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ABSTRACT

With the development of solar cell industry, research on the synthesis of new
photovoltaic materials has been developing rapidly. The materials attracting much
attention today are the Cu(In,Ga)(S,Se), (CIGSe) materials due to their direct band
gap and high absorption coefficient. However, In and Ga in this type of materials are
not earth abundant elements. This has made large-scale production of devices based on
CIGSe materials very costly. As a substitute, the Cu,ZnSn(S,Se)s (CZTSe) materials
are more environmentally friendly and cheaper compared to CIGSe. CZTSe materials
also have direct band gaps and are suitable for solar cell application. These materials
have delivered a rather satisfactory performance on devices so far as well.
Additionally, Zn and Sn are much cheaper and have more abundant sources.

This research conducts an investigation on the reaction path for the synthesis
of the CZTSe particles using sonochemsitry. Sonochemistry is a method of using
ultrasound irradiation to induce rapid chemical reactions. In this research, the
stoichiometrically mixed elemental precursors were first ultrasonicated in the organic
solvent 2-cyanopyridine and then dried on the hot plate to be transferred into furnace
for annealing in Ar atmosphere. A rapid reaction between Cu and Se was obtained
directly after sonication according to x-ray diffraction (XRD) analysis. The effective
heat of formation (EHF) model was applied to predict the phase formation sequence.
The results obtained from the synthesis matched well with the model.

Moreover, to study the formation paths, a crystallographic model was applied

to determine the reaction potential between different phases. First the Bravais-Niggli-

viil



Donna-Harker (BNDH) law was used to predict the most probable facets for the
reactant phases. These phases are then compared with each other to check for epitaxial
relations by looking for common structures in their most probable crystal planes.
Those phases containing structural similarities in at least one of the most probable
facets are considered suitable for epitaxy. Epitaxial relations between reactants have
been shown to be able to remarkably enhance reaction rates by minimizing the
diffusion required for the formation of product lattices. Based on this model, Hergert
et al proposed two formation paths for the CZTSe synthesis. The two paths are
confirmed by the experiment results in this research. XRD is the major technique used
for phase identification. The quaternary CZTSe phase obtained with sonication and

post annealing was further confirmed by Raman spectroscopy and UV-Vis results.

X



Chapter 1

INTRODUCTION

With the exacerbation of global warming and energy problem, the need for newer
materials for solar cells has been more acute than ever. These materials, usually
semiconductors, form the active layer in the solar cells. They absorb the energy in a
particular range of the solar light and generate charge carriers (electron-hole pairs), which
are separated to produce current [1].

Therefore, in order to qualify as solar cell materials, the semiconductor materials
need to have high absorption for photons within the visible light range. Cu(In,Ga)S, (CIGS)
and Cu(In,Ga)Se; (CIGSe) are widely used absorber materials in solar cells. These materials
have a direct band gap tunable between 1.0 eV and 1.7 eV, which matches the range of the
visible spectrum in the solar light. They have great performance in solar cell devices with a
conversion efficiencies up to 20.3% [2]. However, the downside of this type of material is
that In and Ga are not earth abundant elements and thus very costly.

Recently a more environmentally friendly alternative material Cu,ZnSn(S,Se)s
(CZTS,Se) has been the focus of researchers in photovoltaics. CZTSe is an analogue of
CIGSe by replacing the Group III In (Ga) element with Group II Zn and Group IV Sn, both
of which are nontoxic and abundant elements. They have been proven to be promising
candidates for photovoltaic applications. The highest efficiency achieved for solar cells
based on this type of materials is reported to be 11.1% [3]. The reported band gap energy
range for CZTSe is 0.8-1.6 €V [4], which matches well with the prerequisites for a solar cell

absorber materials. Common ways to synthesize CZTSe films include coevaporation [5],



sputtering [6], and pulsed laser deposition [7]. For CZTSe particles, solvothermal method is
the common way for the synthesis [8-9]. The solvothermal method usually uses toxic
organic compounds as the precursors and the treating process takes a long time.

This research is focused on a simple and cost effective way to synthesize CZTSe
particles through solid state reactions of elemental precursors with ultrasound irradiation and
post-sonication annealing. The effects of ultrasound sonication on chemical reactions have
several aspects. First, acoustic cavitations (formation and destruction of bubbles) create a
unique high temperature and pressure environment for reactions to occur. Additionally, the
collisions between the reactant particles help improve the reactivity by removing surface
oxidants. Furthermore, the free radicals released by the solvent during sonication can act as a
catalyst to the reactions [10]. This research explored the formation reaction path and
microstructure evolution of binary, ternary selenides and eventually the formation of the
quaternary phase.

The thesis consists of five chapters. The first chapter is intended to give a brief
introduction to the research and the thesis. Chapter 2 introduces the techniques used in the
research. The synthesis of the CZTSe material is carried out with a sonochemistry method.
X-ray diffraction and Raman spectroscopy are used for phase characterization. Scanning
Electron Microscopy is used for morphological studies. Ultraviolet visible spectroscopy is
used for optical analyses. Chapter 3 describes the theoretical models used in this research.
The effective heat of formation model is used to predict the formation sequence of binary
phases. With the information of the phases formed during annealing, the BNDH law is then
applied to determine the reaction paths of the synthesis process.

