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ABSTRACT

The applicability of using the Boltzmann distribution for modeling economic

markets is reviewed. While remaining accessible to business students and profession-

als, this review provides a clear, yet rigorous account of using a Boltzmann-inspired

statistical formulation of market behavior. The formulation’s flexibility for model-

ing market behavior in two types of markets is shown and the distribution’s use for

practical analysis encouraged. Suggestions for future study are also given.
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§ 1.0. Introduction

As long as a good or product is both desired and scarce, one may always value

that good at a particular price, allowing one to form a market of that good or service.

Labor, currency and stocks, consumer products, and commodities all lend themselves

to price valuation and therefore each correspond to a particular market that allows

their exchange. In this paper, the term ‘market’ does not represent the physical or

virtual space which allows this exchange, but rather the collective purchasing and

selling behavior of buyers and sellers respectively.

These goods and services are finite, just as the number of people that desire

them are. And, it is the interaction between these finite quantities that yields the price

dynamics of a given market. Most markets, regardless of the variety of product or

service exchanged, involve a large number of economic agents whose collective behavior

affects the state of the entire market. This is the first of several general principles

concerning markets which will allow us to eventually create a common model invoking

the Boltzmann distribution.

Let us also consider the notions of supply and demand. For, while supply

is easy to quantify, demand is inherently uncertain; although the number of people

willing to purchase a product or service is a finite number, the value which each person

assigns to a product or service varies across buyers and time, and is therefore not

subject to straightforward quantification. Consequently, the model we create must take

into account this underlying uncertainty in demand across buyers while preserving the

notions of a finite supply and set of buyers, and the inverse law of supply and demand.

It is from these considerations that the notion of price comes about, which is the critical

parameter upon which a Boltzmann distribution may be built. We therefore seek a

simple relationship between price and demand, or returns, that agrees with empirical

truth. First, I will review the definition of a market as presented in a traditional

introductory economics course. Second, I will then introduce the varieties of markets

which will be discussed. Lastly, I will review and comment on the shortcomings of the

standard methods involving the maximization (or minimization) of objective functions.
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§ 1.1. Markets

Markets may be classified into one of two broad categories i.e., perfect or imper-

fect competition. Markets subsumed under the category of perfect competition have a

large number of buyers and sellers of one particular product. In this case, price emerges

only from the collective interests of buyers and sellers and is therefore insensitive to

the whims of an individual buyer and seller. For markets which reside in the category

of imperfect competition, the most basic and fundamental of these is the monopoly, a

market for which there are many interested buyers but only one seller of a particular

product. In this case, it is clear that the only limitation that the market imposes upon

the price at which the seller finds to be optimal is the demand of the buyers or their

willingness to purchase the product at a given price. Because the primary dynamic

which governs price for monopolistic markets is demand, we focus on the development

of a simple model of demand for a monopolistic market in section §3.1 to establish the

fundamental importance of the Boltzmann distribution. In conclusion, although these

two varieties of markets are highly idealized and is therefore hardly veridical, they are

important building blocks in the effort to understand the relationship between price,

demand, and profit.

§ 1.2. A Review of The Standard Description of Economic Behavior

Full-Knowledge Methodologies: Deterministic and Probabilistic Outcomes

The standard ‘full-knowledge’ model of economic behavior as presented by Neu-

mann, and later Hadar, relies upon assumptions about the motivations of decision-

makers and nature of their behavior.1 These assumptions are incorporated into the

model ab initio, providing an explicit description of consumer behavior. However rea-

sonable these assumptions may be, they are nevertheless presumptions which lead to

a loss of generality, the primary presumption being that all decision-makers have the

1 See chapter 10 of Hadar[3], and Neumann[2], §3. Also, see §A.1, A.2 in the adden-
dum for a detailed elaboration on the critical differences between these two accounts
regarding the construction of a utility function and fundamental assumptions.
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ability, constitution, and full knowledge to act in the same (rational) way. The statis-

tical description described herein, however, yields a robust model that is free of this

assumption. This suggests that the Boltzmann-inspired statistical formulation is a

promising alternative to the standard.

Specifically, these assumptions are needed to form the notion of the utility func-

tion for the case of deterministic and probabilistic outcomes. While the deterministic

case is much more limited in its applicability, the development for uncertain outcomes

given by the probabilistic case is general enough so that it may be applied to a host

of economic scenarios. However, even for the probabilistic case, a great deal of as-

sumptions regarding the utility function must be made. While this development might

yield mathematically rigorous descriptions, this rigor is not always helpful for the av-

erage decision maker. Additionally, the notions (See (1),(2),(3*),(4*) of §A.1, A.2) of

preferences, transitivity, continuity, and independence seem to be useful for further

analysis, but will not be needed in the general derivation of the Boltzmann distribu-

tion, which forms the core of this work. Finally, there is an additional matter regarding

the objective function: its description, designed to be a quantitative representation of

decision-maker preference, contains unavoidable arbitrariness;2 this is quite unlike the

statistical approach,3 which embraces such uncertainties in our knowledge and therefore

yields results that are more generally valid.

The conventional methodology that allows for decision making involving uncer-

tain prospects, relies upon the principle that all decision makers aim to maximize (or

minimize) an objective function (as is the case for a consumer who wishes to maximize

their utility). This method requires one to exactly state how each individual behaves in

2 The utility function can only be determined up to a linear transformation. This
would suggest that direct calculation of utility is necessarily unexact, rendering exact
valuations somewhat meaningless. See the technical development of the utility function
found in Neumann [2], §3.4.4 - 3.4.5.

3 The theory of distributions and their properties, is an ideal mathematical tool-set
for handling such arbitrarily defined functions. For example, one can choose to employ
normalized probability distributions to subdue unknown scaling factors.
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the economy. While this information might indeed be useful if such knowledge is fully

acquired, a proper analysis of all the possible interactions between each individual for

a large market as a whole becomes unrealistic. Even if such an analysis could be car-

ried out for a large number of individuals, it would require a wealth of computational

resources and time. To demonstrate the validity of this claim, suppose that each agent

does in fact have complete information regarding the decisions of all other agents and

the total number of agents is 100 . Therefore, each agent would have at their disposal

an appropriate matrix which describes the set of optimal decisions given the state of

all other 99 agents. However, creating an array of all potential strategies of 99 agents

with the associated optimal decision is an intractable task! If most markets have much

greater than 100 agents then, a fortiori, the task of formulating one’s strategy in this

way is exorbitant at best. Given the considerable computational complexity of this

problem, an unassuming statistical formulation is ideal.

