

EXPLORING THE IMPACT OF A SCHOOL-UNIVERSITY PARTNERSHIP

MODEL ON SUPPORTING COMPUTER SCIENCE LEARNING AMONG

MIDDLE SCHOOL STUDENTS

by

Yi-Cheng Pan

An executive position paper submitted to the Faculty of the University of
Delaware in partial fulfillment of the requirements for the degree of Doctor of
Education in Educational Leadership

Summer 2018

© 2018 Yi-Cheng Pan
All Rights Reserved

EXPLORING THE IMPACT OF A SCHOOL-UNIVERSITY PARTNERSHIP

MODEL ON SUPPORTING COMPUTER SCIENCE LEARNING AMONG

MIDDLE SCHOOL STUDENTS

by

Yi-Cheng Pan

Approved: __
 Chrystalla Mouza, Ed.D.
 Interim Director of the School of Education

Approved: __
 Carol Vukelich, Ph.D.
 Dean of the College of Education and Human Development

Approved: __
 Douglas J. Doren, Ph.D.
 Interim Vice Provost for the Office of Graduate and Professional

Education

 I certify that I have read this executive position paper and that in my
opinion it meets the academic and professional standard required by the
University as an executive position paper for the degree of Doctor of
Education.

Signed: __
 Chrystalla Mouza, Ed.D.
 Professor in charge of executive position paper

 I certify that I have read this executive position paper and that in my

opinion it meets the academic and professional standard required by the
University as an executive position paper for the degree of Doctor of
Education.

Signed: __
 Fred T. Hofstetter, Ph. D.
 Member of executive position paper committee

 I certify that I have read this executive position paper and that in my

opinion it meets the academic and professional standard required by the
University as an executive position paper for the degree of Doctor of
Education.

Signed: __
 Nancy Lavigne, Ph. D.
 Member of executive position paper committee

 I certify that I have read this executive position paper and that in my

opinion it meets the academic and professional standard required by the
University as an executive position paper for the degree of Doctor of
Education.

Signed: __
 Lori L. Pollock, Ph. D.
 Member of executive position paper committee

 iv

ACKNOWLEDGMENTS

I would like to thank and acknowledge my advisor, Dr. Chrystalla Mouza for

giving me the opportunity to work with her and being a continuous source of

inspiration, support, and encouragement throughout this endeavor. During this

journey, Dr. Mouza provided me guidance, knowledge and a belief in myself as I

began to grow professionally. I would also like to give thanks to my supervisor, Dr.

Lori Pollock, for her valuable and constructive suggestions about the study and giving

me the opportunity to work with her on the Partner4CS project. Many thanks must

also go to my committee members, Dr. Fred Hofstetter, with whom I began my

journey at the University of Delaware, and Dr. Nancy Lavigne for their advice and

suggestions.

I am very grateful for the support and assistance of the teacher who

participated in this work and her willingness to turn her classroom into a laboratory

during the research process. I would also like to thank the school students and

computer science undergraduates who participated in this work, as well as Partner4CS

members Dr. James Atlas and Dr. Terry Harvey.

Finally, I will be forever grateful to my loving wife, Marybeth; my parents,

John and Julia; my uncle and aunt, Michael and May Kuo; and my sister, Annie, for

their unconditional love, support, and understanding during this process and

throughout my life. Last but not least, I have also been fortunate to have friends, co-

workers, and research colleagues who have enriched my graduate experience in

different ways.

 v

This work was supported by the National Science Foundation under award

number: 1240905.

 vi

DEDICATION

This work is dedicated to my Lord Jesus Christ. All praise, honor and glory to

my Lord Jesus Christ for His richest grace and mercy for the accomplishment of this

work.

 vii

TABLE OF CONTENTS

LIST OF TABLES .. ix	
LIST OF FIGURES .. xi	
GLOSSARY .. xii	
ABSTRACT ... xv

Chapter

1 INTRODUCTION ... 1	

Introduction and Background .. 1	
Relevant Literature ... 3	

Reforming CS Education ... 3	
Community-Based Approach to CS Education 4	
Defining Computational Thinking ... 5	
The Relationship between Computational Thinking and Programming .. 6	
Measuring Computational Thinking .. 10	
Computer Science Content and Pedagogical Strategies 11	

Context of This Work .. 15	

University of Delaware’s Partner4CS .. 15	

The Setting of the Course and the Partnership Model 16	

University Course .. 16	
Partnerships and Field Activities ... 19	

Purpose of the Study and Research Questions ... 20	

Research Questions .. 20	

2 RESEARCH DESIGN AND METHODOLOGY 22	

The Description of the Classroom Context .. 22	
Study Participants .. 23	
Data Collection .. 24	

Observation Data ... 25	
Data from CS Undergraduates ... 26	
Data from Partner Teacher ... 27	
Data from Middle School Students .. 27	

 viii

Data Analysis ... 29	

Data from CS Undergraduates ... 29	
Data from Middle School Students .. 32	

3 FINDINGS ... 34	

Research Question 1 .. 34	
Research Question 2 .. 36	

Quality of Instructional Materials .. 36	

Research Question 3 .. 46	

Computational Thinking Acquisition in Students’ Content
Assessment ... 46	
Computational Thinking Concept Development in Students’ Design
Tasks .. 48	
Students’ Views of Scratch .. 48	

4 DISCUSSION AND CONCLUSIONS ... 53	

Discussion .. 53	
Recommendations .. 54	
Implications and Future Research .. 56	
Limitations ... 57	
Conclusion ... 58	

REFERENCES .. 59

Appendix

A PRE- AND POST- CLUB QUESTIONNAIRE .. 64	
B IRB APPROVAL NOTIFICATION DOCUMENT 68	

 ix

LIST OF TABLES

Table 1	 Brennan and Resnick’s CT Framework .. 9	

Table 2	 Framework for Equitable CS Instruction .. 12	

Table 3	 Seven Big Ideas of Computer Science Principles Curriculum 13	

Table 4	 Brief Description of the University Course .. 17	

Table 5	 Description of Undergraduate Participants in the Partnership 23	

Table 6	 Research Questions and Data Collection Matrix 25	

Table 7	 Prompts for Case Reports ... 26	

Table 8	 Design and Reflective Journal .. 29	

Table 9	 CS Case Report Criteria and Rubric Established from Literature
Review .. 30	

Table 10	 Coding Schemes .. 31	

Table 11	 Roles of CS Undergraduates in Partnerships 34	

Table 12	 Average Mean Scores on the CS Case Report Rubric 37	

Table 13	 Description of Cases Enacted by Undergraduates: A Focus on Big
Ideas .. 38	

Table 14	 Description of Cases Enacted by Undergraduates: A Focus on CT-
Infused Pedagogy .. 39	

Table 15	 Description of Cases Enacted by Undergraduates: A Focus on CT
Tool Selection ... 40	

Table 16	 Formative Assessment: Weekly Design and Reflective Journal 43	

Table 17	 Description of Cases Enacted by Undergraduates: A Focus on
Assessments .. 45	

Table 18	 Dependent (Paired) T-Test of Pre- and Post- Content Assessment 47	

Table 19	 Pre- and Post- Scores on Scratch Knowledge Assessment Items 47	

 x

Table 20	 Coding Schemes for Students’ Views of Scratch 49	

 xi

LIST OF FIGURES

Figure 1	 Scratch, Block-Based Programming Language 8	

Figure 2	 Scratch Clubhouse .. 22	

Figure 3	 The Slides of CS Unplugged Activity: Loops 41	

Figure 4	 The Exit Tickets Developed by Undergraduates 42	

Figure 5	 Students’ Design Journal .. 42	

Figure 6	 Students’ Story Board ... 43	

Figure 7	 A Group of TCS Students Invited to Participate in the CIS Showcase
Event at UD ... 46	

Figure 8	 Scratch Project Level Analysis of Students’ Pre-and Post- Design
Tasks ... 48	

 xii

GLOSSARY

Term Explanation
Alice An online block-based language environment for users to

create animations and interactive media.
https://www.alice.org/

App Inventor An open-source web application developed by Google and
maintained by MIT, allowing users to create software
application for Android with a visual-object, drag-and-drop,
and block-based language.
http://www.appinventor.org/

Arduino Arduino is a platform designed for electronics projects,
consisting of a programmable circuit board and its integrated
development environment (IDE).
https://www.arduino.cc/

BeeBot An educational robot designed for young kids.
https://www.bee-bot.us/

Blockly A visual block-based language developed by Google. Blockly
has been adapted and integrated in many projects.
https://developers.google.com/blockly/

Code Monkey An online website promoting code literacy with gamification
elements.
https://www.playcodemonkey.com/

Code.org A nonprofit organization dedicated to broadening participation
and access in computer science education with online
activities and comprehensive K-12 computer science
curriculum.https://code.org/

CS First Google’s CS First, a curriculum designed to introduce kids to
computer science with activities and projects.
https://csfirst.withgoogle.com/en/home

Dash and Dot Educational robot kits developed by Wonder Workshop,
programmed by Blockly.
https://www.makewonder.com/dash

Edison Robot Educational robot kit programmed by barcodes or block-based
language.
https://meetedison.com/

E-textiles Electronic textiles are wearable computing projects that enable
digital components and electronics to be embedded in fabrics.

Finch Robot An educational robot that works with Scratch or Snap,
designed to develop students’ computer science learning and
computational thinking.
https://www.finchrobot.com/

 xiii

Hour of Code A movement and campaign for computer science education
organized by Code.org and an online educational platform
with tutorials and activities for kids in coding.
https://hourofcode.com/us

HTML Hypertext Markup Language is the standard markup language
for creating web pages and web applications.

Hummingbird An educational robot that works with Scratch or Snap,
designed to introduce kids to robotics and engineering.
https://www.hummingbirdkit.com/

Java A computer-programming language.
Khan Academy Educational organization providing online interactive lessons

and content for students and educators.
https://www.khanacademy.org/

Makey-Makey A circuit board allowing users to connect conductive objects
with alligator clips and a USB cable to computer programs
and send keyboard or mouse click inputs.
https://makeymakey.com/

Mbot Educational robot kit developed by Make block, programmed
by block-based language.
https://www.makeblock.com/steam-kits/mbot

Micro:bit A tiny programmable computer built on Blockly and designed
to promote learning computing and coding.
http://microbit.org/

Ozobot A robot designed for education, programmed by drawing color
codes or Ozoblockly.
https://ozobot.com/

Pencil Code A block-based programming tool.
https://pencilcode.net/

Python Turtle A python feature, commanding a turtle to move around like a
drawing board for beginners.

Raspberry Pi A small single-board computer developed in the U.K. by the
Raspberry Pi Foundation to promote basic computer science
education.
https://www.raspberrypi.org/

Scratch A block-based programming tool developed by MIT.
https://scratch.mit.edu/

Snap! A block-based programming tool developed by Berkeley.
https://snap.berkeley.edu/

Sphero A robot designed for education, programmed by blocks or
JavaScript. https://www.sphero.com/

Tynker A block-based programming tool.
https://www.tynker.com/

 xiv

3D Printing A process of creating a three-dimensional object with 3D
printers and software such as Tinkercard.
https://www.tinkercad.com/

 xv

ABSTRACT

Recent policies and initiatives emphasized the importance of helping all

students acquire Computer Science (CS) knowledge and develop Computational

Thinking (CT). This study investigated the impact of a school-university partnership

model on school students’ CT development in the context of an after-school program.

This study also examined the ways in which college CS undergraduates supported

practicing teachers in the field, both through teaching practices and material

development. The overall purpose of this work is to link CS undergraduates’ practices

from the designed partnership model to in-class support for teachers and subsequent

student outcomes.