The experimental procedures and result analyses are described in details in Chapter

4. XRD results for the three binary systems-Cu-Se, Sn-Se, Zn-Se, two ternary systems-Cu-



Sn-Se, Cu-Zn-Se and the quaternary system are closely compared and studied to identify the
phases at each stage. The phase formation sequence is well matched with the EHF model. In
the Cu-Se system, CuSe is the first phase to form, the next are CuSe, and Cu,Se. In the Sn-
Se system, the first phase is SnSe,, the next phase is SnSe. For the Zn-Se system, ZnSe is the
only possible phase. The synthesis reactions were also proven to have followed the reaction
paths proposed by Hergert [11] obtained by applying the BNDH law. Raman spectroscopy
data further confirmed the existence of the quaternary phase in the sample. Based on the
optical measurements obtained with UV-Vis spectroscopy, the band gap of the sample is
calculated to be 1.2 eV. This result matches well with the reported values of the band gap of
CZTSe compound.

Chapter 5 gives a brief summary of the results obtained from this research as well as

recommendations for future work.



Chapter 2

EXPERIMENTAL METHODS

2.1 Sonochemistry

Sonochemistry is the study of the effects of sonic waves in chemical applications.
The chemical effects of the sonic waves are not directly associated with the interaction with
the chemicals. Ultrasound waves enhance chemical reactions through several means. One of
the main aspects, acoustic cavitation, refers to the formation, growth and collapse of bubbles
induced by the ultrasound. The kinetic energy of the bubbles convert into thermal energy of
the liquid content upon collapse [12]. The resulting local high temperature and pressure as
well as the subsequent rapid cooling occur at the bubble interface, creating an extreme
condition for chemical reactions. The interface can have temperatures up to ~5000 K,
pressures of ~ 1000 atm and cooling rates above 10'° K/s [10] Additionally the collision of
particles during sonication can help remove surface oxides and create melting at the contact
area, thus improving the reactivity of reactants. The acoustic cavitations can also release free
radicals from the solvent, which can act as a catalyst for chemical reactions.

Due to its appealing properties, sonochemistry has a wide range of applications. For
example, the technology can be used for the modification of polymers and polymer surfaces
for various purposes including cleaning and precursor preparation. Moreover, it is widely
applied in the process of both the decomposition and synthesis of chemical compounds.

In this study, we used ultrasound irradiation for the synthesis of the photovoltaic

compound Cu,ZnSnSe, from elemental precursors. The research is focused on the



investigation of the formation pathway for the quaternary compound as well as the effects of

sonication on the synthesis reactions.

2.2 X-Ray Diffraction

X-ray diffraction is a commonly used method to identify crystal structures and
determine crystal parameters. The principles can be intuitively explained by the Bragg’s
Law. When incoming x-ray beams at an incidence angle of 0 strike the atoms of the sample,
they are reflected by the parallel crystal planes indexed by the Miller’s indices and separated
by an interplanar spacing d. When the x-ray waves reflected by two adjacent planes are in
phase, which means the difference between the path lengths of the waves is an integral
multiple of the wavelength of the x-ray, a constructive diffraction occurs resulting in a
reflection of maximum intensity. The relationship can be expressed in the following
equation:

2dsinf =nA (2.1)
where d is the spacing between adjacent crystal planes, n is an integral number representing
the order of diffraction, A is the wavelength of the x-ray [13]. By changing 0, we can get a
reflection pattern, in which peak intensities and positions are determined by crystal
parameters including unit cell length, d-spacing, etc.

In this research, we used a Rigaku D-Max B powder diffractometer equipped with a
monochromater. The sample is mounted on goniometer of the diffractometer and rotated
over a 20 scan range of 10-88° at a step size of 0.02°. The x-ray source used in our study is
Cu Ko radiation. The characterization is realized by comparing the XRD patterns obtained
from the instrument with the Joint Committee on Powder Diffraction Standards (JCPDS)

database.



2.3 Scanning Electron Microscopy (SEM)

Scanning electron microscopy (SEM) is used to analyze surface morphology of a
specimen. During the imaging process, the sample is scanned with a beam of electrons
emitted thermionically from an electron gun. The electrons interact with the atoms on the
surface of the sample. The scattered beams, usually the secondary electrons emitted from the
atoms exited by the incoming electrons are detected and analyzed by detectors to form an
image. SEM can achieve a resolution of less than 1nm.

In this research, we used a field emission scanning electron microscope JEOL JSM-
7400F for the imaging. The voltage of the electron source is 10 kv, under which condition

the penetration depth into the sample is 1-1.5 um.

2.4 UV-Vis Spectroscopy

Ultraviolet-visible (UV-Vis) spectroscopy refers to the study of the optical properties
of the sample including transmittance, reflectance and absorbance over a wavelength range
corresponding to the ultraviolet-visible spectral region. In this research, the experiment was
conducted on a Perkin-Elmer UV/Vis/NIR spectrophotometer equipped with an integrating
sphere to measure the above properties in order to determine the optical band gap of the
sample material. The data were obtained over a range of 300-2500nm. Once we get the
measurements, we can calculate the optical absorption coefficient of the sample material

using Eq. 2.2 [14] below:

m =exp(-ad) (2.2)

where T is the percentage transmittance, R is the percentage reflectance, a is the absorption
coefficient and d is the thickness of the sample layer. The absorption coefficient is related to

the photon energy by Eq 2.3 [14]:



(ahv)" =C(hv-E,) (2.3)
where hv is the photon energy, E, is the band gap energy, C is a constant and n is equal to 2
for direct band gap and ' for indirect band gap. In this research, CZTSe sample has a direct
band gap. Therefore n equals 2 in our calculation. This equation shows a linear relationship
between the value of (athv)” and the photon energy hv in the high absorption region (o = 10*
cm™) [14]. Once we calculate the absorption coefficient from Eq. 2.2, the band gap energy

can be obtained from the intercept of the straight line fitting the linear section with the

energy axis in the (ahv)? vs. hv plot.