Thankfully, one may approach this problem from a ‘holisitic’ view, i.e. by

focusing our attention on the net behavior of economic agents, or descriptions of net

quanitites, we are able to avoid this problem while making great strides towards a

better understanding. In light of this systems-oriented view, the Boltzmann-inspired

formulation will be discussed.
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§ 2.0. The General Statistical Derivation for the Boltzmann Distribution

Suppose we observe the characteristics of a market for which there are a finite set

of unique choices (or, equivalently, alternatives) {x1, x2, x3} each participating agent

may choose from. Without knowing anything about the preferences of each agent,

we must assume all agents prefer no one choice over another, in accordance with the

“principle of sufficient reason”. Although this is an obvious oversimplification in this

economic context, it allows us to start with absolutely no assumptions while allowing

us to make powerful statistical conclusions.4

Firstly, if there are three choices an agent may be assigned to, then the total

number of ways we may group two agents, while treating them as indistinguishable from

one another, is six - there are three ways both may be placed into a group corresponding

to one of the three choices, and three ways each one may be grouped into a unique

choice.5 In general, because of our ignorance, we must treat each category as equally

likely to be chosen by any given agent. Hence, our prediction of the total number of

ways N people will choose from the set of n choices, may be written as Eq. 1.

Ω =
(N + n− 1)!

(n− 1)!(N)!
. (1)

Moreover, if there is a total of N people that may choose among n alternatives,

where there are Ni people who choose alternative i (i = 1, 2, ... n), then the total

number of ways the state w = {Ni, Ni+1, Ni+2, ...Nn} may be realized is given by

Ω(w, n) =
N !∏n
i Ni!

(2)

What we find is that the number of configurations, where the alternatives are

each chosen by an equal number of people, exceed the number of configurations which

favor any one choice over another and becomes more pronounced as we increase the

number of individuals participating. Therefore, if no one choice is favored initially over

4 See development of Boltzmann distribution in Greiner[5].

5 The reader should prove this himself.
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another, the likelihood that the total population will evenly divide amongst each choice

is much greater than any other distribution of choices.

Thus, the probability of obtaining the state w, with Ni individuals choosing

option xi out of the the set of n potential choices {x1, x2, ...xn}, is the multiplicity of

that state i.e., the number of configurations if we were to treat each agent as distinct, of

the system that reside in state w, divided by the total number of possible configurations.

Hence, for N individuals and a set of n choices,

P (w) =
Ω(w, n)

nN
(3)

We now wish to find the state w for which the probability P (w) is at a max-

imum i.e., the most likely state. To this end, we first consider the natural log of the

multiplicity

ln Ω(w, n) = lnN !−
n∑
i=1

lnNi! (4)

. We now attempt to maximize Eq. 4.

At this point, one might be tempted take the derivative and set it equal to zero

to find this maximum; this is not exactly correct. It is important to consider some nat-

ural constraints, like the finiteness of the population before doing so. Specifically, the

natural constraints are (1) N =
∑n

i=1Ni, and (2) the ‘average’ choice x̄ = 1
N

∑n
i=1 xi

supposing xi represents a monetary or positive numerical value between 0 and a max-

imum (positive) number xmax.

Moreover, if we allow N → ∞, we may make use of Stirling’s approximation6

so that Eq. 4 reduces to

ln Ω(w, n) ≈ N lnN −
n∑
i=1

Ni lnNi (5)

6 See the classic text: Schroeder, Daniel V. An introduction to thermal physics. Vol.
60. New York: Addison Wesley, 2000.
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Letting Ω(Ni, Ni+1, Ni+2, ...Nn, n) ≡ Ω and maximizing Eq. 5 with respect to

Ni subject to the constraints, we take the derivative of Ω with respect to the number

of individuals Ni to obtain

n∑
k

(λ1 + λ2xi + lnNi) dNi = 0

λ1 + λ2xi + lnNi = 0

Ni = e−λ1e−λ2xi (6)

where λ1, λ2 are Lagrangian multipliers. Furthermore, by considering the ratio

Ni
N

, we find that the probability of having Ni people associated with alternative xi is

given by

Pi :=
Ni

N
=

e−λ2xi∑n
i=1 e

−λ2xi

where
∑∞

i=1 e
−λ2xi is defined to be the partition function Z.7 Hence, by replacing

λ2 with β, we obtain the familiar result.

Pi =
e−βxi

Z
→ P (x) = Ce−βx (7)

where 1
Z

or C is a constant required for normalization and P (x) is the continuous

form of the former, as displayed in the above expression (An example of this distribution

for C = 1 and β = 1
20

is given in Figure 1.). In the next section, we apply this

distribution to a simple revenue management problem for a monopolistic market and

briefly review and explore additional examples .

7 Note that by changing n to ∞ for the sum
∑n

i=1 e
−λ2xi , the sum is unchanged since

e−λ2xi for i > n is simply zero, or does not exist. By considering the continuous
case where n→∞, this feature remains true since we assume that N(x) is a positive
quantity on the finite interval (0, xmax) and zero everywhere else.
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Figure 1: A Boltzmann Distribution

3.0. Application of the Boltzmann Distribution

§3.1. The Simple Revenue Management Problem for Monopolistic Markets

Problem Description and Application of Boltzmann Distribution

Practically, business management must often make decisions based upon fore-

casts of demand for goods or services they offer. Given information about the market

and other relevant parameters, management relies on mathematical technique to aid

in the process of deciding the best course of action. However, it is often the case that

these demand distributions are unknown, i.e. the company has little to no information

about the purchasing behavior of the consumers. For the case of a monopoly8, we wish

to provide an answer to the revenue management problem - what is the ideal selling

price for a product if little to no information is known about the purchasing behavior

of the consumers or state of the market?

Suppose Company A wishes to determine the optimal selling price given its

limited knowledge of the demand in the form of past revenue and other reasonable

constraints. Here, we aim to determine the optimal decisions available given these

constraints. We introduce a simple expression for revenue Rk obtained for a particular

price of mk set by the company measured in the recent past, where we assume that all

individuals with some reservation price mj ≥ mk purchases the product at the offered

price mk, where Nj is the number of people with the corresponding reservation price

8 A comparative development of the monopolistic market as an analogue to the ther-
modynamic model of an ideal gas is given in §A and §B.
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mj and the index j represents the lowest price for which the reservation price is greater

or equal to the offered price.

Rk = mk

n∑
i=j

Ni. (8)

Therefore, the goal is to find the choice of mk which will produce the maximal

value of Rk a moment after the revenue is measured for a set of offered prices.9

We begin our analysis of this problem by invoking a derivation of the Boltzmann

distribution parallel to that presented in the previous section, by maximizing Eq.5 given

the modified natural constraints10 that (1) N =
∑n

i=1 Ni, and (2) m̄ = 1
N

∑n
i=1Nimi.

