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Abstract – This research applies Effective Medium
Theory and 3D Finite Element Analysis to model the
transmissive loss through a waveguide fed additively
manufactured Luneburg lens. New results are presented
that provide rational function approximations for accu-
rately modeling the aperture, beam, and radiation loss
factors of the antenna. It introduces a normalized loss
tangent and shows that the loss factors are dependent on
the product of this parameter and the lens radius. Apply-
ing the constraint that the main beam of the radiation pat-
tern contains 50% of accepted power, a maximum useful
radius is tabulated for common polymers used in additive
manufacturing.

Index Terms – Additive manufacturing, dielectric
loss, effective medium theory, lens antenna, luneburg
lens.

I. INTRODUCTION
While spatially graded dielectrics, also known as

graded-index (GRIN) structures, are popular devices in
optics and photonics they have historically been used less
frequently at radio frequencies (RF). However, there has
been a surge of interest in using RF GRIN antennas as
low-cost passive beam-formers. One of the most popu-
lar RF GRIN structures is the well-known Luneburg lens
(LL) [1-6]. The LL is a spherical device in which every
point on the surface is the focal point of a plane wave
incident from the opposing surface. This unique property
can be leveraged to realize passive beam steering anten-
nas capable of directing a single or multiple beams over
wide scan angles.

While the LL concept has been known for nearly 80
years [1], our ability to reliably manufacture them has
been aided by recent advancements in additive manufac-
turing (AM) technologies and materials. Prior to AM,

fabricating a structure with spatially graded dielectric
properties was an expensive and challenging manufac-
turing problem.

Over the last eight years, a host of papers have been
published on the use of AM to fabricate the LL and
other GRIN devices [7-14]. While these previous studies
have demonstrated AM’s ability to fabricate functional
RF GRIN lenses, what has not been well characterized is
how the choice of AM material and unit cell architecture
influences performance in terms of aperture, beam, and
radiation efficiency. All which factor into the maximum
useful gain that can be achieved for a particular design.

In this paper, a full wave computational study is pre-
sented that quantifies the effect of material choice and
unit cell architecture on the performance of AM fabri-
cated LL antennas. Specifically, the aperture, beam and
radiation loss factors are evaluated as a function of the
LL’s material properties, unit cell geometry and overall
electrical size. An empirical model is provided that accu-
rately describes these relationships. This model is then
used to predict the maximum useful gain of an antenna
for a given material and unit cell structure. These results
will serve as a useful guide for antenna design engineers
when determining the specific AM fabrication materials
and approach best suited for their application.

The product of lens radius in terms of free space
wavelengths and the normalized loss tangent is intro-
duced as being a key metric in characterizing the radi-
ation pattern of a LL with loss. Although somewhat
dependent upon the unit cell geometry, this product
identifies three important thresholds. Listed in order of
increasing severity they are as follows: (a) at a value of
≈ 0.06, the main lobe contains only 50% of the accepted
power; (b) at a value of ≈ 0.3, the gain has reached the
peak value that is possible for the given material and unit
cell geometry. Increasing the lens size further results in a
decrease in antenna gain; (c) at a value of ≈ 0.8, radiated

Submitted On: April 11, 2022
Accepted On: June 19, 2022

https://doi.org/10.13052/2022.ACES.J.370505
1054-4887 © ACES

Version of record at: https://doi.org/10.13052/2022.ACES.J.370505

https://doi.org/10.13052/2022.ACES.J.370505


555 ACES JOURNAL, Vol. 37, No. 5, May 2022

power is reduced to ≈ 13% of the accepted power, and
the main beam is nearly extinguished containing only
≈ 3% of the radiated power.

The outline for the subsequent portion of the paper
is as follows. Following an introduction to the computer
model and workflow, Section II-A presents the effective
medium models that represent unit cell structures. Sec-
tion II-B provides the range of model parameters simu-
lated. Section II-C defines the far-field loss factors for
which rational functional approximations are given in
Section II-D. The accuracy of these approximations is
shown in Section III-A. The normalized loss tangent is
introduced in Section III-B and applied to tabulate the
maximum useful radius of common polymers used in
the manufacture of GRIN components. Section III-C tab-
ulates thresholds of performance in terms of the lens
radius and normalized loss tangent product. Section IV
further discusses the primary results and suggests future
research.

II. MODELING AND ANALYSIS
The data for this research is derived using a com-

puter model comprised of a spherical LL, an open-ended
cylindrical waveguide, and a spherical Perfectly Matched
Layer (PML). The lens model is inhomogeneous, con-
tinuous, and isotropic. Material loss is accounted for by
incorporating Effective Medium Theory (EMT) to pre-
dict an effective loss tangent for the inhomogeneous
air/material mixture that makes up the lens. The open-
ended waveguide serves as the antenna feed, which sup-
plies monochromatic and fundamental mode excitation.
The PML allows for efficient simulation by provid-
ing a high-performance absorbing boundary that fully
encloses the lens and waveguide. It effectively truncates
the computational domain, such that the near field only
be computed out to a short distance beyond the lens and
waveguide.

