

NOTE TO USERS

Page(s) not included in the original manuscript
are unavailable from the author or university. The

manuscript was microfilmed as received.

pre-pages ii-iii

This reproduction is the best copy available.

TOWER METHODOLOGY FOR VERIFICATION OF MULTI-CORE
ARCHITECTURE – A CASE STUDY

by

Divya Parthasarathi

A thesis submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Master of Science with a major in
Electrical and Computer Engineering

Summer 2005

Copyright 2005 Divya Parthasarathi
All Rights Reserved

UMI Number: 1428200

1428200
2006

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

TOWER METHODOLOGY FOR VERIFICATION OF MULTI-CORE
ARCHITECTURE – A CASE STUDY

by

Divya Parthasarathi

Approved: __
 Guang R.Gao, Ph.D.
 Professor in charge of thesis

Approved: __
 Gonzalo R Arce, Ph.D.
 Chair of the Department of Electrical and Computer Engineering

Approved: __
 Eric W. Kaler, Ph.D.
 Dean of the College of Engineering

Approved: __
 Conrado M. Gempesaw II, Ph.D.
 Vice Provost for Academic and International Programs

ACKNOWLEDGMENTS

 “Every bit counts”

The satisfaction and euphoria that accompany the successful completion

of any task would be incomplete without the mention of people who made it possible,

whose constant guidance, motivation and encouragement aided me in the completion

of the task.

I am extremely grateful to Dr.Guang R Gao for giving me an opportunity

to work on such a great project and sparing is valuable time in guiding me. It has been

thoroughly a great experience working with such a state of art project. He has not only

given me guidance in my master thesis, but also has been my motivation.

I take this opportunity to express my deep sense of gratitude for the able

guidance of Fei Chen, who admits his busy schedule was there to help me and shared

his knowledge with me. He had also developed the code generator which was very

useful in the verification process.

I would be failing in my duty if I fail to thank Dr. Dr. Monty Denneau at

IBM and Ben Maron who are the designers of the Cyclops architecture. It was Ben’s

diagrams which were instrumental in the understanding of the project and these

diagrams have been used through out this document. I would also like to thank all the

CAPSL Hardware team for their valuable help. Finally to my parents and friends; to

whom I owe more than what I can mention. I gratefully acknowledge the unending

support and encouragement.

iv

TABLE OF CONTENTS

LIST OF FIGURES..vii
LIST OF TABLES ..viii
ABSTRACT ... x

Chapter

1 Introduction and Background.. 1

 1.1 Introduction to Multi-Core Architecture .. 1
 1.2 Problem Formulation.. 2
 1.3 Problem solution... 3

2 Description Of Cyclops 64 Architecture ... 6

 2.1 C64 chip description... 6
 2.2 Inter-processor Communication module (A-Switch) 8
 2.2.1 General Description... 8
 2.2.2 Packet Format of the Messages ... 9
 2.2.3 Flow of Message in the network ... 12
 2.2.4 Communication in 'A-Switch'.. 16
 2.2.5 Address scheme used in A-Switch .. 20
 2.2.6 Detailed description of the A-Switch 21
 2.2.7 SWA module unit .. 25
 2.2.8 SW_CS module unit .. 37
 2.3 Verification needed for A-Switch .. 49

3 Functional Verification.. 50

 3.1 Introduction .. 50
 3.2 Tool flow for A-Switch .. 52

4. Software Emulation ... 55

 4.1 Introduction .. 55
 4.2 Tool flow for A-Switch .. 56

v

5 Conclusion... 60

 5.1 Conclusion.. 60
 5.2 Future Work.. 60

Appendix

A Example of KSM file.. 61

B Example of a Shell file.. 63

C Exampe of KSF file .. 64

REFERENCES ... 65

vi

LIST OF TABLES

Table 2.1 The port number of the neighbors in a 3D mesh configuration 11

Table 2.2 Channel program ... 17

Table 2.3 Header Format ... 17

Table 2.4 Tag Format .. 18

Table 2.5 Address and Tag Details.. 19

Table 2.6 Truth table of Decoder used in the Age Discriminator Unit 32

vii

LIST OF FIGURES

Figure 1.1 Multi-Core processors .. 2

Figure 1.2 Block diagram of the Verification Methodology 3

Figure 2.1 Cyclops64 Supercomputer ... 7

Figure 2.2 Internal connection of the C64 Chip .. 8

Figure 2.3 Message Format in Cyclops 64 .. 10

Figure 2.4 First double word ... 10

Figure 2.5 Subsequent Double words.. 10

Figure 2.6 Pictorial Representation of connection between the neighbors in
C64 chip ... 11

Figure 2.7 Algorithm for changing the message ... 13

Figure 2.8 Example of Packet Routing.. 15

Figure 2.9 Address Format of A-Switch.. 21

Figure 2.10 Detailed view of the connection between crossbar and Switch 22

Figure 2.11 Block Diagram of the ‘A-Switch’ .. 23

Figure 2.12 Block Diagram of Make Spare Unit... 24

Figure 2.13 Block Diagram of Extract Spare Unit .. 25

Figure 2.14 Block Diagram of SWA module .. 26

Figure 2.15 Block Diagram of Injection Queue/ Input port Unit 28

Figure 2.16 Block Diagram of Output Port module .. 31

Figure 2.17 Block Diagram of the Output Queue Unit ... 35

viii

Figure 2.18 Block Diagram of SW_CS module .. 37

Figure 2.19 Block Diagram GlueA.. 38

Figure 2.20 Block Diagram of Glue A unit ... 39

Figure 2.21 Block Diagram of Glue B .. 40

Figure 2.22 Block Diagram of DMA module.. 41

Figure 2.23 Block Diagram of the MPG unit .. 41

Figure 2.24 Block Diagram of SWD_B unit .. 43

Figure 2.25 Block Diagram of SWD_A unit .. 46

Figure 3.1 Verification tool flow for functional verification................................... 53

Figure 4.1 Verification tool flow for Software Emulation 57

ix

ABSTRACT

 The creation of a computer system has become a monumental task.

Many designers, engineers, and scientists cooperate to create the computer system

down to its most basic components. An extremely crucial phase of the design of the

hardware sub-systems is the verification of the hardware paradigms and structures that

will work in synch to create the new computer system. Therefore, the verification of a

system level chip is quite a complex task. Moreover, the verification process in any

design is considered a major bottleneck, but it is required to ensure that the number of

errors in the hardware designs is minimized. It can be safely said that the complexity

of verification increases exponentially with the increase in design complexity [1].

There is definitely a need to use more than one verification tool to test a system-level

chip design. Various ‘System on Chip’ verification methodologies have been

developed and are being used in the market. However, these methodologies require

anywhere from a medium to a large amount of resources and complex verification

structures. A two-level verification methodology has been proposed in this thesis for

the multi-core architecture of Cyclops-64, which involves a significant amount of

resources. Moreover, it has enough functionality to compete with system level

verification methodologies that are available in the market. The Two-Level

Verification method involves the classic functional verification and the software

emulation. This thesis demonstrates the application of the two level verification

methodologies to the inter-processor communication module of the Cyclops 64

architecture.

The bottom-up verification methodology proves to be a very efficient in

term of reusability of the test-benches, groups of programs and/or data that is used for

verifying the system. Thus, this methodology was a logical choice for the Functional

x

Verification part of the two-level verification process. Functional verification can be

carried out with any hardware simulation tool available, like Modelsim. This type of

verification helps in acquiring a detailed knowledge of the system components. At the

same time, it makes it possible to perform extensive verification on each of these

components. The complexity of a system level design calls for the use (or the creation)

of a robust and automatized tool set. Usually, existent tools and a small set of “glue”

programs (i.e. programs that will coordinate between different parts of the tool) form

such tool sets. The methodology that is being proposed by this thesis will use the

above formula. Software emulation provides a set of robust and automatized programs

and tools. A typical software emulation tool has a code generator, which is used to

convert the component’s code written in a hardware description language to a gate

level instruction code in ‘C’; a logical processor, which emulates the component and

an automatic test pattern generator; and an output checker to avoid any manual error

in verification. This thesis demonstrates the

1. Functional verification for the inter-processor communication

module (A-Switch) of the Cyclops 64 architecture.

2. Application of the second level verification methodology-software

emulation to the A-Switch module.

3. Combination of the two levels for a full system level verification.

4. Preliminary verification of the A-Switch.

.

xi

Chapter 1

INTRODUCTION

1.1 Cyclops 64 and Multi-Core Architecture:

 During recent years, a plethora of new paradigms, and some old ones, has

surfaced. Among them, the most accepted paradigm seems to be the multicore

technologies. A prime example of this trend is the decision of Intel to go multi-core.

The first product of this new line is already available, i.e. the Pentium D. On top of

this wave is the Cyclops family of supercomputers. Cyclops 64, which is part of the

Cyclops family; is a new generation technology that uses the multi-core architecture.

Multi-core paradigm can be considered as a design in which a single physical

processor contains the core logic of more than one processor [1]. This type of

architecture packs several such processors into a single physical processor. Single-

core processors have many disadvantages such as narrow data bandwidth, big gap

between CPU speed and memory speed. In a single-core processor about 75% of CPU

time is wasted in waiting for memory access results. Even though new technologies

have been developed to subdue this problem, point in case Intel® Hyper Threaded

technology, this still represents a great problem in today single-core computers. In

general, the ratio of cost and performance is very bad for single-core processor

architecture. The Multi-Core Architecture has come as a solution to these problems

[2]. A multi-core architecture can be considered as a SMP implemented on a single

VLSI integrated circuit. The goal of Multi-Core architecture is to allow greater

 1

utilization of thread-level parallelism, especially for applications that lack sufficient

instruction-level parallelism to make good use of superscalar processors. It can also be

called as Chip-level multiprocessing (CMP) or Chip Multithreading [2]. This chip-

level multiprocessing improves the throughput of the whole computer system but it

has no benefits for single applications that cannot be parallelized. CMP has a better

data locality than regular multi-processor architectures. Moreover, Better

communication behavior between processing units saves space and energy.

The Multi-core architecture hence enables a system to run more tasks

simultaneously and thereby achieve greater overall system performance. The pictorial

representation of the multi-core architecture is as shown in figure 1.1. Each core in

this design has its own resources to run without blocking any other core.

Figure 1.1. Multi-Core processors have multiple execution cores on a single chip
 courtesy : Intel [1]

Cyclops-64 is a multi-core architecture which has 75 processors on a

single chip. The main idea behind the multi core architecture is “divide and conquer”

[1]. The computational work that is to be performed using a single microprocessor is

 2

divided and spread over multiple execution cores. A multi-core processor can perform

more work within a given clock cycle, hence delivering a better overall performance.

