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GLOSSARY 

Term Explanation  
Alice An online block-based language environment for users to 

create animations and interactive media. 
https://www.alice.org/ 

App Inventor An open-source web application developed by Google and 
maintained by MIT, allowing users to create software 
application for Android with a visual-object, drag-and-drop, 
and block-based language. 
http://www.appinventor.org/ 

Arduino Arduino is a platform designed for electronics projects, 
consisting of a programmable circuit board and its integrated 
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for creating web pages and web applications. 

Hummingbird An educational robot that works with Scratch or Snap, 
designed to introduce kids to robotics and engineering. 
https://www.hummingbirdkit.com/ 

Java A computer-programming language. 
Khan Academy Educational organization providing online interactive lessons 

and content for students and educators.  
https://www.khanacademy.org/ 

Makey-Makey A circuit board allowing users to connect conductive objects 
with alligator clips and a USB cable to computer programs 
and send  keyboard or mouse click inputs.  
https://makeymakey.com/ 

Mbot Educational robot kit developed by Make block, programmed 
by block-based language. 
https://www.makeblock.com/steam-kits/mbot 

Micro:bit A tiny programmable computer built on Blockly and designed 
to promote learning computing and coding.  
http://microbit.org/ 

Ozobot A robot designed for education, programmed by drawing color 
codes or Ozoblockly. 
https://ozobot.com/ 

Pencil Code A block-based programming tool. 
https://pencilcode.net/ 

Python Turtle A python feature, commanding a turtle to move around like a 
drawing board for beginners. 

Raspberry Pi A small single-board computer developed in the U.K. by the 
Raspberry Pi Foundation to promote basic computer science 
education. 
https://www.raspberrypi.org/ 

Scratch A block-based programming tool developed by MIT. 
https://scratch.mit.edu/ 

Snap! A block-based programming tool developed by Berkeley. 
https://snap.berkeley.edu/ 

Sphero A robot designed for education, programmed by blocks or 
JavaScript. https://www.sphero.com/ 

Tynker A block-based programming tool. 
https://www.tynker.com/ 
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printers and software such as Tinkercard. 
https://www.tinkercad.com/ 
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ABSTRACT 

Recent policies and initiatives emphasized the importance of helping all 

students acquire Computer Science (CS) knowledge and develop Computational 

Thinking (CT). This study investigated the impact of a school-university partnership 

model on school students’ CT development in the context of an after-school program. 

This study also examined the ways in which college CS undergraduates supported 

practicing teachers in the field, both through teaching practices and material 

development. The overall purpose of this work is to link CS undergraduates’ practices 

from the designed partnership model to in-class support for teachers and subsequent 

student outcomes. 

Participants included 65 school students in grades four to six who voluntarily 

participated in the nine-week after-school program, as well as six CS undergraduates 

and one practicing teacher who designed and implemented the program. Data were 

collected from multiple sources, including after-school program observations, 

undergraduate reflections, CS case reports, CS content assessments, programming 

products, design journals, and a teacher interview. 

Results indicated that CS undergraduates actively sequenced, facilitated, and 

co-led a set of progressive, cohesive, meaningful, and relevant CS lessons with sound 

pedagogical strategies and age-appropriate CT tools and activities. School students’ 

learning progress was also guided and built upon several formative and project-based 

assessments. Further, results indicated that the school-university partnership program 

positively influenced student learning of CS concepts, practices, and perspectives. 

Findings from this work can help provide guidelines for the design and 

implementation of effective partnership programs that help broaden participation in 
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computing, with attention to the ways in which field experience and CS 

undergraduates can help support CS education in local communities. 
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Chapter 1 

INTRODUCTION 

Introduction and Background 

Over the past 10 years, growth in STEM (Science, Technology, Engineering, 

and Mathematics) jobs was three times greater than non-STEM jobs (Computer 

Science Teacher Association and Association for Computing Machinery, 2013) and 

current projections indicate that by 2020 there will be 9.2 million STEM jobs (Bureau 

of Labor Statistics, 2010). STEM occupations will provide 2.4 million job openings 

through 2018, including 1.1 million new job openings and 1.3 million replacement 

jobs due to retirement (CSTA Association for Computing Machinery, 2013). 

However, the U.S is facing shortages of people who either meet or are willing to 

receive STEM competencies. At the same time, research has shown that quantifiable 

STEM shortage is an important priority that needs to be addressed through a national 

strategy in order to sustain economic innovation and competency (CSTA Teacher 

Certification Task Force, 2008; Goode, 2011). 

Throughout all STEM fields, computer science (CS) is the primary leading 

driver for job growth. More than 50% of the jobs in STEM fields projected by 2018 

are in computing occupations, which means there are 4.6 million jobs waiting for 

those leaving college (CSTA Association for Computing Machinery, 2013). CS is one 

of the most in-demand degrees (CSTA Association for Computing Machinery, 2013). 

Technology has critical relationships between the high-tech industries, national 

security, long-term economy, and the ability to maintain global leadership in 
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innovation. There is also a critical link between CS education and economic growth 

(CSTA Teacher Certification Task Force, 2008; Goode, 2011). Specifically, CS 

provides the knowledge and skills all students need (even those pursuing non-STEM-

related fields) to participate in the new global information society (CSTA Teacher 

Certification Task Force, 2008; Wing, 2006). 

The U.S. education system, however, is not educating enough students with 

STEM-capable competencies, especially in CS, to keep up with demand both in 

traditional STEM occupations and other new occupations that need similar 

competencies (National Research Center, 2010; Sengupta, Kinnebrew, Basu, Biswas, 

& Clark, 2013). Specifically, only nine U.S. states are counting CS courses as a core 

requirement in K-12 education. According to the office of the Press Secretary (2016) 

“by some estimates, just one quarter of all the K-12 schools in the United States offer 

CS with programming and coding, and only 28 states allow CS courses to count 

towards high-school graduation, even as other advanced economies are making CS 

available for all of their students” (p. 1). As a result, educators are facing a 

responsibility to ensure all students have opportunities to learn CS principles and 

computational thinking (CT) practices that are relevant to their future career and lives 

(Barr, Harrison, & Conery, 2011; Sengupta et al., 2013; Wing, 2006). 

It is clear, that the U.S. K–12 educational system continues to marginalize CS 

education (CSTA Teacher Certification Task Force, 2008; Goode, 2011). Although 

there is clearly a demand, there is currently no way to ensure that students learn the 

best-prepared content and skills they need from well-trained qualified CS educators 

(CSTA Teacher Certification Task Force, 2008). Federal, state, and local policies 

governing teacher certification also result in barriers to, rather than support for, 
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teaching and learning in CS. According to the CSTA Teacher Certification Task Force 

(2008), the U.S. needs clear, consistent, and rational policies governing what teachers 

need to know, along with similar policies on how to systematically train teachers. In 

the absence of teacher preparation and support, the U.S. will be under-producing 

STEM workers for the next generation. 

Relevant Literature 

Reforming CS Education 

Many governments around the world are working on improving their CS 

education and curriculum. The British government is changing its CS education and 

CS has become a part of England’s primary school curriculum. Other countries such 

as Australia, Denmark, Israel, New Zealand, and Germany have also updated their CS 

high-school curricula (A is for Algorithm, 2014). 

In the U.S., President Donald Trump’s new CS campaign builds in some ways 

on previous work by his predecessor, former President Barack Obama, who sought to 

boost coding education through initiatives like Computer Science for All. Many tech 

industry leaders such as Google, Apple, Amazon and Microsoft have also provided 

funding to begin developing resources and models. CS for All called for a 4.1 billion 

budget targeting the following goal: “children from kindergartens through high 

schools need to learn Computer Science and be equipped with the CT skills they need 

to be creators in the digital economy, not just consumers, and to be active citizens in 

our technology-driven world” (Whitehouse.gov, 2016, p. 1). Further, this initiative 

aims to provide professional development for teachers with high-quality instructional 

materials. 
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The National Science Foundation and its CS 10K project aims to address 

teacher preparation explicitly and prepare 10,000 teachers in 10,000 high schools. The 

target date for having these teachers in place, which has been extended, was 2015. The 

project is a large-scale, collaborative effort bringing communities together with “the 

goal of systematically changing the scale, curriculum, and pedagogy of teaching 

computer science at all levels,” with a particular focus on CS in U.S high schools as 

well as introductory computing at the college level (for more information, 

http://cs10kcommunity.org/). The NSF also launched a new program called 

Computing Education for the 21st Century (CE21) to help leverage CS10K effort. 

The Computer Science Teacher Association (CSTA) released the revised K-12 

Computer Science standards (Computational Thinking—Teacher Resources second 

edition, 2017). The standards provide a framework and foundation for K-12 CS 

education. The Association for Computing Machinery (ACM) and CSTA also 

launched a new K-12 advocacy coalition called Computing in the Core to establish 

partnerships. Further, many high schools implemented an introductory Computer 

Science course called Exploring Computer Science (http://www.exploringcs.org) and 

adapted a new approach for AP CS through Computer Science Principles (National 

Science Foundation, 2014).  

Community-Based Approach to CS Education  

CS Education reform to date has involved community building, engagement, 

commitment and resources. Yet, Repenning, Webb, and Ioannidou (2010) indicated 

that CS education has not received much attention at the middle school level. For 

instance, programming is not commonly seen in middle school curricula or in schools. 

