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ABSTRACT 

Reduced representation bisulfite sequencing is gaining popularity among 

researchers who focus on epigenetics. But with an ever-increasing availability of 

downstream mapping software, no clear standard has been established, hence 

impairing confidence of experimental results. Simulation of NGS data coupled with 

software performance analysis provides an alternative way.  

BisSeq is a new next-generation sequencing simulator capable of generating 

single-end reduced representation bisulfite sequencing reads in FASTA format. 

BisSeq allows users to configure different sequencing parameters, facilitating various 

research purposes. BisSeq integrates data visualization methods to help researchers 

assess the performance of sequencing read aligners after bisulfite conversion of 

cytosine’s to thymidines. Currently BisSeq supports simulation against single genome. 

We demonstrate BisSeq's value by using Bismark to map simulated sequencing reads. 

Working with reads simulated with different read length; we profiled performance of 

BSseeker2, BSMAP, Bismark using a comparison metric. BisSeq provides researchers 

with a good tool to benchmark reads mapping tools and to identify appropriate 

parameter values for experimental design. 

.  
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Chapter 1 

INTRODUCTION 

With advancements in recent epigenetic research and Next-Generation-

Sequencing (NGS) (Metzker et al., 2010) technology, more and more pharmaceutical 

companies gradually realized that epigenetics could be the place where next 

generation diagnosis and cure begins. A noteworthy fact is the number of patients 

diagnosed as negative for mutations in well-studied disease-causing genes has been 

increasing, which indicates that traditional diagnostic approaches have limited power. 

A novel diagnosis and cure method is in urgent need at this same time. Also, 

traditional genotyping cannot help much in diagnosing process. It has been suggested 

that epigenetic modification could be a potential contributor to these diseases.  

Different from genetic mutation that involves change of DNA sequence that 

may take generations to come into effect, epigenetic mechanisms act in a 

comparatively more transient way that does not change genomic sequence. Two 

important components of epigenetic modifications are DNA methylation and histone 

acetylation (Fig 1). DNA methylation could prevent transcription by silencing 

promoter-binding activity, and its role in disease formation process has become more 

and more evident (Fig 2). Specific methyl binding protein will bind to methyl cytosine 

within promoter area and then recruit transcriptional repressive complex to retain a 

negative transcriptional status (Webb et al., 2001). Given the importance of DNA 

methylation, a comprehensive and precise profile of methylation status (Chatterjee et 

al., 2012) may enable researchers to identify epigenetic markers to support diagnosis 
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of diseases and make personal treatment possible. Nowadays, there are many 

technologies available for scientists to choose from, including: Whole genome 

bisulfite sequencing (WGBS) (Mill et al., 2006, Bibikova et al., 2010), reduced 

representation bisulfite sequencing (RRBS) (Cokus et al., 2008,  Choi et al., 2015, Gu 

et al., 2010, Harris et al., 2010), infinium methylation microarray (Moran et al., 2014), 

methylated DNA immunoprecipitation (MeDIP) (Mohn et al., 2009), MeDIP and 

high-throughput sequencing (MeDIP-seq) (Taiwo et al., 2012). Among these 

techniques, Reduced representation bisulfite sequencing (RRBS) is usually chosen to 

analyze clinical sample, given that it only requires relatively low amount of sample 

input while clinical sample are usually hard to acquire. Moreover, RRBS is costly 

efficient, costing $400-500 compared to WGBS, which usually cost $5000-7000 to 

generate 50-fold coverage. After sequencing reads generated, RRBS requires software 

to align them to bisulfite-converted reference genome or vice versa. There are many 

bisulfite sequencing mapping programs for scientist to choose from, which will be 

discussed in more detail later. However, none of them can achieve result accuracy and 

time efficiency at the same time.  

To facilitate methylation profiling in a more efficient and accurate way, Dr. 

Marsh developed a proprietary algorithm to map bisulfite-sequencing reads and to 

determine cytosine methylation rate. As a pilot project, this work aims to develop a 

pipeline, BisSeq, to generate simulated bisulfite-sequencing reads, and then evaluate 

bisulfite-sequencing mapping tools by using these data. Given the popularity of RRBS 

within the research community, we build our simulation based on RRBS protocol. The 

architecture of the pipeline can be divided into several steps, (1) The reads simulation 

part, users choose their own reference genome to build simulated sequencing reads on. 
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(2) Tune sequencing parameters to user desired value. (3) Connect selected mapping 

program to analyze simulated reads. (4) Evaluate mapping results by comparing 

methylation rate to preset methylation rate.  