2.5 Raman Spectroscopy

Raman spectroscopy, is named for the fact that it relies on Raman scattering, or
inelastic scattering to work. When a laser beam—usually at the visible range—hits the
sample, a photon interacts with the electron clound and chemical bonds of a molecule and
excite it to a virtual energy state. Once the molecule relaxes, it emits a photon of a different
energy, thus of a different wavelength from the incoming laser. This process is a light
scattering phenomenon. The scattered light is then sent through a monochromator and
filtered for only the inelastic Raman scattering part to be analyzed by the detector. The
wavelength difference of the scattered light and original light is called a Raman shift and is
unique for different molecules. Therefore it can be used in identification applications. The
difference is usually measured by wavenumbers which is the number of wavelength per unit
distance. The common unit for it is cm™.

In this research, we used a Senterra R200L dispersive Raman spectrometer with an
Olympus microscope module by Bruker Optics to collect the Raman data. The laser lights
used in the experiment include a red light with a wavelength of 785 nm at 100 mW and a

green light with a wavelength of 532 nm at 20 mW.



Chapter 3

SOLID STATE REACTION MODEL

3.1 Binary Phase Diagrams

Cu-Se system has several phases. At temperatures below 300°C, there are a-CuSe, 3-
CuSe, Cu;sSe; and CuSe,, depending on the composition. Important phase transitions occur

at 332°C when CuSe; transforms to y-CuSe and Se and at 377°C when y-CuSe transforms to
B-Cu,Se and liquid Se.
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Cu-Se phase diagram [15].



The Sn-Se system has only two compound phases, SnSe and SnSe,. Both of them are

stable at high temperatures around 600°C. The eutectic temperature of the system is 628°C.
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Figure 3.2: Sn-Se phase diagram [15].

The Zn-Se system has only one compound phase ZnSe.

1300°C. The phase diagram is shown below.

Se

It is stable up to about
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3.2 Effective Heat of Formation (EHF) Model

For binary systems, the effective heat of formation (EHF) model was used to predict

the formation sequence of binary phases. The driving force for any reaction to take place is
the change in Gibbs free energy AG.

AG = AH, +TAS

(3.1)
where AHy is the change of enthalpy, i.e. heat of formation, T is the temperature of the

reaction and AS is the change of entropy. For solid state reactions, the change in entropy is in

the order of 10~ kJ/mol and can be neglected [16]. Therefore, we can use heats of formation

10



to determine the phase formation sequence for low temperature solid state reactions when
there is no activation or nucleation barriers.
In the EHF model, effective heat of formation AH’ is used instead of AH to take into

account the concentration at the growth interface. AH’ is defined as:

AH'= AH x Effective Concentration of Limiting Element

3.2
Compound Concentration of Limiting Element (32)

where AH is the heat of formation of the compound. To use the model to predict phase
formation, we need to know the effective concentration at the crystal growth interface for the
reaction. It is not possible to calculate the actual concentration at the interface. However,
since the highest mobility and therefore the most effective mixing at the interface take place
at the lowest eutectic point of the binary system. The effective concentration is assumed to
be the composition of the liquidus minimum of the system. The model predicts that the first
phase to form is the one with the lowest effective heat of formation at the liquidus minimum.
[17-18]

The next phase formed at the interface is decided by the concentration of elements in
the mixture. After first phase formation, the sequence moves across the phase diagram to the

direction of increasing element which is abundant in the system. [17,19].

3.2.1 Phase Formation Sequence for Cu-Se System

For the Cu-Se system, the heat of formation values for CuSe, CuSe; and Cu,Se are -
39.5 kJ/mol, -43.0 kJ/mol and -59.3 kJ/mol, respectively [19]. When used to calculate the
effective heat of formation, the above values were transformed to values per atom, which
became -19.8 kJ/(mol-atm), -21.5 kJ/(mol-atm) and -29.7 kJ/(mol-atm) respectively. The
EHF plot for the Cu-Se system is shown in Fig. 3.4 below. Applying the EHF to the plot, we

can see that CuSe is the first phase to be formed since it has the lowest effective heat of

11



formation value. The next phase to form depends on the element composition at the
interface. If Se is abundant, the sequence moves across the phase diagram to the right and

the next phase to form is CuSe,. If Cu is abundant, the next phase to form is CusSe.
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Figure 3.4: EHEF plot of Cu-Se system.

3.2.2 Phase Formation Sequence for Sn-Se System

For the Sn-Se system, there are only two reported phases according to the phase

diagram, which are SnSe and SnSe,. The heat of formation values for the two phases are -

68.6 kJ/mol and -124.7 kJ/mol respectively [20]. The values per atom are -34.38

12



kJ/(mol-atm) and -41.68 kJ/(mol-atm) respectively. The EHF plot of the system is shown in
Fig. 3.5. According to the plot, SnSe, has the lower effective heat of formation, thus will be

the first phase to be formed. The next phase to be formed is SnSe.
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Figure 3.5: EHEF plot of Sn-Se system.