Therefore, informal learning with coding skills has become available through many 
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online communities, makerspaces, and local after-school computer clubs (Matias, 

Dasgupta, & Hill, 2016). Research suggests that investing in partnerships and 

implementing extracurricular programs, such as summer camps or after-school 

programs are strongly recommended to introduce CT and CS concepts to school 

students and broaden participation in the field (Maloney, Kafai, Resnick, & Rusk, 

2008; PCAST, 2010; Repenning et al, 2010). 

Defining Computational Thinking   

With many initiatives and recent policy emphasizing the importance of helping 

all students be equipped with CS knowledge and skills, CT has emerged as an 

essential literacy that has been frequently included as part of 21st century skills across 

disciplines (NRC, 2010). In particular, CT is considered a way to promote CS 

education across the curriculum. 

CT was pioneered by Jeannette Wing (2006). Wing (2008) introduced CT as 

“solving problems, designing systems, and understanding human behavior, by drawing 

on the concepts fundamental to computer science” (p. 3717). She suggested that CT is 

a fundamental skill of analytical thinking for everyone, not just for computer 

scientists. CT is a problem-solving method and defined as “the thought processes 

involved in formulating a problem and expressing its solution in a way that a 

computer—human or machine—can effectively carry out” (Wing, 2006, p. 33). 

CT is also included as a key element in the newly released National 

Educational Technology Standards for Students from the International Society for 

Technology in Education (ISTE, 2016). ISTE defined the purpose of CT as follows: 

“Students develop and employ strategies for understanding and solving problems in 
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ways that leverage the power of technological methods to develop and test solutions” 

(http://www.iste.org/standards/standards/for-students-2016). 

The International Society for Technology in Education (ISTE) in collaboration 

with the Computer Science Teachers Association (CSTA) published a list to define CT 

characteristics (Barr & Stephenson, 2011; CSTA & ISTE, 2011). These include, but 

are not limited to: 

• Formulating problems for use with a computer to facilitate the 
solution; 

• Logically organizing and analyzing data; 

• Representing data through abstractions; 

• Automating solutions through algorithmic processes; 

• Identifying, analyzing and implementing possible solutions, as the 
most efficient and effective combination of steps and resources; and 

• Generalizing and transferring this process to a variety of problem 
areas. 

The Relationship between Computational Thinking and Programming 

Programming has received great attention worldwide thanks to block-based 

environments, such as Scratch. Programming not only allows students to create 

programs with computers, but also easily connects with robotics and computational 

tools (i.e., Sphero, Micro:bit, Ozobot, Makey-Makey, Finch Robot, Mbot, BeeBot, 

Edison bot, Dash and Dot, Raspberry Pi, 3D Printing, Hummingbird, Arduino, Python 

turtle, E-textiles). Research has indicated that programming games provide a great 

motivation for students and serves as an introduction to CS, offering a context that 

involves many CT elements (Repenning et al, 2010; Shute, Sun, & Asbell-Clarke, 



 7 

2017). As a result, many early introductory CS or CT-infused curricula were designed 

around visual block-based programming language environments such as Scratch, 

Alice, Blockly, MIT App Inventor, Tynker, and Snap! These tools focus on providing 

young learners with fun, engaging learning experiences with CT. Some online 

introductory programming curriculum resources—Code.org, Khan Academy, Google’s 

CS First, Pencil Code, or Code Monkey—have already become part of many 

children’s initial programming experiences either in schools, in after-school clubs or at 

home. Code.org is a nonprofit dedicated to broadening participation and access in CS 

education with k-12 CS curriculum. Hour of Code, a movement and campaign 

organized by Code.org offers an online educational platform for many students to try 

coding for one hour with age-appropriate projects, selectable activities, and interactive 

tutorials (for more information, https://hourofcode.com/us). 

Scratch. Over the past several years, Scratch, an online educational 

programming tool launched in 2007 by MIT Media Lab, has generated great attention 

by providing an easy-to-use and user-friendly online programming environment. 

Especially in CS education, Scratch has been widely adopted in K-12 settings. With 

Scratch, users are able to create their own digital stories, animations, games, music, 

and interactive media. Scratch also enables users to share, comment on, and remix 

projects online, offering an environment for design-based learning (Brennan & 

Resnick, 2012). This program is frequently called low-floor high ceiling (Brady et al., 

2017), to indicate that is easy enough for novice users to create simple projects while 

simultaneously allowing advanced users to create more complex projects. Block-based 

and color-coded elements allow users to see errors right away without worrying about 

syntax (see Figure 1). Further, an online platform developed in conjunction with this 
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tool, called ScratchEd, provides a community resource for teachers who are interested 

in sharing materials and experiences related to teaching and learning with Scratch 

(https://scratch.mit.edu). 

 

Figure 1 Scratch, Block-Based Programming Language 

Brennan and Resnick (2012) identified three specific dimensions of CT 

observed through project creation in Scratch, which include: (a) Computational 

Concepts: sequences, loops, parallelism, events, conditional, operators, and data; (b) 

Computational Practices: being incremental and iterative, testing and debugging, 

reusing and remixing, and abstracting and modularizing; and (c) Computational 

Perspectives: expressing, connecting, and questioning (see Table 1). 
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Table 1 Brennan and Resnick’s CT Framework 

Computational Concepts 
Sequences A specific task or action is expressed as a series of steps or 

instructions that can be executed by the computer.  
Loops A mechanism used to run the same sequence of instructions 

multiple times.  
Events An important component of interactive media where one thing 

triggers another thing to produce actions. 
Parallelism Sequences of instructions happening simultaneously within a 

single object or across objects. 
Conditionals Multiple outcomes are determined based on certain conditions. 
Operators Operators performs numeric and string manipulations including 

mathematical, logical, and string expressions, such as addition, 
subtraction, multiplication, division, functions, sine, exponents, 
concatenation and length of strings. 

Data Data involves variables and lists to store, retrieve, and update 
values, numbers and strings. 

Computational Practices 
Being 
incremental 
and iterative 

Iterative cycles of imagining and developing. An adaptive 
process of trying and changing based on new ideas, solutions and 
experiences. 

Testing and 
debugging 

Building projects through trial and error and developing 
strategies. 

Reusing and 
remixing 

A collaborative practice of getting inspired by, accessing to 
others’ work and building upon the projects.  

Abstracting 
and 
modularizing 

A practice of design and problem solving: putting together 
collections of smaller solvable parts to create something 
complex. 

Computational Perspectives 
Expressing Expressing ideas and self by designing and creating computing 

products. 
Connecting Establishing partnerships, collaborations, and developing 

learning and creativity through access to networks and 
interactions with others in social practices. 

Questioning Learners are empowered to ask questions and make sense of 
computational artifacts by utilizing technologies. 
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Measuring Computational Thinking 

In recent years, researchers have been giving CT increased attention. Yet, 

measuring CT development is still a remaining challenge because assessments of CT 

remain under-developed and under-researched (Yadav et al., 2015). Recently, 

however, researchers have started developing a few assessments of CT, particularly 

centered on programming. Specifically, since Scratch is a widely-adopted visual 

programming language, some authors focused on establishing assessments centered on 

Scratch’s built-in data. Other authors, proposed frameworks to assess the development 

of CT in the context of designing projects on Scratch as well as specific assessment 

strategies such as (a) Project Analysis, (b) Artifact-Based Interviews, and (c) Design 

Scenarios (Brennan & Resnick, 2012). 

Moreno-León and Robles developed an online program called “Dr. Scratch” 

which can analyze and score Scratch projects automatically. Dr. Scratch examines 

constructs of presence and absence of computational concepts and scores Scratch 

projects along seven dimensions that include abstraction and problem decomposition, 

parallelism, logical thinking, synchronization, flow control, user interactivity, and data 

representation (Moreno-León & Robles, 2015). 

The Association for Computing Machinery (ACM) and the Computer Science 

Teacher Association (CSTA) emphasized that a factor limiting CT in schools is the 

lack of assessments for teachers. Much research to date has concentrated on traditional 

classroom assessment strategies (e.g., multiple-choice assessment). One factor that 

makes CT difficult to measure is that CT focuses on the thought process, not on the 

end product or artifact alone. Ahonen and Kankaanranta (2015) recognized that 

“think-aloud” could be an effective way to assess students’ CT process, such as 

breaking down problems and developing algorithms. Think-aloud data can be 
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collected through (a) a concurrent method where students unveil their cognitive 

process by thinking aloud while completing tasks, and (b) a retrospective method in 

which students describe their metacognitive process of solving a problem after they 

complete the task (Ericsson & Simon, 1993). Between these two methods, concurrent 

can more accurately assess students’ ability. However, sometimes young students have 

difficulty articulating their thought processes. Therefore, Mueller, Becket, Hennessey, 

and Shodiev (2017) also proposed a set of teacher verbal protocols to help in the 

assessment of students’ CT process. This set includes guiding questions for each CT 

category based on the constructs informed by Brennan and Resnick (2012) and 

Csizmadia et al. (2015). By asking questions as a communication tool, teachers will be 

able to understand students’ CT ability during conversations and pinpoint strengths 

and weaknesses. 

