. Developing a lattice matched p-type material that forms a high-quality

heterojunction with n-type Ga2O3 would open new opportunities in device design. In

this work we studied Ir2O3, which is a possible candidate that can serve this purpose.

Using hybrid density functional theory calculations we calculated the electronic band

structure of α-Ir2O3 and α-Ga2O3. The stability of α-(IrxGa1-x)2O3 alloys are studied

along with their band gap and band-edge positions. We also discuss the band offset

between the two materials and compare with recently available experimental data. We

find that the Ir-d bands that compose the top of the valence band in α-Ir2O3 are much

higher in energy than O-p bands that compose the top of the valence band in α-Ga2O3,

Which is an indication that α-Ir2O3 could be made p-type. Our results provides an

insight into possibility of using lattice matched p-type Ir2O3 as promising material to

realize bipolar power devices and heterojunctions.

In our computational approach, we considered Ga d electrons in the valence

and, and used a plane wave cutoff of 400 eV. All the structures are relaxed using

generalized gradient approximation of Perdew-Burke-Ernzerhof (PBEsol)[176]. Using
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(a)

(b)

Figure 5.1: (a) Conventional unit cell of corundum-structured Ir2O3 and Ga2O3 where
all the cation sites are equivalent.(b) Primitive cell used for band struc-
ture calculation containing four cation atoms (green) and six oxygen
atoms (red).

mcsqs code of the Alloy Theoretic Automated Toolkit (ATAT)[177] we generated the

special quasirandom structures (SQS)[178] to simulate α-(IrxGa1-x)2O3 random alloys.

This method use annealing loop with an objective function simulated in Monte Carlo

that looks for perfectly matched correlation functions in order to generate periodic

supercell analogous to real disordered structures[177].

5.1 Electronic band structure of α-Ga2O3 and α-Ir2O3

A typical corundum structured unit cell with R3̄c symmetry comprising of six

formula units is shown in Fig. 5.1(a). The oxygen is closely hexagonally packed, whereas

the cation metal atoms occupy octahedral sites. Each metal octahedron is connected

with one face and three edges of the other three neighboring octahedron. To relax the

structure we used the PBEsol functional; the calculated equilibrium lattice parame-

ters are compared with experimental data as shown in Table 5.1. The experimental

band gap of α-Ga2O3 is measured in the range of 4.9-5.6 eV[111, 112, 179, 180]. Using

33% and 30% nonlocal exchange for α-Ga2O3 and α-Ir2O3 respectively, the calculated

indirect band gaps are in good agreement with the experimental results. The or-
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Table 5.1: Calculated lattice parameters, formation enthalpy (∆H) and indirect band
gaps Eg of α-Ir2O3 and α-Ga2O3.

α-Ir2O3 α-Ga2O3

Calc. Expt. Calc. Expt.

a(Å) 5.194 - 5.004 4.983a

c(Å) 13.730 - 13.452 13.433a

∆H(eV/f.u.) -3.220 - -9.493 -

Eg(eV) 3.05 3.00b 5.13 5.14c

a Ref.[181]
b Ref.[111]
c Ref.[112]

bital resolved electronic band structures of α-Ga2O3 and α-Ir2O3 using HSE hybrid

functional are shown in Fig. 5.2. It can be seen that the conduction band (CB) of α-

Ga2O3 is mainly composed of delocalized Ga 4s derived states, giving rise to a highly

dispersive band with a low electron effective mass, while the valence band (VB) has

most of the contribution from O 2p orbital which is highly localized and shows very

less dispersion resulting in large hole effective mass in good agreement with previous

experimental[182, 111, 112] and theoretical studies[183, 184, 185]. It should be noted

that the conduction-band minimum (CBM) in α-Ga2O3 occurs at Γ point whereas

valence-band maximum (VBM) occurs along the Γ − X drection and it is 0.245 eV

above local maximum at Γ. In case of α-Ir2O3 the VBM occurs along the Γ − Z and

Γ−L and the highest valence band shows a larger dispersion that in Ga2O3. The oxy-

gen 2p orbitals in α-Ir2O3 lie around 5 eV below the VBM and, in contrast to α-Ga2O3.