Finite Element Analysis (FEA) of the above-
described model is carried out using COMSOL Multi-
physics software equipped with the RF Module [23]. Due
to the complete symmetry of the model about the z axis,
an otherwise 3D simulation is reduced to a 2D axisym-
metric simulation. This results in enormous savings in
computer resources, allowing for simulations that would
not otherwise be possible on less than exotic computing
platforms. A sketch of the axisymmetric model is pro-
vided in Fig. 1. The half-plane model is rotated 360◦

around the z axis to create a 3D model including a spher-
ical lens, a cylindrical open ended waveguide port, and
the spherical PML shell.

Upon completion of FEA for each parameter com-
bination modeled, the COMSOL RF Module is used
to convert the resulting electromagnetic field along the
inner surface of the PML shell to the far-field gain. A

Fig. 1. 2D sketch of axisymmetric model used in the sim-
ulation.

2D cut of the gain is saved to a text file with a unique
name that identifies the parameter combination. Post-
processing and visualization are carried out in MAT-
LAB. Beyond extraction of boresight gain, this stage
includes calculation of aperture efficiency ηa, radiation
efficiency ηr, and beam efficiency ηb. The loss factor
for each efficiency is computed, being a positive num-
ber defined in decibels as:

Lx =−10 · log10 (ηx). (1)
Finally, the MATLAB Global Optimization Toolbox

[24] is then used to provide a rational function approx-
imation for each of the three loss factors, including a
fourth, being Lb +Lr.

A. Effective medium modeling
EMT provides a quantitative means to describe the

properties of a composite material, knowing the ratio and
properties of its individual constituents. In the case of
an additively manufactured component such as the LL,
the constituents are air and the printed material. More-
over, we are only interested in the effective permittivity
of the resulting composite. Throughout the following, all
permittivities are relative, and caret accents are used to
denote a complex quantity.

The point of view adapted here is that the lens is a
composite formed from a spherical host volume of free
space, into which precise amounts of printed material
are deposited. The material deposited thus forms discrete
solid inclusions, having a natural complex relative per-
mittivity ε̂ . In any region of the sphere, the effective per-
mittivity of the composite in that region depends on the
volumetric ratio of printed material to free space. This
ratio is referred to as the volume fraction f and varies
throughout the lens. Furthermore, it is necessary that the
dimension of the largest inclusion be much smaller than
the shortest operational wavelength required.
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Starting with the definition for ε̂:
ε̂ = ε

′− j · ε ′′, (2)

= ε
′ ·
(

1− j · ε ′′

ε ′

)
,

= ε
′ · (1− j · tan(δ )) .

In (2), ε ′, ε ′′ and tan(δ ) represent the dielectric con-
stant, the imaginary component of ε̂ , and the loss tangent
respectively of the printed material at the operational fre-
quency.

EMT provides several quantitative relationships
relating f , ε̂ and the effective permittivity of the com-
posite. These are termed mixing formulas, and this work
employs the Maxwell Garnett (MG) and the Linear mix-
ing formulas. It is shown below that the Linear mixing
rule predicts a higher loss tangent for the composite than
does the MG mixing rule. By providing results for both
mixing rules, the intent is to provide a realistic range of
values that may occur.

Allowing ε̂MG to represent the MG prediction for
the effective permittivity of the composite, and fMG the
respective volume fraction, we have [21]:

ε̂MG = 1+
3 fMG · (ε̂ −1)

ε̂ +2− fMG · (ε̂ −1)
, (3)

= ε
′
MG · (1− j · tan(δMG)) .

For materials where ε ′′ ≪ ε ′, the following observation
is useful [21]:

ε
′
MG ≈ 1+

3 fMG · (ε ′−1)
ε ′+2− fMG · (ε ′−1)

. (4)

Now, in terms of the cylindrical coordinate system
(rc,z,φ) used for the 2D axisymmetric model [23], the
Luneburg permittivity distribution εLB is given by:

εLB = 2−
(

r2
c + z2

r2
l

)
, (5)

where rl denotes the radius of the LL measured in free-
space wavelengths λ . This is a real quantity, and it is nec-
essary that the volume fraction throughout the lens, be set
such that the real component of the effective permittivity
results in εLB. Thus, setting ε ′MG = εLB, and solving for
fMG in (4), we have:

fMG ≈ 2εLB − ε ′+ ε ′εLB −2
2ε ′− εLB + ε ′εLB −2

. (6)

A similar procedure is carried out in determining the
volume fraction for modeling Linear mixing; however,
the relationship is now exact. Allowing ε̂Lin to represent
the Linear mixture prediction for the effective permit-
tivity of the composite, and fLin the respective volume
fraction, we have [21]:

ε̂Lin = (1− fLin)+ fLin · ε̂, (7)
= ε

′
Lin · (1− j · tan(δLin)) .

The real component of (7) is:
ε
′
Lin = 1+ fLin ·

(
ε
′−1

)
, (8)

and, upon setting ε ′Lin = εLB, and solving for fLin in (8),
we have:

fLin =
εLB −1
ε ′−1

. (9)

As an illustrative example, ε ′Lin and tan(δLin) are
shown in Fig. 2 across a planar slice through the cen-
ter of a LL. The material used has a dielectric constant
of 4.0 and a loss tangent of 0.1, i.e., ε̂ = 4 · (1− j ·0.1).

Fig. 2. Relative permittivity in (a) and effective loss tan-
gent in (b) of a LL using Linear mixing rule.