Participants included 65 school students in grades four to six who voluntarily

participated in the nine-week after-school program, as well as six CS undergraduates

and one practicing teacher who designed and implemented the program. Data were

collected from multiple sources, including after-school program observations,

undergraduate reflections, CS case reports, CS content assessments, programming

products, design journals, and a teacher interview.

Results indicated that CS undergraduates actively sequenced, facilitated, and

co-led a set of progressive, cohesive, meaningful, and relevant CS lessons with sound

pedagogical strategies and age-appropriate CT tools and activities. School students’

learning progress was also guided and built upon several formative and project-based

assessments. Further, results indicated that the school-university partnership program

positively influenced student learning of CS concepts, practices, and perspectives.

Findings from this work can help provide guidelines for the design and

implementation of effective partnership programs that help broaden participation in

 xvi

computing, with attention to the ways in which field experience and CS

undergraduates can help support CS education in local communities.

 1

Chapter 1

INTRODUCTION

Introduction and Background

Over the past 10 years, growth in STEM (Science, Technology, Engineering,

and Mathematics) jobs was three times greater than non-STEM jobs (Computer

Science Teacher Association and Association for Computing Machinery, 2013) and

current projections indicate that by 2020 there will be 9.2 million STEM jobs (Bureau

of Labor Statistics, 2010). STEM occupations will provide 2.4 million job openings

through 2018, including 1.1 million new job openings and 1.3 million replacement

jobs due to retirement (CSTA Association for Computing Machinery, 2013).

However, the U.S is facing shortages of people who either meet or are willing to

receive STEM competencies. At the same time, research has shown that quantifiable

STEM shortage is an important priority that needs to be addressed through a national

strategy in order to sustain economic innovation and competency (CSTA Teacher

Certification Task Force, 2008; Goode, 2011).

Throughout all STEM fields, computer science (CS) is the primary leading

driver for job growth. More than 50% of the jobs in STEM fields projected by 2018

are in computing occupations, which means there are 4.6 million jobs waiting for

those leaving college (CSTA Association for Computing Machinery, 2013). CS is one

of the most in-demand degrees (CSTA Association for Computing Machinery, 2013).

Technology has critical relationships between the high-tech industries, national

security, long-term economy, and the ability to maintain global leadership in

 2

innovation. There is also a critical link between CS education and economic growth

(CSTA Teacher Certification Task Force, 2008; Goode, 2011). Specifically, CS

provides the knowledge and skills all students need (even those pursuing non-STEM-

related fields) to participate in the new global information society (CSTA Teacher

Certification Task Force, 2008; Wing, 2006).

The U.S. education system, however, is not educating enough students with

STEM-capable competencies, especially in CS, to keep up with demand both in

traditional STEM occupations and other new occupations that need similar

competencies (National Research Center, 2010; Sengupta, Kinnebrew, Basu, Biswas,

& Clark, 2013). Specifically, only nine U.S. states are counting CS courses as a core

requirement in K-12 education. According to the office of the Press Secretary (2016)

“by some estimates, just one quarter of all the K-12 schools in the United States offer

CS with programming and coding, and only 28 states allow CS courses to count

towards high-school graduation, even as other advanced economies are making CS

available for all of their students” (p. 1). As a result, educators are facing a

responsibility to ensure all students have opportunities to learn CS principles and

computational thinking (CT) practices that are relevant to their future career and lives

(Barr, Harrison, & Conery, 2011; Sengupta et al., 2013; Wing, 2006).

It is clear, that the U.S. K–12 educational system continues to marginalize CS

education (CSTA Teacher Certification Task Force, 2008; Goode, 2011). Although

there is clearly a demand, there is currently no way to ensure that students learn the

best-prepared content and skills they need from well-trained qualified CS educators

(CSTA Teacher Certification Task Force, 2008). Federal, state, and local policies

governing teacher certification also result in barriers to, rather than support for,

 3

teaching and learning in CS. According to the CSTA Teacher Certification Task Force

(2008), the U.S. needs clear, consistent, and rational policies governing what teachers

need to know, along with similar policies on how to systematically train teachers. In

the absence of teacher preparation and support, the U.S. will be under-producing

STEM workers for the next generation.

Relevant Literature

Reforming CS Education

Many governments around the world are working on improving their CS

education and curriculum. The British government is changing its CS education and

CS has become a part of England’s primary school curriculum. Other countries such

as Australia, Denmark, Israel, New Zealand, and Germany have also updated their CS

high-school curricula (A is for Algorithm, 2014).

In the U.S., President Donald Trump’s new CS campaign builds in some ways

on previous work by his predecessor, former President Barack Obama, who sought to

boost coding education through initiatives like Computer Science for All. Many tech

industry leaders such as Google, Apple, Amazon and Microsoft have also provided

funding to begin developing resources and models. CS for All called for a 4.1 billion

budget targeting the following goal: “children from kindergartens through high

schools need to learn Computer Science and be equipped with the CT skills they need

to be creators in the digital economy, not just consumers, and to be active citizens in

our technology-driven world” (Whitehouse.gov, 2016, p. 1). Further, this initiative

aims to provide professional development for teachers with high-quality instructional

materials.

 4

The National Science Foundation and its CS 10K project aims to address

teacher preparation explicitly and prepare 10,000 teachers in 10,000 high schools. The

target date for having these teachers in place, which has been extended, was 2015. The

project is a large-scale, collaborative effort bringing communities together with “the

goal of systematically changing the scale, curriculum, and pedagogy of teaching

computer science at all levels,” with a particular focus on CS in U.S high schools as

well as introductory computing at the college level (for more information,

http://cs10kcommunity.org/). The NSF also launched a new program called

Computing Education for the 21st Century (CE21) to help leverage CS10K effort.

The Computer Science Teacher Association (CSTA) released the revised K-12

Computer Science standards (Computational Thinking—Teacher Resources second

edition, 2017). The standards provide a framework and foundation for K-12 CS

education. The Association for Computing Machinery (ACM) and CSTA also

launched a new K-12 advocacy coalition called Computing in the Core to establish

partnerships. Further, many high schools implemented an introductory Computer

Science course called Exploring Computer Science (http://www.exploringcs.org) and

adapted a new approach for AP CS through Computer Science Principles (National

Science Foundation, 2014).

Community-Based Approach to CS Education

CS Education reform to date has involved community building, engagement,

commitment and resources. Yet, Repenning, Webb, and Ioannidou (2010) indicated

that CS education has not received much attention at the middle school level. For

instance, programming is not commonly seen in middle school curricula or in schools.

Therefore, informal learning with coding skills has become available through many

 5

online communities, makerspaces, and local after-school computer clubs (Matias,

Dasgupta, & Hill, 2016). Research suggests that investing in partnerships and

implementing extracurricular programs, such as summer camps or after-school

programs are strongly recommended to introduce CT and CS concepts to school

students and broaden participation in the field (Maloney, Kafai, Resnick, & Rusk,

2008; PCAST, 2010; Repenning et al, 2010).

Defining Computational Thinking

With many initiatives and recent policy emphasizing the importance of helping

all students be equipped with CS knowledge and skills, CT has emerged as an

essential literacy that has been frequently included as part of 21st century skills across

disciplines (NRC, 2010). In particular, CT is considered a way to promote CS

education across the curriculum.

CT was pioneered by Jeannette Wing (2006). Wing (2008) introduced CT as

“solving problems, designing systems, and understanding human behavior, by drawing

on the concepts fundamental to computer science” (p. 3717). She suggested that CT is

a fundamental skill of analytical thinking for everyone, not just for computer

scientists. CT is a problem-solving method and defined as “the thought processes

involved in formulating a problem and expressing its solution in a way that a

computer—human or machine—can effectively carry out” (Wing, 2006, p. 33).

CT is also included as a key element in the newly released National

Educational Technology Standards for Students from the International Society for

Technology in Education (ISTE, 2016). ISTE defined the purpose of CT as follows:

“Students develop and employ strategies for understanding and solving problems in

 6

ways that leverage the power of technological methods to develop and test solutions”

(http://www.iste.org/standards/standards/for-students-2016).

The International Society for Technology in Education (ISTE) in collaboration

with the Computer Science Teachers Association (CSTA) published a list to define CT

characteristics (Barr & Stephenson, 2011; CSTA & ISTE, 2011). These include, but

are not limited to:

• Formulating problems for use with a computer to facilitate the
solution;

• Logically organizing and analyzing data;

• Representing data through abstractions;

• Automating solutions through algorithmic processes;

• Identifying, analyzing and implementing possible solutions, as the
most efficient and effective combination of steps and resources; and

• Generalizing and transferring this process to a variety of problem
areas.

The Relationship between Computational Thinking and Programming

Programming has received great attention worldwide thanks to block-based

environments, such as Scratch. Programming not only allows students to create

programs with computers, but also easily connects with robotics and computational

tools (i.e., Sphero, Micro:bit, Ozobot, Makey-Makey, Finch Robot, Mbot, BeeBot,

Edison bot, Dash and Dot, Raspberry Pi, 3D Printing, Hummingbird, Arduino, Python

turtle, E-textiles). Research has indicated that programming games provide a great

motivation for students and serves as an introduction to CS, offering a context that

involves many CT elements (Repenning et al, 2010; Shute, Sun, & Asbell-Clarke,

 7

2017). As a result, many early introductory CS or CT-infused curricula were designed

around visual block-based programming language environments such as Scratch,

Alice, Blockly, MIT App Inventor, Tynker, and Snap! These tools focus on providing

young learners with fun, engaging learning experiences with CT. Some online

introductory programming curriculum resources—Code.org, Khan Academy, Google’s

CS First, Pencil Code, or Code Monkey—have already become part of many

children’s initial programming experiences either in schools, in after-school clubs or at

home. Code.org is a nonprofit dedicated to broadening participation and access in CS

education with k-12 CS curriculum. Hour of Code, a movement and campaign

organized by Code.org offers an online educational platform for many students to try

coding for one hour with age-appropriate projects, selectable activities, and interactive

tutorials (for more information, https://hourofcode.com/us).

Scratch. Over the past several years, Scratch, an online educational

programming tool launched in 2007 by MIT Media Lab, has generated great attention

by providing an easy-to-use and user-friendly online programming environment.

Especially in CS education, Scratch has been widely adopted in K-12 settings. With

Scratch, users are able to create their own digital stories, animations, games, music,

and interactive media. Scratch also enables users to share, comment on, and remix

projects online, offering an environment for design-based learning (Brennan &

Resnick, 2012). This program is frequently called low-floor high ceiling (Brady et al.,

2017), to indicate that is easy enough for novice users to create simple projects while

simultaneously allowing advanced users to create more complex projects. Block-based

and color-coded elements allow users to see errors right away without worrying about

syntax (see Figure 1). Further, an online platform developed in conjunction with this

 8

tool, called ScratchEd, provides a community resource for teachers who are interested

in sharing materials and experiences related to teaching and learning with Scratch

(https://scratch.mit.edu).

Figure 1 Scratch, Block-Based Programming Language

Brennan and Resnick (2012) identified three specific dimensions of CT

observed through project creation in Scratch, which include: (a) Computational

Concepts: sequences, loops, parallelism, events, conditional, operators, and data; (b)

Computational Practices: being incremental and iterative, testing and debugging,

reusing and remixing, and abstracting and modularizing; and (c) Computational

Perspectives: expressing, connecting, and questioning (see Table 1).