Hence, if we replace xi with the reservation price mi i.e., the maximum price a buyer

is willing and able to spend, of a buyer, we obtain

Pi =
e−βmi

Z
. (9)

In an effort to determine the exact meaning and value of β and Z (as defined

in the last section), we revisit Eq. 5.

The Market Temperature T

The natural log of the multiplicity of states denoted as ln Ω is proportional to

the entropy S of the state. Hence, letting n→∞,

S = k[N lnN −
n∑
i=1

Ni lnNi] = k

[
N lnN −

∞∑
i=1

Ni ln

(
N
e−βmi

Z

)]

S = k

[
N lnN −

∞∑
i=1

Ni lnN +
∞∑
i=1

Ni lnZ +
∞∑
i=1

βNimi

]

9 It seems reasonable to assume that the validity of this method depends on, and is
inversely proportional to, the size of the time separation between measurement and
decision.

10 A discussion of these constraints is given in §B.
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which reduces to

S = k N [ln Z + β m̄] (10)

By considering the change in multiplicity or entropy as a function of chang-

ing average reservation price m̄ (holding N constant), in accordance with well-known

results, we obtain

∂S

∂m̄
= k N

[
β +

∂

∂β

(
ln

∞∑
i=1

e−βmi + βm̄

)
∂β

∂m̄

]
(11)

But, since

∂

∂β

(
ln

(
∞∑
i=1

e−βmi

)
+ βm̄

)
= −

∑∞
i=1 e

−αmi e
−βmi∑∞

i=1 e
−αe−βmi

+ m̄ = 0 (12)

(after multiplying the first term by e−α

e−α
, with λ1 := α)

Therefore, Eq. 12 reduces to

∂S

∂m̄
= Nk β , (13)

where β is commonly written as 1
T

, where T is a parameter analogous to the

temperature of a thermodynamic system. The applicability or relevance of the market

temperature T , for a special case of the revenue management problem, will be explored

in an upcoming discussion.

The Distribution

The distribution Ni may now be written as

[
Ni = e−αe−βmi

]
≡
[
N(m) = e−αe−βm

]

11



Setting N(mmax) = 1, with m ∈ (0,mmax]
11, we find that

e−α = eβmmax

yielding our final result for the (continuous or discrete) distribution of people

with reservation price m:

N(m) = eβ(mmax−m) (14)

Result

By writing the continuous form of Eq. 8 (n→∞), the revenue is

R(m∗) = m∗eβmmax
∫ mmax

m∗
e−βmdm (15)

so that

R(m∗) =
m∗
β

[
eβ(mmax−m∗) − 1

]
(16)

where m∗ is the offering price. If we now set N(mmax) = 1 and m ∈ (0,Mmax))

R(m∗) =
m∗

β

[
eβ(mmax−m∗) − 1

]
+

m∗

mmax

. (17)

Or,

R(m) = mZ̃(m) + C (18)

where C = m
mmax

is a correction term to give R(mmax) = mmax, and the partition

function

Z = Z(m) + Z̃(m) =

∫ m

0

N(m) dm+

∫ mmax

m

N(m) dm =
eβmmax − 1

β

11 N(0) has no practical meaning and shall be neglected.
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Summary

We have shown that given the constraints of a finite population and a fixed

market size, we obtain a Boltzmann distribution of reservation prices. Therefore, the

distribution of reservation prices is given by the following:

N(m) = e(mmax−m)/T

Additionally, we have obtained the expression for revenue below:

R(m) = m T
[
e(mmax−m)/T − 1

]
+

m

mmax

In the high market temperature (or low β) regime we find the following relation:

N(m) ≈ 1

.

Which implies that for high T , i.e. a large value of T , the reservation prices

of the buyers are uniformly spread over the entire range of prices such that each indi-

vidual has a unique reservation price as depicted in Figure 2. Finally, for low T , one

may readily see that the distribution diverges for small values of m and has a uniform

distribution of N(m) ≈ 1 for larger values of m.

We may also determine the answer to the revenue maximization problem by

considering the zeros of the derivative of R(m); that is, we consider the following

expression:

dR(m)

dm
=
eβ (mmax−m)

β

[
1− βm− e−β(mmax−m)

]
+

1

mmax

= 0 (19)
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In the limit of large mmax (allowing us to neglect the term 1/mmax) and low T ,

the term e−β(mmax−m) is negligible, we therefore obtain (Since 1/β ≡ T )

m ≈ T (20)

Equation 20 demonstrates that for low T , the ideal selling price for the revenue

management problem explored in §3.1 is approximately the value of the market tem-

perature T .

For the high market temperature limit, we may use the approximation:

e−β(mmax−m) ≈ 1− β(mmax −m)

so that

β [mmax − 2m] = 0

m ≈ mmax

2
(21)

Hence, the ideal selling price in the high market temperature limit is about half of the

maximum reservation price.

14



Figure 2: Distribution of Reservation Prices for High T
(T = 1000, Mmax = 100, N = 1000)

Discussion

We now have an expression, á la Boltzmann, that represents the distribution

of reservation prices given a minimum of assumptions. Additionally, the Boltzmann

distribution yields the fundamental law of diminishing demand i.e., that demand de-

creases with increasing price. The following graphs illustrate what the unnormalized

distribution of reservation prices might look like, given an arbitrary set of data points,

for several values of the parameter β or T and the corresponding normalized revenue

with the analytically derived curves.12 The result clearly demonstrates the validity of

the approximations of Eq. 20 and Eq. 21. 13

12 These graphs were generated by Matlab, with data points being arbitrarily selected
through the use of a random seed generator. See Addendum for examples of Matlab c
ode.

13 The empirically obtained (piecewise continuous) curves will necessarily be bounded
within the (continuous) analytical curves for revenue.
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Figure 3: Distribution of Reservation Prices
(T = 50, Mmax = 100, N = 3224)

Figure 4: Distribution of Reservation Prices
(T ≈ 33, Mmax = 100, N = 6065)
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Figure 5: Distribution of Reservation Prices
(T = 20, Mmax = 100, N = 29262)

Figure 6: Distribution of Reservation Prices for Low T
(T = 5, Mmax = 100, N = 2.236× 1010)

17



Figure 7: Expected Revenue for T = 1000

Figure 8: Expected Revenue for T = 50
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Figure 9: Expected Revenue for T ≈ 33

Figure 10: Expected Revenue for T = 20
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Figure 11: Expected Revenue for T = 5
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§ 3.2. The Distribution of Minute Stock Returns

Kleinert and Chen [6] observed that the absolute value of stock returns, for

small time increments, has a Boltzman distribution B̃(z) for z(t) = ∆x(t), where x(t)

is the log of the stock price at time t.