In the following, we will first describe RRBS technique, and some popular 

programs applied to analyze RRBS data. Then we will present detail about how 

BisSeq is build and its underlying algorithm. Finally, a case study using human 

chromosome 1 sequence will be presented. In this case, we show how BisSeq can be 

applied to fit into various research frameworks by plug in Bismark (Krueger et al., 

2011), a RRBS mapping program to BisSeq and evaluate its performance. Another use 

case is to study read length effect on different mapping tools, we evaluate performance 

of BSMAP (Xi et al., 2009), BSseeker2 (Guo et al., 2013), Bismark mapping 

simulated sequencing reads with various read length. 
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Figure 1 DNA methylation and histone acetylation are two critical epigenetic 
mechanisms controlling chromatin structure and function in postmitotic 
mammalian neurons. Hypermethylated DNA recruits silencing 
transcription chromatin remodeling complexes with histone deacetylases 
(HDACs) and promotes chromatin condensation. Hypomethylated DNA 
unfolds into a ‘beads-on-a-string’ structure in which histones are 
accessible for chromatin remodeling factors such as CREB-binding protein 
histone acetyltransferase (CBP HAT), the transcriptional coactivator 
implicated in epigenetic mechanisms controlling memory consolidation3. 
Ac, acetyl group; methyl group.( Korzus et al., 2010) 
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Figure  2 DNA methylation patterns in normal and cancer cells. (a) Repetitive 
sequences generally are methylated at cytosine nucleotides in normal cells. 
Global loss of methylation in cancer cells leads to chromosomal instability 
and activation of endoparasitic sequences. (b) CpG islands in promoter 
sequences typically are unmethylated in normal cells whereas they can 
become hypermethylated in cancer cells, leading to transcriptional 
repression. Examples of genes affected are shown on the right. (c) Similar 
patterns are seen in CpG island shores, located in front (i.e., upstream) of 
promoters. (d) CpGs located in gene bodies frequently are methylated in 
normal cells; this pattern is reversed in cancer cells, leading to initiation of 
transcription at several incorrect sites (Marta et al., 2013). 
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Chapter 2 

RELATED WORK 

2.1 Reduced Representation Bisulfite Sequencing 

Previous study revealed that different genetic pathways control various types 

of methylation. A comprehensive map of methylation at single base pair resolution 

across the genome could provide directions for researchers to better understand the 

details of epigenetic mechanisms. Multiple methods have been developed to study the 

distribution of 5-methylcytosine across whole genome. They can be divided into two 

main categories. The method based off bisulfite conversion before sequencing: WGBS 

and RRBS. Another method is affinity purification based approach, which is less 

popular compared to previous one. While delivering single base resolution information 

about cytosine methylation, WGBS often requires a large volume of genomic analysis, 

which is not very feasible for some clinical cases and result in high cost. RRBS (Sun 

et al., 2015, Bentley et al., 2008) only interrogates a portion of original genome that is 

heavily methylated (Fig 3). 

As the RRBS protocol shown in Fig 3, after genomic DNA has been extracted 

from cell or tissue sample, the first step is to digest with DNA restriction enzyme 

(Wang et al., 2013, Cokus et al., 2008). There are two reasons for doing so: first, by 

cleaving genomic DNA into fragments, consequent electrophoresis can be used to 

perform the size selection and extract those fragments of research interest, usually the 

size range used is the range within which exist most promoter segments, the length 

range is usually pre-calculated by in silico enzyme restriction treatment and could 
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adjusted to fit different experimental need. The second purpose is to expose the CpG 

sites to the end of the fragments, so the CpG sites would more likely to be detected by 

sequencing and improve sequencing data quality in terms of how many CpG sites are 

recovered. Now the most commonly used restriction enzyme is MspI, which cut at 

“CCGG” sites and leave a "CGG" overhang. To prevent the cohesive ends from 

annealing back with each other, the following step after enzyme treatment is to repair 

the sticky end and addition of an adenine overhang. The adenine overhang will be 

used to connect with primers for next step PCR. After ends have been repaired, the 

adapters for PCR amplification will be added to the adenine overhang. Then critical 

step in RRBS is the bisulfite conversion. The sodium bisulfite will efficiently 

deaminate unmethylated cytosine to uracil without affecting 5-methyl cytosine. After 

that size-selected fragments are equipped with end adapters, denatured and treated 

with bisulfite to convert all unmethylated cytosine to uracil. Then these fragments are 

cloned into vector plasmid for sequencing, and go through PCR to amplify their 

enrichment.  

The last step is to map the sequencing reads to the reference genome and 

extract methylation information from the mapping results. In the following section, we 

will introduce some popular bisulfite sequencing mapping tools, their advantages and 

drawback. 