1.2 Problem Formulation :

 A crucial phase of the hardware sub-systems design is the verification of

the hardware paradigms and structures that will work in synch to create the new

computer system. Verification process in any design is considered a major bottleneck,

but it is required to ensure that the number of errors in hardware designs is minimized.

Verification is a process used to demonstrate that the intent of a design is preserved in

its implementation [7]. About 70% of the time to manufacture a product goes into

functional verification. Functional verification attempts to determine if the design will

operate as specified. As the design complexity increases the verification complexity

also increases [3]. Design sizes is said to be increasing in proportion to Moore’s Law.

It has been shown that if a design block or a module in a larger system design has a

verification complexity of one, then when these blocks are connected in parallel it is

said to have verification complexity of two, i.e. it doubles. Similarly if the blocks are

connected in parallel and the input of one affects the other then it is said to quadruple.

In general, with the increase in the design sizes the verification complexity increases

exponentially. An example of this rule is the Cyclops 64 architecture chip. System

Level verification of the Cyclops 64 is a necessary evil to make sure that the end

product is free of any bugs.

1.3 Proposed Solution:
System Level Verification is the biggest task for the verification

industry. There have been various solutions proposed for system level verification by

many companies. For example, Cadence has come up with the unified verification

 3

methodology [7]. This verification methodology considers into consideration the

digital logic verification to mixed signal simulation verification. For the verification of

Cyclops 64, such a complex structure is not required. A two-level verification

methodology has been proposed for a system level verification in this thesis, which

applies a simpler verification structure. The Two-Level Verification method involves

the classical functional verification and the software emulation.

 The functional verification is for component level verification. This type

of verification helps in acquiring a detailed knowledge of the system components and,

at the same time, makes it possible to perform extensive verification on each of these

components. The complexity of a system level design calls for the use (or the creation)

of a robust and automatized tool set. In general, the automatized tool set consists of

some existing tool for simulation along with a small set of “glue” programs (i.e.

programs that will coordinate between different parts of the tool). The methodology

that is being proposed by this thesis will use the above procedure. Software emulation

provides a set of robust and automatized programs and tools. The inter-process

communication unit of the C64 chip called the ‘A-Switch’ was tested with this

verification methodology. The ‘System Level verification’ of the Cyclops 64 was

carried out in two steps. Verification can be carried out in either bottom-up or top-

down method. In a top-down approach the verification starts with the top-most level.

The bottom-up verification technique starts from the low-level blocks verification

followed by the verification of the integrated blocks. This is the most common

verification methodology used. The bottom-up verification methodology also proves

to be a very efficient in terms of reusability of the test-benches, groups of programs

and/or data that are used for verifying the system. Thus, this methodology was a

logical choice for the Functional Verification part of the two-level verification

 4

process. The software emulation helps in the system level verification method. The

block diagram of the verification procedure for both the verification level is as shown

in figure 1.2. The main component of the verification process is the Execution unit. It

is also called Design-unit Under Test (DUT). The Execution Unit consists of the

simulation or emulation or co-simulation process. Verification is a strategy to make

sure all aspects of the system meet the required specification and simulation is a tool

to attain this. The test plans are generated to meet the specification requirements. A

generator is developed depending on the specification. The input to the execution unit

is the stimulus file generated by the generator. The results of the design unit is sent to

the Response Unit and checked later. This is a generalized procedure of both the

methods but the way in which each of the units was implemented varied. The

description of the functional verification and software emulation has been explained in

the later sections.

Response Execution Stimulus

Checker Generator

Test & Management
Plan

Figure 1.2: Block diagram of the Verification Methodology

 5

Chapter 2

DESCRIPTION OF THE INTERPROCESS COMMUNICATION MODULE IS
CYCLOPS 64

2.1 Cyclops 64 Description:

The Cyclops 64 Architecture is designed for high performance

supercomputers, which have a performance of petaflop. A C64 consists of tens of

thousands of C64 processing nodes arranged in a 3D-mesh network. These processing

nodes consist of a C64 chip, external DRAM and some interface logic. Each of the

C64 chip has eighty processors. Each processor in turn contains two thread units, two

SRAM memory banks of 32KB each. The chip has no data cache, instead it use a part

of the SRAM as a scratch pad for this purpose. Such a memory provides a fast

temporary storage to exploit locality under software control [2]. Processors are

connected to a crossbar network that enables intra-chip communication, i.e. access to

other processor’s on chip memory as well as off-chip DRAM and the inter-chip

communication via input and output ports that connect each C64 chip to its nearest

neighbors in the 3D mesh. The intra-chip network also facilitates access to special

hardware devices such as the gigabit Ethernet port and the serial ATA disk drive

attached to each C64 node. The Gigabit Ethernet links are used to connect the C64

supercomputer with the host interface and the ATA hard drives attached to each C64

node avoid disk bottlenecks and network congestion. There is a separate control

network that connects the C64 system to the host system. This control network carries

commands from the host system to each C64 node and is connected to the C64 node

 6

via JTAG interface. Figure 2.1 illustrates an instance of the C64 supercomputer

architecture with 24 X 24 X 24 logically arranged C64 nodes in the 3D-

meshconfiguration.

 Figure 2.1: Cyclops64 Supercomputer

 Essentially, a single C64 chip consists of

- Eighty processing units (or cores)

- One I/O Switch for inter chip communication, i.e. for communicating between

two C64 nodes. This module is called the ‘A-Switch’

- One 96-way pipelined crossbar switch for intra chip communication, i.e. for

communicating with different modules in the chip

- Sixteen SRAM I-Caches, each shared by five processors.

Figure 2.2 gives the detailed connection of these modules in the C64 chip.

 7

Host interface

Crossbar

DDR2 SDRAM
controller

4
Sw

The other C64 chips
(3D cube network)

DDR2 SDRAM DIMMs

• Port 0-79 for the C64 processors

• Port 80-83 for the mpg ICache

• Port 86-89 for the DRAM controller

• f S

 Processor# 80
 ICache# 16

m m m m

A-Switch

DMA (6 x 2 = 12)

C64 Processor C64 Processor C64 Processor C64 Processor C64 Processor

T T F

ICache
5

C64 Processor C64 Processor C64 Processor C64 Processor C64 Processor

T T F

ICache
5

C64 Processor C64 Processor C64 Processor C64 Processor C64 Processor

T T F

ICache
5

Input
FIFO
x 5

Outpu
t FIFO

x 5

FPGA
(Clydesdale) Configuratio

n pins

Figure 2.2: Internal connection of the C64 Chip

 courtesy: Yuhei Hayashi

2.2 Inter-Process Communication Module(A-Switch)

 2.2.1 General Description:

The Inter-chip/ Inter process communication of the Cyclops64 is

accomplished with help of the A-Switch Module. The Cyclops64 chip has a point to

point connection with its neighbors. A SerDes (Serializer Deserializer) is used to

convert the parallel data from the A-Switch into serial data. A SerDes is an integrated

circuit transceiver that converts parallel data to serial data and vice-versa. The

transmitter section in the SerDes is a serial-to-parallel converter, and the receiver

 8

section is a parallel-to-serial converter. SerDes chips facilitate the transmission of

parallel data between two points over serial streams, reducing the number of data

paths and thus the number of connecting pins or wires required. In the Cyclops 64

architecture a ‘24’ bit cable is used to connect the two Cyclops-64 chips. The C64

chips are arranged in a 3D configuration, i.e. each chip has six neighbors. Hence an A-

Switch module has six incoming data lines from the adjacent chip and six outgoing

data lines to adjacent chip. The communication between the adjacent chips is termed

as the channel communication. Other than this the A-Switch has six incoming and six

outgoing point to point connection with the crossbar. The crossbar forms a means to

communicate with the other units of the chip. Since there are separate connections for

each of the neighbors, the A-Switch is capable of transmitting six incoming and six

outgoing packets simultaneously. The switch is also capable of routing the messages

to and from the internal buffer memory. A DMA is used to control the data transfer

between the switch’s internal buffer and the processors memory, hence increasing the

efficiency of the processor.

2.2.2 Packet Format:

In the A-Switch, message transfer takes place in the form of packets. The

software program is responsible for constructing these message packets. The format of

this message packet is as shown in figure 2.3. The Packets consists of ‘header’ part

and ‘message’ part. The message part may contain one complete message or part of a

message. The header and the message are an integral part of the double word. The

packet size can vary from two to two fifty five double words. The minimum packet

 9

size is two since a message to be passed has to have one packet for the header and one

for the message.

 Header Message Part
Route Route … Route User Data

64 64 64 64

Figure 2.3: Message format in Cyclops 64

Size Stamp Tag Chunk 2 Chunk 1 Chunk 0

8 24 8 8 8 8

Class RCR HWR Port Hops

2 3 3 3 5

Figure 2.4: First double word:

/ / / Chunk 8 Chunk 7 Chunk 6 Chunk 5 Chunk 4 Chunk 3

16 8 8 8 8 8 8

Figure 2.5: Subsequent double words

The header is a sequence of sixty-four bit “route” double word. The word

route is used for the header, since it contains the direction in which the packet has to

be routed. As mentioned earlier, the A-Switch has six neighbors and the packet can be

routed in any of these six orthogonal directions. The direction the packet has to been

sent is specified by the ‘chunk’ bits as shown in figure 2.4. The chunk is divided into

two parts; the first five bits give the number of hops and the last three give the

 10

direction. The direction can be any thing from 0-5. Each of the six neighbors are

assigned a port number depending on the direction in which they are locate. The port

numbers of the neighbors are as shown in Table 2.1. The pictorial representation of

the port numbers of the chip and its neighbors is as shown in figure 2.6.

Main Memory

Crossbar Switch

From
Adjacent
Nodes

To
Adjacent
Nodes

A-Switch

0
1
2
3
4
5

0
1
2
3
4
5

0 1

2

3

4

5

Figure 2.6: Pictorial Representation of connection between the neighbors in C64 chip

Table 2.1: The port number of the neighbors in a 3D mesh configuration

Port
No.