B̃(z) =
e
−|z|
T

2T
.

I will show how this empirically derived expression for the distribution of re-

turns (for small increments of time) may easily be derived from the general Boltzmann

result previously outlined. While it seems there is no prima facie agent model which is

responsible for the empirically observed Boltzmann distribution, a mathematical com-

parison between the empirical and analytical expressions is presumably appropriate

and elucidative.

Recall that the Boltzmann distribution is given by

P (x) =
e
−x
T

Z

by introducing a factor of e
x′
T , with x− x′ = ∆x,14 the distribution becomes

P (∆x) =
e
−∆x
T∑
e
−∆x
T

(22)

where the sum is over the entire space of continuous values of ∆x. For Eq. 22, it

is assumed that ∆x ∈ (0,∞). If we now extend the space to include negative intervals,

then

P (|∆x|) =
e
−|∆x|
T∑∞

−∞ e
−|∆x|
T

=
e
−|z|
T∫∞

−∞ e
−|z|
T

(23)

where the interval for a given time period τ is ∆x = z(τ) = z.

Noting that

14 See §A.2 for conceptual justification
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Figure 12: The Distribution of Minute Returns

∫ ∞
−∞

e
−|z|
T dz = 2

∫ ∞
0

e
−z
T = −2T

we obtain

B̃(z) = |P (z)| = e−
|z|
T

2T

.

A Log plot of this result is given with T = 3 in Figure 12. 15

§ 3.3. Perfect Competition Markets: An Additional Application

Markets with many buyers and one ‘seller’ were considered in the previous ap-

plications. Now, let us consider a market with many buyers and sellers to demonstrate

the flexibility of the Boltzmann-inspired formulation. Since this section is necessarily

a cursory review, the reader is encouraged to consult the appropriate resources for

further study.

Dragulescu[8], Yakovenko[7], and Wannier[11] derived the Boltzmann distribu-

tion for a closed economic system with conserved money. For example, Wannier derived

the distribution P (m) = ce−
m
T , where T is the average amount of money per agent for

the ‘simple economy’ model, where each agent has an amount m in dollars and the

total money in the market is M . To simulate the exchange of money or interaction

between agents, we randomly choose a buyer and seller (each has equal probability of

15 See Kleinert[6]
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being selected) and choose a random amount to be exchanged between them, within

the limits of the amounts each buyer is able to exchange. Wannier et al. showed that

by iterating this process many times, the distribution of money becomes a Boltzmann

distribution, which models a critical feature of a capitalistic economy.16

16 It is important to note the critical difference between the development given in §3.1
and the closed economic model. For the revenue management problem, money is not
conserved nor is it claimed to be: the average is simply taken to be fixed at some
arbitrary time t.
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4.0. Discussion and Closing Remarks

§ 4.1. Necessary Features of a Boltzmann-inspired Model

Although the developments in sections §3.1, and §3.2 are for two markets that

clearly differ in several respects, the above presentation leads one to consider the possi-

bility that there are similarities which allow the expression of a mathematical descrip-

tion that is common to both. Although a definitive answer to this inquiry has not yet

been found, we are able to review the following critical features of the models explored

in §3.1 and §3.3: (1) A population of agents exists. (2) Each agent may choose any

value of a relevant quantity from a continuum of values bounded appropriately. (3) We

assume that there is an equal-a-priori probability that an agent will choose any one

value over any other value because of our ignorance.

§ 4.2. Suggestions for Advancement

To provide an account of interesting and useful features of this formulation as

a topic for future study and investigation, I mention other mathematical toolkits and

developments which, I suspect, hold the keys to providing a greater understanding of

the proper role and scope of the Boltzmann distribution in its application to economic

problems of interest. First, one may easily incorporate additional constraints on the

system through the use of Lagrange multipliers, as done for Eq.5. This view is endorsed

by Fleischhacker and Fok.17

Second, the techniques used in time series analysis seem to be an invaluable

tool for extracting average values of relevant parameters and other descriptions of the

time-evolution of a distribution, like variance. This has in fact been demonstrated by

Kleinert to show that a high market temperature corresponds to market volatility and

downturn.

17 See Fleischhacker[12], [13].
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Finally, a development of this formulation that includes the evolution of the

Boltzmann-inspired distribution in time which utilizes path integrals and other toolsets

found in the statistical physics or non-equilibrium statistical physics literature remains

undiscovered. The unique features of choatic systems also seems to offer insight into

this problem. Specifically, many chaotic systems preserve their fractal dimension as the

evolve with time. This property, if proved to be true for economic systems, may prove

useful in predicting the evolution of a distribution with time. The reader is encouraged

to consult the work of Voit[15], Ingber[14], Bouchard[16], and Kleinert[17].

§ 4.2.2 Preliminary Investigations towards a Time-Dependent Formulation

The notion of equilibrium rests upon the constancy of an average in time. For

the monopoly developed in §3.1, m̄ is the average reservation price given a distribution

N(m) and corresponding probability distribution P (m) = N(m)
N

. Hence, if m̄→ m̄(t),

the probability distribution also changes with time such that

m̄(t) =

∫ mmax

0

mP (m, t) dm (24)

Now, how should the average reservation price fluctuate? If we know the time-

varying distribution P (m, t) in full, we may simply compute m̄(t) using Eq. 24 for

all time. However, there is no straightforward way to determine P (m, t), since there

is no reasonable a priori deterministic set of laws which govern these fluctuations so

that one may deduce the value of m̄(t) for all time. We must therefore 18 rely on our

observation of how m̄ changes with time, i.e. we must consider the average change (in

time) of the average reservation price if we are to describe how it changes in time. This

suggests that our best statement of the time variation of m̄ is merely the time average

of the variation of m̄ in time, or

d

dt
m̄(t)→

〈
d

dt
m̄(t)

〉
t

18 Such data could be obtained from past revenue or values of the distribution of
reservation prices obtained by survey, for which the distribution of reservation prices
would take the form N(m) =

∑
iNi δ(m−mi) where (mi, Ni) are the data points.
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where the brackets denote an average over time (as suggested by the subscript).

Still, however, our expression lacks a critical component. Given a minimal

understanding of market data, one immediately notices that there are irregularities or

noise in such data; that is to say, our grasp of the average is always “fuzzy” or is never

fully represented empirically. With this dilemma in mind, we add noise to arrive at

d

dt
m̄(t) =

〈
d

dt
m̄(t)

〉
t

+ η(t) (25)

which denotes the fact that dm̄
dt

fluctuates with white noise (That is, 〈η(t)〉 = 0

and 〈η(t) η(t′)〉 = σ2 δ(t− t′)) about its average with a variance of σ2.19

Given the validity of Eq. 25, there are three observations worthy of mention.