The lowest-energy conduction bands in α-Ir2O3 is also composed of Ir 5d and shows a

much less dispersion that the conduction band in Ga2O3. The Ir 4s bands appear a
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bit higher than CBM as shown by green band in Fig. 5.2(b). The calculated position

of Ir 5d and O 2p bands below the VBM are in good agreement with the experimental

XPS data[112].

5.2 Band offset between α-Ga2O3 and α-Ir2O3

Besides knowing the band gaps of the two materials, it is essetion to know

the band offset between them, since this is a fundamental parameter in the design of

heterojunction-based devices [186]. Band offsets determine carrier confinement and

which side of the heterojunction electrons and holes will reside. For the band offset

calculation, first the position of VBM and CBM was calculated with respect to the

average electrostatic potential for both materials[187]. In the second step the average

electrostatic potential of the two materials is aligned with respect to each other by

doing the interface calculations. For the interface we used a supercell with 12 layers

of each material with two similar interfaces. To avert any polar discontinuity at the

heterojunction interface we created the superlattice along a non-polar [100] direction.

The two materials have slightly different lattice parameters so in order to accomodate

the lattice mismatch at the interface we used average in plane lattice parameters and
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the out of plane lattice parameters are adjusted with respect to the equilibrium volume

of each each material in the superlattice. Using this method we obtain a staggered-gap

(type-II) band alignment between the two materials.

Our calculated band offsets of 3.19 eV and 1.11 eV for VBM and CBM, respec-

tively, are in good agreement with recent experimental studies[112, 111]. It can be seen

that around 74.4% band offset arise from discontinuity in valence band, whereas around

25.6% band offset arise from the conduction band. Achieving p-type conductivity in

α-Ga2O3 is usually difficult because of its low valence band energy. Our result shows

that the VBM in α-Ir2O3 is 3.19 eV above than that of α-Ga2O3 making α-Ir2O3 much

more likely to be doped p-type and an excellent candidate for p-α-Ir2O3/n-α-Ga2O3

heterojunction.

5.3 α-Ga2O3/α-Ir2O3 alloys

For the calculations of α-(IrxGa1-x)2O3 alloys, we use a 120-atom supercell to

generate special quasirandom structures (SQS) that approximate the random distri-

bution of Ir and Ga atoms[178]. In α-Ga2O3 or α-(IrxGa1-x), all the metal-atom sites

are equivalent; so Ir/Ga occupy metal sites randomly. The volume dependence of α-

(IrxGa1-x)2O3 alloy on the Ir composition is shown in Fig. 5.4(a). Since Ir has larger

atomic radius compared to Ga, it can be seen that the volume of the alloy increases

almost linearly with increase in Ir content, following the Vegard’s law.

In Table 5.1 we show the formation enthalpies of α-Ga2O3 and α-Ir2O3, which

is defined as the total energy of the elemental bulk phases subtracted from the total

energy of the parent compounds. The alloy formation enthalpy, or mixing enthalpy, of

the α-(IrxGa1-x)2O3 alloys are defined as the total energy of the ally supercell minus

the weighted total energy of the parent compopounds, as follows:

∆H [(IrxGa1-x)2O3] = E [(IrxGa1-x)2O3] − xE [(Ir2O3] − (1− x )E [(Ga2O3], (5.1)

where E[Ir2O3] and E[Ga2O3] are the total energies of the parent compounds Ir2O3 and

Ga2O3, respectively, in the 120-atom corundum-structured supercell, and E[(IrxGa1-x)2O3]
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Figure 5.3: Calculated band offset between α-Ga2O3 and α-Ir2O3.

is the total energy of the random alloy in the same-size supercell. The results are shown

in Fig. 5.4(b).

Note that the hightest formation enthalpy of α-(IrxGa1-x)2O3 alloy at x=0.5 is

only 104 meV/f.u., which is significantly lower than 300 meV/f.u.[188] for α-(InxGa1-x)2O3,

yet higher than that of α-(AlxGa1-x)2O3 which is around 55 meV/f.u.[189]. The rela-

tively small values of formation enthalpy indicate that α-(IrxGa1-x)2O3 alloys might be

realized for all Tr/Ga compositions.

