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Eulerian--Lagrangian Runge--Kutta Discontinuous Galerkin Method for Transport 
Simulations on Unstructured Meshes
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Abstract. The semi-Lagrangian (SL) approach is attractive in transport simulations, e.g., in 
climate modeling and kinetic models, due to its numerical stability in allowing extra-large time-
stepping sizes. For practical problems with complex geometry, schemes on the unstructured meshes 
are preferred. However, accurate and mass conservative SL methods on unstructured meshes are still 
under development and encounter several challenges. For instance, when tracking characteristics 
backward in time, high order curves are required to accurately approximate the shape of upstream 
cells, which brings in extra computational complexity. To avoid such computational complexity, we 
propose an Eulerian--Lagrangian Runge--Kutta discontinuous Galerkin method (EL RK DG) in 
[X. Cai, J.-M. Qiu, and Y. Yang, J. Comput. Phys., 439 (2021), 110392] as an extension of the 
SL discontinuous Galerkin (DG) methods. This work is a further extension of the algorithm to 
unstruc-tured triangular meshes with discussion on the treatment of the inflow boundary condition. 
We also discuss the discrete geometric conservation law. The nonlinear weighted essentially 
nonoscillatory (WENO) limiter is applied to control oscillations. Desired properties of the 
proposed method are numerically verified by a set of benchmark tests.
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1. Introduction. Transport processes are ubiquitous in a variety of applications
such as climate modeling and kinetic models. They can be described by the transport
equation

(1.1) ut +\nabla \cdot (Vu) = 0,

where V is the advection coefficient, which could depend on space, time, and the
solution u for a nonlinear problem.

In the past decades, extensive mesh-based computational tools such as Eulerian
and semi-Lagrangian (SL) approaches have been successfully developed and applied to
various areas of science and engineering. For the Eulerian approach, the Runge--Kutta
(RK) discontinuous Galerkin (DG) methods [16] are well known for their properties of
high resolution, compactness, flexibility for handling complex geometry, high parallel
efficiency, and superconvergence for long time integration, which led to successful
applications to diverse application fields such as aerodynamics [57], computational
geosciences [50], and plasma simulation [14, 48] among many others. One drawback
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of the RK DG method is the stringent time-stepping size with numerical stability for
explicit time stepping. On the other hand, the SL approach allows extra-large time-
stepping size by tracking solutions along characteristics. Several classes of SL schemes
have been developed such as the finite element based Lagrange--Galerkin method (or
the characteristic Galerkin method) [39, 20, 36] and extensions [11, 44, 53, 46], finite
difference based methods [40, 29], finite volume based methods [37, 24, 30, 34, 17],
DG based methods [41, 43, 28, 31, 6, 5, 18], and unstructured meshes based methods
[4, 3]. Recently, the multidimensional SLDG method was proposed in [8, 31]. For the
nonlinear dynamics, the SL method can be coupled with the high order prediction-
correction method [9] or the exponential integrators [7] for nonlinear characteristic
tracing. For theoretical analysis, the optimal convergence and superconvergence of
SLDG schemes for linear convection equations in one space dimension are shown in
[54].

One significant limitation of the SL approach is efficient tracking of characteris-
tics in a nonlinear, truly multidimensional, and highly accurate fashion. For example,
in order to achieve third order spatial accuracy, sides of upstream cells have to be
approximated by quadratic curves in a general setting. This introduces extra com-
putational complexity, especially when extended to problems with dimension higher
than two. In additional, to resolve the nonlinearity, some prediction-correction strat-
egy or the exponential integrators [9, 7] have to be introduced. To address these
challenges, we proposed a novel Eulerian--Lagrangian (EL) DG method in [10]. The
EL DG method is a generalization of the SLDG method [8]. The SLDG method is
formulated based on the design of a localized adjoint problem for the test function
that exactly tracks characteristics, while in the EL DG method, the adjoint problem
for the test function does not need to follow characteristics exactly; it only needs
to follow them approximately. This feature allows flexibility, especially for high di-
mensional and nonlinear problems, where characteristics are difficult to track. The
errors that occurred in approximating characteristics will be integrated in time by RK
methods via the method-of-lines approach. Thus the fully discrete EL DG scheme
will be termed the EL RK DG method. Note that the SLDG in [8] and the EL RK
DG in [10] are based on the Cartesian meshes. With the consideration of complex
geometry for practical applications, this paper extends the EL RK DG method to the
unstructured triangular mesh.

We propose the EL schemes on the unstructured mesh that satisfy the following
essential properties for transport problems: mass conservation, high order accuracy
in both space and time, stability with extra-large time-stepping sizes, and essentially
nonoscillatory for discontinuities. To conserve the total mass, the exact evaluation
of the integral over the upstream cell that overlaps multiple background elements is
crucial but very challenging. To tackle this difficulty, we propose a remapping algo-
rithm by local mesh intersection that is mass conservative, where the evaluation of
integrals is stable and accurate via a subregion-by-subregion fashion; other conserva-
tive remapping algorithms by local mesh intersection can be found in [2, 23, 22, 1].
We first propose a second order, unconditionally stable, and mass conservative SLDG
method on the triangular meshes. Then we propose a high order EL RK DG method
on the triangular meshes. Note that the evolution step of EL RK DG coincides with
the arbitrary Lagrangian-Eulerian (ALE) DG scheme [26], from which we extend the
discussion of discrete geometric conservation law (GCL) to the proposed EL RK DG
method. In addition, we have discussions on the inflow boundary condition and non-
linear weighted essentially nonoscillatory (WENO) limiters [59] to control oscillations
around discontinuities. As an initial effort, we confine our attention to the linear
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transport equations when V is independent of solution u.
The rest of this paper is arranged as follows. In section 2.2, we propose a second

order conservative SLDG method on the unstructured mesh; in section 2.3, we propose
a high order EL RK DG method on the triangular meshes together with the discussion
on the discrete geometric conservation laws and the treatment of inflow boundary
condition in sections 2.4 and 2.5, respectively. In section 3, we provide numerical
results to showcase favorable properties of the proposed schemes. Finally, concluding
remarks are made in section 4.

2. SLDG and EL RK DG on unstructured meshes.

2.1. A 2D transport problem and notation. We consider a 2D linear trans-
port equation in a conservative form

(2.1) ut +\nabla x,y \cdot (V(x, y, t)u) = 0,

with continuous velocity field V(x, y, t) = (a(x, y, t), b(x, y, t)) on a polygonal domain
\Omega , a given initial condition, and proper boundary conditions. In this paper, either
the inflow/outflow or periodic boundary conditions will be considered. We generate
a fixed background mesh which is a partition of \Omega by a set of triangular elements
Kj , j = 1, . . . , J , and let h = supj diam(Kj), where diam(Kj) denotes the diameter

of Kj . We define the finite dimensional DG approximation space as V k
h = \{ vh :

vh| Kj
\in P k(Kj)\} , in which P k(Kj) denotes the space of polynomials in Kj of degree

at most k. In particular, P k(Kj) = Span(\Psi 
Kj

i : i = 1, . . . , nk) with the dimension

nk = (k+1)(k+2)
2 , where \Psi 

Kj

i , i = 1, . . . , nk, are an orthogonal basis on Kj .

