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ABSTRACT 

 The creation of a computer system has become a monumental task. 

Many designers, engineers, and scientists cooperate to create the computer system 

down to its most basic components. An extremely crucial phase of the design of the 

hardware sub-systems is the verification of the hardware paradigms and structures that 

will work in synch to create the new computer system. Therefore, the verification of a 

system level chip is quite a complex task. Moreover, the verification process in any 

design is considered a major bottleneck, but it is required to ensure that the number of 

errors in the hardware designs is minimized. It can be safely said that the complexity 

of verification increases exponentially with the increase in design complexity [1]. 

There is definitely a need to use more than one verification tool to test a system-level 

chip design. Various ‘System on Chip’ verification methodologies have been 

developed and are being used in the market. However, these methodologies require 

anywhere from a medium to a large amount of resources and complex verification 

structures. A two-level verification methodology has been proposed in this thesis for 

the multi-core architecture of Cyclops-64, which involves a significant amount of 

resources. Moreover, it has enough functionality to compete with system level 

verification methodologies that are available in the market. The Two-Level 

Verification method involves the classic functional verification and the software 

emulation. This thesis demonstrates the application of the two level verification 

methodologies to the inter-processor communication module of the Cyclops 64 

architecture. 

The bottom-up verification methodology proves to be a very efficient in 

term of reusability of the test-benches, groups of programs and/or data that is used for 

verifying the system. Thus, this methodology was a logical choice for the Functional 

x 



Verification part of the two-level verification process. Functional verification can be 

carried out with any hardware simulation tool available, like Modelsim. This type of 

verification helps in acquiring a detailed knowledge of the system components. At the 

same time, it makes it possible to perform extensive verification on each of these 

components. The complexity of a system level design calls for the use (or the creation) 

of a robust and automatized tool set. Usually, existent tools and a small set of “glue” 

programs (i.e. programs that will coordinate between different parts of the tool) form 

such tool sets. The methodology that is being proposed by this thesis will use the 

above formula. Software emulation provides a set of robust and automatized programs 

and tools. A typical software emulation tool has a code generator, which is used to 

convert the component’s code written in a hardware description language to a gate 

level instruction code in ‘C’; a logical processor, which emulates the component and 

an automatic test pattern generator; and an output checker to avoid any manual error 

in verification. This thesis demonstrates the  

1. Functional verification for the inter-processor communication 

module (A-Switch) of the Cyclops 64 architecture. 

2. Application of the second level verification methodology-software 

emulation to the A-Switch module. 

3. Combination of the two levels for a full system level verification. 

4. Preliminary verification of the A-Switch. 

. 

xi 



Chapter 1 

INTRODUCTION 

1.1 Cyclops 64 and Multi-Core Architecture: 

 During recent years, a plethora of new paradigms, and some old ones, has 

surfaced. Among them, the most accepted paradigm seems to be the multicore 

technologies. A prime example of this trend is the decision of Intel to go multi-core. 

The first product of this new line is already available, i.e. the Pentium D. On top of 

this wave is the Cyclops family of supercomputers. Cyclops 64, which is part of the 

Cyclops family; is a new generation technology that uses the multi-core architecture. 

Multi-core paradigm can be considered as a design in which a single physical 

processor contains the core logic of more than one processor [1]. This type of 

architecture packs several such processors into a single physical processor. Single-

core processors have many disadvantages such as narrow data bandwidth, big gap 

between CPU speed and memory speed. In a single-core processor about 75% of CPU 

time is wasted in waiting for memory access results. Even though new technologies 

have been developed to subdue this problem, point in case Intel® Hyper Threaded 

technology, this still represents a great problem in today single-core computers. In 

general, the ratio of cost and performance is very bad for single-core processor 

architecture. The Multi-Core Architecture has come as a solution to these problems 

[2]. A multi-core architecture can be considered as a SMP implemented on a single 

VLSI integrated circuit. The goal of Multi-Core architecture is to allow greater 
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utilization of thread-level parallelism, especially for applications that lack sufficient 

instruction-level parallelism to make good use of superscalar processors. It can also be 

called as Chip-level multiprocessing (CMP) or Chip Multithreading [2]. This chip-

level multiprocessing improves the throughput of the whole computer system but it 

has no benefits for single applications that cannot be parallelized. CMP has a better 

data locality than regular multi-processor architectures. Moreover, Better 

communication behavior between processing units saves space and energy. 

The Multi-core architecture hence enables a system to run more tasks 

simultaneously and thereby achieve greater overall system performance. The pictorial 

representation of the multi-core architecture is as shown in figure 1.1. Each core in 

this design has its own resources to run without blocking any other core.  

                                        
Figure 1.1. Multi-Core processors have multiple execution cores on a single chip  
                                       courtesy : Intel [1] 

 

Cyclops-64 is a multi-core architecture which has 75 processors on a 

single chip. The main idea behind the multi core architecture is “divide and conquer” 

[1]. The computational work that is to be performed using a single microprocessor is 
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divided and spread over multiple execution cores. A multi-core processor can perform 

more work within a given clock cycle, hence delivering a better overall performance. 
 
1.2  Problem Formulation :  

  A crucial phase of the hardware sub-systems design is the verification of 

the hardware paradigms and structures that will work in synch to create the new 

computer system. Verification process in any design is considered a major bottleneck, 

but it is required to ensure that the number of errors in hardware designs is minimized. 

Verification is a process used to demonstrate that the intent of a design is preserved in 

its implementation [7]. About 70% of the time to manufacture a product goes into 

functional verification. Functional verification attempts to determine if the design will 

operate as specified. As the design complexity increases the verification complexity 

also increases [3]. Design sizes is said to be increasing in proportion to Moore’s Law. 

It has been shown that if a design block or a module in a larger system design has a 

verification complexity of one, then when these blocks are connected in parallel it is 

said to have verification complexity of two, i.e. it doubles. Similarly if the blocks are 

connected in parallel and the input of one affects the other then it is said to quadruple. 

In general, with the increase in the design sizes the verification complexity increases 

exponentially. An example of this rule is the Cyclops 64 architecture chip. System 

Level verification of the Cyclops 64 is a necessary evil to make sure that the end 

product is free of any bugs. 
 

1.3 Proposed Solution: 
System Level Verification is the biggest task for the verification 

industry. There have been various solutions proposed for system level verification by 

many companies. For example, Cadence has come up with the unified verification 
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methodology [7]. This verification methodology considers into consideration the 

digital logic verification to mixed signal simulation verification. For the verification of 

Cyclops 64, such a complex structure is not required. A two-level verification 

methodology has been proposed for a system level verification in this thesis, which 

applies a simpler verification structure. The Two-Level Verification method involves 

the classical functional verification and the software emulation.  

 The functional verification is for component level verification. This type 

of verification helps in acquiring a detailed knowledge of the system components and, 

at the same time, makes it possible to perform extensive verification on each of these 

components. The complexity of a system level design calls for the use (or the creation) 

of a robust and automatized tool set. In general, the automatized tool set consists of 

some existing tool for simulation along with a small set of “glue” programs (i.e. 

programs that will coordinate between different parts of the tool). The methodology 

that is being proposed by this thesis will use the above procedure. Software emulation 

provides a set of robust and automatized programs and tools. The inter-process 

communication unit of the C64 chip called the ‘A-Switch’ was tested with this 

verification methodology. The ‘System Level verification’ of the Cyclops 64 was 

carried out in two steps. Verification can be carried out in either bottom-up or top-

down method. In a top-down approach the verification starts with the top-most level. 

The bottom-up verification technique starts from the low-level blocks verification 

followed by the verification of the integrated blocks. This is the most common 

verification methodology used. The bottom-up verification methodology also proves 

to be a very efficient in terms of reusability of the test-benches, groups of programs 

and/or data that are used for verifying the system. Thus, this methodology was a 

logical choice for the Functional Verification part of the two-level verification 
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process. The software emulation helps in the system level verification method. The 

block diagram of the verification procedure for both the verification level is as shown 

in figure 1.2. The main component of the verification process is the Execution unit. It 

is also called Design-unit Under Test (DUT).  The Execution Unit consists of the 

simulation or emulation or co-simulation process. Verification is a strategy to make 

sure all aspects of the system meet the required specification and simulation is a tool 

to attain this. The test plans are generated to meet the specification requirements.  A 

generator is developed depending on the specification.  The input to the execution unit 

is the stimulus file generated by the generator.  The results of the design unit is sent to 

the Response Unit and checked later. This is a generalized procedure of both the 

methods but the way in which each of the units was implemented varied. The 

description of the functional verification and software emulation has been explained in 

the later sections. 

Response Execution Stimulus 

Checker Generator 

                           
 

Test & Management 
Plan

Figure 1.2: Block diagram of the Verification Methodology 
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Chapter 2  

DESCRIPTION OF THE INTERPROCESS COMMUNICATION MODULE IS 
CYCLOPS 64 

2.1 Cyclops 64 Description: 

The Cyclops 64 Architecture is designed for high performance 

supercomputers, which have a performance of petaflop.  A C64 consists of tens of 

thousands of C64 processing nodes arranged in a 3D-mesh network. These processing 

nodes consist of a C64 chip, external DRAM and some interface logic. Each of the 

C64 chip has eighty processors. Each processor in turn contains two thread units, two 

SRAM memory banks of 32KB each. The chip has no data cache, instead it use a part 

of the SRAM as a scratch pad for this purpose. Such a memory provides a fast 

temporary storage to exploit locality under software control [2]. Processors are 

connected to a crossbar network that enables intra-chip communication, i.e. access to 

other processor’s on chip memory as well as off-chip DRAM and the inter-chip 

communication via input and output ports that connect each C64 chip to its nearest 

neighbors in the 3D mesh. The intra-chip network also facilitates access to special 

hardware devices such as the gigabit Ethernet port and the serial ATA disk drive 

attached to each C64 node. The Gigabit Ethernet links are used to connect the C64 

supercomputer with the host interface and the ATA hard drives attached to each C64 

node avoid disk bottlenecks and network congestion. There is a separate control 

network that connects the C64 system to the host system. This control network carries 

commands from the host system to each C64 node and is connected to the C64 node 
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via JTAG interface. Figure 2.1 illustrates an instance of the C64 supercomputer 

architecture with 24 X 24 X 24 logically arranged C64 nodes in the 3D-

meshconfiguration. 
 