 8 

 

Figure 3 A schematic of the single-cell RRBS (RRBS) technique. 1) lysis of an 
individual cell, 2) release of the naked double-stranded genomic DNA, 3) 
spiking with lambda DNA, 4) digestion of the genomic DNA using a 
restriction enzyme, 5) end-repair and dA-tailing of the DNA fragments, 6) 
ligation of the adaptors to the DNA fragments, and 7)bisulfite conversion of 
the ligated DNA (Guo et al., 2013). 
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2.2 Bisulfite Sequencing Reads Analysis Tool  

To acquire a correct inference of methylation status, a tool that can map short 

reads accurately and efficiently is very desirable. There are lot of tools (Tárraga et al., 

2015, Xi et al., 2011, Fonseca et al., 2012) have been developed to tackle this 

challenge including BSMAP, Bismark, BS-Seeker2. Most of these tools perform some 

kind of conversion at the very beginning of the mapping process (e.g., Cs to Ts and Gs 

to As) either on the short reads or the reference genome sequence, or both and then use 

existing regular aligners such as Bowtie, Bowtie2 (Langmead et al., 2009), BLAT 

(Hancock et al., 2004) to map short reads to reference genome. Based on the 

underlying index algorithms, they can be categorized into two groups: Burrow-

wheeler transform, and hash table (Fig 4).  

 

Figure 4 Bisulfite mapping tools classification. The tools can be divided into two 
groups based on indexing strategies: hash tables or suffix/prefix tries. Each 
of the groups is classified further into subgroups where some example 
programs are shown. BFAST uses multiple index strategies: both hashing 
and suffix tree. 
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2.2.1 Bismark 

Bismark (Krueger et al., 2011) is a methylation profiling software based on 

indexing using Burrow-Wheeler transform. Essentially, it converts the inexact string 

matches to exact matching problem. The algorithm is composed of two sections: 1) 

identifying exact matches, 2) building inexact alignments supported by it. There are 

multiple choices for searching exact matches in suffix/prefix tries: suffix tree, 

enhanced suffix array, FM-index, Bismark utilizes FM-index. Given the fact that there 

will be four DNA strands to be analyzed after bisulfite sequencing, determine the 

strand origin of a bisulfite read could be a challenge. Bismark tackles this challenge in 

an effective way. First, It transforms bisulfite reads into a C-to-T and G-to-A version 

(equivalent to a C-to-T conversion on the reverse strand). After that, each of them is 

aligned to equivalently pre-converted reference genome using four parallel 

Bowtie/Bowtie2 process. Bowtie starts by building an FM-index for the reference 

genome and uses the modified FM index to the matching location. Bowtie2 is 

designed to support reads longer than 50bps. This feature enables Bismark to uniquely 

identify strand origin for each read, hence distinguish itself from other software. In 

addition to mapping reads to reference, Bismark directly produces methylation status 

of each cytosine position, saving bench scientists a lot of time post-processing 

mapping data. Bismark also enables methylation analysis in different sequence context 

by discriminating cytosines in CpG, CHG, and CHH context. 

2.2.2 BSMAP 

BSMAP (Xi et al., 2009) is a C++ application based on Short Oligonucleotide 

Alignment Program (SOAP) (Li et al., 2008)aligner. One challenge comes with the 

nature of RRBS is the asymmetry of C-to-T mapping, the Ts in bisulfite read can be 
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mapped to C/Ts in reference genome, whereas not vice versa. A common approach to 

tackle this issue is to convert all Cs to Ts and then map converted reads to equivalently 

converted reference. Post-processing is needed to calculate false-positive bisulfite C/T 

alignments for mismatches. This might be feasible and could do well for reads from C-

poor strands, but when processing with reads from G-poor strands, where all the Cs 

are actually transcribed from Gs by PCR, it is not appropriate to do so. Also, ignoring 

C/T asymmetry will generate large number of false-positive bisulfite mappings and 

would significantly increase the computational load in a quadratic manner when 

working against large reference genome. To work out this bottleneck, BSMAP masks 

Ts in bisulfite reads as Cs, only at C positions in the original reference while keeping 

all other Ts in the bisulfite reads unchanged. So using bitwise masking, the 

asymmetric C/T conversion is achieved, which is very fast. In addition, it indexes 

reference genome for a series of k-mer seeds using a more efficient hash table. The 

seed length and patterns are also adjustable to allow different mismatches.  

As to which tool is better, there are two evaluation criteria to consider: CPU 

running time and mapping efficiency. Mapping efficiency is determined by the 

number of short reads that have been uniquely identified divided by the total number 

of reads, and the CPU running time basically is the time a tool needed to finish a 

mapping job. According to existing tests, Bismark has the highest mapping efficiency, 

at the same time it need longer time to finish the job. This unbalanced performance 

suggests that there could be a tradeoff between mapping efficiency and CPU running 

time. Despite the performance indicators, appropriately preprocessing data before 

mapping can help increase the mapping efficiency regardless of what tools are chose. 