2.2. The SLDG method. In this section, we propose a conservative SLDG
method on unstructured triangular meshes. The scheme uses linear functions to ap-
proximate sides of upstream cells. Note that the integral evaluations on the upstream
cells that overlap with several background cells are important for mass conservation
[36] and are performed by a new remapping algorithm, which is different from a di-
rect application of numerical quadratures on the upstream cells [55]. It will be an
important step for the higher order EL RK DG algorithm introduced next.

To update the numerical solution from time level tn to time level tn+1 over element
Kj , we consider an adjoint problem for the test function \psi (x, y, t):

(2.2) \psi t +V(x, y, t) \cdot \nabla x,y\psi = 0, \psi (x, y, t = tn+1) = \Psi (x, y) \in P k(Kj),

for which the test function \psi stays constant along characteristic trajectories. As
shown in [8], we have

d

dt

\int 
Kj(t)

u(x, y, t)\psi (x, y, t)dxdy = 0,

whereKj(t) is a dynamic moving element, emanating from the Eulerian elementKj at
tn+1 backward in time by following the characteristic trajectories. The SLDG scheme
is formulated as follows: given the approximate solution unh \in V k

h at time level tn, to

find the solution un+1
h | Kj

\in V k
h , such that for \Psi 

Kj

i \in P k(Kj), i = 1, . . . , nk, we have

(2.3)

\int 
Kj

un+1
h \Psi 

Kj

i (x, y)dxdy =

\int 
K \star 

j

unh\psi 
Kj

i (x, y, tn)dxdy,
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Fig. 1. Illustration of SLDG with triangular approximation. (c) K \star 
j connects the potential

boxes: C(i,j), C(i,j+1), C(i,j+2), C(i+1,j), C(i+1,j+1), C(i+1,j+2).

where K \star 
j := Kj(t

n) denotes the upstream element of the element Kj following the
characteristics backward to tn (see the deformed element bounded by blue curves in

Figure 1(a)), and \psi 
Kj

i (x, y, tn) comes from tracking along characteristics from solving
the final value adjoint problem (2.2).

The SLDG method boils down to evaluating the right-hand side (RHS) of (2.3),
which consists of three parts: (1) the upstream element can be approximated by a
triangle (subject to a second order accuracy), and below we still use K \star 

j to represent

this triangle, as shown in Figure 1; (2) \psi 
Kj

i (x, y, tn) is unknown on K \star 
j , and we adopt

an interpolation to reconstruct it based on the fact that the test function stays con-
stant along characteristic trajectories; (3) unh is the DG solution that is discontinuous
across element interfaces of the background mesh (black lines in Figure 1(b)), and
thus the evaluation of (2.3) should be evaluated in a subregion-by-region manner.
Accordingly, the procedure of the SLDG method is performed as follows.

1. Characteristic tracing. The three vertices ofKj with the coordinate (xj,q, yj,q)
are denoted by vq, q = 1, 2, 3. We trace characteristic trajectories backward
in time from time level tn+1 to time level tn for vq by using a high order RK
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method to solve the characteristics equations,\left\{  dx(t)
dt = a(x, y, t),

dy(t)
dt = b(x, y, t),

x(tn+1) = xj,q, y(t
n+1) = yj,q,

and obtain v \star q with the new coordinate (x \star j,q, y
 \star 
j,q), q = 1, 2, 3.

2. Interpolation for test function \psi 
Kj

i (x, y, tn). We use a polynomial interpola-

tion to approximate the test function \psi 
Kj

i (x, y, tn), based on the fact that \psi 
Kj

i

stays constant along characteristics; for instance, for k = 1, we reconstruct

a P 1 polynomial \psi 
K \star 

j

i (x, y) by the interpolation constraints \psi 
K \star 

j

i (x \star j,q, y
 \star 
j,q) =

\Psi 
Kj

i (xj,q, yj,q), q = 1, 2, 3.
3. An SLDG remapping algorithm. When K \star 

j overlaps with Kl in the back-
ground mesh, one can identify overlapping subregions (denoted by K \star 

j,l and
plotted in different colors in Figure 1(b)) and compute the integral (2.3)
subregion-by-subregion. Subregions can be identified by an algorithm to de-
termine the intersection regions illustrated in Figure 1(b), and the subregion
integrals can be done by dividing subregions into triangles as in [32] (denoted
by K \star 

j,Tm
) and applying triangular quadrature rules in the reference element

as in [31]. We denote the solution and test function at the quadrature point

by u
K \star 

j,Tm
ig

and \psi 
K \star 

j,Tm
i,ig

, respectively. The corresponding weight and the area

of K \star 
j,Tm

are denoted by wig , | K \star 
j,Tm

| . The formulation of this remapping
algorithm is summarized as follows: for K \star 

j ,\int 
K \star 

j

uh(x, y, t
n)\psi 

K \star 
j

i (x, y)dxdy

=
\sum 
l

\int 
K \star 

j,l

uh(x, y, t
n)\psi 

K \star 
j

i (x, y)dxdy

=
\sum 
m

\int 
K \star 

j,Tm

uh(x, y, t
n)\psi 

K \star 
j

i (x, y)dxdy

=
\sum 
m

\sum 
ig

u
K \star 

j,Tm
ig

\psi 
K \star 

j,Tm
i,ig

wig | K \star 
j,Tm

| := \~U
Kj

i (tn).(2.4)

The key step of the remapping algorithm is to search K \star 
j,l, which is the over-

lapping subregion by the upstream element K \star 
j and the Eulerian element Kl.

Then we summarize the SLDG remapping algorithm as follows:
Step 1. To search the elements Kl that intersect with the upstream element

K \star 
j , we generate an auxiliary rectangular mesh to create a location look-

up table, with which we provide a look-up table for the location of Kl,
as indicated in Figure 1(c).

Step 2. Perform the Sutherland--Hodgman clipping algorithm in [47, 13] for
K \star 

j and Kl to get K \star 
j,l and cut it into a set of subtriangles K \star 

j,Tm
.

Step 3. The final L2 projection (2.4) can be done since givenK \star 
j,Tm

's vertices
and location in the background mesh, we can have | K \star 

j,Tm
| , quadrature

points, and corresponding u
K \star 

j,Tm
ig

, \psi 
K \star 

j,Tm
i,ig

in this subtriangle.

Proposition 2.1. Given a DG solution uh(x, y, t
n) \in V k

h and assuming the
boundary condition is periodic, the proposed SLDG scheme on the unstructured mesh
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(2.3) is mass conservative. In particular,

(2.5)
J\sum 

j=1

\int 
Kj

uh(x, y, t
n+1)dxdy =

J\sum 
j=1

\int 
Kj

uh(x, y, t
n)dxdy.

Proof. The proof can be done by letting \Psi (x, y) = 1 and recombining K \star 
j,l to

the background mesh Kj as well as using the periodic boundary condition as that of
SLDG on the structured mesh in [8].

