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ABSTRACT 

 

Cracks in pavements allow water to pervade the various layers reducing 

drastically its ability to perform the primary function of carrying traffic loadings. The 

various types of cracks that occur on road pavements raise concerns for engineers and 

infrastructure managers. Identifying the type of crack accurately and efficiently is 

essential in road maintenance as this will lead to the prescription of cost-effective 

maintenance and treatment procedures. In the past, various image processing techniques 

have been applied in the detection and classification of pavement cracks most of which 

employ machine learning methods. This thesis outlines the importance of tensor analysis 

and decomposition as an alternative means of pavement crack classification. Tensors are 

multidimensional arrays and are generalizations of scalars, vectors and matrices. Two 

main types of cracks; longitudinal and transverse cracking are considered in the study. 

Due to the nature of tensors, the training set of images used is analyzed in a 3-

dimensional space which captures variation across all images and ensures a more robust 

tensor algorithm for accurate crack classification. The levels of accuracy obtained after 

using the algorithm implies that crack classification based on tensor decomposition is one 

that can be successfully employed by state agencies nationwide who use digital image 

processing systems as part of their pavement management programs. 
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 Chapter 1

INTRODUCTION 

1.1 General 

Infrastructure systems are necessary for supporting society‟s functioning as well as 

economic growth. Typical examples of civil infrastructure systems include roads, 

bridges, railways, canals and airports. The aforementioned examples are capital intensive 

assets whose proper functioning is critical to the development of modern societies 

worldwide. The assets deteriorate over time and as such there is the need for maintenance 

to ensure they function efficiently during their design life. This thesis focuses on road 

pavements. 

The most common sign of deterioration in road pavements is cracking. There are 

various types of cracks namely longitudinal, transverse, alligator and block cracks. 

Usually, manual surveys are carried out by experienced inspectors who walk along the 

roadway and note the various types of cracks at different sections of the road. This is a 

very subjective way of monitoring the condition of the pavement. It is also time 

consuming and may also pose serious safety risks for the inspectors. In recent times, 

automated methods which process pavement images for condition monitoring have been 

developed. Images are taken by cameras attached to specialized vehicles after which 

processing algorithms are used to determine the types of cracks on the pavement (See 

Figure 1). The algorithms for classification of crack types are usually based on Neural 
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Networks (NN). These may come with problems of their own including processing times 

and classification errors. Work is still being carried out in the area of image processing to 

produce robust and adaptive means for classifying cracks. This thesis is on a tensor-based 

approach for classifying pavement cracks.  

Tensors are simply multidimensional arrays. The tensor concepts have been 

applied extensively across various fields including chemometrics and computer vision 

among others (Mørup 2011).  

 

 

Figure 1: Laser Road Imaging System, (Mandli Comm. Inc.) 

   

    

Tensors have also been applied in various domains which have similarities to 

pavement crack classification such as facial recognition (Vasilescu and Terzopoulos 

2002) and handwritten digit recognition (Savas and Elden 2006). Tensor decomposition 
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and factorization can serve as a robust tool for the classification of crack types in road 

pavements.   

1.2 Objectives of Research 

The main objective of the research is to introduce and use tensor decomposition as 

an advanced data analysis technique in civil infrastructure health monitoring. During 

pavement health monitoring and evaluation, large amounts of data are collected and 

analyzed and this makes condition monitoring a data-driven process. With increasing 

computing technology and capabilities, the amount of pavement data being collected and 

stored daily is vast and complex. This means that pavement condition monitoring and 

evaluation requires not only knowledge in civil engineering but also a strong foundation 

in advanced data analysis. The main objective of this thesis will be realized under the 

following sub-objectives. 

Firstly, the concepts of tensor factorization and decomposition in data analysis will 

be introduced in order to spur interest in the area of pavement monitoring and evaluation. 

This will lead to the generation of ideas about how to apply the basic concepts of tensors 

in the analysis and interpretation of civil infrastructure datasets. 

Secondly, tensor decomposition will be used in pavement crack classification. 

There are several pavement crack classification algorithms available. These are based on 

methods other than tensor analysis. The aim is to employ tensor decomposition as an 

alternative pavement crack classifier and assess its accuracy, speed and robustness.  
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1.3 Statement of Problem 

The quality of road pavements in a society is very important since it has a direct 

influence on development, trade and commerce. The condition of the pavements 

deteriorates over time and so there is the need for sound maintenance and management 

practices.  

In maintaining the pavement infrastructure, the roads are monitored. This can be 

achieved through manual inspections by experienced engineers. They walk along the 

pavement and note all surface distresses and their respective locations and then from the 

information gathered, remedies are provided to slow down the rate of deterioration and 

improve the riding quality of the road. Manual inspections are very labor-intensive and 

time-consuming. It is also a subjective means of condition monitoring. Due to these 

reasons and the rapid advancement of computer technology, alternative means have been 

developed. These involve the use of algorithms to detect, classify and determine the 

geographical locations of cracks from captured images. These are stored and organized in 

a database which can then be analyzed with relative ease. 

The automated method is a very time-efficient method of identifying cracks. The 

problem with this approach is usually the proper classification of the cracks into say 

transverse, longitudinal, alligator and block cracks. This is due to the fact that the 

computers may not have the recognition capabilities most humans have. Current 

automatic classification methods are based on neural networks and may be 

computationally expensive. For the methods, which also use thresholding, a major 

problem is to determine the appropriate threshold value to be used. 
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Tensors generally refer to arrays of three or more dimensions and they have been 

applied across various fields and have proven to be very efficient and useful (Kolda and 

Bader 2009). Tensor applications have been used in handwritten digit classification, 

chemometrics, facial recognition, web mining, bioinformatics among others. The 

approach employed in these uses, especially the hand-written digit recognition (Savas and 

Elden 2006) was used extensively in the crack classification. Due to its multidimensional 

properties, tensor analysis is able to capture variation of data in all modes simultaneously 

and so has the ability to produce realistic interpretations of datasets. 

1.4 Thesis Organization 

The thesis has five main chapters.  

Chapter 1 is the introductory chapter and as such details the objectives of this 

research, statement of the problem as well as the structure of the thesis in addition to 

providing a brief introduction to the topic. 

Chapter 2 has the background and literature review. Previous works done in the 

area of crack classification as well as selected work done with tensors in other fields are 

summarized. This chapter identifies current practices in the pavement health monitoring 

field. Chapter 3 explains the concept of tensors and tensor decomposition and 

factorization, software packages available and various application areas.  

Chapter 4 describes the dataset that is used in the analysis. It includes the source 

of the data, general statistical description and the processing that is carried out. The 

summary of the analysis is presented here and there is a discussion of the results after the 



 6 

summary. The conclusion and recommendations are outlined in chapter 5 of the 

document. 
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 Chapter 2

BACKGROUND & LITERATURE REVIEW 

2.1 General 

Much work has been carried out in the area of crack detection and classification. 

