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ABSTRACT 

Solvent annealing represents a versatile technique for self-assembly of block 

copolymer thin films.  The following report highlights the practical functionality of 

this technique by describing a series of studies undertaken to expand the 

understanding of this procedure.  Firstly, a microfluidic device was utilized to 

demonstrate that, with the proper selection of solvents, a gradient in morphology could 

be established across a single film.  Secondly, the rate of solvent removal from a film 

was shown to have a direct impact on the topography of the film, while maintaining a 

different through-film structure.  Thirdly, raster solvent vapor annealing (RSVA) 

techniques were employed to selectively anneal a very small portion of a film.  

Multiple passes or cross patterns with this technique were shown to alter the 

morphology as well.  Fourthly, a program was developed in Java to quantitatively 

interpret and analyze AFM images for the ratios of different morphologies.  Finally, 

the solvent annealing procedure was applied to a biological application by initially 

conducting bell jar experiments to determine the morphologies of the polymer film.  

The film was subjected to experimental thiol-ene click chemistry reactions in order to 

functionalize the surface of the film.  While no further experimentation occurred, a 

literature search was performed to evaluate future experimental parameters involving 

cell growth. 
 



Chapter 1 

INTRODUCTION 

1.1 Background 

Block copolymers consist of two or more covalently bonded homopolymer 

chains.  The unfavorable interaction between these two chains promotes self-assembly 

at the nanoscale.  Nanoscale self-assembly is an important facet to nanoscience 

studies, such as nanopatterning and micelle formation, and is why block copolymers 

are under study here.  A block copolymer with two different types of monomers is 

referred to as an AB diblock copolymer.  This nomenclature extrapolates to more 

complex systems as well, as shown in Figure 1.1-1 below.   

 

Figure 1.1-1 Nomenclature for block copolymer systems.  The structures indentified in 
the AB chain are styrene (above) and isoprene (below).  Adapted from 
Bates, et al.1 
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The interaction between these chains, characterized by the Flory-Huggins 

interaction parameter (χ) and the size of the chains (N) make up the segregation 

strength, χN.  This segregation strength and the volume fraction of the polymer (ƒ) 

determine the theoretical morphology of the block copolymer2-4.  Figure 1.1-2 shows a 

phase diagram for an AB diblock copolymer, along with cartoons describing the 

different copoloymer morphologies.  

 

Figure 1.1-2 Theoretical phase diagram for a diblock copolymer, with the 
corresponding morphologies shown below.  Adapted from Bates, et al.1 
and Matsen, et al.5 

In the bulk scenario, where the characteristic dimension of the polymer system 

is at least six times the domain spacing of the polymer (Lo)6, the equilibrium 

morphologies of the polymer match the theoretical phase diagram moderately well7.  

However, in the thin film scenario there are additional factors contributing to the 

morphology, including confinement between the air and the surface and the 
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commensurability of the thickness with the domain spacing.  These factors allow for 

the introduction of morphology orientation, as described by the cartoons in Figure 1.1-

2.  Different morphologies, orientations, and structures in block copolymers allow for 

their utilization in many applications, such as nanotemplating8-11, organic 

photovoltaics12,13, and drug delivery14-16. 

 Thin films are utilized in these studies for two primary reasons:  a.) 

there are numerous parameters that can be manipulated to control the morphology of 

the polymer, and b.) the versatility and ease of thin film processing allows for high-

throughput methods with little required material.  It is important to thoroughly 

understand the techniques and processes used to reproducibly generate different 

topographies.  In general, these methods are well-understood for specific 

polymers17,18, however every polymer is different, and therefore a firm understanding 

of morphology is the initial focus of this study. Various methods of structural control 

will be discussed in the following chapter. 

In general, there are two primary methods for directing the self-assembly of 

block copolymers:  thermal annealing and solvent annealing.  Solvent annealing was 

chosen for these studies for several reasons.  First, the large inventory of solvents to 

choose from provides for the desired matching of solvent-block combinations.  These 

interactions are governed primarily by the chemistry of both the polymer and the 

solvent.  In general, compounds with similar functional groups or structure tend to 

interact more favorably than otherwise, and solvents can be chosen accordingly.  

Second, the thermal properties of the polymers utilized in these studies are not 

conducive for thermal annealing.  In thermal annealing, it is imperative to remain at a 

temperature below that of the glass transition temperature of the polymer sample.  If 
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the glass transition is overcome, the polymer will assume a hard, brittle state in which 

the chains cannot migrate.  Solvent annealing avoids this issue by maintaining a 

constant temperature, an important condition in this study due to the polymer’s 

relatively low glass transition temperature.  Third, solvent in the film mitigates the 

confinement effects normally observed in thin film scenarios.  Solvent swelling in the 

film increases the effective thickness of the film, creating a situation that resembles a 

bulk polymer scenario, where confinement and surface effects are negligible.  Finally, 

the volume fractions, block interactions, and domain spacing of the polymer are 

affected, which ultimately influences the film’s commensurability conditions.  In 

solvent annealing, solvents can be chosen such that the solvent is preferential for one 

block or the other.  In this case, when a small amount of solvent swells the film, it will 

preferentially enter the more favorable block, thus changing the effective volume 

fraction of that block and the domain spacing of the overall polymer.   
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Chapter 2 

OVERVIEW OF TECHNIQUES 

The studies described herein utilize two major techniques:  atomic force 

microscopy and flow coating.  The purpose of this chapter is to discuss both of these 

methods so as to provide the reader with a basic understanding of the topics.  

2.1 Atomic Force Microscopy 

Atomic Force Microscopy (AFM) is essentially the use of a nanoscale probing 

device to image or characterize the surface of a material.  An AFM consists of a tip, a 

laser, a photodetector, and the associated software and equipment.  The tip utilized in 

AFM has a cantilever on one end with a protruding point structure.  This point 

structure is what interacts with the surface of the sample, and can take the form of 

many different shapes depending on the desired characterization technique.  The 

cantilever is attached to the larger section of the tip by a piezoelectric material, which 

can convert the small mechanical movements of the cantilever into electrical signals, 

and vice versa.  Cantilever motion is primarily monitored by the incurred movement 

of a laser reflection.  The laser is calibrated to reflect off of the cantilever and hit the 

photodetector at a specific ‘zero’ point.  Deviations from this point are used by the 

software to observe changes in cantilever location. 

In general, there are three different modes of AFM:  contact, non-contact, and 

intermittent or tapping mode.  Technically, contact mode is the only mode that 

involves physical interaction of the tip with the sample.  In contact mode, the tip is 

 5



pressed to the surface of the sample, which could be either solid or liquid, and the 

repulsive van der Waal forces between the tip and the sample are captured.  This force 

is recorded in an AFM force curve, which is useful for determining material properties 

of the sample such as hardness or elasticity.  Non-contact mode provides similar 

results to contact mode, however the technique is performed oppositely. In this case, 

the tip is held above the sample and attractive van der Waal forces pull the tip towards 

the sample.  As with contact mode, these forces can be translated to physical 

properties by use of a force curve.   

Intermittent or tapping mode is the mode utilized by this study, and will 

therefore be discussed in more detail.  The piezoelectric material at the base of the 

cantilever is used to make the cantilever oscillate at a controlled frequency by sending 

an electrical signal to the material that translates the resonant frequency of the 

cantilever.  As the cantilever oscillates, it contacts the sample at its lowest point and 

then swings off.  This mode of AFM does not provide a force curve as a result, but 

rather an image of the surface of the sample due to its three dimensional movement.  

There are three types of images that result from tapping mode AFM:  height, phase, 

and amplitude.  Height images contain mostly information about the height and 

roughness of the sample surface.  They are attained by monitoring changes in the 

surface location relative to a zero point, and have a scale bar of length.  Phase images 

are slightly less intuitive.  As the cantilever oscillates, the oscillation is disturbed 

(either repulsively or attractively), which causes an offset in the phase of the 

oscillation.  This disturbance is highly affected by the properties of the sample, which 

is an important principle for block copolymer study.  The phase change or offset is 

what is shown in an image, with a scale bar of degrees.  Because this image is highly 
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dependent upon the sample, it is best for seeing the morphology of block copolymer 

surfaces.  The third image type, amplitude, is basically an image that shows the 

feedback from the loop that controls the system.  Although it is not necessary to get 

good results, ideally this image is blank, indicating that the loop had minimal 

feedback.  Because of this, amplitude images are hardly ever used for characterization.  

This report contains only phase images, as these are the best type to see the 

morphology of the surface of the sample. 

2.2 Flow Coating 

Flow coating is one of a few rather simple procedures used to create thin films.  

Figure 2.2-1 below shows a schematic of flow coating. 

 

Figure 2.2-1  Flow coating cartoon. Adapted from Stafford, et al.19 

As shown in the figure, a glass slide is held above the substrate at a specified 

height, G, and angle, α.  Polymer solution is injected under the glass slide such that it 

wicks between the slide and the substrate.  The substrate is pulled under the slide by a 

motorized stage at constant or varying speed to deposit a layer of solution on the 

substrate.  The thickness of this layer, H, is determined by the stage speed, G, α, and 
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the weight percent of polymer in the solution.  The solvent in the layer evaporates, 

leaving behind a polymer film of final thickness h. Flow coating parameters are 

generally well understood19, and the technique is fairly reproducible. 
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Chapter 3 

SOLVENT ANNEALING STUDIES 

The polymer used in each of the following studies, unless otherwise noted, is 

symmetric poly(styrene-b-isoprene-b-styrene) (SIS), a triblock copolymer with a 

number average molecular weight of 188 kg/mol, a polydispersity index (PDI) of 1.09, 

a bulk domain spacing of 29 nm, and block volume fractions of ƒPS = 0.134, ƒPI = 

0.732, and ƒPS = 0.134.  I am an author on each of the four papers reviewed in this 

chapter, and the material discussed is a highlight of my (at least partial) contribution to 

each project. 