2.3. The EL RK DG method. In this section, we propose a general high-order
EL RK DG method on the unstructured triangular meshes, which is a generalization
of the SLDG method [28, 8] and the RKDG method [16]. The proposed EL RK DG
method is exactly mass conservative and largely alleviates the CFL condition of the
RKDG method.

We start to formulate the EL RK DG scheme by a modified adjoint problem on
the associated space-time region. The formulation can be viewed as a composition of
the ALE scheme [26] and the SLDG remapping algorithm in the previous section.

(1) A modified adjoint problem for the 2D transport equation. Consider
a modified adjoint problem:

(2.6) \psi t + \~V(x, y, t) \cdot \nabla x,y\psi = 0, \psi (x, y, t = tn+1) = \Psi (x, y) \in P k(Kj),

where \~V(x, y, t) = (\alpha (x, y, t), \beta (x, y, t)) are defined as follows:
1. On Kj at tn+1. \alpha (x, y, tn+1) and \beta (x, y, tn+1) are set as P 1 polynomials

denoted by

(2.7) \alpha (x, y, tn+1) = \alpha 0 + \alpha 1x+ \alpha 2y,

(2.8) \beta (x, y, tn+1) = \beta 0 + \beta 1x+ \beta y.

As in [10], \alpha and \beta are linear functions interpolating V(x, y, t) at vertices of
Kj at the time level tn+1.

2. On \~Kj(t) at t \in [tn, tn+1). Along characteristic lines of the adjoint problem
(2.6) originating from any point (X,Y ) \in Kj at tn+1, with

(2.9) \~x(t; (X,Y, tn+1)), \~y(t; (X,Y, tn+1))

satisfying the following equations:
(2.10)
d

dt
\~x(t; (X,Y, tn+1)) = \alpha (X,Y, tn+1),

d

dt
\~y(t; (X,Y, tn+1)) = \beta (X,Y, tn+1).

Note that the RHSs of the above equations are independent of t; then solving
these equations that originate from (X,Y ), we have

(2.11) \~x(t; (X,Y, tn+1)) = X  - \alpha (X,Y, tn+1)(tn+1  - t),

(2.12) \~y(t; (X,Y, tn+1)) = Y  - \beta (X,Y, tn+1)(tn+1  - t).

The associated space-time region for (2.6) then becomes \~\Omega j := \~Kj(t) \times 
[tn, tn+1], where \~Kj(t) is the triangle with vertices along straight charac-
teristic lines originated from vertices of Kj ; see Figure 2(a).
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\^v3

\^K \^x

\^y

(b)

Fig. 2. (a) Illustration of the space-time region \~Kj(t) \times [tn, tn+1]. (b) The mapping between

dynamic element \~Kj(t) and the reference element \^K.

Then, for (\~x(t), \~y(t)) :=
\bigl( 
\~x(t; (X,Y, tn+1)), \~y(t; (X,Y, tn+1))

\bigr) 
\in \~Kj(t), where

t \in [tn, tn+1], the \~V(x, y, t) is defined as

\~V(\~x(t), \~y(t), t) =

\biggl( 
\alpha 
\bigl( 
\~x(t; (X,Y, tn+1)), \~y(t; (X,Y, tn+1)), t

\bigr) 
\beta 
\bigl( 
\~x(t; (X,Y, tn+1)), \~y(t; (X,Y, tn+1)), t

\bigr) \biggr) 
(2.13)

=

\biggl( 
\alpha (X,Y, tn+1)
\beta (X,Y, tn+1)

\biggr) 
.

We summarize several properties of the modified adjoint problem in the following
proposition.

Proposition 2.2. For the modified adjoint problem, we have the following:
(i) its characteristic lines,

(2.14) \~x(t; (X,Y, tn+1)), \~y(t; (X,Y, tn+1)),

for any point (X,Y ) \in Kj at tn+1, can be explicitly presented as

(2.15)

\biggl( 
\~x(t)
\~y(t)

\biggr) 
= J

\~KjKj (t)

\biggl( 
X
Y

\biggr) 
+

\biggl( 
\delta 1(t)
\delta 2(t)

\biggr) 
,

with the merely time-dependent Jacobian matrix denoted by

J
\~KjKj (t) :=

\partial (\~x, \~y)

\partial (X,Y )
(t) :=

\biggl( 
1 - \partial \alpha 

\partial X (tn+1  - t)  - \partial \alpha 
\partial Y (tn+1  - t)

 - \partial \beta 
\partial X (tn+1  - t) 1 - \partial \beta 

\partial Y (tn+1  - t)

\biggr) 
,

(2.16)
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where \delta 1(t) := (t - tn+1)\alpha 0, \delta 2(t) := (t - tn+1)\beta 0.
(ii)

(2.17)
\psi (\~x(t; (x, y, tn+1)), \~y(t; (x, y, tn+1)), t) = \Psi (x, y) \in P k(Kj) \forall t \in [tn, tn+1].

Proof. First, the equation (2.15) can be easily obtained by substituting (2.7) and
(2.8) into (2.11) and (2.12).

Second, we can prove (2.17) by the fact that the test function \psi stays constant
along characteristics.

(2) Semidiscrete EL RK DG formulation. Integrate (2.1) \cdot \psi +(2.6) \cdot u over
\~\Omega j ; that is,

(2.18)

\int 
\~\Omega j

[(2.1) \cdot \psi + (2.6) \cdot u]dxdydt = 0.

After manipulating the above equation with the divergence theorem and the Leibniz--
Reynolds transport theorem and considering its time differential form, we have

(2.19)
d

dt

\int 
\~Kj(t)

u\psi dxdy =  - 
\int 
\partial \~Kj(t)

\psi F \cdot nds+
\int 

\~Kj(t)

F \cdot \nabla \psi dxdy,

where F(u, x, y, t) = (V(x, y, t)  - \~V(x, y, t))u, ds is the infinitesimal boundary of
\~Kj(t), and n denotes the unit outward normal vector to \partial \~Kj(t).

To facilitate implementation, we map the semidiscrete EL RK DG formulation on
the reference element \^K with vertices \^v1(0, 0), \^v2(1, 0), and \^v3(0, 1) (see Figure 2(b)).
We denote the isoparametric mapping functions from the reference element \^K to
the Eulerian element Kj and the dynamic element \~Kj(t) by (X(\^x, \^y), Y (\^x, \^y))T and
(\~x(\^x, \^y, t), \~y(\^x, \^y, t))T , respectively. We can easily have

(2.20)

\biggl( 
X(\^x, \^y)
Y (\^x, \^y)

\biggr) 
= JKj

\^Kj

\biggl( 
\^x
\^y

\biggr) 
+

\biggl( 
xj,1
yj,1

\biggr) 
,

where

(2.21) JKj
\^Kj =

\biggl( 
xj,2  - xj,1 xj,3  - xj,1
yj,2  - yj,1 yj,3  - yj,1

\biggr) 
.