Also, adjusting parameters within tools can affect the mapping results. 
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2.3 Sequencing Reads Simulator 

NGS technologies, Illumina Sequencing by Synthesis, Roche/454 GS FLX, 

produces large volume of data. Increasing availability of these large volume data 

opens more opportunities for researchers. For example, deep sequencing and 

metagenomic sequencing has made it possible to study rare variants in viral population. 

Whereas mining meaningful information from sequencing data could be very difficult 

due to the error rates associated with NGS. Separating true variants from sequencing 

errors remains challenging. In addition to that, it is difficult to select appropriate 

analysis software since there are more and more software available now. So NGS data 

simulation (Xi et al., 2011) combined with downstream software benchmarking is 

needed. Here we introduce three packages aimed to generate NGS reads, underlying 

different simulation models of them, also their advances and drawbacks. It's 

noteworthy that none of these tools are developed to generate RRBS reads, leaving 

this area blank. 

2.3.1 Wgsim 

Comes with SamTools (Li et al., 2009) - the widely used sequencing alignment 

tool, wgsim is among the few tools available early for sequencing reads simulation. 

However, it only supports a uniformly increasing error rate, while NGS normally 

generates with heterogeneous error profiles. 

2.3.2 ART 

Equipped with different models for all three main sequencing platforms, ART 

(Huang et al., 2012) simulates both single-end and paired-end sequencing reads off 

454 (Balzer et al., 2010), Illumina, and SOLiD. It features built-in, platform-specific 

read error models and base quality value profiles, which are parameterized empirically 
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from large sequencing datasets. Although, ART comes with technology-specific read-

error profiles, it still retains the flexibility to take user-supplied configuration and 

generate sequencing data with various read length and error characteristics. Illumina 

sequencing by synthesis operates in base-by-base style, where each base are 

determined when they are incorporated into growing DNA template that 

complementary to template. Hence the error model for Illumina is mainly substitution. 

ART simulates substitutions based on an empirically, position-dependent base quality 

distribution, the mean quality score decreases as the base position increases. Aside 

from substitution, ART simulates insertion and deletion based on empirical model 

derived from their training datasets. Roche/454 tests the presence of A, T, G, C in 

cyclical fashion, where results are produced as intensity signal based on number of 

incorporated based in a single cycle. Hence the error model for it is indel resulting 

from base over- or under-call. Given that sequencing error rarely changes with 

increasing flow cycle for 454 sequencing, ART adopt the empirical model where error 

profile are based on homopolymer length-dependent base over- or under-call. ABI's 

SOLiD is a relatively outdated sequencing platform, whereas ART still support 

simulation of it by generating nucleotide transition color, where distribution of DNA 

fragment size is determined by gaussian distribution. As to data output, ART can 

generate simulated reads in FASTA formal, and alignment in the ALN format. Also 

ART can output alignment in SAM format or UCSD BED file format. All in all, 

implemented in C++, ART is optimized with specific algorithms for different 

sequencing platform and is highly efficient in read simulation.  
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2.3.3 GemSIM 

GemSIM (McElroy et al., 2012) is a python application with a command line 

interface. It consists of four components: GemErr, GemHaps, GemReads, and 

GemStats. Similar to ART, GemSIM supports most of mainstream sequencing 

platform by using empirically derived fragment length model and error distribution 

profile. In addition to that, GemSIM also can generate simulation reads from several 

reference genomes, which makes it possible to simulate deep sequencing, 

metagenomic, and resequencing projects. 
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Chapter 3 

METHOD 

3.1 Overview of The Pipeline 

Simulation of bisulfite sequencing usually appears in publication as pilot assay 

part, but it could be very valuable to have a comprehensive pipeline that fulfill 

multiple tasks from sequencing reads generation to analysis, which makes 

experimental design more convenient and feasible.  

BisSeq fills this need. As shown in Figure 5, it can be divided into three steps 

in general. First, users will configure parameters to be used for simulation. Currently 

we support a range of parameters that are essential to sequencing experiment, which 

including read length, genome copy number, seqCycles. Since this project is still in 

pilot stage, our pipeline does not support sequencing error models, which we'll discuss 

in more detail later. With user-set parameters, sequencing reads are produced based on 

reference genome.  Then simulated data can be used for downstream mapping and 

analysis. Although BisSeq does not map sequencing reads itself, it allows user to 

plugin an aligner to do the mapping. Currently, users can choose from BSMAP, 

BSseeker2, and Bismark. Also BisSeq provides functions to analyze and visualize 

mapping results. Throughout the workflow of BisSeq, a log file system will record 

running time parameters and necessary statistics to aid the final methylation profiling 

analysis. In case of system failure, these log files may also help to find out the break 

point and recover the task from there. Some prerequisites of BisSeq are listed as 

following: 
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Pypy: 2.7.9,  

Bismark: v0.14.5,  

BSMAP: 2.90 

BSseeker2: 2.0.3 

Bowtie2: 2.2.6,  

Samtools: v1.4 

Perl: v5.18.2 

 

Figure 5 Overview of the BisSeq architecture 
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3.2 Configure Simulation Parameters 

Before simulation actually starts, users need to configure the parameters first. 