Computer Science Content and Pedagogical Strategies 

Developing programming environments is necessary but not sufficient for 

broadening participation in computing. Curriculum revisions, rigorous CS curriculum 

standards, and teacher preparation with renewed vision of CS pedagogy remain a more 

critical part of the reform. Many newly designed curricula and new pedagogical 

approaches are underway (Repenning et al., 2015; Shah et al., 2013; Webb, 

Repenning, & Koh, 2012), yet according to Shah et al. (2013) pedagogy is critical in 

broadening student participation in CS. Specifically, Shah et al. proposed a framework 

for equitable CS instruction, which consists of four dimensions: (a) Access to rich 

course content, (b) Quality instruction, (c) Productive peer relationships, and (d) 

Identities as computer scientists (see Table 2 for a description of each). 
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Table 2 Framework for Equitable CS Instruction 

Four Dimensions Pedagogical Practices 
Access to Rich Course 
Content 

Emphasizing Multiple Solutions 
Using Metaphors to Introduce Concepts  
Debugging by “Acting Out”  

Quality Instruction Tracking Student Progress  
Customizing Teaching Plans for Individual 
Students  
Using iClickers for Formative Assessment  

Productive Peer 
Relationships 

Exposing Students to a Diverse Set of Computer 
Scientists  
Managing Public Displays of Status  
Encouraging Connections to “Out-of- School” 
Identities  

Identities as Computer 
Scientists 

Strategically Partnering Students 
Encouraging and Structuring Peer Interaction 
Modeling Ideal Peer Collaboration  

 

 

In terms of rich course content, in the last few years, many CS curricula were 

established, such as Exploring Computer Science (ECS), and CS Principles (CSP), 

which emerged to provide a framework of seven big ideas in computing. These 

include: Creativity, Abstraction, Data and Information, Algorithms, Programming, 

The Internet, and Global Impact (see Table 3 for a description of each). These 

principles focus on key CS constructs that can be integrated into an existing 

curriculum, rather than coding only. The big ideas include the relevant impact of 

computing on society and emphasize creativity (Cuny, 2012). Further, the CS 

Principles framework emphasized six CT practices, which can be applied throughout 

the curriculum: (1) Connecting Computing, (2) Creating Computational Artifacts, (3) 

Abstracting, (4) Analyzing Problems and Artifacts, (5) Communicating, and (6) 

Collaborating (College Board, 2014). 
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Table 3 Seven Big Ideas of Computer Science Principles Curriculum 

Seven Big Ideas Brief Description 
Creativity  Computing is considered as a creative activity and leads 

problem-solving, innovations and exploration. Students 
utilize tools to create computational artifacts. 

Abstraction Abstraction is a strategy of problem-solving, which 
reduces detail to focus on relevant concepts. Students learn 
how to use models and simulation to simplify complex 
topics and identify patterns. 

Data and 
Information 

Students manage, process, interpret and visualize data by 
utilizing computational tools to create new information 
knowledge. 

Algorithms  Algorithms are fundamental aspects in computing and 
everyday tasks. Students develop solutions to 
computational problems. 

Programming Students select and learn a variety of appropriate 
programming languages to create software and artifacts 
based on projects and problems. 

The Internet  Communication and collaboration are supported and 
enabled by the networks and systems. Students explore 
how the Internet operates and analyze the implementation 
of computational solutions.  

Global Impact Students understand how computing innovations changed 
the way people work and live and leads to new 
understandings, disciplines and discoveries in the world. 

 

 

A variety of pedagogical strategies have also been introduced in CS 

instruction. Among teaching strategies, utilizing kinesthetic activities or metaphors has 

been widely utilized. In the context of CS, these activities are called CS unplugged 

(https://csunplugged.org/en/) and have been used to introduce CS concepts without 

computers. Process oriented guided inquiry (POGIL), rooted in learner-centered 

constructivism (Yager, 1995), is another pedagogical strategy that allows students to 

work in teams on designed guided inquiry materials to actively construct and develop 
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content knowledge through a learning cycle: exploration, content invention and 

application. POGIL can often be employed in problem-based approaches and open-

ended projects where teachers act as facilitators. Further, Project-based learning 

focuses on constructionism pedagogy, advocating the importance of actively learning 

by doing. Papert’s Constructionism (1991) emphasizes how knowledge and ideas get 

formed, and transformed, shaped and expressed through different media, in specific 

contexts and processed in different people's minds. Therefore, the CS education 

reform is often connected with the Maker Movement (or so-called Hackerspace, 

Makerspace, and Fablab) where students explore knowledge through meaningful 

hands-on learning in the context of designing, making and inventing.  

Other teaching strategies emphasize peer interaction and differentiated 

instruction. Pair programming is commonly adopted to support peer interaction, 

where two students work together with one student serving as driver and the other as 

navigator. Research has indicated that pair programming is an effective approach to 

motivating beginning programmers (Berland & Lee, 2011; Denner & Werner, 2007). 

Differentiated instruction occurs when students’ levels vary within a module. Students 

with prior experience are provided with additional exercises in advanced challenges. 

In the context of CS education, students can be encouraged to incorporate multiple CS 

concepts (i.e., loops, conditionals and variables), update and remix projects, or 

proceed to the next levels of online tutorial-guided activities. 

Both formative and summative assessments are also key to successful and 

effective teaching of CS (Grover, Pea, & Cooper, 2016; Mouza, Marzocchi, Pan, & 

Pollock, 2016). Sustained reflection on students’ project design, answering guiding 
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questions or prompts in a journal can help teachers to collect learning data and adjust 

lesson planning. Students can also self-reflect on their learning and receive feedback. 

Context of This Work 

Delaware’s Science, Technology, Engineering and Math (STEM) Council 

(2012) noted “the need for content-trained STEM teachers, particularly in engineering 

and technology education” (p. 2). Similar to other states, Delaware is facing the 

challenge of improving computing education beyond basic keyboarding literacy. 

University of Delaware’s Partner4CS 

The University of Delaware is highly aware that both pre-and in- service 

teachers and students in all levels need more preparation in CS education and 

computational knowledge. As a result, a team consisting of professors from the School 

of Education and the Department of Computer and Information Science established 

the Partner4CS project, with funding from the National Science Foundation (under 

projects of CS10K, CE21, and STEM+C). Partner4CS aims to broaden participation in 

computing through strategic partnering. It includes four major efforts as described by 

Pollock, Mouza, Atlas and Harvey (2015), including:  

1. Sustainable, high-quality professional development for teachers. Specifically, 

the research team has developed an annual summer teacher professional 

development institute endorsed by Delaware’s Department of Education. 

Teacher participation in one of the professional development tracks, Computer 

Science Principles, qualifies participants to teach the CSP AP course as part of 

the CS pathway in high school career and technical education established in 

the state of Delaware.  
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2. A field experience university course as the primary vehicle that partners 

undergraduate students with practicing teachers in the field for on-going 

support. 

3. Strong partnerships with local school districts, teachers and STEM leaders in 

formal and informal settings. Building on previous efforts, the team has 

established partnerships with local libraries, the Boy & Girls club, and school 

districts serving under-represented students. Further, the team also helped to 

establish the CSTA chapter in Delaware and organize state-wide Scratch Days 

(https://day.scratch.mit.edu). 

4. Policy changes. In collaboration with the Delaware’s Department of Education, 

the team helped establish a pathway for CS at the high school level and 

organized a Summit for CS Education in Delaware in 2017, for stakeholders 

and community members (teachers, leaders, school districts, and parents) who 

are interested in computing education. This summit built a network to support 

the teaching of computing at the state level. In 2017, Delaware Governor 

Carney also signed a bill requiring all public high schools to teach at least one 

CS course by the 2020-2021 academic year (for more information, https:// 

www.udel.edu/partner4cs). 

The Setting of the Course and the Partnership Model 

University Course  

The primary focus of this study is the partnership model and its university-

community field experience course, titled “Field Experiences in Teaching Computing” 

at the University of Delaware. This field-based course serves as the primary vehicle to 
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partnerships, and has been offered for eleven consecutive semesters since 2013. To 

date, approximately 65 undergraduates have enrolled in this course. 

The course involves on-campus training in preparation for successfully 

integrating CT practices in middle/high school classrooms or after-school settings. The 

objective of the field experience course is to help CS undergraduates: (a) develop new 

technical and teaching skills, (b) improve their communication and leadership skills, 

(c) participate in service to the local school communities by engaging school students 

with computing, and (d) reflect on their learning experiences (Pollock et al., 2015).  

The topics and modules in the course are designed around four main areas, 

including (a) CS tools; (b) CS Pedagogy; (c) CS curriculum, trends and standards; and 

(d) Reflection and communication (see Table 4). 

Table 4 Brief Description of the University Course 

Key Areas Specific Activities 
Computer Science 
Tools 

Lab assignments (robotics and technologies) 
Scratch practices 

Computer Science 
Pedagogy 

Lesson planning 
Effective lesson and learning environment design 
Teaching strategies 
Classroom management 
CS unplugged activities 
Learning theories  

CS Curriculum, 
Trends and 
Standards 

Broadening participation in computing  
CS impacts 
CSTA standards 
Computer science principles 

Reflection and 
Communication 

Weekly report and feedback 
Reflective journal 
Background clearances 
Dress code 
Communication before, during and after field placement 
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At the time of the study, approximately fifty percent of total instruction time in 

this semester-long course was designed to provide modules that focused on CS-related 

content skills and resources, especially application in K-12 CS education. These topics 

included Scratch introduction and practice, lab assignments on exploring 

computational tools (i.e., Finch Bot, Makey-Makey), CS curriculum and standards 

(i.e., CSP, ECS). 

Forty percent of designed modules in this course intended to expose students to 

pedagogical strategies, classroom management, lesson plan creation, and effective 

lesson design and delivery. Specifically, participants were given opportunities to 

practice and lead a mock CS unplugged activity in class, which allowed them to 

discuss their strengths and weaknesses. 

Another key component embedded in this course is weekly journals which 

provide CS undergraduates opportunities to reflect on and document their experiences, 

teaching approaches and strategies. Participants’ interpretation and reflection on 

classroom experiences is intended to promote learning from practice (Kolodner, 

2006). On a weekly basis, CS undergraduates reported to their peers and lead faculty 

what happened in their teaching, shared their experiences, and received feedback from 

peers and instructors. A number of learning opportunities actually occurred in the 

process of receiving feedback during the debriefing meetings in the field and on-

campus meetings with faculty during weekly updates. 