Then the mapping function (\~x(\^x, \^y, t), \~y(\^x, \^y, t))T can be presented as\biggl( 
\~x(\^x, \^y, t)
\~y(\^x, \^y, t)

\biggr) 
= J

\~KjKj (t)

\biggl( 
X
Y

\biggr) 
+

\biggl( 
\delta 1(t)
\delta 2(t)

\biggr) 
= J

\~Kj
\^Kj (t)

\biggl( 
\^x
\^y

\biggr) 
+ J

\~KjKj (t)

\biggl( 
xj,1
yj,1

\biggr) 
+

\biggl( 
\delta 1(t)
\delta 2(t)

\biggr) 
,(2.22)

where J
\~Kj

\^Kj (t) = J
\~KjKj (t)JKj

\^Kj , that is, the Jacobian of the mapping functions
with respect to variables \^x, \^y.

Next we introduce a few notations and useful equalities [15, 38] regarding this
mapping function:

(2.23) d\~xd\~y = det
\Bigl( 
J

\~Kj
\^Kj (t)

\Bigr) 
d\^xd\^y,
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(2.24) \nabla \~x,\~y\psi (\~x, \~y, t) = J
\~Kj

\^Kj (t) - T\nabla \^x,\^y\Psi (\^x, \^y),

(2.25) nds = det
\Bigl( 
J

\~Kj
\^Kj (t)

\Bigr) 
J

\~Kj
\^Kj (t) - T \u nd\u s,

where d\u s is the infinitesimal boundary of the isoparametric element and \u n denotes
the unit outward normal vector to \partial \^K.

We denote the approximation solution of u on the reference element by

(2.26) \^uh(\^x, \^y, t) :=
J\sum 

j=1

nk\sum 
p=1

\u uKj
p (t) \^\Psi Kj

p (\^x, \^y) :=

Jnk\sum 
p=1

\u up(t) \^\Psi p(\^x, \^y) \forall t \in [tn, tn+1],

where \^\Psi 
Kj
p (\^x, \^y) denotes \Psi 

Kj
p (X(\^x, \^y), Y (\^x, \^y)), and we rename \{ \u uKj

p (t) : 1 \leq p \leq 
nk, 1 \leq j \leq J\} = \{ \u up(t) : 1 \leq p \leq Jnk\} and \{ \^\Psi Kj

p : 1 \leq p \leq nk, 1 \leq j \leq J\} = \{ \^\Psi p :
1 \leq p \leq Jnk\} . We rewrite the semidiscrete EL RK DG formulation (2.19) on the
reference element \^K as follows: \forall \Psi q(X,Y ) \in V k

h ,

d

dt

\int 
\^K

\^uh \^\Psi q det
\Bigl( 
J

\~Kj
\^Kj (t)

\Bigr) 
d\^xd\^y

=  - 
\int 
\partial \^K

\^\Psi q
\widehat Fd\u s+ \int 

\^K

\^F \cdot 
\Bigl( 
J

\~Kj
\^Kj (t) - T\nabla \^x,\^y

\^\Psi q

\Bigr) 
det

\Bigl( 
J

\~Kj
\^Kj (t)

\Bigr) 
d\^xd\^y,(2.27)

where

(2.28) \^F(\^uh, \^x, \^y, t) := V\^uh,

with

(2.29) V :=
\Bigl( 
V(\~x(\^x, \^y, t), \~y(\^x, \^y, t), t) - \~V(X(\^x, \^y), Y (\^x, \^y), tn+1)

\Bigr) 
,

and we define the upwind numerical flux as

(2.30) \widehat F \Bigl( 
\^u
int \^K

h , \^u
ext \^K

h , \^x, \^y, t,J
\~Kj

\^Kj (t)
\Bigr) 
=Wuup

with

(2.31) W = V \cdot 
\Bigl( 
det

\Bigl( 
J

\~Kj
\^Kj (t)

\Bigr) 
J

\~Kj
\^Kj (t) - T \u n

\Bigr) 
and

(2.32) uup =

\Biggl\{ 
\^u
int \^K

h if W \geq 0,

\^u
ext \^K

h if W < 0.

Here \^u
int \^K

h and \^u
ext \^K

h are the interior solution and the exterior solution of the \~Kj(t),
respectively. The line and volume integrals are performed by proper high order quad-
rature rules [21, 42] which are exact for polynomials of degree up to 2k for the element
integral and up to 2k+1 for the edge integral as in a standard RKDG scheme. Then
we have

d

dt

\int 
\^K

\^uh \^\Psi q det
\Bigl( 
J

\~Kj
\^Kj (t)

\Bigr) 
d\^xd\^y = \scrG 

\Bigl( 
\^uh,J

\~Kj
\^Kj (t)

\Bigr) 
,(2.33)
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where

\scrG 
\Bigl( 
\^uh,J

\~Kj
\^Kj (t)

\Bigr) 
:=  - 

\sum 
e\in \partial \^K

| e| 
\sum 
ie

\Bigl[ 
\^\Psi q

\widehat F\Bigr] \bigm| \bigm| \bigm| 
(\^xie ,\^yie )

\sigma ie

+2| \^K| 
\sum 
i

\Bigl[ 
\^F \cdot 

\Bigl( 
J

\~Kj
\^Kj (t) - T\nabla \^x,\^y

\^\Psi q

\Bigr) 
det

\Bigl( 
J

\~Kj
\^Kj (t)

\Bigr) \Bigr] \bigm| \bigm| \bigm| 
(\^xi,\^yi)

wi,(2.34)

with the numerical quadrature points (\^xie , \^yie) and corresponding weights \sigma ie for the
edge integral, and the numerical quadrature points (\^xi, \^yi) and corresponding weights
wi for the element integral.

(3) Fully discrete EL RK DG scheme. We write the semidiscrete scheme
(2.33) into a form of ordinary differential equations with the initial conditions. We
let \u u(t) be a vector in \BbbR Jnk which consists of unknowns \{ \u up(t) : 1 \leq p \leq Jnk\} and
denote the spatial discretization operator of the RHS of (2.33) by \scrL (\u u(t), t). Then
the semidiscrete scheme (2.33) can be written as

(2.35)
d

dt
(M(t)\u u(t)) = \scrL (\u u(t), t) , \u u(tn) = \u un,

where the matrix M(t) = (Mpq(t))pq with block diagonals,

diag
\bigl( 
MK1(t), . . . ,MKJ (t)

\bigr) 
;

for MKj (t), its element

MKj
pq (t) =

\int 
\^K

\^\Psi Kj
p (\^x, \^y) \^\Psi Kj

q (\^x, \^y) det
\Bigl( 
J

\~Kj
\^Kj (t)

\Bigr) 
d\^xd\^y

=

\int 
\~Kj(t)

\psi Kj
p (x, y, t)\psi Kj

q (x, y, t)dxdy

=

\int 
Kj

\Psi Kj
p (X,Y )\Psi Kj

q (X,Y ) det
\Bigl( 
J

\~KjKj (t)
\Bigr) 
dXdY

= det
\Bigl( 
J

\~KjKj (t)
\Bigr) \int 

Kj

\Psi Kj
p (X,Y )\Psi Kj

q (X,Y )dXdY,(2.36)

where the last equality is due to the space-independence of det(J
\~KjKj (t)). The fol-

lowing steps are proposed for updating the system (2.35).
1. Building the space-time region. In order to update the system (2.35) by the

ALE scheme, we build the space-time region \~\Omega and precompute the Jacobians
at immediate stages of the RK method; the coordinates of vertices of the
upstream element can be easily obtained from (2.11)--(2.12).