3.2.3 Phase Formation Sequence for Zn-Se System
In the Zn-Se system, only one phase exists according to its phase diagram (Fig. 3.3).

Therefore, ZnSe will be the only phase to form.
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3.3 Reaction Path Model (BNDH law)

To predict the reaction path of the solid state reactions involved in the systhesis,
Hergert et al. applied the BNDH law to estimate the epitaxial relations between the possible
compounds. The BNDH law was named with the initials of the four contributors. It is used
to predict the lattice planes faceting the crystal by assuming that the growing speed of a
lattice plane is inversely proportional to its reticular density of atoms. The planes with the
largest d-spacing will be the most favored facets in the crystal structure and thus primarily
serving for the epitaxial growth in the solid state reactions [21]. Based on the BNDH law,
they have obtained the first four most probable faces for all the phases involved in the
synthesis of CZTSe. The crystallographic data for the phases occurred in the synthesis are
presented in Table 3.1 below with the faces listed in the order of the most probable to the
least probable. The crystal faces containing the hexagonal unit are indicated in bold [11].
The results were compared to look for epitaxial relations. It has been proposed that the solid
state reactions are remarkably enhanced if there exist structural similarities between the
reactants [22]. In the synthesis of CZTSe, the common structural unit contained in all the
compounds is an anion hexagon of the chalcogen. A phase is considered to be suitable for
epitaxy if at least one of the most probably faces contains the hexagon unit. The epitaxy is
possible because the anion hexagons in the seleinde compounds have very similar averaged
anion-anion distances with a maximal difference of 8-9% due to the similar cation radii.
According to Shannon [23], the data are as below: r (Cu") is 74 pm, r (Zn*") is 74 pm, r
(Sn*") is 69 pm, r (Se™) is 184 pm in tetrahedral coordination. This structure similarity
allows a rapid reaction between the reactants by avoiding the rearrangement of chalcogenide

sublattice.
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Table 3.1:  Crystallographic data of phases involved in the synthesis [11]

Compound Space Lattice parameters Expected faces suiting
group epitaxy

B-CusSe F-43m a=584.0 pm {111}

y-CuSe P63/mmc | a=398.0 pm,c=1725.4 pm {001},{100},{101},{102}

CuSe; Pnnm a=500.5 pm,b=618.2 pm, {110},{011},{010},{101}

¢=374.0 pm [21]

ZnSe F-43m a=561.8 pm {111},{100},{110},{311}

SnSe Cmcm a=430.61 pm,b=1171.1 pm, | {010},{110},{021},{111}
c=430.61 pm

SnSe; P-3ml a=381.08 pm,c=614.10 pm | {001},{100},{101},{102}

Cu,SnSes Ce a=696.70 pm,b=1204.93 pm, | {010},{110},{-111}, {021}
¢=694.53 pm,=109.19°

CuyZnSnSe; | 1-42m a=568.82 pm,c=1133.78 pm | {001},{101},{110},{112}

Based on the epitaxial relations, they have proposed two reaction pathways for the
synthesis reaction of CZTSe shown in Eq. 3.3 and Eq. 3.4. Eq. 3.3 shows a direct synthesis
from the three kinds of binary phases reacting with each other at the same time. 3-Cu,Se,
ZnSe and SnSe; are the most favorable reactants. These three phases are ionic compounds
containing mobile cations and they all provide epitaxy on the first probable crystal face. Also
SnSe; has a layer structure connected with weak Van-der Waals forces between layers,
which makes it easier to shear along the direction perpendicular to the <001> axis. There is a
concurring reaction path which is a two-step reaction with the ternary phase Cu,SnSes as the
intermediate product as shown in Eq.3.4 [11].

1) B-CusSe/y-CuSe+ZnSe+SnSe/SnSe,(+/-Se) — CZTSe (3.3)

2) a. B-Cu,Se/y-CuSe+SnSe/SnSes(+/-Se) — Cu,SnSe; 34
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b. Cu,SnSe;+ZnSe—CZTSe
In our experiments, another ternary phase Cu,SnSes formed when the sample was

annealed at 400°C along with Cu,SnSes. Due to the lack of crystallographic data, we did not
obtain the information on Cu,SnSe4 forming epitaxial relations with the other phases.
According to Yoo et al. [3], Cu,SnSe; first formed at about 400°C for compounding the
Cu,SnSes phase following the reaction below:

Cu,SnSes + SnSe — Cu,SnSes + SnSe; (3.5
All the Cu,SnSe4 phase transformed to Cu,SnSe; by 500°C, which can form CZTSe

following Eq. 3.4b. Therefore, this equation is well matched with the Hergert model.
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Chapter 4

SYNTHESIS AND CHARACTERIZATION OF THE QUATERNARY PHASE
Cu,ZnSnSey

4.1 Experimental Details

4.1.1 Materials
Elemental Cu (99%, <75 pm), Zn (99%, -100 mesh), Sn (99.9%, -325 mesh) and Se
(99%, -325 mesh) powders purchased from Sigma Aldrich were used as precursors without

treatment. Solvent used for ultrasound sonication is 2-cyanopyridine (99%) purchased from

ACROS Chemicals.

