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A SIMPLE PROOF OF CONVERGENCE FOR AN EDGE ELEMENT DISCRETIZATION
OF MAXWELL’S EQUATIONS

PETER MONK

Abstract. The time harmonic Maxwell’s equations for a lossless medium are neither elliptic or definite. Hence the analysis
of numerical schemes for these equations presents some unusual difficulties. In this paper we give a simple proof, based on the
use of duality, for the convergence of edge finite element methods applied to the cavity problem for Maxwell’s equations. The
cavity is assumed to be a general Lipschitz polyhedron, and the mesh is assumed to be regular but not quasi-uniform.

1. Introduction. In this paper we are going to give a simple proof of convergence of edge finite element
approximations to the cavity problem for Maxwell’s equations. We start by describing this boundary value
problem. Let Ω be a bounded Lipschitz smooth polyhedron in R3 with boundary Γ = ∂Ω and unit outward
normal ν. We suppose that the boundary Γ consists of a single connected component and that Ω is connected
and simply connected. In fact these topological assumptions are not necessary, but we introduce them to
shorten the proofs. The results here can be modified to allow more boundary components and non simply
connected domains (see for example [2], [6]).

We wish to approximate the electric field E = E(x) that satisfies Maxwell’s equations

∇× (∇×E)− k2E = F in Ω,(1.1a)
ν ×E = 0 on Γ.(1.1b)

Here F is a given function related to the imposed current sources and the parameter k is the wave-number
assumed to be real and positive. Equation (1.1b) specifies a standard perfect conducting boundary condition
on the boundary of Ω.

The problem can be posed variationally using the space

H0(curl; Ω) =
{
u ∈

(
L2(Ω)

)3 | ∇ × u ∈ (L2(Ω)
)3
, ν × u = 0 on Γ

}
.

In particular suppose F ∈ H0(curl; Ω)′ were H0(curl; Ω)′ is the dual space of H0(curl; Ω) with respect to
the

(
L2(Ω)

)3 inner product. Then following the usual Galerkin strategy we arrive at the problem of finding
E ∈ H0(curl; Ω) such that∫

Ω

∇×E · ∇ × φ− k2E · φ dV =
∫
Ω

F · φ dV, ∀φ ∈ H0(curl; Ω).(1.2)

Because k is real, we can assume that any solution of this problem is real, so all spaces and functions in this
paper are real.

Using the Helmholtz decomposition [17] which states that

H0(curl; Ω) = X̃ ⊕∇H1
0 (Ω)(1.3)

where

X̃ =
{
u ∈ H0(curl; Ω) |

∫
Ω

u · ∇p dV = 0, ∀p ∈ H1
0 (Ω)

}
problem (1.2) can be reduced to a problem on X̃. More precisely, let E = u+∇p with u ∈ X̃ and p ∈ H1

0 (Ω).
Choosing φ = ∇ξ in (1.2) shows that p satisfies

−k2

∫
Ω

∇p · ∇ξ dV =
∫

Ω

F · ∇ξ dV

for all ξ ∈ H1
0 (Ω). This uniquely determines p as the solution of a Poisson problem. Once p is determined,

we choose φ ∈ X̃ in (1.2) and find that u ∈ X̃ satisfies∫
Ω

∇× u · ∇ × φ− k2u · φ dV =
∫
Ω

F · φ dV, ∀φ ∈ X̃.(1.4)
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The compact embedding of X̃ into (L2(Ω))3 [25, 9] and the Fredholm alternative can then be used to show
that for any F ∈ H0(curl; Ω)′, problem (1.2) has a unique solution E ∈ H0(curl; Ω) depending continuously
on the data F provided k is not an interior Maxwell eigenvalue for Ω. For the remainder of the paper we
assume k > 0 is not such an eigenvalue.