Starting with whether to use existing reference genome, the value of "ReadGenFile" is 

set to 0 if user chooses to simulate reference genome from de novo. Otherwise, a 

genome will be loaded from the directory where "LoadGenome" specified. 

"genCopyNum" defines how many genome copies will be used to form a population 

with certain methylation pattern. "fracBIS" set the fraction of bisulfite conversion rate.  
Parameter Name Description 

TAG Unique Id string for folders/files 

gMBsize Set the genome size to be generated if choose to simulate reference 
genome 

genCopyNum Number of genome copies (each with methylation patterns) 

seqCycles Number of sequencing cycles (depth of fragment sampling) 

readLen Sequencing read length (bp)  

simRefGenFolder Specify working project of BisSeq 

ReadGenFile Decide whether to generate reference to use or load existing 

fracBIS Percent efficiency of bisulfite converting reaction 

fastQ Whether use Fasta file. 0=fasta, 1=fastQ with phred score 

coinToss Probability of a fragment in sample population to be sequenced 

LoadGenome Location for reference genome to load if ReadGenFile is set to 1 

Table 1 Parameters that users need to configure before run simulation 
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3.3 Simulation of RRBS Reads 

As indicated by diagram in Figure 5, simulation is the core step of the whole 

pipeline. A python script generates the simulated reads.  It can be further divided into 

several steps: 1) load input genome and initiate global variables, 2) generate 

differentially methylated genome population, 3) in silico restriction enzyme digestion, 

4) creating sequencing read tags, 5) output reads to a fasta file and statistics table 

about simulation. 

At the very beginning of the python script, it will first read in all the user-set 

parameters. If user set the "ReadGenFile" to 0, a reference genome will be simulated, 

using the build-in genome simulator. It is implemented in a base-by-base fashion with 

the genome size and nucleotide percentage predefined. Since "CCGG" sites will be 

used to digest the reference genome later, we need to control the number of occurrence 

of "CCGG" when simulating the genome. Our method is to set up a random number 

generator and visit this generator every time adding a nucleotide. If the number 

returned by this generator exceed threshold set by us, then a "CCGG" fragment will be 

incorporated into growing sequence instead. If not, other if-conditions will be visited 

to decide which nucleotide to add. This genome simulator is developed at early stage 

of BisSeq to provide small and simple reference genome for software testing purpose. 

This function has been retained in case users might need small reference genome to 

get a quick view about how BisSeq works. In the next edition, this function will be 

deprecated. 

With reference genome loaded into memory, the python script will then scan 

the genome to find out all the "CpG" sites (even though there are many types of DNA 

methylation, BisSeq focus on the 5'-C methylation, which are mostly likely to occur 

within "CpG" islands). A methylation rate will be randomly assigned for each "CpG" 
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site, and this information will be stored in a dictionary. Dictionary is a data structure in 

python, which is similar to hash table in other programming language, here "CpG" 

position index is stored as key and the methylation rate is stored as value. The pseudo 

code is shown in upper panel of Fig 6, the dictionary here is named "MetTable". 

 

 

Figure 6. Pseudo code to generate methylation table and to differentially methylated 
genome copies. Here genome sequence is stored as an array in "refGenome". 

Before we start to generate sequencing reads, we need to acquire a 

heterogeneous methylated population first. This resembles the fact that in the real 

sequencing sample each different cell may have their own unique methylation profile 

and together they form a methylation pattern for that sample. So now the problem is: 

how can we methylate each reference genome copy to finally achieve a population, 
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which represent methylation pattern we pre-calculated in the last step. Our solution is 

to follow a genome-by-genome fashion, where we run a for-loop for number of 

genome copy times (genome copy number is defined by user at the parameter tuning 

stage). As show in lower panel of Fig 6, at the beginning of each loop we iterate 

through all the "CpG" sites store in "MetTable" and decide whether to methylate it or 

not. The method we use here is to visit a random number generator, which produce 

random integer between 0 and 100. If the number generated is less than the 

methylation rate we designate for this position in "MetTable", then we swap the 

cytosine in "CpG" site with an "x" mark to indicating that cytosine is methylated. 

Otherwise, we pass this site and leave cytosine unchanged. For instance, we have 100 

genome copies to methylate. And for position index "10045", we designate a 

methylation rate of 25%. For 100 genome copies, we will visit the random integer 

generator 100 times. Assuming that the function is random and each number has equal 

probability to be returned, then around 25 out of total 100 "cg" generated will be 

smaller than 25, and those genome copies will be methylated at position index 

"10045". Every time we methylate a site, we record it by increase the methylation 

count of position by 1, as reflected by "refMetCount[cgPOS] += 1" in Fig 6. So at the 

end, we can calculate exact methylation rate based on "refMetCount" dictionary. 