The phenomenon of crack formation is very important in transportation since it is the 

commonest form of pavement deterioration. These damages cost about $10 billion 

annually in the US (Rababaah et al 2005). This explains why the federal government and 

State Departments of Transportation (DOTs) nationwide place much emphasis on 

monitoring and maintenance of pavements. Most studies concentrate on three main types 

of cracks namely alligator cracking, transverse and longitudinal cracking. Since the 

1970s, automated methods for studying cracks have been developed and upgraded 

because the manual means are subjective, labor-intensive and time-consuming (Xu et al 

2003). 

2.2 Crack Classification  

In Rababaah‟s work (Rababaah et al 2005), the accuracy of three different 

classification algorithms were compared. They consisted of two supervised learning 

algorithms; Genetic Algorithm (GA) and Multi-layer Perceptron (MLP) and one 

unsupervised learning algorithm called the Self-Organizing Map (SOM). The work was 
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motivated by the fact that existing classification algorithms were computationally 

expensive and that they were inefficient in terms of processing speeds. Alligator, block, 

transverse and longitudinal cracks were considered in the work. Images were 

preprocessed through binarization and median filtering in order to reduce noise. After 

preprocessing of images, two feature representation methods were used before they were 

subjected to the classifiers. The methods used were Hough Transform and the Projection-

based approach. The best classification algorithm after the analysis was the MLP using 

the projection-based representation with a total accuracy of 98.6%. However, this 

approach is still computationally expensive and involves thresholding which may not 

provide accurate results occasionally. 

Saar et al also devised a means of classifying cracks (Saar et al, 2010). The method 

had an overall classification accuracy of 95%. Alligator cracks in addition to longitudinal 

and transverse cracks were considered in this work. It was noted that image classification 

comprised of three main steps; preprocessing, processing and classification. The training 

set consisted of 61 images, with 41 images used each for validation and testing. Initially, 

the images were of size           but were resized to       during the 

preprocessing phase. Thresholding was not used in the approach since it can affect the 

efficiency of image segmentation. However, the image was binarized and the pixels of 

probable crack areas were added up to give the first input for the Neural Network (NN). 

The elements of the binary matrix formed were summed up column-wise and row-wise. 

The maximum and median values in the two resulting vectors were also used as the 

second and third input values for the network. The maximum values gave an indication of 
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the length of the defects while the median value indicated the overall number of smaller 

defects. The binary matrix is then convolved by two convolution masks of size      . 

The two resulting matrices are then summed to form the fourth and fifth input values for 

the network. The convolution process is done to suppress noise in the image.  

Santhi et al proposed an algorithm for automated pavement crack detection (Santhi 

et al 2012). The method used in the detection of cracks consisted of 5 major steps 

namely; image acquisition, image preprocessing, image enhancement, image restoration 

and image segmentation. The restoration and segmentation phases involved using filters 

and edge-based methods for the detection of cracks. The first two steps after image 

acquisition were used in this thesis. They were the image pre-processing step which 

involved the resizing of the images and image enhancement which refers to gray scale 

image conversion.  

Oliveira et al (2008) also proposed a very impressive system for identifying and 

classifying pavement crack images. 100% recall and precision values were obtained for 

the classification algorithm which made use of Bayesian classification techniques. The 

cracks considered were based on the description of cracks in the Portuguese Distress 

Catalog. The cracks were divided into three classes namely; longitudinal, transversal and 

miscellaneous. Normalization is done after the image is subdivided into pixels of size 

65 65 in order to reduce the effect that different background illuminations may have on 

the results. The training set images are selected by choosing first, the images obtained 

after sorting database images in decreasing order of the longest component length. This is 

to ensure that the training images all contain cracks. 2D feature spaces are created for 
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each image. For classification, the standard deviations of the row and column coordinates 

of the detected crack regions are used. There is a bisectrix which divides the feature space 

into two zones. Points which fall very close to the bisectrix indicate miscellaneous 

cracks. Points which are closer to the horizontal axis indicate transverse cracks and points 

closer to the vertical axis indicate longitudinal cracks.  

Normalization is a key pre-processing step that ensures that the effects of non-

uniform lighting are reduced. This produces accurate identification and classification 

results.  

2.3 Tensors 

A tensor is a multiway or multidimensional array. This definition suggests that 

tensors are generalizations of scalars, vectors and matrices (Mørup 2011). Higher-order 

tensors are those that have N number of modes with N>2. A typical three-dimensional 

tensor has elements      similar to a matrix with elements     since matrices vary in only 

two directions. Early suggestions for multiway analysis started in the 1960s. Tucker came 

out with the Tucker decomposition model and Carroll and Chang and Harshman also 

proposed the second popular tensor decomposition model known as the 

CANDECOMP/PARAFAC (Canonical Decomposition/Parallel Factors). Tensors are 

now being applied across various fields namely psychology, chemometrics, signal 

processing and computer vision due to the fact that the multiway analysis takes into 

account the natural multidimensional structure of the data. Modern computers are also 
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capable of performing complex tensor computations which would have been very 

difficult a few years ago.  

To eliminate the confusion in this area of tensors, standardized notations have been 

devised (Kiers 2000). Matrices are generally denoted by bold-face capital letters such as 

X and tensors are denoted by bold-face underlined capital letters such as X. However, in 

most literature, tensors are also denoted by calligraphic letters, for example  . The 

indices of a tensor with elements,      run from 1 to the capital format which means 

                    and           . Alternatively, the indices can be 

             which means they will run from 1 to           . A typical three-way or 

three-dimensional array with the three orthogonal axes or modes is shown in figure 2. 

The three modes or ways are usually identified as modes i, j and k or modes 1, 2 and 3. 

For an n-dimensional tensor, there are subarrays which are similar to columns and rows 

in matrices. In tensors, there are slices, fibers and other subarrays which do not have 

intuitive names but can only be defined by the MATLAB notation for subarrays. 

Considering a three-way tensor, there are three fibers namely, vertical, horizontal and 

tube fibers. For higher-order tensors, a general definition of a fiber is a 1-dimensional 

fragment obtained by allowing the tensor to vary in only one mode. 

 

 

 

 

Figure 2: A typical 3D tensor  

 

Mode 1 or i 

Mode 2 or j  

Mode 3 or K 
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Row, column and tube fibers in the three-dimensional tensor can be obtained by fixing 

the other two modes and allowing the tensor to vary in the j, i and k modes respectively. 

This is shown in figure 3.  

 

 

 

 

 

 

 

 

 

 

Figure 3: Fibers of a 3D tensor  

 

 

Tensor slices are obtained by allowing the tensor to vary in two modes resulting 

in frontal, horizontal and longitudinal slices for a three-dimensional tensor. 