Due to the spherical symmetry of the LL, the choice
of the cut plane used in Fig. 2 is arbitrary, and the y-z
plane is chosen. Therefore, (5) may be rewritten as:

εLB = 2−
(

y2 + z2

r2
l

)
, (10)

= 2−

((
y
rl

)2

+

(
z
rl

)2
)
,

= 2−
(
(ȳ)2 +(z̄)2

)
.

For generality, in (10) we have defined the normalized
coordinates ȳ = y/rl and z̄ = z/rl . By doing so, all points
within the lens satisfy (ȳ)2 +(z̄)2 ≤ 1.

Knowing that ε ′Lin = εLB, (10) is used directly to
create Fig. 2 (a). For Fig. 2 (b), the necessary volume
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fraction for the lens is computed using (9), then the lens
complex effective permittivity ε̂Lin is computed using
(7). Since:

ε̂Lin = ε
′
Lin − j · ε ′′Lin, (11)

then by definition, the effective loss tangent is given by:

tan(δLin) =
ε ′′Lin
ε ′Lin

. (12)

The Linear rule predicts a greater effective loss tan-
gent for the lens than does the MG rule. This is demon-
strated in Fig. 3 for a material with a dielectric constant
of 4.0 and a loss tangent of 0.1. For generality, results are
plotted with respect to the normalized radius r̄, defined
as:

r̄ =

√
r2

c + z2

rl
. (13)

Substitution of (r̄)2 into (5) yields:

εLB = 2− (r̄)2 , (14)
noting that for all points within the lens, 0 ≤ r̄ ≤ 1. Now,
since the real part of effective permittivity is required to
equal εLB, then the difference between the two rules must
reside in the imaginary component. To show this, the MG
prediction is computed by first determining the required

Fig. 3. Comparison of mixture models. In (a), effective
ε ′ and ε ′′ versus normalized radius. In (b), the effective
loss tangent versus normalized radius.

volume fraction using (6), and then (3) is applied to com-
pute ε̂MG. The Linear prediction is computed by using
(9) to obtain fLin and then using (7) to compute ε̂Lin. As
seen in Fig. 3 (a), ε ′′MG ≤ ε ′′Lin, thus tan(δMG)≤ tan(δLin),
which is observed in Fig. 3 (b). The disparity widens for
materials with larger dielectric constants.

B. Parameter combinations modeled
The AM of a LL requires the use of materials hav-

ing a dielectric constant of 2 or more. In the simulations
conducted for this research, the dielectric constant of the
material used to print the lens, takes on one of nine val-
ues:

ε
′ = [2.3,2.5,2.8,3.5,4,5,6,8,10] . (15)

The non-uniform distribution in (15) has been found nec-
essary to adequately track the gradient of loss for low
values of ε ′. Figure 4 demonstrates why this is neces-
sary for the specific case of the beam loss factor. The
magnitude of the gradient changes quickly for low val-
ues of ε ′. Therefore, developing an accurate empirical
model necessitates denser sampling of ε ′ in this region.
The effect is similar for all loss factors studied in this
research. The LL model used to create this figure has a
radius of 40λ and a material loss tangent of 0.1.

Fig. 4. Maximum beam loss factor and gradient versus
material dielectric constant ε ′.

For each dielectric constant in (15), a 20×20 semi-
uniform grid is used to sweep over material loss tangent
and lens radius. Thus, loss tangent is swept from 0 to
0.01 in 0.001 increments, and from 0.01 to 0.1 in 0.01
increments. Lens radius is swept from 2 to 40 wave-
lengths λ , in 2λ increments. A depiction of the sample
grid is shown in Fig. 5, using a material with a dielec-
tric constant of 4.0 and MG mixing. Each sample point
is the result of a distinct 3D FEA simulation. Moreover,
a total of 3,600 FEA simulations are conducted for each
of the two mixture models studied. Loss tangents greater
than 0.1 are considered too high for practical LL based
applications and are therefore not investigated.
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Fig. 5. Sample grid overlaid on surface plot of Beam
Loss.

C. Far field loss factors
In this section we describe the specific far field loss

factors that are used to quantify and compare antenna
performance.

With reference to the spherical coordinate system
depicted in Fig. 6, the total radiated power by the
antenna, in Watts, is given by [22]:

Pr =
P0

4π

∫ 2π

φ=0

∫
π

θ=0
g(θ ,φ)sin(θ) dθ dφ , (16)

where g(θ ,φ) represents the far-field gain and P0 is the
power accepted by the antenna, again in Watts. However,
due to the complete symmetry of the model about the
z axis, the gain is independent of φ . This is observed
in Fig. 7 (a), in which 10 · log10 (g(θ ,φ)) is shown for
a LL of radius 2λ . Thus, no loss of information occurs

Fig. 6. Spherical coordinate system used to define far-
field values, such as antenna gain g(θ ,φ). The lens is
centered at the origin.

representing the gain as g(θ). Therefore, (16) reduces to:

Pr =
P0

2

∫
π

θ=0
g(θ) sin(θ) dθ . (17)

We continue by defining Pb as the radiated power
contained only in the main beam of the radiation pattern.
Defined in Watts, this is given by:

Pb =
P0

4π

∫ 2π

φ=0

∫
π

θ=θFN

g(θ ,φ)sin(θ) dθ dφ , (18)

=
P0

2

∫
π

θ=θFN

g(θ) sin(θ) dθ .