 9

Table 1 Brennan and Resnick’s CT Framework

Computational Concepts
Sequences A specific task or action is expressed as a series of steps or

instructions that can be executed by the computer.
Loops A mechanism used to run the same sequence of instructions

multiple times.
Events An important component of interactive media where one thing

triggers another thing to produce actions.
Parallelism Sequences of instructions happening simultaneously within a

single object or across objects.
Conditionals Multiple outcomes are determined based on certain conditions.
Operators Operators performs numeric and string manipulations including

mathematical, logical, and string expressions, such as addition,
subtraction, multiplication, division, functions, sine, exponents,
concatenation and length of strings.

Data Data involves variables and lists to store, retrieve, and update
values, numbers and strings.

Computational Practices
Being
incremental
and iterative

Iterative cycles of imagining and developing. An adaptive
process of trying and changing based on new ideas, solutions and
experiences.

Testing and
debugging

Building projects through trial and error and developing
strategies.

Reusing and
remixing

A collaborative practice of getting inspired by, accessing to
others’ work and building upon the projects.

Abstracting
and
modularizing

A practice of design and problem solving: putting together
collections of smaller solvable parts to create something
complex.

Computational Perspectives
Expressing Expressing ideas and self by designing and creating computing

products.
Connecting Establishing partnerships, collaborations, and developing

learning and creativity through access to networks and
interactions with others in social practices.

Questioning Learners are empowered to ask questions and make sense of
computational artifacts by utilizing technologies.

 10

Measuring Computational Thinking

In recent years, researchers have been giving CT increased attention. Yet,

measuring CT development is still a remaining challenge because assessments of CT

remain under-developed and under-researched (Yadav et al., 2015). Recently,

however, researchers have started developing a few assessments of CT, particularly

centered on programming. Specifically, since Scratch is a widely-adopted visual

programming language, some authors focused on establishing assessments centered on

Scratch’s built-in data. Other authors, proposed frameworks to assess the development

of CT in the context of designing projects on Scratch as well as specific assessment

strategies such as (a) Project Analysis, (b) Artifact-Based Interviews, and (c) Design

Scenarios (Brennan & Resnick, 2012).

Moreno-León and Robles developed an online program called “Dr. Scratch”

which can analyze and score Scratch projects automatically. Dr. Scratch examines

constructs of presence and absence of computational concepts and scores Scratch

projects along seven dimensions that include abstraction and problem decomposition,

parallelism, logical thinking, synchronization, flow control, user interactivity, and data

representation (Moreno-León & Robles, 2015).

The Association for Computing Machinery (ACM) and the Computer Science

Teacher Association (CSTA) emphasized that a factor limiting CT in schools is the

lack of assessments for teachers. Much research to date has concentrated on traditional

classroom assessment strategies (e.g., multiple-choice assessment). One factor that

makes CT difficult to measure is that CT focuses on the thought process, not on the

end product or artifact alone. Ahonen and Kankaanranta (2015) recognized that

“think-aloud” could be an effective way to assess students’ CT process, such as

breaking down problems and developing algorithms. Think-aloud data can be

 11

collected through (a) a concurrent method where students unveil their cognitive

process by thinking aloud while completing tasks, and (b) a retrospective method in

which students describe their metacognitive process of solving a problem after they

complete the task (Ericsson & Simon, 1993). Between these two methods, concurrent

can more accurately assess students’ ability. However, sometimes young students have

difficulty articulating their thought processes. Therefore, Mueller, Becket, Hennessey,

and Shodiev (2017) also proposed a set of teacher verbal protocols to help in the

assessment of students’ CT process. This set includes guiding questions for each CT

category based on the constructs informed by Brennan and Resnick (2012) and

Csizmadia et al. (2015). By asking questions as a communication tool, teachers will be

able to understand students’ CT ability during conversations and pinpoint strengths

and weaknesses.

Computer Science Content and Pedagogical Strategies

Developing programming environments is necessary but not sufficient for

broadening participation in computing. Curriculum revisions, rigorous CS curriculum

standards, and teacher preparation with renewed vision of CS pedagogy remain a more

critical part of the reform. Many newly designed curricula and new pedagogical

approaches are underway (Repenning et al., 2015; Shah et al., 2013; Webb,

Repenning, & Koh, 2012), yet according to Shah et al. (2013) pedagogy is critical in

broadening student participation in CS. Specifically, Shah et al. proposed a framework

for equitable CS instruction, which consists of four dimensions: (a) Access to rich

course content, (b) Quality instruction, (c) Productive peer relationships, and (d)

Identities as computer scientists (see Table 2 for a description of each).

 12

Table 2 Framework for Equitable CS Instruction

Four Dimensions Pedagogical Practices
Access to Rich Course
Content

Emphasizing Multiple Solutions
Using Metaphors to Introduce Concepts
Debugging by “Acting Out”

Quality Instruction Tracking Student Progress
Customizing Teaching Plans for Individual
Students
Using iClickers for Formative Assessment

Productive Peer
Relationships

Exposing Students to a Diverse Set of Computer
Scientists
Managing Public Displays of Status
Encouraging Connections to “Out-of- School”
Identities

Identities as Computer
Scientists

Strategically Partnering Students
Encouraging and Structuring Peer Interaction
Modeling Ideal Peer Collaboration

In terms of rich course content, in the last few years, many CS curricula were

established, such as Exploring Computer Science (ECS), and CS Principles (CSP),

which emerged to provide a framework of seven big ideas in computing. These

include: Creativity, Abstraction, Data and Information, Algorithms, Programming,

The Internet, and Global Impact (see Table 3 for a description of each). These

principles focus on key CS constructs that can be integrated into an existing

curriculum, rather than coding only. The big ideas include the relevant impact of

computing on society and emphasize creativity (Cuny, 2012). Further, the CS

Principles framework emphasized six CT practices, which can be applied throughout

the curriculum: (1) Connecting Computing, (2) Creating Computational Artifacts, (3)

Abstracting, (4) Analyzing Problems and Artifacts, (5) Communicating, and (6)

Collaborating (College Board, 2014).

 13

Table 3 Seven Big Ideas of Computer Science Principles Curriculum

Seven Big Ideas Brief Description
Creativity Computing is considered as a creative activity and leads

problem-solving, innovations and exploration. Students
utilize tools to create computational artifacts.

Abstraction Abstraction is a strategy of problem-solving, which
reduces detail to focus on relevant concepts. Students learn
how to use models and simulation to simplify complex
topics and identify patterns.

Data and
Information

Students manage, process, interpret and visualize data by
utilizing computational tools to create new information
knowledge.

Algorithms Algorithms are fundamental aspects in computing and
everyday tasks. Students develop solutions to
computational problems.

Programming Students select and learn a variety of appropriate
programming languages to create software and artifacts
based on projects and problems.

The Internet Communication and collaboration are supported and
enabled by the networks and systems. Students explore
how the Internet operates and analyze the implementation
of computational solutions.

Global Impact Students understand how computing innovations changed
the way people work and live and leads to new
understandings, disciplines and discoveries in the world.

A variety of pedagogical strategies have also been introduced in CS

instruction. Among teaching strategies, utilizing kinesthetic activities or metaphors has

been widely utilized. In the context of CS, these activities are called CS unplugged

(https://csunplugged.org/en/) and have been used to introduce CS concepts without

computers. Process oriented guided inquiry (POGIL), rooted in learner-centered

constructivism (Yager, 1995), is another pedagogical strategy that allows students to

work in teams on designed guided inquiry materials to actively construct and develop

 14

content knowledge through a learning cycle: exploration, content invention and

application. POGIL can often be employed in problem-based approaches and open-

ended projects where teachers act as facilitators. Further, Project-based learning

focuses on constructionism pedagogy, advocating the importance of actively learning

by doing. Papert’s Constructionism (1991) emphasizes how knowledge and ideas get

formed, and transformed, shaped and expressed through different media, in specific

contexts and processed in different people's minds. Therefore, the CS education

reform is often connected with the Maker Movement (or so-called Hackerspace,

Makerspace, and Fablab) where students explore knowledge through meaningful

hands-on learning in the context of designing, making and inventing.

Other teaching strategies emphasize peer interaction and differentiated

instruction. Pair programming is commonly adopted to support peer interaction,

where two students work together with one student serving as driver and the other as

navigator. Research has indicated that pair programming is an effective approach to

motivating beginning programmers (Berland & Lee, 2011; Denner & Werner, 2007).

Differentiated instruction occurs when students’ levels vary within a module. Students

with prior experience are provided with additional exercises in advanced challenges.

In the context of CS education, students can be encouraged to incorporate multiple CS

concepts (i.e., loops, conditionals and variables), update and remix projects, or

proceed to the next levels of online tutorial-guided activities.

Both formative and summative assessments are also key to successful and

effective teaching of CS (Grover, Pea, & Cooper, 2016; Mouza, Marzocchi, Pan, &

Pollock, 2016). Sustained reflection on students’ project design, answering guiding

 15

questions or prompts in a journal can help teachers to collect learning data and adjust

lesson planning. Students can also self-reflect on their learning and receive feedback.

Context of This Work

Delaware’s Science, Technology, Engineering and Math (STEM) Council

(2012) noted “the need for content-trained STEM teachers, particularly in engineering

and technology education” (p. 2). Similar to other states, Delaware is facing the

challenge of improving computing education beyond basic keyboarding literacy.

University of Delaware’s Partner4CS

The University of Delaware is highly aware that both pre-and in- service

teachers and students in all levels need more preparation in CS education and

computational knowledge. As a result, a team consisting of professors from the School

of Education and the Department of Computer and Information Science established

the Partner4CS project, with funding from the National Science Foundation (under

projects of CS10K, CE21, and STEM+C). Partner4CS aims to broaden participation in

computing through strategic partnering. It includes four major efforts as described by

Pollock, Mouza, Atlas and Harvey (2015), including:

1. Sustainable, high-quality professional development for teachers. Specifically,

the research team has developed an annual summer teacher professional

development institute endorsed by Delaware’s Department of Education.

Teacher participation in one of the professional development tracks, Computer

Science Principles, qualifies participants to teach the CSP AP course as part of

the CS pathway in high school career and technical education established in

the state of Delaware.

 16

2. A field experience university course as the primary vehicle that partners

undergraduate students with practicing teachers in the field for on-going

support.

3. Strong partnerships with local school districts, teachers and STEM leaders in

formal and informal settings. Building on previous efforts, the team has

established partnerships with local libraries, the Boy & Girls club, and school

districts serving under-represented students. Further, the team also helped to

establish the CSTA chapter in Delaware and organize state-wide Scratch Days

(https://day.scratch.mit.edu).

4. Policy changes. In collaboration with the Delaware’s Department of Education,

the team helped establish a pathway for CS at the high school level and

organized a Summit for CS Education in Delaware in 2017, for stakeholders

and community members (teachers, leaders, school districts, and parents) who

are interested in computing education. This summit built a network to support

the teaching of computing at the state level. In 2017, Delaware Governor

Carney also signed a bill requiring all public high schools to teach at least one

CS course by the 2020-2021 academic year (for more information, https://

www.udel.edu/partner4cs).

The Setting of the Course and the Partnership Model

University Course

The primary focus of this study is the partnership model and its university-

community field experience course, titled “Field Experiences in Teaching Computing”

at the University of Delaware. This field-based course serves as the primary vehicle to

 17

partnerships, and has been offered for eleven consecutive semesters since 2013. To

date, approximately 65 undergraduates have enrolled in this course.

