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C W T E R  I 

INTRODWCTION 

The analysis of the mixing which occurs is the tidal 

reach of an estuary-has been and continues to be of con- 

cern to many scientists and engineers. For exampleg in 

order to predict the behavior of a pollutant after it has 

been introduced into an estuayy, a characterization of the 

mixing to which the pollutant will be subjected is essen- 

tial. 

the predictim of the dissolved oxygen dixtribution in an 

estuary involves the mixing process in a mdamential way. 

Also, a$ first pointed out by O'Copnor (1960)~ [I 1 

Hence, in order to predict the effects of pollv-tLon load- 

i w s  on the wac-t;er quality of an eatuauly, 8 theoretical dem 
scription of the mixing process is needed. 

Another phenomenon which is a result of the mixing 

process in an estuary is the intrusion of the sslt water 

from the mouth of the estuary. The presence of salinity 

in the estuary makes it convenient to choose the concentra- 

tion of salt as the dependent variable in an analysis of 

'the mixing process. 

salinity is the ocean water at the mouth of the estuary, 

and since salt is a conservative substance, the only phe- 

nomena which must be considered in an aaalyais of the sa- 

linity distribv-tion are those phenomena associated with 

the mixirg process. 

Since the only significant; source of 

- I -  
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Depending on the nature of the mixing in the estuam 

and the resulting distribution of saline water, estuaries 

are classified into four categories. c21 A "verticaLLy well- 
mixed" estuary exhibits no measurable difference in salinity 

concentration between the surface and the bed of the estuary. 

In a "slightly stratifiedtt estuary a small difference in sa- 

linity exists over the vertical direction. 

fied" estuary exhibits a large vertical variation in salinity. 

And, finally, in a salt-wedge estuary there is a clear inter- 

A "highly strati- 

face be+,ween the salt and the fresh water. r3 1 

The stratification in an estuary is due to the density 

difference between fresh and salt water. As a result of this 

density difference, density currents are present which aug- 

ment the mixing caused by the tidal actiOn and the non-uniform 

velocity distribution. l4 Unfortunately, the structure of the 

mixing process due to the density currents must perforce be 

a function of" the salinity concentration. 

linear theory can account for this component of the mixing. 

Hence only a non- 

The degree af stratification oan be used as a qualitative 

measure of the relative importance of density currents in the 
mixing process. If an estuary is highly stratified, then 

large density gradients are present and it would be expected 

that the effects of density currents in the mixiw process 

are important. However, if the estuary is only slightly stra- 

tified, then the density gradients are small and it would be 

expected that other phenomena such as the tidal oscillation 

are the predominent cause of the mixing. Even if the density 
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currents play a role in the mixing process, for a small 

variation of salinity concentration, the resulting change 

in the structure of the mixing ppocess can be shown to be 

small by a linearization argument. 

stratification is an indication of the degree to which a 

linear theory can be expected to apply. 

Hence the degree of 

It will be assumed in the forthcoming analysis that 

the estuary being considered is slightly stratified. Hence 

the assumption that the structure of the mixins process is 

not a function of the salinity concentration is reasonable. 

In the next chapter a review and a critique of the 

previous theories of estuariae mixirg will. be undertaken. 

These theories are also restricted to slightly stratified 

estuaries since the resulting equations which describe the 

salinity distribution are linear in the concentration of 

salt. 

sumptions that are made and their applicability to the 

mixing process in an estuary. 

The critique will be based on the mathematical as- 



PREVIOUS THEORIES OF ESTUARIIXZ MIXING 

This chapter discusses the previous prop0sal.s that 

have been made for describing the mising process in a 

tidal estuary. 

examined in terms of the physical situation and their 

plausibility is assessed. 

The assumptions which have been made are 

Most of the previous theories of eaeuarine mixing 

have been based on the convective diffusion equation. 

is important to realize the assumptions which are involved 

in the derivation of this equation and in the final simpli- 

fied equation which is actually used. Toward this end the 

derivation given by Pritchard (1958) [5 far the eqvation 

governing the distribution of salt in an estuaq will be 
outlined and the assumptions pointed out. 

It 

where s is the concentration of salt (mass/wit volume), 

vi is the component of the velocity of Water irl the i th 

direction of" the right-handed coordinate system xJ9 x2, x3' 

and a summation on i is understood. The molecular dif- 

-4 - 
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fusivity of salt has been neglected. 

the velocity 

time mean denoted by an overbar plus a fluctuation denoted 

by a prime. The length of the time average is short rela- 

tive to the period of the tidal cycle. 

Following Reynolds, 

and salt concentration are expressed as a 

- 
v =  v + Vi' i i 

- 
s =  s * s v  

SubstitutrEng these expressions in equation (I) and taking 

a time mean results in: 

where 

averaginz. 

made about the nature of the flux term due to the average 

of the product of the fluctuations. 

lar difmsiovl is made a;n_d it is assumed that: 

t is now a time scale lo-xer than the interval of 

At this point a critical assumption must be 

An analogy to molecu- 

Substituti-ng equation (4) into equation (3) results in the 

three dimensional convective diffusion equatioq; 

It, should be realized that equation (4) is not a defi- 

nition of Ki9 the turbulent ecidy diffisivity. It is a 

statement about a physical. situation which may or may not, 
be true, It asserts a relationship between two quantities 



vi's.' and %/axi which are both well defined physically 

and, at least theoretically, can be measured independently. 

Hence this equation is an assumption that such a relation- 

ship exists, 

questioned by Batchelor and Townsend (1956) C61- 

It is an assumption, however, which has been 

1 1  the usual argument, valid for molecular 
diffusion, [is] that the flux of concentration is 
proportional to the local concentration gradient. 
It is essential for this argument that the change 
in mean concentration over a mean free path be a 
small quantity, whereas in the case of turbulent 
diffusion no such restriction can be assumed. t t  

tial Dimension 

'ke solution of the three dimensional form of the con- 

vective diffusion equation, with arbitrary velocity distri, 

butions and turbulent eddy diffusion coefficients, is un- 

known. 

form of this equation when applied to estuaries is still 

too difficult to be solved analytically. 

In fact, as will be seen, even the one dimensional 

In order to obtain a one dimensional equation it is 

vIJ s, and necessary to assume that 

of x2 and 

geneous. 

equation is: 

K1 are nok finctions 

x3' i.e., that the estuary is sectionalLy homo- - 
For this case the resulting convective diffusion 

where A is the cross sectional area. It is incorrect to 
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presume that this equation relates the average value of S 

over a section to the average values of v1 and K,. Jf 
this equation is applied in terms of average values of v, I 

and s then: 

" ... no physical meaning can be attached to 
the coefficient 
tion which when included in equation (6) allows 
that equation to describe properly the distribution 
in time and space of the mean salt content. 

K... it merely becomes that func- 

!t[7 1 

The two velocity components which are predominent in an 

estuary are the fresh water velocity, 

velocity, QT/A, where Q is a volumetric flow rate (volume/ 

unit time) 

Qf/A, and the tidal 

Hence equation (6) becomes: 

Even for a simplified situation, for example a harmonic tidal 

velocity, constant fresh water discharge, simple geometry and 

simple variation of K, as a function of x1 and 

lytical solution is available for the apppoprlate initial and 

boundary conditions. 

the harmonic tidal velocity and the consequent harmonic 

variation of K, which would be expected. 

t, no ana- 

The primary analytical difficulty is 

Two different methods have been suggested to circumvent 

this difficulty. 

fluctuating tidal velocity is to average over a tidal cycle 
c 8,9,10,111 as well as over the cross sectrfonal area. 

The first approach to the problem of the 

This 
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argument is meticulously carried out by Okubo (1964)- r123 

_He expresses the variables as a mean plus a fluctuation. 

Cross sectional averages are denoted by the brackets z > 
and fluctuations by a subscript d; temporal averages by 

an overbar and fluctuations by a prime. The temporal 
average is taken over a tidal cycle otherwise 1 8  for a time 

scale small in comparison with one tidal cycle, the averaged 

quantities would v a n  in time and space in ways too compli- 

cated for easy arialytic mnipulation. ''c13 

of turbulent diffusion the flu terms due to the fluctua- 

As in the case 

tions about the cross sectional average and the tidal fluc- 

tuations are rePated to the gradient of the mean concentra- 

tion.: 
\-= 

The "effective tidal mean" velocity is given as the net 

velocity over the cross sectional area, averaged over the 

tidal cycle: _____ec 

ll* dA 
- - - 

- g 91 
A 

This velocity is related to the fresh water velocity since 

the harmonic terms In the tidal velocity tend to average 

out over a tidal period, 

substantially the one dimensional convective diffusion equa- 

tion for the concentration averaged over a tidal period but 

without a tidal velocity term. However, two of the asswnp- 

tions used to arrive at this equation are that the "tidal 

Hence the resulting equation is 
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fluctuations of the cross sectional area, concentration 

and density are sufficiently small compared with the respec- 

tive mean values ... 

tidal oscillatioms and the fluctuations about the cross sec- 

tional average are assumed to be small. 

assumption embodied in the flux law (equation (8)) m s t  also 

be true, As a practical matter, howeverg .the fluctuation of 

In other words the effects of the ,fCS41 

And secondly the 

salinity concentration over a tidal cycld in the tidal portion 
of an estuary is usually large relative to the mean [15,161 

and therefore cannot be regarded as a small fluctuation. 

Hence if the convective diffusion equation is averaged over 

a tidal cycle and the various terms due to the tidal flue- 

tuation are dropped, the equation cannot be expected to apply 

to tidal estuaries. 

The second approach to the analytical problem of the 

tidal velocity is formally to ignore the tidal velocity term 
[17,181 me completely in the convective diffusion eqmtion. 

estuary is considered only at a progression of high or low 

water slacks when the tidal velocity is zero. 

(1964) "" gives an explanation of this approach based on the 
idea of a longitudinal dispersion coefficient: 

Harleman 

t t  The time scale of equation (7) [is changed] 
to one in which the smallest unit of time is the 
tidal period .... In the new time scale the advec- 
tive term can only account for fresh water flow 
rate q.... The various assumptions which [have 
been made] imply that Iz can no longer be inter- 
preted as the turbulent eddy diffusivity.. .K is 
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more correctly a longitudinal dispersion coef- 
ficient which must account for 
effect of the vertical velocity distribution 
the dispersive effect of the unsteady tidal veloc- 
ity 3. the longitudinal dispersian due to density 
gradients arising from the intrusion of saline 

1. the dispersive 
2. 

water from the ocean... t t  [ 20 1 

It is apparent, therefore, that the view expressed by 

Pritchard with regard to the fluctuations about the cross 

sectional average is extended by Harleman to include the 

effects of the tidal velocity as well as the effects due 

to the deviation from one dimensionality. It should also 

be noted that the resulting concentration profiles are for 

high or low water slack time only, and the eoncentration 

profiles obtained for a time other than these slack times 

have no physical meanix. 