                             
 
                                       Figure 2.1: Cyclops64 Supercomputer  
 

 Essentially, a single C64 chip consists of 

- Eighty processing units (or cores) 

- One I/O Switch for inter chip communication, i.e. for communicating between 

two C64 nodes. This module is called the ‘A-Switch’ 

- One 96-way pipelined crossbar switch for intra chip communication, i.e. for 

communicating with different modules in the chip 

- Sixteen SRAM I-Caches, each shared by five processors. 

Figure 2.2 gives the detailed connection of these modules in the C64 chip.  
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Figure 2.2: Internal connection of the C64 Chip 

                                    courtesy: Yuhei Hayashi 

 

2.2 Inter-Process Communication Module(A-Switch)  

      2.2.1 General Description: 

The Inter-chip/ Inter process communication of the Cyclops64 is 

accomplished with help of the A-Switch Module. The Cyclops64 chip has a point to 

point connection with its neighbors. A SerDes (Serializer Deserializer) is used to 

convert the parallel data from the A-Switch into serial data. A SerDes is an integrated 

circuit transceiver that converts parallel data to serial data and vice-versa. The 

transmitter section in the SerDes is a serial-to-parallel converter, and the receiver 
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section is a parallel-to-serial converter. SerDes chips facilitate the transmission of 

parallel data between two points over serial streams, reducing the number of data 

paths and thus the number of connecting pins or wires required. In the Cyclops 64 

architecture a ‘24’ bit cable is used to connect the two Cyclops-64 chips. The C64 

chips are arranged in a 3D configuration, i.e. each chip has six neighbors. Hence an A-

Switch module has six incoming data lines from the adjacent chip and six outgoing 

data lines to adjacent chip. The communication between the adjacent chips is termed 

as the channel communication. Other than this the A-Switch has six incoming and six 

outgoing point to point connection with the crossbar. The crossbar forms a means to 

communicate with the other units of the chip. Since there are separate connections for 

each of the neighbors, the A-Switch is capable of transmitting six incoming and six 

outgoing packets simultaneously. The switch is also capable of routing the messages 

to and from the internal buffer memory.  A DMA is used to control the data transfer 

between the switch’s internal buffer and the processors memory, hence increasing the 

efficiency of the processor. 

 

2.2.2 Packet Format: 

In the A-Switch, message transfer takes place in the form of packets. The 

software program is responsible for constructing these message packets. The format of 

this message packet is as shown in figure 2.3. The Packets consists of ‘header’ part 

and ‘message’ part. The message part may contain one complete message or part of a 

message. The header and the message are an integral part of the double word. The 

packet size can vary from two to two fifty five double words. The minimum packet 
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size is two since a message to be passed has to have one packet for the header and one 

for the message. 

                             Header                                                          Message Part 
Route Route … Route User Data 

64 64 64 64  

Figure 2.3: Message format in Cyclops 64 

 
Size Stamp Tag Chunk 2 Chunk 1 Chunk 0 

8 24 8 8 8 8 

 
Class RCR HWR  Port Hops 

2 3 3  3 5 

Figure 2.4: First double word: 

 
/ / / Chunk 8 Chunk 7 Chunk 6 Chunk 5 Chunk 4 Chunk 3 

16 8 8 8 8 8 8 

 

Figure 2.5: Subsequent double words 

 

The header is a sequence of sixty-four bit “route” double word. The word 

route is used for the header, since it contains the direction in which the packet has to 

be routed. As mentioned earlier, the A-Switch has six neighbors and the packet can be 

routed in any of these six orthogonal directions. The direction the packet has to been 

sent is specified by the ‘chunk’ bits as shown in figure 2.4. The chunk is divided into 

two parts; the first five bits give the number of hops and the last three give the 
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direction. The direction can be any thing from 0-5. Each of the six neighbors are 

assigned a port number depending on the direction in which they are locate. The port 

numbers of the neighbors are as shown in Table 2.1. The pictorial representation of 

the port numbers of the chip and its neighbors is as shown in figure 2.6.  

     

Main Memory

Crossbar Switch

From
Adjacent
Nodes

To
Adjacent
Nodes

A-Switch

0
1
2
3
4
5

0
1
2
3
4
5

          

0 1

2

3

4 

5 

Figure 2.6: Pictorial Representation of connection between the neighbors in C64 chip 

Table 2.1: The port number of the neighbors in a 3D mesh configuration 

 
Port 
No. 

In 
From 

Out 
To 

0 X – 1 x + 1 

1 X + 1 x – 1 

2 Y – 1 y + 1 

3 Y + 1 y – 1 

4 Z – 1 z + 1 

 5 Z + 1 z – 1 

 
 When a message passes from one chip to another, it is said to ‘hop’ from 

one chip to another. The ‘Hop’ field in the header gives the number of hops the 
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message needs to take in the direction given by the value in the direction field of the 

header. For example if the chunk reads as “010 00100”, it implies that the packet has 

to hop four times in the negative y direction. Port two represents the negative y-

direction. The next field in the header is the ‘Tag’. The ‘Tag’ can be separated into 

three fields, namely HWR, RCR and Class. The class specifies in which direction the 

messages has to be passed. When a load store or load request instruction is carried out 

it is said to be of class ‘0’. In reference to ‘A-Switch’, it is called the forward 

direction, i.e. the data is being sent to from the processor to the A-Switch. Class ‘1’ is 

used for messages such as load return, which in term of the “A-Switch’ is referred to 

as ‘Reverse Direction’. Reverse direction as the name suggest is used for data are sent 

from the switch to processor. 

Messages to be passed can have more than one header word. The number 

of header that is being passed in a set of messages is indicated by the HWR bit – 

called the Header Words Remaining is used. The RCR- Rename Chunk Remaining 

field is used to get around the bad nodes in a network. When the RCR bit is set to 

zero, it indicates no renaming. When the RCR bit is set to a non- zero value, it causes 

the chunks to be renamed after the given value. For example consider a direct path x-

>y->z between processor A and processor B. If there is a bad node between Processor 

A and processor B then direct path from A to B is blocked. The A-Switch gets around 

this problem by sending the message through the a different renamed path x1->y1->z1 

-> x2->y2->z2.  In this message the RCR bit would be one, to indicate the path is 

renamed after the first chuck. As the message moves from z1 to x2, i.e. after the 

message has passed through the first chunk, Class 0 changes to Class 2 and Class 1 

Changes to Class 3.  When the message arrives at Processor B, the original classes are 

restored. 
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The stamp field is self explanatory; this field gives the time it was created. 

The last field in the header is the size field which gives the total number of double 

words. The size can   range from 2 to 255.  The next section deals with the flow of 

these message packets. 

2.2.3 Flow of Message in the network: 

The software program arranges the message packet in the order of x, y and 

z direction, i.e. the number of hops in x-direction, if any followed by number of hops 

in y-direction, if any and finally the number of hops in the z-direction if any. As and 

when the packets pass through the C64 chip the A-Switch modifies the headers to 

indicate that the header is one step closer to the destination. A packet has minimum 

one header with three chunks. The chunks can be a zero value or a non zero value. The 

algorithm followed by A-Switch in routing the packet and modifying the packets is as 

shown below. 
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Read hops 
from Chunk

Is new 
hop = 0 

Y 

N Generate new header 
 and dispatch 

Decrement 
hop by one

Shift chunk 1 
and 2 down

Is  
hop = 0 N Y Is  

HWR = 0

Change hop 
count to ‘c0’  

A 

A

Y 

N 

Decrement HWR shift 
chunks from Next  

Figure 2.7: Algorithm for changing the message 

 

First Chunk0 is read and the number of hops is checked. If the number of 

hops is zero, it indicates the packet has arrived at the final destination. If the number 

of hops is a non-zero value, the hop count is decremented. If the new value of hop is 

not a zero then concatenate the new value to the rest of the header and send it cross to 

the next chip. If the new value is zero, then chunk1 and chunk2 are shifted down, i.e. 

chuck0 is removed. Again the number of hops in the new chunk is checked and if that 

number is also a zero then it checks the HWR field. A zero in the HWR would mean 

that there are no more headers and the next chip (node) is the final destination. If the 

next node is the final destination then the hop count of the chunk is modified to ‘0C0’. 

The ‘A-Switch’ is designed to recognize hop count ‘0C0’ and route the packet to its 
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processor. Since the Cyclops chip are to be arranged in 24 X 24 X24 grid the 

maximum hop count can be 24. So making the hop count ‘0C0’ is valid. On the other 

hand if the HWR is a non-zero value, there are more chunks, so the A-Switch shifts 

the three chunks from the next header (route double word). If this results in an empty 

route double word (i.e. the next header is empty), then the A-Switch decrements the 

HWR bit and sends it across to the next node. This process is repeated until the packet 

reaches the final destination. The Cyclops chips are arranged in a 24 X 24 X 24 grid. 

Three chunks are sufficient to route the packet to any one of the nodes in this grid. 