The course involves on-campus training in preparation for successfully

integrating CT practices in middle/high school classrooms or after-school settings. The

objective of the field experience course is to help CS undergraduates: (a) develop new

technical and teaching skills, (b) improve their communication and leadership skills,

(c) participate in service to the local school communities by engaging school students

with computing, and (d) reflect on their learning experiences (Pollock et al., 2015).

The topics and modules in the course are designed around four main areas,

including (a) CS tools; (b) CS Pedagogy; (c) CS curriculum, trends and standards; and

(d) Reflection and communication (see Table 4).

Table 4 Brief Description of the University Course

Key Areas Specific Activities
Computer Science
Tools

Lab assignments (robotics and technologies)
Scratch practices

Computer Science
Pedagogy

Lesson planning
Effective lesson and learning environment design
Teaching strategies
Classroom management
CS unplugged activities
Learning theories

CS Curriculum,
Trends and
Standards

Broadening participation in computing
CS impacts
CSTA standards
Computer science principles

Reflection and
Communication

Weekly report and feedback
Reflective journal
Background clearances
Dress code
Communication before, during and after field placement

 18

At the time of the study, approximately fifty percent of total instruction time in

this semester-long course was designed to provide modules that focused on CS-related

content skills and resources, especially application in K-12 CS education. These topics

included Scratch introduction and practice, lab assignments on exploring

computational tools (i.e., Finch Bot, Makey-Makey), CS curriculum and standards

(i.e., CSP, ECS).

Forty percent of designed modules in this course intended to expose students to

pedagogical strategies, classroom management, lesson plan creation, and effective

lesson design and delivery. Specifically, participants were given opportunities to

practice and lead a mock CS unplugged activity in class, which allowed them to

discuss their strengths and weaknesses.

Another key component embedded in this course is weekly journals which

provide CS undergraduates opportunities to reflect on and document their experiences,

teaching approaches and strategies. Participants’ interpretation and reflection on

classroom experiences is intended to promote learning from practice (Kolodner,

2006). On a weekly basis, CS undergraduates reported to their peers and lead faculty

what happened in their teaching, shared their experiences, and received feedback from

peers and instructors. A number of learning opportunities actually occurred in the

process of receiving feedback during the debriefing meetings in the field and on-

campus meetings with faculty during weekly updates.

A successful application of the model relies on the solid foundation of

effective and persistent communication among CS undergraduates and teachers. The

partnership in fact, built on logistics happening in the very early portion of the course,

which include: (a) emphasis on professional communication (i.e., emails, holiday

 19

break, schedules) and appearance (i.e., dress code) before, during, and after the field

placement; and (b) setting up regular teacher-undergraduate meetings. CS

undergraduates first contacted their partner teacher to introduce themselves and

scheduled their first meeting, and then requested sit-in classroom observation to gain a

better understanding of their assigned classroom, including classroom management,

technologies available, and students’ prior experience. This background information is

important before they formally start to work with their assigned teacher on lesson

preparation and delivery.

Partnerships and Field Activities

Teachers who participated in the summer professional development program

offered by Partner4CS are eligible to receive on-going support. The Partner4CS team

first sent out invitations to participating teachers and asked them to submit requests of

interest. A member of the team then partnered undergraduates in the field experience

course with practicing teachers. To date, the team has established partnerships in nine

school districts with over 20 sites. Approximately 500 students in Delaware in a

variety of partnerships such as libraries, after-school computer club programs, or

regular technology classes benefited from CS instruction offered through Partner4CS

undergraduates.

CS undergraduates could take the course for one to three credits. Participants

who took three credits were expected to spend at least three hours per week in the

field. Generally, undergraduates were assigned to an appropriate placement in groups

of two to three peers with someone providing transportation. Field placements could

vary based on grade levels that spanned from primary schools to high schools, student

population and demographics (i.e., ethnicity, SES, single-gender schools), settings

 20

(informal like libraries, clubs or regular classrooms), as well as content and

technologies ranging from introductory Scratch, HTML to CS AP Java.

Purpose of the Study and Research Questions

A number of studies report a shortage of qualified STEM educators and

workers (CSTA Association for Computing Machinery, 2013). Further, recent policies

indicate that all students should be equipped with computational knowledge, thinking,

and skills (Wing, 2006). To accomplish this goal, changes must be made across the

entire computing education system.

Therefore, the purpose of this study is three-fold. First, it aims to describe the

specific roles served by CS undergraduates in the context of the Partner4CS field

experience model. Second, it seeks to examine the quality of the instructional

materials they prepared to support partner teachers and students. Third, it aims to link

CS undergraduates’ practices from the designed partnership model to in-class support

for teachers and subsequent student outcomes. The work focuses on a partnership with

a single school and teacher to provide an in-depth investigation. Findings from this

work can help provide guidelines for the design and implementation of effective

partnership programs, with attention to the ways in which field experience and CS

undergraduates can help support CS education in local communities.

Research Questions

1. What specific roles did CS undergraduates assume in their partner
school?

2. How was the quality of the instructional materials created by CS
undergraduates in the context of the school-university partnership?
How were CT concepts and practices implemented?

 21

3. What computational concepts did middle school students acquire as a
result of working with CS undergraduates and their teacher through a
school-university partnership?

 22

Chapter 2

RESEARCH DESIGN AND METHODOLOGY

The Description of the Classroom Context

This work examined one partnership established through Partner4CS in an

after-school program at a K-8 school, Town Charter School (TCS). At the time of the

study, the partnership had been in place for five years. The school’s technology

teacher (Ms. Sharon), established her nine-week after-school computing program for

students in grades four through six. Each semester, two to four CS undergraduates

partnered with Ms. Sharon for the 70-minute-long computing program in which

students met once a week. The online introductory programming tool, Scratch, was

utilized as a main tool to introduce CT concepts and skills, and thus the program was

called Scratch Club (see Figure 2).

Figure 2 Scratch Clubhouse

 23

TCS Student Population. TCS is a suburban K-8 school, enrolling

approximately 1,350 students. School demographics indicated that the student body

was 67.5% White, 11.6% Asian, 11.1% African American, 4.2% Hispanic, and 5.5%

multi-racial. Approximately 16% of the entire student population qualified as low-

income.

Study Participants

CS Undergraduates. The participants included six CS undergraduates enrolled

in the course CISC 357 “Field Experience in Teaching Computing” over a period of

two semesters: Spring I (From Feb. to May) and Fall II (From Sept. to Dec.). These

students, three females and three males, were assigned to partner with Ms. Sharon at

TCS as shown on Table 5.

Table 5 Description of Undergraduate Participants in the Partnership

Name Semester Gender Background

Beth Spring I Female CS major:
Senior

Mark Spring I Male CS major:
Senior

Jason Spring I Male CS major:
Junior

Mary Spring I Female CS major:
Junior

David Fall II Male CS major:
Sophomore

Lauren Fall II Female CS major:
Sophomore

 24

During this partnership, Ms. Sharon co-taught the nine-week after-school

computer club respectively with four CS undergraduates in Spring I and with two CS

undergraduates in Fall II.

School students. The sample of this study also consisted of a convenience

sampling of 65 upper elementary/middle school students (N=65, 41boys and 24 girls)

in grades four through six who participated in the Scratch club in Spring I or Fall II.

Data Collection

To answer the research questions (see Table 6), this work employed a mixed

method approach. Specifically, both qualitative and quantitative data were collected

from multiple sources including: (a) CS case reports enacted by CS undergraduates; a

case report consists of a lesson plan, its associated materials, and CS students’ self-

reported description of this lesson; (b) CS undergraduates’ reflective journals; (c)

partner teacher interview; (d) middle school students’ pre- and post- content

assessments; (e) pre- and post- design tasks developed by middle school students

during their participation in the Scratch club; (f) middle school students’ design and

reflective journals; and (g) observations of the course and after-school Scratch club

meetings.

 25

Table 6 Research Questions and Data Collection Matrix

Question 1: What specific roles did CS undergraduates assume in their partner
school?
Source of Data Data Analysis Information Purpose
CS Undergraduates
Partner Teacher

CS undergraduates weekly
reflective journals
Classroom and field observations
Partner teacher interview

This information was
used to examine the roles
of CS undergraduates in
the field.

Question 2: How was the quality of the instructional materials created by CS
undergraduates in the context of the school-university? How were CT concepts
and practices implemented?
Source of Data Data Analysis Information Purpose
CS Undergraduates
Lead Teacher

CS undergraduates weekly
reflective journals
Collection of case reports
Classroom and field observations
Partner teacher interview

This information was
used to examine the
materials in which CS
created to help support
teachers in the field with
an additional focus on
how these were
implemented.

Question 3: What computational concepts did middle school students acquire as
a result of working with CS undergraduates and their teacher through a school-
university partnership model?
Source of Data Data Analysis Information Purpose
Students in grades
4-6

Pre- and post- content assessment
Pre- and post- design tasks
Design and reflective journals

This information was
used to examine whether
the partnership model
helps middle school
students acquire
computational concepts.

Observation Data

Observations of Course and the After-School Scratch Club Meetings. All

on-campus course meetings (N=30) and after-school Scratch club sessions (N=24)

were observed and documented. The author recorded key CS topics addressed,

 26

instructional strategies and learning activities observed, assessments utilized, and

technologies used by the students and the teacher in the club.

Data from CS Undergraduates

CS Case Reports Developed by CS Undergraduates. A case report consists

of a brief lesson plan, associated instructional materials and artifacts developed by six

CS undergraduates, and self-reported descriptions and reflections of the lesson’s

implementation. CS undergraduates were provided with prompts to report

demographic data and how they implemented lessons each week (see Table 7 below).

All case reports (N=24) throughout the academic year were collected in order to

examine how CS undergraduates supported their partner teacher in the field.

Table 7 Prompts for Case Reports

Aspects Prompts
Demographic data • When and where did you teach/facilitate this lesson?

Which class? What grade levels?
• How many students were in the class? (record the

number of male and female students).
Role in the field • What type of support did you provide: (a) observed,

(b) assisted the teacher, (c) led a classroom activity,
(d) taught a full lesson as the primary instructor.

Lesson planning
and implementation

• What types of activities did you implement? (CS
unplugged, programming etc.).

• What CS Principles did you cover?
• What is your plan for the next lesson?
• What materials or technologies do you need to

proceed to the next step?
Reflection • What went well (describe your successes)?

• What would you change for the future?
• What, if anything, surprised you?
• What questions do you have for us?

 27

CS Undergraduates’ Reflective Journals. Participants were required to

submit their weekly reflective journal entries through a blog format in the University’s

Learning Management System (LMS), Sakai. Weekly reflective journal entries (N=

68) maintained by the six CS undergraduates during the partnership period were

collected for analysis. The length of each entry varied. Among the six participants, the

average length of each entry was approximately 400 words. This information helped

identify the ways in which the undergraduates supported their partner teacher, the

rationale behind the design of their instructional materials and lesson plans, and their

reflections regarding the outcomes of their lessons.

Data from Partner Teacher

Partner Teacher Interview. An interview (N=1) was conducted with the

partner teacher, Ms. Sharon, to discuss the ways in which the partnership model

helped the implementation of CS lessons. The interview questions included the

following themes: (a) The nature of implementation and design in the partnership

model; (b) Expectation and feedback for CS undergraduates; (c) Instructional

approaches and strategies regarding CS concepts; (d) Teaching beliefs and

perspectives; and (e) The outcome of students’ performance.

Data from Middle School Students

Students’ Pre-and Post- Content Assessments (Spring I & Fall II). To

understand changes in students’ knowledge of CS concepts, a pre- and post- multiple-

choice Scratch knowledge assessment was administered both at the beginning and the

end of the club in these two semesters (N=65). The assessment includes 10 questions

 28

examining students’ knowledge of CS concepts associated with Scratch programming

(Ericson & McKlin, 2012; see Appendix A).