Matricization is a process of transforming a tensor into a matrix. This process is the same 

as collecting all vectors in a particular mode. In chemometrics, the process of 

matricization is known as „unfolding‟. The notations are X1, X2 and X3 for matricization 

in modes 1, 2 and 3 respectively. N-mode matricizations are related to each other by 

cyclic permutations of the modes.  

Row fibers Column fibers Tube Fibers 
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Vectorization involves transforming a tensor into a vector. In matrices, 

vectorization is done by stacking the columns of the matrix on each other to form one 

vector. In higher-order tensors, vectorization is achieved by vectorizing the matricized 

version of the tensor. Mathematically, they can be represented as: 

     ( )  vectorization of matrix U 

     (  )  vectorization of matricized tensor in mode i 

A superdiagonal tensor is one with all elements zero except the leading diagonal. 

The unit superdiagonal tensor has the elements on the leading diagonal being ones but it 

must be noted that it does not perform the same function as the identity matrix in linear 

algebra.  

A cubical tensor is one in which all the modes are of the same size such that 

             . A cubical tensor is known as a symmetric tensor if it has its elements 

remaining the same when the indices are permuted (Kolda et al 2009). 

2.4 Selected Applications of Tensors 

The CP decomposition was first applied in chemometrics (Kolda et al 2009). 

Chemometrics refers to the study of chemical systems using data driven approaches. 

PARAFAC and Tucker 3 decompositions have also been used to study the behavior of 

soils irrigated with wastewater (Singh et al 2005). The 3D tensor analyzed had modes 

representing the soil sites, soil variables and depths at which the variables are measured 

in the soil. There were 24 variables some of which included pH, electrical conductivity, 

redox potential, salinity, organic carbon, and organic matter among others.  Preprocessing 
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of the dataset which involved centering across the first mode and scaling with the second 

mode were done to ensure all modes had equal levels of influence on the model without 

compromising the variation in the individual modes. Using the loadings and score plots 

from the various models, it was concluded that heavy metals were mainly confined in the 

upper layers of the soils which meant that this can be taken up by crops planted in the 

soils. It is also worth noting that a 2D analysis, specifically Principal Component 

Analysis (PCA) was done and compared with the PARAFAC and Tucker 3 analysis. The 

3D models were superior to the 2D models in explaining the behavior patterns of the 

soils. 

Higher-order singular value decomposition (HOSVD) or n-mode decomposition has 

also been used as a mathematical framework for a more efficient facial recognition 

algorithm (Vasilescu et al 2002). Images are formed by a combination of several factors 

such as illumination and scene structure. Humans have much more robust recognition 

capabilities which enable them to identify faces with a lot of variance in the image 

contributing factors. However, this is not the case in computer vision whereby the system 

has difficulty in recognizing faces when several factors are varied. This is so because 

PCA and Independent Component Analysis (ICA) are only able to deal with variation in 

a single mode and as such are only accurate when person identity is the only factor being 

varied.  

Consider a matrix D, with left and right matrices U1 and U2. The SVD of D is 

       
          (1)                             
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where U1   
     is the column space,         is a singular value matrix and U2  

      is the row space. 

The third-order extension is as follows: 

                      (2) 

where    ,    and    are the mode matrices and   is the core tensor. 

The core tensor   in this case is not diagonal; rather it shows the interaction between the 

mode matrices Un, for n=1,….n. Un contains orthonormal vectors that span the column 

space of the matrix D(n) which comes from the matricizing process. As such, the 

algorithm for the n-mode SVD can be summarized in two main steps; first by computing 

the matrix Un from the SVD of   (n) which is the n-mode matricized form of   and 

second by computing the core tensor,   which can be obtained from the product the 

tensor   and the transpose of the left matrices found in the first step.  

       
     

       
       (3) 

Since they are orthogonal matrices, their transpose is equal to their inverse and so the 

product above yields the core tensor  . A portion of the Weizmann face database was 

used for the analysis in this paper. The data consisted of 28 individuals in 5 different 

poses, 3 expressions and 3 illuminations. The multilinear analysis is able to represent 

each individual by a vector of dimension 28. In each column, the first eigenvector 

represents the average person and the remaining ones capture variability across the 

people. The eigenvector in any row has the same role in its respective column and so this 

is the reason why images of the individuals under various conditions are projected to the 

same coefficient vector. 
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Handwritten digit classification has also been done using HOSVD (Savas et al, 

2006). Images can be considered as two-dimensional arrays but when they are placed 

together they form a three-dimensional array. The authors of the paper asserted the fact 

that it may be more beneficial to work with data in its natural multidimensional form. 

Data used was from the US Postal Service Database of handwritten digits. In this paper, 

two classification methods both based on HOSVD were compared. 

In Singular Value Decomposition (SVD), a matrix F can be decomposed into constituent 

parts and written as: 

F=U V
T         

(4) 

 where        and V      and   is an (m n) diagonal matrix with non-negative 

entries which are ordered from the largest to the smallest value. Columns of U are called 

left singular vectors and columns of V are called right singular vectors. U and V are 

orthogonal. The values in   are called singular values. Ideally, the SVD can be written as 

an n-mode product: 

                 (5) 

Thus, HOSVD for a 3
rd

 order tensor           can be written as: 

                   (6) 

U, V and W are orthogonal matrices and   has its elements ordered such that the energy 

of the core tensor is located around the (1, 1, 1) vicinity. 

In matrices, compression is done by low rank approximation: 

             
         

(7) 
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where        (        ) and Uk and Vk are the first k columns of U and V 

respectively. 

When extended into 3-way arrays: 

                     ̃    ̃    ̃    ̃   (8) 

where  ̃             ̃         ̃             ̃          

A small approximation error means that the part of the core tensor that is omitted is small 

and insignificant. 

The third order tensor can be written as: 

  ∑       
 
           (9) 

This is illustrated in figure 4 below. 

 

 

   

 

 +…………….+ 

 

 

Figure 4: HOSVD of a 3D array (Savas et al 2006) 

 

 

where Av =  (:,:,v)        

   is an outer product between Av and wv to form the tensor  . 
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The images originally are       and preprocessing is done using a blurring technique 

to form       pixels.  

In the first algorithm, basis matrices which span the dominant subspace of each 

class of digits are computed and are used in describing unknown digits. Tensors are 

formed for each class of digits. The tensor is decomposed into a finite sum which is 

truncated to obtain a dominant k-dimensional subspace for each digit cluster. 

   ∑   
  

       
 

       (10) 

Where   is the class of digits (0, 1… 9). After finding the basis matrices the classification 

comes down to a least squares problem. 