3.1 Morphological Control using a Microfluidic Device 

The content of this section is adapted from Albert, et al.18 

3.1.1 Microfluidic Device Fabrication 

The microfluidic device utilized in this study was made of 1H,1H-perfluoro-n-

decyl acrylate (PFDA) and consisted of two entrance ports, a mixing tree, and seven 

chambers, as shown in Figure 3.1.1-1.   
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Figure 3.1.1-1 Microfluidic device used for annealing studies.  

 

Note that the seventh chamber is not attached to the mixing tree, and therefore 

represents the control portion of the device.  The device was fabricated by curing a 

PFDA and photoinitiator solution over a master template using ultraviolet radiation20.  

PFDA was an attractive material because it is mechanically durable, it is impermeable 

to the solvents used in this study, and it is a soft material, which allows for an air-tight 

seal between individual chambers.  The final device measured 75 mm x 39 mm x 6.35 

mm.  In addition to this device, another type of device was generated to analyze the 

solvent compositions in the chambers, as shown in Figure 3.1.1-2.   
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Figure 3.1.1-2 Microfluidic device used for solvent collection studies. 

This device contained the same features as the previous one with the addition 

of exit ports to capture the solvent leaving the chambers.  In terms of fabrication, it 

was produced in a similar manner to the annealing device, except with a different 

initial template. 

3.1.2 Annealing Studies 

Nitrogen flowing through solvent bubblers was used in this study to transport 

solvent to the device and polymer.  Controlling the flow rate of nitrogen through the 

bubblers allowed for control over the flow rate of solvent and ultimately the amount of 

solvent in the film.  Independent streams of nitrogen were flowed through two 

separate bubblers, one with n-hexane and another with tetrahydrofuran (THF), with 

flow rates of 10.6 ± 0.2 mL/min and 1.9 ± 0.1 mL/min, respectively.  THF is a good 

solvent for both polymers, with a slight preference for PS, whereas n-hexane is 

preferential to PI and is a poor solvent for PS21.  The streams were fed into the devices 
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using 21 gauge hypodermic needles.  The devices were firmly held onto SIS thin 

films, which had a constant thickness of 100 ± 2 nm.  Figure 3.1.2-1 shows the 

resulting morphologies from AFM in each of the chambers after a 10 h anneal.  

 

 

Figure 3.1.2-1 AFM images of an SIS film annealed with the device.  The numbers on 
the left indicate the chamber number.  The three columns of images 
correspond to the location within each chamber.  Percentages in the top 
left of each image refer to the amount of n-hexane relative to THF in that 
chamber. 

Note that the control chamber, chamber seven, resembles the film without any 

annealing, which confirms that the chambers were independent of each other.  As the 

n-hexane content decreases in the chambers it is clear that the morphology responds 

by a re-orientation of the cylinders from being perpendicular to the surface to parallel 
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to the surface.  In this way, a distinct gradient of morphology was created on the 

surface of the film through the use of the microfluidic device. 

3.2 Morphological Control by Varying Solvent Removal Rate 

The content of this chapter is adapted from Albert, et al.22  Note that in this 

study the polymer utilized is poly(deuterated styrene-b-isoprene-b-deuterated styrene) 

(dS-I-dS).  It is similar to the previously described polymer, with a number average 

molecular weight of 160 kg/mol, a bulk domain spacing of 37 nm, and block volume 

fractions of ƒPS = 0.10, ƒPI = 0.78, and ƒPS = 0.12. 

3.2.1 Solvent Deswelling Rate 

For this study, nitrogen was flowed through two solvent bubblers in series 

filled with chloroform.  This saturated vapor was transported into a sealed chamber 

containing a dS-I-dS thin film, which had a constant thickness of 112 ± 2 nm.  The 

film was initially swelled to 208 ± 3 nm and was allowed to equilibrate for 2 hours.  

After 2 hours, the solvent was removed at various rates (0.5, 0.1 and 0.05 nm/min) by 

incrementally decreasing the nitrogen flow rate through the bubblers.  Thickness 

profiles are shown in Figure 3.2.1-1 a.).   
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Figure 3.2.1-1 a.) Thickness profiles for deswelling dS-I-dS films, and b.) AFM 
images of the free and substrate surfaces of the film for the three 
corresponding deswell rates. 
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From the AFM images in Figure 3.2.1-1 b.), it is clear that the topography is a 

function of the solvent removal rate, with an increasing proportion of perpendicular 

cylinders as the solvent removal rate decreases.  Additionally, the substrate side of the 

film remains fairly constant from sample to sample, which points to the presence of a 

hybrid morphology through the film. 

3.2.2 Through-film Morphology 

In the case of the 0.1 nm/min removal rate of solvent, further work was 

performed to determine the structural transition observed in the previous section.  To 

do this, films were similarly annealed and then subjected to subsequent ultraviolet 

ozone etches to partially remove sections of film.  Figure 3.2.2-1 shows the deswelling 

profiles for three films along with AFM images describing the through-film 

morphology of each film.   
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Figure 3.2.2-1 a.) Deswell profiles with stopping thickness varied and rate held 
constant, and b-d.) AFM images corresponding to the three stopping 
points showing the through film morphology.  All scale bars are 500 nm. 

It appears that the transition from perpendicular cylinders to parallel cylinders 

takes place primarily in the last domain spacing of the polymer.  At thicknesses greater 

than one domain spacing, the morphology resembles that of the topography of the 
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film.  In general, there are two routes for this re-orientation of morphology from 

parallel to perpendicular cylinders:  a.) the parallel cylinders ‘flip’ into a perpendicular 

conformation or b.) the parallel cylinders break down and reorganize into 

perpendicular cylinders. Literature indicates that the latter is more common23, and, 

based upon the AFM images, it is most likely the case for this system as well. 

3.3 Morphological Control through Raster Solvent Vapor Annealing (RSVA) 

The content of this section is adapted from Seppala, et al.24 

3.3.1 Single-pass RSVA 

Similarly to the solvent removal studies, in this study nitrogen was flowed 

through two solvent bubblers in series filled with THF.  The THF-saturated vapor then 

flowed through a hypodermic nozzle onto a constant thickness SIS thin film.  The 

thickness of the film was initially 100 nm (3.7 domain spacings).  A motorized stage 

was utilized to precisely move the sample under the nozzle, allowing for slow, zone 

annealing effects.  A diagram of the experimental setup is shown in Figure 2.3.1-1. 

 

Figure 3.3.1-1 Experimental setup for raster solvent vapor annealing.  
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  For the first set of experiments, a nozzle with an internal diameter (i.d.) of 

0.514 mm and a nitrogen flow rate of 30 mL/min were used to observe the effects of 

raster zone annealing.  AFM images of the resulting experiments are shown in Figure 

3.3.1-2.   

 

 

Figure 3.3.1-2 AFM images from anneals conducted with a 0.514 mm i.d. nozzle and a 
flow rate of 30 mL/min for three different speeds 

 

As the stage speed decreases and therefore the annealing time increases, the 

morphology transitions from parallel to perpendicular cylinders.  Because the area 

annealed on the film was relatively large for these experiments, additional experiments 

were required to attain a better understanding of smaller zone anneals.  For these new 

experiments, a smaller nozzle, with an i.d. of 0.210 mm, was chosen in combination 

with a lower nitrogen flow rate, 5 mL/min, to maintain a constant solvent flux.  Figure 

3.3.1-3 contains AFM images from these experiments.   
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Figure 3.3.1-3 AFM images from anneals conducted with a 0.210 mm i.d. nozzle and a 
flow rate of 5 mL/min for three different speeds 

Once again, there is a transition from parallel to perpendicular cylinders as the 

stage speed decreases.  However, from comparing the two nozzle sizes, it is clear that 

the smaller nozzle required slower stage speeds overall to achieve the same 

morphologies as the larger nozzle.  This is because, although the solvent flux through 

the nozzle is constant, the annealing zone on the film is much smaller, which implies 

that the stage speed should be reduced to allow for higher solvent-film permeation.  

Additionally, the overall amount of solvent flowing to the film is smaller, and 

therefore fluctuations in the air pressure that act as a disturbance to the system are 

amplified.  

3.3.2 Multi-pass and Cross-path RSVA 

These sets of experiments involve a similar setup to the previous ones, except 

that multiple passes or runs were performed on the same sample.  For the multi-pass 

anneals, shown in Figure 3.3.2-1, the parameters of each pass were held constant from 

the single-pass anneals with the 0.514 mm i.d. nozzle.    
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Figure 3.3.2-1 AFM images for the multi-pass experiments.  The speed and number of 
passes are indicated above the images. 

In between passes, the films were dried under vacuum, which implies that each 

additional pass was equivalent to subsequent anneals.  As the number of passes is 

increased, the morphology transitions from parallel to perpendicular oriented 

cylinders.  