A successful application of the model relies on the solid foundation of 

effective and persistent communication among CS undergraduates and teachers. The 

partnership in fact, built on logistics happening in the very early portion of the course, 

which include: (a) emphasis on professional communication (i.e., emails, holiday 
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break, schedules) and appearance (i.e., dress code) before, during, and after the field 

placement; and (b) setting up regular teacher-undergraduate meetings. CS 

undergraduates first contacted their partner teacher to introduce themselves and 

scheduled their first meeting, and then requested sit-in classroom observation to gain a 

better understanding of their assigned classroom, including classroom management, 

technologies available, and students’ prior experience. This background information is 

important before they formally start to work with their assigned teacher on lesson 

preparation and delivery. 

Partnerships and Field Activities  

Teachers who participated in the summer professional development program 

offered by Partner4CS are eligible to receive on-going support. The Partner4CS team 

first sent out invitations to participating teachers and asked them to submit requests of 

interest. A member of the team then partnered undergraduates in the field experience 

course with practicing teachers. To date, the team has established partnerships in nine 

school districts with over 20 sites. Approximately 500 students in Delaware in a 

variety of partnerships such as libraries, after-school computer club programs, or 

regular technology classes benefited from CS instruction offered through Partner4CS 

undergraduates. 

CS undergraduates could take the course for one to three credits. Participants 

who took three credits were expected to spend at least three hours per week in the 

field. Generally, undergraduates were assigned to an appropriate placement in groups 

of two to three peers with someone providing transportation. Field placements could 

vary based on grade levels that spanned from primary schools to high schools, student 

population and demographics (i.e., ethnicity, SES, single-gender schools), settings 
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(informal like libraries, clubs or regular classrooms), as well as content and 

technologies ranging from introductory Scratch, HTML to CS AP Java. 

Purpose of the Study and Research Questions 

A number of studies report a shortage of qualified STEM educators and 

workers (CSTA Association for Computing Machinery, 2013). Further, recent policies 

indicate that all students should be equipped with computational knowledge, thinking, 

and skills (Wing, 2006). To accomplish this goal, changes must be made across the 

entire computing education system.  

Therefore, the purpose of this study is three-fold. First, it aims to describe the 

specific roles served by CS undergraduates in the context of the Partner4CS field 

experience model. Second, it seeks to examine the quality of the instructional 

materials they prepared to support partner teachers and students. Third, it aims to link 

CS undergraduates’ practices from the designed partnership model to in-class support 

for teachers and subsequent student outcomes. The work focuses on a partnership with 

a single school and teacher to provide an in-depth investigation. Findings from this 

work can help provide guidelines for the design and implementation of effective 

partnership programs, with attention to the ways in which field experience and CS 

undergraduates can help support CS education in local communities. 

Research Questions  

1. What specific roles did CS undergraduates assume in their partner 
school? 

2. How was the quality of the instructional materials created by CS 
undergraduates in the context of the school-university partnership? 
How were CT concepts and practices implemented? 
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3. What computational concepts did middle school students acquire as a 
result of working with CS undergraduates and their teacher through a 
school-university partnership? 
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Chapter 2 

RESEARCH DESIGN AND METHODOLOGY 

The Description of the Classroom Context 

This work examined one partnership established through Partner4CS in an 

after-school program at a K-8 school, Town Charter School (TCS). At the time of the 

study, the partnership had been in place for five years. The school’s technology 

teacher (Ms. Sharon), established her nine-week after-school computing program for 

students in grades four through six. Each semester, two to four CS undergraduates 

partnered with Ms. Sharon for the 70-minute-long computing program in which 

students met once a week. The online introductory programming tool, Scratch, was 

utilized as a main tool to introduce CT concepts and skills, and thus the program was 

called Scratch Club (see Figure 2). 

 

Figure 2 Scratch Clubhouse 
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TCS Student Population. TCS is a suburban K-8 school, enrolling 

approximately 1,350 students. School demographics indicated that the student body 

was 67.5% White, 11.6% Asian, 11.1% African American, 4.2% Hispanic, and 5.5% 

multi-racial. Approximately 16% of the entire student population qualified as low-

income.  

Study Participants 

CS Undergraduates. The participants included six CS undergraduates enrolled 

in the course CISC 357 “Field Experience in Teaching Computing” over a period of 

two semesters: Spring I (From Feb. to May) and Fall II (From Sept. to Dec.). These 

students, three females and three males, were assigned to partner with Ms. Sharon at 

TCS as shown on Table 5. 

Table 5 Description of Undergraduate Participants in the Partnership 

Name Semester Gender Background 

Beth Spring I Female CS major: 
Senior 

Mark Spring I Male CS major: 
Senior 

Jason Spring I Male CS major: 
Junior 

Mary Spring I Female CS major: 
Junior 

David Fall II Male CS major: 
Sophomore 

Lauren Fall II Female CS major: 
Sophomore 
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During this partnership, Ms. Sharon co-taught the nine-week after-school 

computer club respectively with four CS undergraduates in Spring I and with two CS 

undergraduates in Fall II. 

School students. The sample of this study also consisted of a convenience 

sampling of 65 upper elementary/middle school students (N=65, 41boys and 24 girls) 

in grades four through six who participated in the Scratch club in Spring I or Fall II. 

Data Collection 

To answer the research questions (see Table 6), this work employed a mixed 

method approach. Specifically, both qualitative and quantitative data were collected 

from multiple sources including: (a) CS case reports enacted by CS undergraduates; a 

case report consists of a lesson plan, its associated materials, and CS students’ self-

reported description of this lesson; (b) CS undergraduates’ reflective journals; (c) 

partner teacher interview; (d) middle school students’ pre- and post- content 

assessments; (e) pre- and post- design tasks developed by middle school students 

during their participation in the Scratch club; (f) middle school students’ design and 

reflective journals; and (g) observations of the course and after-school Scratch club 

meetings. 
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Table 6 Research Questions and Data Collection Matrix 

Question 1: What specific roles did CS undergraduates assume in their partner 
school? 
Source of Data Data Analysis Information Purpose 
CS Undergraduates 
Partner Teacher 

CS undergraduates weekly 
reflective journals 
Classroom and field observations 
Partner teacher interview 

This information was 
used to examine the roles 
of CS undergraduates in 
the field. 

 
Question 2: How was the quality of the instructional materials created by CS 
undergraduates in the context of the school-university? How were CT concepts 
and practices implemented? 
Source of Data Data Analysis Information Purpose 
CS Undergraduates 
Lead Teacher 

CS undergraduates weekly 
reflective journals 
Collection of case reports 
Classroom and field observations 
Partner teacher interview 

This information was 
used to examine the 
materials in which CS 
created to help support 
teachers in the field with 
an additional focus on 
how these were 
implemented.  

Question 3: What computational concepts did middle school students acquire as 
a result of working with CS undergraduates and their teacher through a school-
university partnership model? 
Source of Data Data Analysis Information Purpose 
Students in grades 
4-6 

Pre- and post- content assessment 
Pre- and post- design tasks 
Design and reflective journals 
 
 

This information was 
used to examine whether 
the partnership model 
helps middle school 
students acquire 
computational concepts.  

 

Observation Data 

Observations of Course and the After-School Scratch Club Meetings. All 

on-campus course meetings (N=30) and after-school Scratch club sessions (N=24) 

were observed and documented. The author recorded key CS topics addressed, 
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instructional strategies and learning activities observed, assessments utilized, and 

technologies used by the students and the teacher in the club. 

Data from CS Undergraduates  

CS Case Reports Developed by CS Undergraduates. A case report consists 

of a brief lesson plan, associated instructional materials and artifacts developed by six 

CS undergraduates, and self-reported descriptions and reflections of the lesson’s 

implementation. CS undergraduates were provided with prompts to report 

demographic data and how they implemented lessons each week (see Table 7 below). 

All case reports (N=24) throughout the academic year were collected in order to 

examine how CS undergraduates supported their partner teacher in the field. 

Table 7 Prompts for Case Reports 

Aspects Prompts 
Demographic data • When and where did you teach/facilitate this lesson? 

Which class? What grade levels?  
• How many students were in the class? (record the 

number of male and female students).  
Role in the field • What type of support did you provide: (a) observed, 

(b) assisted the teacher, (c) led a classroom activity, 
(d) taught a full lesson as the primary instructor. 

Lesson planning 
and implementation  

• What types of activities did you implement? (CS 
unplugged, programming etc.). 

• What CS Principles did you cover? 
• What is your plan for the next lesson?  
• What materials or technologies do you need to 

proceed to the next step? 
Reflection • What went well (describe your successes)? 

• What would you change for the future?  
• What, if anything, surprised you? 
• What questions do you have for us?  
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CS Undergraduates’ Reflective Journals. Participants were required to 

submit their weekly reflective journal entries through a blog format in the University’s 

Learning Management System (LMS), Sakai. Weekly reflective journal entries (N= 

68) maintained by the six CS undergraduates during the partnership period were 

collected for analysis. The length of each entry varied. Among the six participants, the 

average length of each entry was approximately 400 words. This information helped 

identify the ways in which the undergraduates supported their partner teacher, the 

rationale behind the design of their instructional materials and lesson plans, and their 

reflections regarding the outcomes of their lessons.  