This is certainly a practical solution since the simpli- 

fied equation can now be solved f0r.a variety of geometries 

and functional forms of K. Also, if a steady-state salinity 

distribution is available, the dispersion coefficient can be 

easily calculated [ '' and used to predict the salinity dis- 
tributions at other fresh water Plows. 

lem of obtaining enough data in order to compute averages 

over a tidal cycle does not arise since only the slack time 

distributions are considered. 

Furthermore the prob- 

It is not clear, however, that the argwent I whkh justi- 

fies the use of the eddy diffusion coefficient can be used to 

justify the concept of the longitudinal dispersion coefficient. 
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The concept of eddy diffusion as employed in the derivation 

of the convective diffusion equation in three dimensions 

states that the flux due to the fluctuations is proportio-nal 

to the gradient of the average concentration. 

sion law is Conventionally employed in the analysis of heat 

diffusion (Fourier's Law) and molecular diffusion (Fick's 

This diffu- 

Law) In both these phenomena the temporal and spatial 
scales of the underlyirg fluctuations are assumed to be small 

The relative to the gross phenomena being considered. e221 

questrEon is whether or not the same equation for flux is valid 

when the temporal and spatial scales of the fluctuations are 

on the Same order of magnitude as the gross phenomena of 

interest. 

of the tidal oscillation is included in the longitudinal dis- 

persion coefficient. 

one tidal period and the spatial scale is one tidal excursion 

lergth. 

This is the situation when the dispersive effect 

The time scale of the fluctuation is 

During one tidal cycle the net flux at a point xo is re- 

lated to the concentrations within one tidal excursion length, 

L, of xo. Within this region the concentrations interact 

and a new concentration distribution results at the next slsck 

time. 

the net flux at 

gradient of the .concentration at 

centrations s(~> over a length x - L < x < xo i- L can be 

expected to mix with water at 

the mixing is supposed to take place over a tidal excursion 

length then a more general mixing law which rela.tes concentra- 

There seems to be no a priori reason to suppose that - 
xo duri-rig the tldal cycle is related to the 

xo only since water with con- 

0 - - 
xo. If during ,one tfdal cycle 
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tions at a distance must be used to describe the phenomena. 
During 8n analysis of pollu-Lion in the Thames Estuary [23 1 

this point of view was adopted. It was glso demonstrated 

how $he convective diffusion equation results from the more 

general law as a first approximation” 

imation depends on the length of the tidal excursion, that 

is, the scale of the fluctuation, More precisely it depends 

on how closely the flux term due to the fluctuations is ap- 

proximated by the gradient of the mea11 concentration. Since 

the tidal excursion length in an estuary is usually of the 

same order of magnitude as the length over which the distri- 
[241 butions of interest extend, 

equatiop, when interpreted in terms of a lor?gitudinal dis- 

The degree of approx- 

the convective diffusion 

persion Goefficient and slack distributions, is not an ade- 

quate representation of the tidal mixi-ng in estuaries. 

11-D Other Theories of Estuarine Mixing - 
Retchurn (1.951) ‘25 has proposed a model for the tidal 

mixi,ng in an estuary which is based on the physical charac- 

teristics o;f“ the estuary. He divided the estuary into seg- 

mcmts whose lengths are tbe average excursion of“ a particle 

of water on the flooding tide. 

of mixing during each tidal cycle: At high tlde the water 

within each segment mixes completely; then there is an ex- 

chawe between adjacent segments dtiriix the ebb tide. The 

excharge coefficients are given by the ratio of the inter- 

tidal volurne to the high tide volume. 

He then proposed a mechanism 

.- 
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ThJs theory is quite ambitious in that it attempts to 

predict the mixiqg phenomena to be expected from the physi- 

cal charackepisties of the estuary alone. The theory has 

bean used to compute the equilibrium salinity profiles in 
the Delaware apd Tharues Estuaries but these calculated dis- 

Wibutions ao not agree with the observed distributions. [261 

Hgwever, this theory w w  the first attempt to describe th@ 

nature of the mixing proCess in a tidal estuary and as such 
w&s a significant improvement over the previous thdal prism 

'cheopies 

The wider& oornplexity of the mixing process in an es- 

tuary Led 

theory but one with mope chance of success than Ketchurn's 
attqnpt. His idea was to specify the form of the one cycle 

dlzkribution function. Specifically he assumed that for a 

upit amoupt of water at 

tiQe P,(x,) 
taste L in the xeawayd direction, and a proportion P,(x,) 
would be spread uniformly in the landward direction a dis- 

tance L, and 1 - P,(x,) - P1(xo) would remian at xo. 

Preddy (1954) [Z'71 to propose a less ambitious 

xo, after one tidql cycle a propor- 
of the water would be spread uniformly a dis- 

I He then applted two continuity laws: 

"(i) 
carried. gpstrearn past any point is equal to the 
apount pr@$ent above this point at the end of 
the period, minus the arnQunt present at the 
begipnlng . . . . 

During any period the net amount of salt 

(ii) The volwrne of water carried upstream past 1 1  

the point during the period must cQnform to a 
similar condition. t i  [ 28 I 



These conditions when expressed mathematically resulted in two 

integral equations in P,(x) and P,(x) : 
+ 

L 

= Q S(O) + X 
7 -L 

(ii) 1 A(x)P$x) - L-z- dx + A(x)P,(x) - L+X dx = O 
L 0 L 0 

whelre S is the net accumulation of salt above x = 0 and 

Q is the fresh water flow. 

over all the tidal cycles for which there is dataa. 

tegr$l equations were solved by approximating P,(x) and 

P (x) by linear expressions in x and solving the resulting 

simultaneous linear equations by relaxation. 

was aohieved by using quadratic functions as approximations 

Ss PI and P2. The distance L is specified a priori. It 

should be of the same order of magnitude as the average tidal 

excursion distance. However: 

Equation (i) was then averaged 

The in- 

2 
Greater accuracy 

I 

t t  If the values of L taken lead to calculated 
values of P1+ P2 which are greater than unity.., 
it follows that the mixing in this section is 
substantial over a greater distance than the as- 
sumed value of L. Hence L should be increased 
in this section and the values of P2 are 
exceedingly small. .. it is better to decrease L 

P, and 

and recalculate P, and P20 tt[29I 

Once P,(x> and P2(x) are known, they describe the 

mixing phelrornena completely. Preddy used this formulation to 



predict the change in the salinity distributions in the 

Thames Estuary under varying fresh water flows. 

sults compared very well with the measurements taken. 

The re- 

'This forrnulatiQn was also used in an extensive analy- 

sis of the pollution distribution in the Thames. '303 For 

this anaAysis, however, the estuary was segmented and the 

mixing parameters were averaged over each segment. 

be seen in the following chapter that Preddy's theory is 

yore naturally expressable in a discrete spatial domain. 

Perhaps the unwieldy nature of equations (i> and (ii) and 

$he resulting relaxa'cion formulas explain in part, at least, 

It will 

the fqc'c that this theory has not found favor among workers 

interested in the qnalysis of the mixing pnocess in an es- 
tuary. Howwel?, this type of approach has been recognized 
as a fruitful area for further investigation. [311 

There are some objections which can be raised immedfately 

with regard to the a priori nature of the structure of the 

theory. 

chosen because of its simplicity. 

1 1  ... it is not possible to calculate the exact shape of the 
,[di,stributiopJ curves from the consideration of the saliiiitg 

balance during a long time. .. 'I c327 

I 

The form of the one cycle distribution function was 

Preddy claims that: 

Perhaps not, but it will 

be shown subsequently that a much better estimate can be 

made on the biLsis of the salinity profiles available. 

the status of the length L is in doubt. It too is specified 

a priori and this is another assumption which adds to the un- 
certainty about the correctness of the procedure. 

Also 

-I___ 
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Qeverthelesq the 8pproach taken by Preddy with some 

important rilodifica6ions and a change in mathematical 

setting forms the basis of the theory of estuarine mixing 

to be prasented in the followiw chapters. 

of the objections which have been raised to theories based 

In the light 

art simplified versions of the convective diffusion qua- 

ti9nF3 it is appropriate to adopt ingtead the point of 

view expressed by Preddy as the foundation for a theory 

af estuarine mixirgm 



MARKOV CHAIN REPRESENTATION OF MIXING IN ESTUARIES 

In this chapter the theory of Markov c$ains will be 

applied to the analysis of the mixing process in an estu- 

ary* The covservation Laws vhich any mixing process mqst 
sa-t;ixf'Sr in order to be physically meaningful will be depivr 

ed. 

terms of the properties of a Markov chain. 
These conservation laws can be readily interpreted ie 

TTX-A Preliminayiss 

The theory of' Markov chains has proved to be a useful 

taol for the theoretical and camputatiokal an8lysi.s af dif- 
f'qalon ph$nomen,a. 533 1 In partiwlar the analysis of random 
walkg, For? which the particle is constrained to move only 

to adjacent states duriw a wit time interval, has been 

used to model the convective diffU8ioLl equation, ["' 
usual procedu~e LEI to a ~ m m e  a prior1 the xt~ructu,re OF the 

tmnsition probability matrix ana thee, startiw with an 
initial distribution, compute the succeeding distributions, 

The - - 

eral mixing proce~ses. 'panis increase In generallty is one 
reasoa th8t a Malakav ohsin discription is chosen for the 
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present gnalysis of the mixing process in an estuaq. 

A second reason for choosing a Markov chain is that 

there is an interval of tipe, the tidal period T, which 

usually separates the data. It is necessary, therefore, 

to relate conditions at succeeding slack water times. 

For the sake of clarity it is assumed that the slack 

water time at which the data is available is the high 

water slack. 

distributions the natural mathematical setting is within 

the framework of the theory of Markov chains. 

With discrete time intervals between the 

Unfortunately a Markov chain relates the concentratJon 

only at discrete states so that the estuary must be seg- 

mente0 into discrete volurnes. Hence the theory will at- 

tempt to relate the concentration of salt between discrete 

volwnes, of the estuary at successive high water slacks. 

In order to specify a definite concentration in each seg- 
ment, it is asswed that the concentration of salt is es- 

sentially uniform within each segment. This assumption 

can be made more or less physically consistent with the 

facts by choosing the appropriate size segments. 

sake of simplicity a one dimensional segmentation of the 

estuary will be made. 

the theory is not limited to a one dimensional analysis. 

The segments are numbered sequentially in the downstream 

For the 

It will be clear subsequently %hat 

direction and the volumes at high water slack are vl., vZ7 
.?., v for the N segments. N 

The mSxing process will be thought of as belng the re- 

sult of two phenomena: the fresh water flow; and the mixing 
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associated with the tidal ascilJation. m e  mixing due to 

the tidal oscillation will be represented by the following 

mixing parameters: Let pij be the ratio of the volume 

of vater which is transported during one tidal cycle to 

segment i from segment j, to the total volume of segment 

j. Than it is true that : 

c 113 0 5 Pij 5 1 i = L,..., N; 

It will be assumed that these parameters do 

tidal cycle to tidal cycle. Let _P be the - 

j F lye.., N 

not vary from 

mixing matrix 

with elements pij. The mixing matrix represents the tidal 

mixing in the estuary and its numerical evaluation is the 

object of this apalysis. 