For the cross-path RSVA studies, a single pass was performed, followed by 

another anneal such that the two paths intersected with each other.  An image of the 

annealed film and the morphologies at different locations along the paths are shown in 

Figure 3.3.2-2.  The annealed areas are indicated by the dark lines in the optical image, 

which are depressions from solvent altering the thickness of the film.  
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Figure 3.3.2-2 a.) Optical image of the cross-path experiment.  Image is a combination 
of several smaller images taken through an optical microscope.  Scale bar 
corresponds to 1 mm.  b,c.) AFM images of the locations indicated, with 
scale bars corresponding to 200 nm. Adapted from Mastroianni, et al.25 

 

In the locations where there is only one pass of the nozzle, parallel cylinders 

are the primary morphology of the polymer. However, when the film was annealed 

twice in the crossed locations, the morphology changed to perpendicular cylinders.  

This is a similar result to the multi-pass experiments.  For both the multi-pass and the 

cross-path experiments, the addition of subsequent anneals re-orients the cylinders 

through a mechanism similar to that of the previously mentioned solvent removal 

studies.  This change is primarily induced by the need for the polymer to attain 

commensurability through multiple swells and deswells. 
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3.4 Quantitative Morphology Characterization from AFM Images 

Data are an important aspect to the scientific method; however, the inability to 

fully understand and interpret the data renders all experiments useless.  With this in 

mind, an effort was made to extract more information from AFM images in terms of 

mixed morphological characterization.  More specifically, a code was developed in 

Java (see Appendix A) to accurately quantify the fraction of the image that contains 

perpendicular cylinders versus parallel cylinders.  This was accomplished by first 

converting the AFM phase images to discrete binary, black and white images.  White 

pixels represent structure, and black pixels represent matrix.  From here, the image 

was loaded into the java program, which considered the color of each pixel, either 

black or white, and grouped the white pixels by nearest neighbor analysis.  The size of 

each grouping was determined by counting the number of pixels in the group, and a 

size distribution was generated.  A sample size distribution is shown in Figure 3.4-1 

along with the corresponding image.   

 

Figure 3.4-1 a.) Size distribution of the white groups in the sample AFM image shown 
in b.)  The scale bar represents 500 nm.  AFM image courtesy of Ming 
Luo. 
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Since the domain spacing of a block copolymer is constant, groups that 

represent perpendicular cylinders are all lumped together towards the beginning of the 

distribution, whereas parallel cylinders tend to be much larger and polydisperse in 

size.  The total peak interval can be approximated as twice the location of the peak, 

which means that groups that are of size less than twice the peak location can be 

considered perpendicular.  A simple re-coloring of the image (Figure 3.4-2) indicates 

that the program operates with relatively high accuracy.  This analysis was particularly 

useful in the work done by Luo, et al.26 

 

Figure 3.4-2 The image from Figure 2.4-1 re-colored to show regions of perpendicular 
and parallel cylinders.  The scale bar represents 500 nm. 
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Chapter 4 

APPLICATIONS FOR STEM CELL GROWTH AND DIFFERENTIATION 

4.1 Motivation 

For many years, stem cells have been a primary target of research for tissue 

growth and repair in the field of chemical and biomolecular engineering.  It is known 

that the fate of stem cells is partially determined by the environment in which they 

grow27,28.  For example, human mesenchymal stem cells (MSC)s cultured on 

substrates that mimic the mechanical properties of bone, muscle, and brain 

differentiate into the respective cell types of these tissues, simply based upon their 

structural environment29.   This encourages the notion that artificial surfaces can be 

fabricated to imitate the conditions inside the body.  Understanding how nanoscale 

structural organization of the cell microenvironment influences cell function and fate 

is of emerging interest30.  Block copolymers are an attractive platform to mimic the 

nanoscale organization of native tissue because of their ability to phase separate at the 

nanoscale into well-defined and periodic structures.  The ultimate goal is to show that 

this phase separation can be used for stem cell differentiation. 

4.2 Results and Discussion 

In general, there are three stages to the scope of this project:  a.) define 

polymer morphologies and processes needed to attain them, b.) functionalize the 

surface with peptides or other growth factors, and c.) grow stem cells on the artificial 

surface.  The polymer utilized to conduct this study is a poly(styrene-b-isoprene) (SI) 
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diblock copolymer, with a number average molecular weight of 141.1 kg/mol, a PDI 

of 1.16, volume fractions of ƒPS = 0.70 and ƒPI = 0.30, and a bulk domain spacing of 

roughly 77 nm. Appendix B contains characterization data for the polymer. 

4.2.1 Morphology Determination 

Thin films were flow coated onto silicon wafers from 5 wt% solutions in THF.  

Solvent anneals were carried out by placing the films into a sealed chamber with a 10 

mL beaker of the selected solvent for a predetermined amount of time.  This type of 

annealing will be referred to as ‘bell jar’ annealing moving forward.  Various solvents 

were chosen for testing based upon previous work.18,22  Figure 4.2.1-1 shows results 

from a series of different bell jar anneals.  

 

Figure 4.2.1-1 a.) As cast AFM image of SI.  Images of samples bell jar annealed with 
b.) toluene, c.) n-hexane, d.) chloroform, and e.) acetone. 
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Toluene anneals have shown promising results to attain long range parallel 

cylinders.  Ideally, conditions will be found to create well-ordered, long range 

perpendicular cylinders.  Annealing with acetone creates structures resembling 

cylinders; however they are variable in size and not at all ordered.  Further 

experimentation is required to determine the parameters necessary for perpendicular 

cylinder morphology. 

4.2.2 Surface Functionalization 

The methods used in this section roughly follow those outlined by Hawker, et 

al.31  Prior to functionalizing with peptides or functional groups, experiments were 

first conducted with acetylcysteine as the attaching molecule for proof of concept.  

Thiol-ene click chemistry was utilized to attach the acetylcysteine to the surface via 

the pendant isoprene double bonds.  A bath of isopropanol was first heated to roughly 

70 °C, to which the film was added with 2 mg of azobisisobutyronitrile and 20 mg of 

acetylcysteine.  The reaction was allowed to proceed for 1 hour.  Figure 4.2.2-1 

contains AFM images showing the pre- and post-reaction film surface.  

 

Figure 4.2.2-1 a.) Pre-reaction AFM image of the film, and b.) post-reaction AFM 
image of the film. 
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It appears that the reaction conditions have caused the roughness of the film to 

increase, however the underlying morphology still seems to be intact.  The 1H NMR 

results in Figure 4.2.2-2 indicates that the number of pendant double bonds on the 

isoprene reduced slightly from a peak ratio of 0.251 to 0.218, which coincides with the 

notion that the reaction proceeded successfully.   

 

Figure 4.2.2-2 a.) H1NMR spectra for the polymer before the reaction, and b.) H1NMR 
spectra after the reaction.  The inset shows the peaks that represent 
hydrogen from the isoprene pendant double bond, and the numbers next 
to the peaks indicate the ratio of these isoprene peaks to the styrene 
peaks. 

However, the intensity of the post-reaction 1H NMR was very low, and 

therefore the results are questionable. 
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4.2.3 Stem Cell Growth 

While stem cells were not actually grown in this study, a background search 

through the literature was performed to determine some of the future experimental 

parameters.  It is well understood that several variables affect the growth of stem 

cells32,33; however it is crucial to evaluate which of these variables can actually be 

manipulated within this study.  For this study, this long list reduces to essentially two 

controlling factors:  the morphology of the polymer and the growth hormone or 

peptide attached to the film.  In a study performed by Campos, et al., stem cells were 

grown on an ordered film of poly(styrene-b-ethylene oxide), which was pre-

functionalized with CRGDS peptides.  They observed a drastic change in the 

formation of focal adhesion sites and the morphologies of the cells from the use of an 

ordered substrate.   

Similar results are expected from this study, with the addition of a reproducible 

method to create several cell morphologies or types.  In the Campos paper, the 

underlying morphology of the block copolymer was hexagonally packed perpendicular 

cylinders.  In this study, both perpendicular and parallel cylinders will be studied, 

adding to the results of Campos.  The primary benefit of performing surface 

functionalization after polymer alignment comes from a materials and time 

conservation standpoint.  Using the method outlined by Campos, in order to test 

multiple ligands or functional groups, a new polymer would have to be made each 

time.  This is a laborious and costly procedure that can be avoided by functionalizing 

the polymer after alignment.  A single aligned polymer can be divided into ten 

different pieces, and each piece can be tested differently.  Eventually, an even higher 

throughput method may be developed to functionalize a single film with many 

different groups at the same time. 
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Experimentally, the different morphologies of the polymer could be tested with 

any combination of growth factors, such as activin34 or a transforming growth factor35, 

or ligands, as utilized by Campos.  Additionally, the cells could be mechanically 

loaded using a loading device or fluid flow through the cells.  The high number of 

parameters in this study allows for many experimental conditions and results.   
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Chapter 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

This work focuses primarily on the application of solvent annealing methods to 

block copolymer thin films, with an extended investigation of their use as biomimetic 

materials.  A microfluidic device was shown to produce a morphological gradient 

across a thin film by evenly mixing two different solvents together.  In the annealing 

process, the rate at which solvent exits the film results in a change in the structure of 

the film.  In the case of SIS films annealed with chloroform, as the rate decreased, 

structure shifted from mostly parallel cylinders to perpendicular cylinders on the 

surface.  Additionally, a Java program was developed to quantify the proportions of 

perpendicular and parallel cylinders in an AFM image.  This was done by classifying 

the structures as either perpendicular or parallel and then calculating a percentage 

based on area fractions.  Finally, bell jar annealing methods were employed to alter the 

morphology of SI films to investigate their use for biological applications.  A 

technique was explored to attach peptides or growth factors to the surface of the film 

using click chemistry, however further characterization is required to confirm the 

outcome of the technique.  Previous work shows that this is a promising venue of 

research, and it should be pursued moving forward. 
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5.2 Future Work 

Experiments with the microfluidic device could be performed with different 

solvents or flow rates to capture various gradients of morphology. Additionally, the 

device could be redesigned to have a larger mixing tree or larger chambers to allow for 

solvent swelling gradients within the film. Solvent removal rates could be decreased to 

increase the ratio of perpendicular cylinders on the surface of the film.  While 

quantification of the ratio of morphologies in AFM images was accomplished, a new 

program could be developed to evaluate the number of grains and the grain sizes of 

surface structures.   