Temperature as a measure for the scale of fluctuations

Revisiting Eq. 13, we find that the change in the multiplicity or entropy of the

distribution of reservation prices with respect to time is - via the chain rule - given by

∂S

∂t
=
Nk

T

d

dt
(m̄(t))

Or, equivalently

∂t S(m̄(t)) =
Nk

T
∂t m̄(t) (26)

Equation 26 implies that the time-dependent response of the market is pro-

portional to the fluctuations of the average reservation price, where the constant of

proportionality is inversely related to temperature. For example, given a small value

19 See Kleinert [17], for a full development of stochastic technique.
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of T , we expect that the fluctuations in the average reservation price will yield great

changes in the temporal evolution of the system.

The Lyapunov Exponent

In an effort to find a more tractable form of Eq. 25, we note that

〈
d

dt
m̄(t)

〉
τ

=

[
1

τ

∫ t+τ

t

(
d

dt′
m̄(t′)

)
dt′
]

which reduces to

[
m̄(t′) dt′

τ

]t+τ
t

=
m̄(t+ τ)− m̄(t)

τ

Taking the limit as τ → 0

lim
τ→0

[
m̄(t+ τ)− m̄(t)

τ

]
= δm̄t

δm̄(t) represents an infinitesimal deviation of the average value of the reservation

price.20 If we think of this infinitesimal variation as the difference between two trajec-

tories at a particular time, we may write:

δm̄t = δm̄(t)− δm̄(t)0 (27)

letting δm̄0 be defined in a similar way, we note that the Lyapunov exponent λ

characterizes the evolution of the system if

|δm̄t| ≈ eλt |δm̄0| (28)

20 To avoid confusion, it is important to note the differences between m̄ and 〈m̄〉: The
former is the average reservation price given a distribution N(m) at a particular time t;
the latter is the time average of this average reservation price. Also note that 〈m〉 = m,
since m clearly cannot change with time.
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Several methods for the determination of the Lyapunov exponent exist and the

reader is encouraged to consult the literature, since it is beyond the scope of this paper.

In the end, however, we find the final expression:

∣∣∣∣〈 d

dt
m̄(t)

〉
τ

∣∣∣∣ ≈ eλt |δm̄0| (29)

The Fokker-Planck Equation

In an effort to write an expression which models the diffusion or changes in the

probability distribution Ψ(m̄, t) with time, we say that for an interval of time ∆t, the

Fokker Planck equation may be written in the following form:21

∂Ψ

∂t
=

∂

∂m̄

(
αΨ +

∂

∂m̄
(βΨ)

)
(30)

Where α = −
〈

∆m̄
∆t

〉
is the drift coefficient and β =

〈
∆m̄2

2∆t

〉
is the diffusion

coefficient. 22 If we recall Ito’s rule for a function f(m̄(t)) given by:

∂tf(m̄(t)) = f ′(m̄(t))∂tm̄(t) +
σ2

2
f ′′(m̄(t))

We may perform a termwise comparison to find, after rewriting Eq. 30 and

letting f(m̄(t)) = Ψ(m̄(t)), the following expression:

∂tm̄(t)
∂Ψ

∂m̄
+
σ2

2

∂2Ψ

∂m̄2
= −α∂Ψ

∂m̄
+ β

∂2Ψ

∂m̄2
(31)

Hence, the drift of the probability distribution for m̄, as described by Eq. 25,

is the expectation of the change of m̄ with time. Additionally, Eq. 31 demonstrates

that the coefficient governing the spread of the distribution with time is proportional

to the variance of the time series which describes m̄.

21 The motivation and form for this expression is inspired by a casual talk given by Dr.
Victor Yakovenko to undergraduates at the University of Maryland at College Park.

22 Note that ∆m̄
∆t

may be rewritten as
〈
d
dt
m̄(t)

〉
∆t

.

28



Concluding Remarks

Although the full formulation for the time-dependent formulation is postponed,

this investigation suggests several promising paths that may lead to an unassuming yet

rigorous description of consumer behavior. What has been more fully demonstrated,

however, is that the Boltzmann derivation is not merely a hopeful theoretical construct,

but is a representation that corresponds with actual empirical patterns. Ultimately, we

have taken a glimpse of the variety of economic scenarios which it seems apt to describe,

with the hope that its generality and scope extends to aid in practical application. The

real value in this development is the absence of the need to specify the behavior of each

individual i.e., the Boltzmann-inspired formulation depends only on a description of

important macroscopic details, rather than the complex ‘microscopic’ or agent-centered

analysis which characterizes a great deal of approaches in economics.
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Addendum

Matlab Code Examples

Matlab Code for Distribution of Reservation Prices for β = .2

\\Set Max Reservation Price

Max = 100;

\\ Set value of Beta

c = .2;

\\ Generate 1000 data points

for i = 1:1000

\\ Obtain a randomly generated price on the interval (o,Max)

resprice(i) = (rand)*Max;

\\ Compute N(m) for these generated data points and round to whole number

N(i) = round((exp(c*(Max-resprice(i))))) ;

end

for j = 1:1000

plot(resprice(j),N(j));

hold on;

end

title(’Distribution of Reservation Prices for \beta = .2’)

xlabel(’Reservation Price (m)’);

ylabel(’Number of People (N)’);

\\ Determine the total number of people given the data

sum(N)

Matlab Code for Revenue for β = .001

\\ Set Max reservation Price

Max = 100;

\\ Set Beta

beta = .001;

\\ Setup X-axis

m = linspace(0,Max);

\\ Plot Normalized Revenue

\\ (Normalized Numerically with Max at about 2564 for Unnormalized Revenue)

plot((((m/beta).*(exp(beta.*(Max-m))-1) + (m/Max))/(2564)))

title(’Revenue for \beta = .001’)

xlabel(’Reservation Price (m)’);

ylabel(’Normalized Revenue (R/R_{max})’);
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§ A Assumptions for Decision-Maker Behavior: Deterministic Outcomes

The assumptions, upon which the formulation of the utility function is built,

are as follows: (1) the decision maker, when presented with two options, must always

prefer one option over another or remain indifferent with respect to both (Hadar uses

x1 } x2 to denote a collection or bundle of goods x1 is preferred to x2, and x1 ∼ x2

to denote indifference.), (2) the binary relation ‘}’ is transitive, (3) a consumer always

prefers the bundle that contains more of a particular good, ceteris paribus and, (4) the

preferences of each individual consumer is fully known.