Z1L-B me Conservation a w s  
In order for the mixing prooess to be physically mean- 

TDgfql certain conservation laws pust be satisfied. These 

laws impose qertain restrictions on the mixing matrix E. - 
The laws are conservation af water, conservation of the 

estuary geornekq, and conservation of salt. 

Conservation of water states that during a tidal cycle 

all the water from segment 

segment or remain in j. Hence it must be true that: 

j must go to either another 

k=l 

In terms of the theory of Markov chains, a matrix which 

satisfies eguatlons (11) znd (12) is a transition praba’bilitg 

matrix. 



The conservation of the geometry of the estuary requires 

that there be no net accumulation of water upatream from any 

segment boundary over one tidal cycle. 

($3.) as given by Preddy. 

then it is possible that during the tidal cycle there is a 

This is condition 

If this condition is not fulfilled 

net migration of water across a segment bound%try$ This mi- 
gration of water would change the water level in the estuary. 
But it is a pbysical fact that the water level in. ;2n estuary 

is cmmtant at successive high water slack timea, 

The fo;llowing $heorem gives a more suggestive formqTa- 
%$on of this conservation law. 

Theorem: 

from any segment boundary if and only if 

There is no net acawulation of water upstream - 
Pv = v c- - 

Proof: Let be the boundary be$ween sepent k y 1 and 

segment k. In order to evaluate the net transfer across cp 
-*c-- 

during One tidal cycleJ congider a segment i upstreqm of 

rp and a segment 1-1 downstream ot cp. Then the volume of 

water going into i from c1 is pi;vcl. Hence the total 

vOlurne of yater goi-ng into i from segments downstream of 

By the same argument the total volume or water leaving seg- 

ment i and golng downstream beyond cp is: 
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Sence the net trangfer upstream into i gcross cp from 

all segments downstream of cp is: 

And fin9llsl- the net transfer upstream +cross cp auring 

one tidal cycle is: 

which be zero by hyppthesis. In%erchargipg the order 
of swation and using equation (12) in the first term 

gives: 

However the second term in this equatian Can be rewritten 

by ipterchqnging the order or summation ana adding and sub- 
tractiw But the second term on the right-hand 
side af equation (19) is the same as the third term in equa- 

tion (18). 

ck -1 
p=l p. J p  V p 

Hence equation (18) becomes: 



If this equation is true for a boundary at 

be true for 9 bouQdary at k + 1. Hence: 

k it must also 

and sub't;racting equation (Z2) from equqtion (21) gives: 

Since this equation is true for an arbitrary k, it is true 
for QJ.1 k = 1, - N. I 3  which case, equation (23) cgn be 
expressed in matriy form: 

In orcler to interpret this result it is necessary to 
realize that multiplication by the mixing matrix P is the 

operation which converts the volume distribution at time 

y l ~  to that which is expected at time (xl + 1)z. This fol- 

Lows directly from the definition of P. Hence equatioll (24) 

states $hat if ,v is the observed volume distribution. of 

water in the estuary at high water slack, then the wixix 

caused by a tidal oscillation must produce the sage volume 

distribution at the next high water slack. 

the intuitive meaning of conservation of the geometry of 

an estuary. 

- 
T 

- - 

This is exactly 



n 

In terms of the theory of Markov chains, this conser- 

vation law specifies the equilibrium distribution of the 

chain 2. That an equilibrium distribution exists is guar- - 
anteed if certain structural conQitions are fulfilled. [35 1 
However a sufficient analytical condition on pii is that 

J-J 

> 0 for all i and j.[361 A lesg stringent suffioient Pi j 
condition, called the case of Hostinsky, guarantees $he 

existence of an equilibrium distribution if the elements of 

the main diaganal aqd the two adjacent off diagonais are 

greater than zero. [371 It will be seen that these conditions 
suffice for $he present analysis. 

The law of conservation of salt wizl be derived from 

the following observation. If the fresh water flow rate g 

is constant over many tioal cycles, then the salinity distri- 

bution in the estuary will reach an squilibr~m distribution. 
Under this cQndition there oan be no met accunqlation of 

salt above any segment boundary. 

In order to express the law of cosservation of salt; 

mathematically, the mixing process which affects the salt 

must be considered. 

certain amount of salt and this water is mixed with khe 

wa$er in the other segments by the tidal action. 

the water in each segment is also affected by the fresh water 

flow. 

ape fwctions of the fresh water flow. 

ence is unknown and it has been asswed that 

result of tidal action. 

The water in each Begment contains a 

However, 

Hence, strictly speaking, the mixing parameters pij 

Rowever this depend? 

P is only a - - 
In order to incorporate the effect 
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of fresh water flow, another matrix will be used whose ele, 

ments are functions of the flow rate. 

$hat the only effect of the fresh water flow is to trqnslate 

the water downstream. Let q be the volwetric flow rate 

enteripg segment j, Then during a tidal period z the 

fresh water volume eqtering segment j is 

that: 

It will be assumed 

j 

2. Asswing 
'j 

q.z < v J - j  

the proportion of water left in the jth segment is 1 - qi"/vi 
J J 

a d  a proportion q.-c/v moves tc segment j + 1. Haace 
J j  

let: 

J 

d 

For all other elements in column j: 

For j = N, the last segment, let; 

and 

.(28a> 'i9N = o  

Define 

elemeats tij. It is a function of the vector q with com- 

ponents qi, the fresh water flow rates, 

- _  T(q), the translation matrix, to be the matrix of - 
- 
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The definition of -- T(q) is easily extended for the case - 
when equation (25) is not satisfied, 

The edge condition which has been assumed at segment N, 
is that no fresh water leaves segment 8 by translation. 

Although this condition is not physically justifiable it is 

made in order that: 

N 
tl 

= 1  L 'kj 
k=1 

j = l,*.., N 

'This equation is also satisfied by pij. 

transfer of water, and hence, salt, either out of or intq 
the finite length of the estuary being analyzed by either 

the tidal mixing or the fresh water flow. 

fication of the actual boundary condi6ion which should be 

applied at segment N. As a practical matter, it will be 

shown in Appendix I that if segment is at a paint far 

enough downstream so that the salinity concentration is at 

the ocean value, then this simplificatjian is of no moment, 

The inclusion of a realistic boundary- condition would corn- 

plicate the analysis considerably since the matrices would 

no longer be transition probability matrices. 

aence there is no 

This is a ximpli- 

TJ 

The composite effect of tidal mixing and fresh water 

flow will be given by the mixing process: 

That is, the water is translated first by 

mixed by tidal action. 

and, as remarked earlier, 

T(q) and then - - 
These processes occur simultaneously 

_P should be given, as a function - 
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of - - P = - g(S_>. 
the dependence of - P on - q is given by: 

- 4, that is It is hypoi&es;ized therefore that 

- 

The expression for the law of conservatjion of salt at 

steady qtate follows from an argument which is identical to 

that of the preceding theorem. The result is that for an 

equilibrium salinity distribution, sv, at a fresh water 

flow q, it must be true that : 
- 

c 

i where sv is the vector with compoQents (si," ) and s 

is the concentration of' salt in segment i. Since W(Q 

is the transition probability matrix which affects the sa- 

i 

-- 

linity distribution, this theorem staceg that the distribu- 

tion gv is the equilibrium distribution of the Markov 

chain -- PT(3). Furthermore, for any given salinity distrli? 

bution sv(nz) at high water slack time nz, and for a 

fresh water flow rate sn during the subsequent tidal cy- 
cle, the resultiq salinity distribution sv[ (n+l>al is 

given by 

-- 
- 

7 

PT(q ) sv(ga) = sv[(n+l)rcl . - (33) -- ---n - 
Hence the three conservation laws require that the fol- 

lowi,ulg three equations be satisfied: 

(34) C pkj 
N 

= 1  j = 1, ..., N 
k=1 

Pv = v -_ - - (35) 

sv (3 6 4  -- -- W q Z  = - 



or 

Equation (3 6%) applies if the available salinity distribu- 

tion is an equilibrium distribution. whereas equation (3 6b) 
applies for any two successive distributions. 

can be averaged over all the available salinity data in or- 

der to give more statistically reliable coefficients in 

Equatiop (36b) 

the equation. 

Together equations (34), (35) and (36) specify 3N linear 
constraints vhich the rJ by N matrix P must satisfy. 

However for N > 3, N2 > 3N. Therefore there are mQre un- 
known pij’s than there are linear equations (34), (35) and 

(36). Hence there are an infinite number of possible so- 
lutions - P which satisfy the conservation laws. me prob- 

Lem which must be solved is which of these matrices is most 

appropriate. 

- - 

- 

In this context, Preddy’s solution of this problem in- 
volved limiting the number of unknowns to 3N by specifying 

a priori the structure of the matrix P. He assumes that 

the jth column of P is given in terms of two unknowns a 
- - - - 

j - - 
and 5: 

for j >.i, li - j J  < L 
j 
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for i = j 

= o  Pij 

is the distance where I;. is aiso specified a priori. 

over which the one cycle distribution extends upstream and 

dowrwtrew from segaent j. Equation (34) has been satis- 

fied by the definition of pij. Equations (35) and (36) 

are then used to solve for the a’s and B.>s. 

Lj - 3 

j J 
The difficulty with this solution is the arbitrary na- 

ture of the asq-cunptions used to make the problem so1vqbJ.e. 

In the next chapter a more rational approach will be 
presented which ba$es the choice of P from the infinity 

of possibilities on the maximum entropy principle of in- 

forraation theory and statistical mechanics. 

- - 



CIIAPTE? IV 

THE W1I1VIITM ENTROPY ESTIMATE OF THE MIXJXG YATRIX 

In this chapter the maximum entropy estimate of the 

The use of the maximum en- mixi% matrix will be discussed. 

tropy estimate of a discrete probability distribution has been 

justified by Jaynes '381 in terms of a subjective interpreta- 

tion, of the concept of probability, 

ideas to problems in statistical estimation theory [391 and to 
conceptual problems in statistical mechanics. [40 The appli- 

cation of the maximum entropy estimate to Markov chains in 

general and to mixing processes has not previously been at- 

tempted * 

He has applied these 

IV-A Statistical Mechanics and the Maximum Entropy Estimate 

In order to arrive at a more acceptable theory of 

tidal mixiw in estuaries, the choice of the mixing matrix P - - 
must be based on some rational estimation procedure. 

timation problem may be stated in geometrical terms. 
are N unknown pij to be determined. A particular value of 

The es- 

There 
2 

2 these N 2 unknowns can be thought of as a point in N dimen- 

sional Euclidean space. 

cube since each p is bounded between 0 and 1. However, the 

conservation laws specify 3N independent linear constraints. 

This point is within a unit hyper- 

ij 
. 

Hence the admissible pij's are restricted to a N 2 - 3N dimen- 
sional linear manifold of the N 2 dimensional space. Within 

-29- 
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this magifold there is no a priori reason to prefer one point 

over another. Hence a reasonable procedure is to take the 
- 

average value of all the P’s in the linear manifold giving 

equal weight to each point. The resulting average P sat- 

isfies the requirements of the conservation laws and it does 

not have any property that is not shared by the majority of 

all the possible processes. 