For the work done with applications to stem cells, conditions will be 

determined to generate long range perpendicular cylinders on the surface of the film in 

addition to the already attained parallel cylinders.  Once a stable method for thiol-ene 

click chemistry is produced, different peptides and growth factors will be attached to 

the film to create a functional biomimetic material.  The extent of reaction for the 

thiol-ene click chemistries can be quantified using 1H NMR or FTIR.  Finally, stem 

cells will be grown on this new substrate and their differentiation will be observed.  

Mechanical loading will also be implemented to affect the morphology and growth of 

the stem cells.  These experiments should provide conditions for which the cells can 

reproducibly differentiate into various types of progenitor cells.  
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Appendix A 

MORPHOLOGY DETERMINATION CODE 

package AFMAnalysis; 
 
import java.util.ArrayList; 
 
public class ScaledBlob { 
 
 int blobID = -1; 
 ArrayList<Pixel> pixels = new ArrayList<Pixel>(); 
 boolean inGrain = false; 
} 

 
package AFMAnalysis; 
import java.awt.Color; 
 
public class Pixel { 
 
 boolean isPerpendicular; 
 boolean isParallel; 
 int pBlobID; 
 Color color; 
 Pixel next; 
 int x, y; 
 boolean isLine = false; 
 boolean isEdge = false; 
 int grainID = -1; 
  
 public Pixel(boolean perp, boolean par, int blob, Color c, Pixel p, int x, int y){ 
   
  isPerpendicular = perp; 
  isParallel = par; 
  pBlobID = blob; 
  color = c; 
  next = p; 
  this.x = x; 
  this.y = y; 
 } 
  
} 
package AFMAnalysis; 
//Taken from www.vogella.de 
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public class Quicksort  { 
 private int[] numbers; 
 private int number; 
 
 public void sort(int[] values) { 
  if (values ==null || values.length==0){ 
   return; 
  } 
  this.numbers = values; 
  number = values.length; 
  quicksort(0, number - 1); 
 } 
 
 private void quicksort(int low, int high) { 
  int i = low, j = high; 
  int pivot = numbers[low + (high-low)/2]; 
 
  while (i <= j) { 
   while (numbers[i] < pivot) { 
    i++; 
   } 
   while (numbers[j] > pivot) { 
    j--; 
   } 
   if (i <= j) { 
    exchange(i, j); 
    i++; 
    j--; 
   } 
  } 
  if (low < j) 
   quicksort(low, j); 
  if (i < high) 
   quicksort(i, high); 
 } 
 
 private void exchange(int i, int j) { 
  int temp = numbers[i]; 
  numbers[i] = numbers[j]; 
  numbers[j] = temp; 
 } 

} 
package AFMAnalysis; 
import java.awt.Color; 
import java.awt.image.BufferedImage; 
import java.io.BufferedWriter; 
import java.io.File; 
import java.io.FileWriter; 
import java.io.IOException; 
import java.text.DecimalFormat; 
import java.util.ArrayList; 
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import javax.imageio.ImageIO; 
 
 
public class Control { 
 
 BufferedImage image = null; 
 Pixel[][] pixels; 
 ArrayList<Blob> blobArray = new ArrayList<Blob>(); 
 int currID = 0; 
  
 public Control(File file){ 
 
  try{ 
   image = ImageIO.read(file); 
  } catch(Exception e){ 
   System.out.println(e); 
  } 
  pixels = generatePixels(image); 
 } 
  
 public void createBlobs(){ 
   
  for(int count = 2; count < this.image.getHeight()-1; count = count + 1){ 
   for(int count1 = 2; count1 < this.image.getWidth()-1; count1 = 

count1 + 1){ 
    this.setBlobID(count1, count); 
   } 
  } 
 } 
  
 public Pixel[][] generatePixels(BufferedImage image){ 
   
  int argbInt; 
  Pixel[][] pixels = new Pixel[image.getWidth()][image.getHeight()]; 
  System.out.println(image.getHeight()); 
  for(int count = 0; count < image.getHeight(); count = count + 1){ 
   for(int count1 = 0; count1 < image.getWidth(); count1 = count1 + 

1){ 
    argbInt = image.getRGB(count1, count); 
    pixels[count1][count] = createPixel(argbInt, count1, 

count); 
   } 
  } 
  return pixels; 
 } 
  
 public Pixel createPixel(int argbInt, int x, int y){ 
   
     int red = (argbInt >> 16) & 0xff; 
     int green = (argbInt >> 8) & 0xff; 
     int blue = (argbInt) & 0xff; 
     Color color = new Color(red, green, blue); 
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     Pixel pixel = new Pixel(false, false, -1, color, null, x, y); 
     return pixel; 
 } 
  
 public void setBlobID(int x, int y){ 
 
  //For each pixel: see if it is white. 
  //If it is, then see if the others around it are also white 
  //If any of them are, take their blobID 
  //If they aren't, then move on 
  //If they don't have an ID, create a new one for that pixel. 
  if (this.pixels[x][y].color.getRed() > 125 &&  
    this.pixels[x][y].color.getGreen() > 125 && 
    this.pixels[x][y].color.getBlue() > 125){ 
    
   this.checkAroundPixel(x,y); 
  } 
 } 
  
 public Pixel[] smallerRange(int x,int y){ 
   
  Pixel[] tempPixels = new Pixel[4]; 
  tempPixels[0] = this.pixels[x-1][y-1]; 
  tempPixels[1] = this.pixels[x-1][y]; 
  tempPixels[2] = this.pixels[x][y-1]; 
  tempPixels[3] = this.pixels[x+1][y-1]; 
  return tempPixels; 
 } 
 
 public Pixel[] largerRange(int x,int y){ 
 
  Pixel[] tempPixels = new Pixel[12]; 
  tempPixels[0] = this.pixels[x-1][y-1]; 
  tempPixels[1] = this.pixels[x-1][y]; 
  tempPixels[2] = this.pixels[x][y-1]; 
  tempPixels[3] = this.pixels[x+1][y-1]; 
  tempPixels[4] = this.pixels[x-2][y]; 
  tempPixels[5] = this.pixels[x-2][y-1]; 
  tempPixels[6] = this.pixels[x-2][y-2]; 
  tempPixels[7] = this.pixels[x-1][y-2]; 
  tempPixels[8] = this.pixels[x][y-2]; 
  tempPixels[9] = this.pixels[x+1][y-2]; 
  tempPixels[10] = this.pixels[x+2][y-2]; 
  tempPixels[11] = this.pixels[x+2][y-1]; 
  return tempPixels; 
 } 
  
 public void checkAroundPixel(int x, int y){ 
   
  ArrayList<Pixel> reducedIDs = null; 
  Pixel[] tempPixels = smallerRange(x,y); 
  ArrayList<Pixel> IDs = new ArrayList<Pixel>(); 
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  for(int count = 0; count < tempPixels.length; count = count + 1){ 
   if(tempPixels[count].pBlobID != -1){ 
    IDs.add(tempPixels[count]); 
    //System.out.println("Found another white pixel with an 

ID."); 
   } 
  } 
  if(IDs.size() != 0){ 
   reducedIDs = this.removeDuplicates(IDs); 
   //System.out.println("Found at least 1 other white pixel. Reduced."); 
  } 
  else{ 
   reducedIDs = IDs; 
   //System.out.println("There weren't any other white pixels with 

IDs"); 
  } 
  if(reducedIDs.size() == 0){ 
   this.blobArray.add(new Blob(this.pixels[x][y], this.currID, 0)); 
   this.pixels[x][y].pBlobID = this.currID; 
   this.currID = this.currID + 1; 
  } 
  else if(reducedIDs.size() == 1){ 
   this.pixels[x][y].pBlobID = reducedIDs.get(0).pBlobID; 
   this.goToEnd(this.blobArray.get(reducedIDs.get(0).pBlobID)).next 

= this.pixels[x][y]; 
   //System.out.println("Adopted an ID from a previous pixel, and 

attached to it's blob."); 
  } 
  else{ 
   int tempID = 0; 
   if(reducedIDs.get(1).pBlobID < reducedIDs.get(0).pBlobID){ 
    //Take the first pixel, get its ID 
    //Set the current pixels ID to that one 
    this.pixels[x][y].pBlobID = reducedIDs.get(1).pBlobID; 
    //Get the second pixels ID 
    //Find its blob 
    //set the first pixel.next equal to the second pixels blobs 

head 
   

 this.goToEnd(this.blobArray.get(reducedIDs.get(1).pBlobID)).next = 
this.blobArray.get(reducedIDs.get(0).pBlobID).head; 