     ‖  ∑   
 
  
  

   ‖       (11)  

where   
 

 are scalars to be determined and D is the normalized original image. 

The second algorithm involves compression of the training set before 

classification is done. It is much more efficient than the first algorithm because unknown 

digits are projected once. The training tensor is quite different from what exists in 

algorithm one. In this algorithm, the training tensor is shown in figure 5. Each slice 

represents digits for a particular class in the vectorized form. 

 

 

 

 

   

Figure 5: Training tensor for second algorithm (Savas et al 2006) 

pixel 

class 

digits 
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The decomposition of tensor D with algorithm two is as follows: 

                 ̃    ̃     (12) 

This implies that the core tensor, F can be calculated from the product of the original 

tensor,   and the transpose of the approximate loading matrices from U and V.  

        
               (13) 

The slices of F contain the basis vectors for the different classes of digits. The F slices are 

decomposed using SVD and then the basis matrices B is used in the least squares 

equation. 

  ( ( ) ) ( )         (14) 

The least squares problem is shown below: 

min‖     ‖        (15) 

where dp =   
  ,  low dimensional representation of the test image d 

B is the basis matrix from the SVD of F and        

Analysis of the Enron Email corpus was also done based on tensor factorization 

(Bader et al 2007). Discussions over time were tracked using PARAFAC and 

nonnegative tensor factorization. The tensor that was decomposed was of the form 

       where m represents the terms, n represents author and p represents time 

which was in months for one analysis and days for another analysis. The data used was 

made up of 53,733 messages sent over a period of 12 months in 2001. 

The nonnegative tensor factorization method preserves natural nonnegativity and 

prevents subtractive basis vector interactions which sometimes occur in the Principal 
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Component Analysis (PCA). The algorithms used were written in MATLAB using the 

Tensor Toolbox. With the PARAFAC, a 25 component decomposition was carried out. 

One iteration took about 22.5s and in all 27 iterations were required to satisfy a tolerance 

of 10
-4

 in change of fit for the term-author-month array. For the term-author-day array, 

the rank of the decomposition was 25 with 13 iterations satisfying a tolerance of 10
-4

. 

Under the NTF, most of the runs required less than 50 iterations in the monthly data 

whilst the daily data required about 17 iterations.  

The two methods were able to identify the discussions and how each triad, {Aj, 

Bj, Cj} varied with time, either in days or months. However, the NTF was able to identify 

distinctly eight topics as opposed to the six topics identified by the PARAFAC for the 

term-author-month dataset. The determination of an optimal tensor rank may require 

more research in the future. 

Several tools exist in MATLAB that can be used for manipulation and analysis of 

tensors. These are usually in the form of external toolboxes which have algorithms that 

can make multilinear analysis possible. They are the N-way Toolbox, Tensor Toolbox, 

PLS Toolbox and CuBatch. The N-way Toolbox can perform analysis with orthogonality 

and nonnegativity constraints. CuBatch is built on the N-way Toolbox and it provides an 

interface which can give results in the form of graphs making the analysis more intuitive 

(Gourvenec et al 2005).  

Tensor analysis can be a very important tool in pavement distress analysis and 

other infrastructure systems. The examples of applications mentioned in the literature can 

be modified and used in infrastructure data analysis. Figure 6 shows a possible 
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application in infrastructure management which involves the collection and interpretation 

of large amounts of data. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:  Application of Tensor in Infrastructure Management 

 

 

The array in figure 6 can be used in studying the general behavior of an infrastructure 

system in which the performance indexes of crucial parts of the infrastructure are 

measured at various locations over years. This type of data is inherently multidimensional 

and so a tensor-based analysis will be able to capture and model the behavior of the 

system accurately. 

Year 

Performance Index 

Location 



 22 

 Chapter 3

TENSOR ANALYSIS 

3.1 Definition 

A tensor is a multidimensional array. In other words, tensors refer to N-th order 

arrays. This is not to be confused with tensors in physics and engineering; typical 

examples of such being stress tensors (Kolda et al 2009). Tensors can also be considered 

as a generalization of vectors, scalars and matrices. A zero-order tensor refers to a scalar, 

a first-order tensor is a vector and a second-order tensor is a matrix. Tensor analysis 

methods are increasingly being used in various fields since data that may arise from 

observations may be inherently multidimensional. As such, a multidimensional analysis 

will be the most appropriate means of interpreting the data. The techniques used in tensor 

analysis are able to capture the variation of the complex structure of the data that would 

have been lost in a two-way analysis (Mørup 2011). 

3.2 General Notation 

The order of a tensor refers to its number of dimensions or modes. This definition 

forms the basis for the idea that matrices, vectors and scalars are all forms of tensors. A 

scalar is represented by a lowercase letter. Vectors are represented by boldface lowercase 

letters. Matrices are represented by boldface capital letters whilst higher-order tensors, 
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referring to tensors of dimensions greater than 2, are represented by boldface Euler script 

letters (Kolda et al 2009). Higher-order tensors may also be denoted by boldface 

underlined capital letters (Kiers 2000). Mathematically, 

     represents a Scalar; 

     represents a Vector; 

Y        represents a Matrix; and 

               represents a n-dimensional tensor. 

3.3 Indices 

In a typical third-order tensor of modes i or 1, j or 2 and mode 3 or k, an element 

within the tensor is denoted as aijk which defines the exact position of the element in the 

tensor and is analogous to matrix and vector representations of elements; aij for matrix of 

modes i and j, and ai for vector of mode i.  

 

3.4 Subarrays of Tensors 

Slices and fibers are subarrays of tensors which require understanding in tensor 

analysis. The fundamental concepts of slices and fibers are used in computations 

involving tensors. The subarrays are obtained when one or more modes are fixed in a 

tensor.  

Fibers refer to 1-dimensional fragments of tensors obtained by fixing every index in 

the tensor except one. In a third-order tensor, this implies fixing two modes and allowing 
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only one mode to vary. They are the higher-order analogues columns and rows in 

matrices. A column fiber is obtained by fixing modes j and k. A row fiber is obtained by 

fixing modes i and k, and a tube is obtained by fixing modes i and j. 

 Slices are 2-dimensional fragments of tensors obtained by fixing all indices except 

two. In a 3D tensor, a frontal slice is obtained when the k-th mode is fixed and the i-th 

and j-th mode are allowed to vary. A lateral slice is obtained by fixing the j-th mode and 

a horizontal slice is obtained by fixing mode i.  

The tensor fibers are illustrated in figure 7. 

 

 

Figure 7: 3rd-order tensor fibers  

 

 

 

 

 

 

Column fibers: x:jk                          Row fibers: xi:k                                    Tubes: xij: 
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Tensor Slices are also shown in figure 8. 