2. The test function \psi 
Kj
p (x, y, tn). The test function \psi 

Kj
p (x, y, tn) can be pro-

vided explicitly due to the local affine mapping (2.15).
3. Remapping step. We apply the remapping algorithm as proposed for the

SLDG in section 2.2 to compute

(2.37)

\int 
K \star 

j

unh\psi 
Kj
p (x, y, tn)dxdy := \~UKj

p (tn).

We rename \{ \~UKj
p (t) : 1 \leq p \leq nk, 1 \leq j \leq J\} := \{ \~Up(t) : 1 \leq p \leq Jnk\} , all

elements of which form the vector \~U(t). Then the initial condition in (2.35)
can be obtained as

(2.38) \u un = M(tn) - 1 \~U(tn), p = 1 \cdot \cdot \cdot Jnk,
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where M(tn) comes from (2.36) and \~U(tn) comes from (2.37) via the remap-
ping algorithm.

4. Evolution step. We apply the strong stability preserving (SSP) RK method
[45] to (2.35), which is organized in Algorithm 2.1. The parameters of the sec-
ond order SSP-RK method (SSP-RK2) and the third order SSP-RK method
(SSP-RK3) are provided in Table 1.

Algorithm 2.1 The s-stages SSP-RK time discretization for the system (2.35).

Let \u \bfu (0) = \u \bfu n; For RK stage i = 1, . . . , s,

(2.39) \u \bfu (i) = \bfM (tn+di\Delta tn) - 1
i - 1\sum 
l=0

\Bigl( 
\alpha il\bfM (t+ dl\Delta tn)\u \bfu (l) + \beta il\Delta tn\scrL 

\Bigl( 
\u \bfu (l), tn + dl\Delta tn

\Bigr) \Bigr) 
,

where \Delta tn = tn+1  - tn, and \alpha il and \beta il are related to the RK method;

(2.40) \u \bfu n+1 = \u \bfu (s).

Table 1
Parameters of SSP-RK2 and SSP-RK3.

Order \alpha il \beta il dl
2 1 1 0

1
2

1
2

0 1
2

1

3 1 1 0
3
4

1
4

0 1
4

1
1
3

0 2
3

0 0 2
3

1
2

Proposition 2.3. Given a DG solution uh(x, y, t
n) \in V k

h and assuming the
boundary condition is periodic, the fully discrete EL RK DG scheme with SSP-RK
time discretization on the unstructured mesh is mass conservative.

Proof. The conclusion is due to the mass conservative of the SLDG remapping
algorithm and the local conservative form of the integrating flux function with the
unique flux at the element boundaries. We skip the details for brevity.

Remark 2.4. (comparison to the ALE DG method [26]) We note that when we
put the background elementKj at t

n+1 and its upstream elementK \star 
j at tn in a moving

mesh setting, the formulation of EL RK DG scheme (2.19) is the same as the ALE
DG method [26] and the quasi-Lagrangian moving mesh DG method [35]. In fact, the
EL RK DG method for the problem (2.35) is the composition of the SLDG remapping
algorithm in evaluating \u u(tn) and the ALE DG method in updating solutions from
\u u(tn) to \u u(tn+1).

Remark 2.5. (empirical time step constraint for stability) Note that the time
step constraints for the RKDG scheme on triangular meshes are numerically verified
in [16, 12] as around

(2.41) \Delta t \sim minj Rj

maxj maxface | V \cdot n| 
.

We observe that the EL RK DG formulation is similar in spirit to applying the RKDG
method with the flux term (V - \~V)u; thus an empirical time step stability constraint
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of the EL RK DG method is

(2.42) \Delta t \sim minj Rj

maxj maxface | (V  - \~V) \cdot n| 
.

For a smooth velocity field V, by Taylor expansions, we have | (V - \~V) \cdot n| = O(\Delta t)+
O(h2). Combining the estimate with (2.42) gives the time step constraint for the
stability of the EL RK DG scheme on the unstructured triangular mesh,

(2.43) \Delta t \sim 
\surd 
h.

This is verified in Example 3.3 with mesh refinement; that is, we refine the mesh by
increasing the number of elements by a factor of around 4, and then the maximum
CFL with numerical stability could increase by a factor of around

\surd 
2. A rigorous

analysis is subject to further investigation.

2.4. Geometric conservation law. Although the EL RK DG scheme is a fixed
mesh method, we notice that an ALE scheme is embedded in the EL RK DG scheme
(2.35). Hence, the GCL introduced in [51, 49, 25], i.e., the preservation of constant
solutions, should be considered; that is, by letting \^uh and \^\Psi q be a constant, the
obtained formulation in the following should be updated by numerical schemes exactly.

Proposition 2.6. Letting \^uh = \^\Psi q = c and assuming the divergence-free prop-
erty of V (i.e., \nabla \^x,\^y \cdot V = 0), the semidiscrete EL RK DG formulation on the reference

element \^K (2.27) can be written as follows:
(2.44)
d

dt
det

\Bigl( 
J

\~Kj
\^Kj (t)

\Bigr) 
=

\Bigl( 
\nabla \^x,\^y \cdot 

\Bigl( 
J

\~K \^K(t) - 1 \~V(X(\^x, \^y), Y (\^x, \^y), tn+1)
\Bigr) \Bigr) 

det
\Bigl( 
J

\~Kj
\^Kj (t)

\Bigr) 
.

Proof. It can be proven by substituting \^uh = \^\Psi q = c into (2.27) and then using

\nabla \^x,\^y \cdot V = 0, the linear property of \~V, and integration by parts.

Note that the scheme (2.35) by the SSP-RK method fails to preserve the constant

solution since the Jacobian determinant det(J
\~Kj

\^Kj (t)) is involved in both sides of
(2.44) and is evolved approximately due to the temporal integration.

To preserve the constant solution, we need to consider the time discretization of
the evolution of the Jacobian determinant (2.44) as well; we adopt the GCL correction
strategy by updating the Jacobian determinant by the SSP-RKmethod synchronously,
which was introduced in [38, 26, 56]. For implementation, we replace the system (2.35)
by

(2.45)
d

dt

\Bigl( \widetilde M(t)\u u(t)
\Bigr) 
= \scrL (\u u(t), t) , \u u(tn) = \u un,

(2.46)
d

dt
\scrJ j(t) =

\Bigl( 
\nabla \^x,\^y \cdot 

\Bigl( 
J

\~K \^K(t) - 1 \~V(X(\^x, \^y), Y (\^x, \^y), tn+1)
\Bigr) \Bigr) 

det
\Bigl( 
J

\~Kj
\^Kj (t)

\Bigr) 
:= \scrR (t),

where \scrJ j(t) is an approximation to det(J
\~Kj

\^Kj (t)), \scrJ j(t
n) = det(J

\~K \^K(tn)), and the

matrix \widetilde M(t) = (\widetilde Mpq(t))pq with block diagonals diag(\widetilde MK1(t), . . . ,\widetilde MKJ (t)). The ele-

ment of \widetilde MKj (t) is set as

\widetilde MKj
pq (t) =MKj

pq (t)
\scrJ j(t)

det
\Bigl( 
J \~Kj

\^Kj (t)
\Bigr) .(2.47)
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Algorithm 2.2 The s-stages SSP-RK time discretization for the system (2.45)--(2.46).