4.1.2 Experimental Procedures

All the sonication experiments were carried out on a Cole Palmer 500 W, 20 kHz
Ultrasonic Homogenizer at a power output of 5-8 W. Metal powders mixed with Se powders
in near stoichiometric mole ratios shown in Table 4.1 were made into suspension in a Sml
vial after adding 1ml of 2-cyanopyridine and sonicated for 2 minutes. Cu is kept deficient for
Cu-Sn-Se system and the quaternary system to render more complete reactions. Se is kept
abundant to compensate for high temperature loss. Nitrogen gas was kept flowing
throughout and after the sonication until the suspension cooled down in order to prevent
oxidation.

After sonication, the suspension was then transferred to a 1 in” glass substrate on
which it was dried on the hot plate for 2 hours at about 60°C. The temperature was kept low

to prevent oxidation. Once dried, the samples were placed into the furnace to be annealed at
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temperatures between 300 and 600°C in Ar gas atmosphere and cooled down naturally

afterwards.

Table 4.1:  Molecular ratios for different reaction systems.

Binary system Cu:Se,Sn:Se,Zn:Se 1:2

Ternary system Cu:Zn:Se 1:1:3

Ternary system Cu:Sn:Se 1.8:1:6

Quaternary system Cu:Zn:Sn:Se 1.8:1:1:5 for 500°C and below
1.8:1:1:9 for 600°C 2 hrs

4.1.3 Characterization

Crystal structure and phase identification analyses of the samples were carried out by
X-ray diffraction (XRD) on a Rigaku D-max B diffractometer with high-intensity Cu Ka, »
radiations. The 20 scan range used for all the samples was 10 to 88° with a step size of 0.02
degree and a dwelling time of 2 seconds. The morphology is investigated by scanning
electron microscopy (SEM) using a JEOL JSM-7400F equipment. UV-Vis data were
collected on a Perkin-Elmer UV/Vis/NIR spectrophotometer equipped with an integrating
sphere over a wavelength range of 300-2500 nm. Raman data were collected on a Senterra
R200L dispersive Raman spectrometer with an Olympus microscope module by Bruker
Optics. The laser lights used in the experiment is a red light with a wavelength of 785 nm.
The intensity is 25 mW for the ternary sample and 100 mW for the quaternary sample. The
resolution for the graph is 9-15 cm™. The integration time is 9 s for the ternary sample and

100 s for the quaternary sample.
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4.2 Phase Identification and Characterization

4.2.1 Binary systems

XRD pattern of the Cu-Se as-sonicated sample (Fig. 4.1¢) shows that Cu and Se
formed a-CuSe stable at room temperature with excess Se. This result is consistent with the
EHF model, which predicts that CuSe is the first phase to form. After annealing at 300°C,
the hexagonal high temperature modification y-CuSe was found in the sample together with
the orthorhombic compound CuSe, which starts to form at 120°C and is stable up to 332°C.
CuSe, formed after CuSe because there was abundant Se in the sample, making the sequence
moved to the Se-rich direction across the phase diagram. CusSe, was skipped because it only
exists up to 112 °C [15]. At 400°C, all the CuSe, had been transformed into y-CuSe, part of
which then transformed to the face centered cubic 3-Cu,Se stable between 123°C and
1130°C [15] as observed in the sample annealed at 500°C. XRD pattern in Fig. 4.2¢ clearly
shows peaks for cubic Cu,Se and some CuSe phase.

Sn-Se system showed no reaction in the as-sonicated sample. The XRD pattern of the
sample is shown in Fig. 4.1b. It clearly shows only elemental Sn and Se in the sample. The
XRD pattern for the 300°C annealed sample shows peaks for SnSe, (hexagonal)-the first
phase predicted by the EHF model-as well as the SnSe phase (orthorhombic), which is next
phase predicted to form. Both of the two phases can exist up to about 628°C, which is the
eutectic temperature of the system (Fig.2). However, SnSe and Se are highly volatile at high
temperatures (above 400°C), driving the decomposition of SnSe; into gaseous SnSe and Se.
The Sn loss through desorption of the SnSe phase is also a major driving force for the
decomposition of the quaternary phase CZTSe at high temperatures. This issue is further
discussed in Section 4.2.3. Due to the desorption of SnSe, SnSe; is the dominant phase in the

500°C sample shown in Fig. 4.2b.
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Like the Sn-Se system, we did not observe a reaction in the Zn-Se as-sonicated
sample. And there is no reaction observed in the Zn-Se sample post-annealed at 500°C as
well. This is probably due to the high eutectic temperature of 1360°C for the Zn-Se system.
[15]. As shown in the XRD patterns in Fig. 4.1a and Fig. 4.2a, only peaks for elemental Zn

and Se are observed in the plot.
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Figure 4.1: XRD patterns of as-sonicated a) Zn-Se b) Sn-Se c¢) Cu-Se samples.
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Figure 4.2: XRD patterns of 500°C annealed a) Zn-Se b) Sn-Se c¢) Cu-Se samples.