Pre-and Post- Design Tasks Developed by Middle School Students in the

Scratch Club (Fall II). All participating students in Fall II (N=23) were asked to

develop a story, animation or a drawing in 20 minutes using Scratch at the beginning

and end of their participation in the after-school program. A total of 46 projects were

collected. The following prompt was used:

Show off the things you know about Scratch by creating a story, an
animation, or a drawing using the cat or another sprite. Be creative. (It
is ok, if you don’t know a lot of things yet).

Middle School Students’ Views of Scratch from Design and Reflective

Journals (Fall II). Students were provided with blue notebooks at the beginning of

their participation in the after-school Scratch club, that acted as journals. In those

journals students drafted ideas for projects they wanted to complete in Scratch,

answered given questions, and reflected on their learning after each meeting day (see

Table 8). Design and reflective journals maintained by students throughout the

duration of the after-school program in Fall II were collected (N=27). A specific

question “How would you introduce Scratch to your friends?” was asked at the

beginning and the end of the club. A total of 54 responses were collected under the

given prompt and were used to document students’ understandings of Scratch at the

beginning and end of their participation in the Scratch club.

 29

Table 8 Design and Reflective Journal

Sessions Prompts/ Tasks
Week 2 How would you describe Scratch to a friend? (Pre)
Week 3 Storyboarding: Create a storyboard of their project.
Week 4
Week 5

1. List three ways you experience loops in real life. (e.g., going to
sleep every night).
For Advanced Students:
2. What are different ways of increasing difficulty in a game?
3. Which extensions did you add to your game project?

Week 6 1.What is something that works well or you really like about the
project?
2. What are you most proud of? Why?
3. What is something that is confusing? How did you get unstuck?

Week 7 1. Describe the final project you want to create.
2. List the steps needed in order to create your project.
3. What might you need help with in order to make progress?
4. Editing storyboard.

Week 8 How would you describe “variables” to your friends?
Week 9 Design a Fall-theme Scratch project on your journal and share your

ideas.
Week 10 How would you describe Scratch to a friend? (Post)

Data Analysis

Data from CS Undergraduates

CS Case Reports Enacted by Undergraduates. The CS case reports enacted

by undergraduates were collected at the end of each semester. All associated lesson

plans, materials, and artifacts were labeled and stored with short descriptions. The

instructional materials were uploaded to a folder in Google Drive and scored by the

investigator using a set of criteria established through the literature review (see Table

9). The criteria were established around How People Learn (Bransford, Brown, &

Cocking, 2000) in order to capture the spirit of Learner-centered, Knowledge-

 30

centered, Community-centered and Assessment-centered learning environments. The

rubric also utilized and integrated existing standards for CS curricula, such as CS

principles. Each of the four criteria received a numerical score from 1 to 4. A score of

1 indicates failure in satisfying the criterion, while a score of 4 indicates full success in

satisfying the criterion. The author and a co-rater scored all lesson cases. The initial

inter-rater reliability was calculated at 85%. All discrepancies were discussed until a

100% agreement was reached.

Table 9 CS Case Report Criteria and Rubric Established from Literature
Review

Criteria Descriptions
Standard-Based
Learning Objectives
and Meaningful Topics

• Learning objectives are aligned to standard-
based CT concepts.1

• CT concepts and vocabulary are clearly and
correctly presented and involve at least one of
the big ideas.2

• Topic selection is meaningful and relevant to
students and connected to prior knowledge or
lessons.

CT Practices-Infused
Environments and
Instructional Strategies

• CT practices and perspectives3 are encouraged
and presented through chosen pedagogy method
and designed environments, that include access
to identity, scaffoldings or differentiated
instruction.

1 Brennan and Resnick (2012); CSTA& ISTE (2012)

2 CS Principles (College Board, 2014)

3 Brennan and Resnick (2012); College Board (2014)

 31

Age-Appropriate CT
Technology and
Activity Selection

• A variety of CT-infused tools, activity or
materials were identified and accessed to
support learning goals and CT concepts and be
compatible with instructional strategies.

Formative and
Summative Assessment

• Selected assessment is effective and appropriate,
which includes design-based or problem-based
projects.

CS Undergraduates’ Blog Entries from Reflective Journals. The data from

CS undergraduates’ reflective journals were analyzed qualitatively to identify

emerging patterns (Hatch, 2002). The coding process mainly focused on the following

topics, including (a) bringing CS presence, motivation, inspiration and excitement into

school; (b) connecting CS with other school subjects; (c) teaching strategies and

planning; (d) producing lesson plans and materials; (e) relationships with the partner

teachers; (f) lab help with emotional support and technical concepts; and (g)

expectation and feedback from the practicing teachers. The initial codes were then

categorized into three parent codes (see Table 10).

Table 10 Coding Schemes

Parent Codes Initial Codes
Technology
Consultants

• Expectation and Feedback from the practicing
teachers

• Lab help with technical support
Facilitators and
Co-Teachers

• Producing lesson plans and materials
• Teaching strategies and planning
• Connecting CS with other school subjects

Mentors and
Ambassadors

• Lab help with emotional support
• Bringing CS presence, motivation, inspiration and

excitement into school
• Relationships with the partner teachers and parents

 32

Data from Middle School Students

Students’ Pre-and Post- Content Assessments. Content assessments were

scored for correctness. Each correct answer received one point while each incorrect

answer received no points. The data was entered into an Excel spreadsheet and

exported to SPSS for statistical analysis. A total score was calculated for the

instrument as a whole for both the pre- and post- administration. Further, a T-test was

performed to determine if there was a statistically significant difference between pre-

and post- content assessment. The percentage of students who scored correctly on each

item was calculated for both the pre- and post- administration of the assessment. The

presence and absence of a variety of computational concepts was also analyzed.

Students’ Pre- and Post- Design Tasks. Students were asked to save their

Scratch projects with their initials, share and upload their projects to an online Scratch

studio right after the end of each design task in the first and last sessions of the club.

The uploaded Scratch projects were then saved to a local drive. All the programs were

paired and matched. The programs were coded and analyzed using an online Scratch

project-scoring website called “Dr. Scratch” (Moreno-León & Robles, 2015), which

examines the presence and absence of computational concepts in students’ programs

(http://www.drscratch.org).

Students’ Views of Scratch from Design Journals. The design and reflective

journals students used during the computer club were first collected at the end of the

club and scanned into digital versions. This data was analyzed qualitatively to identify

emergent themes using the constant comparative method (Hatch, 2002). The author

read all students’ open-ended responses focusing on how they interpreted and

 33

translated personal meaning of and relationship with Scratch and their attitudes toward

Scratch.

 34

Chapter 3

FINDINGS

The purpose of this study is to investigate the impact of a school-university

partnership model and its associated field experience course activities on middle

school students’ CT development. It also aims to gain a better understanding of the

ways in which college CS undergraduates supported the practicing teacher in the field,

both through teaching practices and material development. In this chapter, the findings

of each research question are presented and discussed.

Research Question 1

What specific roles did CS undergraduates assume in their partner

school?

CS undergraduates assumed different roles in their partner school, including:

(a) Technology Consultants; (b) Facilitators and Co-Teachers; and (c) Mentors and

Ambassadors (see Table 11).

Table 11 Roles of CS Undergraduates in Partnerships

Roles of CS
Undergraduates

Instances in The Field

Technology
Consultants

• Technical problem solving
• Consultation on content skill; consultation on CS tools

and recourses
Facilitators and Co-
Teachers

• Teaching and preparation: creating, planning lesson
plan materials and delivering

• Lab facilitator
• Hands-on support

 35

Mentors and
Ambassadors

• Bringing connections to out-of-school identity as CS
experts

• Modeling ideal peer interaction
• Gender equity
• Near-peer mentoring as role models
• Encouraging parental involvement and excitement

Technology Consultants. CS undergraduates were provided with rich CS

content skills and resources to engage them as technology consultants. In the field, CS

undergraduates were able to provide technology consultation on tools and

technologies available for the target students. Further, CS undergraduates helped the

teacher adapt curriculum materials available online and locate resources on given

topics. Finally, they were also able to create sample Scratch programs needed to teach

their lessons and solve a range of technical problems (e.g., install Flash on computers,

trouble issues with Scratch accounts, etc.).

Facilitators and Co-Teachers. A key role in the field was that of a facilitator

or co-teacher. Specifically, CS undergraduates frequently assisted the teacher with

hands-on support and provided one-on-one student assistance. Analysis of blog

entries, observation notes and interviews indicated that Ms. Sharon was grateful for

that because it allowed her to provide students with timely support. In her interview,

she noted: “It is great to have extra pairs of hands… I couldn’t run this club without

having them here to support the students.” Further, all of the six undergraduates co-

planned and co-led the lessons with Ms. Sharon. Lauren, one of the female CS

undergraduates explained: “Sharon was very clear with what she wanted us to do in

her classroom and what she expected of us.” Finally, in some instances, CS

undergraduates were taking full teaching responsibilities. Mary explained, “Ms.

 36

Sharon decided to pass along the reins to the UD students so from here on out, we will

be taking charge in planning the objectives and activities for the day and teaching and

controlling the classroom.”

Mentors and Ambassadors. One of the characteristics of this partnership

model focused on the concept of students’ social and cultural learning environment.

The presence of the undergraduates in the Scratch club provided role models for K-12

students that could help increase students’ engagement with CS. This near-peer

mentoring offered access to CS identities and better understanding of what it means to

be a computer scientist.

Research Question 2

How was the quality of the instructional materials created by CS

undergraduates in the context of the school-university? How were CT concepts

and practices implemented?

Quality of Instructional Materials

Results from the scoring of CS case reports are shown in Table 12. The

findings, overall, indicated that lessons developed and delivered by undergraduates

received high scores on each criterion and for the rubric as a whole (M=3.6, S=0.62).

Overall, CS undergraduates actively sequenced, facilitated and co-led a set of

progressive and cohesive CS lessons and activities for the Scratch club with the lead

teacher in the field. They also collaborated as a team and communicated professionally

with the teacher, students and faculty. In addition, CS undergraduates self-reflected on

their field experience and team preparation. Details for each criterion are presented

below.

 37

Table 12 Average Mean Scores on the CS Case Report Rubric

Criteria Mean SD
Standard-Based Learning Objectives and Meaningful Topics 3.58 0.65
CT Practice-Infused Environments and Instructional Strategies 3.50 0.72

Age-Appropriate CT Technology and Activity Selection 3.71 0.69

Formative and Summative Assessment 3.62 0.71
Total 3.60 0.62

Standard-Based Learning Objectives and Meaningful Topics. Analysis of

case reports indicated that most of the lessons’ learning objectives were clear. CT

concepts or vocabulary were clearly and correctly presented and involved at least one

of the big ideas in computing. Beth, for instance, explained in her journal, “While we

were waiting on tech support, I had a short conversation with the students in which I

talked about computer science and some of its global impacts as well as what I did

and why I studied computer science.”

Topic selections were meaningful, appropriate and relevant to students and

connected to prior knowledge or lessons (see Table 13).