In
From

Out
To

0 X – 1 x + 1

1 X + 1 x – 1

2 Y – 1 y + 1

3 Y + 1 y – 1

4 Z – 1 z + 1

 5 Z + 1 z – 1

 When a message passes from one chip to another, it is said to ‘hop’ from

one chip to another. The ‘Hop’ field in the header gives the number of hops the

 11

message needs to take in the direction given by the value in the direction field of the

header. For example if the chunk reads as “010 00100”, it implies that the packet has

to hop four times in the negative y direction. Port two represents the negative y-

direction. The next field in the header is the ‘Tag’. The ‘Tag’ can be separated into

three fields, namely HWR, RCR and Class. The class specifies in which direction the

messages has to be passed. When a load store or load request instruction is carried out

it is said to be of class ‘0’. In reference to ‘A-Switch’, it is called the forward

direction, i.e. the data is being sent to from the processor to the A-Switch. Class ‘1’ is

used for messages such as load return, which in term of the “A-Switch’ is referred to

as ‘Reverse Direction’. Reverse direction as the name suggest is used for data are sent

from the switch to processor.

Messages to be passed can have more than one header word. The number

of header that is being passed in a set of messages is indicated by the HWR bit –

called the Header Words Remaining is used. The RCR- Rename Chunk Remaining

field is used to get around the bad nodes in a network. When the RCR bit is set to

zero, it indicates no renaming. When the RCR bit is set to a non- zero value, it causes

the chunks to be renamed after the given value. For example consider a direct path x-

>y->z between processor A and processor B. If there is a bad node between Processor

A and processor B then direct path from A to B is blocked. The A-Switch gets around

this problem by sending the message through the a different renamed path x1->y1->z1

-> x2->y2->z2. In this message the RCR bit would be one, to indicate the path is

renamed after the first chuck. As the message moves from z1 to x2, i.e. after the

message has passed through the first chunk, Class 0 changes to Class 2 and Class 1

Changes to Class 3. When the message arrives at Processor B, the original classes are

restored.

 12

The stamp field is self explanatory; this field gives the time it was created.

The last field in the header is the size field which gives the total number of double

words. The size can range from 2 to 255. The next section deals with the flow of

these message packets.

2.2.3 Flow of Message in the network:

The software program arranges the message packet in the order of x, y and

z direction, i.e. the number of hops in x-direction, if any followed by number of hops

in y-direction, if any and finally the number of hops in the z-direction if any. As and

when the packets pass through the C64 chip the A-Switch modifies the headers to

indicate that the header is one step closer to the destination. A packet has minimum

one header with three chunks. The chunks can be a zero value or a non zero value. The

algorithm followed by A-Switch in routing the packet and modifying the packets is as

shown below.

 13

Read hops
from Chunk

Is new
hop = 0

Y

N Generate new header
 and dispatch

Decrement
hop by one

Shift chunk 1
and 2 down

Is
hop = 0 N Y Is

HWR = 0

Change hop
count to ‘c0’

A

A

Y

N

Decrement HWR shift
chunks from Next

Figure 2.7: Algorithm for changing the message

First Chunk0 is read and the number of hops is checked. If the number of

hops is zero, it indicates the packet has arrived at the final destination. If the number

of hops is a non-zero value, the hop count is decremented. If the new value of hop is

not a zero then concatenate the new value to the rest of the header and send it cross to

the next chip. If the new value is zero, then chunk1 and chunk2 are shifted down, i.e.

chuck0 is removed. Again the number of hops in the new chunk is checked and if that

number is also a zero then it checks the HWR field. A zero in the HWR would mean

that there are no more headers and the next chip (node) is the final destination. If the

next node is the final destination then the hop count of the chunk is modified to ‘0C0’.

The ‘A-Switch’ is designed to recognize hop count ‘0C0’ and route the packet to its

 14

processor. Since the Cyclops chip are to be arranged in 24 X 24 X24 grid the

maximum hop count can be 24. So making the hop count ‘0C0’ is valid. On the other

hand if the HWR is a non-zero value, there are more chunks, so the A-Switch shifts

the three chunks from the next header (route double word). If this results in an empty

route double word (i.e. the next header is empty), then the A-Switch decrements the

HWR bit and sends it across to the next node. This process is repeated until the packet

reaches the final destination. The Cyclops chips are arranged in a 24 X 24 X 24 grid.

Three chunks are sufficient to route the packet to any one of the nodes in this grid.

Provision has been made in case more than two chunks are needed. The flow chart for

the algorithm is as shown in figure 2.7. An example of how the packet is routed is as

shown in figure 2.8. In the 3D mesh, the packet has to be routed from node A to F and

the path is from A -> B -> C -> D -> E -> F. The message has to be transferred to port

‘1’ in the node ‘A’, if the message has to be passed to node ‘B’. From ‘B’ to ‘C’, it is

through port ‘1’, since it passes in the positive ‘x’ direction. The number of hops in

the positive x direction is therefore two, from node A to B and then from node B to C.

The direction for this transfer is specified in Chunk0. Once the message reaches node

‘C’, the message has to go through the positive ‘y’ direction which in through port ‘3’.

Again the number of hops is ‘y’ direction is two, from C to D and D to E. This

direction instruction is specified in Chunk1. The final chunk gives the details about

the positive ‘z’-direction. Only header message has been shown in figure 2.6. The

figure also gives a view of how the chunks vary with each hop.

 15

A B C

D
E

F

011 00010 001 00010 101 00001
Chunk0Chunk1 Chunk2

2 00…0000
Size Stam

1000
Tag

011 00010 001 00001 101 00001

011 00010 101 00001 000 0000

011 00001 101 00001 000 0000

 101 00001 000 0000 000 0000

 101 00C0 000 0000 000 0000

To B

To C

To D

To E

To F

Figure 2.8: Example of packet routing

2.2.4 Communication in the A-Switch:

The communication between the processor and the switch consist of

mainly the write and read operation. Write operation, also called the output message

transfer is controlled by channel programs. In any system the message packets to be

transmitted are never located at one place. Parts of the message packets reside in

different parts of memory, for example the header can be in one area and the data in

another. Usually before transmitting the messages, the headers and data messages are

retrieved from their different location copied in a continuous temporary memory

location and then transmitted. In Cyclops 64 this process is handled differently. The

 16

channel program creates a pointer to where the message packets are located and

controls the A-Switch message transfer with these set of pointer.

The channel program consists of sequence of pairs of length and address

as shown in table 2.2. The length specifies the number of double words located in the

main memory that have to be written. The location of the memory is given by the

address in the address field. Since the message is segmented and located in different

location, there will be a sequence of these lengths and address. A Root double word

links all these sequences. The Root double word has a ‘Num Pointer’ field with

indicates the sequence length and the address field give the location where the channel

program is located. The last double word in the channel program has a special bit

number –‘C’ to indicate the end of the sequence. Once the write operation is initiated

the program checks for completion by testing the bit pointed by the last pointer in the

channel program. The channel program and data may be in any part of the main

memory (DRAM, interleaved, SRAM or scratch pad SRAM). There is no requirement

for the channel program, packet segments and completion indicator to be in the same

type of memory.

Table 2.2: Channel Program

Double word to store in switch Channel Program

Num Pointers Address Length Address
32 32 Length Address
 C / / / Address
 6 26 32

In a read operation, also called the input data transfer, the message is

transferred from the switch to the software defined circular buffer. The program must

 17

first define a circular buffer for each of the input port. The header format of the cross

bar unit is as shown in Table 2.3.

Table 2.3: Header Format

Position Field Full Name Notes
101
(94 after Tar
stripped)

V Valid 1 for a valid packet

100
(93 after Tar
stripped)

C Class 0 for forward, 1 for
reverse

99
(92 after Tar
stripped)

BSE Block Start/End 1 during the first and last
packets of a block
transfer

98:92 Tar[6:0] Target Identification of one of
96 targets

91:64 T[27:0] Tag Tag
63:0 D[63:0] Data Data or other info

The tag can be further broken down to various fields. The tag format is as

shown in table 2.4. Depending on the tag, the bits zero to sixty three can be considered

as data or address. The various interpretations of the data field depending on the tag

are as shown in table 2.5.

Table 2.4: Tag Format
Position Field Occupant Notes
R
27: 17

 Variable Interpretation

16:10 PID[6:0] Src Proc ID Source PID
9:7 TID[2:0] Src Thread ID Source TID
6 S Signed 1 : Signed
5:0 GPR[5:0] GPR Source GPR

 18

Table 2.5: Address and Tag Details

 19

Tag[27:0] Operation Notes
11 || Sz[1:0] || A[23:0] Store with Short Address Data in D[63:0]

10_0000_000 || Sz[1:0] || PID[6:0] ||
TID[2:0] || Signed || GPR[5:0]

Store with Long Address, first
packet

First packet carries Address
Second packet carries Data
PID and TID are for Return, so
not used here, nor are Signed
and GPR

10_0001|| N[4:0] || PID[6:0] ||
TID[2:0] || Signed || GPR[5:0]

Block Store, first packet, any
Address

Address in D[63:0]
PID,TID,Signed,GPR ignored
Good for up to 32 values since
we use N+1 for the Count

10_0010_000 || Sz[1:0] || PID[6:0] ||
TID[2:0] || Signed || GPR[5:0]

Load Address in D[63:0]
PID and TID are for Return

10_0011 || N[4:0] || PID[6:0] ||
TID[2:0] || Signed || GPR[5:0]

Block Load, subsuming section
of Load Multiple within one
bank. This itself is not a block
transfer.

Address in D[63:0]
Signed is ignored
Good for up to 32 values since
we use N+1 for the Count

10_0100 || UU[4:0] || PID[6:0] ||
TID[2:0] || Signed || GPR[5:0]

Atomic Load or Store, first
packet

Address in D[63:0]
Signed is ignored.
Pure Store flagged by GPR = 0

10_0101 || N[4:0] || PID[6:0] ||
TID[2:0] || Signed || GPR[5:0]

Icache ReFill Request

10_0110 || N[4:0] || PID[6:0] ||
TID[2:0] || Signed || GPR[5:0]

DCache ReFill Request First packet carries Address

10_0111 || N[4:0] || PID[6:0] ||
TID[2:0] || Signed || GPR[5:0]

DCache CastOut First packet carries Address and
Mask if Address is short

01_0000_000 || Sz[1:0] || PID[6:0] ||
TID[2:0] || Signed || GPR[5:0]

Load Return First and subsequent packets
carry data
PID and Signed (since sign
extension done at storage unit)
ignored. Sz is needed.

01_0001 || N[4:0] || PID[6:0] ||
TID[2:0] || Signed || GPR[5:0]

Block Load Return PID and Signed (since all items
are doublewords) ignored

01_0010 || N[4:0] || PID[6:0] ||
TID[2:0] || Signed || GPR[5:0]

ICache ReFill Return First packet carries reflected
address. Subsequent packets
carry data.
Signed, TID and GPR ignored.