Data from Partner Teacher 

Partner Teacher Interview. An interview (N=1) was conducted with the 

partner teacher, Ms. Sharon, to discuss the ways in which the partnership model 

helped the implementation of CS lessons. The interview questions included the 

following themes: (a) The nature of implementation and design in the partnership 

model; (b) Expectation and feedback for CS undergraduates; (c) Instructional 

approaches and strategies regarding CS concepts; (d) Teaching beliefs and 

perspectives; and (e) The outcome of students’ performance. 

Data from Middle School Students 

Students’ Pre-and Post- Content Assessments (Spring I & Fall II). To 

understand changes in students’ knowledge of CS concepts, a pre- and post- multiple-

choice Scratch knowledge assessment was administered both at the beginning and the 

end of the club in these two semesters (N=65). The assessment includes 10 questions 
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examining students’ knowledge of CS concepts associated with Scratch programming 

(Ericson & McKlin, 2012; see Appendix A). 

Pre-and Post- Design Tasks Developed by Middle School Students in the 

Scratch Club (Fall II). All participating students in Fall II (N=23) were asked to 

develop a story, animation or a drawing in 20 minutes using Scratch at the beginning 

and end of their participation in the after-school program. A total of 46 projects were 

collected. The following prompt was used: 

Show off the things you know about Scratch by creating a story, an 
animation, or a drawing using the cat or another sprite. Be creative. (It 
is ok, if you don’t know a lot of things yet).  

 

Middle School Students’ Views of Scratch from Design and Reflective 

Journals (Fall II). Students were provided with blue notebooks at the beginning of 

their participation in the after-school Scratch club, that acted as journals. In those 

journals students drafted ideas for projects they wanted to complete in Scratch, 

answered given questions, and reflected on their learning after each meeting day (see 

Table 8). Design and reflective journals maintained by students throughout the 

duration of the after-school program in Fall II were collected (N=27). A specific 

question “How would you introduce Scratch to your friends?” was asked at the 

beginning and the end of the club. A total of 54 responses were collected under the 

given prompt and were used to document students’ understandings of Scratch at the 

beginning and end of their participation in the Scratch club. 
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Table 8 Design and Reflective Journal 

Sessions Prompts/ Tasks 
Week 2 How would you describe Scratch to a friend? (Pre) 
Week 3 Storyboarding: Create a storyboard of their project. 
Week 4 
Week 5 

1. List three ways you experience loops in real life. (e.g., going to 
sleep every night). 
For Advanced Students: 
2. What are different ways of increasing difficulty in a game? 
3. Which extensions did you add to your game project? 

Week 6 1.What is something that works well or you really like about the 
project? 
2. What are you most proud of? Why? 
3. What is something that is confusing? How did you get unstuck? 

Week 7 1. Describe the final project you want to create. 
2. List the steps needed in order to create your project. 
3. What might you need help with in order to make progress? 
4. Editing storyboard. 

Week 8 How would you describe “variables” to your friends? 
Week 9 Design a Fall-theme Scratch project on your journal and share your 

ideas. 
Week 10 How would you describe Scratch to a friend? (Post) 

 

 

Data Analysis 

Data from CS Undergraduates 

CS Case Reports Enacted by Undergraduates. The CS case reports enacted 

by undergraduates were collected at the end of each semester. All associated lesson 

plans, materials, and artifacts were labeled and stored with short descriptions. The 

instructional materials were uploaded to a folder in Google Drive and scored by the 

investigator using a set of criteria established through the literature review (see Table 

9). The criteria were established around How People Learn (Bransford, Brown, & 

Cocking, 2000) in order to capture the spirit of Learner-centered, Knowledge-
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centered, Community-centered and Assessment-centered learning environments. The 

rubric also utilized and integrated existing standards for CS curricula, such as CS 

principles. Each of the four criteria received a numerical score from 1 to 4. A score of 

1 indicates failure in satisfying the criterion, while a score of 4 indicates full success in 

satisfying the criterion. The author and a co-rater scored all lesson cases. The initial 

inter-rater reliability was calculated at 85%. All discrepancies were discussed until a 

100% agreement was reached. 

Table 9 CS Case Report Criteria and Rubric Established from Literature 
Review  

Criteria Descriptions 
Standard-Based 
Learning Objectives 
and Meaningful Topics  

• Learning objectives are aligned to standard-
based CT concepts.1  

• CT concepts and vocabulary are clearly and 
correctly presented and involve at least one of 
the big ideas.2 

• Topic selection is meaningful and relevant to 
students and connected to prior knowledge or 
lessons. 

CT Practices-Infused 
Environments and 
Instructional Strategies  

• CT practices and perspectives3 are encouraged 
and presented through chosen pedagogy method 
and designed environments, that include access 
to identity, scaffoldings or differentiated 
instruction. 

                                                
 
1 Brennan and Resnick (2012); CSTA& ISTE (2012) 

2 CS Principles (College Board, 2014) 

3 Brennan and Resnick (2012); College Board (2014)  



 31 

Age-Appropriate CT 
Technology and 
Activity Selection  

• A variety of CT-infused tools, activity or 
materials were identified and accessed to 
support learning goals and CT concepts and be 
compatible with instructional strategies. 

Formative and 
Summative Assessment  

• Selected assessment is effective and appropriate, 
which includes design-based or problem-based 
projects. 

 

 

CS Undergraduates’ Blog Entries from Reflective Journals. The data from 

CS undergraduates’ reflective journals were analyzed qualitatively to identify 

emerging patterns (Hatch, 2002). The coding process mainly focused on the following 

topics, including (a) bringing CS presence, motivation, inspiration and excitement into 

school; (b) connecting CS with other school subjects; (c) teaching strategies and 

planning; (d) producing lesson plans and materials; (e) relationships with the partner 

teachers; (f) lab help with emotional support and technical concepts; and (g) 

expectation and feedback from the practicing teachers. The initial codes were then 

categorized into three parent codes (see Table 10). 

Table 10 Coding Schemes 

Parent Codes Initial Codes 
Technology 
Consultants 

• Expectation and Feedback from the practicing 
teachers 

• Lab help with technical support 
Facilitators and 
Co-Teachers 

• Producing lesson plans and materials  
• Teaching strategies and planning  
• Connecting CS with other school subjects 

Mentors and 
Ambassadors 

• Lab help with emotional support 
• Bringing CS presence, motivation, inspiration and 

excitement into school  
• Relationships with the partner teachers and parents 
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Data from Middle School Students 

Students’ Pre-and Post- Content Assessments. Content assessments were 

scored for correctness. Each correct answer received one point while each incorrect 

answer received no points. The data was entered into an Excel spreadsheet and 

exported to SPSS for statistical analysis. A total score was calculated for the 

instrument as a whole for both the pre- and post- administration. Further, a T-test was 

performed to determine if there was a statistically significant difference between pre-

and post- content assessment. The percentage of students who scored correctly on each 

item was calculated for both the pre- and post- administration of the assessment. The 

presence and absence of a variety of computational concepts was also analyzed. 

Students’ Pre- and Post- Design Tasks. Students were asked to save their 

Scratch projects with their initials, share and upload their projects to an online Scratch 

studio right after the end of each design task in the first and last sessions of the club. 

The uploaded Scratch projects were then saved to a local drive. All the programs were 

paired and matched. The programs were coded and analyzed using an online Scratch 

project-scoring website called “Dr. Scratch” (Moreno-León & Robles, 2015), which 

examines the presence and absence of computational concepts in students’ programs 

(http://www.drscratch.org).  

Students’ Views of Scratch from Design Journals. The design and reflective 

journals students used during the computer club were first collected at the end of the 

club and scanned into digital versions. This data was analyzed qualitatively to identify 

emergent themes using the constant comparative method (Hatch, 2002). The author 

read all students’ open-ended responses focusing on how they interpreted and 
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translated personal meaning of and relationship with Scratch and their attitudes toward 

Scratch. 
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Chapter 3 

FINDINGS 

The purpose of this study is to investigate the impact of a school-university 

partnership model and its associated field experience course activities on middle 

school students’ CT development. It also aims to gain a better understanding of the 

ways in which college CS undergraduates supported the practicing teacher in the field, 

both through teaching practices and material development. In this chapter, the findings 

of each research question are presented and discussed. 

Research Question 1 

What specific roles did CS undergraduates assume in their partner 

school? 

CS undergraduates assumed different roles in their partner school, including: 

(a) Technology Consultants; (b) Facilitators and Co-Teachers; and (c) Mentors and 

Ambassadors (see Table 11). 

Table 11 Roles of CS Undergraduates in Partnerships 

Roles of CS 
Undergraduates 

Instances in The Field 

Technology 
Consultants 

• Technical problem solving 
• Consultation on content skill; consultation on CS tools 

and recourses  
Facilitators and Co-
Teachers 

• Teaching and preparation: creating, planning lesson 
plan materials and delivering 

• Lab facilitator 
• Hands-on support  
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Mentors and 
Ambassadors 

• Bringing connections to out-of-school identity as CS 
experts 

• Modeling ideal peer interaction  
• Gender equity  
• Near-peer mentoring as role models 
• Encouraging parental involvement and excitement   

 

 

Technology Consultants. CS undergraduates were provided with rich CS 

content skills and resources to engage them as technology consultants. In the field, CS 

undergraduates were able to provide technology consultation on tools and 

technologies available for the target students. Further, CS undergraduates helped the 

teacher adapt curriculum materials available online and locate resources on given 

topics. Finally, they were also able to create sample Scratch programs needed to teach 

their lessons and solve a range of technical problems (e.g., install Flash on computers, 

trouble issues with Scratch accounts, etc.). 