 

 

Figure 8: 3rd-order tensor slices  

 

3.5 Matricization & Vectorization of Tensors 

Matricization of a tensor is the process by which a tensor is converted into a matrix 

for visualization and computations. Also known as unfolding or flattening, it is a mode-

specific operation in which the n-mode matricization of a tensor         means that 

all n-mode fibers of   are aligned as columns of the matrix  ( ) in a forward cyclic 

manner (Savas et al 2006).  

Mathematically, 

       ( )         
( )     (   )              (16) 

       ( )         
( )     (   )               (17) 

       ( )         
( )     (   )                (18) 

Horizontal Slices: xi::                     Lateral Slices: x:j:               Frontal Slices: x::k 
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This is further illustrated in figure 9. 

 

 

 

 

 

 

Figure 9: Illustration of matricization using a 3D tensor  

 

 

The 3D tensor above has elements A, B, C, D in the first frontal slice and elements e, f, g, 

h are in the second frontal slice. 

Mode-1 matricization= ( )  *
 
 
 
 
 
 
 
  
 
 
+ 

Mode-2 matricization= ( )  *
 
 
 
 
 
 
 
  
 
 
+ 

Mode-3 matricization= ( )  [
 
 
 
 
 
 
 
 
 
 
 
] 

3.6 Vectorization of Tensors 

A tensor can also be converted into a vector. In matrices, vectorization implies 

arranging successive columns of a matrix below each other in a single vector. A similar 

process exists in tensors whereby the matricized version of the tensor is vectorized. For 

the 3D tensor in figure 9, the vectorized version, a=[

 
 
 
 

]. 

A B 

C D 

e f 

g h 
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3.7 Special Tensors 

Cubical tensors refer to tensors with modes of identical size. Mathematically, a 

tensor   is cubical if             . Symmetric tensors are tensors that have the same 

elements regardless of the permutation of its indices which means that           

                   . 

A partially symmetric tensor is symmetric in two or more modes. Considering, a 

typical 3D tensor which is partially symmetric in its frontal slices,      
 . 

A diagonal tensor is one with nonzero elements along its diagonal which means that all 

other elements are zero. Mathematically,             is diagonal if              if 

           

A unit superdiagonal tensor is a tensor with ones as the only nonzero elements in its 

leading diagonal. It should not be treated as an identity since it does not perform the same 

function as an identity matrix. 

3.8 Basic Operations in Tensors 

3.8.1 Addition of Tensors 

Similar to matrices, tensors of identical dimensions can be added. Addition of two 

tensors                      can be expressed in elementwise form as  

                             (19) 

 It involves addition of corresponding elements in the tensors. 
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3.8.2 Multiplication of Tensors 

Multiplication in tensors can be done in several ways. A tensor can be multiplied 

by another tensor, matrix, scalar or a vector.  

 

Scalar Multiplication 

Scalar multiplication of a tensor is such that every individual element of the tensor is 

multiplied by the scalar shown below as: 

                           (20) 

 

N-mode multiplication 

The process of multiplying a tensor by a matrix or vector is carried out in a specific 

mode. Mode-n multiplication of a tensor             by a matrix         denoted 

by      is of size        (   )     (   )     In order to make understanding of 

the n-mode multiplication easier, it is usually seen as a multiplication of the matricized 

form of the tensor in the specified mode being premultiplied by the matrix. The 

mathematical representation is            

 

Inner product 

The inner product of two tensors                       is denoted by  

〈   〉  ∑                  .       (21) 

It involves the multiplication of corresponding elements and the subsequent summing of 

the products to produce a scalar. 
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This implies that the Frobenius norm of a tensor will be: 

‖ ‖  √〈   〉   (22) 

 

Kronecker Product 

The Kronecker Product for                   denoted by  

          ;  

    [

          
   
         

] 

 

Khatri-Rao Product 

This is also known as the columnwise Kronecker product. The two matrices must have 

the same number of columns before this multiplication is possible. For 

                    

         =(             )   (23) 

 

 

Hadamard Product 

This is also known as the elementwise product and it can be performed with matrices of 

the same order. For matrices A     and B      , the Hadamard product is 

A*B=[

             
   

             

]. 
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The following are some properties based on the various products discussed (Kolda et al 

2009): 

(   )(   )          (24) 

(   )              (25) 

(   )  ((   )  (   )) (   )      (26) 

A     (   )     (   )    (27) 

where A, B, C and D are matrices and    represents the Moore-Penrose Pseudoinverse. 

3.9 Tensor Decomposition 

Tensors are decomposed for analysis similar to matrix decomposition. The Singular 

Value Decomposition (SVD) used in second-order tensors (matrices) is extended to n-th 

order arrays. N-th order variations of the matrix SVD results in the Higher-order Singular 

Value Decomposition (HOSVD) as well as the two main tensor decomposition methods; 

Canonical Decomposition Parallel Factorization (CANDECOMP/PARAFAC/CP) and 

Tucker Decomposition.  

The SVD of a matrix is given by         written as: 

  ∑   ( 
( )   ( )) 

          (28) 

where u
(i)

 and v
(i)

 represent the ith columns of U, left singular matrix and V, right singular 

matrix respectively,    represents the numbers on the diagonal also known as the singular 

values. R represents the rank of the matrix. 
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3.9.1 Higher-Order Singular Value Decomposition (HOSVD) 

In tensors, application of the SVD principles leads to a method known as the 

HOSVD. It is interesting to note that the SVD explained above can be written in a tensor-

like mode-1 and mode-2 multiplication. For a matrix A, with U and V orthogonal 

components, it can be written as 

                 (29) 

where     and    represent mode-1 multiplication and mode-2 multiplication 

respectively. 

  For a 3
rd

-order tensor          , its higher-order decomposition can be written as: 

                   (30) 

where U, V and W are the orthogonal singular vectors and    is the array with the 

singular values. Variations of the above representation results in the CP and Tucker 

decompositions. The elements of   are ordered such that the most of the energy is 

concentrated in the vicinity of (1, 1, 1) (Savas et al 2006). 

3.9.2 Tucker Decomposition 

In the Tucker Decomposition, the tensor          is decomposed in a similar 

manner as in the SVD. However, there are no orthogonality constraints on the resulting 

matrices and so the solution may have matrices which are not orthogonal. The core 

matrix  , in this case, accounts for all the interactions between components of a particular 

mode. The mathematical representation of the Tucker model is below: 

       ∑         
 

      
 
   

       (31) 
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where   is the core array and      and   are loading matrices. 

The model decomposes the tensor into mode specific loading matrices in addition to a 

core array. See figure 10 below. 