In the above definition, θFN is the zenith angle corre-
sponding to the first null in the radiation pattern relative
to boresight. Upon inspection of the pattern shown in
Fig. 7 (b), it is seen that for this example, θFN = 161◦ ≈
0.894π radian.

Trapezoidal integration is substituted for the contin-
uous integrals defined in (17) and (18). By estimating
θFN before hand, the angular spacing between pattern
samples ∆θ , is set to ensure accuracy using the numerical

Fig. 7. Example far-field gain pattern. In (a), the full 3D
pattern. In (b) a representative 2D cut.
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surrogate. After experimentation, a sufficient resolution
for this purpose is ∆θ ≤ θFN

20 . Accurate prediction of θFN
is accomplished using the equation for an ideal Luneburg
lens fed by a cosine point source [26]:

gLB (θ) = 4π
2r2

l

[
2 J1 (2π rl sin(θ))

2π rl sin(θ)

]2

, (19)

where J1 (·) represents the Bessel function of the first
kind of order one, and rl is the lens radius measured in
free-space wavelengths λ . Upon application of numeri-
cal peak detection on the reciprocal of (19), it is found
that to a high degree of accuracy:

2 ·θFN =
70.08◦

rl
. (20)

Now, upon solving for ∆θ yields:

∆θ ≤ 70.08◦

2×20× rl
, (21)

≤ 1.75◦

rl
.

The angle 2 · θFN is referred to as the First Null
Beam Width FNBW [27]:

FNBW = 2 ·θFN . (22)
In Fig. 8, a comparison is provided between the FNBW
measured using g(θ) obtained from FEA simulations
and with tan(δ ) = 0, to that predicted by (20). For
rl ≥ 10λ , the two match within 0.7◦. The minimum
FNBW shown is 1.90◦, occurring for a lens radius of
40λ . Thus, for large lenses, the FEA matches closely
with (20) derived for lens driven by cosine point source.

The radiation efficiency ηr, is defined as [27]:

ηr =
Pr

P0
, (23)

and the radiation loss factor is defined as:
Lr =−10 · log10 (ηr). (24)

Fig. 8. First Null Beam Width versus lens radius.

The beam efficiency ηb and corresponding loss factor are
defined as [27]:

ηb =
Pb

Pr
. (25)

Lb =−10 · log10 (ηb). (26)
Using (23) and (25), it is obvious that:

Pb

P0
= ηr ·ηb, (27)

and therefore:

Lb +Lr =−10 · log10

(
Pb

P0

)
. (28)

It should be noted that the radiation efficiency only
accounts for material losses generated within the LL
while the beam efficiency describes the LL’s ability to
form a beam.

And finally, the aperture efficiency ηa and the corre-
sponding loss factor are defined as [22]:

ηa =
g(θ)max

4π2r2
l

, (29)

=
g(π)
4π2r2

l
.

La = 10 · log10
(
4π

2r2
l
)
−10 · log10 (g(π)). (30)

In the above, rl is measured in free-space wavelengths λ .
Given the orientation of the waveguide feed, maximum
gain occurs at θ = 180◦ = π rad, which is aligned with
the antenna boresight.

D. Curve fitting of loss factors
The loss factors defined in the previous section have

an implicit dependence on the mixing rule, the printed
material’s dielectric constant ε ′ and loss tangent tan(δ ),
and the lens radius rl . In this section, new results are pre-
sented that show for each loss factor Lx, and each mixing
rule y, a rational function curve fit of an auxiliary vari-
able uy, provides an accurate and wide range empirical
model. Thus:

Ly
x
(
ε
′, tan(δ ) ,rl

)
≈ Ry

x (uy) , (31)
for x ∈ {a,b,r} and y ∈ {MG,Lin}, and where:

uy =
rl · tan(δ )

Fy (ε ′)
. (32)

Ry
x (u) =

p1u3 + p2u2 + p3u+ p4

u2 +q1u+q2
. (33)

Fy
(
ε
′)= c1 · (ε ′)c2 + c3

c1 · (2.3)c2 + c3
. (34)

The coefficients for (33) are broken into two tables,
depending on whether MG or Linear mixing is being
modeled. Table 1 contains coefficients for MG mixing
and Table 2 for Linear mixing. The coefficients for the
pair of normalization functions defined by (34) are pro-
vided in Table 3.

Although the procedure used for determining (33)
and (34) is heuristic in nature, two distinct steps are
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Table 1: RMG
x coefficients. Rb+r generates Rb +Rr

Rx
MG p1 p2 p3 p4 q1 q1

Ra 4.02 37.9 77.2 2.31 1.62 2.68

Rb 4.43 25.8 4.19 1.07 0.0793 1.03

Rr 0.309 8.19 5.41 0.003 0.321 0.209

Rb+r 4.56 36.3 88.4 2.79 1.38 2.72

Table 2: RLin
x coefficients. Rb+r generates Rb +Rr

Rx
Lin p1 p2 p3 p4 q1 q1

Ra 4.62 42.0 67.3 1.73 1.32 1.98

Rb 4.93 30.9 3.16 0.857 0.115 0.804

Rr 0.283 8.45 3.98 0.0031 0.229 0.133

Rb+r 5.25 39.8 80.3 2.19 1.13 2.11

identified. The first step involves experimentation with
the MATLAB Curve Fitting Toolbox (CFT) to deter-
mine the best functional form of the respective equa-
tions. In this regard, the term “best”, should be taken
as a positive combination of succinctness, flexibil-
ity, and accuracy. The choice of the rational function
in (33) and the power series in (34), possess these
attributes.