Assumptions (1) and (2) are reasonable requirements for the description of the

actions of any decision-maker.23 However, the generality of these presumptions are

limited by assumptions (3) and (4) which follow for the general consumer. Hadar

claims, in accordance with (3), that all consumers behave in the same ‘greedy’ way,

which enables a numerical representation for the utility function. This assumption is

not required for the construction of such a mapping, and is an undesirable constraint

which severely limits the usefulness of the model, which is avoided in the statistical

formulation. Finally, my revision of assumption (4) is a corollary of (3) that is, as

discussed in §1.2, a gross oversimplification.

It is important to note that there is a fundamental difference between the general

development given by Neumann: by ascribing an additional property to the utility

function (which Hadar reserves for the case of probabilistic outcomes), Neumann arrives

at the same result without the need to rely on assumption (3).24 Further elaboration

is postponed until the next section.

The original phrasing of (4) given by Hadar differs in a significant way from

my revision. Firstly, Hadar comments that assumption (3) alone cannot guarantee

23 Assumptions (1) and (2) are important in that they may govern the time-evolution
of probability distributions, which is a subject of future work.

24 While Neumann does not explicitly state the greediness assumption, his notation
is ambiguous and might suggest it: the meaning of x1 > x2 sometimes means “x1 is
preferred to x2”, or “x1 is greater than x2” depending on the context.
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the existence of a functional relationship or rule of correspondence between a bundle

of goods and a real positive number, upon which a utility function should be built.

Secondly, he asserts that this utility function contains all relevant information regarding

consumer preference. While this is true if greediness is the primary motivation, this

formulation is one of many for which all relevant information about consumer preference

may be fully represented. According to the statistical methodology, one may conceive

of probability distributions which represent the net result of unknown laws of preference

or motivations; these descriptions contain all relevant information - without the need

for an explicit rule for the preferences of each individual. Therefore, ‘representability’

does not require assumption (3), and (4) should be revised to read: the preferences of

consumers is fully representable. However, this revision seems to be obvious, since one

would not wield mathematical technique without this belief.

§A.2 Assumptions for Decision-Maker Behavior: Probabilistic Outcomes

If we now let x be a set of outcomes along with their respective probabilities,

x represents the outcome of a decision an economic agent must make in the face of

uncertainty. For the consumer, x is the ‘uncertain bundle’25 or set of income levels (or

intervals of income) and their respective probability of attainment (or probability that

their initial income will be incremented by the respective interval)26 after the actions

corresponding to x is chosen.

Along with the assumptions (1) and (2) of §4.1, we have: (3*) if x1 } x2 } x3,

then for 0 < α < 1 (α represents a probabilistic weighting),

x2 ∼ αx1 + (1− α)x3

25 See chapter 12 of Hadar[3].

26 The fact that this probability may be formulated for an interval or level of income
supports the result that the developments of §3.1. and §3.2. are linked, mutatis
mutandis, via simple substitution.
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for some x2,27 and (4*) if x1 } x2 for some x1 and x2, then for some x3,

(x1, x3;α, (1− α)) } (x2, x3;α, (1− α))

where (3*) establishes continuity and (4*) establishes independence.

A few comments on the above modifications and additions: these adjustments

allow for a probabilistic description of future outcomes and do not prima facie impose

‘uniformity of behavior’ (e.g. the greediness assumption). From this set of modified

suppositions, one may again construct a utility function. Neumann demonstrates how

this may be done in §3.5 of his classical text.

27 This relation reads: a decision maker is indifferent between option x2 and the un-
certain outcome described by x1 with probability α and x3 with probability (1 − α).
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§ B The Monopoly and the Thermodynamic System

Consider a system with a very large number of particles or objects denoted by

N . We may also break up N into n groups (with 1 ≤ n ≤ N), each with Ni particles

so that

N =
n∑
i=1

Ni (32)

for N particles of some kind, contained in a fixed volume V . We observe that this

system has extensive properties i.e., quantities of interest which are proportional to

the size or number of particles N , and intensive properties which remain constant even

if the size of the system changes. If these particles do not interact with each other, we

may write the total energy of the system – an extensive property28 – as

E =
n∑
i=1

NiEi (33)

where Ei represents a value in a discrete set of energies and Ni is the number of par-

ticles to which the value Ei may be ascribed.

Now suppose that we may envision these N particles as individuals in an econ-

omy who are willing and able to participate in the basic actions of commerce i.e., buying

and selling. However, let us only consider one product which ‘Company A’ sells and N

individuals purchase. Clearly, N may be considered to be quite large – this is the first

similarity to the system hitherto discussed. The second similarity or analogy may be

drawn with regard to the energy Ei. Firstly, like energy, our analogous quantity must

be proportional to the number of individuals N participating in the act of purchasing

‘Product P’. Secondly, we would like a discrete quantity which we may meaningfully

sum, as in Eq. 33. With these considerations in mind, the notion of money as the

28 The total energy E is extensive only in the sense that if we consider uniform multi-
plication by a scalar λ over a particular distribution {N1, N2, ...Nn} with each Ni held
fixed, then the total energy is λE. We then say that E is extensive in N for a particular
distribution or set {Ni}.
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quantity corresponding to energy becomes plausible. To this end, we make a slight

adjustment to Eq. 33, leaving most of the notation unchanged.

M =
n∑
i=1

NiMi = NM̄ (34)

where Mi represents the maximum price at least one individual is willing to pay for

a product, the reservation price, Ni is the number of individuals with reservation

price Mi, M is the market size of the system, M̄ is the average reservation price, and

N =
∑
Ni still holds. Note that if M is held fixed, the average M̄ must vary according

to the distribution of market prices (the values of Ni and Mi). However, if we fix this

average, then the market size M must now vary. These two options will give rise to

two notions of an equilibrium state constrained by the condition of a fixed markets size

M or a fixed average reservation price M̄ . We call these two formulations equilibrium

and time-dependent quasi-equilibrium respectively.

It is important to note that both M and E naturally varies according to the

distribution of particles or individuals with a given energy or price respectively. If we

fix the average of these quantities, we achieve thermal equilibrium , which has a clear

meaning for the physical N-particle model: the temperature, directly related to the

average energy of the particles, is held constant. However, we have yet to understand

what this means in an economic context. before this understanding is achieved, we

expound upon the notions of equilibrium and time-dependent quasi-equilibrium.

The time-independent equilibrium state is the most probable state which arises

from a fixed market size M or Mα ab initio.

Mα =
n∑
i=1

NiMi (35)

Therefore, in this case, there is no well-defined average for a set of identically
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prepared systems29. And, by fixing the market size, only the sets [Ni,Mi]
n
i=1 that sat-

isfy Eq.35 are allowed.