01_0011|| N[4:0] || PID[6:0] ||
TID[2:0] || Signed || GPR[5:0]

DCache ReFill Return First packet carries reflected
address. Subsequent packets
carry data.
Signed and GPR ignored

A detailed explanation of how these addresses are used will be given later

with examples. The first in read or write operation is initialization of the circular

buffer. During the software initialization time, the program gives the A-Switch the

location and the size of this buffer. Executing a store long address instruction will

perform this initialization. The circular buffer can be tested by executing a load double

instruction. After processing with the packet, the program informs the A-Switch that

that part of the buffer is free and can be used by another packet. Executing a store-

double instruction will accomplish this task. The input packet in the circular buffer

consists of a single header double word followed by the message part of the packet.

Input packets may not be processed in the order of arrival. The channel program

obtains the address and length of two or more packets process them in any order and

informs the A-Switch about the memory area where the packet is located. The A-

Switch keeps track of the memory areas and assures a in-order delivery of the

message. The circular buffer can be in any part of the main memory, DRAM,

interleaved SRAM, scratch pad SRAM. But SRAM proves to me more advantageous

due to its high data handling rates. The read and write operation are later explained in

details with an example in section 2.2.8.

2.2.5 Address Scheme used in A-Switch:

The Cyclops64 uses 32-bit addressing scheme. The address format for the

A-Switch is as shown in figure 2.9. Here 7th bit is set indicates the direction in which

the address is being transfers. Forward direction is indicated by ‘0’ and reverse by ‘1’.

The 8th and the 9th bits are used for the command. The different commands possible

are

 20

0- Initiate a write. This is used when the channel program is initiated.

1- Define the circular buffer location and size.

2- Get parameters defining and input packet

3- Write job index

The 25th to 31st bit gives the port address. The ports from 90 to 95 of the crossbar are

used for this communication with the A-Switch.

01 90:95 / / 3 / / / C D/ / /

2 7 3 4 7 2 1 6

Figure 2.9: Address format of A-Switch

The communication of the A-Switch can be best explained with an

example of how exactly the message is transferred. The next section concentrates

entirely on the message transfer process, giving detailed description of each of the

modules in the A-Switch.

2.2.6 Detailed description of A-Switch:

An overall picture of the C64 chip was shown earlier in figure 2.2. Figure-

2.10 gives a detailed connection between the crossbar, the A-Switch and the channel.

The crossbar has two latches connected to it, one for the input and the other for the

output. The connections between the crossbar and the rest of the modules are carried

out through these latches. The ports between ninety and ninety five are reserved for

the A-Switch, the other port are shared between the I-Cache, DRAM and the host. The

‘A-Switch’ takes care of message transfer from and to the other channels. There are

some configuration pins used by the A-Switch. These configuration pins are like the

 21

initializing pins which define base and bound values for each of the modules in the A-

Switch. An initialization example of the modules is in the appendix. Note the values

of the base and bound can be changed. The pins DDPORT, give the location of the

4DRAM devices, which is used in relocation. The bit sizes of each of these signals are

given in the figure 2.10.

96

8
4

8
4

Switch

C64_SW

6

Mpl_Out 9

9

0

Mpl In
9

9

0

2

10
2

2

6 Channel
To other C64
chips

0

9

96

2
D0
T0

D95
T9
5

2

10
2 0

10
2 9

Crossbar

C L U A D Wr

Configuration Pin

Latch

Latch

4 1

DRPORT
Configuration Pin

8 1 6

Figure 2.10: Detailed view of the connection between crossbar and Switch

 A detailed picture of the A-Switch is as shown in figure 2.11. The entire

switch is divided into two main modules; SWA and SW_CS. There are other modules

such as the Error Correcting Code Generator (ECC_G) and Error Correcting Code

Checker (ECC_C) , Make spare and extract spare.

 22

Figure 2.11: Block Diagram of the ‘A-Switch’

The ‘SWA’ transfers sixty four bits of data along with eight bit tag bits.

These seventy bits are appended with eight bits generated by ‘ECC’ module, hence

mounting to eighty bits in all. A 24 bit cable is used to connect two C64 chips. Of the

24 bits 3 are used for strobes and the remaining 21 bits are used for the message

transfer. The SerDes is used to convert the 80 bit parallel message from the ‘Switch’

to serial data message. The SerDes transfers message, by converting four message bits

into one high speed bit. Packs of this four bit (one nibble) are transferred in each of

the 21 bits connection serially. Hence the total number of data required is for a 21 pin

connection is 21X4 = 84 bits. Since the data is only 80 bits the ‘Make Spare’ module

 23

is used to generate the extra four bits. Similarly when the data comes in, an ‘Extract

Spare’ module is used to extract the four bits. Data is transferred in these outgoing

channels at a speed of 2 Gbit/sec/signal. The logic with which these units create and

extract the spare bits is relatively simple. The eighty four bit message is first divided

into twenty one nibbles. The nibbles are then fed to a multiplexer with the select line

‘11111’. The spare bits are forced to zero. The block diagrams of the ‘Make Spare’

and ‘Extract Spare’ units are as shown in figure 2.12 and 2.13 respectively. The

extracted bits are fed to the ECC_C unit which in turn is connected to the ‘SWA’ unit.

 83 80 79 72 71 0
Spare=4 bits ECC_G = 8 bits Tag + Data = 8 + 64 = 72 bits

Figure 2.12: Block diagram of Extract Spare Unit

 24

Figure 2.13: Block Diagram of Make Spare Unit

The SWA is the main module which handles the routing to the different

nodes. A detailed description of the SWA module is given in section 2.2.7. The

detailed description of the SW_CS module; which handles the communication

between the switch and the crossbar is given in section 2.2.8.

2.2.7 SWA Module:

The SWA module is quite complex. It mainly consists of five modules as

shown in figure 2.14. The inputs from the processor are denoted by FrH<0:5>. The

signals are named in certain pattern. Consider the signal FrH<0:5>, FrH implies from

header(i.e. processor) and the notation <0:5> implies that there are 6 copies of these.

FrH<0:5> is equivalent to saying FrH0, FrH1, FrH2, …, FrH5. The input signals

‘FrCh<0:5>’ are the inputs from the channel. Similarly there are two sets of output;

one for the processor and one for the channel given by ToH<0:5> and ToCh<0:5>.

 25

Figure 2.14: Block diagram of SWA module

Message Flow in SWA module:

The message flow in the SWA can be considered to be in two direction;

one from the processor to the channel and the other from the channel to the processor.

Let us first consider the data flow from the processor to the channel. The message to

be transferred is fed to the switch through the inputs FrH<0:5>. The message is fed to

any one of these input ports depending on which output post it has to be sent. For

example if the data has to be sent through the port 3, then data has to be inserted to

‘FrH3_D’. The ports are numbered from zero to five. There are also the tag bit coming

from the crossbar, they are represented by ‘FrH<0:5>_Tag’. The tag bit specifies if the

 26

message coming in through the input port is valid or invalid. When the tag is ‘1000

0000’, it implies that the data is valid. Please note that the examples to be explained

hence forth will use the hexadecimal notation. Other than these there are some

configuration pins to the A-Switch that initialize the different modules. When the

message traverses from the processor to the channel, it goes through the modules IQ,

MM and OP. When the message traverses from the channel to the processor it goes

through the modules IP, MM and OQ and the OP module is also used in the selection

process. To explain the detailed description of this traversal, an example has been

chosen.

First consider the transfer of message from the processor (head) to the

channel. The message packets to be transferred are generated by the program, as

explained in section 2.2.2. The header that was created in section 2.2.2 has been

copied below for convenience.

011 00010 001 00010 101 00001
Chunk0Chunk1 Chunk2

2 00…0000
Size Stamp

1000 0000
Tag

According to this header the data has to be transferred through port 1,

hence this header and the message part are injected to the input port 1. This is fed to

the IQ- Injection Queue module inside the switch.

There are six IQ modules; one for each input ports. The block diagram of

the IQ modules is as shown in figure 2.15. The data is sent to the Data FIFO and the

‘Sequence-A’. The ‘Sequence-A’ unit simply receives messages from the Channel,

creates the first record for the Header FIFO, and activates the write signal for the DF

so that the data which was injected can get into the data FIFO for the appropriate

class. This sequencer breaks down the header.

 27

Figure 2.15: Block Diagram of Injection Queue/ Input port Unit

The details about the header have already been discussed. The header

contains the size, stamp, tag and chunk field. Here is an example of another header.

Size(63:56)::Stamp(55:32)::Tag(31:24)::Chunk2(23:16):: Chunk1(15:8) ::Chunk(7:0)

 04 000000 01 A3 63 43

The Tag can be further broken down into

 Class :: RCR :: HWR

 00 0000 01

 28

The ‘Seq A’ unit concatenates the port address got from the chunk 0, the

size and the stamp and sends this packet to the ‘Header FIFO’-HF unit. The packet

sent for this example would be 404000000. The ‘Seq A’ also sends the class

information got from the ‘Tag’ to the Data FIFO, which in this case is ‘0’. The ‘DF’

unit writes the message to its register, when the write signal from the ‘Seq-A’ is high.

There are different set of registers for each of the class. When the write signal is high,

depending on the class the corresponding register is updated. The messages are stored

in the registers, so that it can be retrieved later when required, hence allowing pipe-

ling, else all transfers would be blocked until the message is delivered to the port.

There are four ‘HF’ units; one for each class, so the ‘Seq_A’ also has a

‘put’ signal to indicate to which ‘HF’ unit the data belongs to. When the ‘put’ signal

for the corresponding HF unit is high the packet from Seq-A is stored in the 32-deep

FIFO. A record of the port, size and stamp are stored in these FIFOs. The message

stored is later released, depending on the request from the Seq-B unit. The message

transfer of a particular transfer is broken down into four steps and when the transfer is

any one of these steps, it is said to be in that base. The different bases are

0th base: Home Plate – The transfer process is said to be base zero when there is a no

data available to be sent for the particular class.

First base: The transfer process is said to be first base when there is a
message available to be sent and it waits for a nod from the OP
unit to start sending the message. The OP unit has its own logic
to determine when it is free to send data of that particular class
in the particular port.

Second base: When permission to send the message is received from
the OP unit, the transfer is said to be in the Second base and
remains in this base until the blocks can be sent. There is a
queue for the block transfer. As long as the message transfer is
waiting in this queue it is said to be in Second base.