Provision has been made in case more than two chunks are needed. The flow chart for 

the algorithm is as shown in figure 2.7. An example of how the packet is routed is as 

shown in figure 2.8. In the 3D mesh, the packet has to be routed from node A to F and 

the path is from A -> B -> C -> D -> E -> F. The message has to be transferred to port 

‘1’ in the node ‘A’, if the message has to be passed to node ‘B’. From ‘B’ to ‘C’, it is 

through port ‘1’, since it passes in the positive ‘x’ direction. The number of hops in 

the positive x direction is therefore two, from node A to B and then from node B to C. 

The direction for this transfer is specified in Chunk0. Once the message reaches node 

‘C’, the message has to go through the positive ‘y’ direction which in through port ‘3’. 

Again the number of hops is ‘y’ direction is two, from C to D and D to E. This 

direction instruction is specified in Chunk1. The final chunk gives the details about 

the positive ‘z’-direction. Only header message has been shown in figure 2.6.  The 

figure also gives a view of how the chunks vary with each hop. 
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A B C

D
E

F

011 00010  001 00010 101 00001 
Chunk0Chunk1 Chunk2

2 00…0000 
Size Stam

1000 
Tag

011 00010  001 00001 101 00001 

011 00010  101 00001 000 0000 

011 00001  101 00001 000 0000 

 101 00001 000 0000 000 0000 

 101 00C0 000 0000 000 0000 

To B

To C

To D

To E

To F
 

 

Figure 2.8: Example of packet routing 

 

 

2.2.4 Communication in the A-Switch: 

The communication between the processor and the switch consist of 

mainly the write and read operation. Write operation, also called the output message 

transfer is controlled by channel programs. In any system the message packets to be 

transmitted are never located at one place. Parts of the message packets reside in 

different parts of memory, for example the header can be in one area and the data in 

another. Usually before transmitting the messages, the headers and data messages are 

retrieved from their different location copied in a continuous temporary memory 

location and then transmitted. In Cyclops 64 this process is handled differently. The 

 16



channel program creates a pointer to where the message packets are located and 

controls the A-Switch message transfer with these set of pointer.  

The channel program consists of sequence of pairs of length and address 

as shown in table 2.2. The length specifies the number of double words located in the 

main memory that have to be written. The location of the memory is given by the 

address in the address field. Since the message is segmented and located in different 

location, there will be a sequence of these lengths and address. A Root double word 

links all these sequences. The Root double word has a ‘Num Pointer’ field with 

indicates the sequence length and the address field give the location where the channel 

program is located. The last double word in the channel program has a special bit 

number –‘C’ to indicate the end of the sequence. Once the write operation is initiated 

the program checks for completion by testing the bit pointed by the last pointer in the 

channel program. The channel program and data may be in any part of the main 

memory (DRAM, interleaved, SRAM or scratch pad SRAM). There is no requirement 

for the channel program, packet segments and completion indicator to be in the same 

type of memory.  

Table 2.2: Channel Program 

 
Double word to store in switch  Channel Program 

Num Pointers Address  Length Address 
32 32  Length Address 
   C / / / Address 
   6 26 32 

In a read operation, also called the input data transfer, the message is 

transferred from the switch to the software defined circular buffer. The program must 
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first define a circular buffer for each of the input port. The header format of the cross 

bar unit is as shown in Table 2.3.  

Table 2.3: Header Format 

 
Position Field Full Name Notes 
101 
(94 after Tar 
stripped) 

V Valid 1 for a valid packet 

100 
(93 after Tar 
stripped) 

C Class 0 for forward, 1 for 
reverse 

99 
(92 after Tar 
stripped) 

BSE Block Start/End 1 during the first and last 
packets of a block 
transfer 

98:92 Tar[6:0] Target Identification of one of 
96 targets 

91:64 T[27:0] Tag Tag 
63:0 D[63:0] Data Data or other info 

 

The tag can be further broken down to various fields. The tag format is as 

shown in table 2.4. Depending on the tag, the bits zero to sixty three can be considered 

as data or address. The various interpretations of the data field depending on the tag 

are as shown in table 2.5. 

Table 2.4: Tag Format 
Position Field Occupant Notes 
R 
27:  17 

  Variable Interpretation 

16:10 PID[6:0] Src Proc ID Source PID 
9:7 TID[2:0] Src Thread ID Source TID 
6 S Signed 1 : Signed 
5:0 GPR[5:0] GPR Source GPR 
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Table 2.5: Address and Tag Details 
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Tag[27:0] Operation Notes 
11 || Sz[1:0] || A[23:0] Store with Short Address Data in D[63:0] 
   
10_0000_000 || Sz[1:0] || PID[6:0] || 
TID[2:0] || Signed || GPR[5:0] 

Store with Long Address, first 
packet 

First packet carries Address 
Second packet carries Data 
PID and TID are for Return, so 
not used here, nor are Signed 
and GPR 

10_0001|| N[4:0] || PID[6:0] || 
TID[2:0] || Signed || GPR[5:0] 

Block Store, first packet, any 
Address 

Address in D[63:0] 
PID,TID,Signed,GPR ignored 
Good for up to 32 values since 
we use N+1 for the Count 

   
10_0010_000 || Sz[1:0] || PID[6:0] || 
TID[2:0] || Signed || GPR[5:0] 

Load Address in D[63:0] 
PID and TID are for Return 

10_0011 || N[4:0] || PID[6:0] || 
TID[2:0] || Signed || GPR[5:0] 

Block Load, subsuming section 
of Load Multiple within one 
bank.  This itself is not a block 
transfer. 

Address in D[63:0] 
Signed is ignored 
Good for up to 32 values since 
we use N+1 for the Count 

   
10_0100 || UU[4:0] || PID[6:0] || 
TID[2:0] || Signed || GPR[5:0] 

Atomic Load or Store, first 
packet 

Address in D[63:0] 
Signed is ignored. 
Pure Store flagged by GPR = 0 

   
10_0101 || N[4:0] || PID[6:0] || 
TID[2:0] || Signed || GPR[5:0] 

Icache ReFill Request  

10_0110 || N[4:0] || PID[6:0] || 
TID[2:0] || Signed || GPR[5:0] 

DCache ReFill Request First packet carries Address 

10_0111 || N[4:0] || PID[6:0] || 
TID[2:0] || Signed || GPR[5:0] 

DCache CastOut First packet carries Address and 
Mask if Address is short 

   
01_0000_000 || Sz[1:0] || PID[6:0] || 
TID[2:0] || Signed || GPR[5:0] 

Load Return First and subsequent packets 
carry data 
PID and Signed (since sign 
extension done at storage unit) 
ignored.  Sz is needed. 

01_0001 || N[4:0] || PID[6:0] || 
TID[2:0] || Signed || GPR[5:0] 

Block Load Return PID and Signed (since all items 
are doublewords) ignored 

01_0010 || N[4:0] || PID[6:0] || 
TID[2:0] || Signed || GPR[5:0] 

ICache ReFill Return First packet carries reflected 
address.  Subsequent packets 
carry data. 
Signed, TID and GPR ignored. 

01_0011|| N[4:0] || PID[6:0] || 
TID[2:0] || Signed || GPR[5:0] 

DCache ReFill Return First packet carries reflected 
address.  Subsequent packets 
carry data. 
Signed and GPR ignored 



A detailed explanation of how these addresses are used will be given later 

with examples. The first in read or write operation is initialization of the circular 

buffer. During the software initialization time, the program gives the A-Switch the 

location and the size of this buffer. Executing a store long address instruction will 

perform this initialization. The circular buffer can be tested by executing a load double 

instruction.  After processing with the packet, the program informs the A-Switch that 

that part of the buffer is free and can be used by another packet. Executing a store-

double instruction will accomplish this task. The input packet in the circular buffer 

consists of a single header double word followed by the message part of the packet. 

Input packets may not be processed in the order of arrival. The channel program 

obtains the address and length of two or more packets process them in any order and 

informs the A-Switch about the memory area where the packet is located. The A-

Switch keeps track of the memory areas and assures a in-order delivery of the 

message. The circular buffer can be in any part of the main memory, DRAM, 

interleaved SRAM, scratch pad SRAM. But SRAM proves to me more advantageous 

due to its high data handling rates. The read and write operation are later explained in 

details with an example in section 2.2.8. 

 

2.2.5 Address Scheme used in A-Switch: 

The Cyclops64 uses 32-bit addressing scheme. The address format for the 

A-Switch is as shown in figure 2.9.  Here 7th bit is set indicates the direction in which 

the address is being transfers. Forward direction is indicated by ‘0’ and reverse by ‘1’. 

The 8th and the 9th bits are used for the command. The different commands possible 

are 
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0- Initiate a write. This is used when the channel program is initiated.  

1- Define the circular buffer location and size.  

2- Get parameters defining and input packet 

3- Write job index 

The 25th to 31st bit gives the port address. The ports from 90 to 95 of the crossbar are 

used for this communication with the A-Switch. 

 
01 90:95 / /  3 / / / C D/ / / 

2 7 3 4 7 2 1 6 

Figure 2.9: Address format of A-Switch 

The communication of the A-Switch can be best explained with an 

example of how exactly the message is transferred. The next section concentrates 

entirely on the message transfer process, giving detailed description of each of the 

modules in the A-Switch. 

 

2.2.6 Detailed description of A-Switch: 

An overall picture of the C64 chip was shown earlier in figure 2.2. Figure- 

2.10 gives a detailed connection between the crossbar, the A-Switch and the channel.  

The crossbar has two latches connected to it, one for the input and the other for the 

output. The connections between the crossbar and the rest of the modules are carried 

out through these latches. The ports between ninety and ninety five are reserved for 

the A-Switch, the other port are shared between the I-Cache, DRAM and the host. The 

‘A-Switch’ takes care of message transfer from and to the other channels. There are 

some configuration pins used by the A-Switch. These configuration pins are like the 
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initializing pins which define base and bound values for each of the modules in the A-

Switch. An initialization example of the modules is in the appendix. Note the values 

of the base and bound can be changed.  The pins DDPORT, give the location of the 

4DRAM devices, which is used in relocation. The bit sizes of each of these signals are 

given in the figure 2.10.  