Let \scrJ (0)
j = \scrJ j(t

n);

(2.48)

\int 
\^K

\^u
(0)
h

\^\Psi q\scrJ (0)
j d\^xd\^y =

\int 
\^K

\^un
h
\^\Psi q\scrJ j(t

n)d\^xd\^y;

For RK stage i = 1, . . . , s,

(2.49) \scrJ (i)
j =

i - 1\sum 
l=0

\Bigl( 
\alpha il\scrJ (l)

j + \beta il\Delta tn\scrR (tn + dl\Delta tn)
\Bigr) 
;

\int 
\^K

\^u
(i)
h

\^\Psi q\scrJ (i)
j d\^xd\^y

=

i - 1\sum 
l=0

\biggl( 
\alpha il

\int 
\^K

\^u
(l)
h

\^\Psi q\scrJ (l)
j d\^xd\^y + \beta il\Delta tn\scrG 

\Bigl( 
\^u
(l)
h ,\bfJ 

\~Kj
\^Kj (tn + dl\Delta tn)

\Bigr) \biggr) 
;(2.50)

(2.51)

\int 
\^K

\^un+1
h

\^\Psi q det
\Bigl( 
\bfJ 

\~Kj
\^Kj (tn+1)

\Bigr) 
d\^xd\^y =

\int 
\^K

\^u
(s)
h

\^\Psi q\scrJ (s)
j d\^xd\^y.

Then we apply the s-stages SSP-RK method to the system to replace the evolution
step in the EL RK DG method, which is organized in Algorithm 2.2.

Finally, we state that the EL RK DG scheme with (2.37)--(2.38) and the evolution
step of Algorithm 2.2 satisfies the GCL when the RHS of (2.27) (for instance, the
problem with the velocity field being merely time-dependent, i.e., V(t) = (\=a(t),\=b(t)))
can be solved exactly by the numerical quadratures, which is summarized in the
following proposition.

Proposition 2.7 (discrete geometric conservation law). Suppose that the RHS
of (2.27) can be solved exactly by the numerical quadratures, an s-stage SSP-RK
method with order greater than or equal to 2, and the solution at time level tn, unh = c
for all (x, y) \in \Omega . Then the solution at time level tn+1 of the EL RK DG scheme with
(2.37)--(2.38) and the evolution step of Algorithm 2.2 is un+1

h = c for all (x, y) \in \Omega .

Proof. As in Remark 2.4, the EL RK DG method for the problem (2.35) is the
composition of the SLDG remapping algorithm in evaluating \u u(tn) and the ALE DG
method. For the SLDG remapping algorithm, it is easy to see that when unh = c
for all (x, y) \in \Omega , through the remapping algorithm (2.37) and mapping solution to
the reference element (2.38), we have \^u = c. Then similar to the proof of the GCL
property of ALE DG in [26], we can show that un+1

h = c and thus omit the details.

2.5. Inflow boundaries. In this section, we consider the inflow Dirichlet bound-
ary conditions, which are often posed in applications such as subsurface contaminant
transport and remediation [52]. For inflow boundary conditions, we propose a ghost-
cell strategy.

Let \partial \Omega be the boundary of \Omega , and let \Gamma := \partial \Omega \times (0, T ), consisting of two parts:
the inflow part \Gamma in and outflow part \Gamma out with

\Gamma in := \{ (x, y, t)| (x, y) \in \partial \Omega , t \in (0, T ),V \cdot n < 0\} , \Gamma out = \Gamma \setminus \Gamma in.
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(a)

K\ast 
j

Kj

(b)

\widetilde K(0)j

K j

(c)

Fig. 3. The illustration of the EL RK DG scheme on the ghost-cells method for transport
problems with inflow boundary conditions.

We consider the transport problem (2.1) with the inflow Dirichlet boundary condition

u(x, y, t) = g(x, y, t), (x, y, t) \in \Gamma in.

The scheme proceeds on a large enough ghost region by first building DG solutions
on ghost cells by a Lagrangian procedure. Once this is done, the EL RK DG scheme
in section 2.3 can be implemented, as illustrated in Figure 3(c). The procedure of
building DG solutions on ghost cells consists of several steps:

1. Generate a set of triangular elements K\ast 
j on the \Gamma in.

2. Locate the vertices of the ghost element Kj by tracking the characteristics

(2.52)

\left\{  dx(t)
dt = a(x, y, t),

dy(t)
dt = b(x, y, t),

x(t\ast ) = x\ast j,q, y(t
\ast ) = y\ast j,q,

where (x\ast j,q, y
\ast 
j,q, t

\ast ) are the coordinates of the vertex of element K\ast 
j , as illus-

trated in Figure 3(b). We denote the region which originates from K\ast 
j to Kj

along the characteristics by \scrK . Note that the velocity field V(x, y, t) outside
of \Omega is the natural extension of the velocity field in \Omega .

Accepted Manuscript 
Version of record at: https://doi.org/10.1137/21M1456753



3. We consider the adjoint problem for the test function \psi ,

(2.53) \psi t +V(x, y, t) \cdot \nabla x,y\psi = 0, \psi (x, y, t = tn) = \Psi (x, y) \in P k(Kj).

Integrate (2.1) \cdot \psi + (2.53) \cdot u over \scrK , that is,

(2.54)

\int 
\scrK 
[(2.1) \cdot \psi + (2.6) \cdot u]dxdydt = 0.

After manipulating the above equation with the divergence theorem, we have

(2.55)

\int 
Kj

u\Psi dxdy =

\int 
K\ast 

j

(V(x, y, t)u\psi ) \cdot ndS,

where dS is infinitesimal of K\ast 
j . We adopt the SLDG scheme in [28, 31] to

evaluate the RHS of the above equation.

3. Numerical results. In this section, we demonstrate the performance of the
proposed SLDG and EL RK DG schemes for 2D transport equations, in terms of mass
conservation, discrete GCL, high order accuracy in both space and time, numerical
stability for large time-stepping size, and ability to capture discontinuities. In order
to better show the advantages of the proposed schemes, we compare the results of the
schemes with those of the classic RKDG method under the same settings. As in [35],
the CFL number is defined by

(3.1) CFL =
maxj maxface | V \cdot n| 

minj Rj
\Delta t,

where Rj is the radius of the inscribed circle of the element Kj and n is the unit
normal vector of the face of Kj ;

(3.2) Rj = 2
| Kj | 
| \partial Kj | 

,

where | Kj | and | \partial Kj | are the area and perimeter of Kj , respectively. By tests, we
found there is little difference between the scheme with GCL correction and that
without GCL correction besides the preservation capability. Thus unless otherwise
noted, the EL RK DG scheme for simulations is without GCL correction.