=: 

= 

Another reasonable way to estimate P is to find . - - 
the most probable P in the linear manifold. - - 

Both these calculations can be carried out for a 

simplified situation and the results of the analysis of the 

siiyplified situation will point to a technique which can be 

generalized to include situations where the probabilities are 

specified by a Markov chain. 

Consider the following situation: at high water 
slack M particles of dye are introduced into a particular 

segment k of the estuary. This segment is thought of as 

fixed. At the next high water slack only the first moment 

abaut the midpoint of segment k of the resultiw distribu- 

tion is measured. 

distribution consistent with this data. 

plicity, only the tidal action will be considered. As before, 

let p 

The problem is to find the most probable 

For the sake of sim- 

be the proportion of water and hence dye that is ik 
transfered to segment i from segment k. Let mi be the 

number of dye particles that are trarsfered segment i from 

segment k. Hence pik is given by‘: 
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The law of conservation of water and therefore of dye re- 

quires that: 

m i = M  . 
(37) f i d  

The available data is the first moment of the one cycle dis- 

tribution function about the midpoint of segment k and is 

denoted by %,, that is: 

N 

i=1 
C r n  i 

The other conservation laws (equations (35) and (36)) are 

also neglected for the sake of siqplicity. 

Following Jaynes, [413 the method of Bh%ltzmann will 
3 

be applied to find the most probable distribution {mil. 

zlder all the possible arrangements of the M particles of 

dye in the N s 

to any segment 1 through 

segment 1 through M, and so on up to particle M. There 

are 

Con- 

N, particle number 2 can go to any 

N M such possible arrangements of M particles in the 
N states. Each of these N M arrangements corresponds to a 

fiual distribution of particles, ml, m2>.*., m,. However, 
many different arrangements of the M particles can result 

in the same final distribution since the particles are in- 
distinguishable. For example, the distribution ml = M/2, 

can occur if particles 1 
"*' mN = g.~h = M/2, m3' "4' 

through M/2 go to segment 1, and particles M/2 +. 1 through 

M $go to segment 2; or vice verse; or if odd numbered 
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particles go to segment 1 and even numbered particles go to 

segment 2, and so on. In fact, if WCmi3 is the nwber of 

ways M particles can be distributed in N segments, with 

mi particles in segment i, 

natorial argument: 

i = l,..., N, then by a combi- 

( 3 9 )  

There is no a priori reason for favoring any one of - 
M the N possible arrangements of particles except that the 

resulting distribution must satisfy equations (37) and (38). 

Within thPs subset of arrangements, then, each possible ar- 

rangement has an equal probability of occurring. 

probable distribution Emi) is that which is realized by the 

greatest number of possible arrangemepts. 

cause tki 

The most 

This is true be- 

L sum 

o$i.?;he probabilities of all the arrargements which result in 

this distribution. 

distribution W.lmil must be maximized subject to two con- 

straints specified by equations (37) and (38). 

1/M log W is equivalent to maximizing TnT since the logarithm 

is a monotonic function. The logarithm is chosen in order 

that Sterling’s approximation for the factorial can be em- 

ployed. 

yields: 

Hence, in order to find the most probable 

Maximizing 

Using Sterling’s approximation and equation (37) 
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i m - log - 
M M 

N 

i=l 

as M 4  00. 

maximizing 

So the mast probable distribution is found by 

N 

subject to the constraints: 

where the 

(36), and the subscript k has been dropped since k is 

fixed in this illustration. 

mi have been replaced by pi according to equation 

The constraints can be inborporated into the theory 

of maxima and minima using the Lagrange multipliers h and 

w. Hence firlding the unconstrained maximum of: 

N N 
(44) -1 Pi log Pi - A I  Pi - IJ- f li - klPi 

i=1 i=1 i=l 

by taking the partial derivative with respect to pi gives: 
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(45) 

when A' = X - 1. The Lagrange multipliers are evaluated 

using the constraint equations (42) and (43). 

nRT 

The resulting 

which account for the first moment which was observed. 

pi's are the most probable mixing parameters 

It is interesting to note that the most probable 

distribution can be found by maximizing the function 

- 2? log pi subject to the appropriate constraints. 

This function is known as the entropy of $he distribution 

{pi?. merefore, within the context of this illustration, 

the constrained maximum entropy estimate is the most probable 

distribution consistent with the available data. 

i = ~  Pi 

Another technique which is used in statistical 

mechanics and which leads to the same results as the method 

of Boltzrnawn is the Darwin-Fowler method. r423 

finding the most probable distribution as M 4  M? the Darwin- 

Fowler method can be used to compute the average distribution 

over all the possible distributions. 

tribution 

Hence the avepage value of m denoted by < m. > s  is given 

Instead of 

For a particular dis- 

WEmil is the number of ways it can occur. Erni?, 

j' J 
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C' wImiI 
{mi I 

where the primed summation indicates that the sum is taken 

Over only those distributions {mil which satisfy the con- 

straints, equations (42) and (43). The results of the cal- 

culation show that the average over all possible distribu- 

tions is the same as the most probable distribution, equa- 

tion (45), as M 4  a. The variance of m can also be 

calculated. The result, in terms of p is that: 
j 

j 

(49) < p j 3 z < p j >  2 2 = "j[,.o(;)] . 
M 

Hence the variance of 

the variance of p is 

the probability of the 
j 

p. also goes to zero as M 4 CO. That 

small for the large M indicates that 

observed results having been produced 

J 

by a dis6ribution other than {p.] is very small. J 
Hence, for this illustration, a second interpreta- 

tion of the maximum entropy estimate is given by the Darwin- 

Fowler method: 

bution {pi] is the average of all the distributions consistent 

with the constraints. 

the maximum entropy estimate of the distri- 

Therefore for this simple ease, when only a simple 

discrete probability distribution {pi? is considered, the 

average distribution over themanifold and the most probable 

distribution in the manifold can be calculated. 

distribution is the maximum entropy estimate consistent with 

The resulting 
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the constrahts. 

Markov chains, the meaning of the entropy of a probability 

In order to generalize this result to 

distribution must be understood. 

next sectton. 

This is considered in the 

IV-B Information Theory and the Maximum Entropy Estimate 

Another poivlt of view may be adopted as to which 

- P 
desirable P would be the one which is "maximally non- 

committal with regard to missing information. 1'[431 In other 

word? the P with the most random character possible, with- 

in 6he limitations of what information is available, is the 

most acceptable choice. What is needed, therefore, is a 

measure of the "amount of uncertainty" or the randomness 

represented by a mixing process. 

to choose from the infinity of possibilities, The most - 
- - 

- - 

Suppose a mixing process tends to smooth out irregu- 

lmities and does not favor any particular segment too strong- 

ly over any other segment. 

ever initial distribution it mixes. 

if after one tidal cycle the water from any segment is dis- 

tributed uniformly over all the segments, then this process 

has no preference for any segments. Hence it behaves in an 

Then it tends to randomize what- 

In the extreme cases 

entirely random fashion and the measure of its randomness 

should be the highest possible. 

On the other hand, suppose a mixirg process leaves 

everythipg unchanged. 

the tidal cycle as before. 

damize the initial distribution at all. 

The distribution is the same after 

Th$n this process does not ran- 

In fact, this process 
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behaves in a deterministic way. There is no randomness 

associated with the process since the outcome is certain: 

all the water will end up in the same segments from which 

it started. In fact, any mixing process which just trans- 

fers the entire contents of a state into another state is 

a deterministic process. Therefore the measure of the 

randomness of such prwesses should be zero. 

?"ne problem of the appropriate measure for the 

mount of uncertainty represented by a discrete probability 

distribution 

result is the entropy H of the probability distribution 

{pi} was solved by Shanron (1948). [441 me 

vhere : 

U Q >  

N 
H = -1 pi log pi 

i=l 

In the ease of a Markov chain, the entropy can be defined in 
for a particle initially in segment j, the followiw way: 

.the probability distribution that is expected after one tidal 

E45 1 

cycle is {p+ .I a =J Hence the .entropy of this distribution is: 

N v 
H. = -L pij log pij e J 

i=1 

However, the probability of a particle being in segment j 

to begin with is the equilibrium probability of the 

ment. This supposes that the chain is in equilibrium, i.e., 

jth seg- 

-- 
that the mixing process has been operating for a long time. 

Fortunately, one of the conservation laws, equation (2h-), 

specifies that the equilibrium distribution of the Markov 
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chain must be proportional to the volume distribution 

Therefore the entropy of the entire process can be defined 

as the average of H. taken over the s9gment j from which 

the particle starts, weighted by the probability that a 

particle is there to begin with. That is the entropy H 

E. 

J 

of the Markov chain is defined as: - 

N 
c? 

is the normqlized volume. 
j 

where v ' 

Since the entropy of a Markov chain is a measure of 

the ril.ndomness of the mixing process it describes, a reason- 

able choice for the mixing process in an estuary is the pro- 

cess which has the maximum entropy among all those that sat- 

isfy the conservation laws. The maximum entropy estimate 

tends to favor the most random rhixing possible consistent 

with the available data. None of the mhing parameters are 

set to zero a priori. In fact the maximum entropy estimate 

tends to choose the broadest one cycle distribution functions 

consistent with the data. 

- 

As an illustration of the type of processes which a 

maximum entropy estimate produces, consider the maximum en- 

tropy mixing process which satisfies only the law of conser- 

vation of water, equation (12): 
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N 
tl 

(54) = 1, *ij 
i=1 

The maximum entropy estimate constrained by this requirement 

is found by introducing the Lagrange multipliers 

maximizing 

X. and J 

with respect to pij. The result is: 
A, 

Evaluating the 

mun antropy mixing process is: 

X. using equation (54), the resultirg maxi- J 

(57) 1 

N 
- - -  Pi j 

This process distributes the water from segment j uniformly 

over 311 the segments in one tidal cycle. 

which was suggested previously as the most random process 

It is the process 

possible. However this process violates the law of eonxerva- 

tion of estuary geometry since the equilibrium distribution 

of this chain is a uniform volume distribution and the estuary 

may not be of such a form. 

As a second illustration of a maximum entropy process, 

consider the maximum entropy process which satisfies both con- 

servation of water and the conservation of the estusry geome- 

try, equations (12) and (23): 
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(59) 

Introducing 

maximizing: 

v = v  i = 1, ..., N L pij j i 
j -1 

the &grange multipliers h and pi and j 

with respect to pij, yields the maximum entropy estimate: 

where h ' = h./v.+ 1. Evaluating the X ' and pi using 

the constraining equations (58) and (59) yields: 
j j J J  

It is interesting to note that the pij's which result are 

not functions of j. Hence no matter what segment j is 

considered after one tidal cycle the water in segment 

distributed in proportion to the volume of the estuary. 

