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ABSTRACT 

The world’s greatest concentration of mushroom farms is settled within the 

Brandywine-Christina River Basin in Chester County in southeastern Pennsylvania. 

This industry produces a nutrient-rich byproduct known as spent mushroom compost, 

which has been traditionally applied to local farm fields as an organic fertilizer and 

soil amendment. While mushroom compost has beneficial properties, the possible 

over-application to farm fields could potentially degrade stream water quality. The 

goal of this study was to estimate the spatial extent and intensity of field-applied 

mushroom compost. We applied a remote sensing approach using Landsat 

multispectral imagery. We utilized the soil line technique, using the red and near-

infrared bands, to estimate differences in soil wetness as a result of increased soil 

organic matter content from mushroom compost. We validated soil wetness estimates 

by examining the spectral response of references sites. We performed a second 

independent validation analysis using expert knowledge from agricultural extension 

agents. Our results showed that the soil line based wetness index worked well. The 

spectral validation illustrated that compost changes the spectral response of soil 

because of changes in wetness. The independent expert validation analysis produced a 

strong significant correlation between our remotely-sensed wetness estimates and the 

empirical ratings of compost application intensities. Overall, the methodology 

produced realistic spatial distributions of field-applied compost application intensities 

across the study area. These spatial distributions will be used for follow-up studies to 

assess the effect of spent mushroom compost on stream water quality. 
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Chapter 1 

INTRODUCTION 

The world’s greatest concentration of mushroom farms is settled within the 

Brandywine-Christina River Basin in Chester County in southeastern Pennsylvania. 

This agricultural industry produces a nutrient-rich byproduct known as spent 

mushroom compost, also referred to as “compost”. Traditionally, compost has been 

applied to local farm fields as an organic fertilizer and soil amendment. It contains 

high organic matter and possesses moisture retention properties in contrast to other 

organic fertilizers (Fidanza et al., 2010; Lou et al., 2015). When compost is over 

applied to farm fields, it has potential to degrade stream water quality (Suess and 

Curtis, 2006; PADEP, 2012). In the Brandywine-Christina River Bain, locations of 

fields with applied compost are largely unknown. It is imperative to locate these fields 

in order to evaluate their effect on stream water quality.  

This study is a part of a greater research effort to target watershed restoration 

efforts in the Brandywine-Christina River Basin. The goal of this study is to estimate 

the spatial extent and intensity of field-applied mushroom compost. Geospatial 

technologies, such as remote sensing, provide an avenue to identify the spatial extent 

of field-applied mushroom compost on a watershed scale. This is the first study that 

uses remote sensing to map field-applied compost from the field-scale to the 

watershed scale. In this study we applied a remote sensing approach using the soil line 

technique and used Landsat multispectral imagery, to calculate variation in soil 

wetness as an indicator of field-applied mushroom compost. We validated estimates of 
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field-applied mushroom compost using spectral and empirical data, and we examined 

estimates of field-applied mushroom compost from the field-scale to the watershed-

scale. 

This thesis is organized as follows. Chapter 2 introduces the study area, 

mushroom farming and general local water quality issues, and reviews remote sensing 

of soil organic matter. Chapter 3 describes our methodology. Chapter 4 presents the 

results and discussion, and Chapter 5 states the conclusions.   
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Chapter 2 

BACKGROUND 

2.1 Study Area: The White Clay Creek and Red Clay Creek Watersheds 

The study area is located in the headwaters of the White Clay Creek and Red 

Clay Creek watersheds in the Brandywine-Christina River Basin. These two 

watersheds are located on the border of southern Chester County, Pennsylvania and 

New Castle County, Delaware (Figure 2.1). Collectively, the watersheds make up 

approximately 417 square kilometers, where 55 percent of the watersheds fall in the 

Pennsylvania, 45 percent falls in Delaware, and less than 1 percent falls in Maryland 

(Table 2.1). Their headwaters are situated in the Piedmont in Pennsylvania. The 

topography of this region consists of rounded hills with slopes varying from 15 to 20 

percent, with irregular plains and narrow streams (PADEP, 2003). Soils are 

predominately well-drained, medium textured with underlying gneiss and schist. 

These headwater streams eventually flow south into Delaware, where they cross the 

fall line before their confluence with the Christina River (PADEP, 2003). The 

Christina River then empties into the Delaware Bay, a large estuary tucked in the Mid-

Atlantic region of the United States. The region falls within a humid-subtropical 

climate that receives roughly 1.2 meters of precipitation annually.  

We focused our study area to Chester County, Pennsylvania, where most 

mushroom farming operations are located. In both watersheds, land use consists of 

roughly one third forest, urban/suburban development, and agriculture respectively 

(University of Delaware Water Resources Agency, n.d. a; University of Delaware 

Water Resources Agency, n.d. b). Most of the urban/suburban areas are located in the 

southern portion of the watersheds (Figure 2.2), with high population densities 
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surrounding Newark, Delaware and the I-95 corridor. The northern portion of the 

watershed predominately consists of farming operations and agricultural fields (Figure 

2.2). In the headwaters, there are lower population densities with smaller townships, 

including Kennett Square, New Garden, West Chester, and Avondale. 

The White Clay Creek and Red Clay Creek watersheds are acknowledged for 

their federal and state importance, and local economic value. The White Clay Creek is 

federally recognized as a National Wild and Scenic River, which uses a watershed 

approach to protect its water quality. The White Clay Creek serves as a municipal 

drinking water supply for over thirty thousand people in Newark, Delaware and the 

surrounding area. In the Red Clay Creek, the state of Delaware recognizes a portion of 

the watershed as part of the Red Clay Valley Wild and Scenic Byway. This status 

helps preserve water quality for the area’s ecological and cultural existence. The Red 

Clay Creek also has four surface water intakes and numerous private wells that supply 

drinking water for local residents (Chester County Water Resources Authority, 2002). 

For the combined watersheds, the groundwater and surface water is economically 

valued at approximately $565 million and provides approximately $249 million in 

ecosystem services (Cruz and Miller, 2014).  

The headwaters of the White Clay Creek and Red Clay Creek watersheds 

possess great economic value from its diverse farming operations that rely on the 

water supply. Agriculture is the largest economic sector in Chester County, 

Pennsylvania and mushroom farming is the dominant activity (Table 2.2). The 

headwaters of these watersheds contain the greatest concentration of mushroom farms 

in the world, which accounts for roughly $412 million in product sales, and 

contributes a total of $2.17 billion to the local economy (Chester County Agricultural 
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Development Council, 2012c). Other agricultural activities such as dairy farming, 

nurseries, horse farming, and row crops, are scatted throughout the headwaters of 

these watersheds. Predominately corn, soybeans, and hay grow in the crop fields in 

these watersheds (Figure 2.3).  

Water quality is an issue in the White Clay Creek and Red Clay Creek 

watersheds. Over 66 percent of the streams in White Clay Creek and 91 percent of 

streams in the Red Clay Creek are considered impaired (Chester County Water 

Resources Authority, 2002; Narvaez and Homsey, 2016). Several factors attribute to 

the degradation of water quality which include: bacteria, dissolved oxygen, nitrogen, 

phosphorus, zinc, and suspended sediments (Cruz and Miller, 2014; Narvaez and 

Homsey, 2016).   