96 

8
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8
4 

Switch 

C64_SW 

6 

 

Mpl_Out 9

9

0

Mpl In
9

9

0
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10
2 

2 

6 Channel 
To other C64 
chips 

0 

9

96 

2 
D0 
T0 

D95 
T9
5 

2 

10
2 0 

10
2 9

Crossbar 

C L U A D Wr 

Configuration Pin 

Latch 

Latch 

4 1

DRPORT 
Configuration Pin 

8 1 6

 

Figure 2.10: Detailed view of the connection between crossbar and Switch 

 A detailed picture of the A-Switch is as shown in figure 2.11. The entire 

switch is divided into two main modules; SWA and SW_CS.  There are other modules 

such as the Error Correcting Code Generator (ECC_G) and Error Correcting Code 

Checker ( ECC_C) , Make spare and extract spare. 
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Figure 2.11: Block Diagram of the ‘A-Switch’ 

The ‘SWA’ transfers sixty four bits of data along with eight bit tag bits. 

These seventy bits are appended with eight bits generated by ‘ECC’ module, hence 

mounting to eighty bits in all.  A 24 bit cable is used to connect two C64 chips. Of the 

24 bits 3 are used for strobes and the remaining 21 bits are used for the message 

transfer. The SerDes is used to convert the 80 bit parallel message from the ‘Switch’ 

to serial data message. The SerDes transfers message, by converting four message bits 

into one high speed bit. Packs of this four bit (one nibble) are transferred in each of 

the 21 bits connection serially. Hence the total number of data required is for a 21 pin 

connection is 21X4 = 84 bits. Since the data is only 80 bits the ‘Make Spare’ module 
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is used to generate the extra four bits. Similarly when the data comes in, an ‘Extract 

Spare’ module is used to extract the four bits.  Data is transferred in these outgoing 

channels at a speed of 2 Gbit/sec/signal. The logic with which these units create and 

extract the spare bits is relatively simple. The eighty four bit message is first divided 

into twenty one nibbles. The nibbles are then fed to a multiplexer with the select line 

‘11111’. The spare bits are forced to zero. The block diagrams of the ‘Make Spare’ 

and ‘Extract Spare’ units are as shown in figure 2.12 and 2.13 respectively. The 

extracted bits are fed to the ECC_C unit which in turn is connected to the ‘SWA’ unit. 

                  83                  80  79                         72  71                                                       0 
Spare=4 bits ECC_G = 8 bits Tag  + Data = 8 + 64 = 72 bits 

 

Figure 2.12: Block diagram of Extract Spare Unit 
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Figure 2.13: Block Diagram of Make Spare Unit 

The SWA is the main module which handles the routing to the different 

nodes. A detailed description of the SWA module is given in section 2.2.7. The 

detailed description of the SW_CS module; which handles the communication 

between the switch and the crossbar is given in section 2.2.8. 

2.2.7 SWA Module: 

The SWA module is quite complex. It mainly consists of five modules as 

shown in figure 2.14. The inputs from the processor are denoted by FrH<0:5>. The 

signals are named in certain pattern. Consider the signal FrH<0:5>, FrH implies from 

header(i.e. processor) and the notation <0:5> implies that there are 6 copies of these. 

FrH<0:5> is equivalent to saying FrH0, FrH1, FrH2, …, FrH5.  The input signals 

‘FrCh<0:5>’ are the inputs from the channel. Similarly there are two sets of output; 

one for the processor and one for the channel given by ToH<0:5> and ToCh<0:5>.  
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Figure 2.14: Block diagram of SWA module 

Message Flow in SWA module: 

The message flow in the SWA can be considered to be in two direction; 

one from the processor to the channel and the other from the channel to the processor. 

Let us first consider the data flow from the processor to the channel. The message to 

be transferred is fed to the switch through the inputs FrH<0:5>. The message is fed to 

any one of these input ports depending on which output post it has to be sent. For 

example if the data has to be sent through the port 3, then data has to be inserted to 

‘FrH3_D’. The ports are numbered from zero to five. There are also the tag bit coming 

from the crossbar, they are represented by ‘FrH<0:5>_Tag’. The tag bit specifies if the 
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message coming in through the input port is valid or invalid. When the tag is ‘1000 

0000’, it implies that the data is valid. Please note that the examples to be explained 

hence forth will use the hexadecimal notation. Other than these there are some 

configuration pins to the A-Switch that initialize the different modules. When the 

message traverses from the processor to the channel, it goes through the modules IQ, 

MM and OP. When the message traverses from the channel to the processor it goes 

through the modules IP, MM and OQ and the OP module is also used in the selection 

process. To explain the detailed description of this traversal, an example has been 

chosen.  

First consider the transfer of message from the processor (head) to the 

channel. The message packets to be transferred are generated by the program, as 

explained in section 2.2.2. The header that was created in section 2.2.2 has been 

copied below for convenience. 

 

011 00010  001 00010 101 00001 
Chunk0Chunk1 Chunk2

2 00…0000 
Size Stamp 

1000 0000 
Tag

 

According to this header the data has to be transferred through port 1, 

hence this header and the message part are injected to the input port 1. This is fed to 

the IQ- Injection Queue module inside the switch. 

There are six IQ modules; one for each input ports. The block diagram of 

the IQ modules is as shown in figure 2.15.  The data is sent to the Data FIFO and the 

‘Sequence-A’. The ‘Sequence-A’ unit simply receives messages from the Channel, 

creates the first record for the Header FIFO, and activates the write signal for the DF 

so that the data which was injected can get into the data FIFO for the appropriate 

class.  This sequencer breaks down the header. 
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Figure 2.15: Block Diagram of  Injection Queue/ Input port Unit 

 

The details about the header have already been discussed. The header 

contains the size, stamp, tag and chunk field. Here is an example of another header. 

 

Size(63:56)::Stamp(55:32)::Tag( 31:24)::Chunk2(23:16):: Chunk1(15:8) ::Chunk(7:0) 

   04      000000      01         A3         63        43 

 

The Tag can be further broken down into  

 Class :: RCR :: HWR 

  00      0000   01 
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The ‘Seq A’ unit concatenates the port address got from the chunk 0, the 

size and the stamp and sends this packet to the ‘Header FIFO’-HF unit.  The packet 

sent for this example would be 404000000. The ‘Seq A’ also sends the class 

information got from the ‘Tag’ to the Data FIFO, which in this case is ‘0’. The ‘DF’ 

unit writes the message to its register, when the write signal from the ‘Seq-A’ is high. 

There are different set of registers for each of the class. When the write signal is high, 

depending on the class the corresponding register is updated. The messages are stored 

in the registers, so that it can be retrieved later when required, hence allowing pipe-

ling, else all transfers would be blocked until the message is delivered to the port. 

There are four ‘HF’ units; one for each class, so the ‘Seq_A’ also has a 

‘put’ signal to indicate to which ‘HF’ unit the data belongs to. When the ‘put’ signal 

for the corresponding HF unit is high the packet from Seq-A is stored in the 32-deep 

FIFO. A record of the port, size and stamp are stored in these FIFOs. The message 

stored is later released, depending on the request from the Seq-B unit. The message 

transfer of a particular transfer is broken down into four steps and when the transfer is 

any one of these steps, it is said to be in that base. The different bases are 

0th base: Home Plate – The transfer process is said to be base zero when there is a no 

data available to be sent for the particular class. 

First base: The transfer process is said to be first base when there is a 
message available to be sent and it waits for a nod from the OP 
unit to start sending the message. The OP unit has its own logic 
to determine when it is free to send data of that particular class 
in the particular port. 

Second base: When permission to send the message is received from 
the OP unit, the transfer is said to be in the Second base and 
remains in this base until the blocks can be sent. There is a 
queue for the block transfer. As long as the message transfer is 
waiting in this queue it is said to be in Second base. 

 29



Third base: Once the block transfer starts after waiting in the queue, the 
class for this particular port moves to the third base. The class 
stays in this base as long as the block is transferred. Once the 
entire block is transferred, it moves back to the Home Plate. 

The ‘Game’ unit monitors the change in the base and indicates all the 

other units about the current status of the base. The ‘Sequence-B’ unit checks if the 

particular class is in zero base. If the class is in base zero and there is a message in the 

FIFO for the corresponding class, the ‘Seq-B’ indicates the OP module that there is a 

message to be transferred and set the class to base one. The game unit also receives a 

notification about this change and announce to other units accordingly. When the OP 

unit indicates that it is free to receive message for that class, the ‘Sequence-C’ checks 

if the class is in the first base; if it is the first base, it changes the status of the class to 

second base and sends the required information to ‘Sequence-D’. The ‘Seq-D’ unit 

monitors the block transfer. ‘Seq-D’ receives the port address, class and size from 

‘Seq-C’. With this information it waits for its turn in block transfer queue. Once the 

chance to send the message comes the ‘Sequence-D’ changes the class base to third 

base and sends a read signal to the Data FIFO. The ‘DF’ unit in turn transfers the 

messages to the MUX module. The ‘Seq-D’ maintains the class in third stages till the 

entire block is transferred; this is accomplished by decrementing the counter which is 

loaded with the ‘size’. Once the block is transferred, the class is changed back to Zero 

base. The changes in the bases status is always notified to the Game unit. It can be 

seen that the IQ module and OP module work in synchronization to make the transfer 

possible. The detailed diagram of the Output Port (OP) is as shown in figure 2.16. 