This mixing process tends to favor those segments with larger 

volumes, but only to the extent required to maintain the geo- 

metry of the water in the estuary. 

j is 



Now consider the composite process PT(q). For any 

sv, the resulting mass of 

after one tidal cycle is found by multi- 

-- -- 
initial distribution of salt mass 

salt in segment 

plying sv by _pT(q_) . Using pij as given by equation (62), 

and denotirg the kth cmmponent of gy by (sv)~, the mass 

of salt in segment i is fowd to be: 

i 

-- - 

ra 
N r-- i V 

~ ~- 

N 
Q =1 Va 

L 
k=1 

k=1 
N 
c v  
a =1 Q 

since by equation (29): 

f tjk = 1 .  
j =1 

The concentration of salt in segment 

the mass of salt in segment 

of segment i. Hence, the concentration of salt in segment 

i 

i is found by dividirg 

i, equation (63), by the volume 

after one tidal cycle is: 
N 
k=1 

(SV)k 
total salt mass in the estuary 
total volume of water in the estuary 

- - 
N 

R=l 

(65) 

Va 

That is, the concentration of salt in any segment i, i = l j O a . ?  

N, of the estuary is uniform. 
predicts a uniform concentration oT salt in the estuary re- 

gardless of fresh water flow or initial distribution. 

So the maximum entropy process 

This is a perfectly plausible result since any other 

distribution tends to favor some segment over the other seg- 

L '  :;? , 
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ments and there is no information in the two conservation laws 

which would lead one to believe that a more specific, i.e., -- 
less uncertain, mixing process is actually the case. 

The situation of practical interest is, of course, 

the maximum entropy estimate constrained by the three conser- 

vation laws in which the information contained in the actually 

observed salinity distributions is incorporated into the max- 

imum entropy estimate. 

the next section. 

This situation will be considered in 

Solution. 

The three conservation laws, equations (341, (35) and 

(36), represent the information which will be ini:eorpor&ted into 

the maximum entropy estimate, For the sake of definiteness 

the equilibrium version of the law of conservation of salt, 

equation (36a), will be used. 

consider these equations in component f&m: 

It will be more convenient to 

N 
7 L piJ = 
i=1 

v = v  L pij j i 
j =1 

j = l,e..7 N 

i = l J o e o 7  N 

Define the vector r with components Y as: 
j - 
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Then - y is the result of translating the salinity vector sv 

by Tgq) Hence equation (68) becomes: - 

The maximum entropy estimate of 2 subject to the 3N linear 

constraints, equations (661, (67) and (70) is found by maxi- 

mizing the following expression with respect to pi; : 

The A.?S, vi's and v 's are the Lagrange Multipliers for 

the constraining equations (66) 

Hence the maximum entropy estimate of p is: 

J i 
(67) and (70) respectively. 

ij 

-v i j  Y ' 
? (72) pij = xj Pi' e 

where 

(73) 

(74) 

(75) ' = rj/vj a 5 Y 
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The Lagrange multipliers are determined from the constraint 

equations (66), (67) and (70) e 

-v.y 

i (77) f xjpivj e i j  = V 
j =1 

j = 1, ..., IV 

i = 1, ..., N 

for con- where the prime has been dropped from h ' and p ' 

venience. These equations are a set of simultaneous trans- 

cendental equations in the 3N unknowns X pi and v for 

which no general solution is known. 
nique must be devised in order to proceed to a solution. 

j j 

j' i 
Hence a numerical tech- 

Fortunately these equations are not as strongly 

coupled as they appear to be. Equation (77) can be solved 

for pi directly. 

(7 9) 
", I P, = 

Substituting this expression into equation (78) yields: 



HQwever the denominator of each factor is not a function of 

the index j so it may be factored out, giving: 

or coL1ectin.g like terms: 

-v.r ' N 
(82) 1 X.[v.r - ( s v ) ~  v.le L j  = o ,  i = I,*-., N. J l j  J 

j 4 

The secorld set of N equations is obtained by substituting 

equation (79) into equation (76). 

j = l,*.., N. 

Unfortm@teLy the denominator of each term in the summation 

is a function of the summation index i so no further sim- 

plificakion is possible. 

duced to solving 2D simultaneous transcendental equations, 

eqwtions (82) and (83)> which is still- a very difflEcult 

Therefore the problem has been re- 

numerical problem. 

However, the set of N equations, equation (82), 

has 9x1 important property: 

all the h 's since the summation is on j, each equation 

linvolves only one v 
could be computed by a simple numerical technique. 

although each equation involves 

j 
If the h.'s were known, then each vi 

i J 
This ob- 

servation leads to the foLlowing algorithm for solving the 

3N simultaneous equations. For an assumed set of values for 



-4 6- 

the J 
equation (82). 

h . ’ ~ ,  first Solve for each vi, one at a time, using 

This m w t  easily is accomplished using the 

newton rootffinding algorithm. ‘461 Second? compute the pi’s 

u x i ~  equation (79) ; and third, compute the hi’s implied by 
d 

these value of vi and vi usiq equation (76), i.e., -- 

Wich these values of h. start the process again. J 
m i s  iteration technique has been tried with several 

sets of data and the convergence is surprisingly rapid. For 

example, the avepage computation time needed on an SBM 7094 

Computer to achieve six place eicouracy for an eleven segment 

problem (N = 11) was less than one minute. 

It is interesting to note that the numerical solu- 

tion of these 3N simultaneous transcendental equations on a 

copputer is not much more difficult than solving the 3N simui- 

taneous linear equations which result from Preddy’s approach. 

Also the prQblem of satisfying the constraint p > o does 

not arise in a maximum entropy- estimate, ‘471 whereas it can 
be a problem in Preddy’s method. r29 

enkropy estimate of the mixing matrix is a more satisfactory 

solution to the problem of estJmating P from both theoreti- 

tal and computational points of view. 

ij - 
Therefore the maximum 

- 

In the next chapter a set of salinity intrusion 

The most data from the Delaware River Model is analyzed. 

iptaresking aspect of this analysis is the resulting maximum 

eritrapy mixing process. 



CHAPTER V 

jYtJMEEIC& RESULTS OF A MAXIMUM ENTROPY ESTIMATE 

In 'chis chapter the maximum entropy estimate of the 
mixipg process in the Delaware River Model is calculated. 

The resylting mixing process is used to calculate equilibrium 

salinity distributions. These theoretical predictions are 

compared with the observed data. 

V-A The Data Requirements 

The maximum entropy estimate of the mixing process in 

an estuary can be calculated using various types of salinity 

or dye dispersion data. So l o x  as enough data is available 

to establish reliable coefficients for equations (341, -(35) 

and (361, the maximum entropy estimate can be successfully 
calculated. In this respect the data requirements of the 

theory of maximum entropy mixing are much more lenient than 

the requipements of the theories of salinity intrusion based 

on the convective diffusion equation. ?"ne theories based on 

the convective diffusion equation require an equilibrium dis- 

tribution in order to calculate the longitudinal dispersion 

G oef f ic ient , 

commadate distributions collected during a period of varyi-x 

fresh water Flow. This is an important practical advantage 

since field data is usually collected during a period when 

47 

whereas the maximum entropy estimate can ac- [48 1 
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the hydrograph of the estuary is varying and the salinity 

distributions which are observed are not the equilibrium 
distributions. [49 1 

The maximum entropy mixing theory, as well as the 

theories which are based on the convective diffusion eyua- 

tions, can be used to analyze a limited region of the estuary 

if the available salinity data is limited to this region. 

The mixing matrix for this region can be determined; however, 

it is only possible to predict the salinity distribution in 

this region up to a normalization constant. If, however, a 

spatial distribution of salinity is available which extends 

from the upstream limit of the region of interest to a point 

downstream where the ocean value of salinity is maintained, 

then the arbitrary constant is accounted for by using the 

ocean value of salinity as a boundary condition. This is 

the preferable procedure since the value of the salinity con- 

centration in each segment can be calculated. 

V-B The Delaware River Model Data 

For the first trial of the rnaximbnin entropy mixing theory, 

a set of salinity intrusion data which was obtained from a hy- 

draulic model of an estuary is used. 

tained under controlled conditions, a more critical evaluation 

of the maxlmum entropy hypothesis is possible. 

not obscured by the difficulties which are often encouzntered 

in the use of field data. 

tance is used as a measure of the salinity of the estuary- 

water, a relationship between specific conductance and salinity 

Since this data is ob- 

The results are 

For example, if the specific conduc- 
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must be used to obtain the salinity distributions. 

industrial pollutants can contribute dissolved solids which 

affect the specific conductance and their presence must be 

taken into account by specifying their origin and rate of 

entry into the estuary. 
it has been assumed in the preceding formulations that the 

only siginficant source of salinity or, in this case, dis- 

solved solids, is the ocean water at the mouth of the estu- 

ary. 
estuary, this condition can be satisfied exactly. 

However, 

This complicates the analysis since 

In the case of the data from a hydraulic model of an 

The data chosen for this analysis was collected during 

salinity tests of the Delaware River Model at the Waterways 

Experiment Station. 

fresh water discharges of 5000, 7000, 9000, 10,600, 13,000 

and 16,475 cubic feet per second (cfs). 

salirlity distributions at the high water slack time were re- 

corded at surface, mid-depth and bottom. 

represented the averaged results of not Less than two identical 

tests. 

Six tests were conducted at sustained 

The equ.ilibriwn 

The data reported 

For each value of the fresh water discharge, the spa- 

tial distribution was obtained alopg the center-line of the 

channel. 

tion 350, the Ship John Shoal Light. 

1000 feet apart starting from cha-urnel station o at Allegheny 

Avenue, Philadelphia and increasing downstream'o 

in the downstream protion of the estuary the salinity was re- 

corded only at channel stations 350, 

The seaward limit of the sampling was channel sta- 

The charnel stations are 

Unfortunately 

275 and 250. Hence if 
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this region is included in the analysis, the miss- data 

'must be accounted for by interpolation since the salinity 

variation is considerable in this region. 

whUe procedure to follow if channel station 350 can be 

vsed as the ocean end of the estuary. However, the value 

of salinity at channel station 350 does not remain a con- 

atant thropghout the six tests but decreases from a high 

of about 12,000 parts per million of chloride (ppm) at 

g 7 5000 cfs to a low of about 11,000 ppm at 

Hence the data does not extend far enough seaward to permit 

This is a worth- 

q, = 16,475 cfs. 

tbe use of a fixed value of salinity as a boundary condition 

at the furthest downstream segment. 

that most of the data between channel stations 250 and 350 

would have to be interpolated using only the data available 

at three stations, the downstream limit of the analysis is 

chQsen to be channel station 250. 

In view of the fact 

At the upstream end of the estuary, the data for the 

six tests is complete only to to channel station 150 although 

bottom sampling was continued further upstream. 

dlme;l.l$ianal analysis, the average salinity over the vertical 

direction is usually taken as the value of the salinity at a 

pwticular station. 

sis is chosen to be channel station 150. 

For a one- 

Hence the upstream limit of the analy- 

!?he salinity data 

presented in Figures 4 through 9 for surface, mid-depth, and 

bottom samples indicate that the Delaware River Model is 

only slightly stratified. 