 38

Table 13 Description of Cases Enacted by Undergraduates: A Focus on Big
Ideas

CS Principles
Seven Big Idea Focus

Associated Activities from Case Reports Number of
Instances

1. Creativity • Storyboard: Fall-theme projects
• Recreating scenes from a book
• Adding difficulty and extensions

9

2. Abstraction -
3. Data and
Information

• Introduction to variables
• Introduction to list
	

3

4. Algorithms • Boolean logic
• Understanding how computer works

(Marching Order)
• Guessing game
• Storyboard

4

5. Programming • Introduction to broadcasts
• Introduction to loops
• Introduction to conditionals
• Advanced: variables and broadcasts

combined
• Interpreting code and programs
• Recreating scene from school reading:

Robin Hood Project

9

6. The Internet -
7. Global Impact • Impact of CS 1

The practicing teacher, Ms. Sharon also noted that working with CS students to

identify modules, resources and lesson materials for the Scratch club gave her an

opportunity to pilot ideas and look at what is effective, in addition to implementing a

standard-based curriculum framework to her regular technology classes.

CT Practice-Infused Environments and Instructional Strategies. Findings

indicated that CT practices and perspectives were encouraged and presented through

undergraduates’ teaching. The pedagogical methods and designed environments

 39

included access to identity, peer interaction, modeling, scaffoldings or differentiated

instruction (see Table 14). One CS undergraduate, Jason noted, “[students] were

struggling a bit, so Mary and I went around and gave them help to get them up to

pace.” (differentiated instruction). Mary indicated that some of the teaching practices

were actually adapted after receiving input from Ms. Sharon during the debriefing

meetings in the field. Mary noted, after one of the club sessions during their debriefs,

“[Ms. Sharon] pointed out to us at the end of the class, we called on only boys as our

volunteers, which she politely told us happens way too often and that the girls kind of

get forgotten. Obviously, this is something I did unintentionally, but I will work on

next time.”

Table 14 Description of Cases Enacted by Undergraduates: A Focus on CT-
Infused Pedagogy

CT-Practice Encouraged
Pedagogical Strategies Number of Instances

CS Principles: Six CS Practices
Connecting Computing 1
Creating Computational Artifacts 6
Abstracting 1
Analyzing Problems and Artifacts 2
Communicating 3
Collaborating 4

Equitable CS Instruction- Pedagogical Practices
Strategically Partnering Students 2
Encouraging and Structuring Peer
Interaction 8

Modeling Ideal Peer Collaboration 7
Differentiated Instruction 3
Kinesthetic Activity 8

Other
Modeling or Demonstration 17
Scaffolding 1

 40

Age-Appropriate CT Technology and Activity Selection. As shown in Table

15, the undergraduates selected a variety of CT tools or activities, such as Scratch

projects or CS unplugged activities (see Figure 3), that were compatible and aligned

with the learning goals and pedagogical practices needed to support student

development of CT concepts and skills.

Table 15 Description of Cases Enacted by Undergraduates: A Focus on CT
Tool Selection

Supportive CT Tools
or Activity Selected

Associated Activities from Case
Reports

Number of
Instances

CS Unplugged
Activity

20 Questions game (Boolean Logic)
Logic puzzles (Boolean Logic)
Marching order
Loops
Conditionals
Variables
Human computer interaction
Introduction to pixel
Skit

11

Scratch

Guessing game
Pong game
Moving sprite by user input
Drawing shapes with Scratch
Recreating scenes from a book
Fall-theme projects
Reading others’ code
Analyzing mystery programs
Playing and discussing game features

10

 41

Figure 3 The Slides of CS Unplugged Activity: Loops

CS students also explained that some of the lesson activities were actually a

result of discussing and collecting information from the teacher. Mary noted, “We

spoke with Ms. Sharon about what they're learning in school and we will try to

incorporate some stuff they are learning into Scratch club for next week...Having this

connection between school and Scratch is a good way to show how everything is

related and could even show their English teachers their projects. This is another fun

thing they can do with computer science besides just gaming.”

Formative and Summative Assessment. Results also indicated that, overall,

undergraduates were able to utilize different strategies (both formative and

summative) to understand and assess students’ learnings. Formative assessment

included exit tickets (Figure 4) at end of each session in the form of quick quizzes.

Further, the design journals (Figure 5) documented students’ learning progress and

project ideas (Figure 6) and served as a platform to document students’ understanding

of CT knowledge and concepts (Table 16).

 42

Variable Exit Tickets Loop Exit Tickets

Conditional Exit Tickets

Figure 4 The Exit Tickets Developed by Undergraduates

Figure 5 Students’ Design Journal

 43

Figure 6 Students’ Story Board

Table 16 Formative Assessment: Weekly Design and Reflective Journal

Sessions Questions/ Prompts/ Tasks Computational Thinking
Assessed4

Week 2 How would you describe Scratch to a
friend? (Pre)

Expressing: realizing that
computation is a medium
of creation.
Connecting: recognizing
the power of creating with
and for others.

Week 3 Storyboarding: Create a storyboard of
their project.

Automating solutions
through algorithmic
thinking (a series of
ordered steps)

Week 4
Week 5
(Continued)

1. List three ways you experience loops
in real life. (e.g., going to sleep every
night).
For Advanced Students:
2. What are different ways of increasing
difficulty in a game?
3. Which extensions did you add to your
game project?
	

Loops: Automating
solutions through
algorithmic thinking (a
series of ordered steps).

4 Brennan and Resnick (2012)

 44

Week 6 1.What is something that works well or
you really like about the project?
2. What are you most proud of? Why?
3. What is something that is confusing?
4.How did you get unstuck?

Identifying, analyzing, and
implementing possible
solutions with the goal of
achieving the most
efficient and effective
combination of steps and
resources.

Week 7 1. Describe the final project you want to
create.
2. List the steps needed in order to create
your project.
3. What might you need help with in
order to make progress?
4. Editing Storyboard.

Experimenting and
iterating: developing a
little bit, then trying it out,
then developing more.

Testing and
debugging: making sure
things work and finding
and solving problems when
they arise.

Week 8 How would you describe “variables” to
your friends?

Variables(data)

Week 9 Design a Fall-theme Scratch project on
your journal and share your ideas.

The ability to communicate
and work with others to
achieve a common goal or
solution.

Week 10 How would you describe Scratch to a
friend? (Post)

Expressing: realizing that
computation is a medium
of creation.
Connecting: recognizing
the power of creating with
and for others.

Summative assessments included several mini Scratch projects corresponding

to the learning objectives of each session, and a final project which was shared

publicly with parents on a demo day, where students presented their project creations

and ideas (see Table 17).

 45

Table 17 Description of Cases Enacted by Undergraduates: A Focus on
Assessments

Formative or Summative
Assessment

Associated Activities from
Case Reports

Number of
Instances

Exit Tickets Broadcasts exit tickets
Conditionals exit tickets
Loops exit tickets
Variables tickets

4

Design Journals with prompt
Questions

 7

Story Board Fall-theme projects 2
Scratch Projects Guessing game

Pong game
Moving sprite by user input
Drawing shapes with Scratch
Recreating scenes from a book

5

Final Demo (Show and Tell) Fall-theme projects
Projects of their own selection 3

Analyzing Codes Reading others code and
analyzing mystery programs
Write down their guess and
ideas

1

Analyzing Games Playing with games and
discuss the feature and design
of each game

1

The performance-based assessment also included a showcase event at the

University of Delaware. A group of students from the club at TCS were invited to

showcase their Scratch games and projects to the university community members.

Sharon noted “This was huge to them. Till now some students still came to me said

when they can go to UD again…” These younger participants from TCS also got a

chance during this event to try out projects and educational games that University of

Delaware students created (see Figure 7).

 46

Figure 7 A Group of TCS Students Invited to Participate in the CIS Showcase
Event at UD

Research Question 3

What computational concepts did middle school students acquire as a

result of working with CS undergraduates and their teacher?

Computational Thinking Acquisition in Students’ Content Assessment

As shown on Table 18, results from the Scratch knowledge assessment

indicated there was a statistically significant improvement (p<0.05) from the pre

administration of the assessment (M=5.69, SD=2.09) to the post administration of the

assessment (M=6.72, SD=2.18) of the instrument as a whole with a medium effect

size of 0.48.

 47

Table 18 Dependent (Paired) T-Test of Pre- and Post- Content Assessment

Pre-
Knowledge

Post-
Knowledge

Mean
Differences

 (Post – Pre)	

t	 df	 P value
Significance	

Effect
Size(d)	

Mean SD Mean SD

5.69 2.09 6.72 1.02 1.15 3.93 64 .000** 0.48

 N=65, ** p<.01, * p<.05
 Effect size <0.3 is small, 0.3-0.5 is medium, and >0.5 is large (Cohen, 1988)

Further, as shown on Table 19, results from the content assessment indicated

improvements from pre to post administration on 9 out of the 10 questions (questions

1, 3, 4, 5, 6, 7, 8, 9 and 10).

Table 19 Pre- and Post- Scores on Scratch Knowledge Assessment Items

Questions and CS Concepts Percent Correct
Pre Post

1. Scratch block 92% 97%
2. Loop (repeated execution) 80% 72%
3. Handling an event 25% 40%
4. Data (modifying a variable) 46% 65%
5. Parallelism (broadcast) 68% 72%
6. Conditionals (if) 26% 45%
7. Loop (forever) 74% 86%
8. Loop (repeat a set number) 72% 78%
9. Conditional test 68% 85%
10.Script execution 23% 36%

 48

Computational Thinking Concept Development in Students’ Design Tasks

To gain a better understanding of students’ CS learning, the investigator

analyzed 23 pairs of Scratch projects. Analysis of students’ pre-and post- design tasks

is shown in Figure 8. In students’ pre-design tasks, 65% of the programs were at the

“Basic” level, while 35% were at the “Developing” level and none of them were at the

“Master” level. However, compared to their initial design tasks, in the students’ post

design tasks, 57% were at the basic level, 39% were at the developing level, and 4%

were at the Master level.

Figure 8 Scratch Project Level Analysis of Students’ Pre-and Post- Design Tasks

Students’ Views of Scratch

In the design journals, students were asked “how do you describe Scratch to a

friend?” As shown in Table 20, the answers varied but can be categorized into the

 49

following four emerging dimensions, including (a) Learning and Sharing Community

(N=23), (b) Creativity and Fun (N=17), (c) Creating to Express (N=24), and (d)

Scratch Features as a Programming Language (N=27). Students’ responses captured

the features of the Scratch and reflected on the purpose of the designed Scratch club

learning environment presented in research question 2.

Overall, by analyzing pre to post responses, students were moving from

computational consumers to creators. In the responses to the pre-question, students

generally indicated that they could play and look at other people's projects as

consumers (Dimensions A and B). In contrast, Dimensions C and D in the post-

question received a slightly higher number of students’ responses where they were

able to identify the numerous possibilities of Scratch as a coding language to create

anything imaginable to express themselves.

Table 20 Coding Schemes for Students’ Views of Scratch

Parent Code Initial Code

Entries Frequency
and Percentages
Pre

Responses
Post

Responses
Learning and
Sharing
Community

• Community of people making fun
games, animation

• Interaction with online games (Search
and play)

• Share with community
• Programming club
• Visit it online or download it to

computer
• Create games for others to play
• Remix other projects
• Programming/coding website

15(26%) 8 (24%)

 50

Creativity and
Fun

• Awesome, exciting, fun and interesting
• Creative
• Change color and sound, backgrounds
• Exciting and fun in a challenging way
• Put background and drawing

11(19%) 6 (18%)

Creating to
Express

• Create video games, and stories,
pictures, almost anything imaginable

• Make a lot of cool stuffs
• Share and show your programming

skills

14 (25%) 10 (29%)

Scratch
Features as a
Programming
Language

• Programming and code system
• Help students/adults learn

programming
• Computer language for beginner and

kids
• Use already-built blocks rather than

typing
• Making project using characters
• Cats runs around and execute

command
• Drag and drop into another box
• Make/program objects to move
• Make projects with variables and

scripts

17 (30%) 10 (29%)

Learning and Sharing Community. In students’ responses, some participants

indicated that Scratch is a community of people making games. One student noted,

Scratch is... “a community of people doing it and it has fun game.” Another student

responded, “a fun project where everyone is making cool stuff. You could download it

onto your computer. You could visit it online at scratch.mit.edu.”