The next step is restriction enzyme digestion. We currently support MspI 

digestion, since it is the most widely used enzyme for RRBS. In fact, there are many 

enzymes also eligible for RRBS as long as they have "CG" dinucleotide in their 

recognition site, we will discuss this possibility in future work section. Noticing that 

some cytosine ("C") is now represented by "x" due to methylation, the recognition site 

used for in silico digestion is "CCGG" or "CxGG" (MspI will recognize "CCGG" site 
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and cut at the second cytosine from the 5' end, leaving a "CGG" end). After scanning 

through the genome string, digested fragments are stored in an array. 

 Before we start generating sequencing reads, there is an additional size 

selection step. When the RRBS technique first comes out, no size selection was 

applied before the sequencing. However, researchers find out that by doing in silico 

against whole genome they can acquire a length range where resides most of 

fragments come from promoter area. This progress leads to an addition of size 

selection to RRBS protocol, which enables scientists to obtain methylation 

information from promoter area. Also size selection can be adjusted for specific 

research interest, which we will discuss later. According to published data (Gu et al., 

2010, Cokus et al., 2008), we implement size selection to retain all fragments within 

range of 40~150bp and 150~220bp. The size selection could also be tuned per users' 

request. Then python script will perform the bisulfite conversion. Similar to the 

method we used before, a random number generator is set up to determine whether an 

unmethylated cytosine will be converted. The "x"s in fragments are converted back to 

"C", which represent methylated cytosine. Until now, all enzyme digested and 

bisulfite converted fragments are stored in an array. These fragments are cropped at 

one end with predefined "readLen" and written to .fa or .fq file. Noted that there is 

also a probability of whether a fragment will be cropped, reflected in the reads file; the 

probability used here is "coinToss". This process is repeated "seqCycles" times for 

each fragment to generate desired depth of coverage.  

The reads simulation is largely organized around the for-loop. The reason is 

that by incorporating reads generation into each loop instead of methylating all 
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genome copies first, we avoid storing all those differentially methylated genomes in 

memory, saving huge amount of memory space.  

3.4 Reads Mapping and Data Visualization 

Based on which alignment tool the user choose, it will be loaded to map 

sequencing reads to reference genome. Normally RRBS alignment tools require a pre-

processing step to either convert sequencing reads or reference to a G-to-A and C-to-T 

version, sometimes both. After reads are mapped and methylations are extracted, 

BisSeq will take the results to generate tables to visualize the performance of 

alignment tool. The final representation of result profiling the performance of tool 

questioned contains two figures: one is scatter plot with observed methylation rate as 

X axis and expected methylation rate as Y axis; another one is bar plot with 

methylation rate call value as X axis and corresponding counts as Y axis. 
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Chapter 4  

RESULT 

4.1 BisSeq: The Command Line Tool of RRBS Simulation and Profiling 

BisSeq is now working as a command line package, consisting of four scripts. 

1) 00-Bis-SimQuantPipe.sh, 2) 01-GenerateBisulfiteSeqTagData.py, 3) 02-bis-

ScoreSimMethyl.py, 4) 03-bis-SimMetPlots.R . The workflow is as follows: 

4.1.1 Core Shell Script 

This shell script, 00-Bis-SimQuantPipe.sh, is responsible to set up folders and 

file location for later simulation results. It reads in simulation parameters (as shown in 

Figure 6) from users and decides which steps within BisSeq pipeline will be executed. 

There are several gate variables set up in this script; they will be sequentially visited to 

decide whether certain step is going be run. This design provides an easy-to-use 

function that facilitates users to flexibly use BisSeq to implement different simulation 

purposes, and may potentially save substantial amount of time by avoiding repeated 

work. In addition to flow control, core shell script stores configuration in a text file as 

run log every time it is executed, in case users may need to retrieve run-specific 

setting later. 
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Figure 7 Example of parameters setting in the shell script 

4.1.2 Simulation Script 

Simulation script, 01-GenerateBisulfiteSeqTagData.py, is called by core shell 

script when its corresponding gate variable is set to 1. It parses the arguments calling it 

and extracts variable values sent by the core shell script for simulation. As mentioned 

in method section, this script will first generate a methylation table and provide it to 

downstream code; this table will be stored in a text file as a run log. The first column 

is index position of the "CpG" sites (0-indexed), the second column is the methylation 

rate designated for that site. While simulation going on, methylation status for each 