 

  

 

 

 

 

 

 

 

 

 

Figure 10: The Tucker Model  

 

 

Estimating the Tucker Model 

This can be done by updating elements of each mode using an Alternating Least Squares 

(ALS) approach. The loading matrices for the model above can be calculated as: 

   ( )( ( )((   ) )        (32) 

   ( )( ( )(   ) 
 
)       (33) 

   ( )( ( )(   ) 
 
)       (34) 

≈ 
𝝌 

𝑩 
𝑮 

𝑨 

𝑪 
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The core array is determined by the convergence of this function 

      
    

    
               (35) 

3.9.3 The CP Model 

This is another variation of the HOSVD. In this decomposition, the core array is a 

cubical array and has nonzero elements in its leading diagonal. The CP model can be 

written as: 

                
      

      
       (36) 

where    is the core tensor and A, B and C are the loading matrices. In some 

representations, the core tensor is absorbed into the loading matrices. 

It can also be expressed as a finite sum of rank-1 components  

       ∑   
 

    
    

        (37) 

The illustration for the CP model is in figure 11. 

 

 

  

  

 

 

 

Figure 11: The CP Model 
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3.10 Rank & Multilinear Rank of a Tensor 

 The rank of a matrix refers to the number of linearly independent rows and columns. 

There is a well-defined approach to determine the rank of a matrix but in tensors the rank 

is determined by fitting various CP models. The model which gives the best fit will then 

provide the rank of the tensor. 

The rank of a tensor is the minimal sum of rank one components R such that: 

  ∑         
 
           (38) 

where R is the rank of the tensor. 

 In other words, the rank of a tensor refers to the minimum number of CP components 

that sum up to the tensor. The definition of a matrix rank implies that the rank cannot be 

greater than the number of its rows and columns.  However, the rank of a tensor can be 

greater than min (I, J, K). 

The multilinear rank of a tensor arises when the Tucker model is used. For the Tucker 

model shown in figure 10, the multilinear rank is given in mode-1, mode-2 and mode-3 

as L, M and N respectively. 

3.11 Determining the Number of Components in a Model 

 The number of components in both the CP and Tucker models is very important since 

the features depend on these components. As a result, the right interpretation of a 

phenomenon is only possible if the right number of components is used in the model. 

Approaches used in estimating the order of models are the Core Consistency Diagnostic 

(CORCONDIAG) and the Automatic Relevance Determination (ARD) methods.  
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 The CORCONDIAG is used for estimating number of components in the CP model. 

A core consistency diagnostic value above 90% indicates a very trilinear model whilst a 

value near zero indicates an invalid model. It is done by calculating the Tucker core array 

using the components obtained from the CP model by using both the CP and Tucker core 

arrays in the expressions below: 

        
      

      
 

      (39) 

CORCONDIAG=    (  
‖   ‖ 

 

‖ ‖ 
 )     (40) 

where             are components of the CP model, I=diagonal CP core array, and  = 

corresponding Tucker core array obtained from the CP model loadings.  

 In the ARD, there is no need to evaluate potential model orders. The priors are given 

hyperparameters that are able to give the variation of each component. Through 

optimization, components with values falling below the threshold are removed. 

3.12 Software 

 There are several software packages available for tensor decompositions. There is the 

TensorToolbox that can be downloaded as an add-on for use in Matlab. Other external 

toolboxes that can be used in Matlab are the N-way Toolbox and the PLS_Toolbox which 

is a commercial package. The Multilinear Engine is a FORTRAN code used for 

computing models. In C++, the HUJI Tensor Library (HTL) can be used. 
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3.13 Applications 

 Originally applied in Psychometrics in the 1970s by Carroll, Chang and Harshman, 

tensor decompositions are now being used across a wide variety of fields. An application 

area in behavioral science addresses the question of „which group of subjects behaves 

differently on which variables under which conditions?‟ This is a multidimensional 

problem and as such tensor decompositions are used since they are able to extract 

loadings that span the dynamics of each mode. 

 In chemometrics, tensors were first used by Appleof and Davidson in 1981. The CP 

model is used in fluorescence spectroscopy which is based on the Beer-Lambert‟s law 

that states that there is a linear relationship between the absorbance of light and the 

concentration of a compound. As such tensor decompositions make it possible to analyze 

the phenomenon as shown: 

                            ∑   
             

           
                  

    (41) 

In bioinformatics, HOSVD is used in interpreting cellular states and biological 

processes by explaining different combinations of patterns. Also the Tucker model was 

used in analyzing the metabolic response of rats to toxins. The NMR spectra of the rat 

urine samples were used in the analysis represented in tensor form as: 

                     ∑         
      

      
          

           (42) 

In computer vision, tensor factorizations have been used extensively in the facial 

recognition software known as TensorFaces. Facial images taken from different subjects 

under different illumination conditions and expressions are used as the dataset and it has 
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been found out that, TensorFaces are very accurate when compared with other pattern 

recognition techniques. 

Tensor decompositions have also been applied in web mining. The Enron email 

dataset when analyzed revealed the patterns of communication between various officers 

and the periods in which communication took place in a more interpretable manner using 

tensors. Tensor decompositions were also used in the Netflix Collaborative Filtering 

competition for predicting users‟ ratings of movies.  

Tensor factorization is a powerful tool for data analysis. This is evident in its use 

in several application areas. However, no work has been done on tensor application in 

road pavement health monitoring. 
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 Chapter 4

DATA ANALYSIS & RESULTS 

4.1 Source of Data 

The pavement images used for the analysis were part of the dataset from Fereidoon 

Moghadas Nejad and Hamzeh Zakeri (A comparison of multi-resolution methods for 

detection and isolation of pavement distress, Amirkabir University of Technology, 

Tehran, Iran, 2010). The images were acquired using a Pavement Image Acquisition 

System (PIAS) shown in the figure 12. It is made up of three lighting sources, a Global 

Positioning System (GPS), camera, frame grabber, monitoring system, computer and a 

power generator.  

 

 

Figure 12: Pavement Image Acquisition System, PIAS (Nejad et al 2011) 
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The GPS mounted on the PIAS setup is advantageous because it makes it possible to 

indicate the exact location of the cracks. 

 

4.2 Description 

26 images from the larger dataset were used in the analysis.  They were      

     color images. The entire dataset of 1830 images was divided into two main groups. 

The first group of images had distresses and the second group of images was without 

distresses. Under the first group, there were longitudinal, transverse, diagonal, block, 

alligator and pothole distresses. However, only longitudinal and transverse cracks were 

used for this study. Figure 13 shows samples of the images used. 