4.2.2 Ternary systems

XRD results for the ternary systems are shown in Fig. 4.3 and Fig. 4.4 for as-
sonicated samples and 500°C annealed samples, respectively. The pattern for the Cu-Sn-Se
(CTSe) as-sonicated sample shows only a reaction between Cu and Se (Fig. 4.3b). After
annealed at 300°C, the pattern still shows no sign of reaction between Sn and Se. There are
peaks for CuSe and CuSe,, which is very similar to the Cu-Se binary system 300°C pattern
except for peaks corresponding to elemental Sn. We can see that Se reacts with Cu first due
to its affinity to chalcogen [3]. For the 400°C annealed sample, XRD pattern shows peaks for

the two ternary phases Cu,SnSe; and Cu,SnSe, with a small amount of cubic CusSe. At
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500°C, the transformation between the two ternary phases were completed (Eq. 3.5). We
achieved a near single phase of Cu,SnSe; with only a minor amount of SnSe and SnSe, for
samples annealed at 500°C and above. XRD patterns and SEM picture of the 600°C sample
are shown in Fig. 4.4b and Fig. 4.5, respectively.

Like the CTSe system, only Cu-Se reaction was observed in the Cu-Zn-Se (CZSe)
as-sonicated samples (Fig. 4.3a). In the 300°C annealed sample, XRD pattern shows peaks
for CuSe,, Zn and some residual Se. There is no reported ternary phase for the Cu-Zn-Se
system. Therefore, in the 400°C annealed sample, we found only the binary phases-cubic
Cu,Se, ZnSe and elemental Zn. The 500°C annealed sample however, contained
orthorhombic Cu,Se instead of cubic Cu,Se. There was also ZnSe and elemental Zn in the
sample. In the 600°C sample, ZnSe peak became stronger, indicating a dominant amount of
the phase. Both cubic Cu,Se and orthorhombic Cu,Se peaks were found in the sample. (Fig.

4.4a)
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Figure 4.3: XRD patterns of as-sonicated a) Cu-Zn-Se b) Cu-Sn-Se samples.
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Figure 4.4: XRD patterns of 600°C annealed a) Cu-Zn-Se b) Cu-Sn-Se samples.
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Figure 4.5: SEM picture of the Cu-Sn-Se 600°C sample.

Considering that we did not see any reaction between Zn and Se, we suggest that the
formation of ZnSe phase in the CZSe system is attributed to the existence of Cu. We suppose
that Cu catalyzed the selenization reaction of Zn. This result can be explained by the metal
reactivity theory. Zn is above Cu in the activity series of metal because it has lower
electronegativity. At temperatures above 400°C, Cu has already been selenized and exists
mainly in the form of Cu” in Cu,Se. Due to the lower electronegativity, it is easier for Zn to
lose electrons to Se. Therefore, it can reduce the Cu” ion in Cu,Se and then bond with Se
instead following the reaction:

Zn+2Cu’ — Zn*" +2Cu 4.1)
The enthalpy change of the reaction is -109 kJ/mol [24]. The negative value suggests that the

reaction is exothermic and spontaneous going in the right direction. After being reduced, Cu
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continues to react with Se to form more Cu,Se. The reaction completed in the 600°C sample
where all Zn was reacted and transformed to ZnSe. The SEM micrographs of the Cu-Se
500°C, Zn-Se 500°C and Cu-Zn-Se 500°C samples are shown in Fig. 4.6. Fig. 4.6a displays
the agglomerated cubic Cu,Se crystals. Fig. 4.6b displays the large Zn particle chunks of
diameters of ~6um. In the ternary picture, we can see the hexagonal Zn particles in the
center. The background contains mainly agglomerated cubic ZnSe and some fused

orthorhombic Cu,Se crystals in the lower left corner.

Figure 4.6: SEM micrographs of a) Cu-Se 500°C b) Zn-Se 500°C c) Cu-Zn-Se 500°C.
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Another phenomenon that needs to be pointed out is the existence of two phases of
Cu,Se - cubic Cu,Se and orthorhombic Cu,Se. Stevels ef al. [25] have reported the phase
transformation from the f.c.c lattice of Cu,.«Se (obtained by reaction of Cu and Se under
high temperature) to a less symmetric orthorhombic phase during the cooling process. The
temperature for the transformation depends on the value of x, i.e. the Cu vacancies. They
observed that it occurred at 140°C for x=0 and at -20°C at x=0.2. In fact, it has been long
known that Cu,Se undergoes a phase transformation during cooling. But the results for the
studies of the room temperature phase structure are still controversial. First in 1945, Borchert
[26] reported a tetragonal cell. Later in 1971, Stevels ef al. proposed an orthorhombic
structure as mentioned above. Then in 1976, Murray and Heyding [27] proposed a
monoclinic structure. Also in 1981, Vucic et al. [28] proposed a different monoclinic
structure. In 1988, Kashida ef al. [29] reported a phase transformation for Cu,Se from a
cubic structure to a room temperature pseudo-monoclinic structure, similar to the one
proposed by the Vucik group. In our research, we believe the phase we obtained has an
orthorhombic structure by comparing the XRD pattern and the JCPDS database. During
annealing, the sample was left to cool down naturally in the furnace after heating is turned
off. Usually we waited for the samples to cool down to room temperature before taking out
for characterization. The orthorhombic Cu,Se phase is observed in these samples since the
transformation had started before the temperature reached room temperature. But there are
some cases where the samples were taken out from the furnace before cooling down to room
temperature. In these cases, only the cubic phase is observed. Phase transformation will not
occur if the sample is quenched down to room temperature instead of letting it cool down
slowly. Also, the transformation tends to occur for samples annealed at higher temperature,

probably due to the longer cooling time.
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4.2.3 Quaternary systems