Facilitators and Co-Teachers. A key role in the field was that of a facilitator 

or co-teacher. Specifically, CS undergraduates frequently assisted the teacher with 

hands-on support and provided one-on-one student assistance. Analysis of blog 

entries, observation notes and interviews indicated that Ms. Sharon was grateful for 

that because it allowed her to provide students with timely support. In her interview, 

she noted: “It is great to have extra pairs of hands… I couldn’t run this club without 

having them here to support the students.” Further, all of the six undergraduates co-

planned and co-led the lessons with Ms. Sharon. Lauren, one of the female CS 

undergraduates explained: “Sharon was very clear with what she wanted us to do in 

her classroom and what she expected of us.” Finally, in some instances, CS 

undergraduates were taking full teaching responsibilities. Mary explained, “Ms. 
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Sharon decided to pass along the reins to the UD students so from here on out, we will 

be taking charge in planning the objectives and activities for the day and teaching and 

controlling the classroom.” 

Mentors and Ambassadors. One of the characteristics of this partnership 

model focused on the concept of students’ social and cultural learning environment. 

The presence of the undergraduates in the Scratch club provided role models for K-12 

students that could help increase students’ engagement with CS. This near-peer 

mentoring offered access to CS identities and better understanding of what it means to 

be a computer scientist. 

Research Question 2  

How was the quality of the instructional materials created by CS 

undergraduates in the context of the school-university? How were CT concepts 

and practices implemented? 

Quality of Instructional Materials 

Results from the scoring of CS case reports are shown in Table 12. The 

findings, overall, indicated that lessons developed and delivered by undergraduates 

received high scores on each criterion and for the rubric as a whole (M=3.6, S=0.62). 

Overall, CS undergraduates actively sequenced, facilitated and co-led a set of 

progressive and cohesive CS lessons and activities for the Scratch club with the lead 

teacher in the field. They also collaborated as a team and communicated professionally 

with the teacher, students and faculty. In addition, CS undergraduates self-reflected on 

their field experience and team preparation. Details for each criterion are presented 

below. 
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Table 12 Average Mean Scores on the CS Case Report Rubric 

Criteria Mean SD 
Standard-Based Learning Objectives and Meaningful Topics 3.58 0.65 
CT Practice-Infused Environments and Instructional Strategies 3.50 0.72 

Age-Appropriate CT Technology and Activity Selection  3.71 0.69 

Formative and Summative Assessment 3.62 0.71 
Total 3.60 0.62 

 

 

Standard-Based Learning Objectives and Meaningful Topics. Analysis of 

case reports indicated that most of the lessons’ learning objectives were clear. CT 

concepts or vocabulary were clearly and correctly presented and involved at least one 

of the big ideas in computing. Beth, for instance, explained in her journal, “While we 

were waiting on tech support, I had a short conversation with the students in which I 

talked about computer science and some of its global impacts as well as what I did 

and why I studied computer science.” 

Topic selections were meaningful, appropriate and relevant to students and 

connected to prior knowledge or lessons (see Table 13). 
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Table 13 Description of Cases Enacted by Undergraduates: A Focus on Big 
Ideas 

CS Principles 
Seven Big Idea Focus  

Associated Activities from Case Reports Number of 
Instances 

1. Creativity  • Storyboard: Fall-theme projects 
• Recreating scenes from a book 
• Adding difficulty and extensions 

9 

2. Abstraction   - 
3. Data and 
Information  

• Introduction to variables  
• Introduction to list 
	

3 

4. Algorithms • Boolean logic 
• Understanding how computer works 

(Marching Order) 
• Guessing game  
• Storyboard 

4 

5. Programming  • Introduction to broadcasts 
• Introduction to loops 
• Introduction to conditionals  
• Advanced: variables and broadcasts 

combined 
• Interpreting code and programs 
• Recreating scene from school reading: 

Robin Hood Project 

9 

6. The Internet   - 
7. Global Impact • Impact of CS 1 

 

The practicing teacher, Ms. Sharon also noted that working with CS students to 

identify modules, resources and lesson materials for the Scratch club gave her an 

opportunity to pilot ideas and look at what is effective, in addition to implementing a 

standard-based curriculum framework to her regular technology classes. 

CT Practice-Infused Environments and Instructional Strategies. Findings 

indicated that CT practices and perspectives were encouraged and presented through 

undergraduates’ teaching. The pedagogical methods and designed environments 
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included access to identity, peer interaction, modeling, scaffoldings or differentiated 

instruction (see Table 14). One CS undergraduate, Jason noted, “[students] were 

struggling a bit, so Mary and I went around and gave them help to get them up to 

pace.” (differentiated instruction). Mary indicated that some of the teaching practices 

were actually adapted after receiving input from Ms. Sharon during the debriefing 

meetings in the field. Mary noted, after one of the club sessions during their debriefs, 

“[Ms. Sharon] pointed out to us at the end of the class, we called on only boys as our 

volunteers, which she politely told us happens way too often and that the girls kind of 

get forgotten. Obviously, this is something I did unintentionally, but I will work on 

next time.” 

Table 14 Description of Cases Enacted by Undergraduates: A Focus on CT-
Infused Pedagogy 

CT-Practice Encouraged 
Pedagogical Strategies  Number of Instances 

CS Principles: Six CS Practices 
Connecting Computing 1 
Creating Computational Artifacts 6 
Abstracting 1 
Analyzing Problems and Artifacts 2 
Communicating 3 
Collaborating 4 

Equitable CS Instruction- Pedagogical Practices 
Strategically Partnering Students 2 
Encouraging and Structuring Peer 
Interaction 8 

Modeling Ideal Peer Collaboration 7 
Differentiated Instruction  3 
Kinesthetic Activity   8 

Other 
Modeling or Demonstration 17 
Scaffolding 1 
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Age-Appropriate CT Technology and Activity Selection. As shown in Table 

15, the undergraduates selected a variety of CT tools or activities, such as Scratch 

projects or CS unplugged activities (see Figure 3), that were compatible and aligned 

with the learning goals and pedagogical practices needed to support student 

development of CT concepts and skills. 

Table 15 Description of Cases Enacted by Undergraduates: A Focus on CT 
Tool Selection 

Supportive CT Tools 
or Activity Selected  

Associated Activities from Case 
Reports 

Number of 
Instances 

CS Unplugged 
Activity  

20 Questions game (Boolean Logic) 
Logic puzzles (Boolean Logic) 
Marching order 
Loops 
Conditionals 
Variables 
Human computer interaction  
Introduction to pixel 
Skit 

11 

Scratch  
 

Guessing game 
Pong game 
Moving sprite by user input  
Drawing shapes with Scratch 
Recreating scenes from a book 
Fall-theme projects 
Reading others’ code 
Analyzing mystery programs 
Playing and discussing game features 

10 
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Figure 3 The Slides of CS Unplugged Activity: Loops 

CS students also explained that some of the lesson activities were actually a 

result of discussing and collecting information from the teacher. Mary noted, “We 

spoke with Ms. Sharon about what they're learning in school and we will try to 

incorporate some stuff they are learning into Scratch club for next week...Having this 

connection between school and Scratch is a good way to show how everything is 

related and could even show their English teachers their projects. This is another fun 

thing they can do with computer science besides just gaming.” 

Formative and Summative Assessment. Results also indicated that, overall, 

undergraduates were able to utilize different strategies (both formative and 

summative) to understand and assess students’ learnings. Formative assessment 

included exit tickets (Figure 4) at end of each session in the form of quick quizzes. 

Further, the design journals (Figure 5) documented students’ learning progress and 

project ideas (Figure 6) and served as a platform to document students’ understanding 

of CT knowledge and concepts (Table 16).  
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Variable Exit Tickets Loop Exit Tickets 

 
Conditional Exit Tickets 

Figure 4 The Exit Tickets Developed by Undergraduates 

 

Figure 5 Students’ Design Journal 
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Figure 6 Students’ Story Board 

Table 16 Formative Assessment: Weekly Design and Reflective Journal 

Sessions Questions/ Prompts/ Tasks Computational Thinking 
Assessed4 

Week 2 How would you describe Scratch to a 
friend? (Pre) 

Expressing: realizing that 
computation is a medium 
of creation. 
Connecting: recognizing 
the power of creating with 
and for others. 

Week 3 Storyboarding: Create a storyboard of 
their project. 

Automating solutions 
through algorithmic 
thinking (a series of 
ordered steps) 

Week 4 
Week 5 
(Continued) 

1. List three ways you experience loops 
in real life. (e.g., going to sleep every 
night). 
For Advanced Students:  
2. What are different ways of increasing 
difficulty in a game? 
3. Which extensions did you add to your 
game project? 
	

Loops: Automating 
solutions through 
algorithmic thinking (a 
series of ordered steps). 
 

                                                
 
4 Brennan and Resnick (2012) 
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Week 6 1.What is something that works well or 
you really like about the project?  
2. What are you most proud of? Why? 
3. What is something that is confusing? 
4.How did you get unstuck? 

Identifying, analyzing, and 
implementing possible 
solutions with the goal of 
achieving the most 
efficient and effective 
combination of steps and 
resources. 

Week 7 1. Describe the final project you want to 
create. 
2. List the steps needed in order to create 
your project. 
3. What might you need help with in 
order to make progress? 
4. Editing Storyboard. 

Experimenting and 
iterating: developing a 
little bit, then trying it out, 
then developing more. 
 
Testing and 
debugging: making sure 
things work and finding 
and solving problems when 
they arise. 

Week 8  How would you describe “variables” to 
your friends?  