Note that the market size is not an ideal measure. It only describes the total

money collected if every person where to purchase a product at the maximum price

they themselves are willing to pay. In reality, charging each customer the price they

are maximally willing to pay for a product is not a realizable business practice. How-

ever, in sales, this measure could represent the revenue a perfect salesman would make.

Nevertheless, we simply neglect this measure for the problem at hand and consider an

equilibrium state established by a fixed average reservation price.

If we now take an ensemble of distributions for a large set of Mα, thus allowing

M to vary, we now have the corresponding canonical ensemble for the system. If we fix

the average reservation price at a particular time, while allowing the average to change

with time so that M̄(t) = M̄ , We find that the time-dependent quasi-equilibrium state

is constrained by the following condition.

M̄(t) = M̄ =

∑n
i=1NiMi

N
(36)

Note that the time-independent formulation has each price Mi explicitly corre-

sponding to the weighting Ni, which means that the ordering of the set {Mi} affects

the sum. The sum of the products of these factors can only be preserved in a unique set

of cases. Hence, degeneracies for a given Mα are a unique feature rather than a critical

one. However, for the time-dependent case, only the sum of one factor is conserved:

the ordering of the set of Mα may freely vary without affecting the sum. This in turn

creates degeneracies or symmetries which yield Boltzmann-like statistics.

29 If we imagine this ensemble of identically prepared systems as instances of one
system in time, the notion of time-independent equilibrium is made clear.
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Considerations

It is important to note that for the system of particles, the parameters upon

which the law governing the assignment of energies to each particle are known; the

number of particles and the volume of the space confining them, along with their

energies, constitute all we need to know to assign a particular value of energy to each

particle. An equally straightforward enumeration of parameters should not be done,

however, for the laws governing the threshold price of each individual. Therefore, we

accept that the law or function which assigns a threshold price to each individual has

unknown parameters, which is summarized in a more succinct way below,

Ei = f(V )⇔Mi = g() (37)

where f(V ) is some function of volume, while g() is the unknown function on which

Mi depends.

A second assumption, for the ideal case, which we must analogously derive is

the requirement that the particle system does not contain ‘interacting’ parts. This

condition implies that the eventual value of energy of each particle does not change

as a result of a specific interaction it has with another particle it comes into contact

with. In other words, particles remain distinct and independent, so that the energy

of an individual particle does not depend on that of another. We now analogously

require that each individual does not exchange money with other individuals, or create

a pool of money from which to draw from or save. By stipulating that the only

interaction involving the exchange of money is the purchase of product P from company

A by an individual,this condition of monopoly greatly simplifies our reasoning while

theoretically allowing us to make useful statements about the collective purchasing

behavior of the group.
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§ C The N-Individual System: Microstates of a Monopoly

Methods of Evaluation

For many real systems, it is impractical to measure exactly the series of values

which it will take for some span of time. For the market demand of a particular product,

one will observe that the state of demand, across the domain of consumers, is ‘fuzzy’

and dynamic: one can never accurately construct a description of the demand with

regard to its specific values which it assumes or, with regard to its behavior for any

duration of time. For systems that exhibit these two features, one cannot immediately

construct a curve or calculate a metric in the usual way if it is to be of any use, for

both are naive attempts which undoubtedly neglect the salient features of interest.

When we cannot neglect the inherent uncertainty in a phenomenon, we must carefully

manipulate the information available to us such that the phenomenon, in its entirety,

may be examined with realism. For this purpose, the tools presented in the theory of

distributions are utilized in context.

Microstates

With these considerations in mind, recall that at some point in time, each

individual or particle is associated with a value of price or energy. The microstate of

the system is simply the record or configuration of each object and its respective value.

For the N -particle system, this is simply the position and velocity of each particle, or

ω = {(~r,~v)i} (38)

For the N-particle system, the number of configurations or microstates ω for

some value of total energy E is also dependent upon the volume V , number of particles

N and the value of total energy E, therefore the total number of microstates Ω is given

by some function F so that

Ω = F (N, V,E)
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At this point, it is difficult to construct the corresponding equation for the eco-

nomic problem under consideration. To do so, a little more is required.

Development

The N particle system and N individual system differs in an important way.

f(V ) and the deterministic equations which govern the behavior of each particle are

bona fide continuous functions, for which a large body of math is designed to handle.

On the other hand, there are no such equations for the latter system.

Firstly, the value of price Mi need not be continuously assigned. If the differ-

ence in price Mj−Mj−1 is too small for consumers to perceive a meaningful difference,

one should expect that the demand distribution within this interval is essentially con-

stant. On the other hand, suppose that the price difference is meaningful, so that the

demand distribution within this particular ‘interval’ of price could be any number of

potential curves. To this end, each meaningful interval between a discrete set of prices

is where the unknown demand distributions will lie, separated by known points given

by (Mi, Ni). With this in mind, we envision several curves pieced together at the points

previously stated. The entire set of these curves, over the entire range of reserve prices

Mi or the support, (Mmin,Mmax), relates to the distribution over this interval, whose

properties shall be utilized as much as it is helpful.

Aiming to construct an expression for the microstate (and the total number of

microstates) for the N -individual system, we consider the question: what constitutes

full knowledge of the N -individual system? A cursory answer might simply be the set

of all numbers which represent the respective sizes of each population {Nj} choosing

reservation price Mj, after all is this not the critical information which we are most

concerned about? Yet, just as the energies of each particle arise from their respective

positions and velocities, the set of which constitutes a more detailed description of the
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state of the system, so it is true that the description of the microstate for the set of

individuals is the set of parameters which determine the choice of Mi for each mem-

ber. Although these parameters i.e., the factors that determine if an individual should

choose a price Mj+1 one interval above or Mj−1 one interval below some given reser-

vation price Mj, are unknown, we may artfully choose our description to incorporate

this insight.

To this end, we consider the distribution kφj which lies in the interval (Mj,Mj+1),

where kφj represents, through some use of it in calculation, the unknown law that gov-

erns the incremental decision making of the kth member i.e., the tendency for a member

to choose a reservation price of Mj or a price one increment above it of Mj+1 where

Mj ∈ (Mmin,Mmax−1), where Mmin = M0. Therefore, the full description of the system

is the entire set of such distributions.

{(1φ0, 1φ1, 1φ2, ...1φn), (2φ0, 2φ1, 2φ2, ...2φn), ...(Nφ0,Nφ1,Nφ2, ...Nφn)}

where N represents the total number of individuals and n represents the cardinality of

the set of reservation prices. If

(kφ0, kφ1, kφ2, ...kφn) = k
~φ

then

ω = {k~φ} (39)

is the analog to Eqn. (38).