    //reassign all of that blobs IDs 
    tempID = reducedIDs.get(0).pBlobID; 
    //reassign blobID of blob 
    //delete old blob 
    this.blobArray.remove(tempID); 
   

 this.reassignBlobID(this.blobArray.get(reducedIDs.get(1).pBlobID), 
reducedIDs.get(1).pBlobID); 

    for(int count = tempID; count < this.blobArray.size(); 
count++){ 
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     this.reassignBlobID(this.blobArray.get(count), 
this.blobArray.get(count).head.pBlobID - 1); 

    } 
    //get that blobs end and set its .next to the current 
   

 this.goToEnd(this.blobArray.get(reducedIDs.get(1).pBlobID)).next = this.pixels[x][y]; 
   } 
   else{ 
    //Take the first pixel, get its ID 
    //Set the current pixels ID to that one 
    this.pixels[x][y].pBlobID = reducedIDs.get(0).pBlobID; 
    //Get the second pixels ID 
    //Find its blob 
    //set the first pixel.next equal to the second pixels blobs 

head 
   

 this.goToEnd(this.blobArray.get(reducedIDs.get(0).pBlobID)).next = 
this.blobArray.get(reducedIDs.get(1).pBlobID).head; 

    //reassign all of that blobs IDs 
    tempID = reducedIDs.get(1).pBlobID; 
    //reassign blobID of blob 
    //delete old blob 
    this.blobArray.remove(tempID); 
   

 this.reassignBlobID(this.blobArray.get(reducedIDs.get(0).pBlobID), 
reducedIDs.get(0).pBlobID); 

    for(int count = tempID; count < this.blobArray.size(); 
count++){ 

     this.reassignBlobID(this.blobArray.get(count), 
this.blobArray.get(count).head.pBlobID - 1); 

    } 
    //get that blobs end and set its .next to the current 
   

 this.goToEnd(this.blobArray.get(reducedIDs.get(0).pBlobID)).next = this.pixels[x][y]; 
   } 
   //decrement currID 
   this.currID--; 
   //System.out.println("Encountered two blobs, eliminated one of 

them."); 
  } 
 } 
 
 public void generatePicture(String name){ 
   
  BufferedImage newImage = new BufferedImage(this.pixels.length, 

this.pixels.length, BufferedImage.TYPE_INT_RGB); 
  ArrayList<Integer> colors = new ArrayList<Integer>(); 
  colors.add(Color.RED.getRGB()); 
  colors.add(Color.BLUE.getRGB()); 
  colors.add(Color.GREEN.getRGB()); 
  colors.add(Color.YELLOW.getRGB()); 
  colors.add(Color.ORANGE.getRGB()); 
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  for(int count = 0; count < this.pixels.length; count = count + 1){ 
   for(int count1 = 0; count1 < this.pixels.length; count1 = count1 + 

1){ 
    if(this.pixels[count1][count].pBlobID != 0){ 
     newImage.setRGB(count1, count, 

colors.get(this.pixels[count1][count].pBlobID%5)); 
    } 
    else{ 
     newImage.setRGB(count1, count, 

Color.BLACK.getRGB()); 
    } 
   } 
  } 
  try { 
   File rendered = new File("C:\\Users\\Ron\\Desktop\\"+ name + 

".png"); 
   ImageIO.write(newImage, "png", rendered); 
  } catch (IOException e) { 
   System.out.println(e); 
  } 
 } 
 
 public void generateFinalPicture(String name, File location, boolean perp, boolean 

par){ 
 
  BufferedImage newImage = new BufferedImage(this.pixels.length, 

this.pixels.length, BufferedImage.TYPE_INT_RGB); 
 
  for(int count = 0; count < this.pixels.length; count = count + 1){ 
   for(int count1 = 0; count1 < this.pixels.length; count1 = count1 + 

1){ 
    if(this.pixels[count1][count].isPerpendicular == true && 

perp){ 
     newImage.setRGB(count1, count, 

Color.YELLOW.getRGB()); 
    } 
    else if(this.pixels[count1][count].isParallel == true && 

par){ 
     newImage.setRGB(count1, count, 

Color.BLUE.getRGB()); 
    } 
    else{ 
     newImage.setRGB(count1, count, 

Color.BLACK.getRGB()); 
    } 
   } 
  } 
  try { 
   File rendered = new File(location.getAbsolutePath(), name + 

".png"); 
   ImageIO.write(newImage, "png", rendered); 
  } catch (IOException e) { 
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   System.out.println(e); 
  } 
 } 
 
 public ArrayList<Pixel> removeDuplicates(ArrayList<Pixel> data){ 
 
  ArrayList<Pixel> reducedData = new ArrayList<Pixel>(); 
  reducedData.add(data.get(0)); 
  boolean searching; 
  for(int count = 0; count < data.size(); count = count + 1){ 
   searching = true; 
   for(int count1 = 0; count1 < reducedData.size(); count1 = count1 + 

1){ 
    if((data.get(count).pBlobID != 

reducedData.get(count1).pBlobID) && searching){ 
     reducedData.add(data.get(count)); 
     searching = false; 
    } 
   } 
  } 
    
  return reducedData; 
 } 
  
 public Pixel goToEnd(Blob blob){ 
   
  Pixel curr = blob.head; 
  while(curr.next != null){ 
   curr = curr.next; 
  } 
  return curr; 
 } 
  
 public ArrayList<Blob> reduceBlobs(int minPixels){ 
   
  ArrayList<Blob> reducedArrayList = new ArrayList<Blob>(); 
  for(int count = 0; count < this.blobArray.size(); count = count + 1){ 
   int length = this.getLength(this.blobArray.get(count)); 
   if(length >= minPixels){ 
    reducedArrayList.add(this.blobArray.get(count)); 
   } 
   else{ 
    this.reassignBlobID(this.blobArray.get(count), 0); 
   } 
  } 
  return reducedArrayList; 
 } 
  
 public int getLength(Blob b){ 
   
  Pixel curr = b.head; 
  int counter = 1; 
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  while(curr != null){ 
   counter = counter + 1; 
   curr = curr.next; 
  } 
  return counter; 
 } 
 
 public void reassignBlobID(Blob b, int desired){ 
   
  Pixel curr = b.head; 
  while(curr.next != null){ 
   curr.pBlobID = desired; 
   curr = curr.next; 
  } 
  curr.pBlobID = desired; 
  b.blobID = desired; 
 
 } 
 
 double roundTwoDecimals(double d) { 
  DecimalFormat twoDForm = new DecimalFormat("#.###"); 
  return Double.valueOf(twoDForm.format(d)); 
 } 
  
 public void getRadialDistribution(Solver solver, File location, String name){ 
   
  solver.actualRadialDistribution(blobArray, 500, 12); 
  double[] values = solver.getRValues(); 
  double[] theoreticalRValues = solver.getTheoreticalRValues(); 
  double[] theoreticalFreqs = solver.getTheoreticalFreqs(); 
  double[] freqs = solver.getFreqs(); 
  double[] movingAverage = solver.movingAverage(2); 
  System.out.println(values.length); 
  double[] idealValues = solver.idealRadialDistribution(values.length); 
  try { 
   File file = new File(location.getAbsolutePath(), name + "1.txt"); 
   BufferedWriter out = new BufferedWriter(new FileWriter(file)); 
   out.write("Count, Actual r, g(r), Moving Average, Theoretical r, 

g(r)"); 
   out.newLine(); 
   for(int count = 0; count < values.length; count++){ 
    if(theoreticalRValues.length > count){ 
     out.write(count + ", " + values[count] + ", " + 

freqs[count] + ", " + movingAverage[count] + ", " + theoreticalRValues[count] + ", " + 
theoreticalFreqs[count]); 

    } 
    else{ 
     out.write(count + ", " + values[count] + ", " + 

freqs[count] + ", " + movingAverage[count]); 
    } 
    out.newLine(); 
   } 
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   out.close(); 
  } catch (IOException e){ 
   e.printStackTrace(); 
  } 
 } 
} 
package AFMAnalysis; 
import java.io.BufferedWriter; 
import java.io.File; 
import java.io.FileWriter; 
import java.io.IOException; 
import java.util.ArrayList; 
import java.lang.Math; 
 
 
public class Solver { 
 
 int[] counts; 
 int[] frequencies; 
 int[] sizes; 
 double[] rValues; 
 double[] pairFunction; 
 double[] theoreticalFreqs; 
 double[] theoreticalRValues; 
 int parallel; 
 int perpendicular; 
 int threshold; 
 double averagePerpSize; 
  
 public void countPixels(ArrayList<Blob> blobArray){ 
   
  this.counts = new int[blobArray.size()]; 
  Blob currentBlob = null; 
  Pixel current = null; 
  int counter; 
  for(int count = 0; count < blobArray.size(); count = count + 1){ 
   currentBlob = blobArray.get(count); 
   current = currentBlob.head; 
   counter = 0; 
   while(current != null){ 
    counter++; 
    current = current.next; 
   } 
   this.counts[count] = counter; 
   currentBlob.size = counter; 
  } 
  Quicksort sorter = new Quicksort(); 
  sorter.sort(this.counts); 
 } 
  