Variables(data) 

Week 9 Design a Fall-theme Scratch project on 
your journal and share your ideas. 

The ability to communicate 
and work with others to 
achieve a common goal or 
solution. 

Week 10 How would you describe Scratch to a 
friend? (Post) 

Expressing: realizing that 
computation is a medium 
of creation. 
Connecting: recognizing 
the power of creating with 
and for others. 

 

 

Summative assessments included several mini Scratch projects corresponding 

to the learning objectives of each session, and a final project which was shared 

publicly with parents on a demo day, where students presented their project creations 

and ideas (see Table 17). 
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Table 17 Description of Cases Enacted by Undergraduates: A Focus on 
Assessments 

Formative or Summative 
Assessment  

Associated Activities from 
Case Reports 

Number of 
Instances 

Exit Tickets Broadcasts exit tickets 
Conditionals exit tickets 
Loops exit tickets 
Variables tickets  

4 

Design Journals with prompt 
Questions  

 7 

Story Board Fall-theme projects 2 
Scratch Projects Guessing game 

Pong game 
Moving sprite by user input  
Drawing shapes with Scratch 
Recreating scenes from a book  

5 

Final Demo (Show and Tell) Fall-theme projects 
Projects of their own selection 3 

Analyzing Codes Reading others code and 
analyzing mystery programs 
Write down their guess and 
ideas 

1 

Analyzing Games  Playing with games and 
discuss the feature and design 
of each game 

1 

 

 

The performance-based assessment also included a showcase event at the 

University of Delaware. A group of students from the club at TCS were invited to 

showcase their Scratch games and projects to the university community members. 

Sharon noted “This was huge to them. Till now some students still came to me said 

when they can go to UD again…” These younger participants from TCS also got a 

chance during this event to try out projects and educational games that University of 

Delaware students created (see Figure 7). 
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Figure 7 A Group of TCS Students Invited to Participate in the CIS Showcase 
Event at UD 

Research Question 3  

What computational concepts did middle school students acquire as a 

result of working with CS undergraduates and their teacher? 

Computational Thinking Acquisition in Students’ Content Assessment 

As shown on Table 18, results from the Scratch knowledge assessment 

indicated there was a statistically significant improvement (p<0.05) from the pre 

administration of the assessment (M=5.69, SD=2.09) to the post administration of the 

assessment (M=6.72, SD=2.18) of the instrument as a whole with a medium effect 

size of 0.48. 
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Table 18 Dependent (Paired) T-Test of Pre- and Post- Content Assessment 

Pre- 
Knowledge 

Post- 
Knowledge 

Mean 
Differences 

 (Post – Pre)	

t	 df	 P value 
Significance	

Effect 
Size(d)	

Mean SD Mean SD 

5.69 2.09 6.72 1.02 1.15 3.93 64 .000** 0.48 

         N=65, ** p<.01, * p<.05  
         Effect size <0.3 is small, 0.3-0.5 is medium, and >0.5 is large (Cohen, 1988) 

 

 

Further, as shown on Table 19, results from the content assessment indicated 

improvements from pre to post administration on 9 out of the 10 questions (questions 

1, 3, 4, 5, 6, 7, 8, 9 and 10). 

Table 19 Pre- and Post- Scores on Scratch Knowledge Assessment Items 

Questions and CS Concepts Percent Correct 
Pre Post 

1. Scratch block 92% 97% 
2. Loop (repeated execution) 80% 72% 
3. Handling an event 25% 40% 
4. Data (modifying a variable) 46% 65% 
5. Parallelism (broadcast) 68% 72% 
6. Conditionals (if) 26% 45% 
7. Loop (forever) 74% 86% 
8. Loop (repeat a set number) 72% 78% 
9. Conditional test 68% 85% 
10.Script execution 23% 36% 
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Computational Thinking Concept Development in Students’ Design Tasks 

To gain a better understanding of students’ CS learning, the investigator 

analyzed 23 pairs of Scratch projects. Analysis of students’ pre-and post- design tasks 

is shown in Figure 8. In students’ pre-design tasks, 65% of the programs were at the 

“Basic” level, while 35% were at the “Developing” level and none of them were at the 

“Master” level. However, compared to their initial design tasks, in the students’ post 

design tasks, 57% were at the basic level, 39% were at the developing level, and 4% 

were at the Master level. 

 

Figure 8 Scratch Project Level Analysis of Students’ Pre-and Post- Design Tasks 

Students’ Views of Scratch  

In the design journals, students were asked “how do you describe Scratch to a 

friend?” As shown in Table 20, the answers varied but can be categorized into the 
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following four emerging dimensions, including (a) Learning and Sharing Community 

(N=23), (b) Creativity and Fun (N=17), (c) Creating to Express (N=24), and (d) 

Scratch Features as a Programming Language (N=27). Students’ responses captured 

the features of the Scratch and reflected on the purpose of the designed Scratch club 

learning environment presented in research question 2.  

Overall, by analyzing pre to post responses, students were moving from 

computational consumers to creators. In the responses to the pre-question, students 

generally indicated that they could play and look at other people's projects as 

consumers (Dimensions A and B). In contrast, Dimensions C and D in the post-

question received a slightly higher number of students’ responses where they were 

able to identify the numerous possibilities of Scratch as a coding language to create 

anything imaginable to express themselves.  

Table 20 Coding Schemes for Students’ Views of Scratch 

Parent Code Initial Code 

Entries Frequency 
and Percentages 
Pre 

Responses 
Post 

Responses 
Learning and 
Sharing 
Community 

• Community of people making fun 
games, animation  

• Interaction with online games (Search 
and play) 

• Share with community  
• Programming club 
• Visit it online or download it to 

computer  
• Create games for others to play 
• Remix other projects 
• Programming/coding website 

15(26%) 8 (24%) 
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Creativity and 
Fun 

• Awesome, exciting, fun and interesting  
• Creative  
• Change color and sound, backgrounds  
• Exciting and fun in a challenging way  
• Put background and drawing 

11(19%) 6 (18%) 

Creating to 
Express 

• Create video games, and stories, 
pictures, almost anything imaginable 

• Make a lot of cool stuffs 
• Share and show your programming 

skills  

14 (25%) 10 (29%) 

Scratch 
Features as a 
Programming 
Language 

• Programming and code system 
• Help students/adults learn 

programming  
• Computer language for beginner and 

kids  
• Use already-built blocks rather than 

typing  
• Making project using characters 
• Cats runs around and execute 

command 
• Drag and drop into another box 
• Make/program objects to move  
• Make projects with variables and 

scripts  

17 (30%) 10 (29%) 

Learning and Sharing Community. In students’ responses, some participants 

indicated that Scratch is a community of people making games. One student noted, 

Scratch is... “a community of people doing it and it has fun game.” Another student 

responded, “a fun project where everyone is making cool stuff. You could download it 

onto your computer. You could visit it online at scratch.mit.edu.”  

This category is related to one element of CT perspectives, Connecting, 

identified and observed by Brennan and Resnick (2012). One student said, “It’s fun 

website to go on because you can make your own stuff and look at others.” Another 

student also explained, “You can also play and search another person’s game or 

project and play it.” These data indicate that students began to recognize “the power 
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of creating with and for others” (Brennan &Resnick, 2012). Students also realized that 

they could get inspired from other people’s work or build on existing projects or ideas 

when they are “Remixing and collaborating.” One students added, “They [users] could 

remix the games or start from scratch.”  

Creativity and Fun. A number of students described Scratch as creative and 

fun. One student said, Scratch is “a fun, creative and awesome way to show everyone 

your computer programming skills. SCRATCH is fun and creative.” One of the seven 

big ideas in Computer Science Principles is Creativity, which suggests that creative 

development can be an essential process of creating computational artifacts.  

Creating to Express. Most students reported that they would describe Scratch 

as a website where they can create games, stories and animations. One student noted, 

“Scratch is a coding website. You can make games and pictures.” Another student 

added, “Scratch is a programming that you learn to create games, stories, and many 

more fun things.” 

Similarly, one element of CT perspectives identified by Brennan and Resnick 

(2012) is “expressing”, which argues that computation is a medium of creation which 

can be used for design and self-expression. Reflecting this idea, one student noted, 

Scratch is where “you can show people your computer programming skills” while 

another student added, “Scratch is a website where you can program games 

animations and almost anything imaginable.” Overall, students were able to 

understand that they can use Scratch to express themselves by creating computational 

artifacts.  

Scratch Features as a Programming Language. Few students described 

Scratch with its blocks and low-floor, high-ceiling features. One student explained, 



 52 

Scratch “is a computer language used for kids who just began trying to program. You 

can use different tools to make projects you can share with the community. There is 

blocks already made used to program games.” A second student added, “you drag 

commands out of a box into another box to make sprites(character)move,” while a 

third student described Scratch “as a little yellow language cat that runs around and 

execute commands”. Similarly a fourth student described Scratch as “a place where 

you can make all different games/projects with variables/scripts” Finally, some 

students also encouraged their peers to learn coding when responding to this question. 

One student said, “that Scratch is a program on the computer that will help students 

and adults learn programming. It is a fun learning experiences. Everyone should 

learn.” 
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Chapter 4 

DISCUSSION AND CONCLUSIONS 

Discussion 

The purpose of this study is three-fold. First, it aims to describe the specific 

roles served by CS undergraduates in the context of the Partner4CS field experience 

model. Second, it seeks to examine the quality of the instructional materials they 

prepared to support partner teachers and students. Third, it aims to link CS 

undergraduates’ practices from the designed partnership model to in-class support for 

teachers and subsequent student outcomes.  