 29

Third base: Once the block transfer starts after waiting in the queue, the
class for this particular port moves to the third base. The class
stays in this base as long as the block is transferred. Once the
entire block is transferred, it moves back to the Home Plate.

The ‘Game’ unit monitors the change in the base and indicates all the

other units about the current status of the base. The ‘Sequence-B’ unit checks if the

particular class is in zero base. If the class is in base zero and there is a message in the

FIFO for the corresponding class, the ‘Seq-B’ indicates the OP module that there is a

message to be transferred and set the class to base one. The game unit also receives a

notification about this change and announce to other units accordingly. When the OP

unit indicates that it is free to receive message for that class, the ‘Sequence-C’ checks

if the class is in the first base; if it is the first base, it changes the status of the class to

second base and sends the required information to ‘Sequence-D’. The ‘Seq-D’ unit

monitors the block transfer. ‘Seq-D’ receives the port address, class and size from

‘Seq-C’. With this information it waits for its turn in block transfer queue. Once the

chance to send the message comes the ‘Sequence-D’ changes the class base to third

base and sends a read signal to the Data FIFO. The ‘DF’ unit in turn transfers the

messages to the MUX module. The ‘Seq-D’ maintains the class in third stages till the

entire block is transferred; this is accomplished by decrementing the counter which is

loaded with the ‘size’. Once the block is transferred, the class is changed back to Zero

base. The changes in the bases status is always notified to the Game unit. It can be

seen that the IQ module and OP module work in synchronization to make the transfer

possible. The detailed diagram of the Output Port (OP) is as shown in figure 2.16.

Output Port Module:

As the name suggest the OP unit handles all the communication with the

output ports, i.e. the channel ports. Each of the 6 IQ’s has its sister OP. So there is one

 30

outgoing data and tag for each of the OP’s. The data to be transferred to a particular

port is sent to that OP unit. In all there are six OP units. It can be seen from the block

diagram that the ports are numbered from <0:6>, instead of <0:5>. Of the seven data

path six are dedicated to the six channels and the last data path is used by the IP- Input

Port for message transfer for from the processor, i.e. the crossbar to the channel.

Figure 2.16: Block Diagram of Output Port module

For the data path; processor to channel, the information about the

message, like its port number, class and tag are to the Front Porch (FP) unit. When the

FP unit is free to take in the next data, it signals the IQ unit. The ‘Seq-B’ of the IQ

unit acknowledges this signal by sending the port number along with the class and tag

 31

to the front porch. There are four front porch unit; one for each class. The info is

written to the corresponding front porch unit depending on the ‘have’ signal. This unit

checks if the message received is for it’s output port. The FP unit also checks for the

corresponding class, if there is a match then source address is decoded, appended with

the tag from IQ and sent to the Age Discriminator Unit. The truth table for the address

decoder is as shown in table 2.6.

Table 2.6: Truth table of Decoder used in the Age Discriminator Unit

Frip0_hav
e

Frip1_have Frip2_have Frip3_have Frip4_have Frip5_have Frip6_have Source

0 0 0 0 0 0 1 000
0 0 0 0 0 1 0 001
0 0 0 0 1 0 0 010
0 0 0 1 0 0 0 011
0 0 1 0 0 0 0 100
0 1 0 0 0 0 0 101
1 0 0 0 0 0 0 110

As in this example, the message is coming from header so the source

‘110’. This source is appended with the size of the data and sent to the Age

Discriminator (AD). The AD unit has seven buckets, so that it can hold one data from

each source, so no source will ever use more than one bucket. The AD unit with the

help of the value given in the time stamp determines which of the message needs to be

taken care of first. The oldest message gets the highest priority. Once the message to

be sent is selected, the size of the message is sent to the ‘Sequence-A’ unit of the OP

module. The output signals from the four AD units are the ‘size’ of each of the

messages, these are fed to one ‘Seq-A’ unit. The OP module has a bank unit where the

messages are stored. The ‘Scnt’ unit keeps track of the space available in this bank

 32

unit. When the size of the message is sent to the ‘Seq-A’, the sequencer checks with

the ‘Scnt’ unit to see if there is space available for that particular the class. If there is

space available, the ‘Seq-A’ commands the ‘Write Control’ unit to create an entry for

these set of messages and reserve the space. It also signals the IQ units to send the

data. This is when the class changes to second base.

The ‘SCnt’ unit after reserving the space decrements the amount reserved

from the available space list. The SCnt unit also enters the new space availability in

the ‘Slist’ unit. The SList is needed to determine if the next chip has enough room for

the entire message. When an entry is taken from the head of the AD unit, the Size of

the message is queued on the SList for the Class. Messages for a given Class will be

read from the Banks in order. The Sequence-B determines if the data can be

transferred for the given class. Once the message transfer queue is ready for a block

transfer, the ‘Seq-B’ sends a ‘want’ signal to the ‘Slist’ unit. On receiving the ‘want’

signal from ‘Seq-B’, the ‘Slist’ gives the information about the size to the ‘Seq-B.

‘Seq-B’ is the actual unit which determines which of the class needs to be sent out of

the chip. Sequencer B looks at the heads of the SList and the amount of Space

available in the next Chip for each Class, and picks one guy for the next off chip

transfer. The Sequence-B unit supervises the transfer. At this point the class is

changed from the second base to third base.

The Write Control unit controls on each cycle which input port gets to

write to which bank of the output port. The switch supports up to four simultaneous

channels assigned to four input ports to write to the same bank. When a transfer from

IQ to OP is created, it is assigned to any one of the four channel controllers,

depending on which one is free. The channel controller determines on any given cycle

 33

which of the four banks the IQ should be writing to. It maintains the address within

the Banks and arbitrates among the other three channel controllers for write access to

the bank on the cycle. When a channel wins access the write access the write control

unit notifies the IQ as to which channel communication is going ready. The write

control unit also counts the items to determine when the transfer is complete. The

write address is sent to the Bank.

Another important unit of the OP modules is the ‘Token Manager’-TM.

The token manager keeps track of how much data space and header space are left for

each class in the next chip. These values are used to calculate whether or not the

Header FIFO in the next chip has space. Suppose there are 15 message items to be

sent, the message are put one at a time to the Header Fifo of the next chip. When the

next chip has returned 4 Tokens (16 data items) we know that it has completely

processed the message and pulled the entry from the Header Fifo. With the help of the

token from the token manger of the next chip, it can be determined if the messages

have been successfully transmitted and if there is space to transfer more. Yet another

important unit in the OP module is the ‘Sequence-C’ unit. Sequencer C handles header

modification on the way out of the chip. The hop count in the lowest chunk is

decremented; the algorithm for checking the header has been explained in section

2.2.3. The ‘Seq-C’ unit carries out this algorithm and changes the header as required.

Finally the message to be sent to the channel is delivered to the ECC_G and make

spare unit to get the final version of the message to be transmitted across the cable. So

far message transfer between the Processor and the channel was described; now let us

consider the data transfer from the channel to processor.

 34

The message which has to be transferred from the channel to the processor

will have the hop count as ‘C0’. As explained earlier, when the ‘Seq-C’ of the OP

unit checks for the chunks and hops, if the chunks are empty and the new number of

hops is zero; the OP unit modifies the hop count to ‘C0’ to indicate that the next

switch is the final destination. The channel message is first extracted, i.e. the spare bits

are removed and the then the data is checked for error. If there are any error, the

ECC_C(error correcting code_ correction) unit retrieves the message and sends it to

the SWA module. The SWA module directs these inputs to the Input Port-IP Unit. The

Input port unit functions exactly like the Injection Queue unit-IQ. The IP unit sends

the information of the OP, class and tag to the OQ unit. The OQ – Output Queue unit

is similar to the OP unit but not the same. The detailed block diagram of the OQ unit

is as shown in figure 2.17.

Figure 2.17: Block Diagram of the Output Queue Unit

As seen the OQ unit has relatively lesser number of modules than the

OP unit. When the ‘class’, ‘op’ and ‘tag’ and ‘have’ information is received from the

IP unit, the OQ unit latches up all these information. The messages are stored in the

 35

register. The register it written into when the write signal goes high. The write signal

is set high depending on the port number and the have signal. It has to be made sure

that the port number is ‘C’. Once this match is confirmed the class in the IP unit is

changed to second base. The IP unit waits for its block transfer to start. When the

processor is free to receive data it signals the OQ unit, which in turn signals the IP unit

to start the block transfer. The messages stored in the register are retrieved and sent

across to the processor. There can be one more form of communication from the

channel, i.e. channel to channel communication. When the data is routed from the

initial node to the destination node, it is routed through many switches. The form of

communication that occurs in these intermediate switches is - channel to channel. In

the channel to channel communication, the data transfers from IP- MM – OP. This

transfer is very similar to the processor to channel communication. The message from

other channels come to the IP unit, which sends the ‘class’, ‘op’ and tag information to

the OP unit. The handshake between the IP and OP has been already explained.

The MM units called the ‘Mother of all MUXs’ merely connects the Input

message from the Input modules to the output modules. LRU- Least recently used

arbitration algorithm is used to select which of the data should be addressed. A more

detailed diagram on each of the sub modules can be seen in the appendix. Please note

that all the input and output modules occur in pairs. Each input module has its

corresponding output module. There are six of these modules; one for each port. This

enables the chip to communicate with the six ports simultaneously. The class 2 and 3

are called the virtual class, which are used in case of renamed headers as explained in

section 2.2.2.

 36

2.2.8 SW_CS Module

In the previous section the description of the different forms of

communication in the SWA modules was discussed. When it was said that the data

comes from the processor or goes to the processor, it referred to the SW_CS module.

The SW_CS module acts as the bridge between the SWA and the processor. Once

Again the description of the SW_CS module will be given with examples. The block

diagram of the SW_CS module is as shown in figure 2.18. The SW_CS consists of

four main modules- MPG unit, DMA unit (SWD), GlueA and GlueB. The Glue A and

Glue B unit are merely glue logic that connects the SWA to the DMA units. Please

note the DMA unit is also called the SWD unit, and these two terms can be used in

interchangeably.