This category is related to one element of CT perspectives, Connecting,

identified and observed by Brennan and Resnick (2012). One student said, “It’s fun

website to go on because you can make your own stuff and look at others.” Another

student also explained, “You can also play and search another person’s game or

project and play it.” These data indicate that students began to recognize “the power

 51

of creating with and for others” (Brennan &Resnick, 2012). Students also realized that

they could get inspired from other people’s work or build on existing projects or ideas

when they are “Remixing and collaborating.” One students added, “They [users] could

remix the games or start from scratch.”

Creativity and Fun. A number of students described Scratch as creative and

fun. One student said, Scratch is “a fun, creative and awesome way to show everyone

your computer programming skills. SCRATCH is fun and creative.” One of the seven

big ideas in Computer Science Principles is Creativity, which suggests that creative

development can be an essential process of creating computational artifacts.

Creating to Express. Most students reported that they would describe Scratch

as a website where they can create games, stories and animations. One student noted,

“Scratch is a coding website. You can make games and pictures.” Another student

added, “Scratch is a programming that you learn to create games, stories, and many

more fun things.”

Similarly, one element of CT perspectives identified by Brennan and Resnick

(2012) is “expressing”, which argues that computation is a medium of creation which

can be used for design and self-expression. Reflecting this idea, one student noted,

Scratch is where “you can show people your computer programming skills” while

another student added, “Scratch is a website where you can program games

animations and almost anything imaginable.” Overall, students were able to

understand that they can use Scratch to express themselves by creating computational

artifacts.

Scratch Features as a Programming Language. Few students described

Scratch with its blocks and low-floor, high-ceiling features. One student explained,

 52

Scratch “is a computer language used for kids who just began trying to program. You

can use different tools to make projects you can share with the community. There is

blocks already made used to program games.” A second student added, “you drag

commands out of a box into another box to make sprites(character)move,” while a

third student described Scratch “as a little yellow language cat that runs around and

execute commands”. Similarly a fourth student described Scratch as “a place where

you can make all different games/projects with variables/scripts” Finally, some

students also encouraged their peers to learn coding when responding to this question.

One student said, “that Scratch is a program on the computer that will help students

and adults learn programming. It is a fun learning experiences. Everyone should

learn.”

 53

Chapter 4

DISCUSSION AND CONCLUSIONS

Discussion

The purpose of this study is three-fold. First, it aims to describe the specific

roles served by CS undergraduates in the context of the Partner4CS field experience

model. Second, it seeks to examine the quality of the instructional materials they

prepared to support partner teachers and students. Third, it aims to link CS

undergraduates’ practices from the designed partnership model to in-class support for

teachers and subsequent student outcomes.

Data were collected from case reports enacted by the CS undergraduates,

interviews and journal entries. Data were also collected from middle school students

participating in the after-school program designed and implemented by a middle

school teacher and CS undergraduates as part of the partnership model. Results

indicated that the partnership model was able to bring in both material resources and

non-material resources (Shah et al., 2013) to influence CS teaching and students’

learning. Providing access to rich content skills, resources and quality instruction were

considered as material resources while building out-of-school identity, teacher

cooperation and parental involvement are considered as non-material resources. One

of the CS undergraduates, Joe explained the value of parental involvement and how

they also reached out to the communities through the partnership:

I got the chance to talk with some of the parents, and all of them were
extremely thankful for the work we have done. Most of them said how
enthusiastic their kids were about this stuff and how they would have
never had the opportunity to learn these concepts through Scratch at
such a young age. It made me feel good to hear that, and even though
it's just an after-school club, hopefully this will get teachers and parents

 54

to start putting pressure on the school boards to start making changes to
the curriculum.

The analysis of case reports with associated reflection artifacts and

investigator’s observational notes suggested that Scratch lessons enacted by

participants introduced meaningful and relevant CS concepts by utilizing sound

pedagogical strategies and age-appropriate CT tools and activities. These lessons

encouraged CT practices and perspectives among students’ learning. Students’

learning progress was also guided and built upon several formative and project-based

assessments.

Similarly, students’ views of Scratch provided evidence that designed lessons

effectively engaged middle school students with CS content. The learning

environment successfully encouraged students to employ many CT practices and grow

as computational thinkers. Specifically, participation in the after-school program

provided students with opportunities to acquire fundamental CS skills and transition

from technology consumers to creators of computing innovations (Repenning et al.,

2015). Further, the findings from data collected at the beginning and end of club in

students’ design tasks and content assessments indicated that students gained a better

understanding of programming concepts and skills after their participation in the after-

school program.

Recommendations

The recommendations are informed by the data sources described above and

findings reported in literature. These recommendations are intently directed to the

course instructors for the university field experience course and the Partner4CS team.

 55

Scaffoldings on Lesson Plans and Teaching Strategies. Although CS

students were provided with opportunities to independently experiment with the basic

technology and to identity and adapt available CS curricula recourses for engaging

youth in CS, these students acknowledged that they still need help with lesson

planning and teaching strategies. Students’ reflections indicated that they had

difficulty providing differentiated instruction. Mark noted, “We also continued to have

trouble getting all of the students to focus on their own projects. We'll have to come up

with ways of keeping them more focused for next week… It's proving difficult to find a

balance between challenging the less advanced students and maintaining the interest

of the more advanced ones.” Similarly, Beth who worked with Mark for a semester,

also noted, “how to challenge the more advanced students while not losing anyone

else.”

Further, data from participants’ journals indicated that students appreciated

teaching mock lessons, focusing on CS unplugged activities, Scratch and lab

technologies, which provided them with opportunities to plan, design, rehearse and

lead a lesson in front of their classmates for the first time. During these mock-

teachings, they learned teaching practices from their peers and practiced how to give

and receive feedback. However, in the future, course instructors could provide

additional scaffoldings to address other related pedagogical issues. Students need

additional supports related to learning theories, design of effective learning

environments, problem solving and classroom management. Further, they found

lesson planning a rewarding and valuable experience, but they acknowledged that it

requires a significant amount of time to develop and adapt lessons and that they were

not prepared for writing lesson plans.

 56

Pairing Educational Students with CS Students. Course instructors could

also consider recruiting more students majoring in education or mathematics or

science education. The team could also identify potential opportunities or create a

certificate to provide CS students with opportunities to co-plan and co-teach with

education students in the field. The partnership model with an addition of education

students holds promise for the successful infusion of needed pedagogies and lesson

preparation for CS students, while simultaneously providing numerous benefits to

education undergraduates in terms of CS content and skills.

Implications and Future Research

Findings of this work provided insights related to the impact and benefits of a

partnership model to help middle students learn CS concepts. Future research could

examine the benefits of the partnership model in different settings with diverse

contexts. This study focused on upper elementary to middle-school students in the

context of one after-school program. Future research could also investigate such

partnership model and experiences within high schools, regular CS classrooms or

informal setting. The contexts should include a more diverse sample in terms of

gender, SES and ethnicity. In addition, future research should also include and employ

a longitudinal study and larger scale of data collection across multiple years and

locations. Relatedly, researchers can consider utilizing and developing other

instruments, summative and formative performance-based assessments to collect and

examine school students’ CT development.

Further, future research may also investigate how the partnership model

provides CS students with opportunities to hone their soft skills, such as,

communication and leadership skills, and increase their confidence and technical

 57

skills. Similarly, it would be beneficial to examine the partner teachers’ knowledge

and practices in teaching computing after their partnership experience and follow-up

classroom support.

Findings from this work could also help establish best practices with regard to

teacher education programs with the potential to support future pre-service CS

teachers in practicum or internship opportunities. As needs grow in teaching

computing in K-12 settings, many higher education institutions have started to

redesign and develop graduate certificate programs for preparing K-12 CS teachers.

The program curriculum can be divided into four areas that resemble aspects of the

field experience course implemented in this work: (a) general studies: computing

education in K-12, CS education curriculum resources and standards, and trending in

teaching computing; (b) methods and assessment: pedagogical strategies and

assessment; (c) CS technology knowledge and skills; and (d) practicum in computing

education: much like student teaching, students are assigned to a semester-long field

placement.

Limitations

The primary limitation of this study was its small number of participants. The

data for the reflective journals and case reports were collected from six undergraduate

participants. A larger sample size could have provided more insights. Also, the Scratch

projects, content assessments and design journals were collected from 23 middle

school students. Therefore, the small sample size limited the generalizability of the

findings to the population. The investigation was also limited due to the short time

frame and single location for data collection. A follow-up to this investigation could

observe and collect more robust data over multiple years and across different

 58

locations. A greater number of observations and data would lead to more significant

and substantive findings to draw stronger conclusions.

Conclusion

Many new policy initiatives suggest that students need to be equipped with a

better CS foundational knowledge and skills in order to understand the world around

them, solve problems and become effective citizens in this computing-driven world

(PCAST, 2010). The field experience course and its established partnership aimed at

building a community of partners working together to broaden participation in CS

education. The research-practice partnership model is attempting to find ways not only

to train future STEM workers with awareness of community impacts, but to also seek

new trends and instructional practices in teaching computing. This work presents an

effective approach to the partnership model to broaden participation in computing

among upper elementary and middle school students. The design and implementation

of the partnership helped the school teacher to provide students with more

opportunities to explore computational concepts and practices from an early age.

 59

REFERENCES

A is for Algorithm (2014). The economist. Retrieved from
http://www.economist.com/news/international/21601250-global-push-more-
computer-science-classrooms-starting-bear-fruit.

Ahonen, A. K. & Kankaanranta, M. (2015). Introducing assessment tools for 21st
century skills in Finland. In P. Grif n & E. Care (Eds.), Assessment and
teaching of 21st century skills (pp. 213–225). Springer.

Barr, D., Harrison, J., & Conery, L. (March 01, 2011). Computational Thinking: A
Digital Age Skill for Everyone. Learning & Leading with Technology, 38, 6,
20-23.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is
involved and what is the role of the computer science education community?
ACM Inroads, 2(1), 48–54.

Berland, M., & Lee, V. R. (2011). Collaborative strategic board games as a site for
distributed computational thinking. International Journal of Game-Based
Learning (IJGBL), 1(2), 65–81.

Brady, C., Orton, K., Weintrop, D., Anton, G., Rodriguez, S., & Wilenski, U. (2017).
All roads lead to computing: Making, participatory simulations, and social
computing as pathways to computer science. IEEE Transactions on Education,
60(1), 59-66.

Bransford, J. D., Brown, A., & Cocking, R. (2000). How people learn: Mind, brain,
experience and school (Expanded ed.). Washington, DC: National Academy.

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. Annual meeting of the American
Educational Research Association, Vancouver, Canada.

Bureau of Labor Statistics, US Department of Labor. (2010). Occupational Outlook
Handbook, 2010–11 Edition, Computer Scientists.

Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., &
Woollard, J. (2015). Computing at School. Retrieved from
http://www.computingatschool.org.uk.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.).
Hillsdale, NJ: Erlbaum.

 60

College Board. (2014). AP Computer Science Principles Draft Curriculum
Framework. Retrieved from
https://advancesinap.collegeboard.org/stem/computer-science-principles.