  
 public void findFrequencies(){ 
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  int[] tempSizes = new int[this.counts.length]; 
  int[] tempFrequencies = new int[this.counts.length]; 
  int index = 0; 
  int counter = 0; 
  int frequency = 0; 
  boolean searching; 
  while(index < this.counts.length){ 
   searching = true; 
   tempSizes[counter] = this.counts[index]; 
   index++; 
   frequency = 1; 
   while(index < this.counts.length && searching == true){ 
    if(this.counts[index] == this.counts[index-1]){ 
     index++; 
     frequency++; 
    } 
    else{ 
     searching = false; 
    } 
   } 
   tempFrequencies[counter] = frequency; 
   counter++; 
  } 
  this.frequencies = new int[counter]; 
  this.sizes = new int[counter]; 
  for(int count = 0; count < counter; count = count + 1){ 
   this.frequencies[count] = tempFrequencies[count]; 
   this.sizes[count] = tempSizes[count]; 
  } 
 } 
  
 public void solve(ArrayList<Blob> blobArray, File location, String fileName){ 
   
  this.countPixels(blobArray); 
  this.findFrequencies(); 
  this.labelBlobs(blobArray); 
  File file = new File(location.getAbsolutePath(), fileName + ".txt"); 
  if(!file.exists()){ 
   try { 
    file.createNewFile(); 
   } catch (IOException e) { 
    System.out.println("Cannot create file."); 
   } 
  } 
  try { 
   BufferedWriter output = new BufferedWriter(new FileWriter(file)); 
   for(int index = 0; index < this.sizes.length; index = index + 1){ 
    output.write(index + ", " + this.sizes[index] + ", " + 

this.frequencies[index]); 
    output.newLine(); 
   } 
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   output.close(); 
  } catch (IOException e) { 
   System.out.println("Can't find the file."); 
  } 
 } 
  
 public int determineThreshold(){ 
   
  int threshold = 0; 
  int temp; 
  int firstFreq = 0; 
  int firstIndex = 0; 
  int secondFreq = 0; 
  int secondIndex = 0; 
  int thirdFreq = 0; 
  int thirdIndex = 0; 
  int fourthFreq = 0; 
  int fourthIndex = 0; 
  int fifthFreq = 0; 
  int fifthIndex = 0; 
  int[] closest = new int[5]; 
 
  for (int count = 0; count < this.frequencies.length; count++){ 
 
   temp = this.frequencies[count]; 
   if (temp > firstFreq){ 
    fifthIndex = fourthIndex; 
    fifthFreq = fourthFreq; 
    fourthIndex = thirdIndex; 
    fourthFreq = thirdFreq; 
    thirdIndex = secondIndex; 
    thirdFreq = secondFreq; 
    secondIndex = firstIndex; 
    secondFreq = firstFreq; 
    firstIndex = count; 
    firstFreq = temp; 
   } 
   else if(temp > secondFreq){ 
    fifthIndex = fourthIndex; 
    fifthFreq = fourthFreq; 
    fourthIndex = thirdIndex; 
    fourthFreq = thirdFreq; 
    thirdIndex = secondIndex; 
    thirdFreq = secondFreq; 
    secondIndex = count; 
    secondFreq = temp; 
   } 
   else if(temp > thirdFreq){ 
    fifthIndex = fourthIndex; 
    fifthFreq = fourthFreq; 
    fourthIndex = thirdIndex; 
    fourthFreq = thirdFreq; 
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    thirdIndex = count; 
    thirdFreq = temp; 
   } 
   else if(temp > fourthFreq){ 
    fifthIndex = fourthIndex; 
    fifthFreq = fourthFreq; 
    fourthIndex = count; 
    fourthFreq = temp; 
   } 
   else if(temp > fifthFreq){ 
    fifthIndex = count; 
    fifthFreq = temp; 
   } 
  } 
   
  closest[0] = firstIndex; 
  closest[1] = secondIndex; 
  closest[2] = thirdIndex; 
  closest[3] = fourthIndex; 
  closest[4] = fifthIndex; 
   
  int counter = 0; 
  ArrayList<Integer> consecs = new ArrayList<Integer>(); 
  consecs.add(this.sizes[firstIndex]); 
   
  for(int count1 = 0; count1 < closest.length-1; count1++){ 
   for(int count = count1+1; count < closest.length; count++){ 
     
    if(Math.abs(this.sizes[closest[count1]]-

this.sizes[closest[count]]) <= 5){ 
     counter++; 
     if(!consecs.contains(this.sizes[closest[count1]])){ 
      consecs.add(this.sizes[closest[count1]]); 
     } 
     if(!consecs.contains(this.sizes[closest[count]])){ 
      consecs.add(this.sizes[closest[count]]); 
     } 
    } 
   } 
  } 
  /* 
  for(int count = 0; count < closest.length; count++){ 
   System.out.println(this.sizes[closest[count]]); 
  } 
   
  System.out.println(counter);*/ 
   
  if(counter >= 2 && this.frequencies[closest[0]] > 5 && 

this.frequencies[closest[1]] > 5){ 
   int sum = 0; 
   for(int count = 0; count < consecs.size(); count++){ 
    sum = sum + consecs.get(count); 
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   } 
   threshold = sum*2/consecs.size(); 
  } 
   
  return threshold; 
 } 
  
 public void labelBlobs(ArrayList<Blob> blobArray){ 
   
  this.parallel = 0; 
  this.perpendicular = 0; 
  threshold = determineThreshold(); 
//  System.out.println(threshold); 
  for(int index = 0; index < blobArray.size(); index = index + 1){ 
   Pixel current = blobArray.get(index).head; 
   if(blobArray.get(index).size <= threshold){ 
    while(current != null){ 
     if(current.isPerpendicular == false && 

current.isParallel == false){ 
      this.perpendicular++; 
      current.isPerpendicular = true; 
     } 
     current = current.next; 
    } 
   } 
   else{ 
    while(current != null){ 
     if(current.isPerpendicular == false && 

current.isParallel == false){ 
      this.parallel++; 
      current.isParallel = true; 
     } 
     current = current.next; 
    } 
   } 
  } 
 } 
  
 public double[][] determineCenters(ArrayList<Blob> blobArray){ 
   
  int counter; 
  int sumX; 
  int sumY; 
  Pixel current; 
  int numPerp = 0; 
  for(int count = 0; count < blobArray.size(); count++){ 
   if(blobArray.get(count).head.isPerpendicular){ 
    numPerp++; 
   } 
  } 
  double[][] averages = new double[numPerp][2]; 
  int index = 0; 
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  int masterCounter = 0; 
  for(int count = 0; count < blobArray.size(); count++){ 
   current = blobArray.get(count).head; 
   counter = 0; 
   sumX = 0; 
   sumY = 0; 
   if(current.isPerpendicular){ 
    while(current.next != null){ 
     counter++; 
     sumX+=current.x; 
     sumY+=current.y; 
     current = current.next; 
    } 
    masterCounter+=counter; 
    averages[index][0] = (double)sumX/counter; 
    averages[index][1] = (double)sumY/counter; 
    index++; 
   } 
  } 
  averagePerpSize = (double)masterCounter/numPerp; 
  return averages; 
 } 
  
 public void actualRadialDistribution(ArrayList<Blob> blobArray, int size, int 

numPeaks){ 
   
  double[][] averages = determineCenters(blobArray); 
  ArrayList<Double> distribution = new ArrayList<Double>(); 
  double distance, x1, y1, x2, y2; 
  for(int count = 0; count < averages.length; count++){ 
   for(int count1 = count + 1; count1 < averages.length; count1++){ 
    x1 = averages[count][0]; 
    x2 = averages[count1][0]; 
    y1 = averages[count][1]; 
    y2 = averages[count1][1]; 
    distance = Math.sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1)); 
    distribution.add(distance); 
   } 
  } 
   
  double average = 0; 
  double min = distribution.get(0); 
   
  for(int count = 0; count < distribution.size(); count++){ 
   if(distribution.get(count) < min){ 
    min = distribution.get(count); 
   } 
   average += distribution.get(count)/distribution.size(); 
  } 
   
  System.out.println(average); 
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  double increment = (average-min)/size; 
   
  pairFunction = new double[size]; 
  int[] freqs = new int[size]; 
  rValues = new double[size]; 
  double current = min; 
   
  for(int count = 1; count <= size; count++){ 
   for(int i = 0; i < distribution.size(); i++){ 
    if(distribution.get(i) <= (current+increment) && 

distribution.get(i) > current){ 
     freqs[count-1] = freqs[count-1] + 1; 
    } 
   } 
   current = current + increment; 
   rValues[count-1] = current; 
  } 
   
  pairFunction[0] = freqs[0]/(Math.PI*rValues[0]*rValues[0]); 
   
  double criticalRValue = 0; 
  double criticalGValue = 0; 
  boolean searching = true; 
   
  for(int count = 1; count < rValues.length; count++){ 
   pairFunction[count] = 

freqs[count]/(Math.PI*(rValues[count]*rValues[count]-rValues[count-1]*rValues[count-1])); 
   if((pairFunction[count] - pairFunction[count-1]) < 0 && 

searching){ 
    criticalRValue = rValues[count-1]; 
    criticalGValue = pairFunction[count-1]; 
    searching = false; 
   } 
  } 
   
  double[] peakValues = getTheoreticalPeakValues(numPeaks); 
  theoreticalRValues = new double[peakValues.length]; 
  theoreticalFreqs = new double[peakValues.length]; 
   
  theoreticalFreqs[0] = criticalGValue; 
   
  for(int count = 0; count < peakValues.length; count++){ 
   theoreticalRValues[count] = 