Output Port Module: 

As the name suggest the OP unit handles all the communication with the 

output ports, i.e. the channel ports. Each of the 6 IQ’s has its sister OP. So there is one 
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outgoing data and tag for each of the OP’s. The data to be transferred to a particular 

port is sent to that OP unit. In all there are six OP units. It can be seen from the block 

diagram that the ports are numbered from <0:6>, instead of <0:5>. Of the seven data 

path six are dedicated to the six channels and the last data path is used by the IP- Input 

Port for message transfer for from the processor, i.e. the crossbar to the channel. 

 

Figure 2.16: Block Diagram of Output Port module 

 

For the data path; processor to channel, the information about the 

message, like its port number, class and tag are to the Front Porch (FP) unit. When the 

FP unit is free to take in the next data, it signals the IQ unit. The ‘Seq-B’ of the IQ 

unit acknowledges this signal by sending the port number along with the class and tag 
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to the front porch. There are four front porch unit; one for each class. The info is 

written to the corresponding front porch unit depending on the ‘have’ signal. This unit 

checks if the message received is for it’s output port. The FP unit also checks for the 

corresponding class, if there is a match then source address is decoded, appended with 

the tag from IQ and sent to the Age Discriminator Unit. The truth table for the address 

decoder is as shown in table 2.6. 

Table 2.6: Truth table of Decoder used in the Age Discriminator Unit 

 
Frip0_hav
e 

Frip1_have Frip2_have Frip3_have Frip4_have Frip5_have Frip6_have Source 

0 0 0 0 0 0 1 000 
0 0 0 0 0 1 0 001 
0 0 0 0 1 0 0 010 
0 0 0 1 0 0 0 011 
0 0 1 0 0 0 0 100 
0 1 0 0 0 0 0 101 
1 0 0 0 0 0 0 110 

 

As in this example, the message is coming from header so the source 

‘110’. This source is appended with the size of the data and sent to the Age 

Discriminator (AD). The AD unit has seven buckets, so that it can hold one data from 

each source, so no source will ever use more than one bucket. The AD unit with the 

help of the value given in the time stamp determines which of the message needs to be 

taken care of first. The oldest message gets the highest priority. Once the message to 

be sent is selected, the size of the message is sent to the ‘Sequence-A’ unit of the OP 

module. The output signals from the four AD units are the ‘size’ of each of the 

messages, these are fed to one ‘Seq-A’ unit. The OP module has a bank unit where the 

messages are stored. The ‘Scnt’ unit keeps track of the space available in this bank 
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unit. When the size of the message is sent to the ‘Seq-A’, the sequencer checks with 

the ‘Scnt’ unit to see if there is space available for that particular the class. If there is 

space available, the ‘Seq-A’ commands the ‘Write Control’ unit to create an entry for 

these set of messages and reserve the space. It also signals the IQ units to send the 

data. This is when the class changes to second base.  

The ‘SCnt’ unit after reserving the space decrements the amount reserved 

from the available space list. The SCnt unit also enters the new space availability in 

the ‘Slist’ unit. The SList is needed to determine if the next chip has enough room for 

the entire message. When an entry is taken from the head of the AD unit, the Size of 

the message is queued on the SList for the Class.  Messages for a given Class will be 

read from the Banks in order.  The Sequence-B determines if the data can be 

transferred for the given class. Once the message transfer queue is ready for a block 

transfer, the ‘Seq-B’ sends a ‘want’ signal to the ‘Slist’ unit. On receiving the ‘want’ 

signal from ‘Seq-B’, the ‘Slist’ gives the information about the size to the ‘Seq-B. 

‘Seq-B’ is the actual unit which determines which of the class needs to be sent out of 

the chip. Sequencer B looks at the heads of the SList and the amount of Space 

available in the next Chip for each Class, and picks one guy for the next off chip 

transfer.  The Sequence-B unit supervises the transfer. At this point the class is 

changed from the second base to third base. 

The Write Control unit controls on each cycle which input port gets to 

write to which bank of the output port. The switch supports up to four simultaneous 

channels assigned to four input ports to write to the same bank.  When a transfer from 

IQ to OP is created, it is assigned to any one of the four channel controllers, 

depending on which one is free. The channel controller determines on any given cycle 
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which of the four banks the IQ should be writing to. It maintains the address within 

the Banks and arbitrates among the other three channel controllers for write access to 

the bank on the cycle. When a channel wins access the write access the write control 

unit notifies the IQ as to which channel communication is going ready. The write 

control unit also counts the items to determine when the transfer is complete. The 

write address is sent to the Bank.  

Another important unit of the OP modules is the ‘Token Manager’-TM. 

The token manager keeps track of how much data space and header space are left for 

each class in the next chip. These values are used to calculate whether or not the 

Header FIFO in the next chip has space. Suppose there are 15 message items to be 

sent, the message are put one at a time to the Header Fifo of the next chip.  When the 

next chip has returned 4 Tokens (16 data items) we know that it has completely 

processed the message and pulled the entry from the Header Fifo. With the help of the 

token from the token manger of the next chip, it can be determined if the messages 

have been successfully transmitted and if there is space to transfer more. Yet another 

important unit in the OP module is the ‘Sequence-C’ unit. Sequencer C handles header 

modification on the way out of the chip. The hop count in the lowest chunk is 

decremented; the algorithm for checking the header has been explained in section 

2.2.3. The ‘Seq-C’ unit carries out this algorithm and changes the header as required.  

Finally the message to be sent to the channel is delivered to the ECC_G and make 

spare unit to get the final version of the message to be transmitted across the cable. So 

far message transfer between the Processor and the channel was described; now let us 

consider the data transfer from the channel to processor. 
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The message which has to be transferred from the channel to the processor 

will have the hop count as ‘C0’.  As explained earlier, when the ‘Seq-C’ of the OP 

unit checks for the chunks and hops, if the chunks are empty and the new number of 

hops is zero; the OP unit modifies the hop count to ‘C0’ to indicate that the next 

switch is the final destination. The channel message is first extracted, i.e. the spare bits 

are removed and the then the data is checked for error. If there are any error, the 

ECC_C( error correcting code_ correction) unit retrieves the message and sends it to  

the SWA module. The SWA module directs these inputs to the Input Port-IP Unit. The 

Input port unit functions exactly like the Injection Queue unit-IQ. The IP unit sends 

the information of the OP, class and tag to the OQ unit.  The OQ – Output Queue unit 

is similar to the OP unit but not the same. The detailed block diagram of the OQ unit 

is as shown in figure 2.17.  

 

Figure 2.17: Block Diagram of the Output Queue Unit 

As seen the OQ unit has relatively lesser number of modules than the 

OP unit. When the ‘class’, ‘op’ and ‘tag’ and ‘have’ information is received from the 

IP unit, the OQ unit latches up all these information. The messages are stored in the 
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register. The register it written into when the write signal goes high. The write signal 

is set high depending on the port number and the have signal. It has to be made sure 

that the port number is ‘C’. Once this match is confirmed the class in the IP unit is 

changed to second base. The IP unit waits for its block transfer to start. When the 

processor is free to receive data it signals the OQ unit, which in turn signals the IP unit 

to start the block transfer. The messages stored in the register are retrieved and sent 

across to the processor.  There can be one more form of communication from the 

channel, i.e. channel to channel communication. When the data is routed from the 

initial node to the destination node, it is routed through many switches. The form of 

communication that occurs in these intermediate switches is - channel to channel. In 

the channel to channel communication, the data transfers from IP- MM – OP. This 

transfer is very similar to the processor to channel communication. The message from 

other channels come to the IP unit, which sends the ‘class’, ‘op’ and tag information to 

the OP unit. The handshake between the IP and OP has been already explained.  

The MM units called the ‘Mother of all MUXs’ merely connects the Input 

message from the Input modules to the output modules. LRU- Least recently used 

arbitration algorithm is used to select which of the data should be addressed. A more 

detailed diagram on each of the sub modules can be seen in the appendix. Please note 

that all the input and output modules occur in pairs. Each input module has its 

corresponding output module. There are six of these modules; one for each port. This 

enables the chip to communicate with the six ports simultaneously. The class 2 and 3 

are called the virtual class, which are used in case of renamed headers as explained in 

section 2.2.2.  
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2.2.8 SW_CS Module 

In the previous section the description of the different forms of 

communication in the SWA modules was discussed. When it was said that the data 

comes from the processor or goes to the processor, it referred to the SW_CS module. 

The SW_CS module acts as the bridge between the SWA and the processor. Once 

Again the description of the SW_CS module will be given with examples. The block 

diagram of the SW_CS module is as shown in figure 2.18. The SW_CS consists of 

four main modules- MPG unit, DMA unit (SWD), GlueA and GlueB. The Glue A and 

Glue B unit are merely glue logic that connects the SWA to the DMA units. Please 

note the DMA unit is also called the SWD unit, and these two terms can be used in 

interchangeably.  

 

Figure 2.18: Block Diagram SW_CS module 

The ‘GlueA’ unit is responsible for the outgoing messages, i.e. from the 

crossbar to the SWA and ‘GlueB’ for the incoming messages. Each of these units in 

turn have two internal units; one for each class. The inputs to the ‘GlueA’ are the input 
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messages from the DMA machines and the space available form the ‘SWA’ unit. The 

GlueA unit checks if the DMA unit has any message to be sent and checks if the 

‘SWA’ needs any message for that class. If there is a match the GlueA unit then 

checks for the space available, if all the conditions are satisfied, the GlueA unit simply 

transfers the message to the switch. A blocks diagram of the main GlueA unit and its 

internal unit is as shown in figure 2.19 and 2.20 respectively. Once the message 

passing to the SWA starts for a particular class, the GlueA unit does not stop the 

transfer until it all the messages in a block transfer are sent. It avoids the risk of 

getting holes in the outgoing message due to interleaved DMA traffic. 