If we now modify relation (37) to consider the total energy E of the N-particle

system and market size M of the analogous system, we obtain

E = f({(~q, ~p)i})⇔M = g({k~φ}) (40)
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which summarizes the notion that a macroscopic property of the system is a function

of the set of values which describe the microstate.30

Moreover, it seems we may also write, by considering the net distribution or

linear combination of distributions for all individuals for some interval (Mj,Mj+1). In

this way,

φj =
N∑
i=1

iφj (41)

Therefore, since the set {φj} is an amalgamation of the distributions of the the mem-

bers, it may also serve as a description of the state of the entire population or system.

Thus,

ω = {φj} (42)

is a valid alternative to Eq.(39).

Additionally, we immediately know that if all states are equally probable, then

Ω =
(N + n− 1)!

(n− 1)!(N)!
(43)

where n is the cardinality of the set of possible reservation prices Mj. Unfortunately,

we cannot accept that this should be true since all individuals often act upon guiding

principles or laws which are often shared amongst a significant portion of the popu-

lation i.e., reasonable people do not select prices at random. Therefore, one should

observe preferences during the group selection process which reflect these principles,

clearly violating the equal-probability assumption. We note that Ω may also be written

as some functional relationship involving relevant parameters of the system.

30 ~r and ~p are in fact functions of time, just as k~φ should be. However, time dependence
is ignored at present. This means that the conserved quantities M and E remain
constant in time. Moreover, M should also remain constant if k

~φ is perturbed from
some ”true” or chosen distribution.
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For an N particle system, each state of the system is described by the N sets

of position and momenta each particle possesses. A defined volume in which the sub-

stance is contained, naturally constrains the possible values of position coordinates

the particles can assume. Thus, the volume is nothing more than something which

constrains the range of possible values of ~q each particle may independently assume.

To this end, we seek a notion which constrains {φj} or {k~φ}. A straight-

forward constraint, valid for both formulations, is that for the predefined interval

∆M = Mmax −Mmin, φ = 0 outside of this interval.

The Generalized Function

Let the set of curves {φj} defined on the interval (Mmin,Mmax) be a generalized

function of the continuous variable of price m or distribution with n+1 discontinuities.

Thus Eqn. (10) may be represented as F(m) where

F(m) :=



φ0 : Mmin < m < M1

φ1 : M1 < m < M2

φ2 : M2 < m < M3

.

.

.

φn : Mn−1 < m < Mmax

(44)

Now then, suppose some test function ψ with support (Mmin,Mmax) acts upon

the distribution which corresponds to F(m) and TF, yielding M . Using conventional

notation,

M =
〈
TF(m), ψ

〉
= 〈TF, ψ〉 (45)
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where

〈TF, ψ〉 =

∫ Mmax

Mmin

F(m) ψ dm = M (46)

and ψ is constructed on its support so that

ψ(m) = ψ

(
m−Mmin

Mmax −Mmin

)
. (47)

Letting Mmin = 0,

ψ(m) = ψ

(
m

Mmax

)
= ψ(m′). (48)

That is, ψ evaluated at the scaled value of price is equivalent to ψ at the unscaled

value.

43



BIBLIOGRAPHY

[1] Stonier, Alfred W., and C. Douglas. Textbook of economic theory. No. 330 S86 1980.
1980.

[2] Von Neumann, John, and Oskar Morgenstern. Theory of games and economic be-
havior. Princeton university press, 2007.

[3] Hadar, Josef. Mathematical theory of economic behavior. Addison-Wesley, 1971.

[4] Lieb, Elliott H., and Jakob Yngvason. A fresh look at entropy and the second law of
thermodynamics. Statistical Mechanics. Springer Berlin Heidelberg, 2000. 365-370.

[5] Greiner, Walter, Ludwig Neise, and Horst Stcker. Thermodynamics and statistical
mechanics. Springer Science & Business Media, 2012.

[6] Kleinert, H., and X. J. Chen. Boltzmann distribution and market temperature. Phys-
ica A: Statistical Mechanics and its Applications 383.2 (2007): 513-518.

[7] Dragulescu, Adrian, and Victor M. Yakovenko. Statistical mechanics of money. The
European Physical Journal B-Condensed Matter and Complex Systems 17.4 (2000):
723-729

[8] Dragulescu, Adrian A. Applications of physics to economics and finance: money,
income, wealth, and the stock market. arXiv preprint cond-mat/0307341 (2003).

[9] Cottrell, Allin F., et al. Classical econophysics. Routledge, 2009.

[10] Debreu, Gerard. Theory of value: An axiomatic analysis of economic equilibrium.
Vol. 17. Yale University Press, 1987.

[11] Wannier, G. H. The statistical problem in cooperative phenomena. Reviews of
Modern Physics 17.1 (1945): 50.

[12] Fleischhacker, Adam J., and Pak-Wing Fok. An Entropy Based Methodology for
Valuation of Demand Uncertainty Reduction. Available at SSRN 2428870 (2014).

[13] Fleischhacker, Adam J., and Pak-Wing Fok. On the relationship between entropy,
demand uncertainty, and expected loss. European Journal of Operational Research
245.2 (2015): 623-628.

44



[14] Ingber, Lester. Statistical mechanics of nonlinear nonequilibrium financial mar-
kets: Applications to optimized trading. Mathematical and computer modeling 23.7
(1996): 101-121.

[15] Voit, Johannes. The statistical mechanics of financial markets. Springer Science
& Business Media, 2005.

[16] Bouchard, Jean-Philippe, and Marc Potters. Theory of Financial Risks. Publica-
tion by the Press Syndicate of the University of Cambridge (2000).

[17] Kleinert, Hagen. Path integrals in quantum mechanics, statistics, polymer physics,
and financial markets. World Scientific, 2009.

45


	Table of Contents
	1.0. Introduction
	 1.1. Markets
	 1.2. A Review of The Standard Description of Economic Behavior


	 2.0. The General Statistical Derivation for the Boltzmann Distribution
	 3.0. Application of the Boltzmann Distribution
	 3.1. The Simple Revenue Management Problem for Monopolistic Markets
	 3.2. The Distribution of Minute Stock Returns
	 3.3. Perfect Competition Markets: An Additional Application

	 4.0. Discussion and Closing Remarks
	 4.1. Necessary Features of a Boltzmann-inspired Model
	 4.2.1 Suggestions for Advancement
	 4.2.2 Preliminary Investigations towards a Time-Dependent Formulation

	Addendum
	 Matlab Code Examples
	 A   Assumptions for Decision-Maker Behavior
	Deterministic Outcomes
	Probabilistic Outcomes

	 B   The Monopoly and the Thermodynamic System
	 C   The N-Individual System: Microstates of a Monopoly

	Bibliography