"CpG" site is also recorded and then actual methylation rates in simulated reads will 

be calculated base on them. This actual methylation rates table reflects the real 

methylation information in the genome population used for subsequent reads 

production; it is unknown in real-world experiment which makes it difficult to 

objectively benchmarking RRBS analyzing tool. This table is also used in the final 

sequencing error evaluation in the later section. Running log printed out in command 

line is also stored for debugging purpose.   
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4.1.3 Results Processing Script 

After reads are simulated, aligned to reference genome and methylation call 

has been made, the results need to be filtered to accommodate for downstream 

visualization. This script, 02-bis-ScoreSimMethyl.py, comb raw results from aligner 

tool and generate ready-to-plot tables. Three tables will be generated depending on 

whether a site is profiled having positive methylation rate, and whether a site have a 

expected positive methylation rate. The first table-"output table", which contains sites 

have positive expected methylation rate and positive profiled rate, has 7 columns: 1) 

position index of "CpG" site, 2) expected methylation rate, which extracted from table 

generated simulation script, 3) observed methylation rate that calculated by aligning 

tool under study, 4) number of methylation calls at this position, 5) number of 

unmethylated calls at this position, 6) the percent of guanine and cytosine within 40 

base pair range, taking "CpG" site in center position, 7) the distance from this site to 

nearest methylated site. The second table, "lost table", contains the lost sites, which 

have positive expected methylation rate but profiled having no methylation. The third 

table, "other table", stores the sites are not expected to be methylated but profiled to 

have positive methylation rate. 

4.1.4 Data Visualizing Script 

This script, 03-bis-SimMetPlots.R, is written in R. It produces two figures: 1) 

obsMet vs expMet plot, which communicates how far the RRBS analyzing tool 

deviated from correct result. 2) methylation rates distribution bar plot, which represent 

the distribution of profiled methylation rates. 

Currently beta version of BisSeq is still under construction, developments of 

more features are in progress and will be added to the package. Interests and inquiries 
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about BisSeq could send to Dr. Marsh at amarsh@udel.edu and Yubo Xu at 

xuyubo@udel.edu. 

4.2 Case Study: RRBS Simulation of Human Chromosome 1 

4.2.1 Sequencing Reads Simulation 

BisSeq makes it possible to simulate RRBS process and the following software 

benchmarking. We use human chromosome 1 as reference genome, with some key 

parameters setting shown in table 2:  

 

Parameters 

TAG="Y_hChr1_Feb" 

SeqID="001" 

genCopyNum=500 

seqCycles=5 

readLen=60 

fracBIS=99 

coinToss=2 

Table 2 Parameters setting for simulation 

All tasks were deployed on Biohen server hosted at Center for Bioinformatics 

and Computational Biology, University of Delaware. The Node37 was reserved for 

BisSeq tasks. It has two Intel Xeon E5-2630 @ 2.30GHz processors, each with 6 cores, 

It takes ~1 hour to finish the simulation step, generating sequencing reads file of size 
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2.25 Gb, containing 18617698 sequencing tags. Among 98187000 "CpG" sites, there 

are 51282435 sites are unmethylated, the remaining ones are methylated. The 

alignment tool we choose here is Bismark. Before running reads alignment, Bismark 

needs to convert reference genome into a G-to-A and C-to-T version. After reads are 

aligned, Bismark methylation extractor was executed to acquire methylation status. 

Results profiling Bismark are shown in Figure 7. It shows that Bismark profiled 

methylation rate generally resemble that of real data, even with a small deviation. 

However, this performance is from an experiment simulating against a small fraction 

of genome, whether Bismark can provide an accurate profiling of reads against large 

and complex genome is still waiting to be answered.  
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Figure 8 Methylation rate profiled by Bismark vs Actual methylation rate. 
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Figure 9 Methylation Distribution profiled by Bismark on Y_hChr1_Feb_001 
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Figure 10 Expected methylation distribution of Y_hChr1_Feb_001 
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Figure 11 Error rate distribution of Y_hChr1_Feb_001 

 

4.2.2 Read Length Effect On Different RRBS Mapping Tools 

Another question about RRBS has been read length. With the advancement of 

sequencing technique, nowadays we are able to achieve sequencing reads with longer 

and longer length. However, which sequencing analysis tools to use still has no clear 

answer across different research groups. Here we design this use case to profile the 
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performance of different RRBS mapping tools when dealing with various read-length 

sequencing samples, we choose the range from 40 ~ 140bp with 10bp increment per 

group. There are three bisulfite sequencing mapping tools selected, Bismark, 

BSseeker2 (Guo et al., 2013), BSMAP, based on the their popularity and maintenance 

effort from their development team.  

As goal is to benchmark the performance of bisulfite mapping tools, we 

designed a profiling metric accordingly. There are three factors that we take into 

consideration here: mapping efficiency, CPU running time, and the methylation error. 