 

  

Figure 2.19: Block Diagram GlueA 
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Figure 2.20: Block Diagram Glue A unit 

The GlueB is similar to the GlueA unit. The inputs to the GlueB are the 

message and have from the ‘SWA’ and ‘want’ signal from the DMA machine. The 

block diagram of the Glue unit is as shown below . 
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Figure 2.21: Block Diagram of Glue B unit 

The message passes from the SWA to the DMA machine and then from 

the DMA machine to the ‘MPG’ unit. The MPG unit is the glue logic between the 

Crossbar and the SWD unit. To understand how exactly the message is transferred 

between the crossbar and the SWA, it is best to describe both the MPG and SWD units 

together with examples. The block diagrams of the MPG and SWD units area as 

shown 2.22 and 2.23 respectively. 
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Figure 2.22: Block Diagram of the DMA unit 

 

Figure 2.23: Block Diagram of the MPG unit. 
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The basic concept of message passing between the crossbar and the SWA; 

i.e. read and write operation was explained in earlier in section 2.2.3.  The read 

operation can be explained in a sequence of operation. The first step in a read 

operation is defining the read buffer. An example of the header that does the operation 

of defining the read buffer is as shown below. 

                            58060000_000000006D030080 

This header can be decoded with the help of the Tables 2.4 and 2.5. The 

values of the for each of the value in the table is  

     
Position Field  Value Meaning 
94 Valid 1 It is a valid header 
93 Class 0 The header is for class 0 
92 BSE 1 Start block transfer 
91:64 Tag 8060000 Explained below 
63:0 Data 000000006D030080 Data / Address 

 

The Tag is 8060000 in hexadecimal, which implies the 27 to 17 bits is - 

‘100000000110’. From Table 2.5, this value can be interpreted and it represents store 

long address with the first packet giving the address and the second packet the data. 

Now when this header is given to the A-Switch from the crossbar, the message is first 

sent to the MPG unit. The messages which come into the MPG unit are queued in the 

TU_NB_IN_Q unit, inside the MPG. The IN_Q has two FIFO units; one for each 

class.  The messages are stored in the corresponding FIFO units and stored in till the 

next unit is free to accept the message. This queue unit also checks if the header is a 

valid message. The next unit in the sequence is the split unit.  The split unit separates 

the address from the header, decodes the header and sends the data to DMA0 or 

DMA1, depending upon the on the class. 
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The address format for the A-switch was explained earlier in section 2.2.5. 

The address in this header is ‘6D030080’ which is ‘0110 1101 0000 0011 0000 0000 

1000 0000’ in binary. The port number is ‘1011010’ that is number ninety in decimal 

which implies that the data was sent from port ninety. The command bits are ‘01’, 

which implies ‘define the circular buffer’. The direction bit is ‘0’, hence it is forward 

direction. Since the header is to be sent in the forward direction the address is sent 

from the MPG to DMA0 unit, else it would have been passed to DMA1. DMA1 is for 

class ‘1’. An acknowledge token is sent back to the cross bar by the MPG unit. The 

DMA again has two sub units as shown in the figure 2.22; one for the outgoing 

messages and one for the incoming. The unit SWD_A deals with the outgoing 

message and the SWD_B deals with the incoming message. The header in this 

example is an incoming message; hence the message is passed to SWD_B. The 

internal block diagram of this unit is as shown in figure 2.24.  

 

Figure 2.24: Block Diagram of SWD_B unit 
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When the message comes from the MPG unit is first passed to the 

FrNA_Split unit. It is this unit which is responsible for deciding if the header that 

arrived is an1 incoming or outgoing message. The FrNa_Split unit decides whether the 

message is an incoming or outgoing with the help of the command bits in the address. 

If the command is to initiate a write then it is said to outgoing message, if the 

command is for defining any buffers, it is said to be a incoming message. Since the 

purpose of this header is to define the circular buffer, the address is sent to SWD_B. 

Now the DMA is prepared to define the buffer. This header can be considered as a 

command to tell the DMA to be prepared for the defining the buffer. The second 

packet which is the data packet gives the definition of the buffer. Let the next message 

be   580600000000003041001000. 

This header again passes through the MPG unit. Since it is store long 

address, this message follows the same path as it predecessor, arrives at SWD_B. Now 

SWD_B knows that this is the definition of the circular buffer. The address that 

arrives to the SWD_B is ‘3041001000’.  From this address the first two digits 

represent the size of the global FIFO and the next eight digits represent the base 

address. The base address is ‘41001000’. SWD_B decodes this address and finds that 

the thirty first bit is ‘0’ in this case. The thirty first bit represents whether to use the 

SRAM or the DRAM for this communication. In case the bit value is ‘0’, DRAM is 

used, else SRAM. SRAM is usually used for block transfer, but here it is not a block 

transfer, so DRAM is used. The size and the base are stored in the SWD_B_State unit. 

The circular buffer is defined with this process.  
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The circular buffer can be tested by passing a load and return header to the 

switch. The header of load and return for the above store is 

48860408000000006D030100. The Tag in this case is 8860408 which is 

‘1000100001100000010000001000’ in binary. It can be decoded form the table 2.5, 

that this is load and return command. The value for the PID field is ‘1’ and the GPR is 

‘8’.  This again follows the same path as the previous header and reaches SWD_B. 

The address in this case is 6D030100. The SWD_B decodes this and sends back a tag 

to the MPG unit. The tag to be sent is a formed by concatenating 010000000 with the 

PID( Processor ID), to indicate which processor, the TID ( Target ID) and the 

GPR(General Purpose Register). The tag formed by this is ‘4060408’. When this tag 

reaches the MPG unit; the MPG unit adds few more bits and sends it across to the 

crossbar. First and foremost, it adds the valid bit, then the class value and lastly the 

target address. The class in this case would be ‘1’, indicating return. This is basically 

how a read operation goes about. 

The write operation is a little more complex. As mentioned earlier to send 

a message out of the chip, a processor assembles a channel program in memory.  

Starting at a Root address is a list of pointers.  Each element of the channel program 

except the last points to an array of data and also contains the number of data items for 

that array.  The last element points to a synchronization location. When everything is 

assembled, the processor writes the Root address and list size to the DMA engine.  If 

there is room in the Root fifo, a 1 is returned to indicate that the write was successful.  

If not then a 0 is returned and the processor must try again. The SWD_A is 

responsible for this outgoing message. The SWD_A has basically six units which aid 

in this process. The block diagram of SWD_A is as shown in figure 2.25 
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Figure 2.25: Block Diagram for SWD_A unit 

SwD_A, first fetches all the list of pointers to the List Fifo except the last 

one. The last pointer is sent to the Synch Fifo.  The List Fifo fetches the data pointed 

by its members and has the data sent to the Data Fifo.  The Data Fifo sends data out of 

the unit in-order. Remember the data are located in different parts. The FIFOs makes 

sure that the data is re organized and sent in-order.  When the last item has been sent, 

the Data Fifo notifies the Synch Fifo that it should do an Atomic Store that flips a 

synchronization bit in storage. The to and fro traffic between the crossbar and the 

switch in this case is best understood with an example. Consider a situation of sending 

two messages; one header and one data to the switch. The first step would again be 
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defining the buffer. The next step would be opening a channel program. This is done 

with the help of store long command. For example consider the two headers 

                          58062400000000006D130000 

                          580624000000000348100700 

In this case the processor ID (PID) is ‘1001’, TID is ‘0’ and GPR is ‘0’. 

As usual the first message consists of the address and the second consists of the data. 

In this case the data is ‘348100700’. The first two digits give the global buffer size, 

which is equal to thirty four. The remaining digits give the base address which is 

‘8100700’. The location is ‘700’ This is still and incoming message, so it is sent to 

SWD_B. SWD_B decodes this and finds the thirty first bit of the base address to be 

‘1’,hence stores it in the SRAM. SRAM is used in block transfers. The SWD_B sends 

back the Tag information to the MPG unit, and the SWD_A. The SWD_A stores this 

information to the Root FIFO. The Root FIFO controls all the operation in the 

SWD_A. With this handshake a channel program is opened. Now the pointers have to 

be loaded. The DMA make a request to the crossbar to send the list of pointers from 

location ‘700’, to be stored in the LIST FIFO. The Root FIFO unit takes an entry from 

the Fifo and issues one or more block loads to retrieve the elements of the list.  By 

means of the return TID, the loads are directed to the particular registers in the List 

Fifo. 

 The crossbar accomplice to this request and sends the message to the 

particular TID specified by the Root FIFO. The message has to be sent to the List 

FIFO, the message would like  

744369800000000148100740 

744369800000000148100800 
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The TID indicates to which FIFO this message is targeted for. In this case 

the tag is ‘4436980’, of which the TID is 011 and this implies that this message is for 

the LIST FIFO. The last pointer is sent to the Synch FIFO. 

64416A800000000348100820 

Here the TID is 101, which indicates Synch FIFO. Once again all this is 

incoming messages, so the SWD_B handles the communication, get the tag and send 

it to the MPG and SWD_A. The DMA requests for data from location ‘740’ and 

‘800’, these locations were got from the header sent to the LIST FIFO. The messages 

arrive to the data FIFO. The DMA indicates that data is ready and if the switch is 

ready to accept data, the message is sent to GlueA unit.  

So far the communication between chip and its internal memory, chip and 

the channel has been discussed. Now let us consider the channel to chip 

communication. The channel to chip communication is relatively simpler. For any 

communication the circular buffer has to be defined. The circular buffer has to be 

defined only once. This is more like an initialization of the switch. This initialization 

defines the base address. This base address is later used in the channel to chip 

communication. When the message passes from SWA module to SW_CS, it goes 

through the GlueB first. The Glue_B unit first gets the header message from the SWA 

unit. Depending on the size given in the header, the Glue_B collects all the data for 

one set of messages. The Glue_B later send these messages to the SWD unit and 

indicates which of these messages are first and which one the last message.  The 

message is sent to FrRB_N of the SWD_B unit. The data is stored in the SRAM, since 

it is a block data transfer. The header message is stored in the location given by the 

base address. The address is then incremented by eight locations and the consecutive 

 48



data or header message is stored in this location. This process repeats for all the 

messages. These addresses are sent to the MPG unit. The MPG unit retrieves the 

messages from these circular buffer, calculates the actual address with the help of the 

Re-Map unit and sends it across to the crossbar.  