With the functional forms of (33) and (34) in hand,
the second step involves finding an optimized set of
coefficients. For this, the MATLAB Global Optimiza-
tion Toolbox (GOT) is employed. Whereas the CFT is
designed to try out diverse functional fits quickly, it does
not search and compare multiple bins of attraction as do
the GOT methods [24]. In particular, the GOT provides
an efficient implementation of the Multi-Start algorithm
and a straightforward optimization framework [28].

Data for the CFT and GOT is comprised of nine
three dimensional surfaces as visualized in Fig. 5, for
each loss factor and for each mixing rule. The nine
surfaces represent the nine dielectric constants of (15)
that FEA is conducted. Since each surface contains 400
points, the curve fitters have 3,600 points to work with
for each set of coefficients listed in Tables 1-3. Upon
completion of the Multi-Start algorithm, the coefficients
are saved to appropriately named files for fast access.
All results that are reported in this research round the
coefficients to three significant digits, as reported in
Tables 1-3.

A key observation is that the substitution of uy in
(31), effectively reduces the dimensionality of the prob-
lem from three to one. Moreover, since we are now deal-
ing with functions of a single variable, straightforward
curve fitting is possible, as in (33). To demonstrate why
this is possible, results are presented that first reduce

Table 3: FMG and FLin coefficients

Fy c1 c2 c3

FMG 7.57 0.799 -5.13

FLin -3.88 -1 3.85

the dimensionality from three to two, and then from two
to one.

Consider the surface plot of the beam loss factor pro-
vided in Fig. 5. This figure is generated using the MG
mixture model, with a printed material dielectric con-
stant ε ′ = 4.0. The loss factor is shown explicitly as a
function of the variables rl and tan(δ ). However, adapt-
ing the notation LMG

b (ε ′, tan(δ ) ,rl), we refer to it as a
function of three variables, namely: ε ′, tan(δ ) and rl .
Alternatively, LMG

b as well as LLin
b , can be closely approx-

imated as a function of only two variables: ε ′ and the
product rl · tan(δ ). This is observed for the FEA results
given in Fig. 9 for the MG mixture model and Fig. 10
for Linear mixing. In both figures, results are plotted for
the several dielectric constants, i.e., ε ′ = [2.3,2.8,4,10],
each trace corresponding to a unique ε ′.

The resulting traces are not strictly continuous, but
nearly so, and especially so for MG mixing and ε ′ ≥ 4.
This characteristic is observed for all the loss factors con-
sidered in this research. Thus, for a given mixture model,
the individual loss factors can be accurately represented
as a function of ε ′ and the product of lens radius rl times
the loss tangent tan(δ ).

The normalization factors FMG (ε ′) and FLin (ε
′) are

graphed in Fig. 11. Their purpose is explained below,
using an illustrative example. Consider the loss trace
in Fig. 9 for ε ′ = 4, which we will express here as
LMG

b (4 ,rl · tan(δ )). Using the coefficients in Table 3
and (34), FMG (4) is found to be ≈ 1.853. Careful

Fig. 9. FEA results showing the beam loss factors versus
rl · tan(δ ) for the MG mixture model.
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Fig. 10. FEA results showing the beam loss factors ver-
sus rl · tan(δ ) for the Linear mixture model.

Fig. 11. Normalization factors FMG (ε ′) and FLin (ε
′).

examination of Fig. 9 verifies that the following approx-
imation holds:

LMG
b (4,rl · tan(δ ))≈ LMG

b

(
2.3,

rl · tan(δ )
1.853

)
, (35)

and in general:

Ly
x (ε ′,rl · tan(δ ))≈ Ly

x

(
2.3,

rl · tan(δ )
Fy (ε ′)

)
. (36)

Thus, given an arbitrary ε ′, the normalization factors
map the corresponding loss factors onto respective por-
tions of a reference trace having ε ′ = 2.3. Since ε ′ is
fixed for the reference trace, we are effectively left with
an equation of a single variable uy, defined by (32). This
is demonstrated in Fig. 12, where the FEA results for
beam loss are shown for the same set of dielectric con-
stants used in Fig. 9 and Fig. 10. The FEA results for any
particular ε ′, extends from

(
0,Ly

b (0)
)

to the respectively
labeled ◦ marker. For a given mixture model y, the loss

Fig. 12. FEA results showing beam loss factors LMG
b and

LLin
b versus uy = rl · tan(δ )/Fy (ε

′).

Table 4: Study wide rmse of curve fit for loss factors

Rx rmseMG
x (dB) rmseLin

x (dB)
Ra 0.074 0.098

Rb 0.073 0.104

Rr 0.027 0.032

Rb+r 0.067 0.093

factor can be accurately represented as a function of the
single auxiliary variable uy.

III. RESULTS AND DISCUSSION
In this section the rational function curve fits Ry

x are
compared with the respective loss factors Ly

x obtained
through FEA simulation. Additionally, Ry

x is used to
determine the maximum useful lens radius for several
common low loss polymers.