Figure 2.18: Block Diagram SW_CS module

The ‘GlueA’ unit is responsible for the outgoing messages, i.e. from the

crossbar to the SWA and ‘GlueB’ for the incoming messages. Each of these units in

turn have two internal units; one for each class. The inputs to the ‘GlueA’ are the input

 37

messages from the DMA machines and the space available form the ‘SWA’ unit. The

GlueA unit checks if the DMA unit has any message to be sent and checks if the

‘SWA’ needs any message for that class. If there is a match the GlueA unit then

checks for the space available, if all the conditions are satisfied, the GlueA unit simply

transfers the message to the switch. A blocks diagram of the main GlueA unit and its

internal unit is as shown in figure 2.19 and 2.20 respectively. Once the message

passing to the SWA starts for a particular class, the GlueA unit does not stop the

transfer until it all the messages in a block transfer are sent. It avoids the risk of

getting holes in the outgoing message due to interleaved DMA traffic.

Figure 2.19: Block Diagram GlueA

 38

Figure 2.20: Block Diagram Glue A unit

The GlueB is similar to the GlueA unit. The inputs to the GlueB are the

message and have from the ‘SWA’ and ‘want’ signal from the DMA machine. The

block diagram of the Glue unit is as shown below .

 39

Figure 2.21: Block Diagram of Glue B unit

The message passes from the SWA to the DMA machine and then from

the DMA machine to the ‘MPG’ unit. The MPG unit is the glue logic between the

Crossbar and the SWD unit. To understand how exactly the message is transferred

between the crossbar and the SWA, it is best to describe both the MPG and SWD units

together with examples. The block diagrams of the MPG and SWD units area as

shown 2.22 and 2.23 respectively.

 40

Figure 2.22: Block Diagram of the DMA unit

Figure 2.23: Block Diagram of the MPG unit.

 41

The basic concept of message passing between the crossbar and the SWA;

i.e. read and write operation was explained in earlier in section 2.2.3. The read

operation can be explained in a sequence of operation. The first step in a read

operation is defining the read buffer. An example of the header that does the operation

of defining the read buffer is as shown below.

 58060000_000000006D030080

This header can be decoded with the help of the Tables 2.4 and 2.5. The

values of the for each of the value in the table is

Position Field Value Meaning
94 Valid 1 It is a valid header
93 Class 0 The header is for class 0
92 BSE 1 Start block transfer
91:64 Tag 8060000 Explained below
63:0 Data 000000006D030080 Data / Address

The Tag is 8060000 in hexadecimal, which implies the 27 to 17 bits is -

‘100000000110’. From Table 2.5, this value can be interpreted and it represents store

long address with the first packet giving the address and the second packet the data.

Now when this header is given to the A-Switch from the crossbar, the message is first

sent to the MPG unit. The messages which come into the MPG unit are queued in the

TU_NB_IN_Q unit, inside the MPG. The IN_Q has two FIFO units; one for each

class. The messages are stored in the corresponding FIFO units and stored in till the

next unit is free to accept the message. This queue unit also checks if the header is a

valid message. The next unit in the sequence is the split unit. The split unit separates

the address from the header, decodes the header and sends the data to DMA0 or

DMA1, depending upon the on the class.

 42

The address format for the A-switch was explained earlier in section 2.2.5.

The address in this header is ‘6D030080’ which is ‘0110 1101 0000 0011 0000 0000

1000 0000’ in binary. The port number is ‘1011010’ that is number ninety in decimal

which implies that the data was sent from port ninety. The command bits are ‘01’,

which implies ‘define the circular buffer’. The direction bit is ‘0’, hence it is forward

direction. Since the header is to be sent in the forward direction the address is sent

from the MPG to DMA0 unit, else it would have been passed to DMA1. DMA1 is for

class ‘1’. An acknowledge token is sent back to the cross bar by the MPG unit. The

DMA again has two sub units as shown in the figure 2.22; one for the outgoing

messages and one for the incoming. The unit SWD_A deals with the outgoing

message and the SWD_B deals with the incoming message. The header in this

example is an incoming message; hence the message is passed to SWD_B. The

internal block diagram of this unit is as shown in figure 2.24.

Figure 2.24: Block Diagram of SWD_B unit

 43

When the message comes from the MPG unit is first passed to the

FrNA_Split unit. It is this unit which is responsible for deciding if the header that

arrived is an1 incoming or outgoing message. The FrNa_Split unit decides whether the

message is an incoming or outgoing with the help of the command bits in the address.

If the command is to initiate a write then it is said to outgoing message, if the

command is for defining any buffers, it is said to be a incoming message. Since the

purpose of this header is to define the circular buffer, the address is sent to SWD_B.

Now the DMA is prepared to define the buffer. This header can be considered as a

command to tell the DMA to be prepared for the defining the buffer. The second

packet which is the data packet gives the definition of the buffer. Let the next message

be 580600000000003041001000.

This header again passes through the MPG unit. Since it is store long

address, this message follows the same path as it predecessor, arrives at SWD_B. Now

SWD_B knows that this is the definition of the circular buffer. The address that

arrives to the SWD_B is ‘3041001000’. From this address the first two digits

represent the size of the global FIFO and the next eight digits represent the base

address. The base address is ‘41001000’. SWD_B decodes this address and finds that

the thirty first bit is ‘0’ in this case. The thirty first bit represents whether to use the

SRAM or the DRAM for this communication. In case the bit value is ‘0’, DRAM is

used, else SRAM. SRAM is usually used for block transfer, but here it is not a block

transfer, so DRAM is used. The size and the base are stored in the SWD_B_State unit.

The circular buffer is defined with this process.

 44

The circular buffer can be tested by passing a load and return header to the

switch. The header of load and return for the above store is

48860408000000006D030100. The Tag in this case is 8860408 which is

‘1000100001100000010000001000’ in binary. It can be decoded form the table 2.5,

that this is load and return command. The value for the PID field is ‘1’ and the GPR is

‘8’. This again follows the same path as the previous header and reaches SWD_B.

The address in this case is 6D030100. The SWD_B decodes this and sends back a tag

to the MPG unit. The tag to be sent is a formed by concatenating 010000000 with the

PID(Processor ID), to indicate which processor, the TID (Target ID) and the

GPR(General Purpose Register). The tag formed by this is ‘4060408’. When this tag

reaches the MPG unit; the MPG unit adds few more bits and sends it across to the

crossbar. First and foremost, it adds the valid bit, then the class value and lastly the

target address. The class in this case would be ‘1’, indicating return. This is basically

how a read operation goes about.

The write operation is a little more complex. As mentioned earlier to send

a message out of the chip, a processor assembles a channel program in memory.

Starting at a Root address is a list of pointers. Each element of the channel program

except the last points to an array of data and also contains the number of data items for

that array. The last element points to a synchronization location. When everything is

assembled, the processor writes the Root address and list size to the DMA engine. If

there is room in the Root fifo, a 1 is returned to indicate that the write was successful.

If not then a 0 is returned and the processor must try again. The SWD_A is

responsible for this outgoing message. The SWD_A has basically six units which aid

in this process. The block diagram of SWD_A is as shown in figure 2.25

 45

Figure 2.25: Block Diagram for SWD_A unit

SwD_A, first fetches all the list of pointers to the List Fifo except the last

one. The last pointer is sent to the Synch Fifo. The List Fifo fetches the data pointed

by its members and has the data sent to the Data Fifo. The Data Fifo sends data out of

the unit in-order. Remember the data are located in different parts. The FIFOs makes

sure that the data is re organized and sent in-order. When the last item has been sent,

the Data Fifo notifies the Synch Fifo that it should do an Atomic Store that flips a

synchronization bit in storage. The to and fro traffic between the crossbar and the

switch in this case is best understood with an example. Consider a situation of sending

two messages; one header and one data to the switch. The first step would again be

 46

defining the buffer. The next step would be opening a channel program. This is done

with the help of store long command. For example consider the two headers

 58062400000000006D130000

 580624000000000348100700

In this case the processor ID (PID) is ‘1001’, TID is ‘0’ and GPR is ‘0’.

As usual the first message consists of the address and the second consists of the data.

In this case the data is ‘348100700’. The first two digits give the global buffer size,

which is equal to thirty four. The remaining digits give the base address which is

‘8100700’. The location is ‘700’ This is still and incoming message, so it is sent to

SWD_B. SWD_B decodes this and finds the thirty first bit of the base address to be

‘1’,hence stores it in the SRAM. SRAM is used in block transfers. The SWD_B sends

back the Tag information to the MPG unit, and the SWD_A. The SWD_A stores this

information to the Root FIFO. The Root FIFO controls all the operation in the

SWD_A. With this handshake a channel program is opened. Now the pointers have to

be loaded. The DMA make a request to the crossbar to send the list of pointers from

location ‘700’, to be stored in the LIST FIFO. The Root FIFO unit takes an entry from

the Fifo and issues one or more block loads to retrieve the elements of the list. By

means of the return TID, the loads are directed to the particular registers in the List

Fifo.

 The crossbar accomplice to this request and sends the message to the

particular TID specified by the Root FIFO. The message has to be sent to the List

FIFO, the message would like

744369800000000148100740

744369800000000148100800

 47

The TID indicates to which FIFO this message is targeted for. In this case

the tag is ‘4436980’, of which the TID is 011 and this implies that this message is for

the LIST FIFO. The last pointer is sent to the Synch FIFO.

64416A800000000348100820

Here the TID is 101, which indicates Synch FIFO. Once again all this is

incoming messages, so the SWD_B handles the communication, get the tag and send

it to the MPG and SWD_A. The DMA requests for data from location ‘740’ and

‘800’, these locations were got from the header sent to the LIST FIFO. The messages

arrive to the data FIFO. The DMA indicates that data is ready and if the switch is

ready to accept data, the message is sent to GlueA unit.

So far the communication between chip and its internal memory, chip and

the channel has been discussed. Now let us consider the channel to chip

communication. The channel to chip communication is relatively simpler. For any

communication the circular buffer has to be defined. The circular buffer has to be

defined only once. This is more like an initialization of the switch. This initialization

defines the base address. This base address is later used in the channel to chip

communication. When the message passes from SWA module to SW_CS, it goes

through the GlueB first. The Glue_B unit first gets the header message from the SWA

unit. Depending on the size given in the header, the Glue_B collects all the data for

one set of messages. The Glue_B later send these messages to the SWD unit and

indicates which of these messages are first and which one the last message. The

message is sent to FrRB_N of the SWD_B unit. The data is stored in the SRAM, since

it is a block data transfer. The header message is stored in the location given by the

base address. The address is then incremented by eight locations and the consecutive

 48

data or header message is stored in this location. This process repeats for all the

messages. These addresses are sent to the MPG unit. The MPG unit retrieves the

messages from these circular buffer, calculates the actual address with the help of the

Re-Map unit and sends it across to the crossbar.