\bullet Mass conservation and discrete GCL. For all simulations, we find that the
mass is conserved up to machine precision for each time step of the presented
schemes, and we omit the results for brevity. The discrete GCL of EL RK
DG is verified in Example 3.2.

\bullet Consistency. We test the spatial and temporal accuracy by the linear trans-
port problem, rotation, and swirling deformation flow. For the linear trans-
port problem, we test the schemes for the problem with either periodic bound-
ary conditions or inflow boundary conditions; the results are almost the same,
and so we only present the latter in Example 3.1. For EL RK DG, the ex-
pected high order accuracy can be observed for all these tests; for the proposed
P 2 SLDG, we observe the second order of convergence for solving the swirling
deformation flow.

\bullet Stability. The SLDG is numerically unconditionally stable and EL RK DG
is numerically stable around time-stepping size of \Delta t \sim 

\surd 
h in Figures 6--8.

The results are consistent with those in [10].
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\bullet Resolution for discontinuities. A simple WENO limiter in [59] used for all
schemes is used to control oscillations for problems with discontinuities. Note
that some advanced limiters such as [58] can be applied in the proposed
schemes as well. We find the SLDG and EL RK DG methods can do a better
job on the resolution of solutions around discontinuities compared to RKDG.

Example 3.1 (2D linear equation). To verify the spatial accuracy of the EL RK
DG method with large time-stepping size, we apply the scheme to solve the following
linear equation in two dimensions up to T = 1:

(3.3) ut + ux + uy = 0, (x, y) \in [ - \pi , \pi ]2,

with the initial condition u(x, y, 0) = sin(x + y) and the inflow boundary conditions
u(x =  - \pi , y, t) = sin(y  - \pi  - 2t) and u(x, y =  - \pi , t) = sin(x - \pi  - 2t). As shown in
Figure 4, the structured uniform mesh and the unstructured mesh generated by the
Gmsh [27] are used to test the mesh adaptability in this example.

We report the L1 errors and corresponding order of convergence of the P k (k =
1, 2) EL RK DG scheme with CFL = 10.2 in Table 2. The expected (k+1)th orders
of convergence are observed for the P k EL RK DG scheme with either the structured
uniform mesh or the unstructured mesh.

Fig. 4. Left: The structured triangular mesh, N = 2\times 102. Right: The unstructured triangular
mesh, N = 300.

Table 2
L1 errors of EL RK DG schemes for linear problem, ut + ux + uy = 0, (x, y) \in [ - \pi , \pi ]2 with

the initial condition u(x, y, 0) = sin(x+ y) and the inflow boundary condition. T = 1. CFL = 10.2.

Structured triangular meshes Unstructured triangular meshes
P 1 EL RK DG P 2 EL RK DG P 1 EL RK DG P 2 EL RK DG

Mesh L1 error Order L1 error Order Mesh L1 error Order L1 error Order
2\times 202 1.73E-03 -- 7.67E-05 -- 1018 2.31E-03 -- 6.98E-05 --
2\times 402 4.77E-04 1.85 8.51E-06 3.17 4132 5.47E-04 2.06 8.33E-06 3.04
2\times 802 1.09E-04 2.12 1.02E-06 3.07 16364 1.43E-04 1.95 9.24E-07 3.19
2\times 1602 2.72E-05 2.01 1.01E-07 3.33 65278 3.75E-05 1.94 1.54E-07 2.59

Example 3.2 (the GCL property). To verify the GCL property of the EL RK
DG method, we test the previous example with the conditions u(x, y, 0) = 1, u(x =
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 - \pi , y, t) = 1, u(x, y =  - \pi , t) = 1. In the result of Proposition 2.7, the GCL property
of the EL RK DG scheme relies on the time integration; we test the P 1 EL RK DG
scheme with SSP-RK2 and SSP-RK3, using CFL = 10.2, in which the velocity field
is perturbed by a random number multiplying h. The results of the EL RK DG
scheme both with discrete GCL and without discrete GCL are listed in Table 3. We
observe that the EL RK DG scheme without discrete GCL approximates the constant
solutions in the high order accuracy; yet the EL RK DG scheme with discrete GCL
exactly preserves the GCL property.

Table 3
GCL tests on the linear problem, ut + ux + uy = 0, (x, y) \in [ - \pi , \pi ]2, with the initial condition

u(x, y, 0) = 1, u(x =  - \pi , y, t) = 1, u(x, y =  - \pi , t) = 1 at T = 1. P 1 EL RK DG scheme with
different temporal methods, using CFL = 10.2, in which the velocity field is perturbed randomly.
The EL RK DG scheme with discrete GCL (GCL) and without discrete GCL (no GCL).

no GCL GCL
SSP-RK2 SSP-RK3 SSP-RK2 SSP-RK3

Mesh L2 error Order L2 error Order L2 error Order L2 error Order
1018 1.95E-05 -- 7.64E-07 -- 1.11E-13 -- 1.11E-13 --
4132 1.17E-06 4.01 1.45E-08 5.66 2.19E-13 -- 2.18E-13 --
16364 2.72E-07 2.12 2.42E-09 2.60 3.61E-13 -- 3.61E-13 --
65278 2.23E-08 3.61 7.18E-11 5.09 7.75E-13 -- 7.73E-13 --

Example 3.3 (rigid body rotation on a circle domain). Consider

(3.4) ut  - (yu)x + (xu)y = 0, (x, y) \in \{ (x, y)| x2 + y2 \leq \pi 2\} ,

with the initial condition u(x, y, 0) = exp( - 3x2  - 3y2). The coarsest mesh N = 160
is shown in Figure 5.

Fig. 5. The unstructured mesh with the mesh of 160 is generated by GMSH.

First, we test the spatial convergence of the proposed SLDG schemes, proposed
EL RK DG schemes, and the RKDG schemes. We use the same time-stepping sizes
for comparison; the CFL numbers in time step selection are set to be 0.3 for P 1 DG
and 0.15 for P 2 DG. These time-stepping sizes are with the stability constraint of
1/(2k + 1) for RKDG. We summarize the results of these schemes for solving the
problem up to T = 2\pi in Table 4. We observe the expected orders of convergence and
the similar results for different DG schemes.
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Second, we study numerical stabilities of EL RK DG and SLDG schemes. We
present the plots of L1 error versus CFL of these schemes in Figure 6. We make
a few observations: (1) When CFL is relatively large but smaller than the stability
constraint of EL RK DG, the temporal errors starting to kick in second and third
order temporal convergence order are shown. (2) Maximum CFLs with numerical
stability of P 2 EL RK DG using meshes N = 1884, 7432, 28996 are 13.8, 19.6, 27.5,
respectively. The increasing rate is around

\surd 
2. (3) SLDG schemes are stable for

arbitrarily large time-stepping sizes.
Third, we numerically solve the rigid body rotation (3.4) with an initial condition

plotted in Figure 7(a), which consists of a slotted disk, a cone, and a smooth hump,
similar to the one used in [33] for comparison purposes. In Figure 7, we present
plots of the solutions solved by the P 2 RKDG, SLDG, and EL RK DG schemes with
WENO limiter after one full rotation. We use CFL = 10.2 for SLDG and EL RK
DG. We observe that (1) the solutions of SLDG and EL RK DG are comparable; (2)
the solutions of SLDG and EL RK DG are less dissipative than that of RKDG, due
to the fewer error accumulations of the schemes with large time-stepping size.