The only other data required is the cross sectional 

This data was obtained from the U.S, area of the estuary. 
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kmy Corps of Engineers survey of 6he Dehware River Estu- 

The estuary is divided into eleven segments each of 

wh$c]n is 10zQOO feet i4 length. The centers of the segments 

aye at ehe charnel stations 150 to 250 inclusive. The vol- 

w e  of e$ch segment is computed from a graphical integration 
of the cross sectional area data. An eighth order polynomial 

is fit by a, least mean square technique and the integral of 

this polynomial is used to determine the volume of the seg- 
ments. This techigue serves to smooth the data as well as 

pxqvi(iin.g the integral in a straightfornard way. A plot of 
the Cross sectional area and the fitted polynomial is given 

in Figure 1. The calculated volumes are listed in Table 1. 

The vQ1wes of these segments are large enough so that the 

condition on the elements of the translation matrix, T(q), -- - 
givap by equation (25) is satisfied for q = 16,475 cfs. 

The values of t and tj+12j for q = 5000 cfs and q = j,j 
16,475 cfs are listed in Table 2. 

hoyrs aqd 25 mirlutes, '52 

tween successive high water slack samples. 

The tidal period is 12 

and this is the time interval be- 

The equilibrium concentration of salinity in each seg- 

mept 1s necessary if the distribution is to be used in the 

rnaximwa entropy estimate. The missirg values are obtained 

by a least mean square polynomial interpolation of the exist- 

j,ng data. The interpolated data is listed in Table 3. 

This completes the preliminary data analysis of the 

cross sectional area data and the salinity distributions. 
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TABLE 1 

VOLUMES OF THE SEGMENTS 

Segment 

Number j 

1 
2 
3 
4 
5 
6 
7 
8 
9 

- __ 10 
11 - - -- - 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Center Channel 
Station 

(1000 ft.) 

150 
160 
170 
180 
190 
200 
2 10 
220 
230 
240 
250 

Volume 
(cubic ft, x 109) 

TABLE 2 

THE ELEMENTS OF THE TRANSLATION MATRIX T(a) - 

- 
1.501 
1.548 
1.575 
1.612 
1.680 
1,765 
1,877 
2.006 
2.130 
2.260 
2.414 

. ’ . .8511 
.8554 
.8581 
.8613 
8 669 
.8734 
.8809 
.8885 
.8951 
.go11 
1.0000 

,1489 
.1446 
.1419 
.1387 
.1331 
.1266 
.1191 
.1115 
.lo49 
.0989 -- 

.SO93 

.5234 

.532 1 
“5429 
.5615 
.5826 
.6076 
.6328 
,6542 

o 674 P 
1 .. 0000 

.4907 
,4766 
,4678 
.4571 
.4385 
.4174 
“3924 
-3672 
.3458 
.3259 



-54- 

TABLE 3 

Channel 
Statiop 
(;1000 ft.) 

250 
240 
230 
220 
210 
200 
190 
180 
170 
160 
150 

q = 5000 cfs 

5730 
5200 
4760 
4400 
4000 
3580 
3100 
2650 

2250 
1910 
1650 

INTERPOLATED SALINITY DATA 

DELAWARE RIVER MODEL .- HIGH WATER SLACK 

Salinity (ppm - chlorine) 

4 = 7000 cfs q = 9GOO cfs q = 10,600 cfs q = 13,000 cfs q =- 16,475 I 

5700 
5120 
4600 
4100 
3630 
3150 
2650 
2200 
1800 
1460 
1220 

5 180 
4770 
4300 
3820 
3300 
2800 
2300 
1830 
1400 
1080 
83 0 

5050 
4400 
3850 
3250 
2750 
2250 
1800 - 
1360 
1000 
700 
480 

4500 
3800 
3300 
2810 
2330 
1830 
1360 
970 
650 
380 

230 

4760 
3950 
3200 
2600 
2 PO0 
1630 
1170 
750 
410 
180 
80 
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In the next section the maximum entropy estimate of the 
lnixing process which is based on this data is analyzed 

and the theoretical predictions of the equilibrium salini- 

ty distributions are compared to the data. 

V-C The Maximum Entropy Estimate of the Mixing Process 

The Delaware River Model data consists of six equi- 

librium salinity distributions which occur at six different 

fresh water flows. 

mixing theory, the estimate is based on only one of these 

six distributions. Then the remaining five salinity dis- 

In order to test the maximum entropy 

tributions are cornpared to the theoretical predictions 

based on the estimated mixing process. 

data can be used as a test of the ability of the maximum 

entropy mixing theory to predict equilibrium salinity dis- 

tributions at different fresh water flows. 

In this way the 

If all the data is used in the maximum entropy- esti- 
mate, then there is no independent data which can be used 

as a check on the theory. 

Two separate calculations of this type are presented. 

The first estimate of the mixing procegs is based on the 

equilibrium distribution at q = 5000 cfs. The maximum en- 

tropy estimate of the mixing matrix is presented in Table 4. 

The one cycle distribution functions, which are the columns 

of the mixing matrix, are plotted in Figure 2. 

distribution from the segment j is the maximum entropy 

estimate of the proportion of the water from segment 

The one cycle 

j 



TABLE 4 

i 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Pi1 

0.5913 
0.2939 
0.0939 
0.0182 
0.0025 
0.0002 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

pi2 

0.2707 
0.3437 
0.2494 
0,1040 
0.0273 
0 0043 
0.0006 
0.0000 
0 ~ 0000 
0.0000 
0.0000 

i pi7 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

0.0000 
0.0000 
0.0017 
0.0192 
0.0910 
0.2110 
0.2681 
0.2161 
0.1275 
0.0536 
0.0117 

Pi8 

0.0000 
0.0000 
0.0001 
0.0031 
0.0261 
0.1019 
0.2040 
0.2593 
0.2240 
0,1361 
0.0454 

FROM THE DATA AT g = 5000 cfs 

pi3 Pi4 Pi5 

0.11036 
0 2478 
0.3131 
0.2189 
0.0904 
0 0219 
0.0039 
0 0004 
0.0000 
0.0000 
0.0000 

Pi9 

0.0000 

0.0000 
0.0000 
0.0005 
0.0061 
0.0385 
0.1163 
0.2231 
0.2723 
0.2306 
0.1126 

0.0185 
0.0955 
0.2366 
0.3099 
0.2207 
0,0889 
0.0248 
0,0044 
0,0007 
0.0000 
0.0000 

b,lO 

0.0000 
0.0000 
0.0000 
0.0000 
0 0008 
0.0089 
0.0439 
0.1370 
0.2516 
0.31156 
0 2421 

0.0013 
0.0162 
0.0864 
0.2312 
0,3068 
0 2197 
0. 1005 
0.0291 
0.0074 
0.0013 
0.0001 

Pi,11 

0 ~ 0000 
0.0000 
0.0000 
0.0000 
0.0000 
0 Or301 
0.0016 
0 0168 
0.0835 
0.2722 
0.6258 

pi6 

0 0001 
0.0012 
0.0145 
0.0836 
0.2167 
0 2878 
0.2256 
0.1121 
0.0440 
0.0125 
0.0018 
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which is transferred to all the other segments during one 

tidal cycle. 

which reamins in segment I after one tidal cycle is 0.5913; 

and 

segment 3 from segment 1 is 0,Og39. 

For example, p,,, the proportion of water 

p31' the proportion of water which is transferred to 

The estimates of these distributions have two im- 

portant properties in comono First, more water remains 

in the segment from which it originated then is transferred 

to any other segment. And seconds the transfer of water 

to any of the segments more than four segments away, i.e., 

40,000 feet, from the origin of the water is negligibly 

small. 

that the tidal action is basically oscillatory. 

ing the effect of the fresh water flow, the water which 

flows out on the ebb tide flows back on the flood tide to 

approximately where it began. However, it is known that 

dispersion also takes place and not all the water returns 

to exactly the point from which it originated, 

that naturally arises is how far from the polnt that it 

originated can the water be reasonably expected to disperse. 

The first property agrees with the intuitive notion 

Disregard- 

The question 

The basic mechanism of dispersion in open channel 

flow involves the nonuniform velocity distribution as well 

as the turbulent eddy diffusion, '539541 Hences itt is con- 

ceivable that some water travels seaward during the ebb tide 

and remains there in a region of low velocity during the 

flood tide, And similarly, some water remains in a region 

of low velocit,y during the ebb tide and then may be pushed 
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back from its origin during the flood tide. The maximum 

downstream distance that water can travel in this way can 

be computed approximately by integrating the tidal veloci- 

ty over the time of the ebb tide. The upstream distance 

is similarly computed by integrating the tidal velocity 

over the time of the flood tide, This calculation assumes 

that the velocity profiles are the same over the distances 

involved. 

The tidal velocity data for channel station 315 is 

plotted in Figure 3. c553 An eighth order polynomial is fit 

Lo the data and the lengths are calculated by integrating 

the positive and negative portions of this interpolating 

polynomial. The results are that the maximum downstream 

tidal, excursion le-ngth is approximately 39,000 feet and 

the maximum upstream tidal excursion length is approximately 

45,000 feet. 

these lengths at the Burlington-Bristol Bridge, channel 

station -81, as 42,200 feet downstream and 32,000 feet up- 

stream as an average of the four days data reported. Also 

for the Delaware MemoriaL Bridge, charnel station 180, the 

Some prototype data is available which gives 

downstream length is 49,200 feet and the upstream length is 
62,600 feet for one day of data. C56 1 

These values indicate that if any dispersion is pre- 

dieted to take place upstream or downstream over distances 

of greater than approximately 40,000 to 50,000 feet, then 

the predictions are not in accord with the maximum distances 

which are physically possible a 
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The maximum entropy estimates of the one cycle dis- 

tributions of the water are all contained within four seg- 

ments, or 40,000 feet of the origin of the water. 

the estimated mixing process is physically realistic from 

this point of view. 

Hence 

It is interesting to note that the value of maximum 

length over which dispersion can occur is assumed a priori 

in Preddy's theory of estuarine mixing. Although as argued 

above this length is related to the maximum tidal excursion 

distance, its actual value is unknown and Preddy is forced 

to assume its value in order to proceed with his calcula- 

tion. 

process! predicts the maximum length over which dispersion 

- 

However, the maximum entropy estimate of the mixing 

can occur. And, as remarked above, the predicted le 

is within the bounds set by the m x i m m  tidal excurslon 

lengths * 

The equilibrium salinity distributions f w  fresh 

water flow rates of 5008, 980Q, 9000, 10,600, 13,000 and 

16,475 cfs which are predicted by the maximum entropy esti- 

mate and the corresponding Delaware River Model data are 

platted In Figures 4 through 9. 
constant is determined by using the following procedure, 

Far each equillbrim salinity distribution, the values of 
the salinity in each segment are determined fs~orn the inter- 

polating polynomial and their swn is obtained. 

theoretical. prediction is normalized so that the sum of the 

values of the predicted salinity agrees with the sum of the 

interpolated salinity data. 

The arbitrary normalization 

Then the 

Hence the salinity data at 
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each fresh water flow rate is used to obtain the normaliza- 

tion constant for the theoretical prediction. 

tent, therefore, the prediction at. each fresh water flow 

To this ex- 

rate is dependent on the actual data. This is the unfor- 

tunate consequence of not havi-w salinity distribution 

which extend far enough downstream. 