The problem of approximatingE by finite elements then reduces to constructing a finite element subspace
Xh ⊂ H0(curl; Ω) and computing Eh ∈ Xh such that∫

Ω

∇×Eh · ∇ × φh − k2Eh · φh dV =
∫
Ω

F · φh dV, ∀φh ∈ Xh.(1.5)

The obvious choice of using vector continuous piecewise linear elements is dangerous since, if the domain
has re-entrant corners, it is possible to compute finite element solutions that converge to a field that is not
a solution of Maxwell’s equations [10]. For this simple model problem modifications to the bilinear form
to restore convergence are given in [11, 12], but further modifications are needed to handle, for example,
discontinuous coefficients.

We prefer to construct Xh using the edge finite elements of Nédélec [20]. These avoid the problem
of spurious solutions at the cost of increased complexity. Furthermore these elements can be applied to
problems involving discontinuous coefficients (modeling different media) without modification.

Our goal in this paper is to derive estimates for E −Eh in the H0(curl; Ω) norm given by

‖E −Eh‖curl =
√
‖E −Eh‖2 + ‖∇ × (E −Eh)‖2,

where ‖ · ‖ is the standard
(
L2(Ω)

)3 norm. Otherwise, for a Hilbert spaces X , we denote the norm by ‖ · ‖X .
There have been three previous results in this direction. In [19], I proved convergence using the ideas

of Schatz [22] concerning the compact perturbation of coercive bilinear forms. Due to limitations on the
understanding of edge elements and the regularity theory for Maxwell’s equations at that time, I had to
assume that Ω was convex, and the mesh was quasi-uniform.

In [13], Demkowicz and I applied the theory of collectively compact operators to prove convergence
on general Lipschitz polyhedra. We assumed quasi-uniformity of the mesh to provide a certain inverse
inequality (which is actually not necessary). Moreover, using the results of [6] our proof extends to include
rather general spatially dependent coefficients in the equations (for example piecewise constant coefficients).

Perhaps the most general result to date is due to Boffi and Gastaldi [5]. They use the general convergence
theory of Rappaz [15], together with their estimates of Maxwell eigenvalue convergence, to prove convergence
on general regular meshes.

Both the work of Boffi and Gastaldi and my own with Demkowicz can be criticized for being too
complicated. The goal here is to give a simple proof of convergence not relying on any abstract operator
theory.

The main tool we shall use is the improved understanding of edge element interpolation theory and reg-
ularity results provided by [2]. We also use results from [3] modified appropriately for a Lipschitz polyhedral
domain. Our paper is motivated by the work of Gopalakrishnan and Pasciak [18] who use similar estimates
in their analysis of Schwarz methods for Maxwell’s equations.

The layout of the paper is as follows. We start by summarizing some of the properties of edge elements.
We then derive a weak Garding inequality for the error. After analyzing discrete divergence free vector fields,
we use duality theory to prove the desired estimate. The proof is an improved, and simplified, version of the
one in [19], but the techniques and approach are very much from [18].

2. Finite Elements and Interpolation. Let τh, h > 0, be a regular family of tetrahedral finite
element meshes on Ω [7]. We shall now briefly summarize the construction of the edge and face finite
elements of Nédélec [20], and some of their relevant properties.

Let Pl, l > 0 integer, denote the set of polynomials of total degree at most l in x1, x2 and x3. We
shall also use the spaces Pl(e) and Pl(f) of polynomials in arc length on an edge e, or surface coordinates
on a face f , more precisely Pl(f) = {q | q = p|f , p ∈ Pl}. In addition let P̃l denote the set of homogeneous
polynomials of degree exactly l in x1, x2 and x3. We then define

Sl =
{
p ∈ (P̃l)3 | x · p = 0

}
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and

Rl = (Pl−1)3 ⊕ Sl.

With these definitions, the finite element space we shall use is the standard edge element space [20] given by

Xh = {uh ∈ H0(curl; Ω) | uh|K ∈ Rl, ∀K ∈ τh} .

This space has the following unisolvent set of degrees of freedom, defined for sufficiently smooth vector
functions u on a tetrahedron K (we give a precise statement of the smoothness requirements later). In
particular let

Me =


∫
e

u · τ q ds,∀q ∈ Pl−1(e) ∀ edges e of K


where τ is a unit tangent to e. Let

Mf =


∫
f

u · q dA, ∀q ∈ (Pl−2(f))2, ∀ faces f of K

 ,

MK =


∫
K

u · q dV, ∀q ∈ (Pl−3(K))3

 .