A. Curve fit performance and discussion
Table 4 provides the root mean square error (rmse)

of the individual curve fits. On average, the rmse for the
Linear mixture fit is 33% higher than that of the MG fit,
however, in all cases the errors are below 0.11 dB. The
FEA data provided earlier in Fig. 9 and Fig. 10 appears
consistent with this result, since the LLin

b plots do exhibit
larger perturbations than their MG counterparts. Note
that the function Rb+r generates Rb +Rr, in which case
the respective rmse reported in Table 4 is computed using
(Lb +Lr −Rb+r).

The following contour plots provide further insight
to the loss factors observed through FEA, as well as the
respective rational function fit. Each figure contains data
only for a single dielectric constant, and ε ′ = 2.8 is cho-
sen as a representative example. Furthermore, plots are
shown for the Linear mixture model.
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Figure 13 compares the FEA derived beam loss fac-
tor LLin

b with the fit equation RLin
b . The plot in Fig. 13 (a)

is colorized using the LLin
b data, and constant loss con-

tours of LLin
b are shown using solid black lines and that

of RLin
b with dashed white lines. Both sets of contours are

displayed every 3 dB, with the highest extending to 42
dB. In Fig. 13 (b), the difference between LLin

b and RLin
b

is shown. Although a peak residual of 0.4 dB is observed,
this occurs at LLin

b ≈ 39 dB, which should be insignificant
for most purposes. The rmse over the plot is 0.107 dB,
which is slightly above the rmse reported in Table 4. This
is understandable, since Table 4 accounts for all nine val-
ues of ε ′ examined in this research.

Examination of any contour line in Fig. 13 (a)
reveals that the product rl · tan(δ ) is constant valued
along the contour. Since the plot is generated with ε ′

fixed at 2.8, then FLin (ε
′) is obviously constant, and

therefore rl · tan(δ )/FLin (ε
′) must also equate to a con-

stant along the contour. The later expression is defined
in (32) as uLin, and RLin

b is a rational polynomial in terms
of uLin given by (33). In a sense then, RLin

b maps the set
of points on a given contour line to a scalar which is the
loss associated with that contour line. It does so across
all values of ε ′ as well. Moreover, constant loss contour
lines are rectangular hyperbolas, but are defined only for
positive arguments. This is a common characteristic for
all the loss factors addressed in this research, regardless
of the mixture model.

Figure 14 (a) compares the FEA derived aperture
loss factor LLin

a with the rational fit RLin
a and is drawn

in the same fashion as Fig. 13 (a). The rmse for this fit is
0.102 dB, just slightly higher than the study wide value
reported in Table 4. As with the beam loss factor, the
contours are rectangular hyperbolas.

A curve fit for the lens gain in decibels is written
directly using the rational function fit for the aperture
loss factor as:

ǦLin = 10 · log10
(
4π

2r2
l
)
−RLin

a , (37)
and in Fig. 14 (b), it is compared with the FEA derived
gain. Even though the gain and aperture loss factor con-
tours are quite different, the rmse of the gain fit is identi-
cal to that of aperture loss factor. This must be so, since
ǦLin is only dependent upon the lens radius rl and RLin

a .
Since rl is known exactly, the error in the gain fit can
only originate from RLin

a .
A distinguishing characteristic of the constant gain

contours in Fig. 14 (b) is that they have a finite maxi-
mum. This implies that for a given ε ′ and a tan(δ ) > 0,
there is a lens radius rpeak, at which the gain peaks and
increasing rl beyond rpeak can only result in a lower
gain. Determination of rpeak is attained by solving the
derivative of (37) in terms of rl with the condition that
dǦLin/drl = 0. In doing so it is found that depending
upon the mixture rule being modeled, rpeak must lie on

Fig. 13. (a) Illustrates a direct comparison of FEA results
LLin

b and the rational function fit RLin
b using coefficients

from Table 1 and Table 3. (b) Shows the residual differ-
ence, ELin

b = LLin
b −RLin

b . Printed material ε ′ = 2.8.

either the RLin
a ≈ 10.14 dB contour or the RMG

a ≈ 10.39
dB contour. For example, with ε ′ = 2.8 and tan(δ ) =
0.04 and linear mixing, then rpeak ≈ 8.23λ . Upon reduc-
ing the loss tangent to 0.02, yields rpeak ≈ 16.5λ . The
product rpeak · tan(δ ) is a constant for a given ε ′ and
mixing rule. A red dashed trace in Fig. 14 indicates the
respective contour.

Finally, in Fig. 15 is a comparison between the FEA
derived radiation loss factor LLin

r and the fit equation RLin
r .

The rmse for this fit is 0.028 dB, which is slightly below
the study wide value provided in Table 4.

It is notable that the maximum radiation loss
observed in Fig. 15 (a) is ≈ 9.7 dB, since the maximum
beam loss seen in Fig. 13 (a) is ≈ 44.5 dB. For the loss-
less case, 100% of the power accepted by the lens is radi-
ated, and between 78% to 80% of the radiated power is
contained within the main lobe. As loss is introduced, the
radiated power naturally decreases. For instance, along
the 9 dB loss contour shown in Fig. 15 (a), only 13%
of the accepted power is being radiated. Furthermore,
the same combinations of rl and tan(δ ) that produce a
9 dB radiation loss, produce ≈ 14.8 dB beam loss in
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Fig. 14. (a) Illustrates a direct comparison of FEA results
LLin

a and RLin
a . (b) Illustrates a direct comparison of FEA

derived gain and the fit provided by ǦLin. Red trace is
hyperbola marking locus of gain peaks. ε ′ = 2.8.