4.2.3.1 XRD and SEM results
XRD patterns of quaternary samples as-sonicated and annealed at different

temperatures are shown in Fig. 4.7. The as-sonicated sample shows only peaks for CuSe as
well as elemental phases of Sn, Se and Zn, like the other systems. After annealing at 300°C,
we can see peaks for elemental Zn and Sn phases as well as CuSe and CuSe; just as the
CTSe sample annealed at the same temperature except for the elemental Zn. We started to
see the quaternary phase CZTSe peaks in the XRD pattern in the 400°C annealed sample.
Ternary phase Cu,SnSes; and Cu,SnSey are first observed at 400°C, as in the ternary samples.
The quaternary phase was quickly formed from the reaction between Cu,SnSes and ZnSe
with an epitaxial relation (Eq. 3.4b). However, the reaction was not completed due to the
incomplete synthesis of ZnSe. As a result, abundant Zn and Cu,SnSe; were left in the
sample. Once the quaternary phase is formed, it can decompose according to the following
equilibrium proposed by Redinger et al. [30]:

CuaZnSnSes < CusSe(s) + ZnSe (s) + SnSe (g) + Se (g) (4.2)
The decomposition rate varies with different experiment conditions. In our experiment, Ar
gas is flowing throughout the annealing and cooling process to prevent oxidation. The Ar gas
may have slowed down the desorption of the SnSe phase, thus the decomposition rate of
CZTSe [31]. At 500°C, the transition from the ternary phase Cu,SnSe4 to Cu,SnSe; is
completed following the reaction in Eq. 3.5. Only Cu,SnSes phase was observed in the
sample. After annealing at 600°C for 2 hours, the reactions in Eq. 3.3 and Eq. 3.4 were all
completed. All the CTSe ternary phase transformed to the quaternary phase. Small amounts
of orthorhombic Cu,Se phase persists in both 500°C and 600°C samples. Quaternary phase

peaks show a tendency to become stronger as the annealing temperature becomes higher. At
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700°C, we observed only ortho-Cu,Se, Cu,SnSe; and ZnSe phases in the sample. The
decomposition of the quaternary phase becomes significant at such a high temperature due to

drastic loss of SnSe and Se.
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Figure 4.7: X-ray diffraction patterns of the quaternary samples as sonicated and annealed
at temperatures from 300°C -600°C. (1)Sn (2) Zn (3) Se (4) CuSe (5) CuSe; (6)
cub-CuySe (7) ZnSe (8) CZTSe (9) ortho-Cu,Se (10) CuxSnSes (11) Cu,SnSes.

The phase analysis results for the quaternary samples at different stages obtained

from the XRD patterns are summarized in Table 4.2 below
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Table 4.2:  Phase analysis for quaternary samples at different stages.

As sonicated CuSe, Sn, Se, Zn

300°C Zn, Sn, CuSe, CuSe;

400°C Zn, cub-Cu,Se, CZTSe, Cu,SnSe;s,
Cu,SnSey,

500°C ortho-Cu,Se, cub- Cu,Se, CZTSe,
Cu,SnSe;,

600°C 2hrs ortho-Cu,Se, CZTSe, ZnSe

700°C ortho-Cu,Se, ZnSe, Cu,SnSe;

The morphological evolution of the sonication and annealing process is studied with
SEM. Fig. 4.8 shows the SEM micrographs of the quaternary samples as sonicated and
annealed at different temperatures. The as-sonicated sample displays a hexagonal CuSe
phase showing the {001} facets, the most probable facets for CuSe as predicted by the
BNDH law described in Chap. 3. The 300°C sample shows mainly the sintered grains of the
orthorhombic CuSe, phase. CZTSe phase starts to form between 300°C and 400°C. Fig. 4.8¢c
and Fig. 4.8d display the agglomerated quaternary nanoparticles with some large crystal
grains. The crystals shown in Fig. 4.8c are probably the ternary phases. In Fig. 4.8d we can
see the triangular shaped Cu,Se crystal grains showing the {111} facets. Lastly in Fig. 4.8e
for the sample annealed at 600°C for 2 hours, we can see the quaternary particles become

more prominent.
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Figure 4.8: SEM picture of the CZTSe samples a) as-sonicated; annealed at b) 300°C c)
400°C d) 500°C e) 600°C.
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4.2.3.2 UV-Vis results

The optical properties were measured for the 600°C 2h annealed quaternary sample
over a wavelength range of 300-2500 nm. The results are plotted in Fig. 4.9 showing the
absorbance curve vs. wavelength in the visible range with an inset plot of (cthv)” as a
function of photon energy. The discontinuity in the absorbance curve is due to the change of
lamp in the device at the wavelength of 850 nm. The band gap energy obtained from (cthv)?
as a function of photon energy plot is 1.2 eV, which is in good agreement with the reported

values in the literature indicating the existence of the quaternary compound [8,30,31].
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Figure 4.9: UV-Vis absorbance spectrum for the CZTSe quaternary 600°C 2hr sample.
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4.2.3.3 Raman results

Raman spectroscopy was performed on both the CTSe ternary and quaternary
samples annealed at 600°C. Fig. 4.10 below shows the Raman spectrum of the CTSe 600°C
sample. The plot shows a strong sharp peak at 180 cm™, a lower energy peak at 232 cm™ and
a very small peak at 259 cm™. All three peaks match well with the reported Raman peak

positions for Cu,SnSes phase [33].
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Figure 4.10: Raman spectrum of CTSe 600°C sample.