One persisting concern involves elevated nutrient concentrations, specifically 

nitrogen, in the local waterways (PADEP, 2003; Cruz and Miller, 2014; Narvaez and 

Homsey, 2016). The watersheds are located in one of the largest nitrogen hotspot in 

the eastern US (Figure 2.4), and degraded water quality has been attributed from both 

urbanization and agriculture operations in the forms of point sources and nonpoint 

sources (University of Delaware Water Resources Agency, n.d. c; United Stated 

Geological Survey, n.d.).  Between the 1970’s and 1990’s, nitrate levels up to 3.2 

milligrams per liter were found in the White Clay Creek and Red Clay Creek, which 

exceeded Delaware’s standard for drinking water of 1 milligram per liter (United 

States Geological Survey, n.d.). In recent years, nitrate concentrations in these streams 

still remain above the 1 milligram per liter drinking standard (Cruz and Miller, 2014; 

Narvaez and Homsey, 2016). 
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In recent years, extensive watershed restoration efforts have been employed to 

reduce the contributions from point source and nonpoint source pollution in both 

urbanized and agricultural areas (Miller, 2014).  A key stakeholder organization is the 

Brandywine-Christina Basin Clean Water Partnership, which has participation from 

federal, state, and local governments, non-profits, water purveyors, and academic 

institutions. This partnership was formed by the Delaware River Basin Commission.  
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Figure 2.1: Reference map of the Brandywine-Christina River Basin. 
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Table 2.1: Watershed areas partitioned by state. 
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Figure 2.2: Land use of the Brandywine-Christina River Basin. 
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Table 2.2: Economic value and national/ state rank of agricultural operations in 

Chester County, Pennsylvania. Adapted from Chester County Agricultural 

Development Council (2012) and USDA National Agricultural Statistics Service 

(2012).  

  

 

   

Figure 2.3: Dominant field crops in the White Clay Creek and Red Clay Creek 

watersheds. 
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Figure 2.4: Estimates of total nitrogen yield in the Mid-Atlantic United States, from 

the 2002 Total Nitrogen Model for Northeast and Mid-Atlantic Regions, online 

SPARROW Decision Support System (http://water.usgs.gov/nawqa/sparrow/dss/) 

(USGS, 2002). Relative location of study area indicated by black circle. 
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2.2 Mushroom Production and Effect on Water Quality 

2.2.1 History of mushroom production 

For the past 125 years, high concentrations of mushroom farming operations 

labeled Kennett Square, Pennsylvania and its surrounding area, the “Mushroom 

Capitol of the World” (Flammini, 1999; McKay, 2008; Charles, 2012). During the late 

1890’s, mushroom production began with Quakers in Kennett Square, Pennsylvania 

importing mushroom spawn from Europe, specifically Agaricus bisporus, also referred 

as “white button mushrooms” (Charles, 2012). Mushrooms were first cultivated in 

greenhouses prior to building specialty houses to control climate conditions 

specifically for mushroom growing. With the advance of climate control technology in 

the 1920’s and increased market demand, there was a large spike in mushroom 

production leading to a boom of mushroom farms (Flammini, 1999; McKay, 2008). 

This region provided suitable conditions for mushroom production because local horse 

farming were available to provide waster material for mushroom growing medium. By 

the 1930’s over 500 mushroom houses, and over 350 mushroom growers surrounded a 

ten mile radius of Kennett Square, Pennsylvania (Flammini, 1999; McKay, 2008). 

During that time, this high concentration of mushroom farms produced over 85 

percent of mushrooms in the United States (Flammini, 1999). 

Mushroom farming still remains a large industry in this region, with roughly 

60 mushroom growing operations in southern Chester County, that supply over 50 

percent of the Unites States’ mushrooms (McKay, 2008; Fidanza et al., 2010). 

Today’s market demands caused smaller, less-efficient mushroom growing operations 

to be out-competed by larger growing facilities (Flammini, 1999; Charles, 2012). The 

larger farms require vast amounts of production materials, and therefore demand raw 
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materials to be imported into the watershed up to 160 kilometers away (Charles, 

2012). Even though there are fewer farms today, mushroom production still dominates 

the headwaters of White Clay Creek and Red Clay Creek watersheds. 

2.2.2 Mushroom production process 

Growing mushrooms involves a multi-step process which includes: making 

mushroom substrate, growing mushrooms in houses, and managing spent mushroom 

compost. A single farming operation can manage one or more of these steps, which 

allows operations to become specialized in certain processes of the mushroom 

production process.  

The process of mushroom farming begins at substrate production facilities, 

where raw materials are combined to create a growing medium for mushrooms, known 

as mushroom substrate. Making mushroom substrate involves composting large 

quantities of nutrient-rich materials (e.g. dairy/ horse manure, or chicken litter), 

organic carbon (e.g. hay, straw, or corn cobs), water, and other ingredients (Figure 

2.5a). A comprehensive list of materials is listed in Table 2.3. 

The raw materials are composted into mushroom substrate, a carbon-and 

nutrient-rich medium for growing mushrooms. This composting process of mushroom 

substrate usually occurs on large outdoor impervious surfaces, known as composting 

wharfs (PADEP, 2012). First, organic carbon materials (e.g., straw or hay), nutrient-

rich materials (e.g., dairy/ horse manure, chicken litter) and water are mixed using 

custom machinery and placed in large piles, known as ricks (Figure 2.5b). These ricks 

are kept moist and turned over to stimulate aerobic activity, as temperature rises and 

ammonia accumulates in the substrate (Bayer, 2003). After 7- 16 days of composting 

the substrate, the substrate is pasteurized to kill any pests and unwanted microbes. 



 14 

Leftover microbes continue converting the accumulated ammonia in the substrate into 

a viable, non-toxic form of nutrient for mushrooms to consume (Bayer, 2003). Once 

ammonia levels are low enough, the composting process is complete and the substrate 

is prepared for mushroom growing. 

Mushroom substrate is then transported to growing houses, where it is used as 

a medium to grow mushrooms. Mushroom spawn, also referred as mycelia, are 

incorporated into the mushroom substrate. Once the mycelia fully colonize the 

substrate, it is placed into long trays, or beds, in climate-controlled growing houses 

(Figure 2.5c). Then, the trays of substrate are dressed with a casing layer, usually 

consisting of peat moss (PADEP, 2012). This casing stimulates mycelia into their 

reproductive state, prevents moisture loss, and provides a support structure for 

mushrooms to grow (Bayer, 2003). The mycelia emerge from the substrate and form 

small pins, or buttons, that grow large enough for harvesting. Pins double in size every 

24 hours, and consume nutrients and water from the substrate (Figure 2.5d). Once the 

pins reach maturity, they are harvested. Pins continue to develop and grow in the 

substrate for 2 to 6 harvesting periods. After the final mushroom harvest, the entire 

house and substrate are pasteurized to destroy any pests or pathogens. The mushroom 

substrate is then removed from the growing house, and now becomes spent mushroom 

substrate. On an annual basis, over 1 million cubic meters of spent mushroom 

substrate are generated from mushroom houses (M. Zuk, personal communication, 

2016).  