Fig. 13 (a). This means that ≈ 3% of the radiated power
is now contained in the main beam. At the severest point
simulated, that being the top right corner of the contour
plots, the radiation loss has only increased by another 0.7
dB, and therefore the radiated power is very nearly the
same being ≈ 11% of accepted. However, the beam loss
has increased by 29.7 dB, therefore reducing the power
in the main beam to approximately 0.0035% of the radi-
ated power.

B. Maximum useful lens radius of common polymers
We have shown that for each loss factor Lx, and each

mixing rule y, a rational function curve fit of an auxiliary
variable uy = rl · tan(δ )/Fy (ε

′), provides an accurate and
wide range empirical model of that loss factor. We now
further define the normalized loss tangent as being:

ty =
tan(δ )
Fy (ε ′)

, (38)

thus:
uy = rl · ty, (39)

and therefore:
Ly

x ≈ Ry
x (rl · ty) . (40)

Fig. 15. (a) Illustrates a direct comparison of FEA results
LLin

r and the rational function fit RLin
r . (b) Shows the

residual difference, ELin
r = LLin

r −RLin
r . ε ′ = 2.8.

The purpose of (38) is more than convenience and
will be evident shortly. Up to now, we have been utiliz-
ing contour plots that visualize loss and gain by treating
ε ′ as a constant and rl and tan(δ ) as independent vari-
ables. This provides the most direct method to compare
FEA results to the rational function approximations. As a
comparative design aide though, it is cumbersome since
a separate plot is needed for every ε ′ being considered.
Therefore, we now treat rl and ty as independent vari-
ables. Since ty encapsulates the loss characteristics of a
particular lens material, a single contour plot facilitates
visualization of loss as rl is varied across an infinite set
of materials.

This is done in Fig. 16 for the rational function
approximation of the input referred beam loss factor
LMG

b + LMG
r = −10 · log10 (Pb/P0). This is an important

performance metric, since Pb/P0 is the ratio of power
radiated in the main beam to the power accepted by the
lens. Logarithmic scales are used for both rl and tMG
due to the relatively large range of values. The diagonal
traces are constant LMG

b +LMG
r contours and are remark-

ably linear. The vertical red dashed lines show the locus
of points that represent LMG

b + LMG
r associated with the
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Table 5: Polymers considered in this research

ID Material
A High Density Polyethylene [19]

B Low Density Polyethylene [19]

C Polytetrafluoroethylene (PTFE) [19]

D Polypropylene (PP) [20]

E Polycarbonate (PC) [15]

F Acrylonitrile butadiene styrene (ABS) [15]

G DSM Somos NanoTool [15]

H DSM Somos ProtoGen 18120 [16]

I DSM Somos ProtoTherm 12120 [15]

J DSM Somos Watershed 11122 [15]

Fig. 16. Beam loss relative to P0 as lens radius rl and the
normalized loss tangent tMG are varied. Contour labels
are in dB.

constant tMG for the material identified by the capital let-
ter directly above the trace. These traces are labeled A
through I and refer to the polymers listed in Table 5. In
Table 6, the published dielectric constant and loss tan-
gent of each polymer is listed, along with the respective
normalization factor and normalized loss tangent com-
puted for MG mixing.

Table 6: Polymer properties along with normalization
factor and normalized loss tangent for MG mixing

ID ε ′ tan(δ ) FMG (ε ′) tMG

A 2.35 1.5×10−4 1.03 1.46×10−4

B 2.28 1.6×10−4 0.989 1.62×10−4

C 2.05 1.70×10−4 0.865 1.96×10−4

D 2.23 2.00×10−3 0.963 2.08×10−3

E 2.59 5.20×10−3 1.15 4.51×10−3

F 2.54 1.51×10−2 1.13 1.34×10−2

G 3.2 2.55×10−2 1.46 1.74×10−2

H 3.16 3.30×10−2 1.44 2.29×10−2

I 2.88 4.37×10−2 1.30 3.36×10−2

J 2.62 4.24×10−2 1.17 3.63×10−2

The 3 dB contour in Fig. 16 is of particular interest
since it identifies the combinations of material and lens
radius that produce a radiation pattern in which half of
the accepted power is contained in the main lobe, with
the remaining half lost to heating and side lobes. Points
to the right of the 3 dB contour have greater main lobe
loss, and points to the left have less. Thus, for any point
on the contour, increasing either rl , tMG or both, results
in a main lobe containing less than half of the accepted
power. We solve for the intersection of each red trace
with the 3 dB contour, and consider the associated rl as
the maximum useful lens radius for the respective mate-
rial. The same procedure is repeated using the Linear
mixing rule. Compared to MG mixing, the Linear rule
always produces a smaller useful radius, i.e., it produces
greater loss. Thus, the Linear mixture provides a lower
bound and the MG mixture an upper. Taken together, the
Linear and MG predictions are considered as a range of
useful radii, with the actual value dependent upon the
mixing model employed. This data is reported in the sec-
ond column of Table 7. An interesting occurrence is that
regardless of mixing rule or the material, Lb and Lr are
fixed values along any constant Lb +Lr contour. For the
3 dB contour, Lb = 1.41 dB and Lr = 1.59 dB.