The resulti-ng theoretical predictions agree rather 

well with the observed data, although there are some dis- 

crepancies at the higher fresh water flows. This can be 

attributed to the fact that the data at 

is used in the estimate is mostly interpolated data. 

can be seen in Figure 4. 

of course, the values of the interpolating polynomial used 

in the estimate. The estimate based on the lowest fresh 

water rate available is computed in the hope that the non- 

linear effects of the density current mixing wmld be notice- 

able. c571 

and the data would increase at higher fresh water flow rates. 

This would indicate that the mixing matrix is a function of 

the salinity concentration. However the deviations between 

the theory and the data do not indicate any sizeable dis- 

crepency which could be attributed to this phenomena, 

q = 5000 cfs which 
This 

The theoretical values shown are, 

That is, that the deviations between the theory 

The second calculation of tlhe maxh-xa entropy esti- 

mate of the mixlng process is based on the equilibrium dis- 

tribution at q = 13,000 cfs. The estimated mixing matrix 

is presented in Table 5 and the one cycle distribution fume- 
tions are plotted in Figure PO, m e  theoretical predictions 
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TABLE 5 

THE MIXING MATRIX P (p,) ESTIMATED 

FROM THE DATA AT q - 13,000 cfs 

i 
i 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

i 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Pi 1 

0.6096 
0.2834 
0.0792 
0 0213 
0 0053 
0.00B1 
0.0001 
0.0800 
0.0000 
0.0000 
0.0000 

Pi7 

0.0000 
0.0000 
0.00f3 
0 0228 
0. BO24 
0.2070 
0 2414 
0 ~ I941 
0,1266 
0 0758 
0.0286 

PI2 

0 3086) 
0 3746 
0 2939 
0 0993 
0 0255 
0 0067 
0 0015 
0 8003 
0 0000 
0.0000 
0 0000 

pi8 

6) 0000 
0 0000 
0 0001 
0 0035 
0 0316 
0 1104 
0 2010 
0 2326 
0 2996 
0 1479 
0 0723 

PI3 

0.0661 
0 2653 
0 3304 
0 2050 
0 0912 
0 0308 
0 0084 
0 0020 
0.0005 
0.0002 
0 0000 

PI9 

O.0000 
0 0000 
0 0000 
0 0004 
0 0075 
0 13452 
0 I283 
0 2139 
0 2436 
0 2210 
0 I403 

PI4 

0 0035 
0 0695 
0 2629 
0 3052 
0 2094 
0 0989 
0 0352 
0 0107 
0 0033 
0.0012 
0.0002 

4,ia 

0 0000 
0 0000 
0 0000 
0 0000 
0 0014 
0 0151 
0 06'75 
0 1630 
0 2469 
0 2768 
a 2293 

PI5 

0 0001 
0 0067 
0 0984 
0 2448 
0 2845 
0 2021 
0 I004 
0 0401 
0.0153 
0 0062 
0.0014 

Pi,II 

0 0000 
0 0000 
0 0000 
0 0000 
0 0000 
0 0002 
0 0034 
0 0293 
0 1186 
0 2759 
0 5726 

pi6 

0'0000 
0.0002 
0 0163 
0 1024 
0 2257 
0 2632 
0 1959 
0 1090 
0.0537 
0.0261 
0.0075 
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-68- 

of the equilibrium salinity distributions and the corresponding 

data are plotted in Figures II through 16. The agreement between 

the predictions and the data is remarkably good. Even at the low 

fresh water flows, q = 5000 cfs and q = 7000 cfs, the theoretical 

~ predictions are close to the data. It is interesting to observe 

the change in the shape of the theoretical prediction of the dis- 

tribution at the lower fresh water flow rates. This behavior 

would not be observed in a theory based on the convective diffu- 

sion equation. 

VnD Conclusions 

The results of the preceding calculations clearly in- 

dicate that the maximum entropy estimate of the mixing process 

ie an estuary is a sound theoretical and practical solution to 
the problem of describing the mixing process in an estuary. 
?"ne predicted salinity profiles agree quite closel3T with the ob- 

served data. Furthermore, the resulting maximum entropy mixing 

process is a physically reasonable process. The one cycle dis- 

tribution functions are justifiable in terms of some fundamental 

physical observations on how the tidal oscillations accomplish 

the observed dispersion. As a practical matter, the preceding 

calculations indicate that a linear theory of mixi-ng in slight- 

ly stratified estuaries is acceptable if the range of prediction 

is not extended too far from the conditions under which the es- 

timate of the mixing process is made. For situations within 
this range, the theoretical predictions of the equilibrium con- 

centrations of salt are in close agreement with the observed 

data. 
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From a theoretical point of view, it is quite sur- 

prising that the results of the maximum entropy hypothesis, 

which at first glance appears to be a rather unspecific 

requirement, are physically meaningful. The resultiq one 

cycle distribution functions are intuitively very satisfy- 

ing. Also, since these one cycle distribution functions are 

unsteady state phenomena, and they were obtained usi-ng 

steady-state information, the results are still more sur- 

prising. 

Much more work needs to be done using the maximum 

entropy estimate before its properties are better understood 

In particular, the estimated one cycle distribution func- 
tions should be checked against dye dispersion data to see 

if, indeed, they are physically the case. Two and three 

dimensional analyses should be tried, since the equations 

and tee-hniques which have been presented are directly ap- 

plicable. Also, the maximum entropy estimate should be cal- 

culated using unsteady state data. 

in an actual estuary and the results would be very interest- 

ing. 

This is the situation 



CHAPTER VI 

RECAPITULATION 

The analysis of the mixing process in an estuary is 

a necessary prerequisite for predicting the behavior of 

pollutants and dissolved oxygen in an estuary. 

which intrudes from the ocean end of the estuary as a re- 

sult of the rnixlng is a convenient bdicator of the nature 

of the mixing process. Only slightly stratified estuaries 

are considered since the change in ehe stnxture of the 

mixing process due to the changing salinity concentrations 

and the resulting change in density currents is small for 

this Class of estuary. 

The salinity 

The majority of the theories of estuarine mixing 

which have been proposed are based on the one-dimensional 

form of the convective diffusion eqzation. 

lution is known for the appropriate boundary conditions 

which includes the harmonic tidal velocity in the convec- 

tive terms of the equation. 

proposed to circumvent this problem. Either the average 

of the equation over a tidal cycle is taken or the tidal 

velocity terms in dropped. entirely and its effects are ab- 

sorbed into a longitudinal dispersior? coefficient. 

former simplification is justified if the fluctuations of 

salinity concentration, in particular, are small over a 

However, no so- 

Two simplifications have been 

The 

73 
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tidal uycle. 

tidal estuary. 

sumptions under which the dispersive flux can be related 

to the gradient of the mean concentration. 

ship exists if the temporal and spatial scales of the fluGI.) 

tuations are small relative to the scale of the gross phe- 

nomena of interest. Jn an estuary, however, the tidal 

cycle and the tidal excursion length are usually of the 

same order of magnitude as the temporal and spatial scales 

of the gross phenomena of interest, for example, the decay 

time and spatial spread of a pollution cloud. 

However, this is usually not the case in a 

m e  latter simplification violates the as- 

Such a relation- 

The theory of estuarine mixipg devised by Preddy 

avoids these difficulties by adop'cim a more general law of 

mixing which relates concentrations at a distance at suc- 

cessive slack water times., 

cycle distribution: 

a distance L downstream and an amount of water spreads 

uniformly the same distance upstream; the remarfnder stays 

vhere it originated. 

upstream and downstream are chosen such that three conser- 

mtion laws are satisfied. 1) All the water is accounted 

for; 

any boundary; 

stream from any boundary. 

cient to determine the unkrlown proportions of water which 

disperse upstream and downskream. The distance L Is 

chosen a priori as is the shape of the one cycle distribu- 

tion function. 

He assurnex the form of the one 

an amount of water spreads uniformly 

The proportions of water which spread 

2) there is no net accumulation of salt upstream from 

3) there is no net acc7mulation of wa,ter up- 

These three equations are suffi- 

I - 
These assumptions case some doubt as to the 
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' t  

validity of the theory. However, the basic ideas used by 

The natural mathematical setting for a dispersion -: 

theory with discrete time intervals, e,g., a tidal cycle, 

between the available data is the theory of Markov chains. 
-- 

The estuary is ssgmented.and each segment is a atate of 

the chain. 

form witbir? each segment. 

The concentration of salt is assumed to be miF 

me mixing that occurs during one tidal cycle is 
represented by the product of two transition probability 

matrices, 

the effect of the fresh water flow q; and P the mixing 

matrix which accounts for all the other phenomena which are 

responsible for the mixing during a tidal cycle. 

LaGion matrix T(q) is specified by assuming that the pri- 

mary effect of the fresh water flow is to translate the 

water in each segment downstream. The mixi-ng matrix P 

must satisfy the three conservation Laws: 

T(q), the translation matrh which accomts for 
-I - 

- - 

The trans- 

- - 

- - 
conservation of 

water, conservation of estuary geometry and conservation 
of salt. !These laws are expressible as equations in terms 

of P == (p. .>. 
1 J  T - 

j = l,-.., N; 

sv Y - iiia. P T(q)sv = 
---*_ -- 
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where v is the column vector of volumes and sv is the 

column vector whose elements are the mass of salt in each 
segment at the equilibrium distribution for the fresh water 

flow q. Equation iiia. is a special case of the more gen- 

eral law which can accommodate succedsive unsteady state 

salinity distributions sv(n) and sv(nt-1) at tidal cycle 

n and n t- 1. 

- - 

T_ _I 

iiib. P T(q )sv(n) = sv(n+l) , ==-n - _c 

where 

terval between the nth and the n+lth tidal cycle. The 

possibility of using unsteady-state data is an important 

practical advantsge since most field data is collected 

during a period of varying fresh water flow. 

q -n is the fresh water flow rate during the time in- 

2 

Equations i, ii, and iiia or iiib specify 3N linear con- 
The matrix - P has N unknown parameters pijo 

I 

straints on the pij e For N 3 3 there are more u-rlkown 

than equations and the question is which P shall be 
I Pij - 

chosen. 

The choice of P is basad on the maximum entropy 
i= 

principle of statistical mechanics and information theory a 

The P which is chosen among all matrices which satisfy 

the conservation laws is the P with the maximum entropy. 

A mixing process with a high entropy tends to specify broad 

one cycle distribution functions which do not favor any one 

segment over any other segment. 

to any segment which Is not warranted by the data incorpor- 

- 
E 

mus no preference is given 
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ated into the conservation laws. 

Markov chain P is given by the - - 

H -$ 
j =1 

V 
j 

N 
c v  
k=1 k 

The entropy, 

e quat i on : 

H, of the 

This function is maximized subject to the 3N equality con- 

straints which express the conservation laws e The resulti-ng 

maximum entropy estimate of P involves 3N unknown Lagrange 

multipliers. 

which must be solved for the Lagrange multipliers admit 

no general solution. A numerical procedure is found to 

solve these equations. 