The spent mushroom substrate is no longer considered viable for growing 

mushrooms due to its altered physical and chemical state, as it loses two thirds of its 

weight and volume after harvests (PADEP, 2012). The substrate is also high in organic 
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matter and contains elevated concentrations of nutrients and salts (Table 2.4). It is 

more economical to generate new substrate from raw materials than to adjust the 

physical and chemical state of spent mushroom substrate (Bayer, 2003). 

Spent mushroom substrate is removed from mushroom growing facilities and 

transported off to other farming operations for other uses (see next). In the study area, 

a large proportion of the spent mushroom substrate is managed by mushroom brokers, 

who transport and further process the material.  Most of the spent mushroom substrate 

is converted into mushroom compost, through passive or active composting. This 

process produces a highly valuable humus-like product that can be used for other 

practices (e.g., agriculture, gardening). In passive composting, spent compost is 

weathered in large piles for 6 months to 2 years, and stacked 1 to 1.5 meters high 

(Figure 2.5e). In active composting, the compost piles are frequently turned and the 

moisture content and temperature are regulated. The composting process leaches 

excess salts, and enhances microbial activity to alter its composition and texture 

(Bayer, 2003). Following the completion of this process, the mushroom compost is 

used for various applications, including fertilizer for crop fields and lawns, potting soil 

for horticulture and gardening, medium for green roofing material, and wetland 

construction for acid mine drainage (PADEP, 2012).  

In this study we focus on the application of mushroom compost to local 

agricultural fields as an organic fertilizer and soil amendment (Figure 2.5f). The 

physical and chemical composition of compost allows nutrients to slowly release into 

the soil over a crop’s growing season (PADEP, 2012). The slow-release properties in 

compost minimizes the potential for nutrient leaching into groundwater or surface 

water sources (Weust 1995; Weber et al., 1997). Compost also acts as an excellent soil 
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amendment due to its high organic matter content, which increases the water and 

nutrient holding capacity of the soils (Weber et al., 1997). Compost is uniformly 

applied to local farm fields at a rate between 1 to 13 centimeters, depending on a 

field’s crop type (PADEP, 2012). Corn fields usually receive higher application rates 

than soybean and hay fields, due to corn’s high nutrient demand (M. Zuk, personal 

communication, 2016). Because of the high transportation costs for hauling compost, 

these fields are generally located near composting facilities (Weber et al., 1997). The 

exact spatial distribution of these fields is largely unknown, which is the motivation 

for our study. 
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Figure 2.5: Mushroom production process (a-f). Photos courtesy of Kelsey Moxey (a, 

b, and d), Luc Claessens (c), Thomas Santangelo (e), and Landschoot and McNitt 

(n.d.) (f). 
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Table 2.3: Ingredients for mushroom substrate. Reprinted from PADEP (2012). 
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Table 2.4: Chemical analysis of fresh spent compost on a wet volume basis. Reprinted 

from Fidanza et al., (2010).  

 

2.2.3 Water quality issues 

The high concentration of mushroom production in this region has raised 

concerns related to the water quality impairments in the White Clay and Red Clay 

Creek watersheds (Chester County Water Resources Authority, 2002). In this section 

we review some of the potential concerns of water quality in the following stages of 
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mushroom production: substrate production, passive composting of spent substrate, 

and field-application of mushroom compost.  

During the substrate production process, nutrients from agricultural waste 

products are concentrated in small areas to produce mushroom substrate. Under best 

management practices, any nutrient runoff from composting wharfs would be 

collected and reincorporated into the composting process (Weust, 1985). Nevertheless, 

streams near substrate production facilities are extremely susceptible to nutrient 

runoff. Results from extensive water quality sampling by Luc Claessens showed 

elevated nutrient concentrations downstream from substrate production facilities 

(Claessens, unpublished data).  

Also the passive composting of the spent substrate into mushroom compost has 

the potential to affect water quality. The weathering in large compost piles can 

negatively impact groundwater and surface water quality (Figure 2.6a). Several studies 

have reported that nutrients can buildup in soils underlying compost piles (Kaplan et 

al., 1995; Guo et al., 2001a; Guo et al., 2001b; Guo et al., 2004). When nutrients build 

up in the soil over long periods of time, this is known as a legacy source where ground 

water can carry these nutrients into surface waters during base flow (Tesoriero et al., 

2013).  

The field application of the mushroom compost could also affect water quality. 

As previously mentioned, mushroom compost can be field-applied as a fertilizer or 

soil amendment, but it is uncertain what the effect is on water quality (Figure 2.6b). 

Weust et al. (1995) demonstrated that applying mushroom compost up to 90 kilograms 

per square meter in corn fields had minimal effects on surface water quality. 

Conversely, others claim the over application of mushroom compost can lead to water 
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quality impairments, especially when inorganic nitrogen is applied to supplement the 

slow-release nitrogen in the mushroom compost (Suess and Curtis, 2006; PADEP, 

2012). 

 

Figure 2.6: Mushroom compost can be located in close proximity to stream.  These 

images show locations of: (a) piles of passive composting of spent mushroom 

substrate; (b) field-applied mushroom compost. The white arrows indicate the flow 

patterns to nearby streams (blue line).  

2.3 Remote Sensing of Soil Organic Matter 

2.3.1 Overview 

Remote sensing has been valuable in the agricultural sector as an inexpensive 

method to monitor soil properties, such as soil moisture and soil organic matter 

(Ladoni et al., 2010b). Soil moisture is commonly used as an indicator of soil organic 
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matter, because organic matter increases the water holding capacity. The key concept 

behind remotely sensing soil moisture inherently relies on the decreased spectral 

reflectance across the electromagnetic spectrum, which is caused by the absorption 

properties of water (Baret et al., 1993; Ben Dor, 2001; Dematte et al., 2006; Croft et 

al., 2012). For a bare soil surface, a lower value for spectral reflectance suggests a 

higher soil moisture content, which infers a higher organic matter content. It is also 

important to consider other soil properties that could affect the spectral reflectance of 

soils, including soil texture, iron-oxide content, soil salinity, and surface roughness 

(Jensen, 2007).  

Various remote sensing techniques have been developed across the 

electromagnetic spectrum to analyze soil moisture, and its related property of soil 

organic matter (Ben-Dor, 2001; Anderson and Croft, 2009; Ladoni et al., 2010b; Croft 

et al., 2012; Mulla, 2013). Ben-Dor (2001) argues hyperspectral imagery provides 

narrow band widths to distinguish soil properties, including soil organic matter. Other 

authors have utilized band combinations and indices in the visible, near infrared 

(NIR), and shortwave infrared wavelengths to identify soil moisture while normalizing 

atmospheric influences (Frazier and Cheng, 1989; Dupigny-Giroux and Lewis, 1999). 

Kauth and Thomas (1976) used bands in the visible to the short wave infrared 

wavelengths to develop the tasseled cap transformation which transfers spectral data 

into a three or four dimensional space, generating brightness, greenness, and wetness 

composite values. 