Then the degrees of freedom on K are

ΣK = Me ∪Mf ∪MK .

For sufficiently smooth vector fields u, these degrees of freedom define an interpolant rhu element by element.
In particular, from [2] we know that this interpolant is well defined provided that there is a δ > 0 and integer
q > 2 such that for each tetrahedron K ∈ τh

u ∈ (H1/2+δ(K))3, and ∇× u ∈ (Lq(K))3.

Let

Hs(curl; Ω) =
{
u ∈ (Hs(Ω))3 | ∇ × u ∈ (Hs(Ω))3

}
.

Using scaling arguments the following estimate is proved in [1].
Theorem 2.1. If τh, h > 0, is a regular family of meshes on Ω and if u ∈ Hs(curl; Ω), 1

2 < s ≤ l, then
there is a constant C depending on s but not on h or u such that

‖u− rhu‖curl ≤ Chs(‖u‖Hs(Ω) + ‖∇ × u‖Hs(Ω)).

We can also define the H0(curl; Ω) orthogonal projection Ph : H0(curl; Ω) → Xh, such that if u ∈
H0(curl; Ω) then Phu ∈ Xh satisfies∫

Ω

∇× (u− Phu) · ∇ × φh + (u− Phu) · φh dV = 0, ∀φh ∈ Xh.(2.1)

This projection satisfies the optimal error estimate

‖u− Phu‖curl = inf
vh∈Xh

‖u− vh‖curl.
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If u ∈ Hs(curl; Ω), s > 1/2, Theorem 2.1 can then be used to provide order estimates for the right hand side
of the above equality.

Now let

Sh =
{
ph ∈ H1

0 (Ω) | ph|K ∈ Pl ∀K ∈ τh
}
.

This is just the space of standard continuous, piecewise degree l − 1 finite elements. We have ([20])

∇Sh ⊂ Xh.

This provides a large subspace of test functions in Xh. Using this space, we say a function u ∈
(
L2(Ω)

)3 is
discrete divergence free if ∫

Ω

u · ∇ξh dV = 0 ∀ξh ∈ Sh.

We then have the following discrete Helmholtz decomposition analogous to (1.3(

Xh = X̃h ⊕∇Sh

where X̃h is the space of discrete divergence free finite elements.
Using the test function φh = ∇ξh, ξh ∈ Sh in (2.1) shows that u− Phu is discrete divergence free since∫

Ω

(u− Phu) · ∇ξh dV = 0, ∀ξh ∈ Sh.(2.2)

We shall also need some properties of a subspace of divergence conforming finite element functions in
the space

H0(div; Ω) =
{
u ∈ (L2(Ω))3 | ∇ · u ∈ L2(Ω), ν · u = 0 on Γ

}
.

These finite elements are also found in Nédélec [20]. Let

Dl = (Pl−1)3 ⊕ P̃l−1x

and define Yh ⊂ H0(div ; Ω) by

Yh = {uh ∈ H0(div; Ω) | uh|K ∈ Dl ∀K ∈ τh} .

Although we will not need error estimates for this space, we shall need some properties of the interpolant.
The degrees of freedom for this space are defined element by element as follows. For a face f in the mesh
with normal νf , let

Nf =
{∫

f

u · νfq dA, ∀q ∈ Pl−1(f) for each face f of K
}
,

and let

NK =
{∫

K

u · q dV, ∀q ∈ (Pl−2)3

}
.

The degrees of freedom on an element K are ΣK = NK∪Nf . These degrees of freedom define an interpolation
operator wh element by element. This operator is well defined for example on functions u ∈ (H1/2+δ(Ω))3,
for some δ > 0.

The only property of wh we shall use is the “commuting diagram property” that if u is such that both
the interpolants rhu and wh∇× u are well defined then

∇× rhu = wh∇× u.(2.3)
4



This commuting property is part of the discrete deRham diagram whose importance has been pointed out
particularly by Boffi and co-workers [4, 5].