Table 4
Errors of different DG schemes for rigid body rotation on a circle domain with the initial

condition u(x, y, 0) = exp( - 3x2  - 3y2). T = 2\pi . The CFL = 0.3 for P 1 DG and CFL = 0.15 for
P 2 DG.

Mesh L1 error Order L1 error Order L1 error Order
P 1 EL RK DG P 1 SLDG P 1 RKDG

522 2.37E-03 -- 2.37E-03 -- 2.40E-03 --
1884 5.24E-04 2.35 5.24E-04 2.35 5.33E-04 2.35
7432 1.15E-04 2.21 1.15E-04 2.21 1.17E-04 2.21
28996 2.77E-05 2.09 2.77E-05 2.09 2.81E-05 2.10

P 2 EL RK DG P 2 SLDG P 2 RKDG
522 1.88E-04 -- 1.89E-04 -- 1.94E-04 --
1884 2.41E-05 3.20 2.41E-05 3.21 2.43E-05 3.24
7432 2.91E-06 3.08 2.91E-06 3.08 2.94E-06 3.08
28996 3.62E-07 3.07 3.62E-07 3.07 3.65E-07 3.07

Fig. 6. The L1 error versus CFL of SLDG schemes and EL RK DG schemes for the rigid
body rotation with u(x, y, 0) = exp( - 3x2  - 3y2). T = 2\pi .
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(a) initial state, N = 7432 (b) P 2 RKDG, CFL = 0.15

(c) P 2 SLDG, CFL = 10.2 (d) P 2 EL RK DG, CFL = 10.2

Fig. 7. Plots of the numerical solutions of P 2 SLDG and EL RK DG schemes for the rigid
body rotation with the initial condition in (a). T = 2\pi .

Example 3.4 (swirling deformation flow). We consider solving

ut  - 
\Bigl( 
cos2

\Bigl( x
2

\Bigr) 
sin(y)g(t)u

\Bigr) 
x
+
\Bigl( 
sin(x) cos2

\Bigl( y
2

\Bigr) 
g(t)u

\Bigr) 
y
= 0, (x, y) \in [ - \pi , \pi ]2,(3.5)

where g(t) = cos
\bigl( 
\pi t
T

\bigr) 
\pi and T = 1.5. The initial condition is set to be the following

smooth cosine bell (with C5 smoothness):

(3.6) u(x, y, 0) =

\Biggl\{ 
rb0 cos

6
\Bigl( 

rb

2rb0
\pi 
\Bigr) 

if rb < rb0,

0 otherwise,

where rb0 = 0.3\pi , and rb =
\sqrt{} 
(x - xb0)

2 + (y  - yb0)
2 denotes the distance between

(x, y) and the center of the cosine bell (xb0, y0b) = (0.3\pi , 0) . As  in  Ex ample 3. 3, we 
study the spatial error and the numerical stability of the proposed SLDG and EL RK
DG schemes in Table 5 and Figure 8, respectively. Observations similar to those in
Example 3.3 can be made for the P 1 part. We find that P 2  SLDG is of second order 
due to the second approximation to the sides of upstream cells, while P 2 EL RK DG 
is of third order. Figure 9 presents spatial errors and CPU times of the EL RK DG
method and the SLDG method; we observe that with the same setting, SLDG is more
expensive in CPU time to achieve the same error, compared to EL RK DG.
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As in Example 3.3, we numerically solve the swirling deformation flow (3.5) with
an initial condition plotted in Figure 10(a). The results are presented in Figure 10.
Observations similar to those in Example 3.3 can be made.

Table 5
Errors of different DG schemes for swirling deformation flow with the smooth cosine bell.

T = 1.5. CFL = 0.3 and 0.15 for P 1 and P 2, respectively.

Mesh L1 error Order L1 error Order L1 error Order
P 1 EL RK DG P 1 SLDG P 1 RKDG

2\times 202 2.97E-03 -- 2.91E-03 -- 3.07E-03 --
2\times 402 7.18E-04 2.05 7.05E-04 2.05 7.64E-04 2.01
2\times 802 1.28E-04 2.49 1.26E-04 2.49 1.37E-04 2.48
2\times 1602 2.25E-05 2.50 2.22E-05 2.50 2.39E-05 2.50

P 2 EL RK DG P 2 SLDG P 2 RKDG
2\times 202 4.90E-04 -- 4.77E-04 -- 5.10E-04 --
2\times 402 3.88E-05 3.66 4.27E-05 3.48 4.03E-05 3.66
2\times 802 3.41E-06 3.51 5.99E-06 2.83 3.51E-06 3.52
2\times 1602 3.77E-07 3.18 1.26E-06 2.25 3.90E-07 3.17

Fig. 8. The L1 error versus CFL of SLDG schemes and EL RK DG schemes for the swirling
deformation flow with the smooth cosine bell. T = 1.5.

Fig. 9. The L1 error versus CPU time of SLDG schemes and EL RK DG schemes for the
swirling deformation flow with the smooth cosine bell. T = 1.5.
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(a) initial state, N = 2\times 802 (b) P 2 RKDG, CFL = 0.15

(c) P 2 SLDG, CFL = 10.2 (d) P 2 EL RK DG, CFL = 10.2

Fig. 10. Plots of the numerical solutions of P 2 SLDG and EL RK DG schemes for the swirling 
deformation flow w ith t he i nitial condition i n ( a). T  = 1 .5. N  = 2 \times  802.

4. Conclusion. We have devised the SLDG method and the EL RK DG method
on the unstructured triangular meshes for linear transport problems. The crucial
ingredient of the present schemes is the conservative remapping algorithm. Then
the proposed schemes can be mass conservative. To the best of our knowledge, the
present SLDG scheme is the first SL scheme on the unstructured mesh that can enjoy
favorable properties of mass conservation, second order accuracy, and unconditionally
numerical stability; the presented EL RK DG can inherit the main favorable properties
and can largely alleviate the CFL constraint from RKDG. The theoretical analysis of
the stability of the present schemes is a subject of our future investigation.

This is an initial effort t o p ropose a ccurate a nd c onservative semi-Lagrangian
schemes for practical problems with complex geometry. Although the presented
schemes are just for linear transport problems, we believe they can be extended to
nonlinear transport problems via exponential integrators in [7], which has successfully
coupled with the SLDG method on the structured meshes. And we believe it can also
be extended for convection-diffusion e quations, a s i n [ 19]. These e xtensions w ill be
investigated in our future research work. As we mentioned, the semi-Lagrangian
schemes are popular in climate modeling and kinetic models. Hence, it would be
interesting to use this solver for these applications.
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