Channel to channel communication is the simplest of all. It does not 

involve any DMA unit. The entire communication is handled by the SWA alone. This 

kind of communication has already been explained in section 2.2.7.  Hence a 

description of the types of communication that are possible in the A-Switch has been 

discussed. 

 

2.3 Verification Required for A-Switch: 

 

The A-Switch is said to be fully functional if it can transfer messages from 

crossbar to channel and vice versa and from crossbar to the internal buffers. The test-

bench is generated in such a way as to test all the forms of communication.  

Functional verification helps in determining each modules of the A-Switch, hence 

giving an extensive insight of the sub modules in A-Switch. Each and every modules 

is tested for all the possible paths the modules can achieve. Functional verification 

hence provides a detailed analysis of the ‘A-Switch’. To test the ‘A-Switch’ along 

with other units the Software emulation process is used. 
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Chapter 3 

FUNCTIONAL VERIFICATION 

3.1 Introduction: 

           

Functional verification is a verification methodology that focuses on the 

design and implementation of the system and components before they are built [6]. 

The goal of functional verification is to prove that a design will work as intended. The 

first step in functional verification is to determine what the intent is [6], i.e. to get a 

good understanding of the specification. Second step would be to determine what the 

design does and then compare this with specification to ensure they match.  Functional 

verification requires that several elements like the stimulus the design unit and 

response checker and many more to be in place. It relies on the ability to simulate the 

design under test (DUT) with a specific input stimulus, observing the results of that 

stimulus on the design and deciding if the results are correct. The block diagram of the 

simulation environment is as shown in figure 1.3.  

A simulation based verification environments are almost always built 

upon a set of structured elements. In a structure based simulation environment the 

design is partitioned into set of functions that allow the overall complexity to be 

broken into manageable parts.  There are many advantages of this approach in a very 

complex project like Cyclops 64. One of the main advantage is that the interactions 

between the sub-modules can be easily managed and viewed. In a structured 

verification methodology the test benches and blocks that were used to verify the sub 
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modules can be reused to test the higher modules. Verifying from the lowest sub 

modules to the top most modules also helps in better understanding of the 

functionality of the each module. A structured simulation is equivalent to bottom-up 

verification methodology. There are various verification tools available. Simulators 

are the most common and familiar verification tool used. They are called simulators 

since their role is limited to approximating the reality [6].  

Simulators are not static tools [7], i.e they cannot perform the verification 

without additional information/action from the user. The additional information 

required in this case are the stimulus generator and checker. A stimulus is required to 

provide the inputs, so that the simulator can emulate the design’s responses based on 

its description. A checker is needed to validate the outputs of the simulator against the 

design intent.  

The test cases for the verification of the Cyclops 64 have been designed so 

as to cover all the possible values. An ideal test case should make sure the every single 

statement of the design code is executed. This is not possible for a very complex code 

structure. Breaking down the complex code into different structural elements and then 

testing each module again proves to be advantageous.  There are various simulation 

languages available such as VHDL and Verilog. Simulation language is different from 

verification language. Hardware Verification Languages (HVL) can automate 

verification. Some of the verification languages are OpenVera from Synopsys [16], 

RAVE from Forte [17], C++, Perl, TCL and many more. Verification languages are 

more useful when the entire system that includes both hardware and software of a 

system are to be verified. But for the verification of the Cyclops 64, which is still in 

design stage only hardware simulation is required; hence simulation languages are to 
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be used. The HVL languages are used in the software emulation method described in 

section 4.1. 

3.2 Tool Flow of Functional Verification of A-Switch: 

The simulation languages used in the verification of the A-Switch module 

are VHDL and ‘KSM’. ‘KSM’ is a proprietary hardware description language by 

IBM. The entire design of the Cyclops 64 has been written in ‘KSM’. The ‘KSM’ 

code can be simulated with ‘Delphi’. Delphi is a powerful Integrated Development 

Environment (IDE) used primarily to build client/server applications for Microsoft 

Windows, with an emphasis on databases [7]. Delphi was developed by ‘Borland 

International’ and is based on Object Pascal. It applies the object-oriented concept and 

was designed to give developers the ability to build applications easily, with minimal 

coding required. A tool has been created by IBM under the Delphi environment which 

converts any code written in ‘KSM’ language into Pascal code, simulates it and 

generates the output in a text format. The output is stored in a text file with an 

extension - ‘KSP’. The tool is also capable of converting the KSM code to VHDL. 

Though the KSM simulation is sufficient to verify the functionality of the modules, 

VHDL simulation was used due to its familiarity and ease in checking the output. The 

outputs in VHDL simulation are in the form of waveform and in case of KSM 

simulation it is a text file. Modelsim was the hardware simulation tool used for VHDL 

codes. The functional verification was carried out with the simulation languages, KSM 

and VHDL. The tool flow for these simulations is as shown in figure 3.1. 
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Figure 3.1: Verification tool flow for functional verification 

 

Since the simulation is carried out in two different languages 

simultaneously it can be compared to co-simulation [7]. The outputs of the both the 

co-simulation where checked manually and they are found to be similar. The test 

bench for the ‘KSM’ tool is called a shell file and for the ‘VHDL’ tool it is just like 

another VHDL file. An example of the shell file is given in appendix B. The input 

pattern for the ‘KSM’ and ‘VHDL’ are text files. Using file input and output 

commands, the VHDL test-bench is capable of reading from the text file. The same set 

of inputs was given to both the simulation and the outputs were found to be the same. 

To make sure that the entire code is covered during verification of the inter-processor 

communication module -‘A-Swtich’, the ‘A-Switch’ had to be connected in a 3D 

mesh configuration. Connecting more than two ‘A-Switch’ modules and then test 
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them for inter process communication is not possible in the Modelsim simulator due to 

various limiting factors like memory. Where as using the Delphi Simulator tool, the 

switch modules can be connected in a 3D-mesh configuration  and tested for inter 

process communication very easily . Since it is possible to test the entire module in 

‘KSM’, the question may arise towards the need of the verification using VHDL; the 

answer to this ‘ease to check the output’. In KSM it is very difficult to check the 

intermediate signals, where as in the VHDL simulation it very easy. Taking 

advantages of both these simulation the functional verification can be successfully 

completed. 
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Chapter 4 

SOFTWARE EMULATION 

4.1 Introduction: 

Functional Verification is a necessary verification procedure to ensure the 

system is functioning as intended but is not sufficient. For an integrated circuit design 

such as the Cyclops 64 the functional verification of the entire chip is not possible 

with the simulation procedure. As seen in chapter 3, hardware simulation is not 

possible for more then two modules connected to each other, consider the entire C64 

chip which contains eighty processor, i.e. 160 thread units, sixteen SRAM, one 96-

way crossbar, a DRAM and the ‘A-Switch’. It is almost impossible to test all these 

modules together using simulation verification methodology. Even with the ‘KSM’ 

simulation tool modules of this complexity is not possible to verify. There is definitely 

a need use a different verification methodology which can achieve the system level 

verification.  

The most common ‘System on Chip’ verification methodologies available 

in the market are a combination of one or more tool set. Along the similar line a tool 

set was developed which is called ‘Software Emulation Tool Set’. Emulation is 

commonly referred to as duplication (provide an emulation of) of the functions of one 

system with a different system, so that the second system appears to behave like the 

first system [7]. The basic principle involved in this software emulation tool set is to 

convert the ‘KSM’ code to basic binary instruction and then emulate these binary 

instructions. The tools used of this are the stack code generator and the logical 
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processor. The stack code generator creates the binary instruction and the logical 

processor emulates the instruction. The logical processor simulator has been coded in 

C hence gives an added advantage of flexibility and extendibility. A detailed 

description of the Software Simulation Tool Set is given in the next section. This tool 

set will also aid in the unified verification of the Cyclops 64, when the software and 

hardware are to be verified together. 

 

4.2 Tools Set for Software Emulation: 

The Software Simulation tool set is as shown in figure 4.1. The input to 

this tool is a file with the extension of ‘KSF’, which is given to the Stack code 

generator. The ‘Delphi’ tool flow for the KSM code was explained in section 3.2. The 

tool other then generating the VHDL and Pascal code, also generates the ‘KSF’ file. 

The KSF file contains the code in the form of instructions. An example of a KSF code 

is given in appendix C. The KSM language has some forty primitive instructions. The 

KSM design of the modules are converted into these primitive instructions and stored 

in the ‘KSF’ file. These instructions are later converted to Pascal code and executed in 

the Delphi simulation tool. In a similar fashion the ‘Stack code Generator’ in the 

Software Emulator developed converts these instructions into more basic instruction. 

For example a 2X1 MUX is considered as a primitive instruction, it would be better if 

these instructions can be further broken down to there most primitive more like 

‘AND’ and ‘OR’ gates. The stack code generator converts the instruction into their 

most primitive instruction set. The Delphi tool set is capable of executing the 

instruction of variable width whereas the stack code generator converts the variable 

width instruction to a fixed width. The code generated by the stack code generator can 
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be used in both software simulation and hardware simulation on the FPGAs.  This 

object file, given by the extension ‘.stk’ is later fed to the logical processor simulator 

which is capable of emulating any logic. The output of the logical processor simulator 

is again a text file.  The stimulus file is generated by the generator and the output file 

is checked using a checker. The generator and checker can be written any HVL like 

‘perl’.  