Math.sqrt(peakValues[count])*criticalRValue; 
  } 
   
  for(int count = 1; count < theoreticalFreqs.length; count++){ 
   int currentIndex = 0; 
   while(rValues[currentIndex] < theoreticalRValues[count]){ 
    currentIndex++; 
   } 
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   theoreticalFreqs[count] = 
(pairFunction[currentIndex]+pairFunction[currentIndex-1])/2; 

  } 
   
 } 
  
 public double[] getFreqs(){ 
  return pairFunction; 
 } 
  
 public double[] getTheoreticalFreqs(){ 
  return theoreticalFreqs; 
 } 
  
 public double[] getTheoreticalRValues(){ 
  return theoreticalRValues; 
 } 
  
 public double[] getRValues(){ 
  return rValues; 
 } 
  
 public double[] getTheoreticalPeakValues(int size){ 
   
  ArrayList<Integer> n = new ArrayList<Integer>(); 
  ArrayList<Integer> d = new ArrayList<Integer>(); 
   
  int m = 2; 
   
  n.add(1); 
  d.add(1); 
  int count = 1; 
  int dValue = 2; 
   
  while(count < size){ 
   //Fill n values 
   for(int i = 0; i < 2*m; i++){ 
    if((i+1)%2 != 0){ 
     n.add(i); 
    } 
   } 
   for(int i = 0; i < 2*m; i++){ 
    if((i+1)%2 == 0){ 
     n.add(i); 
    } 
   } 
    
   //Fill d values 
   for(int i = 0; i < m; i++){ 
    d.add(dValue); 
   } 
   dValue++; 
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   for(int i = m; i < 2*m; i++){ 
    d.add(dValue); 
   } 
   dValue++; 
   count = count + 2*m; 
   m++; 
  } 
 
  double[] x = new double[n.size()]; 
   
  for(int index = 0; index < x.length; index++){ 
   double numerator = (double)n.get(index)/2; 
   double denominator = (double)d.get(index)*(Math.sqrt(3)/2); 
   x[index] = numerator/denominator; 
  } 
   
  double[] values = new double[x.length]; 
 
  for(int index = 0; index < values.length; index++){ 
   values[index] = 3*d.get(index)*d.get(index)*(1 + 

x[index]*x[index])/4; 
   //System.out.print(values[index] + ", "); 
  } 
   
  return values; 
 } 
  
 public double[] movingAverage(int period){ 
   
  double[] movingAverage = new double[pairFunction.length]; 
  double sum; 
   
  for(int count = 0; count < period-1; count++){ 
   movingAverage[count] = 0; 
  } 
   
  for(int count = period-1; count < movingAverage.length; count++){ 
   sum = 0; 
   for(int index = 0; index < period; index++){ 
    sum = sum + pairFunction[count - index]; 
   } 
   movingAverage[count] = sum/period; 
  } 
   
  return movingAverage; 
 } 
  
 public double[] idealRadialDistribution(int size){ 
   
  double[] values = getTheoreticalPeakValues(size); 
   
  double averageDistance = 4*Math.sqrt(averagePerpSize/Math.PI); 
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  //System.out.println(averageDistance); 
   
  double[] idealValues = new double[values.length]; 
  for(int index = 0; index < idealValues.length; index++){ 
   double distance = averageDistance*Math.sqrt(values[index]); 
   idealValues[index] = distance/(Math.PI*distance*distance); 
   //System.out.print(idealValues[index] + ", "); 
  } 
   
  return idealValues; 
 } 
} 
package AFMAnalysis; 
 
 
import javax.swing.JFrame; 
import javax.swing.JPanel; 
import java.awt.BorderLayout; 
import java.awt.Dimension; 
import java.awt.Rectangle; 
import java.awt.GridBagLayout; 
import java.awt.event.ActionEvent; 
import java.awt.event.ActionListener; 
import java.io.File; 
import java.util.ArrayList; 
 
import javax.swing.JFileChooser; 
import javax.swing.JRadioButton; 
import javax.swing.JCheckBox; 
import javax.swing.JTextField; 
import javax.swing.JButton; 
import javax.swing.JLabel; 
import javax.swing.event.ChangeEvent; 
 
public class AFMAnalysis extends JFrame{ 
 
 private JFrame mainFrame = null;  //  @jve:decl-index=0:visual-constraint="16,-13" 
 private JPanel mainPane = null; 
 private JCheckBox perpCheckBox = null; 
 private JCheckBox parCheckBox = null; 
 private JTextField currentImageText = null; 
 private JButton currentImageButton = null; 
 private JLabel currentImageLabel = null; 
 private JLabel finalImageLocationLabel = null; 
 private JButton finalImageLocationBrowse = null; 
 private JTextField finalImageLocationText = null; 
 private JLabel finalImageNameLabel = null; 
 private JTextField finalImageNameText = null; 
 private JButton runButton = null; 
 private Control control = null; 
 private File startingImage = null; 
 private File finalImageLocation = null; 
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 private String finalImageName = null; 
 private boolean perp = false; 
 private boolean par = false; 
 private JLabel resultsLabel = null; 
 private JTextField perpPercentOutput = null; 
 private JLabel perpPercentLabel = null; 
 private JTextField parPercentOutput = null; 
 private JLabel parPercentLabel = null; 
  
 /** 
  * This method initializes mainFrame  
  *   
  * @return javax.swing.JFrame  
  */ 
 private JFrame getMainFrame() { 
  if (mainFrame == null) { 
   mainFrame = new JFrame(); 
   mainFrame.setSize(new Dimension(330, 513)); 
   mainFrame.setTitle("AFMAnalysis"); 
   mainFrame.setContentPane(getMainPane()); 
  } 
  return mainFrame; 
 } 
 
 /** 
  * This method initializes mainPane  
  *   
  * @return javax.swing.JPanel  
  */ 
 private JPanel getMainPane() { 
  if (mainPane == null) { 
   parPercentLabel = new JLabel(); 
   parPercentLabel.setBounds(new Rectangle(178, 377, 96, 25)); 
   parPercentLabel.setText("Percent Parallel"); 
   perpPercentLabel = new JLabel(); 
   perpPercentLabel.setBounds(new Rectangle(14, 377, 131, 25)); 
   perpPercentLabel.setText("Percent Perpendicular"); 
   resultsLabel = new JLabel(); 
   resultsLabel.setBounds(new Rectangle(133, 337, 47, 20)); 
   resultsLabel.setText("Results"); 
   finalImageNameLabel = new JLabel(); 
   finalImageNameLabel.setBounds(new Rectangle(106, 258, 102, 

26)); 
   finalImageNameLabel.setText("Final Image Name"); 
   finalImageLocationLabel = new JLabel(); 
   finalImageLocationLabel.setBounds(new Rectangle(95, 171, 117, 

26)); 
   finalImageLocationLabel.setText("Final Image Location"); 
   currentImageLabel = new JLabel(); 
   currentImageLabel.setBounds(new Rectangle(56, 73, 196, 28)); 
   currentImageLabel.setText("Starting Image Name and Location"); 
   mainPane = new JPanel(); 
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   mainPane.setLayout(null); 
   mainPane.add(getPerpCheckBox(), null); 
   mainPane.add(getParCheckBox(), null); 
   mainPane.add(getCurrentImageText(), null); 
   mainPane.add(getCurrentImageButton(), null); 
   mainPane.add(currentImageLabel, null); 
   mainPane.add(finalImageLocationLabel, null); 
   mainPane.add(getFinalImageLocationBrowse(), null); 
   mainPane.add(getFinalImageLocationText(), null); 
   mainPane.add(finalImageNameLabel, null); 
   mainPane.add(getFinalImageNameText(), null); 
   mainPane.add(getRunButton(), null); 
   mainPane.add(resultsLabel, null); 
   mainPane.add(getPerpPercentOutput(), null); 
   mainPane.add(perpPercentLabel, null); 
   mainPane.add(getParPercentOutput(), null); 
   mainPane.add(parPercentLabel, null); 
  } 
  return mainPane; 
 } 
 
 /** 
  * This method initializes perpCheckBox  
  *   
  * @return javax.swing.JCheckBox  
  */ 
 private JCheckBox getPerpCheckBox() { 
  if (perpCheckBox == null) { 
   perpCheckBox = new JCheckBox(); 
   perpCheckBox.setBounds(new Rectangle(15, 36, 107, 22)); 
   perpCheckBox.setText("Perpendicular"); 
  } 
  return perpCheckBox; 
 } 
 
 /** 
  * This method initializes parCheckBox  
  *   
  * @return javax.swing.JCheckBox  
  */ 
 private JCheckBox getParCheckBox() { 
  if (parCheckBox == null) { 
   parCheckBox = new JCheckBox(); 
   parCheckBox.setBounds(new Rectangle(149, 36, 75, 22)); 
   parCheckBox.setText("Parallel"); 
  } 
  return parCheckBox; 
 } 
 
 /** 
  * This method initializes currentImageText  
  *   
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  * @return javax.swing.JTextField  
  */ 
 private JTextField getCurrentImageText() { 
  if (currentImageText == null) { 
   currentImageText = new JTextField(); 
   currentImageText.setBounds(new Rectangle(13, 126, 185, 24)); 
   currentImageText.setText("Input required here"); 
  } 
  return currentImageText; 
 } 
 