The Raman spectrum for the quaternary sample annealed at 600°C for two hours is

shown in Fig. 4.11. The sharp peak at 248 cm™ is due to ZnSe phase [33]. Raman peaks of
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CZTSe were reported [4] to occur at 175 cm™, 196 cm™, 234 cm™ and 390 cm™'. The peak at
190 cm™ and 391 cm™ in Fig. 4.11 are clearly due to CZTSe phase. The 175 cm™ and 234
cm™ peaks are not visible probably due to low resolution. The peak at 139 cm™ is due to
SnSe [34]. SnSe phase does not appear in XRD pattern probably due to difference in
sensitivity of the two techniques. The Senterra Raman spectrometer has a sensitivity of 0.2%
while the sensitivity for the Rigaku XRD equipment is about 1%. The peak at 280 cm™ is
due to Cu,Se [35].
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Figure 4.11: Raman spectrum of CZTSe 600°C 2hr sample.
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Chapter 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary of Results

In this research, a sonochemistry method has been used to study the formation paths
of the photovoltaic material Cu,ZnSeSe,. Sonochemistry is a technique that uses ultrasound
irradiation to promote reactions and enhance reaction rates. XRD technique has been used
for major phase identification. SEM technique has been used for morphological studies.
Other techniques including Raman spectroscopy and UV-Vis spectroscopy were also used
for further confirming the formation of the target material.

The synthesis was carried out first by sonicating the elemental precursors with
ultrasound in organic solvent and then annealing the dried samples in the furnace. 2-
cyanopyridine is used as the solvent in all the sonication experiments. XRD results show that
only a reaction between Cu and Se elemental precursors was observed after direct
sonication. Post sonication annealing is required for further reactions. The EHF predicts the
first phase to form for the binary systems are CuSe, SnSe, and ZnSe respectively. SnSe and
SnSe, phases formed before 300°C during annealing with SnSe; being the first phase to form
and SnSe next as predicted. There was no reaction observed between Zn and Se in the binary
systems. The CTSe ternary system formed two ternary phases Cu,SnSe4 and Cu,SnSe; at
400°C. All the Cu,SnSe4 phase transformed to the Se-poor phase Cu,SnSes by 500°C.
Raman data showed that we obtained a single phase Cu,SnSes at 600°C. For the CZSe
system, the ZnSe was observed in the samples starting from 400°C. We believe that the
existence of Cu catalyzed the reaction between Zn and Se. For the quaternary system,

CZTSe started to form in samples annealed at 400°C and above. The quaternary phase starts
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to decompose as soon as it forms and keeps a chemical equilibrium. The XRD peaks for the
quaternary phase become stronger as the temperature gets higher. Two phases of Cu,Se were
found in the samples, the cubic f-Cu,Se and the orthorhombic Cu,Se. We believe that Cu,Se
undergoes a phase transformation during the natural cooling process. We did not obtain a
single phase CZTSe. ZnSe and Cu,Se were also found in the 600°C 2h annealed sample. At
700°C, the decomposition reaction becomes so significant that only Cu,Se, Cu,SnSe; and
ZnSe exist in the sample. The band gap energy of the sample measured from the UV-Vis

data is 1.2 eV, which matches with the reported values for the CZTSe materials.

5.2 Recommendations for Future Work

5.2.1 Variation of Sonication and Annealing Parameters

In this research, all the sonication experiments are conducted under the same
conditions. The sonication power is 5-8 W and duration time is 2 minutes. We only obtained
a reaction for Cu and Se after direct sonication. Further experiments can be conducted for
longer sonication time and with pulsations to achieve a more thorough mixture of the
precursors. With different conditions of sonication, it will be interesting to see if we can
achieve reactions for Sn-Se or Zn-Se with direct sonication.

We have found that Cu,Se undergoes a phase transformation during the cooling
process. In this research, we did not control the cooling rate of the sample. If there was a
systematic control of the cooling rate, we could in turn have a better control of the phase

transformation.

5.2.2 Variation of Precursor Mixture Ratios
All the ternary and quaternary samples are mixed nearly stoichimetrically with

deficient Cu to achieve more complete reactions and abundant Se to compensate for Se loss
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during annealing. Since Sn loss is a major driving force for the quaternary phase
decomposition at high temperature, it is advisable to incorporate abundant Sn in the form of
SnSe in the mixture precursors. The Zn/Sn ratio in the precursor mixture can be adjusted to

obtain the best results.

5.2.3 Alternative Solvent and Precursors

2-cyanopyridine is the only solvent used in the sonication experiments because it
does not react with the precursors and is stable at room temperature. Other organic solvent
can be investigated as a replacement for better solubility of the elemental precursors and
better irradiation effects. Common solvents used in the synthesis include oleylamine (OLA)
[36], hexadeclamine (HDA) [2] and mixture of oleic acid and hexadecane [37].

Also, the use of organic precursors in place of elemental metals in sonication is also
worth investigation. Wang et al obtained different phases of the quaternary CZTSe
nanocrystals using different Se sources including diphenyl diselenide, selenourea and Se

powder [37].
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