A similar contour plot of the the rational function
approximation of lens gain G = 10 · log10

(
4π2r2

l

)
−LMG

a
is provided in Fig. 17. Additionally, the 3 dB contour
from Fig. 16 is superimposed. We solve for the gain at
the intersection of each red line with the overlaid LMG

b +
LMG

r contour and consider this the maximum useful gain
of the lens. This is also carried out for Linear mixing,
which always results in lower gain. The two values are
considered as the range that may occur depending upon
the mixing model, and are reported in the third column
of Table 7.

Version of record at: https://doi.org/10.13052/2022.ACES.J.370505



565 ACES JOURNAL, Vol. 37, No. 5, May 2022

Fig. 17. Antenna gain as lens radius rl and the normal-
ized loss tangent tMG are varied. Contour labels are in
dB.

Table 7: Maximum useful lens radius and gain
(Lin : MG)

ID rmax (λ ) Gmax (dBi)
A 356 : 425 64.4 : 65.9

B 326 : 384 63.6 : 65.1

C 279 : 316 62.3 : 63.4

D 25.6 : 29.9 41.5 : 42.9

E 11.0 : 13.8 34.2 : 36.1

F 3.73 : 4.64 24.8 : 26.7

G 2.51 : 3.57 21.3 : 24.4

H 1.93 : 2.72 19.0 : 22.1

I 1.39 : 1.85 16.2 : 18.7

J 1.36 : 1.71 16.0 : 18.0

C. The product rl · ty
The product of the lens radius rl in terms of λ and

the normalized loss tangent ty is a key metric in charac-
terizing the radiation pattern of a LL with loss. This is
because Ly

x ≈ Ry
x (rl · ty) as pointed out in the previous

Table 8: Thresholds of performance and associated rl · ty
products

Threshold Description rl · tLin rl · tMG

50% of accepted power is
contained within the main beam,
i.e., ηrηb = 0.5.

0.0525 0.0622

Note: Lb = 1.41, Lr = 1.59 dB
regardless of mixture.

Gain at peak value for given
material and mixture. Increasing
rl can only decrease the gain.

0.289 0.360

Note: The aperture loss differs
slightly with mixture:
LLin

a = 10.14, LMG
a = 10.39 dB.

13% of accepted power is
radiated, and ≈ 3% of the
radiated power is contained in
the main beam.

0.715 0.922

Note: The beam efficiency
differs slightly with mixture:
ηLin

b = 0.033, ηMG
b = 0.028.

Note that 13% accepted equates
to an Lr = 9 dB.

section. The product rl · ty therefore provides a succinct
method to specify thresholds of operation for the LL with
loss. This is done in Table 8 for the three thresholds that
have been discussed earlier in Sections III-A and III-B.

IV. CONCLUSION
This research has applied EMT and 3D FEA to

model the transmissive loss through a waveguide fed
additively manufactured Luneburg lens. It is found
that rational function approximations accurately model
antenna loss factors derived from this modeling. Using
this empirical model of loss, the following conclusions
are drawn.

For a given mixing rule y, it is the product of lens
radius rl and the polymers normalized loss tangent ty,
that ultimately determine the transmissive loss of the
lens. The normalized loss tangent is itself, a function of
the polymer’s dielectric constant ε ′ and its loss tangent
tan(δ ). When comparing the relative merits of two dif-
ferent polymers, neither ε ′ nor tan(δ ) taken alone are
sufficient to make the best choice. However, choosing the
material with the lowest ty, is guaranteed to result in the
lowest transmissive loss.

Given that transmissive loss is dependent on the
product rl · ty, a maximum rl exists for each combina-
tion of mixing rule, polymer and level of loss that is
deemed tolerable. In this research, the threshold of use-
ful operation occurs when half of the accepted power

Version of record at: https://doi.org/10.13052/2022.ACES.J.370505



LAROCCA, MIROTZNIK: AN EMPIRICAL LOSS MODEL FOR AN ADDITIVELY MANUFACTURED LUNEBURG LENS ANTENNA 566

by the antenna is radiated in the main lobe. Therefore,
for a given mixing rule, once the polymer is chosen, the
engineer can determine the maximum useful lens radius.
In turn, this determines maximum gain achievable Gmax,
which is the value of G when the main lobe contains
exactly 50% of the accepted power.

The product rl · ty provides a concise method to
specify thresholds of operation for the LL with loss. It
is of course dependent upon the mixing rule, but even
so, immediately indicates important aspects of the radia-
tion pattern and thus the performance. Three thresholds
have been identified and tabulated. Regardless of mix-
ture rule, values below 0.05 result in greater than 50%
of the accepted power being radiated in the main beam.
Thus, this simple rule can guide material selection. Other
factors being equal, the Linear mixing rule always pro-
duces greater loss than the MG rule. Taken together, the
two EMT rules set lower and upper bounds of perfor-
mance. Examining Table 7, it is observed that the dif-
ference in Gmax predicted by these two theories ranges
between 1.4 dB and 3.1 dB for practical size lenses.
At present however, the unit cell structures used in AM
graded index components do not seem to obey the MG
mixing law [5]. Rather, they more closely follow the
Bruggeman and Capacitive model, which are both better
approximated by the Linear mixing rule [25]. To max-
imize gain, research into producing unit cell arrange-
ments that follow the MG mixing law is therefore still
needed.
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