Now suppose that u ∈ (H1/2+δ(Ω))3 is such that ∇ × u ∈ Yh. Since functions in Yh are peicewise
polynmials of fixed degree, it follows that ∇ × u ∈ (Lq(Ω))3, for any q ≥ 2 and hence the interpolant rhu
is well defined. Using a scaling argument along the lines of [1] and the equivalence of norms for a piecewise
polynomial on the reference element as in [3] we have the following result.

Lemma 2.2. Let τh be a regular mesh, and suppose u ∈ (H1/2+δ(Ω))3 is such that ∇× u ∈ Yh. Then
there exists a constant C independent of h and u such that

‖u− rhu‖ ≤ C
(
h1/2+δ‖u‖H1/2+δ(Ω) + h‖∇ × u‖

)
.

One further remark is needed regarding the discrete divergence free space X̃h. First, we note that

∇×Xh ⊂ Yh

(clearly ∇×Xh ⊂ H0(div; Ω) and the piecewise polynomials in ∇×Xh are vector functions of degree l−1, so
in Yh). Thus, as in [3], we can regard the curl as a bounded operator from Xh into Yh. In Xh the null-space
of the curl operator is denoted N(curl). Let uh ∈ N(curl). Since the domain Ω is simply connected and the
boundary Γ is connected, the fact that ∇× uh = 0 in Ω implies uh = ∇p for some p ∈ H1

0 (Ω). In addition
since uh ∈ Xh then p ∈ Sh. Hence N(curl) = ∇Sh.

The discrete divergence free space X̃h is thus given by X̃h = N(curl)⊥ where N(curl)⊥ is the orthogonal
complement of N(curl) ⊂ Xh in the (L2(Ω))3 inner product. Now, following [3], let ∇h× denote the discrete
adjoint operator for the curl by which we mean that for each wh ∈ Yh, ∇h×wh ∈ Xh is the unique function
such that

(∇h ×wh,ψh) = (wh,∇×ψh), ∀ψh ∈ Xh.

By a standard theorem from functional analysis (see Theorem 4.6 of [8]) we know that

N(curl)⊥ = ∇h × (∇×Xh)

so that we have the following result.
Lemma 2.3. For each vh ∈ X̃h there is a function wh ∈ ∇×Xh ⊂ Yh such that vh = ∇h ×wh or∫

Ω

vh · φh dV =
∫

Ω

wh · ∇ × φh dV ∀φh ∈ Xh.

This lemma is from [3] where it is pointed out that an alternative way to write the discrete Helmholtz
decomposition is as follows. Any function vh ∈ Xh may be written

vh = ∇h ×wh +∇ph

for some wh ∈ ∇ ×Xh ⊂ Yh and ph ∈ Sh. This makes the discrete Helmholtz decomposition look a little
more like the continuous one.

3. Error Analysis. This section is devoted to proving our main Theorem 3.4. For convenience we use
the notation

a(u,v) =
∫
Ω

∇× u · ∇ × v − k2u · v dV

and

(u,v) =
∫
Ω

u · v dV.
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At this stage we do not know that Eh exists, but if it does exist we define eh = E−Eh. Then by subtracting
(1.5) from (1.2) we obtain the Galerkin error equation

a(eh,ψh) = 0, ∀ψh ∈ Xh.(3.1)

In particular, choosing ψh = ∇ξh for ξh ∈ Sh shows that eh is discrete divergence free.
In [19] the problem of estimating ‖E −Eh‖curl was approached via a classical Garding inequality. Our

first lemma is a weaker form of the Garding inequality as used in [18].
Lemma 3.1. There is a constant C independent of h, E and Eh such that

‖eh‖curl ≤ ‖E − PhE‖curl + C sup
vh∈Xh

|(eh,vh)|
‖vh‖curl

.(3.2)

Proof. Using a very slight modification of the proof of Lemma 4.4 of [18] we see that by the definition
of the curl norm, and the definition of a(·, ·) we have