We also studied the electronic structure of α-(IrxGa1-x)2O3 alloys. In Fig. 5.5(a)

we show the band gap of α-(IrxGa1-x)2O3 alloys with different Ir composition. The

results are different from the reported values by Kaneko et al. [25] who determined
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Figure 5.4: (a) Calculated equilibrium volume and (b) formation enthalpy of α-
(IrxGa1-x)2O3 alloys as a function of Ir concentration (x).

the band gap for alloys between x=0.51 and 0.63 using XPS data for thin films and

Tauc plot fit to optical absortion for a thicker films. We argue that these type of

measurements for the band gap can incurr in large errors and that our results is justified

as discussed below.

In our calculations for the band gap of the alloys, we use HSE functional with

33% mixing parameter, obtaining good agreement with experiments [25] for the parent

compounds α-Ga2O3 (x=0) and α-Ir2O3. However, we do not find a smooth variation

of the band gap as function of Ir content as the authors of Ref. [25] suggest. Instead

we find that the band gap of α-(IrxGa1-x)2O3 alloy decreases sharply from 5.3 eV to 2.9
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Figure 5.5: Band gap of α-(IrxGa1-x)2O3 as a function of Ir concentration (x). (b)
CBM and VBM position in α-(IrxGa1-x)2O3 as a function of Ir concen-
tration (x). The experimental data is taken from Ref. [25]

eV even for a small Ir composition of 12.5% and does not change much for up to 50%

Ir composition(x = 0.5). Above x=0.5, the band gap increases almost linearly with Ir

concentration to reach 3.3 eV for x=1.

The band gap of α-(IrxGa1-x)2O3 alloy changes very differently from that of

α-(AlxGa1-x)2O3 [189] and (InxGa1-x)2O3 [188] alloys mostly because of ”unique” elec-

tronic structure of α-Ir2O3. As discussed earlier the VBM in α-Ir2O3 is composed of Ir

d orbital whereas for α-Ga2O3, α-Al2O3 and In2O3 the VBM is oxygen 2p and metal

d states lie deep inside the valence band. From the band alignment study in Fig. 5.3

we show that Ir 5d states in α-Ir2O3 are 3.19 eV higher in energy than that of oxygen
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2p states in α-Ga2O3, so a very small composition of Ir (x > 0) pushes the VBM of

α-(IrxGa1-x)2O3 alloy to higher energy resulting in a sharp decrease in band gap. The

slight increase in band gap for Ir compositions greater than 50% (x > 0.5) can be

explained in terms of relative increase in band dispersion with increase in Ir composi-

tion. Fig. 5.5(b) shows the change in position of CBM and VBM as a function of Ir

composition x. For all the alloy compositions the position of VBM and CBM is aligned

with respect to oxygen 2s states. The conduction-band edge changes slightly with Ir

composition x, whereas most of change occurs in the valence band edge. It can be seen

that with introduction of samll concentrations of Ir in α-Ga2O3, the valence-band edge

moves really sharply to higher energy and does not move much with the increase in Ir

composition afterwards, and this is due the the d nature of the VBM in Ir2O3.

In summary, we calculated the electronic structure of α-Ir2O3 and α-Ga2O3.

The band offset between these materials show that α-Ir2O3 is a promising candidate

for p-type oxide to compose p-n heterojunction with n-type Ga2O3, opening up unique

opportunities in device design. The calculated band offset at at the α-Ir2O3/α-Ga2O3

interface is in good agreement with the available experimental data, and the enthalpy

of formation of α-(InxGa1-x)2O3 are relatively small to expect that these alloys can be

made to all Ir/Ga composition range. We also find that the band gap of α-(IrxGa1-x)2O3

alloys decreases rather sharply with even small Ir concentration, with most of the

changes in valence-band edge, because of the localized nature of Ir d states in the

Ga2O3 matrix.
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Fermi surface topology and magnetotransport in semimetallic lusb. Sci. Rep.,
7(1):12822, 2017.

[22] O. Pavlosiuk, P. Swatek, D. Kaczorowski, and P. Wísniewski. Magnetoresistance
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