2.3.2 The soil line concept 

One useful technique for the remote sensing of soil moisture utilizes the 

concept of the soil line. This is the technique that we employed in this study. The soil 
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line is a linear relationship between the red and near infrared reflectance bands, first 

described by Richardson and Weigand (1977). A two-dimensional plot is constructed 

by the red and near infrared reflectance where pixels form an approximate triangle 

shape. Pixels towards the bottom of the triangle represent bare soil, which make up the 

soil line (Figure 2.7). Originally, the soil line concept was used to extract information 

on vegetation properties (Huete et al., 1992), but this technique can also be used to 

extract information on soil properties, particularly soil moisture and soil organic 

matter. 

A pixel’s position along the soil line in Red-NIR spectral space can determine 

its relative moisture content and extent of vegetative cover. Since moisture inherently 

decreases the spectral reflectance of a pixel, wet bare soils are positioned toward the 

lower portion of the soil line (Baret et al., 1993; Fox and Sabbagh 2002; Zhan et al., 

2007; Yoshioka at el 2010; Gao et al., 2013) (Figure 2.7). Conversely, drier bare soils 

are positioned towards the upper portion of the soil line. When a pixel deviates from 

the soil line, biophysical properties such as vegetation greenness increase its NIR 

reflectance, which affects a pixel’s soil signature (Richardson and Weigand, 1977; 

Jackson, 1983; Yoshioka et al., 2010).  

Previous studies have used various transformations and empirical validation to 

demonstrate a relationship between the soil line and soil moisture/ soil organic matter. 

Caloz et al. (1988) developed the Normalized Soil Line Index to study the qualitative 

changes in surface soil moisture over time. Fox and Sabbagh (2002) developed a soil 

line transformation known as the Soil Line Euclidian Distance Technique, to 

determine soil sampling locations for varying degrees of organic matter. Dematte et al. 

(2006) related red and NIR spectral bands with empirical moisture measurements, and 
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concluded that the soil line technique can be used to interpret soil moisture from 

remotely sensed data. Recently, Ghulam et al. (2007) used the soil line technique to 

develop a Perpendicular Drought Index to monitor water stress in agricultural fields 

using a series of soil line transformations. Most of these studies only considered bare 

fields, unaffected by vegetation. To account for possible vegetation effects, other 

authors have recently developed methods which involve multifaceted steps (Gao et al., 

2013; Taniguchi et al., 2016). 

 

Figure 2.7: Soil line concept in Red-NIR spectral space. 
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Chapter 3 

MATERIALS AND METHODS 

3.1 Overview of Methodology 

Compost increases the organic matter content of soils, which enhances soil 

moisture holding capacity and soil wetness. We estimated spatial patterns of field-

applied mushroom compost by calculating a soil wetness index, using a remote 

sensing approach and Landsat multispectral imagery. The soil wetness index is 

calculated using a simple geometric transformation in Red-NIR spectral space, using 

the soil-line technique (Figure 3.1). We rely on the decreased spectral reflectance of 

moist soils to detect compost application. We used equations from basic soil line 

transformations to calculate a pixel’s distance from the soil line, and then statistically 

normalized the values to create a soil wetness index. We validated the soil wetness 

index estimates by comparing three distinct types of reference sites: “compost piles”, 

“fields with compost”, and “fields without compost”. As part of this spectral 

validation, we also examined how mushroom compost affects the spectral response 

over a growing season. We then performed a second, independent validation analysis 

with expert knowledge from agricultural extension agents. After validation, we 

produced maps of soil wetness index estimates for the entire study area. We examined 

the maps across spatial scales, from the field scale to the larger watershed scale. 
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Figure 3.1: Conceptual model of wetness index calculations using the soil-line 

technique. 

3.2 Materials 

3.2.1 Satellite imagery 

We used Landsat 5 Thematic Mapper data, which has been successfully used 

in the past to estimate soil organic matter and wetness (Kauth and Thomas 1976; 

Frazier and Cheng, 1989; Fox and Sabbagh 2002; Yoshioka et al. 2010; Xu and Guo, 

2013). A key benefit of Landsat data is its temporal resolution (16 day intervals). 
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Landsat 5 has a spatial resolution of 30 meters and has 7 spectral bands ranging from 

visible to the thermal infrared (Table 3.1). 

We selected the best Landsat scene using a set of criteria. First, agricultural 

fields needed to be bare for the sensor to capture an accurate spectral reflectance of 

bare soil, because vegetation hampers the spectral response (Muller and Decamps, 

2000; Zhan et al., 2007; Ladoni et al., 2010b).  Second, agricultural fields had to be 

low in antecedent soil moisture (Ladoni et al., 2010a) with minimal precipitation days 

before data acquisition (Scharf et al., 2002), in order to capture distinct differences in 

soil wetness. Since antecedent soil moisture conditions vary on seasonal and daily 

scales, it was important to select a scene during the driest time of the year outside the 

growing season (Dupingy- Giroux et al., 1999).  

Based on these criteria we selected a scene from May 11, 2011, as explained 

below. To determine antecedent soil moisture conditions, we examined precipitation 

and soil moisture data from a local weather station, located in Kennett Square, 

Pennsylvania. The weather station is operated by the Delaware Environmental 

Observing System (DEOS). We first examined monthly average soil moisture and 

total precipitation between 2009 and 2014. Soil moisture was typically lower in the 

spring months before the growing season (Figure 3.2). We then evaluated scenes from 

Landsat 5 and Landsat 8 in the spring from each year, by examining daily precipitation 

and soil moisture data, and possible cloud interference. Imagery from Landsat 7 was 

not considered because the study area fell within a data gap from the scan line 

corrector failure. Based on these analyses we selected a Landsat scene from May 

2011, because it had relatively low soil moisture, the least amount of rainfall prior to 
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scene acquisition, and minimal cloud interference. In addition, more cloud-free scenes 

were available throughout the year of 2011 for the temporal analysis (Figure 3.3). 

We acquired preprocessed surface reflectance Landsat data from the United 

States Geological Survey website (https://gdg.sc.egov.usda.gov). All the images were 

previously geometrically corrected to World Geodetic System 1984 Universal 

Transverse Mercator, zone 18 north and converted to surface reflectance in 16 bit 

format. We clipped the data to the study area and extracted larger clouds with the 

cfmask cloud mask layer contained in the Landsat Surface Reflectance Data Product 

(USGS, 2015b).  

Apart from Landsat data, we also used other sources of remote sensing data.  

For a preliminary analysis (Appendix A.1) we worked with high resolution multi-

spectral aerial imagery from 2013 provided by the National Agricultural Imagery 

Program (NAIP), administered by the United States Department of Agriculture. NAIP 

collects imagery with four spectral bands at one meter spatial resolution. The four 

bands include the visible (red, green, blue) and NIR spectra. NAIP images are 

typically acquired once or twice a year during the agricultural growing seasons 

(USDA, n.d.). Because soils are generally covered by vegetation then, the imagery is 

not well suited to remotely sense soil properties. This was also confirmed in our 

preliminary analysis (Appendix A.1). 
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Table 3.1: Landsat 5 spectral bands and resolution. Adapted from USGS (2015a).  
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Figure 3.2: 2009-2014 monthly averaged soil moisture and total precipitation showing 

cloud-free Landsat scenes during the early spring growing season. 