‖eh‖2curl = a(eh, eh) + (1 + k2)(eh, eh)
= a(eh,E − PhE) + a(eh, PhE −Eh) + (1 + k2)(eh, eh)

Now using the Galerkin condition (3.1), the definition of the curl norm, and the definition of ‖ ·‖curl we have

‖eh‖2curl = a(eh,E − PhE) + (1 + k2)(eh, eh)
= (∇× eh,∇× (E − PhE)) + (eh, (E − PhE)) + (1 + k2) {(eh, eh)− (eh, (E − PhE))}
= (∇× eh,∇× (E − PhE)) + (eh, (E − PhE)) + (1 + k2)(eh, PhE −Eh).

Hence using the Cauchy-Schwarz inequality, and the boundedness of the projection Ph : H(curl; Ω)→ Xh

‖eh‖2curl ≤ ‖E − PhE‖curl ‖eh‖curl + (1 + k2) sup
vh∈Xh

|(eh,vh)|
‖vh‖curl

‖PhE −Eh‖curl

= ‖E − PhE‖curl ‖eh‖curl + (1 + k2) sup
vh∈Xh

|(eh,vh)|
‖vh‖curl

‖Pheh‖curl

≤ ‖E − PhE‖curl ‖eh‖curl + (1 + k2) sup
vh∈Xh

|(eh,vh)|
‖vh‖curl

‖eh‖curl.

This proves the desired estimate with C = 1 + k2.
Our error estimate will be finished if we can estimate the supremum on the right hand side of (3.2).

This is done in in Lemma 3.3.
Before we prove this lemma we need to investigate discrete divergence free functions in more detail.

For such functions we can construct a nearby exactly divergence free function. This construction was used
for example by Girault [16] and myself [19] with an ad-hoc analysis. However the clearest analysis is from
Arnold et al. [3].

For a given discrete divergence free function vh ∈ X̃h, let us define vh ∈ H0(curl; Ω) by

∇× vh = ∇× vh in Ω,(3.3a)
∇ · vh = 0 in Ω.(3.3b)

In [3] it is suggested to view vh as part of the solution of the mixed problem of finding vh ∈ H0(curl; Ω)
and wh ∈ ∇×H0(curl; Ω) such that

(vh,φ) + (∇× φ,wh) = 0, ∀φ ∈ H0(curl; Ω),(3.4a)
(∇× vh, ξ) = (∇× vh, ξ), ∀ξ ∈ ∇×H0(curl; Ω).(3.4b)

Both the coercivity condition and Babuška-Brezzi condition for mixed methods are obviously satisfied and
so (vh,wh) exists.
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We have the following lemma:
Lemma 3.2. Let vh ∈ X̃h. Suppose vh ∈ H0(curl; Ω) satisfies (3.3) then there are constants C and

δ > 0 independent of h and vh and vh such that

‖vh − vh‖ ≤ Ch1/2+δ‖∇ × vh‖.

Proof. The proof follows [3] checking that their result, proved for convex domains, holds here. From
[2] there is an exponent δ > 0 such that vh ∈

(
H1/2+δ(Ω)

)3
, and since ∇ × vh = ∇ × vh, we see that

∇ × vh ∈ (Lq(Ω))3 for all q > 2. Hence using Lemma 2.2, rhvh is well defined. But then, using the
commuting diagram property of edge elements

∇× rhvh = wh∇× vh = wh∇× vh = ∇× vh.(3.5)

Since vh is discrete divergence free, by Lemma 2.3 there is a function wh ∈ ∇×Xh such that

(vh,φh) + (∇× φh,wh) = 0, ∀φh ∈ Xh,(3.6a)
(∇× vh, ξh) = (∇× vh, ξh), ∀ξh ∈ ∇×Xh.(3.6b)

Thus (vh,wh) is nothing else than the mixed finite element approximation to (vh,wh) defined by (3.4).
Now selecting φ = rhv

h − vh in (3.4a) and φh = rhv
h − vh in (3.6a) and using the fact that ∇ × φh = 0

(see (3.5)) we have

(vh − vh, rhvh − vh) = 0.