;e: 

The 3N simultaneous transcendental equations 

The maximum entropy estfmate is applied to equilibrium 

salinity intrusion data collected for the Delaware River 

Model. 

cify that mix- takes place only within the maximum tidal 

excursion distance. 

tions are physically reasonable. The estimate is based on 

one salinity distribution at a particular fresh water flow 

and the resulting mixing process is used to predict the equi- 

librim distributions and the other flows for which there 

is data. 

and the data is quite close. 

The resulting one cycle distributPon functions spe- 

Thus the predicted one cycle distribu- 

The agreement between the theoretical predictions 

It is concluded, therefore, that the maximum entropy 

estimate provides a sound theoretical and practical solution 

to the problem of the characterization of the mixing process 

in a slightly stratified estuary. 



APPENDIX I 

The difficulty with the edge condition imposed on 

P and T(q) by equations (12) and (29) is t b t  no water is 

allowed to leave the finite region of the estuary under con- 

sideration, From the point of view of analyzing the salinity 

intrusion in an estuarys this condition is artificial since 

clearly saline water enters and leaves the mouth of the es- 

tuaxy during each tidal cycle. An entrance and an exit con- 

dition mn be incorporated in a Markov chain but the analy- 

sis of this type of chain is more complicated. In this ap- 

pendix it is shown that the equilibrium distribution of a 

chain with a more realistic boundary condition at the ocean 

end is the same as the corresponding chain which satisfies 

equations (12) and (29). This result justifies the use of 

the artificial edge condition in the analysis of equilibrium 

salinity distributions. 

The transform technique which is employed for this 

analysis has been used extensively in the analysis of sampled 

data systems, e581 and it has been applied to the aaalysis of 

Markov chains by Sittler (1956) C591 

Consider an N state chain whose transition proba- 

bility matrix is R = (r. .> 
Figure 17 as a flow graph. The paths of flow to the states 

other than the adjacent states have not been drawn for the 

This chain is represented in 
1 J  - 

I 

78 
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Fig. 1'1 Flow Graph of the Original N State Markov Chain 

rll 

- Fig. 18 Flow Graph of the Modified Markov Chain 



sake of clarity, but they are assumed to exist. Let this 

chain satisfy the condition given by equation (12), i.e., 

N r-l 
rkj = 1 

k=l 
j = 1, .... N . 

Now co;nsider a modified version of this chain as represented 

in Figure 18. An additional, state, N -I- 1 has been added and 

it is assumed that a certain proporiton, a, of the water 

which is returned to state 

ally goes to state N + 1. 

trix fgr this chain is: 

N in the original chain, actu- 

The transition probability rna- 

........ 0 

0 
Pll rI2 'rlN 

* .r2N r21 rZ2 ........ 

rN1 rN2 ......... .rNN-cx o 

. .  . .  . .  

0 0 .......... a 0 

In terms of a mixing process in an estuary, the N + 1 state 

is thought of as the ocean. The 

far enough seaward so that it is at the ocean value of salin- 

ity. 

the qcean, a mechanism for introducing salt water at state N 

must also be specified. 

mixing process is that the estuary eventually empties out 

into the ocean. Hence, assume that a mass, B, of salt water 

enters state N from the oeean at each high water slack. The 

constant B will be adjusted so that the equilibrium salinity 

in state N is at the ocean value. These conditions are 

Nth state is assumed to be 

Since water can leave states 1 through N and go iuto 

Otherwise the end result of such a 
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sufficient to specify the behavior of the modified chain. 

For the original chain, .an equilibrium distribution 

exists under certain conditions (Section 111-B) which are 

assumed to hold in this case. Since the equilibriw distri- 

bution CJ is computed from the equations - 

which are a set of homogeneous linear equations in 

solution is determined up to an arbitrary constant. 

constant is evaluated by setting the value of the equilibrium 

salinity concentration at segment N equal to the ocean 

salinity. 

o J  the 

This 
- 

The following theorem will now be proved: 

Theorem: The equilibrium distributions of the original chain 

(Figure 17) and the modified chain (Figure 18) are identical. 

Proof: The theorem is demonstrated by directly calculating 

the equilibrium distribution of the modified chain in terms 

of the elements of the original chain. Let the time at which 

the initial condition of each chain is specified be zero. 

Let s,(n> be the concentration of salt in the kth segment 

of the original chain at the nth hTgh water slack, and let 
s(n> be the vector with components s,(n). The correspond- 

ing concentrations in the modified chain are denoted by 

s ~ ( ~ )  (n) 

tions the superscript (m) will refer to the modified chain. 

- 

and s(m’ (n) , respectively In the following equa- - 

Define the 2-transform of the sequence CsQn); n = 0, - 
1,. . = I  as: 
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n=o 

The Z-transform of the sequence 

generating function of the sequence. 

s(n+l) is found from the distribution 

sition probability matrix R: 

(s(n)l is also called the 

The distribution 
I 

s(n) using the tran- - - 
- 

Therefore s(n+l) is related to the initial condition s(0) - - 
by the equation: 

and summil?$ zn+l Multiplying both sides of this equation by 

from n+l = 0 to 00 yields: 

n=o 

Define the Z-transform of the sequence CRn3 as: - 

As in the case of an ordinary geometric series, this series 

can be summed givi-ng: E o  3 

where I is the identity matrix. Therefore, equation (91) 

becomes: 
- 
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This equation gives the Z-transform of the sequence Cs(n)} 

in terms of the initial condition s(0) and the transition - 
probability matrix R. Hence equation (94) is the formal 

soiution for s*(z>. 
- 

- 

The equilibrium distribution s(~> can be found - 
from s*(z> using the final value theorem for Z-trans- 

forms : 
- 
[ 61 1 

In order to calculate the equilibrium distributions of the 

original and modified chains two matpix inversions must be 

and (1 - zR gm) 1 using Cramer J s - performed: (1 - zR) 
rule 

- 
the inverse of a matrix A is: L621 - 

Q 96) 
th where A is the determinant of A and Aij is the ij 

cofactor of A, i.e., g-i)i+J times the determinant formed 

- 
-- 

by striking outa the 

nant of A. In this case let 

ith row and jth cohmn of the determi- 

I 

97 1 

Only one c o l m  of each inverse is needed because of the 

simple initial conditions and sources which have been adopted. 
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For the modified chain an amount 

duced into state N at every high water slack. Hence the 

source terms is a sequence {P3 B J m . . l  at state N and zero 

for all other states. 

P/l-z 
response of the modified chain to this source term is given 

by multiplying R *(m)(z) 

B/l-z, O)T where 

non-zero term of this vector is in the 

Nth column of the inverse is required as all the other ele- 
ments of the inverse are multiplied by zero. Therefore the 

kth component of S*(~)(Z) 

B of salt water is intro- 

The Z-transform of this sequence is 

By the convolution theorem for Z-transforms, E 3  1 khe 

by the c o l m  vector, (O,C, -. ., 

Since the only 
- 

T denotes the transpose. 

Nth row, only the 

is given by: - 

For the original chain R, the equilibrium distri- 

bution of the chain is independent of the initial condition 

since there are no source terms and equation (85) as well as 

the positivity condition discussed in Section 111-B are sat- 

isfied. Hence any initial condition is allowable. For sim- 

plicity assume that at time zero a quantity 

in state N, and all other states are empty. 

initial condition vector s(C) is given by: 

- - 

r of salt is 

Therefore the 

- 

(99) 

and the kth component of sx(z> is given by: 
.__ 
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Because of the similarity of the modified chain and the ori- 

ginal chain, it is possible to express sk *(m)(z) in terms 
* 

of Sk(Z). 

Qm> - - zR(”) I in Consider the determi-nant A - - 12 
equation (98) The elements of the last column of R(m’ are - 
all zeros since no water goes from the 

any other state (equation (86)) a Hence the elements of the 

last column of the matrix are a11 zero except for 

element N + 1, N + 1 which is equal to 1. Therefore the 

determinant 

of the cofactors of the last column [ 64 1 to give: 

(N * 1jth state to 

I - zRm - - 

12 - zRQm> 6 can be immediately expanded in terms 

I 

Expanding this determinant once again in the cofactors of 

the last column gives: 

Hence A(m’ can be written Ln terms of‘ the determinant and 

a cofactor of the original chain. 

Consider the cofactor ANk (m) in equation (98) I) 

When calculating this cofactor the Nth row of AQm> = I-zR bQ - -  - 



-8 6- 

LS always del ' - 7 eT;ecI TOP any k = 1, N. For example, for 

k = 2, the cofactor is given by: 

0 13 1-z rll -2 r I g 103 1 
-z -z r 23 0 

0 N-1,N 
-Za 1 

-z r 

Expanding this determinant in the cofactors of the last 

column gives: 

(104.) = Am 

Rewriting equation (98) for sk z> in terms 
of equations (102) and (104) yields: 

However, for z close to 9, 

again by the final value theopem. Hence: 



Applying the boundary condition at the Nth seg- 

ment, that sp)(m) = sN(m) = ocean salinity value, deter- 
mines B. Hence 

which proves the theorem. I 
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-ABSTRACT 

A review and a critique of the theories of estuarine 
mixing which have been proposed is presented and it is con- 
cluded that the simplifications usually employed in the 

mixing theories based on the convective diffusion equation 

are not applicable to the mixi-ng process in, an estuary. 

The theory of tidal mixing which has been proposed by Preddy 

is discussed and his approach forms the basis for the theory 

of maximum entropy mixi-ng which is developed, 

of the mixing process in an estuary is formulated in terms 

of the theory of Markov chains. Three conservation laws 

which any physically reasonable mixi-ng process must satisfy 

are formulated and related to the properties of a Markov 

chain, The estimate of the appropriate mixing matrix is 

based on the maximum entropy principle of statistical mechan- 

ica and information theory. 

sented for the solution of the resulting simultaneous trans- 

cendental equations 

data from the Delaware River Model is amlyzed and compared 

with the theoretical predictions based on the maximum entropy 

estimate of the mixing process. 

noted and it is concluded that the theory of maximum entropy 

mixirg is a sound theoretical and practical solution to the 

problem of characterizing the mixing process in an estuary. 

The analysis 

A numerical technique is pre- 

The equilibrium salinity intrusion 

The resultiug agreement is 


	INTRODUCTION
	INTRODUCTION e.................p
	A The Convective Diffusian Equation
	B The Reduction to One 8patial Dimengip
	C The Tidal Velocity
	Entropy Estimate
	and Theip Solution
	ESTIMATE

	A The Data Requirements
	B The Delaware River Model Data
	Mixing Process


	RECAPITTJLATION
	APPENDIX
	BIBLIOGR APITl
	Cross Sectional Area
	One Cycle Distributions of
	Tidal Velocity Channel
	Comparison of Theory (estimated at
	Comparison of lllneoq (estimated at
	Comparison of Theory (estimated at
	Comparison of Theory (estimated at

	One cycle Distributions of the Maximum
	Comparison of Theory (estimated at
	Comparison of 'keory (estimated at
	Comparison of Theory (extimated at
	Comparison of Theory (estimated at

	Comparison of" Theory (estimated at
	Original N State Markov

	the Modified Markov Chaln