 

Figure 3.3: 2011 weekly averaged soil moisture and total precipitation, showing all 

cloud-free Landsat scenes over the course of the year. 
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3.2.2 Land use and soil type 

We restricted our analysis to agricultural fields that have predominantly bare 

soils. To select these fields, we first extracted areas under agricultural land-use using a 

high resolution land use/land cover dataset developed by Chester County, 

Pennsylvania in 2005. Because land use change was relatively minor between 2005 

and 2011, the land use data was considered accurate. Next, we restricted the analysis 

to agricultural fields that have bare soil. To do this, we utilized a coarse resolution (30 

meter) Cropland Data Layer (CDL) from 2011, created by the National Agricultural 

Statistics Service (USDA, 2012). The CDL layer uses a combination of remote 

sensing and ground-truth observations to accurately assess different types of crop 

cover. This segregation of cropland types ensured we selected pixels that were only 

representative of bare soils. 

We also examined the effect of soil type on the spectral response of soil 

moisture. Soil type has been known to affect the slope and y-intercept of the soil line, 

which can cause different spectral responses when detecting changes in soil moisture 

(Baret, 1983). In preliminary analysis we determined that variation in soil type did not 

affect the soil lines for the different cropland types (Appendix A.2). Therefore, we did 

not consider soil type, and segregated by cropland type only. 

3.3 Soil Wetness Index 

3.3.1 Soil line 

We calculated the soil line using the (Red, NIRmin) method (Fox et al., 2004; 

Stabile and Searcy, 2009; Xu and Guo, 2013). First, we manually removed pixels 

affected by small clouds and their shadows, which the Landsat cloud-mask (cfmask) 

was unable to detect. We selected these suspect pixels by plotting them in Red-NIR 
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spectral space, and examining all the pixels that fell below and to the left of the dense 

pixel cluster in the spectral plot. We used higher resolution imagery to examine how 

land use affected these pixel’s spectral response, and if a pixel showed an atypical 

spectral response from its land use, it was removed. After removing these suspect 

pixels we calculated the soil line using a standard technique, for which we calculated 

the minimum NIR reflectance value for each Red reflectance bin, followed by linear 

regression. The slope and y-intercept of the soil line were used in the wetness 

calculations. 

3.3.2 Distance along the soil line 

We calculated a pixel’s distance along the soil line to derive its relative 

moisture content. The distance along the soil line refers to the length between a pixel 

and the minimum, left-most pixel on the soil line. The minimum, left-most pixel on 

the soil line represents the darkest soil, suggesting it has the highest soil moisture and 

organic matter of all fields in the study area (Fox and Sabbagh, 2002).  We calculated 

each pixel’s distance along the soil line using simple triangular geometric relationships 

in spectral space (Figure 2.1). The perpendicular distance from the soil line (side B in 

Figure 2.1) was calculated using the Perpendicular Vegetation Index (PVI) (Richard 

and Weigand, 1977), using the equation: 

   𝐵 =
𝑁𝐼𝑅−(𝑎∗𝑅𝑒𝑑)−𝑏

√𝑎2+1
   [1] 

where: NIR and Red are the values for a given point in spectral space, a is the slope of 

the soil line, and b is the y-intercept of the soil line. The hypotenuse of the right 

triangle (Side C in Figure 2.1) was calculated using the Soil Line Euclidian Distance 

Index (SLED) (Fox and Sabbagh, 2002), using the equation: 



 33 

 𝐶 =  √(𝑁𝐼𝑅 − 𝑁𝐼𝑅𝑚𝑖𝑛)2+ (𝑅𝑒𝑑 − 𝑅𝑒𝑑𝑚𝑖𝑛)2  [2] 

where: NIRmin and Redmin are the reflectance values for the empirically derived 

minimum point along the soil line. This represents the wettest bare soil in the study 

area (Fox and Sabbagh, 2002; Ladoni et al., 2010b). The pixel’s distance along the soil 

line (D) is calculated using Pythagoras’ Theorem: 

 𝐷 = √𝐶2 − 𝐵2  [3] 

The calculations are combined in this following equation: 

 𝐷 =  √((𝑁𝐼𝑅 − 𝑁𝐼𝑅𝑚𝑖𝑛)2 + (𝑅𝑒𝑑 − 𝑅𝑒𝑑𝑚𝑖𝑛)2) − (
𝑁𝐼𝑅−(𝑎∗𝑅𝑒𝑑)−𝑏

√𝑎2+1
)

2

  [4] 

3.3.3 Statistical normalization of distance values 

The distance along the soil line (D) was corrected to account for outliers at 

either end of the soil line through a statistical normalization procedure. First, we 

extracted data points that only represent bare soil, falling within the 95 percent 

confidence interval of the fitted soil line. We then sorted the bare soil pixels’ 

calculated distances to determine the 2.5 and 97.5 percentile distances, which we set 

as the minimum and maximum distance values for the normalization procedure. We 

normalized the distance values of all the pixels in the scene, with a final value ranging 

between 0 and 1, using the following equation: 

 𝐷′ =
(𝐷− 𝐷2.5)

(𝐷97.5−𝐷2.5)
 [5] 

where: D’ is the normalized distance along the soil line, and D2.5 and D97.5 are the 2.5 

and 97.5 percentiles of distance along the soil line, respectively. 

Distance values prior to normalization (D) that fell below the 2.5 percentile or 

above the 97.5 percentile, were set to zero or one, respectively. The model output 
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generated a raster of normalized distance values between 0 and 1, which represent 

degrees of wetness indicative of mushroom compost. 

3.4 Validation Analysis 

3.4.1 Single-scene spectral validation 

To evaluate the predictive capability of our method, we first performed a 

single-scene validation analysis. We validated the wetness estimates using three sets 

of distinct types of reference sites that represent different degrees of wetness in terms 

of mushroom compost application: “compost piles”, “fields with compost”, and “fields 

without compost”. “Compost piles” are specific areas in farm operations where 

farmers stacked spent mushroom compost 1-1.5 meters high for passive weathering. 

The second set of reference sites are “fields with compost”. These fields had 

mushroom compost incorporated into their soils, but not as intensely as in the 

“compost piles”. The third set of reference sites are “fields without compost”. Those 

fields did not receive mushroom compost, and we would expect the soils to retain less 

moisture and dry out more quickly.  

We carefully selected these reference sites by using a variety of data sets 

(Table 3.2). We selected “compost piles” and “fields with compost” by using a dataset 

of known farm parcels that produce substrate or manage compost; these farm parcels 

have a registered Mushroom Farm Nutrient Management Plan with the Chester 

County Conservation District. We selected “fields without compost” by focusing on 

agricultural fields located away from these known farm parcels. To select the 

reference sites we examined land-use history, using temporal sequences of high 

resolution aerial imagery using Google Earth, NAIP, and ChescoViews (Table 3.2). 
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Furthermore, we compared the Landsat pixels against the higher resolution imagery, to 

ensure proper representation of land use for each reference site.  