Thus

(vh − vh,vh − vh) = (vh − vh,vh − rhvh) + (vh − vh, rhvh − vh).

Hence ‖vh − vh‖ ≤ ‖vh − rhvh‖ and using Corollary 2.2 we have

‖vh − vh‖ ≤ C
(
h1/2+δ‖vh‖H1/2+δ(Ω) + h‖∇ × vh‖

)
.

The a priori estimate ‖vh‖H1/2+δ(Ω) ≤ C‖∇ × vh‖ completes the proof.
Now we can estimate the troublesome term in (3.2).
Lemma 3.3. For all h small enough there exists constants C and δ with 0 < δ ≤ 1/2 such that

sup
vh∈Xh

|(eh,vh)|
‖vh‖curl

≤ Chδ+1/2‖eh‖curl.

Proof. This lemma is proved by a duality argument similar to the one in the proof of Lemma 4.3 of [18] and
in [19]. Using the continuous Helmholtz decomposition there is a divergence free function eh0 ∈ H0(curl; Ω)
and a scalar ph ∈ H1

0 (Ω) such that

eh = eh0 +∇ph.

Here ph ∈ H1
0 (Ω) satisfies

(∇ph,∇ξ) = (eh,∇ξ), ∀ξ ∈ H1
0 (Ω).

Thus, by choosing ξ = ph, we see that ‖∇ph‖ ≤ ‖eh‖.
Using the discrete Helmholtz decomposition we also can write

vh = v0,h +∇ξh

for some v0,h ∈ X̃h and ξh ∈ Sh. Since we have already shown that eh is discrete divergence free, we have

(eh,vh) = (eh,v0,h) = (eh0 ,v0,h) + (∇ph,v0,h).(3.7)
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The first term on the right hand side is estimated by

|(eh0 ,v0,h)| ≤ ‖eh0‖ ‖v0,h‖ ≤ C‖eh0‖ ‖vh‖(3.8)

where we have made use of the fact that ‖∇ξh‖ ≤ ‖vh‖. Thus we can estimate this term by estimating ‖eh0‖
which we do next.

We define the adjoint variable z ∈ H0(curl; Ω) such that

a(φ,z) = (eh0 ,φ), ∀φ ∈ H0(curl; Ω).(3.9)

Clearly z is the weak solution in H0(curl; Ω) of

∇×∇× z − k2z = eh0 .

and the assumption that k is not an interior Maxwell eigenvalue implies that z is well defined and there is
a constant C such that ‖z‖curl ≤ C‖eh0‖.

Since eh0 is divergence free, it follows that z is also divergence free (to see this take φ = ∇ξ for ξ ∈ H1
0 (Ω)

in equation (3.9)). Thus we have

∇× z ∈ (L2(Ω))3, ∇ · z = 0 in Ω and ν × z = 0 on Γ.

By Proposition 3.7 of [2] we have z ∈
(
H1/2+δ(Ω)

)3
for some δ with 0 < δ ≤ 1/2 together with the norm

bound

‖z‖H1/2+δ(Ω) ≤ C‖eh0‖.

In addition we see that ∇× z ∈ (L2(Ω))3 is the weak solution of

∇× (∇× z) = k2z + eh0 ∈ (L2(Ω))3,

∇ · (∇× z) = 0 in Ω,
ν · (∇× z) = 0 on Γ.

Thus again by Proposition 3.7 of [2],

∇× z ∈
(
H1/2+δ(Ω)

)3

with the norm bound

‖∇ × z‖H1/2+δ(Ω) ≤ C‖eh0‖.

We conclude that z ∈ H1/2+δ(curl; Ω). Hence the interpolant rhz is well defined, and we can use Theorem
2.1 to obtain the error estimate

‖z − Phz‖curl ≤ ‖z − rhz‖curl ≤ Ch1/2+δ‖eh0‖.

Now using (3.9) and the fact that z is divergence free we have

‖eh0‖2 = a(eh0 ,z) = a(eh0 +∇ph,z) = a(eh,z).