Channel to channel communication is the simplest of all. It does not

involve any DMA unit. The entire communication is handled by the SWA alone. This

kind of communication has already been explained in section 2.2.7. Hence a

description of the types of communication that are possible in the A-Switch has been

discussed.

2.3 Verification Required for A-Switch:

The A-Switch is said to be fully functional if it can transfer messages from

crossbar to channel and vice versa and from crossbar to the internal buffers. The test-

bench is generated in such a way as to test all the forms of communication.

Functional verification helps in determining each modules of the A-Switch, hence

giving an extensive insight of the sub modules in A-Switch. Each and every modules

is tested for all the possible paths the modules can achieve. Functional verification

hence provides a detailed analysis of the ‘A-Switch’. To test the ‘A-Switch’ along

with other units the Software emulation process is used.

 49

Chapter 3

FUNCTIONAL VERIFICATION

3.1 Introduction:

Functional verification is a verification methodology that focuses on the

design and implementation of the system and components before they are built [6].

The goal of functional verification is to prove that a design will work as intended. The

first step in functional verification is to determine what the intent is [6], i.e. to get a

good understanding of the specification. Second step would be to determine what the

design does and then compare this with specification to ensure they match. Functional

verification requires that several elements like the stimulus the design unit and

response checker and many more to be in place. It relies on the ability to simulate the

design under test (DUT) with a specific input stimulus, observing the results of that

stimulus on the design and deciding if the results are correct. The block diagram of the

simulation environment is as shown in figure 1.3.

A simulation based verification environments are almost always built

upon a set of structured elements. In a structure based simulation environment the

design is partitioned into set of functions that allow the overall complexity to be

broken into manageable parts. There are many advantages of this approach in a very

complex project like Cyclops 64. One of the main advantage is that the interactions

between the sub-modules can be easily managed and viewed. In a structured

verification methodology the test benches and blocks that were used to verify the sub

 50

modules can be reused to test the higher modules. Verifying from the lowest sub

modules to the top most modules also helps in better understanding of the

functionality of the each module. A structured simulation is equivalent to bottom-up

verification methodology. There are various verification tools available. Simulators

are the most common and familiar verification tool used. They are called simulators

since their role is limited to approximating the reality [6].

Simulators are not static tools [7], i.e they cannot perform the verification

without additional information/action from the user. The additional information

required in this case are the stimulus generator and checker. A stimulus is required to

provide the inputs, so that the simulator can emulate the design’s responses based on

its description. A checker is needed to validate the outputs of the simulator against the

design intent.

The test cases for the verification of the Cyclops 64 have been designed so

as to cover all the possible values. An ideal test case should make sure the every single

statement of the design code is executed. This is not possible for a very complex code

structure. Breaking down the complex code into different structural elements and then

testing each module again proves to be advantageous. There are various simulation

languages available such as VHDL and Verilog. Simulation language is different from

verification language. Hardware Verification Languages (HVL) can automate

verification. Some of the verification languages are OpenVera from Synopsys [16],

RAVE from Forte [17], C++, Perl, TCL and many more. Verification languages are

more useful when the entire system that includes both hardware and software of a

system are to be verified. But for the verification of the Cyclops 64, which is still in

design stage only hardware simulation is required; hence simulation languages are to

 51

be used. The HVL languages are used in the software emulation method described in

section 4.1.

3.2 Tool Flow of Functional Verification of A-Switch:

The simulation languages used in the verification of the A-Switch module

are VHDL and ‘KSM’. ‘KSM’ is a proprietary hardware description language by

IBM. The entire design of the Cyclops 64 has been written in ‘KSM’. The ‘KSM’

code can be simulated with ‘Delphi’. Delphi is a powerful Integrated Development

Environment (IDE) used primarily to build client/server applications for Microsoft

Windows, with an emphasis on databases [7]. Delphi was developed by ‘Borland

International’ and is based on Object Pascal. It applies the object-oriented concept and

was designed to give developers the ability to build applications easily, with minimal

coding required. A tool has been created by IBM under the Delphi environment which

converts any code written in ‘KSM’ language into Pascal code, simulates it and

generates the output in a text format. The output is stored in a text file with an

extension - ‘KSP’. The tool is also capable of converting the KSM code to VHDL.

Though the KSM simulation is sufficient to verify the functionality of the modules,

VHDL simulation was used due to its familiarity and ease in checking the output. The

outputs in VHDL simulation are in the form of waveform and in case of KSM

simulation it is a text file. Modelsim was the hardware simulation tool used for VHDL

codes. The functional verification was carried out with the simulation languages, KSM

and VHDL. The tool flow for these simulations is as shown in figure 3.1.

 52

KSM

Translator (Delphi)

VHDL

Input Module Test Environment
Output Format

Delphi

Modelsim

*. ksp

*. vhd

 *. ksq

Waveform

= ?

Verification
Of the
output

Figure 3.1: Verification tool flow for functional verification

Since the simulation is carried out in two different languages

simultaneously it can be compared to co-simulation [7]. The outputs of the both the

co-simulation where checked manually and they are found to be similar. The test

bench for the ‘KSM’ tool is called a shell file and for the ‘VHDL’ tool it is just like

another VHDL file. An example of the shell file is given in appendix B. The input

pattern for the ‘KSM’ and ‘VHDL’ are text files. Using file input and output

commands, the VHDL test-bench is capable of reading from the text file. The same set

of inputs was given to both the simulation and the outputs were found to be the same.

To make sure that the entire code is covered during verification of the inter-processor

communication module -‘A-Swtich’, the ‘A-Switch’ had to be connected in a 3D

mesh configuration. Connecting more than two ‘A-Switch’ modules and then test

 53

them for inter process communication is not possible in the Modelsim simulator due to

various limiting factors like memory. Where as using the Delphi Simulator tool, the

switch modules can be connected in a 3D-mesh configuration and tested for inter

process communication very easily . Since it is possible to test the entire module in

‘KSM’, the question may arise towards the need of the verification using VHDL; the

answer to this ‘ease to check the output’. In KSM it is very difficult to check the

intermediate signals, where as in the VHDL simulation it very easy. Taking

advantages of both these simulation the functional verification can be successfully

completed.

 54

Chapter 4

SOFTWARE EMULATION

4.1 Introduction:

Functional Verification is a necessary verification procedure to ensure the

system is functioning as intended but is not sufficient. For an integrated circuit design

such as the Cyclops 64 the functional verification of the entire chip is not possible

with the simulation procedure. As seen in chapter 3, hardware simulation is not

possible for more then two modules connected to each other, consider the entire C64

chip which contains eighty processor, i.e. 160 thread units, sixteen SRAM, one 96-

way crossbar, a DRAM and the ‘A-Switch’. It is almost impossible to test all these

modules together using simulation verification methodology. Even with the ‘KSM’

simulation tool modules of this complexity is not possible to verify. There is definitely

a need use a different verification methodology which can achieve the system level

verification.

The most common ‘System on Chip’ verification methodologies available

in the market are a combination of one or more tool set. Along the similar line a tool

set was developed which is called ‘Software Emulation Tool Set’. Emulation is

commonly referred to as duplication (provide an emulation of) of the functions of one

system with a different system, so that the second system appears to behave like the

first system [7]. The basic principle involved in this software emulation tool set is to

convert the ‘KSM’ code to basic binary instruction and then emulate these binary

instructions. The tools used of this are the stack code generator and the logical

 55

processor. The stack code generator creates the binary instruction and the logical

processor emulates the instruction. The logical processor simulator has been coded in

C hence gives an added advantage of flexibility and extendibility. A detailed

description of the Software Simulation Tool Set is given in the next section. This tool

set will also aid in the unified verification of the Cyclops 64, when the software and

hardware are to be verified together.

4.2 Tools Set for Software Emulation:

The Software Simulation tool set is as shown in figure 4.1. The input to

this tool is a file with the extension of ‘KSF’, which is given to the Stack code

generator. The ‘Delphi’ tool flow for the KSM code was explained in section 3.2. The

tool other then generating the VHDL and Pascal code, also generates the ‘KSF’ file.

The KSF file contains the code in the form of instructions. An example of a KSF code

is given in appendix C. The KSM language has some forty primitive instructions. The

KSM design of the modules are converted into these primitive instructions and stored

in the ‘KSF’ file. These instructions are later converted to Pascal code and executed in

the Delphi simulation tool. In a similar fashion the ‘Stack code Generator’ in the

Software Emulator developed converts these instructions into more basic instruction.

For example a 2X1 MUX is considered as a primitive instruction, it would be better if

these instructions can be further broken down to there most primitive more like

‘AND’ and ‘OR’ gates. The stack code generator converts the instruction into their

most primitive instruction set. The Delphi tool set is capable of executing the

instruction of variable width whereas the stack code generator converts the variable

width instruction to a fixed width. The code generated by the stack code generator can

 56

be used in both software simulation and hardware simulation on the FPGAs. This

object file, given by the extension ‘.stk’ is later fed to the logical processor simulator

which is capable of emulating any logic. The output of the logical processor simulator

is again a text file. The stimulus file is generated by the generator and the output file

is checked using a checker. The generator and checker can be written any HVL like

‘perl’.

KSM Delphi *. ksF

Stack Code
Generator

*.stk Logical Processor
simulator *.out

Generator
/Stimulus

Software Emulator Tool Set

Checker

Figure 4.1: Verification tool flow for Software Emulation

An overview of the Delphi tool and Software emulator tool would look

similar, both the tools are converting the KSF file to an object file which they are

familiar with and execute them. The Delphi is familiar with Pascal code, hence it

converts the KSM code to Pascal and the Software Emulator proposed coverts into C

code. Then what is the need of two different versions? The difference lies in how the

instructions are scheduled and executed.

Consider for example the ‘A-Switch’ in a 4X4X4 grid configuration. A

shell file connects these sixty four modules together. These instructions are converted

 57

into ‘KSF’ file where the entire ‘A-Switch’ module is a single instruction. Now when

the Delphi tool executes this instruction it converts each of the ‘A-Switch’ instruction

with its internal instruction. It is like a macro function which is later replaced by the

function during compilation. Hence in the Delphi tool, there are essentially sixty four

repetition of the code. When the entire chip has to be tested it will have eighty of the

processors, sixteen SRAM and so on. This complex structure is not possible to verify

using Delphi. In the software emulation tool, the ‘A-Switch’ module is more like a

function. There is no repetition of the code leading to lesser memory occupation. With

this capacity entire chip can be easily connected and verified.