Data were collected from case reports enacted by the CS undergraduates, 

interviews and journal entries. Data were also collected from middle school students 

participating in the after-school program designed and implemented by a middle 

school teacher and CS undergraduates as part of the partnership model. Results 

indicated that the partnership model was able to bring in both material resources and 

non-material resources (Shah et al., 2013) to influence CS teaching and students’ 

learning. Providing access to rich content skills, resources and quality instruction were 

considered as material resources while building out-of-school identity, teacher 

cooperation and parental involvement are considered as non-material resources. One 

of the CS undergraduates, Joe explained the value of parental involvement and how 

they also reached out to the communities through the partnership:  

I got the chance to talk with some of the parents, and all of them were 
extremely thankful for the work we have done.  Most of them said how 
enthusiastic their kids were about this stuff and how they would have 
never had the opportunity to learn these concepts through Scratch at 
such a young age.  It made me feel good to hear that, and even though 
it's just an after-school club, hopefully this will get teachers and parents 
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to start putting pressure on the school boards to start making changes to 
the curriculum. 

 

The analysis of case reports with associated reflection artifacts and 

investigator’s observational notes suggested that Scratch lessons enacted by 

participants introduced meaningful and relevant CS concepts by utilizing sound 

pedagogical strategies and age-appropriate CT tools and activities. These lessons 

encouraged CT practices and perspectives among students’ learning. Students’ 

learning progress was also guided and built upon several formative and project-based 

assessments.  

Similarly, students’ views of Scratch provided evidence that designed lessons 

effectively engaged middle school students with CS content. The learning 

environment successfully encouraged students to employ many CT practices and grow 

as computational thinkers. Specifically, participation in the after-school program 

provided students with opportunities to acquire fundamental CS skills and transition 

from technology consumers to creators of computing innovations (Repenning et al., 

2015). Further, the findings from data collected at the beginning and end of club in 

students’ design tasks and content assessments indicated that students gained a better 

understanding of programming concepts and skills after their participation in the after-

school program.  

Recommendations 

The recommendations are informed by the data sources described above and 

findings reported in literature. These recommendations are intently directed to the 

course instructors for the university field experience course and the Partner4CS team. 
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Scaffoldings on Lesson Plans and Teaching Strategies. Although CS 

students were provided with opportunities to independently experiment with the basic 

technology and to identity and adapt available CS curricula recourses for engaging 

youth in CS, these students acknowledged that they still need help with lesson 

planning and teaching strategies. Students’ reflections indicated that they had 

difficulty providing differentiated instruction. Mark noted, “We also continued to have 

trouble getting all of the students to focus on their own projects. We'll have to come up 

with ways of keeping them more focused for next week… It's proving difficult to find a 

balance between challenging the less advanced students and maintaining the interest 

of the more advanced ones.” Similarly, Beth who worked with Mark for a semester, 

also noted, “how to challenge the more advanced students while not losing anyone 

else.” 

Further, data from participants’ journals indicated that students appreciated 

teaching mock lessons, focusing on CS unplugged activities, Scratch and lab 

technologies, which provided them with opportunities to plan, design, rehearse and 

lead a lesson in front of their classmates for the first time. During these mock-

teachings, they learned teaching practices from their peers and practiced how to give 

and receive feedback. However, in the future, course instructors could provide 

additional scaffoldings to address other related pedagogical issues. Students need 

additional supports related to learning theories, design of effective learning 

environments, problem solving and classroom management. Further, they found 

lesson planning a rewarding and valuable experience, but they acknowledged that it 

requires a significant amount of time to develop and adapt lessons and that they were 

not prepared for writing lesson plans.  
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Pairing Educational Students with CS Students. Course instructors could 

also consider recruiting more students majoring in education or mathematics or 

science education. The team could also identify potential opportunities or create a 

certificate to provide CS students with opportunities to co-plan and co-teach with 

education students in the field. The partnership model with an addition of education 

students holds promise for the successful infusion of needed pedagogies and lesson 

preparation for CS students, while simultaneously providing numerous benefits to 

education undergraduates in terms of CS content and skills.  

Implications and Future Research 

Findings of this work provided insights related to the impact and benefits of a 

partnership model to help middle students learn CS concepts. Future research could 

examine the benefits of the partnership model in different settings with diverse 

contexts. This study focused on upper elementary to middle-school students in the 

context of one after-school program. Future research could also investigate such 

partnership model and experiences within high schools, regular CS classrooms or 

informal setting. The contexts should include a more diverse sample in terms of 

gender, SES and ethnicity. In addition, future research should also include and employ 

a longitudinal study and larger scale of data collection across multiple years and 

locations. Relatedly, researchers can consider utilizing and developing other 

instruments, summative and formative performance-based assessments to collect and 

examine school students’ CT development. 

Further, future research may also investigate how the partnership model 

provides CS students with opportunities to hone their soft skills, such as, 

communication and leadership skills, and increase their confidence and technical 
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skills. Similarly, it would be beneficial to examine the partner teachers’ knowledge 

and practices in teaching computing after their partnership experience and follow-up 

classroom support. 

Findings from this work could also help establish best practices with regard to 

teacher education programs with the potential to support future pre-service CS 

teachers in practicum or internship opportunities. As needs grow in teaching 

computing in K-12 settings, many higher education institutions have started to 

redesign and develop graduate certificate programs for preparing K-12 CS teachers. 

The program curriculum can be divided into four areas that resemble aspects of the 

field experience course implemented in this work: (a) general studies: computing 

education in K-12, CS education curriculum resources and standards, and trending in 

teaching computing; (b) methods and assessment: pedagogical strategies and 

assessment; (c) CS technology knowledge and skills; and (d) practicum in computing 

education: much like student teaching, students are assigned to a semester-long field 

placement.  

Limitations 

The primary limitation of this study was its small number of participants. The 

data for the reflective journals and case reports were collected from six undergraduate 

participants. A larger sample size could have provided more insights. Also, the Scratch 

projects, content assessments and design journals were collected from 23 middle 

school students. Therefore, the small sample size limited the generalizability of the 

findings to the population. The investigation was also limited due to the short time 

frame and single location for data collection. A follow-up to this investigation could 

observe and collect more robust data over multiple years and across different 
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locations. A greater number of observations and data would lead to more significant 

and substantive findings to draw stronger conclusions.  

Conclusion 

Many new policy initiatives suggest that students need to be equipped with a 

better CS foundational knowledge and skills in order to understand the world around 

them, solve problems and become effective citizens in this computing-driven world 

(PCAST, 2010). The field experience course and its established partnership aimed at 

building a community of partners working together to broaden participation in CS 

education. The research-practice partnership model is attempting to find ways not only 

to train future STEM workers with awareness of community impacts, but to also seek 

new trends and instructional practices in teaching computing. This work presents an 

effective approach to the partnership model to broaden participation in computing 

among upper elementary and middle school students. The design and implementation 

of the partnership helped the school teacher to provide students with more 

opportunities to explore computational concepts and practices from an early age. 
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Appendix A 

PRE- AND POST- CLUB QUESTIONNAIRE 

A. WHAT IS YOUR NAME?  
 

B. PLEASE SELECT YOUR GENDER: 
(check) 

  � Boy      � Girl 

C. WHAT GRADE ARE YOU IN? (circle)   3rd     4th    5th    6th    7th    8th   9th  
D. How many Scratch Clubs have you 

taken before? (please check) 
� None � 1 � 2 � 3 � 4 

E. How many hours have you spent with 
Scratch? (please check) 

� Between 0 and 10 Hours 
� Between 10 and 100 Hours 
� More than100 Hours 

 

1) In	what	category	is	the	 	block?	

a. Control	
b. Motion	
c. Sensing	
d. Variables	
e. Looks	

2) What	is	the	following	an	example	of?	

  
a. Conditional	execution		
b. Handling	an	event	
c. Sending	a	message	
d. Loop	–	repeated	execution	
e. Modifying	a	variable	

	
3) What	is	the	following	an	example	of?	
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a. Conditional	execution	
b. Handling	an	event	
c. Sending	a	message	
d. Loop	–	repeated	execution	
e. Modifying	a	variable		

4) What	is	the	following	an	example	of?	

 
a. Conditional	execution	
b. Handling	an	event	
c. Sending	a	message	
d. Loop	–	repeated	execution	
e. Modifying	a	variable	

5) What	is	the	following	an	example	of?	

 
a. Conditional	execution	
b. Handling	an	event	
c. Sending	a	message	
d. Loop	–	repeated	execution	
e. Modifying	a	variable	

6) What	is	the	following	an	example	of?	

 
a. Conditional	execution	
b. Handling	an	event	
c. Sending	a	message	
d. Loop	–	repeated	execution	
e. Modifying	a	variable	

	
7) What	does	the	following	code	do?	
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a. Repeat	a	simple	animation	
b. Draw	a	square	using	the	pen	
c. Make	a	ball	fall	
d. Increment	the	score	
e. Stamp	the	current	costume	at	the	current	mouse	location	

	

8) What	does	the	following	code	do?	

 
a. Repeat	a	simple	animation	
b. Draw	a	square	using	the	pen	
c. Make	a	ball	fall	
d. Increment	the	score	
e. Stamp	the	current	costume	at	the	current	mouse	location	

9) What	will	be	said	when	the	following	executes	and	the	user	answers	with	

No?	

 
a. Great!	
b. I	had	better	get	out	of	here	
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c. I	don't	know	
d. It	won't	say	anything	
e. You	will	get	an	error	message	

10) Draw	the	result	of	executing	the	following	script	when	the	cat	is	in	the	
center	of	the	stage.	
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