For each reference type and vegetation combination, we selected six to eight 

different reference sites. Within these targeted reference sites, we carefully chose 

individual pixels that were considered true reference pixels and which were not 

affected by other land uses surrounding the pixels (Souza et al., 2005). After selecting 

the pixels for each reference site, we calculated the average value for Red and NIR 

spectral reflectance, and plotted the values in Red-NIR spectral space. 

Table 3.2: Data used for reference site selection. 

 

3.4.2 Multi-scene temporal spectral validation 

We also conducted a multi-scene, temporal spectral validation analysis of the 

reference sites, by examining the change in spectral reflectance over the course of one 

year. To do this temporal analysis, we acquired multiple Landsat scenes for 2011 

(Table 3.3). For each of the scenes we extracted the average spectral reflectance for 
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each reference site. For some scenes, we omitted certain sites in case of cloud 

interference or other potential sources of error. For each scene, we averaged the 

spectral values for the three main reference types, and plotted their temporal sequences 

in Red-NIR spectral space. 

Table 3.3: Landsat scenes used in temporal analysis. 

 
Note: Cloud cover value is for the extent of the study area. 

3.4.3 Empirical validation using expert knowledge 

We also performed an independent, empirical validation analysis of the 

wetness index/compost application estimates, using expert knowledge. We worked 

with two agricultural extension agents of the Chester County Conservation District, 

who have expert knowledge of farming operations in the study area. As described 

below, these experts rated the intensity of compost application for multiple sites across 

the study area. We then compared these empirical, expert ratings of compost 

application against our remote-sensing based wetness index values. 

We selected sites across the entire study area, covering the full range of 

compost intensity values. We constrained the validation to parcels with a minimum 
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size of 4 hectares, and with wetness index values for at least 20% of the parcel.  For 

each parcel, we calculated the average value for wetness index, and then grouped all 

the parcels into 5 classes (Table 3.4). Next, to obtain an unbiased and equal 

representation of validation sites across these classes, we applied a stratified random 

sampling approach, using the Sampling Design Tool for ArcGIS (Buja and Menza, 

2013).  The selection process of the validation sites focused on those regions of the 

study area where the agricultural extension agents were most familiar. We selected a 

total of 72 expert validation sites, with a fairly equal representation across the 5 

wetness classes (Table 3.4).    

The experts rated the compost application intensity of each site, on a scale 

from 1 to 5 (Table 3.4).  We used Google Earth with standard aerial imagery, 

including historical imagery. The rating by the experts was done blindly, without 

knowledge of the corresponding wetness value. If the experts were unsure of a site’s 

compost application intensity, we later excluded that site from statistical analysis. 

After the expert rating, we performed statistical correlation analysis.  To reduce the 

effect of outliers, we used the median value of modeled wetness index for each expert 

compost rating class. 
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Table 3.4: Expert validation analysis structure. 

 

3.5 Mapping Wetness 

After validation, we mapped soil wetness index values to examine the spatial 

extent and intensity of compost application across the study area. We interpreted 

patterns of wetness index values inside passive composting operations, surrounding 

passive composting operations, between adjacent crop fields, and on a watershed 

scale. First, we examined wetness patterns within passive composting operations. For 

these operations, we selected specific areas where compost was applied to examine its 

average spectral response. We interpreted the overall wetness patterns in each of the 

operations using Zonal Statistics. We also related the wetness index values in these 

operations to underlying land cover using historical imagery. Next, we interpreted 

patterns surrounding the watersheds using historical imagery. Then, we examined 

patterns between farm fields. Finally, we analyzed patterns on a watershed-scale to 

determine where compost is generally applied in the watershed and confirmed these 

observations with local agricultural extension agents. 
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Chapter 4 

RESULTS AND DISCUSSION 

4.1 Red-NIR Spectral Space 

In Red-NIR spectral space, corn and soybeans formed typical triangle shapes 

(Figure 4.1a-b; Figure 4.2). Most of the pixels concentrated toward the bottom of the 

triangle resembling bare soil, so vegetation effects are relatively minimal. Pixels in the 

upper left corner of the corn and soybean spectral plots were considered outliers. It is 

possible a different type of crop was cultivated on these fields at the start of the 

growing season (e.g. cover crops).  

Pixels in hay fields were positioned differently in Red-NIR spectral space. The 

pixels were clustered in the upper left corner in spectral space, which suggests that 

vegetation dominates hay fields’ spectral responses (Figure 4.1c). Because the soil line 

method used in this study requires minimal vegetation interference, we therefore 

excluded hay fields from further analysis. 
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Figure 4.1: Density plots in Red-NIR spectral space, of the main crop types: corn, 

soybeans and hay. 
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Figure 4.2: Density plot in Red-NIR spectral space of corn and soybeans, with the 

corresponding soil line (NIR = 958 + 0.9626*Red) and 95% prediction intervals. 

4.2 Wetness Calculation 

We estimated wetness index values using the soil line method. We calculated 

the soil line (Figure 4.2), and estimated wetness by calculating the distance along the 

soil line. To normalize the pixels’ calculated distances along the soil line, we first 

calculated the minimum and maximum distance values. We selected a sub-set of 
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pixels using the 95 percent prediction intervals representative of bare soil (Figure 4.2). 

Then, we plotted these pixels’ distances along the soil line in a frequency distribution 

(Figure 4.3) and extracted the 2.5 percent and 97.5 percent quantiles, which we set as 

the minimum and maximum distance values for the normalization procedure (Table 

4.1). We normalized the distances with these statistically derived values and generated 

wetness index values for all the pixels that ranged between 0 and 1 (Figure 4.4). 

Wetness index values in the study area varied widely, and averaged 0.422. 

 

Figure 4.3: Histogram of distance along the soil line of bare soil pixels of corn and 

soybeans. 
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Table 4.1: Percentiles of distance values along the soil line. The 97.5 and 2.5 

percentiles are used to normalize the distance values. 

  



 44 

 

Figure 4.4: Histogram of wetness index values for corn and soybeans pixels. 

4.3 Validation 

4.3.1 Single-scene spectral validation 

The reference sites’ locations along the soil line are expected to reflect their 

respective moisture content. “Compost piles”, with high organic matter, should be 

situated lower on the soil line due to their high moisture content (Figure 4.5). “Fields 

with compost” would theoretically fall slightly higher on the soil line. “Fields without 

compost” would fall much higher along the soil line, due to their drier soils (Figure 

4.5).  

In our analysis, we found the three types of reference sites were mostly 

situated along their expected regions of the soil line (Figure 4.6). The spectral 

response of “compost piles” reflected its expected high moisture content. Many sites 
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representing “fields with compost” illustrated that compost application to farm fields 

increases the moisture holding capacity of the soil (Figure 4.6). The position of “fields 

without compost” higher along the soil line indicated that these sites had less organic 

matter to retain soil moisture. Overall, these results confirmed that the high organic 

matter and moisture content in mushroom compost could be detected with this remote 

sensing methodology.  

 The results also illustrate that most of the agricultural fields in the study area 

had low to moderate levels of compost.  “Fields with compost” and “fields without 

compost” were situated inside the density cluster where most of the pixels fall along 

the soil line (Figure 4.6). 
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Figure 4.5: Conceptual diagram of the spectral responses of soils with different 

amounts of mushroom compost. 
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Figure 4.6: Positioning of the compost reference sites along the soil line in Red-NIR 

spectral space. 