 /** 
  * This method initializes currentImageButton  
  *   
  * @return javax.swing.JButton  
  */ 
 private JButton getCurrentImageButton() { 
  if (currentImageButton == null) { 
   currentImageButton = new JButton(); 
   currentImageButton.setBounds(new Rectangle(216, 123, 82, 32)); 
   currentImageButton.setText("Browse"); 
   currentImageButton.addActionListener(new 

java.awt.event.ActionListener() { 
    public void actionPerformed(java.awt.event.ActionEvent 

e) { 
     JFileChooser fileChooser = new JFileChooser(); 
    

 fileChooser.setFileSelectionMode(JFileChooser.FILES_ONLY); 
     fileChooser.setDialogTitle("Starting Image Name 

and Location"); 
     fileChooser.showOpenDialog(mainFrame); 
     startingImage = fileChooser.getSelectedFile(); 
    

 currentImageText.setText(startingImage.getPath()); 
    } 
   }); 
  } 
  return currentImageButton; 
 } 
 
 /** 
  * This method initializes finalImageLocationBrowse  
  *   
  * @return javax.swing.JButton  
  */ 
 private JButton getFinalImageLocationBrowse() { 
  if (finalImageLocationBrowse == null) { 
   finalImageLocationBrowse = new JButton(); 
   finalImageLocationBrowse.setBounds(new Rectangle(216, 213, 82, 

32)); 
   finalImageLocationBrowse.setText("Browse"); 
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   finalImageLocationBrowse.addActionListener(new 
java.awt.event.ActionListener() { 

    public void actionPerformed(java.awt.event.ActionEvent 
e) { 

     JFileChooser fileChooser = new JFileChooser(); 
    

 fileChooser.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY); 
     fileChooser.setDialogTitle("Final Image 

Location"); 
     fileChooser.showOpenDialog(mainFrame); 
     finalImageLocation = 

fileChooser.getSelectedFile(); 
    

 finalImageLocationText.setText(finalImageLocation.getPath()); 
    } 
   }); 
  } 
  return finalImageLocationBrowse; 
 } 
 
 /** 
  * This method initializes finalImageLocationText  
  *   
  * @return javax.swing.JTextField  
  */ 
 private JTextField getFinalImageLocationText() { 
  if (finalImageLocationText == null) { 
   finalImageLocationText = new JTextField(); 
   finalImageLocationText.setBounds(new Rectangle(13, 215, 185, 

24)); 
   finalImageLocationText.setText("Input required here"); 
  } 
  return finalImageLocationText; 
 } 
 
 /** 
  * This method initializes finalImageNameText  
  *   
  * @return javax.swing.JTextField  
  */ 
 private JTextField getFinalImageNameText() { 
  if (finalImageNameText == null) { 
   finalImageNameText = new JTextField(); 
   finalImageNameText.setBounds(new Rectangle(65, 298, 185, 24)); 
   finalImageNameText.setText("Input file name here"); 
  } 
  return finalImageNameText; 
 } 
 
 /** 
  * This method initializes runButton  
  *   
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  * @return javax.swing.JButton  
  */ 
 private JButton getRunButton() { 
  if (runButton == null) { 
   runButton = new JButton(); 
   runButton.setBounds(new Rectangle(240, 15, 59, 42)); 
   runButton.setText("Run!"); 
   runButton.addActionListener(new java.awt.event.ActionListener() 

{ 
    public void actionPerformed(java.awt.event.ActionEvent 

e) { 
     if(perpCheckBox.isSelected()){ 
      perp = true; 
     } 
     else{ 
      perp = false; 
     } 
     if(parCheckBox.isSelected()){ 
      par = true; 
     } 
     else{ 
      par = false; 
     } 
     JFileChooser openChooser = new JFileChooser(); 
    

 openChooser.setDialogType(JFileChooser.OPEN_DIALOG); 
     openChooser.showOpenDialog(mainPane); 
     openChooser.setDialogTitle("Open File"); 
     startingImage = openChooser.getSelectedFile(); 
     JFileChooser saveChooser = new JFileChooser(); 
    

 saveChooser.setDialogType(JFileChooser.SAVE_DIALOG); 
     saveChooser.showSaveDialog(mainPane); 
     saveChooser.setDialogTitle("Save Location"); 
     finalImageLocation = 

saveChooser.getCurrentDirectory(); 
     finalImageName = 

saveChooser.getName(saveChooser.getSelectedFile()); 
     control = new Control(startingImage); 
     control.createBlobs(); 
     control.blobArray = control.reduceBlobs(5); 
     Solver solver = new Solver(); 
     solver.solve(control.blobArray, 

finalImageLocation, finalImageName); 
     control.generateFinalPicture(finalImageName, 

finalImageLocation, perp, par); 
     GrainDetector g = new 

GrainDetector(control.pixels, control.blobArray); 
     //g.generateFinalScaledPicture(finalImageName, 

finalImageLocation, perp, par); 
     System.out.println("Percent Parallel:"); 
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     double percentPar = 
control.roundTwoDecimals((double)solver.parallel*100/(solver.parallel+solver.perpendicular)); 

     System.out.println(percentPar); 
     System.out.println("Percent Perpendicular:"); 
     double percentPerp = 

control.roundTwoDecimals((double)solver.perpendicular*100/(solver.parallel+solver.perpendicular)); 
     System.out.println(percentPerp); 
     perpPercentOutput.setText(percentPerp + " "); 
     parPercentOutput.setText(percentPar + " "); 
     control.getRadialDistribution(solver, 

finalImageLocation, finalImageName); 
     System.out.println("Done!"); 
     //Comment the following out to run properly until 

this is finished 
      
      /*g.getEdges(finalImageLocation, 

finalImageName); 
      g.edger.drawEdges(finalImageLocation, 

finalImageName); 
      g.createLines(0.28); 
      System.out.println(g.lines.size()); 
      g.reduceLines(25); 
      System.out.println(g.lines.size()); 
      g.drawLines(finalImageLocation, 

finalImageName); 
      long start = System.currentTimeMillis(); 
      g.createGrains(); 
      long end = System.currentTimeMillis(); 
      System.out.println("That took " + 

(double)(end-start)/60000 + " minutes."); 
      System.out.println(g.grains.size()); 
      System.out.println("Reducing"); 
      g.reduceGrains(); 
      for(int count = 0; count < g.grains.size(); 

count++){ 
      

 System.out.println(g.grains.get(count).scaledBlobs.size()); 
      

 System.out.println(g.grains.get(count).scaledBlobs.get(0).pixels.get(0).x 
          + ", " + 

g.grains.get(count).scaledBlobs.get(0).pixels.get(0).y); 
      } 
      System.out.println(g.grains.size()); 
      g.drawGrains(finalImageLocation, 

finalImageName); 
      for(int count = 0; count < g.grains.size(); 

count++){ 
       System.out.println(count + ", " 

+ g.grains.get(count).scaledBlobs.size()); 
      } 
      System.out.println(g.lines.get(0).slope); 
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 System.out.println(g.lines.get(0).pixels.get(0).x + ", " + g.lines.get(0).pixels.get(0).y); 

      System.out.println(g.lines.get(1).slope); 
     

 System.out.println(g.lines.get(1).pixels.get(0).x + ", " + g.lines.get(1).pixels.get(0).y); 
      System.out.println(g.lines.get(2).slope); 
     

 System.out.println(g.lines.get(2).pixels.get(0).x + ", " + g.lines.get(2).pixels.get(0).y); 
      System.out.println(g.lines.get(3).slope); 
     

 System.out.println(g.lines.get(3).pixels.get(0).x + ", " + g.lines.get(3).pixels.get(0).y); 
      System.out.println(g.lines.get(4).slope); 
     

 System.out.println(g.lines.get(4).pixels.get(0).x + ", " + g.lines.get(4).pixels.get(0).y);*/ 
     //} 
    } 
   }); 
  } 
  return runButton; 
 } 
 
 /** 
  * This method initializes perpPercentOutput  
  *   
  * @return javax.swing.JTextField  
  */ 
 private JTextField getPerpPercentOutput() { 
  if (perpPercentOutput == null) { 
   perpPercentOutput = new JTextField(); 
   perpPercentOutput.setBounds(new Rectangle(44, 421, 82, 21)); 
   perpPercentOutput.setText("No Input Here"); 
  } 
  return perpPercentOutput; 
 } 
 
 /** 
  * This method initializes parPercentOutput  
  *   
  * @return javax.swing.JTextField  
  */ 
 private JTextField getParPercentOutput() { 
  if (parPercentOutput == null) { 
   parPercentOutput = new JTextField(); 
   parPercentOutput.setBounds(new Rectangle(184, 421, 82, 21)); 
   parPercentOutput.setText("No Input Here"); 
  } 
  return parPercentOutput; 
 } 
 
 /** 
  * @param args 
  */ 
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 public static void main(String[] args) { 
   
  AFMAnalysis main = new AFMAnalysis(); 
  JFrame frame = main.getMainFrame(); 
  frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
  frame.setVisible(true); 
   
 } 
 
}  //  @jve:decl-index=0:visual-constraint="355,-8" 
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Appendix B 

PROPERTIES OF SI POLYMER 
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Figure B-1  GPC trace of SI polymer.  Green points and trendline indicate calibration 
for molecular weight. 
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Figure B-2  Bulk morphology of SI polymer.  The sample was cut using cryo 
mictrotoming, and the image was taken using transmission electron 
microscopy.  Sample annealed for 8 hours at 180 °C. 
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