The scheduling policy used in the software emulation tool is entirely

different from that of Delphi too. In Delphi tool the sixty modules are connected and

run some random number of times in a hope that the values will settle down to their

final value. Remember the sixty four modules are interrelated and depend on each

other. The execution has to continue till the intermediate values settle and the correct

final value is reached. This approach of executing it for a random amount of time is

very naive. The chance of the values settling and not settling down to their final value

is equal. More over a lot of CPU time is wasted in doing some unwanted instruction.

There is always likelihood that the value obtained is not right when the instructions

are not executed for the right amount of time. For example suppose the instruction

settles to its final value after n cycle, but the simulator has chosen the random time to

be n-1 cycles, the output is definitely going to be wrong. This is not acceptable. The

stack code generator offers a very clever solution of this.

The stack code generator analyzes the data dependencies between the

modules with help of the combinatorial connection among the sub modules and within

 58

the sub modules and generates a schedule such that minimum amount of CPU cycle is

taken to get the correct value. The stack code generator is also capable of generating a

schedule which occupies minimum memory. This is useful for the hardware emulation

in the FPGA chip, since the memory is restricted in the FPGA. This memory

allocation scheme need not be used in the software emulation, since the available

memory is virtually unlimited. To derive the scheduling with the improved memory

allocation by itself is time consuming and can limit the size of module that can be

tested; hence it is better not to use the memory allocation scheme for the modules like

‘A-Switch’. In software emulation for modules like ‘A-Switch’ each variable allocated

a unique memory location. This concept cannot be used for hardware emulation using

FPGAs.

With the help of the stack code generator and the logical simulator it is

possible to emulate very complex modules.

 59

Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion:

With the increasing number of gates and design complexity, verification

process has to be planned out very carefully and started at an early stage of designing.

A single tool is no more enough to test these complex designs. A unified verification

methodology is required to maximize the speed and efficiency. The two-level

verification methodology proposed proves to be efficient for the verification of the

multi-core architecture. The functional verification makes sure that the system works

for intended design and the software emulation helps in verifying the integrated

system. At an early stage of designing, functional verification can be carried out since

the modules are small and it is very easy to debug with the help of waveforms. The

software emulation makes it possible to verify the entire chip without the need of

complex verification structure.

5.2 Future Work:

The two-level verification should be applied to the entire chip, to verify

the full functionality of the C64 chip. The software emulation also generates object

code for the FPGA, hence the hardware simulation can be tried. Only preliminary

verification has been applied of the A-Switch, a more rigorous testing has to be done

to measure the performance of the A-Switch.

 60

Appendix A

EXAMPLE OF A KSM FILE

The KSM language is similar to any hardware description language. An

entity in VHDL is called a ‘Block’ in KSM, which defines the input and output port.

One of the advantages in KSM is that the intermediate signals do not have to be

defined before using them. An example of the KSM file is given below. The syntax

has been explained by comparing it with VHDL.

Block c64_Sw
 Comments
 You can add any comments over here

 Probes

// Here the intermediate signals that have to
viewed, have to be inserted.

// For example in this consider the ‘FrCh0’-input

signal to the SWA module. To view this signal, the
following line has to included in the probes.

SwA.FrCh<0:5>_<D Tag>

 Inputs
 // The inputs of the block are defined here.

 FrMP<0:5>_<D[94:0] Tok[1:0]>

 FrCh<0:5>_D[83:0]

FrPP_<C[3:0] L[11:0] U[7:0] A[15:0] D[63:0]
 Wr>

 DRPort<0:3>[6:0]
 ReSet
 Clk
 Outputs
 ToMP<0:5>_<D[101:0] Tok[1:0]>
 ToCh<0:5>_D[83:0]

 Conns

 61

 // This is equivalent to architecture of VHDL

 MS#_S = Pad[5](0x_1F) #:0:5

 //This syntax implies MS0_S = “111111”
 // i.e pad with hexadecimal 1F.
 // Repeat this for MS1_S to MS5_S

// Component instantiation: Component name is c64_SWA

 . = c64_SwA(
 SwA FrCh<0:5> <D Tag>
 cs<0:5>.ToSwA <D Have>
 FrH<0:5>_<D[63:0] Have>

 cs<0:5>.ToSwA_C<0:1>_Get
 FrH<0:5>_C<0:1>_Get
 SwA FrP D
 FrP_D[9:0]
 SwA FrP A
 FrP_A[7:0]
 SwA FrP Wr
 FrP_Wr
 ReSet
 Clk
) SwA

 // Only the inputs signals have to be mapped to

the component. Outputs signals are automatically mapped.
Consider an output signal ‘ToCh0_D from c64_SWA’. The output is
mapped to

EndBlock

 62

Appendix B

EXAMPLE OF A SHELL FILE

The shell file is the test-bench file is KSM. It can be considered as the top

most module of any deign.

Block Shell_c64_Sw
 Comments
 Test shell featuring just Sw
 EndComments

 VFSROOT
 FixedWidth

 Inputs
 FrMP<0:5>_<D[94:0] Tok[1:0]>
 FrCh<0:5>_D[83:0]
 FrPP_<C[3:0] L[11:0] U[7:0] A[15:0] D[63:0]
 Wr>
 DRPort<0:3>[6:0]
 ReSet
 Clk

 Outputs
 ToMP<0:5>_<D[101:0]
 Tok[1:0]>
 ToCh<0:5>_D[83:0]

 Conns

 ToMP<0:5>_<D Tok>
 ToCh<0:5>_D
 = c64_Sw(
 FrMP<0:5>_<D Tok>
 FrCh<0:5>_D
 FrPP_<C L U A D Wr>
 DRPort<0:3>
 ReSet
 Clk
) sw
EndBlock

 63

Appendix C

EXAMPLE OF KSF FILE

 An Example of a KSF file is given below. The first statement gives the

design unit name. The statements following that have an instruction number and name

along with type of gate. At the end the inputs and outputs are listed.

Block C64_SIGB8 FirstReg 3 FirstComb 1
 1 ZTOCH_DD OR Inputs I:1:0/0/W8 I:2:1/8/W8 I:3:2/16/W8
I:4:3/24/W8 I:5:4/32/W8 I:6:5/40/W8 I:7:6/48/W8 I:8:7/56/W8 Outputs
11/74/W8 Width 8 Rank 1 Next 4 RBPI
 2 ZTOCH_D.ZDD GATEOFF Inputs C:1:1:11/74/W8 I:10:9/72/W1
Outputs 12/82/W8 Width 8 Rank 2 Next 0 RBPI
 3 ZTOCH_D.ZQ RRREG Inputs C:2:1:12/82/W8 I:11:10/73/W1
Outputs 13/90/W8 VFSLoc 1 PO 2 Width 8 Rank 0 Next 5 RBPI RPO
 4 ZTOTU_D.ZDD GATEOFF Inputs I:9:8/64/W8 I:10:9/72/W1
Outputs 14/98/W8 Width 8 Rank 1 Next 2 RBPI
 5 ZTOTU_D.ZQ RRREG Inputs C:4:1:14/98/W8 I:11:10/73/W1
Outputs 15/106/W8 VFSLoc 2 PO 1 Width 8 Rank 0 Next 1 RBPI RPO

Inputs
 1 FRTU0_D[7:0]
 2 FRTU1_D[7:0]
 3 FRTU2_D[7:0]
 4 FRTU3_D[7:0]
 5 FRTU4_D[7:0]
 6 FRTU5_D[7:0]
 7 FRTU6_D[7:0]
 8 FRTU7_D[7:0]
 9 FRCH_D[7:0]
 10 RESET
 11 CLK

Outputs
 1 TOTU_D[7:0] C:5:1
 2 TOCH_D[7:0] C:3:1

 64

REFERENCES

[1] Brian Bailey, Mentor Graphics, Waking of the Sleeping Giant – Verification
DesignCon April 2002

[2] Juan del Cuvillo, Weirong Zhu, Ziang Hu, and Guang R. Gao,
"FAST: A Functionally Accurate Simulation Toolset for the Cyclops-64
Cellular Architecture"

[3] Multi-core architecture
http://www.absoluteastronomy.com/encyclopedia/m/mu/multicore.htm

[4] Intel Article on Multi core architecture
http://www.intel.com/cd/ids/developer/asmo-na/eng/211198.htm

[5] Anick Bergeron, Writing Testbenches Functional Verification of HDL
Models, Qualis Design Corporation, Kluwer Academic Publishers 2003

[6] Andreas S Meyer, Principles pf Functional Verification

[7] Emulation : http://kb.iu.edu/data/aeve.html

[8] Will Walker "Verification reuse ensures predictable design", ISD Jan 2002

 [9] Brian Bailey, Mentor Graphics, "Co-Verification: from tool to methodology",
DesignCon Jan 2002

[10] David Dempster and Michael Stuart "Verification Methodology Manual"

 Teamwork International 2001

[11] Rashinkar et al, "System-on-a-chip Verification" Kluwer Academic
Publishers 2001

[12] Ashenden et al, "System-on-Chip Methodologies & Design Languages"
Kluwer Academic Publishers 2001

[13] Cadence, White paper, ‘The unified Verfication Methodology’

 65

http://www.absoluteastronomy.com/encyclopedia/m/mu/multicore.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/211198.htm
http://kb.iu.edu/data/aeve.html

[14] Lavi Lev, Rahul Razdan, Chirstopher Tice, ‘It’s About Time –
Requirements for the functional verification of nanometer-scale ICS’,
Cadence

[15] Juan del Cuvillo, Weirong Zhu, Ziang Hu, and Guang R. Gao, ‘TiNy
Threads: a Thread Virtual Machine for the Cyclops64 Cellular Architecture’

[16] http://www.open-vera.com

[17] http://www.forteds.com/behavioralsynthesis/index.asp

 66

http://www.open-vera.com/

	TOWER METHODOLOGY FOR VERIFICATION OF MULTI-CORE ARCHITECTURE – A CASE STUDY
	TOWER METHODOLOGY FOR VERIFICATION OF MULTI-CORE ARCHITECTURE – A CASE STUDY
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	1.1 Cyclops 64 and Multi-Core Architecture:
	
	DESCRIPTION OF THE INTERPROCESS COMMUNICATION MODULE IS CYCLOPS 64
	2.2.7 SWA Module:
	Message Flow in SWA module:
	Output Port Module:
	2.2.8 SW_CS Module

	FUNCTIONAL VERIFICATION
	SOFTWARE EMULATION
	CONCLUSION AND FUTURE WORK
	EXAMPLE OF A KSM FILE
	EXAMPLE OF A SHELL FILE
	EXAMPLE OF KSF FILE
	
	REFERENCES