Hence by the Galerkin condition (3.1)

‖eh0‖2 = a(eh,z − Phz) ≤ C‖eh‖curl‖z − Phz‖curl ≤ Ch1/2+δ‖eh0‖ ‖eh‖curl.

We have thus proved that

‖eh0‖ ≤ Ch1/2+δ‖eh‖curl(3.10)
8



Now we estimate the term (∇ph,v0,h) in (3.7). Since v0,h is discrete divergence free Lemma 3.2 implies
that there is a divergence free function vh0 ∈ H(curl; Ω) with

‖vh0 − v0,h‖ ≤ Ch1/2+δ‖∇ × v0,h‖ = Ch1/2+δ‖∇ × vh‖.

Now using the fact that vh0 is divergence free, and the error estimate above, we have

(∇ph,v0,h) = (∇ph,v0,h − vh0 )

≤ Ch1/2+δ‖∇ph‖ ‖∇ × vh‖.(3.11)

Using (3.10) in (3.8) and using the resulting estimate together with (3.11) in (3.7) proves the desired result.

We now state and prove our main theorem:
Theorem 3.4. Let Ω be a simply connected Lipschitz polyhedron with connected boundary Γ. Suppose k

is not a Maxwell eigenvalue for Ω. Then if E satisfies (1.2) and Eh ∈ Xh satisfies (1.5) there is a constant
C independent of h, E and Eh and a constant h0 > 0 independent of E and Eh such that for all 0 < h < h0,

‖E −Eh‖curl ≤
1

1− Ch1/2+δ
inf

vh∈Xh
‖E − vh‖curl.

Here δ > 0 is the exponent in Lemma 3.2.
Remarks:
1. Choosing h small enough that (for example) Ch1/2+δ < 1/2 proves quasi-optimal convergence of the

edge element approximation. Furthermore the constant 1/(1 − Ch1/2+δ) can be made arbitrarily
close to unity. This seems to me to be a surprising result given that the norms are not k dependent.

2. If u ∈ Hs(curl; Ω) for some s with 1/2 < s ≤ l, then Theorems 2.1 and 3.4 show that for all
sufficiently small h there is a constant C such that

‖E −Eh‖curl ≤ Chs.

In general the polyhedral boundary Γ causes singularities in the solution that prevent high global reg-
ularity. Nevertheless, as we have seen, we can expect sufficient regularity to guarantee a convergence
rate of better than O(h1/2).

Proof. Lemma 3.3 shows that

sup
vh∈Xh

|(eh,vh)|
‖vh‖curl

≤ Ch1/2+δ‖eh‖curl.

Putting this together with (3.2) shows that

‖eh‖curl ≤ ‖E − PhE‖curl + Ch1/2+δ‖eh‖curl.

Choosing h small enough that 1− Ch1/2+δ > 0 proves the result.
Corollary 3.5. For any F ∈ H0(curl ; Ω)′, there is an h0 > 0 such that for all h < h0, equation (1.5)

has a unique solution.
Proof. It suffices to prove uniqueness. Let F = 0, then since k is not a Maxwell eigenvalue, E = 0 in

(1.2) and Eh = 0 is one solution of the discrete problem. By the above error estimate, for any solution Eh

of the discrete problem ‖Eh‖curl ≤ C inf
vh∈Xh

‖vh‖ = 0. Hence Eh = 0, and uniqueness is proved.

4. Conclusion. The proof we have given rests critically on regularity results for the dual problem, and
on the estimate for in Lemma 2.3 for the approximation of a discrete divergence free function by a divergence
free function. For smooth coefficients these results still hold. But for general coefficients both results might
be difficult to obtain, however it is possible that using arguments like those in [6] the explicit estimates used
here could be replaced by uniform convergence estimates based on compactness arguments of the type used
by Schatz and Wang [23].

From the point of view of analyzing other elements, the proof here is also valid for second family edge
elements on tetrahedra [21] and for the edge finite elements on parallelepipeds in [20]. Extending these
results to h − p elements such as those in [24, 14] would require the low regularity interpolation results in
Theorem 2.1 and the estimate in Lemma 2.2. As far as I am aware, these are not yet proved.
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