Computational Thinking—Teacher Resources second edition. (2017) Retrieved from
https://csta.acm.org/Curriculum/sub/CurrFiles/472.11CTTeacherResources_2e
d-SP-vF.pdf.

Computer Science Teachers Association, & International Society for Technology in
Education. (2011). Computational Thinking: Leadership Toolkit (1st ed..)
Retrieved from
http://www.csta.acm.org/Curriculum/sub/CurrFiles/471.11CTLeadershiptTool
kit-SP-vF.pdf.

CSTA Association for Computing Machinery. (2013). Bugs in the System: Computer
Science Teacher Certification in the U.S. New York: Computer Science
Teachers Association.

CSTA Teacher Certification Task Force. (2008). Ensuring Exemplary Teaching in an
Essential Discipline: Addressing the Crisis in Computer Science Teacher
Certification. New York: Computer Science Teachers Association.

Cuny, J. (2012). Transforming high school computing: A call to action. ACM Inroads,
3(2), 32- 36

Delaware’s Science, Technology, Engineering and Math (STEM) Council (2012).
Annual Report: The State of STEM Education in Delaware

Denner, J., & Werner, L. (2007). Computer programming in middle school: How pairs
respond to challenges. Journal of Educational Computing Research, 37(2),
131–150.

Ericson, B., & McKlin, T. (2012). Effective and sustainable computing summer
camps. In 43th SIGCSE technical symposium on computer science education
(pp.290-294).

Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data.
Cambridge,MA: MIT Press.

Goode, J. (2011 Summer). Exploring Computer Science: An Equity-Based Reform
Program for 21st Century Computing Education. Journal for Computing
Teachers.

 61

Grover, S., Pea, R., & Cooper, S. (2016). Factors influencing computer science
learning in middle school. SIGCSE, March 02-05, Memphis, TN, USA.

Hatch, J. A. (2002). Doing qualitative research in education settings. New York: Suny
University Press.

International Society for Technology in Education (2016). National educational
technology standards for students. Retrieved from http://www.iste.org

Kolodner, J. L. (2006). Case-Based Reasoning. In K. L. Sawyer (Ed.), The Cambridge
handbook of the learning sciences (pp. 225-242). Cambridge: Cambridge
University Press.

Maloney, J., Kafai, Y., Resnick, M., & Rusk, N. (2008). Programming by choice:
urban youth learning programming with scratch. In 39th SIGCSE technical
symposium on computer science education (pp. 367-371).

Matias, J.N., Dasgupta, S., & Hill, B.M. (2016). Skill progression in Scratch revisited.
CHI, May 07-12, 2016, San Jose, CA, USA.

Moreno-León, J., & Robles, G. (2015). Analyze your Scratch projects with Dr. Scratch
and assess your computational thinking skills. In Proceedings of the 7th
international Scratch conference (Scratch2015AMS). Amsterdam,
Netherlands.

Mouza, C., Marzocchi, A., Pan, Y., & Pollock, L. (2016) Development,
Implementation and Outcomes of an Equitable Computer Science After-School
Program: Findings from Middle-School Students. Journal of Research on
Technology in Education, 48(2), 84-104.

Mueller, J., Becket, D., Hennessey, E., & Shodiev, H. (2017). Assessing
Computational Thinking Across the Curriculum. In Rich, P. & Hodges, C.
(Eds.), Emerging Research, Practice, and Policy on Computational Thinking
skills (pp. 251–268). Springer.

National Research Council (NRC). (2010). Report of a Workshop on The Scope and
Nature of Computational Thinking. The National Academies Press.

National Science Foundation (2014). College Board launches new AP Computer
Science Principles course. Retrieved from
http://www.nsf.gov/news/news_summ.jsp?cntn_id=133571.

 62

Office of the Press Secretary (2016). FACT SHEET: President Obama announces
computer science for all initiative. Retrieved from
https://www.whitehouse.gov/the-press-of-offi ce/2016/01/30/ fact-sheet-
president-obama-announces-computer-science-all-initiative-0.

Papert, S. (1991). Situating constructionism. In I. Harel & S. Papert (Eds.),
Constructionism. (pp. 1–11). Norwood, NJ: Ablex.

PCAST. (2010). Prepare and inspire: K–12 education in science, technology,
engineering, and mathematics (STEM) for America’s future. Washington, DC.
Retrieved from
http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-ste
medreport.pdf.

Pollock, L., Mouza, C., Atlas, J., & Harvey, T. (2015). Field experience in teaching
computer science: Course organization and reflections. Proceedings of Special
Interest Group in Computer Science Education, March 4-7, Kansas City, MO.

Repenning, A., Webb, D., and Ioannidou, A. (2010). Scalable game design and the
development of a checklist for getting computational thinking into public
schools. SIGCSE ’10. (March 2010), 265-269.

Repenning, A., Webb, D.C., Koh, K.H., Nickerson, H., Miller, S.B., Brand, C.,
Horses, I.H., Basawapatna, A., Gluck, F., Grover, R., Gutierrez, K., &
Repenning, N. (2015). Scalable game design: A strategy to bring systemic
computer science education to schools through game design and simulation
creation. ACM Transactions on Computing Education, 15 (2), 11.1-11.31.

Sengupta, P., Kinnebrew, J.S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating
Computational Thinking with K-12 Science Education Using Agent-based
Computation: A Theoretical Framework. Education and Information
Technologies, 18 (2), 351-380.

Shah, N., Lewis, C. M., Caires, R., Khan, N., Qureshi, A., Ehsanipour, D., & Gupta,
N. (2013). Building equitable computer science classrooms: elements of a
teaching approach. Proceedings of the 44th ACM technical symposium on
computer science education (pp. 263-268).

Shute, V., Sun, C., Asbell-Clarke, J. (2017). Demystifying computational thinking.
Educational Research Review, 22, 142-158.

 63

Webb, D., Repenning, A., & Koh, K. H. (2012). Toward an emergent theory of
broadening participation in computer science education. In Proceedings of the
43rd ACM technical symposium on computer science education, February 29–
March 3, Raleigh, NC (pp.173–178). New York, NY: ACM.

Whitehouse.gov (2016). Computer science for all. Retrieved from
https://www.whitehouse.gov/the-press-office/2016/01/30/weekly-address
giving-every-student-opportunity-learn-through-computer.�

Wing, J.M. (2006). Computational Thinking. Communications of the ACM, vol. 49(3),
33-35.

Wing, J. (2008). Computational thinking and thinking about computing. Philosophical
Transactions of the Royal Society, 366, July 2008, 3717-3725.

Yadav, A., Burkhart, D., Moix, D., Snow, E., Bandaru, P., & Clayborn, L. (2015).
Sowing the seeds: A landscape study on assessment in secondary computer
science education. New York, NY: Computer Science Teacher Association.

Yager, R. (Ed.). (1995). Constructivism and learning science. Mahway, NJ: Lawrence
Erlbaum Associates.

 64

Appendix A

PRE- AND POST- CLUB QUESTIONNAIRE

A. WHAT IS YOUR NAME?

B. PLEASE SELECT YOUR GENDER:
(check)

 � Boy � Girl

C. WHAT GRADE ARE YOU IN? (circle) 3rd 4th 5th 6th 7th 8th 9th
D. How many Scratch Clubs have you

taken before? (please check)
� None � 1 � 2 � 3 � 4

E. How many hours have you spent with
Scratch? (please check)

� Between 0 and 10 Hours
� Between 10 and 100 Hours
� More than100 Hours

1) In	what	category	is	the	 	block?	

a. Control	
b. Motion	
c. Sensing	
d. Variables	
e. Looks	

2) What	is	the	following	an	example	of?	

a. Conditional	execution		
b. Handling	an	event	
c. Sending	a	message	
d. Loop	–	repeated	execution	
e. Modifying	a	variable	

	
3) What	is	the	following	an	example	of?	

 65

a. Conditional	execution	
b. Handling	an	event	
c. Sending	a	message	
d. Loop	–	repeated	execution	
e. Modifying	a	variable		

4) What	is	the	following	an	example	of?	

a. Conditional	execution	
b. Handling	an	event	
c. Sending	a	message	
d. Loop	–	repeated	execution	
e. Modifying	a	variable	

5) What	is	the	following	an	example	of?	

a. Conditional	execution	
b. Handling	an	event	
c. Sending	a	message	
d. Loop	–	repeated	execution	
e. Modifying	a	variable	

6) What	is	the	following	an	example	of?	

a. Conditional	execution	
b. Handling	an	event	
c. Sending	a	message	
d. Loop	–	repeated	execution	
e. Modifying	a	variable	

	
7) What	does	the	following	code	do?	

 66

a. Repeat	a	simple	animation	
b. Draw	a	square	using	the	pen	
c. Make	a	ball	fall	
d. Increment	the	score	
e. Stamp	the	current	costume	at	the	current	mouse	location	

	

8) What	does	the	following	code	do?	

a. Repeat	a	simple	animation	
b. Draw	a	square	using	the	pen	
c. Make	a	ball	fall	
d. Increment	the	score	
e. Stamp	the	current	costume	at	the	current	mouse	location	

9) What	will	be	said	when	the	following	executes	and	the	user	answers	with	

No?	

a. Great!	
b. I	had	better	get	out	of	here	

 67

c. I	don't	know	
d. It	won't	say	anything	
e. You	will	get	an	error	message	

10) Draw	the	result	of	executing	the	following	script	when	the	cat	is	in	the	
center	of	the	stage.	

 68

Appendix B

IRB APPROVAL NOTIFICATION DOCUMENT

- 1 - Generated on IRBNet

RESEARCH OFFICE

210 Hullihen Hall
University of Delaware

 Newark, Delaware 19716-1551
Ph: 302/831-2136
Fax: 302/831-2828

DATE: April 27, 2016

TO: Chrystalla Mouza, Ed.D.
FROM: University of Delaware IRB

STUDY TITLE: [885606-1] Computational Thinking in K-12: Focus on Student Outcomes

SUBMISSION TYPE: New Project

ACTION: APPROVED
APPROVAL DATE: April 22, 2016
EXPIRATION DATE: April 21, 2017
REVIEW TYPE: Expedited Review

REVIEW CATEGORY: Expedited review category # (6,7)

Thank you for your submission of New Project materials for this research study. The University of
Delaware IRB has APPROVED your submission. This approval is based on an appropriate risk/benefit
ratio and a study design wherein the risks have been minimized. All research must be conducted in
accordance with this approved submission.

This submission has received Expedited Review based on the applicable federal regulation.

Please remember that informed consent is a process beginning with a description of the study and
insurance of participant understanding followed by a signed consent form. Informed consent must
continue throughout the study via a dialogue between the researcher and research participant. Federal
regulations require each participant receive a copy of the signed consent document.

Please note that any revision to previously approved materials must be approved by this office prior to
initiation. Please use the appropriate revision forms for this procedure.

All SERIOUS and UNEXPECTED adverse events must be reported to this office. Please use the
appropriate adverse event forms for this procedure. All sponsor reporting requirements should also be
followed.

Please report all NON-COMPLIANCE issues or COMPLAINTS regarding this study to this office.

Please note that all research records must be retained for a minimum of three years.

Based on the risks, this project requires Continuing Review by this office on an annual basis. Please use
the appropriate renewal forms for this procedure.

- 2 - Generated on IRBNet

If you have any questions, please contact Nicole Farnese-McFarlane at (302) 831-1119 or
nicolefm@udel.edu. Please include your study title and reference number in all correspondence with this
office.