 

                                        

Figure 13: Original longitudinal and transverse cracks (Nejad et al 2011) 
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4.3 Analysis 

The analysis was carried out in MATLAB using the Tensor Toolbox (Brett W. Bader, 

Tamara G. Kolda and others, MATLAB Tensor Toolbox Version 2.5, Available online, 

January 2012. URL: http://www.sandia.gov/~tgkolda/TensorToolbox/). This is a free add-

on downloaded from the URL above. The four major steps involved in the analysis are 

listed and explained further below: 

1. Preprocessing and formation of training tensors; 

2. Preprocessing of test data; 

3. Higher Order Singular Value Decomposition of Training Tensors; and 

4. Classification 

 

1. Preprocessing and Formation of training tensors 

This is the first step which involves preprocessing of the training dataset after 

which tensors are formed. First, the images are converted from color (RGB) into 

grayscale format. The next step involves resizing the images into         pixel 

size images. The images were originally of size          . Finally, the images 

are separated into two groups; transverse and longitudinal cracks after which the 

images in each class or group are stacked one after the other to form the training 

tensor sets. Note that in order for the Tensor Toolbox algorithms to function, the 

3D arrays obtained after this step must be converted into tensor format in the 

MATLAB environment. See figure 15 for a diagram of the training tensors. 
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Figure 14 shows the flow of the steps involved in the preprocessing of the images 

before classification. 

 

 

 

Figure 14: Steps in preprocessing of images for classification 

 

 

 

 

Figure 15: Longitudinal and Transverse crack training sets 
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2. Preprocessing of Test Data  

The images to be tested also go through the previous preprocessing steps. However, 

training tensor sets are not formed for the test images. The preprocessing of test data 

involves conversion to grayscale and resizing of the test images to the same size as 

the images in the training sets, in this case        . 

 

3. Higher Order Singular Value Decomposition (HOSVD) of training tensor  

Each training tensor is decomposed using HOSVD. After the decomposition, the 

outer product of the core array and the loading matrices in modes 1 and 2 are 

computed. The resulting tensor is used as the basis of classification. Mathematically, 

the HOSVD is expressed as: 

                   (43) 

where              , the training tensor 

  is the core array 

K=number of images in training set 

          are the loading matrices in modes 1, 2 and 3 respectively. 

Each matrix in Ak forms the basis for classification and they can be expressed as: 

  
 

 =  (:,:,k)             (44) 

where k represents number of images in training set and c is the image class.  

For example, the frontal slices of   
            

 are shown in figure 16. 
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Figure 16: Frontal slices from HOSVD of longitudinal tensor of 3 images 

 

 

The individual images that form the slices of   
            

 and   
          form the 

basis for the classification. It can be seen from the illustration above that each slice 

contains several longitudinal cracks which belonged to the original longitudinal crack 

training set. 

 

4. Classification 

The classification of the pavement cracks is based on the function below: 

∑ ‖   ( )  
 ‖ 

                                                                                         (45) 

where V is the normalized test image; 

  
  is the slice of the outer product of core tensor and loading matrices in modes 1 and 2;  

c is the training set class (transverse and longitudinal); 

k is the number of images in training set; and 

g(k)=V.   
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As a result, V will belong to the class c, for which the above function gives a 

smaller value since that will suggest a higher degree of similarity between V and the 

images in the training class c. 

4.4 Results 

Using longitudinal and transverse training sets of 10 images each, all the images 

were classified correctly. However, the level of accuracy of the algorithm changed with 

changes in the number of images in the training sets. It is evident that the accuracy does 

not depend on only the number of images in the training set but also the variability within 

and across classes. In fact, the accuracy of this classification method depends more on the 

variations exhibited by images within the same classes than on the number of images. See 

Appendix A. 

A closer look at the first slices of the core arrays of the training sets with 2, 3, 5, 7, 

9 and 10 images shows the variation captured by the core tensors and hence its ability to 

correctly classify test images. See figures 17 and 18.    

 

Figure 17: First slices of the core arrays from HOSVD of longitudinal crack tensors 
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Figure 18: First Slices of the core arrays from HOSVD of transverse crack tensors 

 

It can be observed from the figure above that the slice from the core arrays consisting of 

only two images show the two cracks that form the tensor and therefore its limited 

classification capability. The core tensors obtained from the training sets with 10 images 

contain and show various types of cracks within the same class and as such are more 

likely to classify test images correctly. See graph in figure 19. 

 

 
Figure 19: Graph of number of images in training tensors against level of accuracy 
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The general trend was that the level of accuracy increased with the number of 

images in the training set. The training sets consisting of 3 and 5 images both had the 

same level of accuracy which means the accuracy of the method is not solely dependent 

on the number of training images but also the variation of the images within the same 

class. A level of accuracy of 50% which was the lowest value was obtained when only 

two images were used in the training set. Conversely, a level of accuracy of 100% was 

obtained with 10 images in both longitudinal and transverse training sets. 

The processing times for the algorithm was also affected by the size of the images 

used. For images of size         which were used for the most part of the analysis, the 

processing time was less than a second. Ten images were used in all the training sets for 

the analysis of processing times and image sizes. Generally, the processing times increase 

with increase in the size of the image. This is illustrated in the figure 20 below. 

 

 

Figure 20: Graph of processing times versus size of images 
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For the same image size, the processing times do not differ significantly with 

increase in the number of images per training size. However, this is not the case when 

considering larger image sizes. See figure 21 for an illustration. Hence, for larger image 

sizes, the processing times increase significantly with an increase in the size of the 

training set 

 

 

Figure 21: Comparison of processing times for various image sizes and training sets 
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 Chapter 5

CONCLUSION & RECOMMENDATIONS 

5.1 General 

In summary, pavement crack classification based on tensor analysis is a useful tool 

that can be employed in the digital image processing systems of DOTs. Due to its 

relatively easy and intuitive manner of training, DOTs can train the algorithm to classify 

the road defects based on their standards and definitions. 

5.2 Conclusion 

Several runs of the algorithm proved that a higher level of accuracy was achieved 

when the training tensors were built with larger datasets, which means more images 

within the same class. However, it is required that the larger datasets exhibit variation 

within and across the various classes in order to ensure accurate results. A few of the 

existing crack classification methods were reviewed and compared with the tensor based 

method. The tensor decomposition methods of classifying cracks were much easier to 

understand and implement as compared to other methods which required much more 

complex input and were difficult to understand the underlying concepts of the approach.  

Generally, the algorithm was very accurate in classifying the cracks. With a training 

set of only three images, an 81.81% level of accuracy was obtained which is relatively 
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high considering the number of images in the training tensor. 100% accuracy was 

recorded with ten images which showed variations of longitudinal and transverse cracks.  

Furthermore, the classification was done at appreciable speeds with image sizes of about 

1200 X 1200 which is very promising since the algorithm will be implemented on higher 

speed computers with images of higher resolution. The approach can be used for 

automated pavement crack classification. 

5.3 Recommendations 

 The algorithm must be tested on a larger dataset of crack images. This will mean 

having larger training tensors for analysis. 