4.3.2 Multi-scene temporal spectral validation 

The three types of reference sites should produce different temporal patterns 

over the growing season (Figure 4.7). “Compost piles” would remain lower in spectral 

space since they contain the highest amount of organic matter and therefore remain 

moist throughout the year (Figure 4.7). For agricultural fields, the spectral response 
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should be situated in different portions of spectral space, depending on seasonal 

changes in crop cover. We expect “fields with compost” to form a narrow temporal 

pattern that travels a short distance along the soil line because they would retain 

moisture in fields during the dry spring months. We expect “fields without compost” 

to form a wide temporal pattern that travels further along the soil line. The wide 

temporal pattern in “fields without compost” indicates a greater range of moisture in 

the field throughout the growing season. The greater range of moisture is caused by 

having relatively less organic matter to retain moisture during the dry 2011 spring 

months. 

Overall, the results from the temporal analysis showed that the reference sites 

maintained their relative positions in spectral space throughout the growing season. 

“Compost piles” displayed a tight temporal pattern that was positioned in the lower 

portion of the Red-NIR spectral plot (Figure 4.8). This suggests that “compost piles” 

remained moist and were least affected by vegetation effects. “Fields with compost” 

demonstrated a tighter temporal pattern in spectral space than “fields without 

compost”. These results validate our methodology to estimate compost application 

from differences in soil moisture retention. 
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Figure 4.7: Conceptual diagram of the expected temporal patterns in Red-NIR spectral 

space of the compost reference sites. 
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Figure 4.8: Temporal patterns in Red-NIR spectral space of the compost references 

sites in 2011, for March 08 (03), May 11 (05), July 21 (07), October 25 (10). Star 

denotes the May 11 scene that was used for calculating wetness index.  

4.3.3 Empirical validation using expert knowledge 

Results from the expert validation showed that estimated wetness index values 

were strongly correlated to the empirical compost application rating (R2 = 0.96; p < 
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0.01) (Figure 4.9). Overall, this independent validation analysis proved that our remote 

sensing methodology produced realistic estimates. 

 

Figure 4.9: Correlation analysis of expert validation, comparing modeled wetness 

index values (median values) against the empirical compost rating by experts. 
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4.4 Mapping Wetness 

4.4.1 Patterns within passive composting operations 

We identified approximately 30 passive composting operations in the study 

area.  To examine the spatial distribution of wetness index within passive composting 

operations, we selected 18 of the operations for which we calculated soil wetness.  

These eighteen passive composting operations generally exhibited higher wetness 

index values than all fields in the study area, demonstrating that compost increases 

wetness in soils (Figure 4.10; Figure 4.11). The average wetness index value inside 

these eighteen passive composting operations (0.606) was greater than the average 

value for all fields in the study area (0.442). Also, there are more wetness index values 

equal to 1 in farm parcels managing compost (9 percent of wetness index values), than 

all wetness index values in the study area (1 percent of wetness index values) (Figure 

4.4; Figure 4.12). The greater proportion of high wetness index values in farm parcels 

managing compost suggests that applying compost changes the moisture content in 

soils. Therefore, high wetness index values in other portions of the study area suggest 

that these fields were most likely intensely applied with compost.  

 It is important to understand the fine-scale spatial variation of wetness index 

values inside passive composting operations to comprehend overall watershed-scale 

wetness patterns. These wetness index values inside passive composting operations 

varied between 0 and 1 (Figure 4.12; Figure 4.13). We found low wetness index 

values inside farms were similar to the spectral response of “fields without compost”. 

For example, low wetness index values in Parcel ID 64 represented a grassy filter area 

(Figure 4.13; Figure 4.14). Next, moderately-high wetness index values represented 

crop fields amended with compost, which suggested that compost slightly elevated the 
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moisture content similar to the spectral response of “fields with compost” (Figure 

4.13; Figure 4.14). Of the eighteen composting operations, we selected a subset of 12 

operations that have specific areas with large piles of weathering compost.  Each of 

the 12 operations had a very high average wetness index value between 0.76 and 0.97 

(Figure 4.15). Also, the spectral signature of these areas with piles of weathering 

compost was similar to the validation reference sites of “compost piles”. 
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Figure 4.10: Wetness index values of all fields in study area. 
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Figure 4.11: Wetness index values and all known passive composting operations in the 

study area. 
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Figure 4.12: Histogram of all wetness index values for the 18 passive composting 

operations. 

 

Figure 4.13: Histograms of wetness index values within the 18 individual passive 

composting operations. Red bars indicate areas in an operation with high wetness 

index values, suggesting intense compost application. Blue bars indicate areas in an 

operation with low wetness index values, suggesting little to no compost. 
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Figure 4.14: Example of an individual passive composting operation (Farm ID 64), 

showing: (a) land cover; and (b) wetness index values. Note that wetness values are 

only calculated for fields under corn or soybeans. 
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Figure 4.15: Histogram of average wetness index values for a subset of 12 passive 

composting operations that have specific areas with large piles of weathering compost.  

4.4.2 Patterns surrounding passive composting operations 

Fields surrounding passive composting operations had overall higher wetness 

index values. We assume compost was intensely applied to these fields because of 

their proximity to operations passively weathering spent compost (Tobler’s First Law 

of Geography). Figure 4.16 shows an example of where we used historical imagery 

from 2010 to confirm field-application of compost near a known passive composting 

operation. In fact, these nearby fields are leased to passive composting operations for 
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field application to provide fertilizer and improve soil health (M. Zuk, personal 

communication, 2016). 

 

Figure 4.16: Evidence of high-intensity compost application near a passive 

composting operation. 2010 image courtesy of ChescoViews. 

4.4.3 Patterns between crop fields 

We observed discrete spatial variation of wetness index values between 

different crop fields, which suggests that some fields received higher compost 

application intensities than others. Figure 4.17 illustrates two adjacent crop fields with 
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contrasting wetness index values. Field A has very high wetness index values, which 

suggests high intensity compost application. The presence of high compost application 

rates was also confirmed by local agricultural extension agents during the empirical 

validation process.  In contrast, Field B has low wetness index values, which suggests 

a much lower rate of compost application; this observation was also confirmed during 

empirical validation. These spatial patterns of contrasting wetness index values 

illustrate that our methodology captures discrete variation of compost application rates 

between different crop fields, and further validates our spatial estimates. 
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Figure 4.17: Two fields with differences in wetness, demonstrating varying compost 

application intensities. Field A was intensely applied with compost (M. Zuk, personal 

communication, 2016). Field B suggests lower compost application intensities.    
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4.4.4 Patterns across the watersheds 

Soil wetness patterns varied across the study area (Figure 4.10). In the 

northern-most central region of the study area, there were many fields that had higher 

wetness index values, suggesting fields in this region were intensely applied with 

compost. It was confirmed by local agricultural extension agents that many fields in 

these northern regions of the watersheds are leased for compost application.  In 

contrast, the north-western portion of the study area consisted of many fields with low 

wetness index values. This localized pattern suggests that many fields in this region 

did not receive compost, or had very low compost application rates that did not affect 

their soil’s moisture retention properties. These fields are part of large-scale animal 

farming operations, which almost exclusively fertilize their crop fields with manure. 