 

 

KSM Delphi  *. ksF

Stack Code 
Generator

*.stk Logical Processor 
simulator *.out

Generator
/Stimulus

Software Emulator Tool Set 

Checker

Figure 4.1: Verification tool flow for Software Emulation 

An overview of the Delphi tool and Software emulator tool would look 

similar, both the tools are converting the KSF file to an object file which they are 

familiar with and execute them. The Delphi is familiar with Pascal code, hence it 

converts the KSM code to Pascal and the Software Emulator proposed coverts into C 

code. Then what is the need of two different versions? The difference lies in how the 

instructions are scheduled and executed. 

Consider for example the ‘A-Switch’ in a 4X4X4 grid configuration. A 

shell file connects these sixty four modules together. These instructions are converted 
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into ‘KSF’ file where the entire ‘A-Switch’ module is a single instruction. Now when 

the Delphi tool executes this instruction it converts each of the ‘A-Switch’ instruction 

with its internal instruction. It is like a macro function which is later replaced by the 

function during compilation. Hence in the Delphi tool, there are essentially sixty four 

repetition of the code. When the entire chip has to be tested it will have eighty of the 

processors, sixteen SRAM and so on. This complex structure is not possible to verify 

using Delphi. In the software emulation tool, the ‘A-Switch’ module is more like a 

function. There is no repetition of the code leading to lesser memory occupation. With 

this capacity entire chip can be easily connected and verified.  

The scheduling policy used in the software emulation tool is entirely 

different from that of Delphi too. In Delphi tool the sixty modules are connected and 

run some random number of times in a hope that the values will settle down to their 

final value. Remember the sixty four modules are interrelated and depend on each 

other. The execution has to continue till the intermediate values settle and the correct 

final value is reached. This approach of executing it for a random amount of time is 

very naive. The chance of the values settling and not settling down to their final value 

is equal. More over a lot of CPU time is wasted in doing some unwanted instruction. 

There is always likelihood that the value obtained is not right when the instructions 

are not executed for the right amount of time. For example suppose the instruction 

settles to its final value after n cycle, but the simulator has chosen the random time to 

be n-1 cycles, the output is definitely going to be wrong. This is not acceptable. The 

stack code generator offers a very clever solution of this.  

The stack code generator analyzes the data dependencies between the 

modules with help of the combinatorial connection among the sub modules and within 
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the sub modules and generates a schedule such that minimum amount of CPU cycle is 

taken to get the correct value. The stack code generator is also capable of generating a 

schedule which occupies minimum memory. This is useful for the hardware emulation 

in the FPGA chip, since the memory is restricted in the FPGA. This memory 

allocation scheme need not be used in the software emulation, since the available 

memory is virtually unlimited. To derive the scheduling with the improved memory 

allocation by itself is time consuming and can limit the size of module that can be 

tested; hence it is better not to use the memory allocation scheme for the modules like 

‘A-Switch’. In software emulation for modules like ‘A-Switch’ each variable allocated 

a unique memory location. This concept cannot be used for hardware emulation using 

FPGAs.  

With the help of the stack code generator and the logical simulator it is 

possible to emulate very complex modules.  
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Chapter 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion: 

With the increasing number of gates and design complexity, verification 

process has to be planned out very carefully and started at an early stage of designing. 

A single tool is no more enough to test these complex designs. A unified verification 

methodology is required to maximize the speed and efficiency. The two-level 

verification methodology proposed proves to be efficient for the verification of the 

multi-core architecture. The functional verification makes sure that the system works 

for intended design and the software emulation helps in verifying the integrated 

system. At an early stage of designing, functional verification can be carried out since 

the modules are small and it is very easy to debug with the help of waveforms. The 

software emulation makes it possible to verify the entire chip without the need of 

complex verification structure.  

 

5.2 Future Work: 

The two-level verification should be applied to the entire chip, to verify 

the full functionality of the C64 chip. The software emulation also generates object 

code for the FPGA, hence the hardware simulation can be tried. Only preliminary 

verification has been applied of the A-Switch, a more rigorous testing has to be done 

to measure the performance of the A-Switch.  
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Appendix A 

EXAMPLE OF A KSM FILE 

The KSM language is similar to any hardware description language. An 

entity in VHDL is called a ‘Block’ in KSM, which defines the input and output port. 

One of the advantages in KSM is that the intermediate signals do not have to be 

defined before using them. An example of the KSM file is given below. The syntax 

has been explained by comparing it with VHDL. 

 
Block c64_Sw 
  Comments 
    You can add any comments over here 
 
  Probes 

// Here the intermediate signals that have to   
viewed, have to be inserted. 
 
// For example in this consider the ‘FrCh0’-input 

signal to the SWA module. To view this signal, the 
following line has to included in the probes. 

 
SwA.FrCh<0:5>_<D Tag> 

 
     
  Inputs 
    // The inputs of the block are defined here. 
 
    FrMP<0:5>_<D[94:0] Tok[1:0]>   
 
    FrCh<0:5>_D[83:0]              

FrPP_<C[3:0] L[11:0] U[7:0] A[15:0] D[63:0]  
  Wr> 

    DRPort<0:3>[6:0]   
    ReSet 
    Clk 
  Outputs 
    ToMP<0:5>_<D[101:0] Tok[1:0]>  
    ToCh<0:5>_D[83:0]              
 
  Conns    
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        // This is equivalent to architecture of VHDL 
     
 MS#_S = Pad[5](0x_1F)  #:0:5                    
       
    //This syntax implies MS0_S = “111111” 
    // i.e pad with hexadecimal 1F. 
    // Repeat this for MS1_S to MS5_S 
 

// Component instantiation: Component name is c64_SWA 
 
  . = c64_SwA( 
          SwA FrCh<0:5> <D Tag>                              
         cs<0:5>.ToSwA <D Have>                            
         FrH<0:5>_<D[63:0] Have>  

          cs<0:5>.ToSwA_C<0:1>_Get                           
          FrH<0:5>_C<0:1>_Get    
          SwA FrP D                                          
          FrP_D[9:0] 
          SwA FrP A                                          
          FrP_A[7:0]   
          SwA FrP Wr                                         
          FrP_Wr 
          ReSet 
          Clk 
        )  SwA 
 
    // Only the inputs signals have to be mapped to 

the component. Outputs signals are automatically mapped. 
Consider an output signal ‘ToCh0_D from c64_SWA’. The output is 
mapped to  

  
 
 
EndBlock   
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Appendix B 

EXAMPLE OF A SHELL FILE 

The shell file is the test-bench file is KSM. It can be considered as the top 

most module of any deign. 
 
 
Block Shell_c64_Sw 
  Comments 
    Test shell featuring just Sw  
  EndComments 
 
  VFSROOT 
  FixedWidth 
 
  Inputs 
    FrMP<0:5>_<D[94:0] Tok[1:0]>   
    FrCh<0:5>_D[83:0]                  
    FrPP_<C[3:0] L[11:0] U[7:0] A[15:0] D[63:0]  
    Wr>  
    DRPort<0:3>[6:0]               
    ReSet 
    Clk 
 
  Outputs 
    ToMP<0:5>_<D[101:0]  
    Tok[1:0]>       
    ToCh<0:5>_D[83:0]  
 
  Conns 
 
    ToMP<0:5>_<D Tok> 
    ToCh<0:5>_D 
    = c64_Sw( 
        FrMP<0:5>_<D Tok>    
        FrCh<0:5>_D          
        FrPP_<C L U A D Wr>  
        DRPort<0:3> 
        ReSet 
        Clk 
      )  sw 
EndBlock 
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Appendix C 

EXAMPLE OF KSF FILE 

 An Example of a KSF file is given below. The first statement gives the 

design unit name. The statements following that have an instruction number and name 

along with type of gate. At the end the inputs and outputs are listed. 
 
 
Block C64_SIGB8 FirstReg 3 FirstComb 1 
     1  ZTOCH_DD  OR  Inputs  I:1:0/0/W8 I:2:1/8/W8 I:3:2/16/W8 
I:4:3/24/W8 I:5:4/32/W8 I:6:5/40/W8 I:7:6/48/W8 I:8:7/56/W8  Outputs  
11/74/W8  Width 8  Rank 1  Next 4 RBPI 
     2  ZTOCH_D.ZDD  GATEOFF  Inputs  C:1:1:11/74/W8 I:10:9/72/W1  
Outputs  12/82/W8  Width 8  Rank 2  Next 0 RBPI 
     3  ZTOCH_D.ZQ  RRREG  Inputs  C:2:1:12/82/W8 I:11:10/73/W1  
Outputs  13/90/W8 VFSLoc 1 PO 2  Width 8  Rank 0  Next 5 RBPI RPO 
     4  ZTOTU_D.ZDD  GATEOFF  Inputs  I:9:8/64/W8 I:10:9/72/W1  
Outputs  14/98/W8  Width 8  Rank 1  Next 2 RBPI 
     5  ZTOTU_D.ZQ  RRREG  Inputs  C:4:1:14/98/W8 I:11:10/73/W1  
Outputs  15/106/W8 VFSLoc 2 PO 1  Width 8  Rank 0  Next 1 RBPI RPO 
  
Inputs 
     1 FRTU0_D[7:0] 
     2 FRTU1_D[7:0] 
     3 FRTU2_D[7:0] 
     4 FRTU3_D[7:0] 
     5 FRTU4_D[7:0] 
     6 FRTU5_D[7:0] 
     7 FRTU6_D[7:0] 
     8 FRTU7_D[7:0] 
     9 FRCH_D[7:0] 
    10 RESET 
    11 CLK 
  
Outputs 
     1 TOTU_D[7:0]    C:5:1 
     2 TOCH_D[7:0]    C:3:1 
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