 It will be very beneficial to extend the crack classification analysis to consider 

other forms of pavement defects such as alligator cracking and box cracking. The 

nature of the tensor analysis is such that it may be very useful for classifying these 

types of cracks whose classification has been very problematic in the past.  

 The algorithm must be tested on quad-core computers and other processors with 

higher capabilities in order to reduce processing times making the classification 

much more efficient. 

 It is also recommended that parallel processing be employed in the future for 

classification based on tensor analysis in order to speed up the entire process. 

 Further research focuses on utilizing tensor analysis in the health monitoring of 

other civil infrastructure systems since these involve large datasets which are 

usually multidimensional. 
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Appendix A 

CLASSIFICATION RESULTS 

 

 

 

 

 

Image Longitudinal set Transverse  set     

1l 1.0671 1.0657 *   

2l 1.0677 1.0687   

2 images in each training 

set 

3l 1.0725 1.0809   longitudinal set: 5l,7l 

4l 1.0825 1.0756 * transverse set: 4t, 11t 

5l 1.0344 1.0678   *-wrong classification 

6l 1.0803 1.0859     

7l 1.0549 1.0848   Accuracy=50% 

8l 1.0771 1.0687 *   

9l 1.0671 1.0657 *   

10l 1.0651 1.0645 *   

13l 1.0725 1.0809     

1t 1.0691 1.0726 *   

2t 1.0762 1.0689     

3t 1.0761 1.0799 *   

4t 1.0694 1.0445     

5t 1.075 1.0803 *   

6t 1.0809 1.0751     

7t 1.0842 1.0845 *   

8t 1.0761 1.0799 *   

9t 1.0691 1.0726 *   

10t 1.0762 1.0689     

11t 1.0779 1.04     
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Image Longitudinal set Transverse set     

1l 2.0424 2.0665     

2l 2.0646 2.067   

3 images in each training 

set 

3l 2.0731 2.0788   longitudinal set: 5l,4l,1l 

4l 2.0496 2.0777   transverse set: 1t, 6t, 2t 

5l 2.0473 2.0632   *-wrong classification 

6l 2.0821 2.0816 *   

7l 2.0792 2.0812   Accuracy=81.81% 

8l 2.0725 2.0668 *   

9l 2.0424 2.0665     

10l 2.0612 2.064     

13l 2.0731 2.0788     

1t 2.0671 2.0544     

2t 2.0708 2.0468     

3t 2.0824 2.072     

4t 2.0637 2.0661 *   

5t 2.0743 2.0749 *   

6t 2.0783 2.0501     

7t 2.0782 2.0857     

8t 2.0824 2.072     

9t 2.0671 2.0544     

10t 2.0708 2.0468     

11t 2.0694 2.0666     
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Image Longitudinal set Transverse set     

1l 4.0459 4.065     

2l 4.0611 4.0635   5 images in each training set 

3l 4.06833 4.0777   

longitudinal set: 1l, 4l, 5l, 6l, 

10l 

4l 4.0585 4.0769   

transverse set: 11t, 10t, 8t, 6t, 

4t 

5l 4.049 4.062   *-wrong classification 

6l 4.0608 4.08     

7l 4.0734 4.0791   Accuracy=81.81% 

8l 4.0712 4.0639 *   

9l 4.0459 4.065     

10l 4.0515 4.0621     

13l 4.0683 4.0777     

1t 4.0624 4.0692 *   

2t 4.0684 4.0509     

3t 4.0758 4.056     

4t 4.0605 4.0547 *   

5t 4.0691 4.0728     

6t 4.0754 4.0532     

7t 4.0752 4.052     

8t 4.0758 4.056     

9t 4.0624 4.0692 *   

10t 4.0684 4.0509     

11t 4.0676 4.0519     
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Image Longitudinal set Transverse set     

1l 6.0476 6.0591     

2l 6.06 6.0596 * 7 images in each training set 

3l 6.0564 6.0705   

longitudinal set: 1l, 3l, 4l, 5l,  

6l, 10l, 8l 

4l 6.0609 6.073   

transverse set: 1t, 2t, 6t, 8t, 9t,  

11t, 7t 

5l 6.0496 6.0585   *-wrong classification 

6l 6.0634 6.0727     

7l 6.0713 6.0727   Accuracy=90.91% 

8l 6.0625 6.0657     

9l 6.0476 6.0591     

10l 6.0517 6.0606     

13l 6.0564 6.0705     

1t 6.0609 6.0478     

2t 6.0664 6.0553     

3t 6.0735 6.0538     

4t 6.0583 6.0583     

5t 6.0682 6.0669 *   

6t 6.0738 6.0596     

7t 6.0745 6.0671     

8t 6.0735 6.0538     

9t 6.0609 6.0478     

10t 6.0664 6.0553     

11t 6.0665 6.0558     
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Image Longitudinal set Transverse set     

1l 8.0417 8.0585     

2l 8.051 8.0608   9 images in each training set 

3l 8.0565 8.0697   

longitudinal set: 13l, 10l, 9l, 8l,  

7l, 6l, 4l, 11l, 12l 

4l 8.062 8.0728   

transverse set: 11t, 10t, 9t, 8t, 7t, 

 6t, 4t, 1t, 5t 

5l 8.0589 8.0587 * *-wrong classification 

6l 8.064 8.0724     

7l 8.0635 8.0729   Accuracy=95.45% 

8l 8.0654 8.067     

9l 8.0417 8.0585     

10l 8.0531 8.0612     

13l 8.0565 8.0697     

1t 8.0607 8.0488     

2t 8.0676 8.0584     

3t 8.0727 8.0585     

4t 8.0589 8.0512     

5t 8.0684 8.0579     

6t 8.0749 8.0623     

7t 8.0742 8.0667     

8t 8.0727 8.0585     

9t 8.0607 8.0488     

10t 8.0676 8.0584     

11t 8.0666 8.0598     
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Image Longitudinal set Transverse set     

1l 9.043 9.0601     

2l 9.0516 9.0608   

10 images in each training 

set 

3l 9.0572 9.0701   longitudinal set:  

4l 9.0625 9.0746   transverse set:  

5l 9.0515 9.0594   *-wrong classification 

6l 9.0648 9.0721     

7l 9.0641 9.0725   Accuracy=100% 

8l 9.0623 9.0678     

9l 9.043 9.0601     

10l 9.0525 9.0627     

13l 9.0572 9.0701     

1t 9.0601 9.0503     

2t 9.0663 9.0596     

3t 9.0718 9.0517     

4t 9.0582 9.0522     

5t 9.0677 9.0572     

6t 9.0734 9.0623     

7t 9.0742 9.0692     

8t 9.0718 9.0517     

9t 9.0601 9.0503     

10t 9.0663 9.0596     

11t 9.0658 9.0611     
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