Here by mapping efficiency, we mean the number of uniquely mapped read divided by 

all sequencing reads. And the "uniquely" does not indicate the read mapped exactly 

one time to reference genome, sequencing reads usually have multiple matches where 

each match has alignment score. As long as there is one match for a read has much 

higher alignment score than the other matches, then this read is "uniquely" mapped. 

Our experiment result shows that, across all read length groups, BSseeker2 achieved 

highest rate of uniquely mapped reads, followed by BSMAP and then Bismark. As 

shown in Fig. 8, both three tools' mapping efficiency increase from around 70% to 95% 

as the read length of sequencing sample increases, the performance of three tools are 

very close to each other. The second factor is CPU running time, which is time the 

tool needed to finish mapping. For some tools that convert reference genome before 

mapping, the time spend on conversion are also included. In Fig. 9, we can tell 

BSMAP is fastest in terms of CPU running time, followed by Bismark, and BSseeker2. 

Last factor is methylation error. Knowing the expected methylation rate, as we record 

that information during simulation process, we calculate R-squared value for each 

experiment to evaluate the accuracy of methylation call for each tool. Fig. 10 shows 
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that R-squared value of BSMAP is lower than other two tools across all read-length 

groups, whereas BSseeker2 and Bismark have similar values. This indicates that even 

BSMAP runs faster than BSseeker2 and Bismark, it produces less accurate 

methylation profile. Fig 11 shows the visualization of the data behind how we 

calculate the R-squared value plot. Combined the comparison metrics together, 

Bismark can produces relatively accurate methylation profile within reasonable 

amount of time, while BSseeker2 require longer running time. BSMAP can finish 

mapping quick, but the quality of methylation profile is not as well as those generated 

by other two tools. 
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Figure 12 Mapping efficiency profile using BisSeq. The sequencing reads are 
generated with read length increase from 40 bp to 140 bp with 10 bp 
interval. The number of mismatch allowed is set to zero, and the rest of 
parameter are using default for each program. 
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Figure 13 CPU running time evaluation of Bismark, BSseeker2, BSMAP. Here 
Bismark, BSseeker2 convert reference genome before mapping, the time 
needed for conversion are also included in running time. 
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Figure 14 R-squared value plot for each bisulfite mapping tools across various read-
length sequencing samples. . 



 37 

 

Figure 15 Visualization of Observed methylation rate vs Expected methylation rate for 
Bismark, BSseeker2, BSMAP, across 60bp read-length group and 120bp 
read-length group. 
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Figure 16 Mapping efficiency profile using BisSeq shown in bar plot grouped by 
various read length.. 
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Chapter 5  

DISSCUSSION AND FUTURE WORK 

5.1 Dicussion 

As a pilot project, there are still many features could be improved in BisSeq 

pipeline. The RRBS simulator now only supports Illumina sequencing platform. 

Different sequencing platform employ various techniques that leading all kinds of 

error model. A good simulation tool should provide service across different platform.  

In terms of simulation, BisSeq's error model is currently very simple and may 

not able to resemble all the detail that occurred in real sequencing process, which may 

affect the confidence level of research outcome using BisSeq. Now BisSeq only 

allows single input reference genome, does not enable cross species simulation, this 

prevent metagenomic (Richter et al., 2008) researchers from using our tool. All in all, 

even BisSeq provides users with opportunities to simulate RRBS data; there are still 

certain drawbacks in BisSeq that confine its functionality. We describe some our 

solutions and next step plan in the following section. 

 

5.2 Future Work 

Our future work will devote to modify the simulation section of BisSeq to 

provide a more comprehensive simulation across multiple sequencing platforms. In 

near future, an improved version of error model will be loaded into BisSeq. It will 
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support sequence context based error model (Nakamura et al., 2011) and possibly 

enable users to generate their own error model from previous sequencing data. 

As a critical step in RRBS, enzyme digestion exposes "CpG" to end of 

fragment, which makes it easier for them to be sequenced. But for a certain enzyme, 

take MspI as example, it can only has limit number of recognition sites within 

reference genome. We are planning to use multiple restriction enzymes in combination, 

as long as they have "CG" in their recognition sites, to identify more effective enzyme 

combo. Further improvements to BisSeq will include but not limited to the previous 

mentioned parts. 



 41 

Chapter 6 CONCLUSION 

At the current stage, we developed a RRBS simulation and analyzing pipeline 

capable of generating single-end reads for Illumina sequencing platform. BisSeq read 

in users' parameter configuration and generates corresponding reads tag in fasta format. 

It provides users with comprehensive log files to track each execution. Users can 

choose their own alignment tool to achieve specific experiment results. BisSeq 

communicates the performance of alignment tool in forms of easy-to-interpret figures. 

Read-length effect use case shows the potential BisSeq have on benchmark bisulfite 

mappings tools. Even certain drawback exists, BisSeq fill the blank in area of RRBS 

simulation. It is a good prototype that can be optimized in the future. 
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