These key spatial patterns of compost application, and their intensities, were 

confirmed by experts from the local agricultural extension.  

We also observed patterns of relatively high wetness in the western-most 

region of the study area (Figure 4.10). During the validation of field-scale wetness 

estimates, experts were unsure of the extent or intensity of compost application in 

several fields that were situated within this portion of the study area. 

Wetness patterns across the central region of the study area mainly consisted of 

small fields with very high wetness index values, suggesting localized areas of intense 

compost application (Figure 4.10). These fields are generally located near substrate 

production facilities, mushroom growing facilities, and passive composting operations.  

4.5 Factors Influencing Wetness 

Besides compost, other factors can increase or decrease a wetness index value 

which can potentially interfere with the accuracy in our estimates of a field’s compost 
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application intensity. These factors include fresh manure application, and the spatial 

resolution of the image. We speculate that fresh manure application before scene 

acquisition can increase a field’s overall wetness index value. When manure is freshly 

applied to fields, there is initial moisture and darkening of the soil which can cause a 

decrease in spectral reflectance, and therefore depicts high wetness. During expert 

validation, we found some sample sites that were applied with manure had high 

wetness values. These few sites were considered outliers, because most of the other 

sites that had manure application (and no compost) had low wetness index values. It is 

therefore possible that these particular fields with high wetness values were influenced 

by the fresh application of manure.   

Also the coarse spatial resolution of the Landsat imagery could affect the 

accuracy. Even though the imagery produces realistic general patterns of wetness at 

coarse scales, at the individual 30m pixel scale the values of wetness index are 

sometimes distorted, especially along field boundaries. This distortion is because of 

spectral mixing, when an individual pixel contains more than one land-use type 

(Jenson, 2007). 
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Chapter 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

The goal of this study was to estimate the spatial extent and intensity of field-

applied mushroom compost. We applied a remote sensing approach using Landsat 

multispectral imagery, and used the soil line technique to detect differences in soil 

wetness as a result of compost application. This is the first study that uses remote 

sensing to map field-applied compost from the field-scale to the watershed scale. From 

this research we conclude that: 

1. The soil line based wetness index worked well for estimating spatial 

distributions of field-applied mushroom compost.  We used Landsat 

imagery, which has a fairly coarse resolution. Through careful scene 

selection we were able to detect large spatial variation in soil wetness 

from varying rates of compost application. In this study we used a 

scene early in the 2011 growing season, when fields were relatively 

unaffected by vegetation (bare soil conditions) and when antecedent 

moisture conditions were low.  

2. The spectral validation clearly illustrated that compost changes the 

spectral response of soil because of changes in wetness. The three types 

of compost application intensities fell within their respective region of 

the soil line. 

3. The independent expert validation of field-scale wetness produced a 

strong significant correlation between our remotely-sensed wetness 

estimates and the empirical ratings of compost application intensities 

provided by experts. 

4. The methodology produced realistic spatial distributions of field-

applied mushroom compost application intensities across the study area 

and across multiple spatial scales, from the field-scale to the watershed 

scale.  
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5.2 Recommendations 

We recommend using the results from this study to aid watershed restoration 

efforts. The spatial distributions of compost application intensity are currently used by 

Luc Claessens et al. in follow-up studies to assess the effect of spent mushroom 

compost on stream water quality in the Brandywine-Christina River Basin. The 

methodology used in this study can also be easily transferred to other geographical 

areas that manage spent mushroom compost and similar organic fertilizers.  

For future research, we recommend using higher spatial resolution imagery to 

have less distortion from spectral mixing and obtain a more accurate estimate of 

discrete spatial variation of compost application intensities. We also recommend 

updating this map every 10 years, or more frequently, depending on available remote 

sensing imagery and optimal crop growth and soil moisture conditions. 
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Appendix A 

PRELIMINARY RESULTS  

A.1 Using a Supervised Classification and 1-m Resolution NAIP Imagery to 

Estimate the Spatial Distribution of Field-applied Mushroom Compost 

In a preliminary analysis, we attempted to identify field-applied mushroom 

compost using multispectral high resolution imagery and using a simple supervised 

classification procedure. We expected the high resolution imagery to detect precise 

locations of compost application. We used 1 meter spatial resolution imagery from the 

National Agricultural Imagery Program (NAIP), collected in June and July of 2013. 

NAIP imagery is typically collected during the growing season when there is 

vegetation cover. 

We performed a supervised classification on the NAIP imagery using ENVI 

version 4.8 (Exelis Visual Information Solutions, Boulder, Colorado). This process 

involved manually delineating training sites to help guide the computer-automated 

classification process. We selected training sites for five classes: forest, developed, 

agriculture, field-applied compost, and compost piles. We anticipated the areas with 

mushroom compost to possess a unique spectral response. 

This preliminary analysis yielded a classification of compost application across 

the study area (Figure A.1). However, the results demonstrated that this classification 

lacked accuracy, because vegetation interfered with the spectral response of compost. 

NAIP imagery is collected during the leaf-on season, and therefore it was not suited to 

identify field applied compost to crop fields. 
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Figure A.1: Preliminary estimates of compost application in the White Clay Creek and 

Red Clay Creek Watersheds. This preliminary analysis uses high resolution NAIP 

imagery and supervised classification. We found that the estimates of this map are 

inaccurate, because of interference by vegetation. 
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A.2 Effect of Soil Type and Water Holding Capacity on Soil Line Calculations 

in Red-NIR Spectral Space 

During preliminary analysis we initially divided the study area by soil type, 

because soil texture can affect the soil line. We used soil water holding capacity to 

classify different soil types.  We used soil survey data obtained from SSURGO and 

distributed by ESRI. We divided the soils into two classes based on their water 

holding capacity of the first 20 centimeter of the soil columns: high soil water holding 

capacity (retain 4.5 centimeters of water, or more), and low soil water holding 

capacity (retain less than 4.5 centimeters of water).  

We plotted the spectral responses of the two soil types in Red-NIR spectral 

space and calculated their soil lines. We found the two soil types had very similar 

spectral shapes (Figure A2.1), and their soil lines overlapped (Figure A2.2). Therefore, 

for the remainder of our study we did not consider differences in soil types, and used a 

single soil line instead.  

 

Figure A.2: Density graphs of two soil types (high and low SWHC) in Red-NIR 

spectral space.  
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Figure A.3: Soil lines extracted for two soil types (high and low SWHC) within the 

study area.  
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Appendix B 

COPYRIGHT PERMISSIONS 

Permissions was obtained through email contact to use a table from Fidanza et 

al. (2010) and figure from Landschoot and McNitt (n.d.). The following pages include 

copyright permission with Journal of the American Society for Horticultural Science 

(Figure B.1) and Dr. Landschoot (Figure B.2). 
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Figure B.1: Email conversation requesting copyright permission from the Executive 

Director of the American Society for Horticultural Science. 
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Figure B.2: Email conversation requesting copyright permission from authors (Dr. 

Landschoot) of Pennsylvania State University.  


